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Abstract of the Thesis

Optimizing HVAC Systems using Occupant

Detection and User Thermal Preferences

by

Alex Beltran

Master of Science in Electrical Engineering and Computer Science

University of California, Merced, 2017

Professor Alberto E. Cerpa, Chair

Buildings are a crucial part of our daily lives and people spend 87% of their time

inside buildings. To maintain thermal comfort in buildings a significant amount

of energy is used to condition these spaces. In the US buildings account for 40%

of energy usage and of that 50% of energy goes to heating, ventilation, and air

conditioning (HVAC). Often this energy is wasted by conditioning empty rooms

or by leaving building occupants unsatisfied with the temperature of their room.

In this thesis we present several ways to reduce energy usage while improv-

ing user comfort. First, we reduce energy consumption by incorporating a new

thermal-based occupancy sensor. Energy can be saved by using these thermal

based sensors to detect occupancy and predict movements between rooms and

only conditioning rooms which are occupied. Second, we focus on improving oc-

cupant’s thermal comfort by giving them a method of participatory voting and

influencing how they vote by using several feedback mechanisms which can in-

crease user engagement and reduce HVAC energy usage. And finally, we combine

the previous concepts into an optimization problem that finds the optimal control

sequences based on occupancy, user voting, and several other inputs.

xv



CHAPTER 1

Introduction

Internet of Things (IoT) has become ubiquitous at home and in offices both in

academia and commercially. Wireless sensor mesh networks can be established

to gather sensor data which is sent to a gateway node and sent to a server. Users

then interact with these devices and their environment using IoT.

According to the US Department of Energy, buildings account for 40% of

energy usage in the U.S. and, of that 40%, 50% of this energy is used for heat-

ing, ventilation, and air conditioning (HVAC) [bed]. Conditioning buildings is

important since people spend 87% of their time inside a building [KNO01]. The

goal of conditioning office spaces is largely missed since 35% of occupants report

that they are dissatisfied with their thermal comfort [EC]. In addition to uncom-

fortable occupants, a common issue is that spaces are conditioned when they are

unoccupied.

In this thesis, we contribute the following:

• A novel occupancy detection method using low power thermal array sensors

in a wireless sensor network

• Develop a voting application to allow users to vote on their thermal pref-

erence

• Evaluate 5 different voting feedback systems and their influences on how

1



users vote and the changes in energy usage

• Develop and evaluate the combination of occupancy detection, occupancy

prediction, and thermal comfort into a thermal model to calculate optimal

control sequences

This thesis begins at Chapter 2 with related work for all of the topics. After

Chapter 2, this thesis can be broken into three core chapters: Chapter 3 covers

occupancy detection, Chapter 4 covers participatory sensing, and Chapter 5 com-

bines the previous two technologies to create a model using occupancy detection

and comfort. The final chapter is left for closing remarks and conclusions.
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CHAPTER 2

Related Work

2.1 Occupancy Detection

The authors of [KJD09] test the use of cameras as optical turnstiles to estimate

occupancy. However, they fail to address how cumulative error can impact occu-

pancy estimates. As previously mentioned, even a single error will cause error to

propagate forward. The total ground truth was also limited to 4 hours total for

different times of the day.

The authors of [EAC] also use cameras as optical turnstiles. They mount

multiple strategically placed cameras in hallways to measure occupancy for sev-

eral areas. In addition, they also have a PIR sensor network in order to better

distinguish empty rooms. Again, the major drawback to this approach is the

cumulative error that will occur. However, unlike [KJD09], they discuss strate-

gies for reducing cumulative error. They impose maximum occupancy limits and

use a particle filter with an occupancy model with live data to estimate the er-

ror. However, since their approach uses a model, their approach also requires

a non-trivial amount of ground truth occupancy data (2 weeks), collected using

webcams. The occupancy RMSE achieved was 1.83 persons, more than 5 times

the ThermoSense’s error.

In [BLT10], elderly people are tracked using Imote2 motes with Enalab cam-

eras and utilizing a motion histogram for a period of 1 week. Occupant counts are

3



achieved by counting peaks within the histograms. Their system also includes

PIR sensors in order to detect occupancy for certain areas. There are several

drawbacks to this approach. Since the camera must continually poll the room in

order to generate the motion histograms, the power consumption during periods

of occupancy will be high. The problem of privacy also exists for this system;

cameras must be placed directly in the room.

The papers [LSS10, ABD11] describe methods that uses door sensors with

PIR sensors to obtain a binary measurement of occupancy. Ground truth data

was collected using surveys and manual annotations, and the experiments were

run for 1-4 weeks and 4 days respectively. By adding door sensors, they minimize

instances where overly still occupants become invisible to the PIR sensor. While

this technique improves the binary measurement of occupancy, these systems do

not provide a precise occupancy estimate.

Rather than rely on PIR sensors alone, the authors of [SBK11] also utilize

active radio frequency identification (RFID) tags to determine occupancy. By

deploying multiple antennas with the occupied space, the RFID tags were able to

broadcast their presence every 5 seconds. The limitation to this strategy is that

every occupant must possess a RFID tag, and that tag must always be co-located

with the occupant.

The papers [LHD09,MMC11] estimates occupancy by measuring a variety of

parameters. They collected ground truth data for 5 and 1 weeks deployments,

using video camera and a user voluntary electronic tally counter to measure

room occupancy respectively. In these deployments, they utilize multiple sensors

to estimate occupancy; CO2, CO, lighting, temperature, humidity, motion, and

acoustics. For each parameter, they define multiple feature vectors, which are

then used with several models to estimate occupancy. While this multi-sensor

4



approach works well for the sole purpose of occupancy estimates, this approach

will not work well if combined with a ventilation strategy. They assume that

ventilation will not affect occupancy estimates of the room. However, since ven-

tilation will affect CO2 and humidity levels and thus occupancy estimates, it is

likely that ventilation rates based on occupancy estimates from this system will

lead to wild fluctuations in ventilation actuation and periods of under-ventilation.

In this case, ventilation is better controlled by CO2 sensors directly even with

the known calibration and response time issues [FFS06]. In essence, if CO2 or

humidity is used as sensory input, you can either control ventilation or estimate

occupancy, not do both at once.

2.2 Occupant Comfort

Previous work has used building occupants as participatory sensors [RES10]. By

bringing humans into the loop [EC,BTG13, JB12,Bur14,Rob14], these systems

collect thermal comfort information from building occupants, and then use PMV

to determine temperature setpoints to improve comfort. These works conclude

that gathering sensation data such as “Feeling Too Hot” improves usability, as

users are unable to determine their ideal temperature. All studies resulted in

energy savings and improved satisfaction. Besides PMV, a multi-armed bandit

framework [MJK13] and an optimization model [HW13] have been used to find

improved temperature setpoints based on voting patterns. Although these sys-

tems provide alternative methods to translating human input to HVAC control

strategy, they do not determine how data presentation and environmental feed-

back can be used to promote certain voting application behavior, which is the

focus of our study.

[Rob14] describes operation of a comfort voting application with features sim-

5



ilar to our Physical and Drift mechanisms. Although algorithmic details of their

control strategies are unavailable, the case study concludes that these features

reduce energy consumption by 22.95%. However, due to the age of the building,

and the combination of the Physical and Drift mechanisms, it is difficult to dis-

tinguish which feature led to energy savings, and how they would generalize to

other buildings.

[Sch77] found that a person will act in an altruistic manner if they are shown

the consequences of their actions. [PSJ07] shows that a 32% energy reduction

can be achieved among dormitory residents by presenting energy usage infor-

mation. However, the participants were incentivized with rewards, and 22% of

participants admitted that they would not continue using the strategies after the

study. [BTG13] describes the design of a metering system that presents energy

consumption data and zone temperature to occupants, and energy traces over a

10 day period show that a 5% energy savings was gained when the users were

given control. Providing additional energy-saving tips caused a negligible change

in energy consumption. [HHP00] finds that informing people of their energy usage

influences their behavior, but not always predictably. Similar results are achieved

in residential electricity consumption feedback systems [ELK13,PKS14]. These

studies make it clear that providing this information to participants can cause a

change in behavior, but none suggest how this information might be used in an

application where the improvement in energy efficiency also presents a trade-off

with the voter’s satisfaction and comfort. In our work, we wish to determine this

relationship, and find how it can be used to create purpose-built applications for

either energy efficiency or occupant comfort.

In [GCG08], social norms techniques were used to increase participation in a

program at a hotel for towel reuse. They found that telling hotel guests about the

6



percentage of hotel visitors that had also participated in the program led to in-

creased participation. They concluded that reporting building-level participation

in the displayed statistic is ideal to draw new users into the study. In [NSC08],

it is shown that although people may not believe that the actions of others will

motivate them to save energy, the opposite holds true. The behavior of peers was

seen to cause a large amount of savings among those users. In our study, we see

if this effect holds true in a thermal comfort application when we inform the user

about application usage by their peers.

Work done in [SBK11] allows homes to be efficiently heated using occupancy

sensing and prediction, replacing user-programmed thermostats. Similarly, the

authors of [YNF14] inform the design of future heating and cooling systems by

investigating users’ experiences with the Nest learning Thermostat, a commer-

cially available smart home device. They create a set of design implications for

Eco-Interaction, the design of features and human-system interactions with the

goal of saving energy.

In [CFH14], a drift control strategy was deployed in the campus housing of

8 University undergraduates for a period of ∼18 days. The authors learned that

some occupants will learn to adopt new thermal regulation strategies (i.e. clothing

changes, heating the room in advance) while others will struggle to maintain

comfort. Changes in activation of the zones’ radiators suggest energy savings up

to 42.2%. Despite the similarity in the drift control mechanism, it is difficult to

relate the results found in this study to ours, largely due to environmental/study

conditions. For instance, the University students’ schedules were not known,

making it difficult to know what savings were due to the room being empty. In

comparison, the participants of our study have very structured hours, and rely on

comfort in their space to remain productive. In our work, we wish to determine

7



if this drift strategy can be used in a commercial building to save energy while

still maintaining high occupant satisfaction.

Research done in [YAL14] investigates the use of different feedback mecha-

nisms to improve the energy efficiency of an occupant’s office space by remind-

ing/enabling the occupant to disable unnecessary equipment (lights, computer,

etc.) when the user is not in the office. In our work, we wish to reduce the energy

consumption of the HVAC system while it conditions the user’s space. For this

reason, we must leverage energy savings against occupant comfort. Additional

work [ZYL13] claims that occupant activity prediction based on real-time plug

energy load data can be used to control plug load devices and HVAC system, but

no evidence or experimental results are presented to support these claims.

2.3 Building Modeling

[KMB13] explores the use of MPC in a multi-zone building. In this paper a

model is developed and evaluated by simulation over a 24 hour period. This

paper has flexible temperature bounds set for a 6am to 6pm workday with no

consideration of occupancy. [BC14] uses simulation in order to demonstrate that

real-time occupancy can provide additional savings. In our paper, predicted

occupancy is used in a building to show that it savings can be achieved. Further

work is done in a longer period by [MKD12] which includes load balancing based

on the chiller system used in their building. This paper does not take occupancy

prediction into consideration.

