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Abstract

We describe COGNITIO, a computational theory of
leaming and cognition, and provide evidence of its
psychological validity by comparing the protocols of
a student leaming to program in Smalltalk against a
COGNITIO-based computer simulation of the same.
COGNITIO is a production system cognitive
architecture that accounts parsimoniously for human
leamning based on three learning mechanisms: schema
formation, episodic memory, and knowledge
compilation. The results of simulation support the
validity of COGNITIO as a computational theory of
learning and cognition. We also draw some
implications of COGNITIO for the teaching of
complex problem solving skills.

Introduction

Existing computational theories of cognition appear
unable to account for the complexities of human
learning and cognition in a comprehensive and
integrated manner (Chan, Chee, & Lim, 1992). The
major extant architectures seem incapable of
providing us with a suitable framework for modeling
students leamning to program in Smalltalk,

Although Anderson's ACT* and PUPS theories
(Anderson, 1983; Anderson, 1989) are able to
account, in detail, for skill acquisition, they are
unable to describe other aspects of learning such as
assimilation of new declarative domain knowledge,
reliance on prior problem solving episodes, and the
formation of memory schemata. Similarly, SOAR
(Laird, Rosenbloom, & Newell, 1986; Laird, Newell,
& Rosenbloom, 1987) is able to account for skill
acquisition but shares the same deficiencies of ACT™.

Other computational theories such as Schank's
MOPs and TOPs (Schank, 1982) and Kolodner's E-
MOPs (Kolodner, 1983; Kolodner, 1987), on the
other hand, account for cognition only from a
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restricted point of view, namely, that of case-based
reasoning (see Slade (1991) for a discussion of the
case-based reasoning paradigm). Case-based reasoning
and problem solving based on episodic memory are
important elements of human cognition that ACT*
and SOAR do not account for. Unfortunately, case-
based reasoning, on its own, is unable to account for
the finer problem solving and leaming behavior that
ACT* and SOAR offer through their production
system architecture and their knowledge compilation
(Neves & Anderson, 1981; Anderson, 1987) and
chunking mechanism (Laird, Rosenbloom, & Newell,
1986) respectively,

Theories such as Induction (Holland, Holyoak,
Nisbett, & Thagard, 1987) and Repair Theory (Brown
& Vanlehn, 1980) are also problematic from the
perspective of accounting for complex problem
solving behavior. The theory of Induction accounts
for learning in a problem solving domain through
activation: a rule which has been successfully applied
will be more highly activated than another which has
been unsuccessfully applied. Consequently, when a
similar problem arises the next time, the more highly
activated rule will be selected first. The theory of
Induction seems to describe cognition at a level which
is too low for modeling complex problem solving
behavior. Furthermore, it omits the role of schematic
knowledge in problem solving, an important
indication of increasing expertise in a domain (Chi,
Feltovich, & Glaser, 1981; Rumelhart, 1980;
Rumelhart & Norman, 1978). Repair theory, on the
other hand, has been most successfully applied to the
study of subtraction. However, it is difficult 1o extend
it to the modeling of programming behavior. While
modeling two or three column subtraction can be
achieved using a very small number of operators, the
programming process entails a much more complex
sequence of planning and reasoning steps. Unlike
subtraction, the range of possible impasses is
virtually unbounded in programming. In addition,
Repair Theory also excludes the phenomenon of
schematic memory organization. Consequently,



Repair Theory is ill-suited to studying programming
behavior.

In response (o0 the perceived deficiencies of existing
cognitive theories, we have formulated COGNITIO as
an integrated theory of leaming and cognition.
COGNITIO is particularly well-suited (0 accounting
for learning and cognition by incorporating the
formation of schematic knowledge, the use of
episodic memory, and the compilation of knowledge.

COGNITIO:
An Extended Theory of Cognition

COGNITIO is esseatially an extension to the ACT*
theory. The architecture of cognition embodied in
COGNITIO is given in Fig. 1.
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COGNITIO is a production system theory of
cognition. It contains a working memory and three
separale long-term memories — semantic memory,
episodic memory, and production memory. Working
memory is a short-term, limited capacity memory
which is the activated portion of the semantic
memory. Episodic memory contains prior problem
solving episodes which are represented as plan-trees
(Chan, Chee, & Lim, 1992). When the conditions in
a production rule contained in the long-term
production memory match the state of the working
memary, the rule is fired, and the actions (mental and
possibly physical) are performed. Cognitive behavior
is the result of a series of production matchings and
firings.