Work has also been done to a small extent to use occupancy prediction with

MPC in [GIB12]. This paper’s occupancy prediction has two main methods, the

first being a reactive method where there is no occupancy prediction and the cur-

8



rent occupancy is said to be constant. The second method has the ground truth

for the entirety of the MPC. The reactive method assumes whatever occupancy

is true at the moment will hold true for the remainder the model. Our paper

takes into consideration of occupancy patterns to allow for preconditioning and

minimize conflicts with comfort constraints while saving energy.

In addition to traditional MPC models, work has been done in [MB] [PVR13]

[PMV13] to build a Stochastic Model Predictive Control (SMPC). These efforts

focus on uncertainty of occupancy and thermal load predictions and minimizes

the amount the temperature falls outside the comfort constraints while optimizing

the system as a whole. None of the systems do occupancy detection and only

consider them as part of the load of the system. With the addition of occupancy

detection, greater savings can be achieved with flexible minimum ventilation.

Work has also been done to predict a buildings occupancy through out the day.

[MCM12] uses different machine learning strategies and evaluates the accuracy of

each method. Based on this information they are able turn off the HVAC when

it is not in use. The control strategy is not specified and there is no discussion

on the comfort of the occupants used in their strategy. [ECC] uses a Markov

Chain to predict occupancy of the day and the result of their savings are from

lowering ventilation due to occupancy and changing the set point bounds in the

building. Their system switches from occupied to unoccupied strategies if a zone

is predicted to be occupied for a threshold value. This scheme is naive in that

it does not use the dynamics of the room in order to ensure that the room is

properly condition when an occupant enters. In our system we use MPC to find

an optimal solution that can occur with any occupant patterns.
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CHAPTER 3

ThermoSense: Occupancy Thermal

Based Sensing for HVAC Control

The primary goal of every HVAC system is to keep occupants comfortable with

the secondary goal of minimizing energy consumption. In this chapter, we will

focus on reducing energy consumption in a buildings by intelligently controlling

the HVAC using the knowledge of the number of occupants within each room.

We also take into consideration how our models affect the ability to keep each

zone’s temperature within the zone’s target temperature range when a room is

occupied. One method of reducing consumption is to condition based on actual

usage. Rooms are often conditioned assuming constant maximum occupancy.

This leads to heating or cooling empty rooms. In addition, spaces only partially

occupied are over-ventilated leading to loss of conditioned air and thus thermal

energy.

There are two different parts of HVAC systems usage that are affected by

occupancy; temperature and ventilation. Temperature control is dependent on

whether a space is occupied. In this case, a passive infrared (PIR) or ultra-

sonic sensor is sufficient to have a binary indication if a space is occupied. Bi-

nary sensing is common for lighting control and has also been used for tem-

perature control [ABD11, LSS10] applications. However, ventilation, used to

control CO2 levels and indoor pollutants, depends on the number of people oc-
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cupying a space. One method is to simply regulate CO2 levels directly with

a CO2 sensors. However, these systems are slow to respond and are prone to

calibration errors [FFS06]. Since standards exist for ventilating based on room

occupancy [ASH07], sensors that measure occupancy can be used to regulate

ventilation. Cameras have been used for measuring occupancy [TS, EAC] but

have several drawbacks. They are sensitive to sudden lighting and background

changes. Camera placement is also an issue. Cameras placed in office spaces raise

privacy concerns. While cameras can be placed in public hallways and function

as an “optical” turnstile, this strategy is prone to cumulative error [EAC]. If an

optical turnstile misses even a single person entering/exiting a space, this error is

propagated until another offsetting error occurs or some other mechanism, such

as assuming the room is empty at 4am, is used to remove the cumulative error.

For example, if the last person in an office leaves at 6pm and this transition is

missed, then the occupancy will remain erroneously at one.

In this chapter, we develop ThermoSense, an occupancy monitoring system

that utilizes thermal based sensing and PIR sensors. We develop a novel low-

power multi-sensor node for measuring occupancy utilizing a thermal sensor array

combined with a PIR sensor. The thermal sensor array used is able to measure

temperatures in an 8x8 grid pattern within an 2.5mx2.5m area. We show it is

possible to use these temperature readings in order to determine how many peo-

ple are within the space. Unlike the CO2 sensor, the thermal array can measure

occupancy in near real-time. The thermal array is also not sensitive to optical

issues, such as lighting or background changes. By adding a PIR sensor, we

increase accuracy of detecting empty spaces and the overall accuracy of the plat-

form. The PIR sensor is also used to reduce the node’s power consumption by

triggering the mote and thermal array only when someone is present. We test

this new platform with a 17-node deployment covering 10 building areas totaling

11



2,100 sq. ft. for a period of three weeks. Using this data, we tested four differ-

ent usage based conditioning strategies and analyze the energy usage; we show

that 25% annual energy savings are possible with occupant based conditioning

strategies. In this chapter, we contribute the following:

• We developed a novel multi-sensor platform for estimating occupancy uti-

lizing a thermal sensor array and a PIR sensor. We performed a full system

power consumption analysis and tested a 17-node deployment over a 3 weeks, in

10 HVAC conditioning areas, covering 2,100 sq.ft.

• We developed a new occupancy regression process using the sensor data,

which includes thermal map background update, feature extraction, occupancy

regression and post-processing filtering. We tested three regression, including

K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and linear re-

gression (LR). Using this process, we showed that these types of sensors are

capable of estimating occupancy with an RMSE of only ≈0.35 persons.

• We tested four different strategies for HVAC conditioning and show how

different sensing and actuation strategies affect energy consumption and occupant

comfort. We showed that by using this system for conditioning usage based

control of temperature and ventilation we can save 25% energy annually while

maintaining occupant comfort.

3.1 ThermoSense

In this section we discuss ThermoSense, a wireless sensor network of nodes that

can measure occupancy using a combination of thermal readings and PIR. Fig-

ure 3.1 shows the ThermoSense node used for the sensor network.

In order to have an effective wireless occupant measurement system suitable

12



Figure 3.1: Grid-Eye attached to a Tmote (left). Enclosure containing both the

Grid-Eye and PIR (right).

for HVAC control, several design considerations must be examined. While wired

system for binary occupancy sensing exists, these systems are costly to install

and can be difficult to retrofit into older buildings; for our system, we want an

easy to deploy wireless system. Since it is wireless, power consumption is a signif-

icant issue. Both the mote and sensors must be low-powered and run in a power

efficient manner. For our platform, we make use of a PIR for two reasons. The

first is that accurate detection of empty rooms is critical in order to capitalize on

potential savings. The second is that the PIR can also be used to sleep compo-

nents in the system when sensing and communication are not necessary. While

the PIR is able to give an accurate and reliable binary indication of occupancy,

we need another sensor capable of determining how many occupants are in an

area. Since occupants are typically warmer than the surroundings, a thermal

sensor array, capable of measuring multiple temperatures with an area, is viable

method for detecting occupancy. Figure 3.2 shows an above view of the area,

where each square of the grid is a point of measurement of the thermal sensor

array. The shaded red squares shows the points in the grid with higher tempera-

tures, which in this case is the location of the occupant. Multiple occupants can

13



Figure 3.2: 8x8 thermal array sensing an occupant.

be distinguished by higher density of warmer temperatures.

3.1.1 Hardware

Each ThermoSense node contains a Tmote Sky, PIR, and Grid-Eye Sensor. The

Tmote Sky [tmo], produced by MoteIV, has a 8MHz TI-MSP430 micro-controller

with 48k Flash storage and 10k RAM. The Tmote communicates using a Chipcon

CC2420 radio. The PIR sensor is connected to the Tmote’s digital input/output

pin while the Grid-Eye is connected to the I2C clock and data pins. We developed

a board in order to connect both the Grid-Eye and PIR sensor with the Tmote.

The PIR used in the nodes is the PaPIR EKMB VZ series developed by

Panasonic. The PIR is able to detect motion up to 12m with a detection a

viewing angle of 102◦x92◦ horizontal by vertically respectively [PaP]. The infrared

thermal array used to detect actual occupancy is the Grid-Eye sensor made by

Panasonic [Gri], priced at $31. This sensor measures 64 temperatures in an

8x8 grid where the physical size of this grid is determined by the distance the

14



Components Used Energy Usage.

Mote Only 4.72 mA

Mote + PIR 4.73 mA

Mote + PIR + Grid-Eye 4.76 mA

Mote + PIR + Grid-Eye + Radio 4.82 mA

Table 3.1: Energy Usage for independent components.

sensor is to the target surface. We found the Grid-Eye to be able to sense within

a 2.5mx2.5m square when placed at a height of 3m. The Grid-Eye measures

temperatures from -20Co to 80Co with an accuracy of ±2.5Co and can sample 10

times per second (each sample contains 64 temperature values).

3.1.2 Power Consumption

We used two 3000 mAh lithium batteries for each node in our deployment. We

found battery life of ThermoSense node to be over three weeks sampling once

every five seconds. For a more detail analysis of the consumption, we measure

each component of the platform separately using an oscilloscope. Table 3.1 sum-

marizes the results. The difference in energy between using PIR and Grid-Eye

together as compared to the PIR only is small (0.03 mA). Adding the radio with

the Grid-Eye and PIR only increases the current use by 0.06 mA. Since the sam-

ples were only sent once every 5 seconds, the energy use of the radio is small.

Figure 3.3 shows the lifetime of the system at different duty cycles for different

battery capacities. Since we have access to 80 Ah batteries that fit in our en-

closure, we can estimate how long this system would last with larger capacity

batteries. We can see even in the worse case, an 80 Ah battery would last longer

than 1 year. If we were to sleep various components of the mote and if we were
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to do smart local data processing to transmit only deviations from a model, we

could even further reduce power consumption and extend system lifetime. These

optimizations are left for future work.

3.2 Occupancy Regression

In this section, we develop the process for occupancy regression in order to esti-

mate occupancy from the ThermoSense node. Figure 3.4 shows an overview of

this process. Information from the PIR and thermal sensors is used to update

and maintain background levels of the thermal map. The current values along

with the current background are used to create features vectors. These feature

vectors are inputed into a regression model, which produces a “raw” occupancy

estimate. A filter is then applied to the “raw” occupancy along with past occu-

pancy estimates to produce the final occupancy estimate.
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Figure 3.4: Occupancy Regression Process

In the following sections, we develop and analyze each component of the

occupancy regression process and examine the overall performance of the resulting

occupancy estimates. We first examine the performance of the PIR sensor, and

examine in particular the ability of the sensor to detect empty rooms. We next

describe the process used to maintain the thermal background using the thermal

array and PIR sensor. Then we describe how the background and current thermal

map is used to create the feature vectors used for the occupancy regression. We

examine three different regression methods; K-nearest-neighbors (KNN), linear

regression (LR), and artificial neural networks (ANN). We then discuss the use

of the filter on the “raw” occupancy output of the models. Finally, we examine

how the final output of the process performs by comparing the output to ground

truth data collected over a 24-hour period of time from manually processed video

feeds.
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3.2.1 PIR Sensor Input

In our ThermoSense nodes, the PIR is used to detect if a room is currently

occupied or unoccupied. The nature of the PIRs only allows motion detection,

but people are not constantly moving when they are occupying a room. The

PIR signal constantly fluctuates when motion is detected, and this requires a

smoothing method to process it. Therefore, we smooth the raw PIR values over

a period of 8 minutes. This period was found by evaluating multiple differnt time

windows and it is sufficient time to allow someone to remain inactive for a short

time while still being able to detect that the room is being used. An 8 minute

period was also found to return the least number of false positives. These false

positives can occur when a person momentarily enters a room (e.g. a janitor) or

positives that continue to be returned after a person has left a room (e.g. motion

activity before leaving). This smoothing compared to ground truth can be seen

in Figure 3.5.

Due to low number of false negatives, seen in Figure 3.6, the PIR can be used

reliably as an unoccupied indicator. This can be used to override any predictions

that would normally be made by our thermal array sensor. Once a room has been

established as occupied by the PIR, additional models can be used to further

evaluate the actual occupancy of a room.

3.2.2 Thermal Background

Since occupants are typically by far the warmest objects in a conditioned room,

the thermal array can be used to detect occupants within a space. However, in

order to distinguish between passive warm objects such as computers or refrig-

erators and humans, we maintain a thermal background map. If the PIR sensor

indicates the room is empty, then this information can be used to determine the
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thermal background of the space. As the background can change over time, this

background is continuously updated. In addition to maintaining the background,

the standard deviation of each grid position is also saved; this standard deviation

is used in the following section as a thresholding parameter for distinguishing

significantly warm grid components. Algorithm 1 defines how our current back-

ground and standard deviation for each pixel for this background is maintained.

a If the PIR has detected no movement for the 15 previous minutes, the back-

ground is updated using an exponential weighted moving average (EWMA) and

the standard deviation is updated for each grid component. We found 15 minutes

worked best, as it is unlikely an occupant remains motionless for 15 minutes. This

threshold is also commonly used for PIR based lighting control [NLP98]. How-

ever, if an occupant occupies a space for a significant period, it is possible that

the background changes during this period. To adjust the background while the

space is occupied, we chose a few grid points with the lowest temperatures as

our scaling components. The points with the lowest temperatures are most likely

unoccupied and can be used to update the old background. We divide these

scale points with the old background and average them to find a multiplier we

can use to update our previous background. We then multiply the scale to the

old background to find out a new background. The new background is smoothed

into our old background by using an EWMA but with a significantly lower weight

applied.

3.2.3 Feature Vectors

We next define feature vectors that we will use as input for the regression models.

While it is possible utilize all 64 values of the thermal array along with the PIR

sensor, we found that this approach did not generalize well; the models would
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Algorithm 1: Background Update

EWMA(a, x, y)← EWMA with weight a.

minTemp(f, n)← indeces of the n-lowest temperatures from frame, f

frame← current frame

newBg ← returned updated background

oldBg ← old background

windowBG← sliding window of the background

if PIR has been off for more than 15 minutes then

newBg = EWMA(0.1, oldBg, frame)

add frame to windowBG

threshold ← 3 * std(windowBG)

else

indeces← minTemp(frame, 5)

for each index in indeces do

scalePx(index)← oldBG(index)/frame(index)

end for

scale← mean(scalePx)

scaledBg ← scale ∗ frame

newBg = EWMA(0.01, oldBg, scaledBg)

end if
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not work well when applied to different areas. Instead, we use the following

three features for our models; the total number of significantly warm points, the

number of grouped points that are warm, and the size of the largest group of warm

points. The following subsections formally defines how we extract these features.

We tried a significant number of other less successful feature vectors, e.g. 64 raw

values, 64 thresholded-binary values, size of all connected components, different

permuations of the feature vectors, etc., but cannot discuss these due to space

limitations.

All three feature vectors are based on identifying the significantly warm points

on the grid. As our first step, we first create a 8x8 binary matrix representing

the significantly warm points from the thermal map. This is done by taking

the difference between the background and the current thermal map and apply-

ing a standard deviation based threshold to this difference. We define current

thermal values, background, and standard deviation as Mij = (m0,0...m7,7),

Bij = (b0,0...b7,7), Sij = (s0,0...s7,7), respectively. An active point is defined as

being three standard deviations away from the background,

f(i, j) =











True, if Mi,j − Bi,j > 3 ∗ Si,j

False, if Mi,j − Bi,j < 3 ∗ Si,j

Feature 1: Total Active Points - For our first feature, we use the total number

of active points. A larger total is correlated with higher number of occupants.

Feature 2: Number of Connected Components - Our second feature is based on

connected components [HT73]. Connected components is a method of identifying

groups of points within a matrix that are connected to each other. A point is

considered connected if it is the same value as the point diagonal or directly

adjacent. A component is a group of connected points. The number of the
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components, which are number of grouped warm points in our application, is

correlated to the number of people occupying the area.

Feature 3: Size of Largest Component - The third feature is the size of the

largest component with the grid. Multiple occupants standing close together

will create one large component rather than several separate components which

would results in a lower occupancy count. The size of the largest component

is positively correlated with occupancy and can be used to get a more accurate

count.

3.2.4 K-Nearest Neighbors

The first model we consider is K-Nearest Neighbors. Let X = (x0...xn) be the

the components of the feature vector of the current frame. Y = (y0...yn) is each

individual feature components found inside the entire training set, Z = (Y0...Ym).

We use euclidean distance to calculate the distance between feature vectors,

d(X,Zj) =

√

√

√

√

n
∑

i=0

(xi − Zji)2

We then find the minimum k distances from the training set of Z and collect

the distances as D = (d0...dk) with it’s corresponding occupancy labels as

L = (l0...lk). Weight is applied depending on the distance to each labels to get

the final predicted occupancy, P .

P =
k

∑

i=0

wili, where wi = 1− di/(
k

∑

j=0

dj)

When calculating KNN, we find the 5 nearest neighbors and the distances

associated with each. The predicted occupancy is averaged with the labels asso-
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ciated with the 5 closest values, with the largest weight given to values with the

smallest distance.

3.2.5 Linear Regression

The next model we examine is a linear regression model. We define a linear model

y = βAA+ βSS + β

where y is the estimated occupancy (predicted variable), A is the number of

active pixels and S is the size of the largest component (indicator variables). βi

is the corresponding coefficient for the indicator variable i and β is a constant.

While the other models also included the number of components as a parameter,

for the linear model, we chose A and S by testing permutations of the feature

vectors that minimized root mean squared error (RMSE) and had significant

coefficients (p < 0.05). We also found that the model fit best when estimating

positive occupancy. Thus, we train the linear model with data for the 1, 2, and

3 person cases and rely on the PIR sensor to determine if a space is empty.

Table 3.2 shows the fitted model parameters along with p values of each

parameter and the F-test of the overall model. Using a p < 0.05 threshold, we

see the p-values for each of the indicator variables is significant. We see also find

that p ≈ 0 from the F-test and R2 = 0.858, indicating a good fit. Figure 3.7,

shows the distribution of the residuals. The normal distribution verifies that the

independent error assumption has not been violated.
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Value p-value

βA 0.141 2.44× 10−187

βS -0.051 1.14× 10−30

β 0.201 9.25× 10−11

F-statistic 3220 ≈ 0

R2 0.858

Table 3.2: Parameters of linear model and fit metrics.

3.2.6 Artificial Neural Network

The final model we consider is a forward feed ANN [Mit97] using a single hidden

layer of 5 perceptrons. We use a sigmoid for the hidden layer transfer function

and a linear transfer function for the output layer. The same data for the 1, 2,

and 3 person case was used for the ANN model. Again we use the PIR value

to determine the 0 person case. We used 70% of the data for training, 15% for

testing, and 15% for validation. We found R2 = 0.893 and R2 = 0.906 when

compared with the testing set and the entire dataset respectively, suggesting the

model has a strong fit.

3.2.7 Filter

The last step of the occupancy regression process is the filtering of the raw occu-

pancy estimate. If we examined the error of the models, we found that the errors

are independent and normally distributed (see Figure 3.7). Thus, we employ a

4 minute moving average filter in order to reduce error of the raw occupancy

estimate produced by the regression model. We found that the 4 minute window

minimized our error and was found through trial and error. Figure 3.8 compares
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Figure 3.7: Plot of residual distribution

the raw output of the model with the filtered output. From the figure, we can

see that the filter is effective at removing independent errors.

3.2.8 ThermoSense Performance

In this section, we examine the performance of the process with respect to the

three models. In order to test the performance, we gathered 24 hours of ground

truth data. This data was gathered by deploying a camera in a public hall

way and manually counting the number of people entering and leaving the zone

through out the day. For our analysis, we examined a single zone comprised of

3 separate offices. For our performance metrics, we use RMSE and normalized

root mean squared error (NRMSE).

Table 3.3 summarizes the performance results. Overall KNN, performed the

best. KNN had a RMSE of 0.346 people (NRMSE of 11.5%). LR and ANN

had slightly higher RMSE values of 0.409 people and 0.385 people (NRMSE of

26



07:12 07:26 07:40 07:55 08:09 08:24 08:38 08:52
0

0.5

1

1.5

2

Raw and Smoothed Prediction

Time

O
c

c
u

p
a

n
c

y

 

 

Raw Prediction

Smoothed Prediction

Ground Truth

Figure 3.8: Model raw and filtered outputs.

13.6% and 12.8%) respectively. Figure 3.9 shows the performance of the models

as a function of the amount of training data available. In particular, KNN is

able to perform fairly well relative to the amount of data available. With only

100 training samples, KNN has a NRMSE value of 25%. Both LR and ANN

have values 35% and 34% respectively when trained with the same 100 samples.

LR and ANN have very similar performance between 100-900 samples. After

900 samples, we see that the ANN starts to have slightly better performance

than LR. Though KNN maintained lower NRMSE overall, the difference among

the different models became small as the available data increased; the maximum

difference among models is only 2.1%.

3.2.9 Model Discussion

While each model had similar results with KNN having the best RMSE, there

are other issues to be considered. KNN required the least amount of data in

order to achieve a low NRMSE. However, Figure 3.9 shows that as more training

data is available, the other models may well match or outperform KNN. Another

consideration is that as the number of training data increases, the run-time per-
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KNN LR ANN

RMSE 0.346 0.409 0.385

NRMSE 11.5% 13.6% 12.8%

Table 3.3: Evaluation of the models used.
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Figure 3.9: NRMSE of a ThermoSense node in a zone.

formance of KNN will decrease. While there is a possibility of running KNN

on a mote, it requires storing the entire training set and iterating through the

set for each new sensed sample. Thus, KNN is more suited to situations with

little data exists and KNN is processed at the base-station rather than the node.

Though the linear model had the lowest accuracy, there are other advantages to

this approach. In particular, it can be run very efficiently on a mote; in our case,

only the values of the coefficients (β, βA, βS) need to be stored on the mote and

new estimates are simple to calculate in real-time. A similar argument can be

made for ANN; only the input and weights need to be stored on the mote and

estimates are trivial to calculate in real-time. ANN can require potentially more

time to train, but as this is a one time cost, ANN may be preferable over LR

since ANN can handle non-linearities.
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Figure 3.10: Monthly heating and cooling consumption for the different strategies.