More importantly, COGNITIO is also a theory of
learning. COGNITIO postulates that the long-term
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memories are transformed as a result of production
firings. That is, learning in a domain occurs only if
that domain knowledge is used in solving problems
of the domain. These long-term memory
transformations are evidenced by increasing
competence in a domain, The transformations occur
through three learning mechanisms: schema
formation, episode storagelretrieval, and knowledge
compilation.

(i) Schema Formation (or Declarative Chunking).
Related memory elements from semantic memory
which are often accessed together in solving problems
are organized together into higher-level memory
structures — schemata — which can be accessed later as
individual units in working memory. Schema
formation reduces the demand on working memory
and enables a person to view a complex concept or
problem in an appropriate context. The degree of
coherence and understanding achieved by virtue of a
newly acquired schema will depend on how well
elaborated it is. In addition, a schema that has become
a unit by itself can become part of a larger schema as
the learner continues with his learning. Such schema
formation corresponds to the ability to build a better
mental model of a problem at hand since more
information is made available, in a coherent form, at
the time a person reasons about the problem.

(ii) Episode Storage/Retrieval. A person can rely on
his prior experience to guide the solution to a new
but similar problem. Each problem-solving
experience is considered an episode and is stored in the
long-term episodic memory. When a new problem
bears some resemblance to a problem that has been
solved previously, a person could be reminded of that
previous problem-solving episode. He would then
rely on that episode for some of the steps performed
or decisions made previously, instead of attempting to
solve the current problem anew. An episode is
retrieved when an episode’s goal and conditions match
the current goal and current working memory content.

(iii) Knowledge Compilation. Knowledge
compilation accounts for increasing fluency in skill
acquisition and ultimately to a high degree of
automaticity. The two submechanisms of knowledge
compilation are proceduralization and composition.
Proceduralization creates a new production by
removing or modifying conditions that require access
10 long-term semantic memory so that the semantic
knowledge is built into the new production itself.
Composition creates new productions by composing
two productions that are fired in sequence in achieving
related goals into another production that, when fired,
will have the same effect as the two original
productions fired in sequence.

In summary, COGNITIO is a computational theory
of learning and cognition. It improves upon earlier
models of cognition by incorporating the role of



episodic memory in a production-based architecture
and by specifically including a mechanism for schema
formation and accommodating the role of schemala in
domain knowledge assimilation.

Validating COGNITIO

This section describes a COGNITIO-based simulation
of a student's leaming and problem-solving behavior.
The first subsection describes the nature of the
protocols of & student learning to program in
Smalltalk. These protocols provide the psychological
data for testing the validity of COGNITIO. The
second subsection describes the simulation itself. The
third subsection summarizes the simulation results.

Protocol Collection

We performed a simulation of a student learning to
program in Smalltalk based on the protocols collected
from a first-year computer science undergraduate at
this university. The student had only studied Pascal
programming for one semester. Both video and audio
protocols were collected of the entire Smalltalk study
session (total duration of approximately six hours).
The student read aloud the instruction and verbalized
his thoughts while trying to understand the
instructions and while solving problems. The
instructions explained Smalltalk concepts and the
programming interface. They also required the student
to solve problems periodically by being engaged in a
financial game. An instructor was present to provide
assistance whenever necessary. The video recordings
captured the interaction between the student and the
Smalltalk programming environment. The audio
recordings captured the verbalizations of the student
and the dialogs between the student and the instruclor.

The Simulation

This section describes the simulation of the opening
segment of the protocols. A schematic version of the
protocols is contained in the Appendix. The first
subsection describes our approach to simulating the
leaming embodied in the protocols while the second
subsection describes the simulation in detail.