3.3 Energy Analysis

With the occupancy estimation system in place, we next would like to use data

collected from the ThermoSense system to estimate potential energy saves using

different strategies. Since KNN had the best performance in terms of RMSE and

NRMSE, we use this model for our energy analysis. In this section, we evaluate

four strategies to reduce energy usage and compare them to a baseline strategy

that operates on a static schedule. We use the OBSERVE strategy described

in [ECC]. The OBSERVE method utilizes a Blended Markov Chain (BMC) that

continuously updates its prediction based on the current occupancy estimate. If

trained with binary data, this model can give binary predictions of occupancy.

With discrete training data, the model is able to predict discrete levels of occu-

pancy. Based on a probability threshold, the room is conditioned beforehand if

the room is likely to be occupied in the coming hour. Ventilation is controlled

according to ASHRAE 62.1 [ASH07]. For our analysis we use predictions discrete

occupancy, binary predictions, and a purely reactive strategy using no prediction.

We trained the BMC’s using 3 weeks of data collected from the ThermoSense

system deployed in 8 offices, 1 lab and 1 conference room in an academic commer-

cial building. Using the BMC, we generated 7 days of simulated occupancy. To

simulate system error, we introduced error based on a normal error distribution.
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Figure 3.11: The temperature RMSE for the periods when the room was occupied

during the summer.

This distribution was determined by examining the distribution of the residuals

from our RMSE analysis and performing a normal fit. The frequency of these

perturbations was added using an exponential distribution. We found that the

duration between the errors were exponentially distributed.

To test these strategies, we utilize EnergyPlus [EPl], which is a state-or-the-

art industry standard tool for simulating buildings. With this simulator, we

are able to change occupancy over time to determine how these strategies affect

efficiency. By using a simulator, we are also able to test the strategies under

identical weather conditions. In our simulation, we used materials similar to the

actual building and sized rooms to match the deployment. Target set-points of

24Co (75.2Fo) and 20Co (68Fo) was used for cooling and a cooling and heating set-

points respectively. Since our deployment only covered part of the entire building,

we assumed the same schedules for the rest of the building in the simulation. The

simulated commercial building contains offices, labs, and meeting rooms. The

location of the simulation was in the central valley of California. Other locations
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were not evaluated in the interest of space.

Figure 3.10 shows the monthly breakdown of the heating and cooling. All

three strategies had significant energy savings over the baseline strategy. Over-

all, the reactive strategy had the lowest energy consumption. This strategy con-

sumed 29.6% less than the baseline strategy annually. It saves additional energy

since it does not pre-condition rooms ahead of time. However, we will see that

this savings in energy comes at the cost of comfort (Section 3.4). In general, all

the strategies had the largest percentage of savings during winter months (Nov

- Feb) and the lowest percentage of savings during the warmer months (May -

Sep). ThermoSense and ThermoSense Binary had 24.8% and 19.7% savings re-

spectively. The binary approach consumed more energy since this strategy has a

tendency to over-ventilate. Over-ventilation reduces efficiency since it increases

the amount of outside air that needs to be conditioned. The greatest differences

between the ThermoSense and ThermoSense Binary approaches occur during the

warmest and coldest months (Jan, Dec, Jul, Aug) where ThermoSense consumed

5-6% less than ThermoSense Binary. Increased ventilation of ThermoSense bi-

nary during these months has a greater impact on efficiency than during milder

shoulder seasons.

3.4 Conditioning Effectiveness

In the previous section, we show that occupant based conditioning saves a sig-

nificant amount of energy. However, conditioning effectiveness also needs to be

considered.

For the temperature effectiveness, we examine a room that is only occupied

at 8am, 3pm, and 4pm on Mondays and focus our analysis to the warm months
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Figure 3.12: Ventilation effectiveness of the strategies.

(May - Sep). For our analysis, we examine the RMSE of the room temperature

from the target temperature for each hour. Figure 3.11 shows the RMSE for

each hour of the day. For un-occupied periods, we consider the RMSE to be 0.

The reactive strategy had the worst overall performance. At 8am, the RMSE

was 0.877Co during the hour that the room was occupied. At 3pm the room

had a RMSE of 1.23Co. This higher RMSE is due to the solar gain increasing

the temperature of the room. However, at 4pm the RMSE drops to 0.197Co.

In this case, the occupied state of the room at 3pm carried over to the 4pm

period. Thus, while some energy was saved by not preconditioning, we can see

that this was at the cost of thermal conditioning. Both ThermoSense prediction

strategies perform substantially better than the reactive strategy. At 8am the

ThermoSense and ThermoSense Binary prediction methods had RMSE values

of 0.309Co and 0.415Co respectively. At 3pm-4pm, both prediction strategies

had nearly identical RMSE values; both were close to 0.033Co. Again, while the

ThermoSense prediction strategies consumed slightly more energy, they did not

compromise thermal conditioning.

32



Next we examine the ventilation effectiveness of the system. For our analysis,

we evaluate the ventilation of the spaces for one particular day. As previously

mentioned, we use the ASHRAE 62.1 standard to determine the ventilation ac-

cording to occupancy. As ventilation is regulated in real-time, the binary based

strategies (reactive and ThermoSense binary prediction) have the same ventila-

tion rates. As we cannot determine the precise occupancy with a binary occu-

pancy estimate, we assume maximum occupancy for rooms that are occupied for

ventilation. The baseline strategy assumes maximum occupancy from 7am to

10pm. Figure 3.12 shows the baseline, ThermoSense binary, and ThermoSense

based strategies. We can see that the baseline strategy greatly over-ventilates.

However, there is also a short period at the beginning where the baseline strategy

under-ventilates; this illustrates the shortcomings of a static schedule. Both the

ThermoSense binary and ThermoSense strategies were able to meet the required

ventilation level. However, we can see that the ThermoSense binary strategy still

over-ventilates the area a great deal; overall, this strategy over-ventilated the area

by 170%. The ThermoSense binary strategy performed best when multiple rooms

were empty, which can be seen during the period between 2pm and 5pm. Since

only a few rooms were occupied, only a few rooms were over-ventilated. The

ThermoSense based ventilation performed the best. We can see that the ventila-

tion rate is only 3.25% more than the required rate. This is due mainly to a 10%

occupancy increase added by design in order to protect against under-ventilation

that could be caused by sensor errors [ECC].

3.5 Summary

In this chapter, we developed ThermoSense, an occupancy monitoring system

that utilizes thermal based sensing and PIR sensors. We developed a novel low-
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power multi-sensor node for measuring occupancy using a thermal sensor array

combined with a PIR sensor. We showed it is possible to use these temperature

readings in order to determine how many people are within the space using a

novel occupancy regression process. Unlike the CO2 sensor, the thermal array

can measure occupancy in near real-time. The thermal array is also not sensitive

to optical issues, such as lighting or background changes. By adding a PIR sensor,

we increased accuracy of detecting empty spaces and the overall accuracy of the

platform. The PIR sensor is also used to reduce the node’s power consumption by

triggering the mote and thermal array only when someone is present. We tested

this new platform with a 17-node deployment covering 10 building conditioning

areas totaling 2,100 sq. ft. for a period of three weeks and showed that Ther-

moSense is able to detect occupancy with a RMSE of only ≈0.35 persons. Using

this data, we tested four different usage based conditioning strategies and ana-

lyzed the energy usage; we showed that 25% annual energy savings are possible

with occupant based conditioning strategies.
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CHAPTER 4

FORCES: Feedback and control for Occupants

to Refine Comfort and Energy Savings

In the previous chapter, we addressed the issue of reducing energy cost using

an occupancy regression. This however does not take into consideration if the

occupants within the building are comfortable. In this chapter, we introduce a

participatory voting system to allow occupants to vote based on their thermal

preferences and for these votes to change the thermal conditions of their spaces.

Unlike the previous chapter, this body of work’s goal is to increase user satisfac-

tion with a building’s thermal condition while reducing energy consumption.

Although comfortable temperatures in commercial work environments make

employees happier and more productive [FR97,SF05], maintaining ideal temper-

ature for occupants is difficult to do correctly. Building managers are responsible

for setting temperatures for spaces within buildings, but the chosen temperature

setpoints are general estimates for the building and do not necessarily suit the

thermal preferences of the individual occupants. A pre-study survey we con-

ducted, completed by 61 occupants in 3 University buildings, indicated that 96%

of those surveyed have had to take individual action to improve their comfort in

their work space by using a personal heater or fan, adjusting clothing or using

a blanket, adjusting their thermostat (only 18% of those surveyed reported an

effective thermostat), relocating, etc. Importantly, 33% of those surveyed indi-
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cated that they have had to avoid their work environment due to discomfort,

45% reporting that the thermal conditions of their work environment inhibits

their ability to work efficiently.

This occupant discomfort is caused by imperfect temperature setpoint selec-

tion. The state-of-the-art method for choosing temperature setpoints is taken

from the American Society of Heating, Refrigeration, Air-Conditioning Engi-

neering (ASHRAE) Standard 55 [ASH04], which relies on Predicted Mean Vote

(PMV). PMV uses parameters such as temperature and humidity to calculate an

expected comfort level for an individual from -3 (“Too Cold”) to 3 (“Too Hot”).

A key limitation of using PMV is the difficulty of ascertaining other parameter

values, such as clothing level and metabolic rate. Our pre-study survey indicates

that occupants prefer temperatures as low as 63◦F and as high as 85◦F, and

so even with perfect PMV factor estimation, variation in occupant temperature

preference makes PMV prone to error.

At home, an occupant can adjust a thermostat to suit his or her preference.

However, as thermostats often aren’t available to employees in commercial build-

ings, most who want to modify the temperature in their space must contact the

building manager and request an adjustment. According to our pre-study survey,

only 13% of participants had contacted the building manager with satisfactory

results, and they did so no more than twice a month. As only 34% of those sur-

veyed reported satisfaction with the building HVAC system, this indicates that

occupants are deterred by the adjustment process, and would prefer to bear the

discomfort rather than repeatedly contact the building manager.

Work done in [EC,BTG13, JB12, Bur14, Rob14, RDS14] develop methods of

collecting thermal comfort data. [EC,Rob14] continue by using this data to man-

age the thermal characteristics of the space to fit occupant preferences by adap-
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tively conditioning the user’s zone. In general, the occupants are found to be

significantly more satisfied once given the ability to control building tempera-

tures.

Although these comfort voting applications improve upon standard methods

of building interaction, there is still work to be done. A comfort voting application

in a commercial building must aim to achieve the primary goals of the building

manager, typically either reduction of energy consumption, or maximization of

occupant comfort. Our main contributions are the following:

• We develop FORCES, Feedback and control for Occupants to Refine Comfort

and Energy Savings, a multi-platform application that a building occupant can

use to vote on thermal comfort within a space. The application uses this informa-

tion to adjust the HVAC system using two different control strategies to improve

occupant comfort while trying to minimize energy use.

• We propose 5 application feedback types that use various methods of data

presentation and environmental stimuli to promote specific behavior in using

FORCES. In a 1-month preliminary study, we analyze how these feedback types

affect user behavior for thermal comfort and show that green and physical feed-

back provide the best energy savings and user comfort satisfaction.

• In a longer 40-week study, these two feedback types coupled with two different

control strategies are implemented across 61 participants in 3 different buildings

to understand how their use affects HVAC system energy consumption and user

satisfaction. We show an increased user satisfaction from 33.9% to 93.3% and a

reduced energy consumption by as much as 18.99%. In addition, we find that by

including a drifting control strategy, savings up to 37% can be realized without

a significant reduction of occupant satisfaction.