Process of simulation. A computer system based
on the COGNITIO architecture and theory was
implemented to simulate the student's protocols. The
process of simulation runs directly parallel to the
unfolding learning behavior. Consequently, at points
where the student read instruction, knowledge
corresponding to the instruction was encoded (in
propositional form) and entered into the system.
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Similarly, at points where a problem had to be
solved, the system was given the corresponding
problem solving goal o achieve. Thus, a detailed,
step-by-step simulation of the leaming process was
performed. Such an approach is significant in that
knowledge acquired at time ¢/ affects not only
behavior at time ¢2 (later) but also how new
knowledge entered into the system at time 2 is
interpreted and integrated into the system memory.
Consequently, assimilation of new declarative
knowledge is directly dependent on what is already
known.

The simulation results. At the commencement
of the simulation, the system only contains a few
productions that represent the weak problem solving
method of divide-and-conquer. These productions, like
other productions that are used for modeling problem-
solving behavior, have actions that would normally
generate subgoals 10 achieve a given goal. For
example, one weak-method production encodes the
following rule:

If a goal is to achieve a certain function and

some operation can achieve that function and

that operation has a number of steps

then set subgoals to perform those steps.

The long-term semantic memory also contains the
propositional form of the instruction that was read by
the student before he attempted the first problem,
namely, to determine the balance in the account
object MyAccount. Like the student (in steps 4 to
8), the system solves the problem in the three steps
given, namely, by typing the expression
"MyAccount queryBalance”, highlighting
the expression, and selecting "print it" from the
operate menu. The steps were generated as three
subgoals in the simulation. After solving this
problem, no schema is formed and no productions are
compiled because the level of activation of semantic
memory elements involved in solving the problem
does not exceed a prespecified threshold. However, the
system's episodic memory has been registered with
the steps the system ook to evaluate the expression
"MyAccount queryBalance".

The preceding episode guides the solution to the
second problem of determining the interest rate of
MyAccount. The system, like the student (in steps
10 to 12), is able to type out the expression that was
thought to be needed, to highlight it, and to select
"print it", This behavior is best explained as behavior
that results from invoking the knowledge siored from
the first problem solving episode. It cannot be
explained in terms of knowledge compilation because
the student is, at this point, still verbalizing the need
to highlight the expression (“so we select the whole
thing') and no production was compiled after the first
problem solving episode.

The system, like the subject (in step 10), however,
fails to type the object MyAccount in the



expression evaluated. There are two reasons for this.
First, the previous episode only encoded whal steps
needed to be perfarmed 10 achieve the desired function,
namely, to type the expression, highlight it, and
select "print it". The episode did not encode the
knowledge about the structure of a message
expression — that a message expression consists of an
object followed by a message. Secondly, there was a
lack of explicit specification of the object in the
instructions but strong association of
interestRatae to the function of determining
interest rate. As a result, the expression to be
evaluated is associated with only the message
interestRate in the working memory leading
to the incorrect behavior observed. However, when
the cause of the error was pointed out by the
instructor (missing receiver object, MyAccount, in
the message expression), the student (in step 14) was
able 1o make the appropriale correction (steps 15-17).
When the system (and the student in step 18) is
given the goal to start up the trading place, it (like
the student) is able to code the expression correctly
(steps 19-21). Furthermore, from the verbalizations of
the student (“TradingPlace is the object” and
"startUp is the message”), il can be seen that a
schema encoding the structure of a message
expression is being formed. The system simulates
this in corresponding fashion by creating a message
expression schema that comprises an object slot, a
message slot, and a constraint slot specifying that the
receiver object must precede the message selector.

As the simulation proceeds, the message expression
schema is enhanced with a slot indicating that a
Smalltalk object is returned from the evaluation of a
message expression (steps 23-25). Evidence of this
becomes apparent later (step 31) by the way the
student interprets the nested message expressions in
step 30. Furthermore, a production that proceduralizes
the steps to evaluate a message expression is also
formed. The omission of verbalization and the speed
with which the expression was evaluated (that is,
highlighting and selecting “print it" in step 23) are
supportive of the proceduralization having occurred.