To our knowledge, this is the first work that investigates how different feed-
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Figure 4.1: From left to right, iOS, Android, Web version

back mechanisms and control strategies can influence human decisions in a ther-

mal comfort application controlling an HVAC system in production buildings to

balance the energy/comfort tradeoff.

4.1 System Design Overview

4.1.1 System Architecture

FORCES is a comfort voting application that allows occupants to vote for their

thermal preference. Based on this vote, the room’s thermal conditioning is

changed to better suit this preference. To facilitate user interaction with FORCES,

we developed iOS, Android and Web interfaces as shown in Figure 4.1. Using

strategies from [EC] we receive votes from users describing how they feel, from

Cold (-3) to Hot (3). These values are defined as the Actual Mean Vote (AMV),
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Name Value

Air Speed 0.1m/s

Mean Radiant Temperature 25◦C

Humidity 30%

Metabolic rate 70W/m2

Clothing Level 0.5clo

Table 4.1: PMV Constants

and are used to find the ideal temperature for the room by setting it equal to

Fanger’s formulation of PMV [Fan70]. PMV uses parameters such as the clothing

coefficient and metabolic rate that are difficult to obtain for each participant, so

we use estimated parameter values obtained from [CBE] that are appropriate for

an office worker adjusted by season, as shown in Table 4.1. A temperature found

to be suitable according to ASHRAE Standard 55 [ASH04] is one with a PMV

value between 0.5 and -0.5, where the occupant is neither too hot or cold. We

can therefore solve for this comfortable temperature and set it for the room.

Figure 4.2 shows an overview of the FORCES system. When a user submits a

vote for their comfort, it is sent to the FORCES API, and feedback information

is sent back to the user. The collected AMVs are tallied every 5 minutes and

averaged in zones with multiple users. The AMV is used by the PMV model to

determine the next room temperature setpoint, which is given to the Building

Management System (BMS) for actuation. The building makes the necessary

adjustments to condition the room to the desired temperature. As the thermal

conditions are monitored by the user and votes are used to further modify the

temperature, FORCES creates a closed loop feedback system with the human as

a sensor.

Setpoints are handled by the BMS, which achieves the setpoint. WebC-
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Figure 4.2: FORCES System Architecture

TRL [web] is the BMS system used on our campus. For both sensing and actua-

tion we use sMAP [DJT10a], a RESTful API designed to manage building data.

By designing an actuation driver that communicates with our building’s BMS,

we leverage the control systems implemented by designers of the building instead

of creating our own local control PID loops. In addition, this also allows facilities

crews to have full visibility on any of our changes through the existing BMS.

To monitor the thermal state and ensure correct building operation, we de-

velop a driver that uses the BACnet protocol [BAC99] to communicate with each

sensor in a zone. The temperature and air flow rate sensors in each zone are

polled at a 2 minute interval, a much finer granularity than the data collected by

the BMS.

We want to make FORCES data available to applications on multiple plat-

forms, so we design a RESTful API layer that computes the information displayed

in our views. In this layer we can authenticate users, check comfort votes for va-

lidity and integrity, and uniformly present data to iOS, Android, and web users.
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4.1.2 Application and Feedback Design

Application design affects user interaction in various ways. For instance, im-

provement of a mobile application’s user interface can improve user enjoyment.

Additionally, we hypothesize that in control applications like ours where the hu-

man is in the loop, feedback provided to the user can also influence their voting

patterns. Based on research discussed in Related Work, we choose 5 feedback

mechanisms for our comfort voting application, described below in detail.

4.1.2.1 Physical Feedback

By design, the vote collection system architecture defines periods of time for

votes to be collected from users before a control decision is made and actuation

begins. The period chosen between actuations is typically several minutes, as the

amount of time required to condition a room to temperature is large. However,

with several minutes between a user casting a vote about thermal comfort and

the building’s response, a user may become dissatisfied with the quality of the

HVAC control.

To minimize this effect, we propose a “physical” feedback that immediately

triggers a long burst of air from the HVAC system when a vote is received. This

“instant gratification” provides sensory stimulation in the form of sound from the

vents and an increase of air movement that assures the user that the system is

changing in response to a vote. The additional activation when a vote is received

may create wear and tear on the HVAC system; for this reason, we limit the

feedback to just one burst per system actuation period. In our experiment, this

period was set to 5 minutes. Long-term experiments are required to measure any

impact of this feedback on HVAC equipment, so we leave this for future work.
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4.1.2.2 Expected Action Feedback

In commercial buildings, multiple occupants are commonly required to share the

same thermal zone and HVAC infrastructure due to system design. To a thermal

comfort control application, this causes complications as there is no longer a one-

to-one relationship between an occupant and a space. In particular, previous

work [EC] showed that a shared thermal zone encourages users to exaggerate

votes in order to “bias” the system towards their own preferences. One likely

cause for this bias is that a user may not know what votes are being cast by

other users in the shared space.

Once a user casts a vote, the expected action feedback takes a tally of all votes

that have been cast in the last voting period, and then reports back to the user

exactly what action the system is expected to take. To a user, this confirms that

the system has received the user’s vote, and implies what votes are being made

by other users in the same space. This feedback can reduce the bias observed in

previous works if the system intends to react as the user wants, or could enhance

the bias if the system’s planned actions conflict with the user’s vote.

4.1.2.3 Social Feedback

By informing a user about their peers’ activity, also known as the descriptive

norm, it is possible to encourage a particular behavioral pattern. In [GCG08],

hotel guests were found to be more willing to participate in an environmental

conservation program when told that a large percentage of other hotel guests

participated. Similarly, our social feedback notifies a user of the recent voting

patterns of their peers, to encourage interaction with FORCES. To calculate

peer participation, voting activity is determined across the entire building. The

number of active users in the last week is found, and the percentage of those who
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have voted in the last 24 hours is reported to the user. We calculate activity

based only on active users to keep the percentage relatively high even during

periods of inactivity.

4.1.2.4 Leaderboard Feedback

Another feedback type that operates on social stimuli is the leaderboard, a com-

mon form of gamification [DDK11]. The leaderboard reports a user’s “score”, and

shows the user’s rank among all users with respect to this score. In our study,

vote volume (i.e. total number of votes) was chosen as the score, but other met-

rics may be used as well. The advantage of the leaderboard is the introduction of

competition into the voting platform. Users that are high on the leaderboard will

be motivated to continue voting to maintain their high position, and users that

are low on the leaderboard can clearly see how they compare to the top leaders.

We suspect that leaderboard use helps maintain interest by inspiring competition

among voters.

4.1.2.5 Green Feedback

The primary objective of a building’s HVAC system is to make occupants com-

fortable, so a user of an app like FORCES may vote with no thought to system

energy efficiency. However, if a control change will significantly improve the

building’s efficiency but minimally affect occupant comfort, the occupant may be

willing to make the more sustainable vote. Green feedback informs users of the

environmental implications of their voting pattern to encourage votes that are

more energy-aware.

By comparing a zone’s default temperature setpoints to those used by FORCES

and considering the outside temperature, we can determine how much more or
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Figure 4.3: Drift strategy set-points to save energy

less energy will be consumed by responding to a vote. This difference is reported

back to the user in terms of energy saved or wasted. To make the feedback easier

to understand, the energy saved/wasted is converted into metrics of energy that

most people will understand, such as numbers of hours a microwave could be

powered or miles an electric car could travel using the saved or wasted energy.

∆T = |Td − To| − |Tn − To| (4.1)

E = ∆T∆t(V R)

The energy savings/waste calculation is calculated as shown in Equation 4.1.

We find the absolute differences between the default temperature set by campus

policy Td and the outside temperature To, and then between new temperature

setpoint Tn and To. Subtracting these two values will give us how much more

cooling or heating is required for that room. The energy is then calculated as the

product of ∆T , the volume of the room V , the efficiency of cooling the room R,
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and time ∆t. Before reporting to the user, we convert the energy savings/waste

into more intuitive units by multiplying it by appropriate conversion factors.

Examples of units presented to the users are: “You have saved/wasted enough

energy to cook gp pizzas”, “drive an electric car gc miles”, etc.

4.1.2.6 Drift Control

Previous work in building control strategies [Hor99, PSP10] dictates that it is

difficult to maintain user interest in a comfort voting application once thermal

comfort is achieved. Similarly to [CFH14], we introduce a control strategy that

allows heating/cooling setpoints of a room to drift apart. This allows temperature

to “float” within these expanding bounds, allowing energy savings. Example use

of such a drift strategy can be seen in Figure 4.3.

In normal usage, heating/cooling setpoints are chosen based on occupant vot-

ing patterns. However, if these bounds are held unnecessarily tightly, extra energy

will be consumed. We imagine drift providing the most benefit in two situations.

The first is when outside temperature is comfortable, so minimal ventilation will

be sufficient to maintain thermal comfort. The second is when occupants only

need temporary conditioning, for example while they are cooling off from walking

inside on a hot day, or if they come in and out of the office and don’t need their

room conditioned the whole time.

In our experiments, we allow the bounds to start drifting apart 30 minutes

after the occupants’ last vote, and the drift moves each bound apart by 1/2 ◦F

every 30 minutes. In practice, the bounds are reset to ±1◦F from the last voted

temperature each morning, and unless votes occur will be allowed to float to the

farthest possible bounds of 66◦F and 76◦F, as chosen by the building managers.
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Male Female Declined

Gender 30.5% 66.1% 3.4%

18-29 30-39 40-49 50+ Declined

Age 33.9% 22.0% 28.8% 13.6% 1.7%

Table 4.2: Demographics of Study Population

4.2 Experimental Setup

In this section we explain the participant recruitment process, the demographics

of the recruited participants, the buildings used in the study, and their installed

HVAC systems. Our preliminary study examines the effect of the 5 proposed

feedback systems on participant satisfaction and energy consumption across a 4-

week period. The results are then used to narrow down on the two most promising

feedbacks for a long-term study. In total, our studies include 61 participants over

a span of 40 weeks, with more than 1300 comfort votes collected.

4.2.1 Population Description

To discern differences in voting patterns due to feedback modification, FORCES

was deployed across a diverse population. The majority of the FORCES par-

ticipants are full-time employees in administrative offices or research labs, with

76% working 30+ hours/week. 71% of those included in the study share their

work space with one or more people. Interestingly, our study is predominantly fe-

male, aligned with the current population that occupies the building. Additional

population demographics can be found in Table 4.2.
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4.2.2 Recruitment Process

The study begins for each participant upon completion of a skill session with

one of the project’s researchers. The skill session allows us to complete four

objectives:

1) The participant reviews and signs the Institutional Review Board (IRB) con-

sent form.

2) The participant completes a pre-study survey, providing demographics, workspace

information, and initial comfort in the space. The participant will complete a

post-study survey later for comparison.

3) The researcher helpes install the application on iOS, android, or bookmark

the web-voting page based on the participant’s preference. Application use is

explained to the participant, describing feedback in a neutral way.

4) The participant was provided login credentials as well as contact information

for the researchers, in case an issue was encountered.

The FORCES system operates autonymously, with manual intervention re-

quired only if a fault in the HVAC system were to occur. Building managers love

the FORCES system as it reduces the need for frequent requests for temperature

adjustment, reducing their workload and keeping building users more satisfied.

4.2.3 Feedback Assignment

In the preliminary study, we sequentially assigned feedback types as we recruited

participants with the exception of physical feedback. As the physical feedback of

one user’s vote would alter the thermal sensation of another, we chose to specif-

ically assign physical feedback only to participants that had their own thermal

zones. As the remaining feedback methods were assigned semi-randomly, partic-
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Feedback Type Baseline Energy Feedback Energy Percentage Incr. Projected Cost Incr.

(KWH/day) (KWH/day) (USD)

Social 83.38 89.23 7.01 % $17,584.74

Green 28.93 30.06 3.90 % $9,782.48

Physical 13.36 14.26 6.76 % $16,973.22

Expected 81.03 87.29 7.73 % $19,393.60

Leaderboard 19.05 20.98 10.12 % $25,389.26

Table 4.3: Energy Cost per Feedback - Preliminary

ipants that shared a thermal zone often received different feedback types. In this

manner, we get a nearly-equal number of participants in each feedback type, and

a fairly random spatial distribution.

At the end of the preliminary study, we found that having different feedback

methods within a single HVAC zone makes energy analysis of the feedback types

difficult. In the primary study, we corrected this by assigning feedback randomly

across the HVAC zones, but assigning all users within a zone to the same feedback

condition.

4.2.4 Building Description

FORCES was activated across three buildings, covering a total of 2 open recep-

tionist areas, 33 offices, 8 research labs, and 14 cubicles. Most of the offices house

one or two participants, while the cubicle areas and research labs can hold as

many as 6 and 10, respectively. In BLD2, a terminal reheat system is present

with thermafusers, allowing zones with a shared variable air volume (VAV) box

to receive individual control (excluding cubicle areas, which must share control).

In BLD1 and BLD3, thermafusers are not available, so in some cases individual

control is not possible, even in offices.
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4.2.5 Energy Calculation

Our campus has a central cooling/heating plant which stores chilled/heated water

that is distributed to our buildings, which use single duct terminal reheat HVAC

systems. We use a model of energy usage from [KB11], which calculates energy

usage based on air temperature differentials through the cooling/heating coils and

the fan electricity used to move the air. Here we describe how we follow [KB11]

for use in our buildings.

The outside and circulated inside air are mixed in the economizer to Tm, the

“mixed air temperature”. The Air Handler Unit (AHU) cooling coil them cools

Tm to the supplied temperature Ts, to be pushed to each room for conditioning.

The cost of cooling for a particular zone is computed as the mass flow of air to

the zone ṁz (A fraction of the total ṁz from the AHU) multiplied by the change

of temperature. A massive fan in the AHU provides air for the a group of zones.

A cooling coefficient, ηc, is applied to the result as shown in Equation 4.2

Pc = ηc(Tm − Ts)ṁz (4.2)

Once past the cooling coil, the temperature is increased by the zone’s heating coil

from Ts to the discharge temperature, Td. The power for heating is therefore the

increase in temperature times the mass flow for the zone and a heating coefficient,

ηh as shown in Equation 4.3.

Ph = ηh(Ts − Td)ṁz (4.3)

The final addition to total power use is that of the air supply fan. The power is

the square of the total mass flow, mt, multiplied by fan efficiency coefficient κ.

∆Pf = κṁt
2 (4.4)
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The AHU supplies air to multiple VAVs and thermafusers, so to separate energy

cost per zone we calculate the fraction of total air used for each zone. The cooling,

heating, and fan power is used to find the total power to condition the zone, Pz

as follows:

Pz = Ph + (Pf + Pc)mz/mt (4.5)

To determine FORCES’s effect on energy use, we compare each room’s energy

use during the study with the same room’s energy use before the study, for

each individual day. To minimize error due to weather variation, the pre-study

day used for comparison is chosen such that its weather profile is as similar as

possible to the study day. This is done by minimizing the root mean squared error

between hourly outside-air temperature data trends of the study and pre-study

day. As the buildings used in our experiments have never been repurposed and

the employees that occupy the spaces are stable, we expect behavioral variations

to be negligible in this comparison. Furthermore we only analyze weekdays, as

HVAC is turned off during the weekends.

As each participant is separated into different feedback types in the prelimi-

nary study, it is difficult to map a feedback to a room’s energy usage. We select

rooms where more than 80% of votes have come from a single feedback group.

In addition, we only look into zones within the same building, BLD2, to prevent

bias due to differences between VAV systems. In the primary study, this is not

necessary, as all participants in a shared zone are assigned the same feedback

type, as discussed.
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Figure 4.4: PMV vote distribution for each feedback type

4.3 Results

4.3.1 Preliminary Study

The preliminary study deployed all 5 feedback types to narrow down the ones that

showed the most promise with respect to energy efficiency and user satisfaction.

As this experiment was to compare feedback types only, the drift control strategy

is not evaluated here.

In Figure 4.4 we see the distribution of votes along the PMV scale for each

feedback tested in our preliminary study. On the x axis, the PMV range is shown

from “Too Cold” (-3) to “Too Hot” (3). On the y axis, the fraction of votes

with that value is shown, such that the sum of a feedback type across all comfort

levels is equal to 1. The distribution of votes gives intuition into the goal of the
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users. For instance, leaderboard and physical have the majority of votes on the

right of the scale, indicating a preference for cooler temperatures. Due to the hot

weather during the study, providing cooler temperatures will result in increased

energy usage. However, the vote distribution of users with the green feedback is

greater on the lower end of the scale, with 47.41% of participants voting below

neutral, 35.56% above neutral, and 17.04% voting for neutral comfort. As each

vote below neutral is a request for warmer air, it shows that users were willing

to increase the temperature, decreasing energy usage.

Interesting artifacts can be found in other feedback vote distributions, as well.

Leaderboard users, for instance, generate 1.61x more neutral votes than the feed-

back with the second highest neutral votes (green). This indicates a strategy for

users to inflate their rank on the leaderboard using votes that don’t greatly affect

the temperature. As the Leaderboard’s “gamified” interface encourages its users

to provide more votes (even neutral ones), the FORCES system will have explicit

affirmation that the user is comfortable (neutral), helping FORCES to establish

and maintain comfortable temperatures. In contrast, with other feedback meth-

ods, FORCES must make an implicit assumption that the user is comfortable

based on the absence of votes. Physical feedback is designed to provide an im-

mediate impression to the user that the HVAC system is working. However, the

application provides no incentives to reduce energy consumption. This is shown

in the figure, as 61.97% of the votes submitted by users with physical feedback

are above neutral, requesting cooler air at the cost of more energy. Both social

and expected feedback can be seen to have a higher concentration of votes on

the extremes and a reduction near neutral. This is expected, as somebody in a

comfortable zone feels less need to vote.

Using the procedure discussed in Calculating Energy, we analyzed the energy
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(a)

(b)

Figure 4.5: User temperature preference as indicated by Survey (top) and Voting

patterns (bottom)

53



Feedback Useful Neutral Not Useful

Green 33.33 33.33 33.33

Social 60.00 20.00 20.00

Leaderboard 50.00 50.00 0.00

Physical 100.00 0.00 0.00

Expected 100.00 0.00 0.00

Table 4.4: Survey: Did the user find the app useful?

efficiency of the 5 deployed feedback types over the one-month study. Table 4.3

reports the energy usage, as well as the projected cost if FORCES were installed

on an entire building. As shown, the energy consumption of all feedback types

increased over the baseline comparison point. The variations in baseline energy

shown in Table 4.3 are caused by the differences in square footage of the spaces,

number of occupants, thermal load, solar gain, and other factors. Although many

of these variations are unavoidable, we don’t compare these rooms to each other,

but to themselves with and without the FORCES system. In this way, we can

use the feedbacks’ relative performance to choose the ones that performed most

efficiently. In particular, these results show that Green feedback led to the least

energy usage by a fair margin, with Physical and Social as runners-up.

In addition to the energy analysis performed on the 5 feedback types, we also

investigate what the building occupants thought of the app’s usefulness by having

them complete a survey at the end of the study. As shown in Table 4.4, both

Physical and Expected feedback methods were found to be useful by unanimous

vote. Due to the relatively low energy usage of Green and Physical feedbacks

and the usefulness of Physical feedback, we think these two are best suited for

the long-term study.
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Figure 4.6: Vote volume for each day of study

4.3.2 Primary Study

In the preliminary study, Green and Physical feedbacks consumed the least en-

ergy. In addition, Physical feedback received a 100% usefulness vote on our

post-study survey, so these two feedbacks were chosen for the Primary Study.

Although “Expected Action” was a close third, we chose to limit those tested to

maintain a high number of participants in each group. In addition to these two

feedback types, we also chose to explore the Drift control strategy, introduced in

Application and Feedback Design, which would be coupled with the Green feed-

back on the user applications. These feedback conditions are then assigned to

our Primary Study population as described in Feedback Assignment

If occupants have perfect knowledge of their ideal temperature, a standard

thermostat would help users to maintain comfort. However, as an occupant’s

ideal temperature changes with unpredictable factors such as metabolic rate,

clothing type, air speed, etc., this is not the case in general. In our pre-study

survey, we ask participants for their perceived ideal temperature. As participants

vote for their comfort across the study, the building learns their thermal prefer-

ence. As comfort levels are shown in Table 4.5 to be significantly improved at
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Figure 4.7: Example fault detection usage

the end of the study, we determine the users’ ideal temperature by examining

their average room temperature across the last week of the study. The perceived

ideal temperatures and the actual ideal temperatures are shown in Figure 4.5. As

shown, survey results suggest that occupants prefer temperatures in the range of

61− 85◦F, with a mean preference at 74◦F. However, their voting patterns show

that the participants’ preferred temperatures fall on the range of 64− 76◦F, with

a mean preference at 73◦F. The second standard deviations are calculated to be

65◦F and 83◦F across the survey responses and 67◦F and 78◦F across the study

results. 20% of surveyed users think their ideal temperature is outside of two

standard deviations of the actual preferred temperature. If they were in charge

of the building, these participants would set the setpoints to an uncomfortable

temperature for themselves and others. It is clear from the distributions that

users believe they are more comfortable in temperatures further from the mean

than they are in practice. Additionally, users believe they would be more com-

fortable in higher temperatures than their voting patterns indicate (during the

summer when outside temperature is higher). This can have an impact on energy

consumption, as it is more costly to cool hot outside air to a lower temperature

set point.

Figure 4.6 shows how FORCES vote volume changes as the study progresses.
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Satisfaction Level Pre-Survey Post-Survey

Satisfied 11.9% 66.67%

Somewhat Satisfied 22.0% 26.67%

Neutral 18.6% 6.67%

Somewhat Dissatisfied 28.8% 0.0%

Dissatisfied 18.6% 0.0%

Thermal Comfort First Vote Post-Survey

Cold 22.0% 0.0%

Cool 6.0% 0.0%

Slightly Cool 20.0% 12.0%

Neutral 8.0% 60.0%

Slightly Warm 18.0% 12.0%

Warm 6.0% 8.0%

Hot 20.0% 8.0%

Table 4.5: Satisfaction and comfort
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As not all participants could be recruited on the same day, we have shifted the

vote timeline so that the day of the study session aligns with “Day 0” in the

figure. This also means that votes on the final days represent only votes from

users that started using the system the earliest. We can see that application

usage during the first month is relatively high. As the novelty period wears off

and the buildings learn the occupants’ preference, the amount the users vote tends

to diminish. Despite the novelty wearing off, we see that FORCES application

usage continues into the long-term as users periodically provide corrections to

the temperature of their zone. In addition, as usage settles into a background

voting pattern, spikes in occupant voting patterns often signify faults in the

HVAC system, and can be easily used for fault detection and diagnostics (FDD).