As the student progressed with his learning, he
acquired more schemata, more experience from prior
problem-solving episodes, and more productions
formed in production memory. For example, after
about an hour and a half after the protocol extract
shown in the Appendix, the student had also formed
an appropriale method schema that resulled from
coding several expression series, examining and
understanding methods in detail, and coding a method.
Supporting evidence for this schema formation is
provided when the student was trying to understand
the following given method:
buyShareOfName: aString

SharesPortfolio add: (TradingPlace
buyShareCfName:aString
usingAccount: self)
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in which the global variable SharesPortfolio is
accessed in the method. The student elaborated his
method schema in the following verbalization:
“SharesPortfolio being a global variable, we can do
this”. This is because the method schema specifies
the parts of a method as well as the constraint that
only instance and class variables are accessible in the
method of the receiver. Thus, upon encountering
Sharesportfolio which is neither the instance
or class variable of an account object, the stdent is
trying to interpret the method in a manner which is
consistent with his current schema.

Evidence for problem solving based on episodic
memory is provided at a point in time after the
student coded the above method. The student
remembered that he had previously used another
message which drew cash directly from the account to
get a higher discount: “remember there is
usingCashosr"” , (after locating the actual
message name) “so, if I were to rewrite my
method...of the..to usingCashoOf
withdraw amount, wouldn't that be better?”. As a
result, he changed the given method to the one that
gave a higher discount. This behavior can be
simulated by inserting an additional condition in the
working memory that a maximum discount is
required so that the episode involving the use of the
nested message:

“TradingPlace buyShareOfName:aShareName
usingCashOf:(MyAccount
withdraw:anAmount) "
is retrieved. Without the learming mechanism of
episodic memory, the working memory must first be
augmented with the various facts and relationships
between the messages withdraw: and
buyShareOfName:usingCashOf:. A series of
reasoning steps must then be performed to construct
the appropriate nested message. However, the
protocol of the student did not reveal the occurrence of
such reasoning steps. In addition, knowledge
compilation cannot be used to explain the behavior
because the student was unable o reproduce the whole
nested expression readily. Instead, he was reminded of
the episode, but still had to rely on the text for the
exact form of the message expression required.

There was also ample evidence of knowledge
compilation. However, most of the rules compiled
were interface-related; for example, copying a method
from one class to another through the system
browser. Since the knowledge compilation
mechanism operates the same way as in ACT*, we do
not elaborate on this further.

Simulation Conclusions

The simulation results described above demonstrate
that COGNITIO provides a faithful computational
account of cognition and learning. In particular:



(i) The basic production system architecture can be
used to simulate cognition, and especially learning.
This is consistent with the ability of ACT*
(Anderson, Farrell, & Sauers, 1984) and SOAR
(Lewis, et al, 1990) to simulate human problem
solving behavior.

(ii) The three learning mechanisms, namely,
schema formation, storage/retrieval of episodes, and
knowledge compilation, as embodied in COGNITIO
are all essential components of any account of human
leamning. Taken individually, each mechanism may
account for one aspect of leaming but not another. By
integrating the three learning mechanisms in a
parsimonious way, COGNITIO is able to account for
leaming in a more integrated and powerful way.

Implications of COGNITIO

The simulation highlights some implications for
teaching Smalltalk and other skills in general:

(i) It is important that a student be given ample
practice and exposure to concepts (for example, the
structure of message expressions) before he has to
proceed further in a course of instruction. This is to
ensure that appropriate knowledge has been
schematized so that it will leave more working
memory capacity available for new concepts to be

(ii) Instruction for teaching a skill, such as
Smalltalk programming, should be designed with the
aim of equipping the student with the various
schemata of the essential concepts of the skill. For
example, in Smalltalk, some relevant schemata are
the message expression schema, the method schema,
the class schema, and so on. The observation is that a
schema can aid the student in understanding related
concepts that will be introduced later. For example, a
schema for message expressions is essential for
understanding more complicated concepts such as
nested message expressions or methods.

(11i) Parts of a knowledge or skill can be acquired
through episodic learning but other parts might be
better taught explicitly. This is illustrated by the
earliest part of the simulation when the student had
no difficulty performing the steps to evaluate an
expression out forgot to include the object in the
message expression. Thus, a "semantic" relationship,
such as that between an object and a message, is best
taught explicitly; failure to do so entails the risk of
the relationship being ignored by a student.