One example is shown in Figure 4.7, where spikes in voting patterns for users

44 and 49, who work in separate cubicles in the same office, are correctly time-

aligned. Inspecting the data, we found that these peaks correspond to BLD2

HVAC maintenance, where the system was being intermittently disabled.

In previous data, we often see patterns where users vote for their comfort,

wait a short period of time, and then cast the same vote again. We refer to these

duplicate votes as “reiterated votes”, an indication that the user is not yet able to

feel the effects of the requested conditioning, and is submitting additional votes

to reiterate their request. Three examples of reiterated votes in voting patterns of

users with various feedback types can be seen in Figure 4.8. The amount of time

required for a room to be conditioned to temperature following a vote depends on

the size of the room, amount of ventilation, and other factors. Vote reiteration

occurs because it can often take on the order of 15 minutes for an office to reach a

desired temperature setpoint, even to perform only a few degrees of temperature

change.
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Figure 4.8: Reiterated votes
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The benefit of physical feedback is the immediate HVAC action in the voter’s

space. Although physical feedback does not necessarily help the room reach its

desired setpoint significantly faster, the actuation will make clear to the voter

that the vote has been received, and the space is being conditioned. If this

feedback makes clear to voters that the room is quickly responding to a vote,

our data should show fewer reiterated votes from users with physical feedback

than with any of the non-physical feedbacks. To determine this, we separate the

voting patterns of each individual voter, and find all occurrences of two votes

being submitted within some ∆t of each other. This ∆t is chosen to be twice the

system actuation period, or 10 minutes in our experiments. This is because in

the worst case, the user votes at the very beginning of a voting period, waits 5

minutes for the vote tally and beginning of the next actuation period, and then

waits another entire system actuation period for the room to change to the user’s

liking. If a user feels the need to re-vote within this period, we consider it a

reiterated vote, caused by the slow response of the system. The results of this

analysis can be seen in Table 4.6, where our 23 users with physical feedback are

shown to reiterate their votes in 80 clusters, and the remaining 38 users with non-

physical feedback cast 377 reiterated votes. Across the 40-week study, users with

non-physical feedback cast, on average, 2.9× more reiterated votes than users

with physical feedback, supporting the hypothesis that the effects of physical

feedback provide immediate feedback that help to quickly satisfy the occupants.

The pre-study survey allowed us to see the initial conditions of the users and

their space. At the conclusion of the study, we note what changes the application

has made with the comfort and satisfaction of the users.

The thermal comfort at the beginning of the study as shown in Table 4.5

was distributed; 48% of participants were cold to some degree, 44% were hot to
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Total Avg/User

Physical 80 3.48

Non-Physical 377 9.92

Table 4.6: Reiterated votes for (Non-)Physical feedbacks

some degree, and only the remaining 8% were neutral. As the study progressed

and the thermal state changed, the number of neutral (comfortable) participants

increased to 60%. Interestingly, no participants reported feeling cold or cool at

the end of the study, and the number of those feeling hot dropped from 20% to

8%. The reduction in the extremes, cold, cool, and hot, shows that the thermal

status of the room had made a large shift towards an equilibrium around the users’

comforts. Additionally, this reduction in extreme votes shows a strong reduction

in the amount of over-conditioning occurring in the building, undoubtedly making

a strong impact on the energy profile of the building.

Users were asked before and after the study about their overall satisfaction as

shown in Table 4.5. Of the 47.4% that claimed to be dissatisfied to some extent

at the beginning of the study, none remained dissatisfied at the end. Only 33.9%

of their participants considered themselves at least “Somewhat Satisfied” at the

beginning, increasing to a much-improved 93.3% by the end. In the pre-study,

33% of participants reported actively avoiding their office due to uncomfortable

temperatures, and 96% reported taking individual action to improve their comfort

before FORCES. At the end of the FORCES study, none of the participants

reported actively avoiding their office, and a reduced 63.3% took individual action

to improve their thermal comfort.

In addition to general satisfaction with FORCES, we wish to know how the

various feedback types affect user satisfaction. Table 4.7 shows the reported sat-
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Satisfaction Level Green Physical Green+Drift

Satisfied 66.67 75.00 62.50

Somewhat Satisfied 0.00 25.00 37.50

Neutral 33.33 0.00 0.00

Somewhat Dissatisfied 0.00 0.00 0.00

Dissatisfied 0.00 0.00 0.00

Table 4.7: Satisfaction of Primary Study Feedbacks

Feedback Type Baseline Energy Feedback Energy Percentage Decr. Projected Cost Decr.

(KWH/day) (KWH/day) (USD)

Green+Drift 95.83 60.27 37.11% $93,113.80

Green 54.70 52.31 4.38% $10,984.34

Physical 88.65 71.81 18.99% $47,663.29

Table 4.8: Energy Cost per Feedback - Primary Study

isfaction after the primary study was complete. Physical feedback resulted in

the highest user satisfaction, likely caused by the instant thermal gratification

experienced by the user. The Green+Drift feedback resulted in the lowest sat-

isfaction, but all users were still at least “Somewhat Satisfied”, much improved

from the pre-study conditions.

As explained in Feedback Assignment, each participant in a zone shared the

same feedback type for our primary study. Following the procedure described in

Calculating Energy, the change in energy consumption is computed for each zone,

which is then averaged for each feedback type. As shown in Table 4.8, FORCES

operation caused a decrease in energy usage for all feedback types, with Green

feedback using the most energy at just a 4.4% reduction, and Green+Drift strat-

egy obtaining a 37.1% decrease in energy usage. Although Physical feedback was

found to consume more energy than Green feedback in the short-term preliminary
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study, analysis of the long-term study data found Physical to result in significant

energy savings over Green feedback alone.

To show how the energy savings found in the Primary study would affect a

building’s energy bill, we project the energy reduction computed for each feed-

back types onto an example building on our campus, Building 0 (BLD0). BLD0

used 1,091,429 ton-hr for cooling and 124,860.76 therms for heating in 2014. As

our campus pays $0.175(USD)/ ton-hr for cooling and $0.14(USD)/ therm for

heating, $250,933.24 was spent to condition BLD0 for 1 year. The projected

change in cost is reported in the last column of Table 4.8.

4.4 Discussion

The energy model used for energy analysis does not take into consideration the

additional wear on the machinery that may occur in the system, potentially

increasing overall capital costs. Changes in the fan speed and damper position

occur over large periods of time and causing a burst of air to be provided to

a room may cause a reduction in the life of the system. This additional cost

may be considered negligible but further research should be done to confirm this

assertion.

In the baseline energy consumption used for comparison, we did not include

the energy used by occupants using their own personal electrical resistive heaters

or fans to improve their personal comfort (a significant number of users based on

our pre-study survey data), so the energy savings results reported are conserva-

tive.

In our preliminary study, all feedback types showed an increase in energy

consumption with respect to the baseline. We believe this was an artifact of the
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very few zones that could be analyzed due to the random feedback assignments

strategy used in the preliminary study, as it was explained in Energy Calculation.

Furthermore, the results shown in Fig. 4.4 using all user data would indicate that

at least Green feedback should have produced a decrease in energy consumption

from baseline. Nevertheless, the results allow us to establish a relative comparison

among the different feedback types. In the primary study, every zone was used in

the energy calculation, since each zone was assigned just one feedback type. We

believe the feedback assignment in the primary study combined with the longer

experimental time allowed us to get more meaningful results.

In the primary study, all feedback types decreased energy consumption while

improving user satisfaction. Physical feedback saved more energy than Green, but

less than Green+Drift. We hypothesize that this may be the result of the human

perception of control, as psychological studies have also shown that direct control

can lead to greater satisfaction [Pac90]. Users may be willing to vote and/or

allow the system to drift to a slight discomfort area, but still be satisfied with the

system since they are in control. Although Green+Drift led to significant energy

savings, satisfaction was only slightly lower than that of Green and Physical, and

higher than baseline.

We believe the results in this work open new potentially exciting interdisci-

plinary research avenues. By including the human-in-the-loop, we need to further

investigate the intersection of human incentives structures (behavioral economists

and cognitive scientists) together with control of large cyberphysical systems (en-

gineers) to further understand the inter-relationships between human behavior

and system control.
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4.5 Summary

Comfort voting applications are becoming more prevalent, but work has not been

done to examine how application feedback can affect HVAC energy consumption

and occupant satisfaction. In this work, we developed a multi-platform comfort

voting application with 5 different methods of feedback. Through a 1-month

preliminary study, we investigate how these feedback types affect the satisfaction

of the users and the energy consumption of the building. We then use the results

to narrow down on the two most promising feedbacks, for evaluation for a long-

term study. Across a 40-week study covering 3 buildings and 61 participants, we

find that using feedback systems can improve satisfaction from 33.9% to 93.3%,

and reduce energy consumption by 18.99%. Furthermore, with the inclusion

of a drifting control strategy, a 37% energy reduction can be realized without

significantly reducing occupant comfort.
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CHAPTER 5

Building CoolUs: Control using Optimization,

Occupancy, and Local User Sensing

The previous two chapters were focused on comfort and occupancy as two in-

dependent concepts, but using a model predictive control (MPC) scheme these

two techniques can be combined into a larger problem. By using both occu-

pant and comfort data, we can use the data as in an MPC problem and develop

an optimization problem. With an optimization based solution based on the

entire HVAC system and occupancy patterns we can minimize monetary cost

through out the building while constrained to occupant comfort. In this chap-

ter we present a model predictive control (MPC) framework for smart building

control. The framework has several components, including (a) occupancy sens-

ing in real-time, (b) occupancy prediction models based on historical occupancy

data, (c) thermodynamic building models, participatory sensing model and (e)

a model predictive control optimization that minimizes monetary costs in energy

use while maintaining quality comfort bounds for the building’s users. The occu-

pancy sensing information is based on the methods developed in Chapter 3 and

the participatory sensing method as explained in Chapter 4

The main contributions offered in this chapter are:

• A Model Predictive Control (MPC) framework that considers both occu-

pancy prediction and participatory sensing
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Figure 5.1: CoolUs Architecture Overview

• An experimental evaluation on a real production building with detail anal-

ysis of cost reductions

5.1 System Overview

Our system periodically collects data from sensors throughout the building and

outside environment in order to find an optimal control strategy that minimizes

monetary cost while satisfying occupant’s comfort. An important component of

our architecture is the use of thermal and building’s occupancy models that allow

us to predict the behavior of the building and users and use these predictions for

optimal control.