Conclusions

This paper has described a computational theory of
learning and cognition, as embodied in COGNITIO.
The theory is able to account for the schematic
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organization of memory, the role of episodic memory
in learning, and skill acquisition in cognition.
Evidence of the validity of COGNITIO was
demonstrated by its application to the simulation of a
student learning to program in Smalltalk. The
simulation also highlights some implications for
teaching problem-solving skills such as Smalltalk
programming.

Appendix. A schematic protocol of a student
leaming to program in Smalltalk is shown below.
The student's actual verbalizations are shown in
italics in square brackets.
1. Student leamns that to achieve something in Smalltalk,
he must send a message 0 some obiject.
2. Student learns that the basic format o do so is “object
message-name".
[Problem Solving Episode 1: Steps 3-8])
3. Student is asked to determine the balance in
MyAccount by sending the message queryBalance
to the object MyAccount in the Workspace window
(already opened).
4. The steps given are: (a) type "MyAccount
queryBalance"”, (b) highlight the expression, and
(c) select "print it" from the operate menu.
5. Student types the expression.
6. Student highlights the expression.
7. Instructor teaches how and where to select “print it"
8. Expression is evaluated — 5000 (which is the current
balance in MyAccount) is shown beside the evaluated
expression.
[Problem Solving Episode 2: Steps 9-12]
9. Student is asked to determine the interest rate offered
in MyAccount by sending it the message
interestRate.

0. Student thinks aloud ["interestRate”... ] as he
types "interestRate"

11. Student thinks aloud ["so we select the whole
thing”... ] as he highlights "interestRate”

12, Student selects "print it".

13. Error message appears (because the system weats
interestRate as an object according to the syntax
of Smalltalk, and such an object does not exist).

14. Instructor points out the mistake that the object in
the expression has been omitted.
[Problem Solving Episode 3: Steps 15-17]
15. Student types "MyAccount" before
"interestRate”.

16. Student thinks aloud [“interestRate is not
object, interestRate is message").

17. Student evaluates the expression — 0.04, which is the
interest rate, is shown.
[Problem Solving Episode 4: Steps 18-21]

18. Student is asked to start a TradingPlace running by
sending it a message, startUp.

19. ["TradingPlace is the object”]
"TradingPlace".
20. ["startUp is the message”] types "startUp".
21. Student evaluates the expression by highlighting it
and selecting “print it" (a window representing a trading
place appears).
[Problem Solving Episode 5: Steps 22-2§]

types



22. Student is asked to buy shares by sending the

message buyShare o TradingPlace.

23. Student types "TradingPlace"”, and then

"buyShare”; he then evaluales it — anUserShare is

shown. [In Smalltalk, an object is always returned as a

result of executing a message expression. If a user selects

“print it" as the command for executing an expression,

the object will be printed. If an object is not a literal, its

class will be printed.]

24. Student tries to determine what is anUserShare.

25. Instructor points out that it is an indication that a

share object is returned.

[Problem Solving Episode 6: Steps 26-27]

26. Student is asked to buy shares by evaluating the

expression

“"TradingPlace buyShareOfName:'Emtex'
usingAccount :MyAccount"”.

27. Student types "TradingPlace", then types

"buyShareOfName: 'Emtex'” and then types

"usingAccount :MyAccount” and then evaluates it

—anUserShare is shown.

28. Student is told that the he has lost access o the

shares bought because they were not stored away

somewhere.

29. Student is told that the shares to be bought later can

be stored in the set object SharesPortfolio and that a

share can be added into the set by sending it the message

“"add:aShare”.

30. Student is asked to evaluae one of the messages in

order to buy shares and add it into the

SharesPortfolio.

(1) SharesPortfolio add:TradingPlace
buyShare

(ii) SharesPortfolio add:

(TradingPlace buyShareOfName:shareName
usingAccount:anAccount)

(111) SharesPortfolio add:

(TradingPlace
buyShareOfName:shareName
usingCashoOf:

(anAccount withdraw:amount))

31. Student interprets the above messages (i) and (ii) as
["add: is the message...message a share...the argument
being sent in is..when is returned is anUserShare and
this is an object so goes imo add: and this add:
goes inlo SharesPortfolio which is the set object”]
and then (iii) as ["withdraw: is another message
whereby it allows you to say how much to withdraw
...and same thing...and account wiuhdraw will return you
an object...”]
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