Figure 5.1 shows an overview of our system architecture. Sensor data from

the building is collected by the Building Management System (BMS) periodically

throughout the day. The data collected are standard sensors in buildings such as

thermostats, flow and temperature sensors throughout the HVAC system. These

sensor values are collected directly from the BMS’s SOAP based API and using

the BACnet [BAC99] protocol and stored on a sMAP archiver [DJT10b]. Along
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with the standard sensors in the building, we use occupancy detection sensors and

prediction models as outlined in Chapter 3. Additionally, we use local weather

forecast to gather the outdoor temperature, which affects the thermodynamics of

the zone. To ensure that we are keeping occupants comfortable we include the

participatory voting system that was introduced in Chapter 4.

With a combination of the occupancy prediction, initial conditions, and weather

prediction we can solve the MPC formulation described in Section 5.2.4 below.

Once the optimizer solves the problem, a set of control inputs is obtained, such as

the mass flow and discharge temperature of each zone. These control set points

are then transmitted to the BMS, which then uses its own built-in PID loops to

achieve the set points passed to the building’s equipment.

5.2 Model Predictive Control

5.2.1 HVAC System Description

...Zone 1 Zone 2
Zone 

N-1
Zone N

Supply Fan

Air Flow

Damper

Heating Coil

Cooling Coil

D

Tc
To

Ts,N, mn

Tm

Tz,N Tr

Figure 5.2: HVAC Single Duct VAV Terminal Reheat Layout

The HVAC system we modeled is a single duct central cooling HVAC with
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terminal reheat as shown in Figure 5.2. The process begins at the supply fan in

the air handler unit (AHU), which supplies air for all of the zones. The supply

fan’s air first goes through a cooling coil, which cools the air to the minimum

required temperature needed for all of the zones. Before air enters a zone, the

air passes through a variable air volume (VAV) unit that regulates the amount

of air that flows into a zone. Terminal reheat occurs when the heating coil

increases the temperature before discharging air into a zone. A discharge setpoint

temperature is selected for each zone and the VAV ensures that the air is heated

to this temperature for each zone. The air supplied to the zone is mixed with the

current zone air, and some of the air is exhausted out of the zone to maintain a

constant static pressure. The return air from each zone is mixed in the return

duct, and then portions of it may enter the economizer.

The economizer unit contains several dampers to regulate the amount of air

that is recirculated in the system and the amount of fresh air that is brought into

the system from the outside. At certain times of the year, it is viable to use all

outside air if the outside air temperature is close to the desired set point. It is

also possible that the outside air temperature is significantly higher or lower then

the desired temperature at which point most of the air is recirculated inside the

building to save energy. Although it may be desirable to recirculate all possible air

in the system to reduce cooling and heating costs, there is a necessary minimum

amount of outside air required for a zone due to carbon dioxide and other gases

generated by furniture, appliances and occupants of the zone. Once the air is

mixed, it returns back to the air handling unit and the cycle begins again.
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Type Symbol Description

Constants Mn Capacity of a zone

cp Heat capacity of air

Rn,i Resistance between zone i and zone n

Rn,o Resistance between zone n and the outside

ηc, ηh Cooling and heating efficiency

rg Monetary cost of gas per kwh

re Monetary cost of electricity per kwh

τ , N Number of time steps and zones

Tc,min(t) Min cooling temperature

Ts,max(t) Max heating temperature

Ro Required ventilation per occupant

Ran
Required ventilation for an area

An Area of a zone

Variable Tzn(t) Zone Temperature

Tsn(t) Supply air temperature to a zone

Tc(t) Cooled air temperature supplied by the AHU

Tm(t) Mixed Air Temperature

D(t) Damper position for outside air

Tr(t) Return temperature

mzn(t) Mass flow into a zone

ms(t) Total mass flow of all zones

ρu,n(t), ρl,n(t) Upper and lower comfort penalty parameters

φp Penalty coefficient

t, n Time, Zone

Given or To(t) Outside air temperature

Pre-calculated Q Thermal load

On(t) Occupancy

Vmin,n(t) Minimum ventilation required for a zone

T+
zn
(t), T−

zn
(t) Upper and lower comfort bounds

Table 5.1: MPC variables and descriptions
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5.2.2 Objective Function

Our optimization problem, at a high level, can be seen as the minimization of

HVAC operation’s monetary cost subject to occupant comfort, regulatory con-

straints, and hardware constraints. For MPC, we need to insert our initial state

of the building, and model the changes in thermodynamics of the room over a

set period to ensure we conform to the constraints of the system. Time is a

crucial part of our formulation due to changes in occupancy, which require pre-

conditioning a zone in time for an occupant who we predict is about to enter a

zone. Overall we attempt to find the best control sequences while minimizing

monetary cost due to energy usage. In our formulation of the system, we aim to

keep the system convex by making our objective function quadratic with respect

to the optimization variables and only use linear constraints. A convex prob-

lem is computationally easier to solve and has no local optima. Our end result,

however, is a nonconvex quadratic problem with linear constraints.

In the next sections, several variables and constants will be introduced, which

are listed in Table 5.1. In this table, variables labeled as Given may vary across

time, but can be pre-calculated or fetched before the optimization problem starts.

An example of a Given function is the outside temperature, To(t), which can be

acquired via weather forecasting sources. See Section 5.2.4 for further explana-

tion.

The monetary cost of the HVAC system used in our objective function is the

sum of the power used to cool air, Pc, the power used to heat the air, Ph, and the

power used to move the air via the supply fan, Pf . These different power usages

are converted to a common unit such as monetary value since each component

may draw its power from different energy sources such as gas or electricity , which

costs typically vary. We use the conversion constants re and rg to convert power
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obtained from electricity and power obtained from gas into a monetary amount,

respectively.

First, the cost of cooling is the change in temperature from the mixed air

(Tm) to the supplied air (Tc). The efficiency of decreasing the temperature is ηc

shown in Equation 5.2

ms(t) =
N
∑

n=1

mzn(t) (5.1)

Pc =
cp
ηc

τ
∑

t=1

ms(t)(Tm(t)− Tc(t)) (5.2)

The mixed air temperature Tm is a mixture of the return temperature Tr and

the outside temperature (To). The return temperature is based on the contribu-

tion of the temperature that comes from each zone. The return air is written

as:

Tr(t) =

N
∑

n=1

mzn(t)Tzn(t)

ms(t)
(5.3)

Once the air returns and arrives at the economizer section of the AHU, part

of it is exhausted and part is recirculated. The amount recirculated is based on

the damper position, D(t), which has a value between 0 and 1. D(t) = 1 is when

the recirculating damper is fully opened and D(t) = 0 when the system is using

all outside air.

Tm(t) = D(t)Tr(t) + (1−D(t))To(t) (5.4)

If we substitute values back to the original Pc, the division of ms is removed

from Tr, but we are still left with a cubic polynomial of optimization variables
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in the objective function with D(t)
N
∑

n=1

mzn(t)Tzn(t) which increases the com-

plexity of the problem. To reduce the order of this polynomial, we linearize

f(Tzn(t),mzn(t)) = Tzn(t)mzn(t). Equation 5.3 can therefore be re-written as:

Tr(t) =

N
∑

n=1

−T̄znm̄zn + m̄znTzn(t) +mzn(t)T̄zn

ms(t)
(5.5)

By linearizing this term, we keep our objective function quadratic. We mini-

mize the error of this model simplification by choosing sensible values of m̄zn and

T̄zn , as explained in Section 5.4.1.

Similarly the cost of heating is the change in temperature from the cool air

supplied by the AHU to the supplied air temperature. The supplied temperature

is different per VAV box so the mass flow into each zone is separated to find the

cost per zone. The efficiency of heating this air, ηh, is then applied to the sum

of all the zones.

Ph =
cp
ηh

N
∑

i=1

τ
∑

t=1

mzi(t)(Tsi(t)− Tc(t)) (5.6)

The cost of the fan is shown to be a squared increase with respect to mass

flow in [KMB13] and is written in Equation 5.7 with an efficiency factor of ηf .

Pf =
τ

∑

t=1

ηfms(t)
2 (5.7)

Due to changes in occupancy, there may be periods of time when a single

time step is not enough time for our zone temperature to fall within the feasible

range. This can occur due to an incorrect occupancy prediction which may leave

the room in a very warm/cold state when an occupant enters the room. To

relax our comfort constraint we include a penalty function ρun
and ρun

. These
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penalty function are included into our cost function and also included in our

comfort constraint as discussed in Section 5.2.3.1. This penalty is added to

our formulation as shown in Equation 5.8. We multiply this constraint by a

coefficient, φp, to denote how strict we want the bounds to be.

Cs = φp

N
∑

n=1

τ
∑

t=1

ρun
(t) + ρln(t) (5.8)

Simply summing the power terms does not capture the difference of pricing

between different forms of energy, specifically the differences between using gas

and electricity. In our location, gas is significantly cheaper than electricity. We

therefore have a conversion to a monetary cost with conversion factors re and

rg for electricity and gas, respectively. The heating element is based on gas and

both the fan and cooling are based on electricity. Along with the monetary cost,

we add our comfort penalty, Cs. The final objective function is therefore:

min
mn(t),Tzn (t),Tsn (t),Tc(t),D(t)

t∈1...τ,n∈1...N

re(Pc + Pf ) + rg(Ph) + Cs

subject to: Constraints 1-12

(5.9)

At this point, we have a quadratic nonconvex objective function. Our problem

is non-convex due to the formulation of Pc and Ph. Both have a term that are

similar in structure (x−y)z which makes the problem nonconvex even though our

constraints are x−y ≥ 0. Specifically for equation 5.2 we havems(t)(Tm(t)−Tc(t))

In the following section, we will introduce linear constraints to our problem.

74



5.2.3 Constraints

5.2.3.1 Thermal Model Constraint

The following thermal model proposed is heavily influenced by [KMB13] with

modifications to make the constraint linear. In order to model the thermody-

namics of a zone, we use a resistor-capacitor model where each zone is considered

a capacitor and interactions between zones are resistors. Some of the variables in

our formulation are overlayed on Figure 5.2 to help show the physical relationship

these variables have with the AHU loop. Each zone n has a capacity of Mn and,

between zone n and zone j, a resistance Rn,j. The resistance between a zone and

the outside temperature is considered a special case noted as Rn,o

To model the change in a zone n’s current temperature, Tzn , we break apart

the problem into a few core components include the displacement of air and the

heat transfer of zones. Each zone is supplied air, mzn , at a supply temperature

of Tsn . If mzn air is put into a zone, an equal amount of air within the zone must

exit the system to maintain a constant static pressure. This transfer of air can

be represented as (Ts − Tz)cpmz where cp is the air capacity. The heat transfer

that occurs between a zone and an outside wall is (To − Tzn)Rn,o where To is

the outside temperature. In our model, the heat transfer that occurs between

adjacent zones is
∑N

i=0(Tzi − Tzn)/Rn,i. Along with this, there is a thermal load

Qn in the zone. This load can be attributed to occupancy, appliances, machinery,

and objects that increase/decrease the temperature. The general thermal model,

based on [KMB13], for this system for a single zone n is:

Mn

d

dt
Tzn = (Tsn−Tzn)cpmzn+Qn+(To−Tzn)/Rn,o+

N
∑

i=0,i 6=n

(Tzi−Tzn)/Rn,i (5.10)
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We only considered the outside temperature due to the larger temperature

differential between a conditioned zone and outside weather, which causes a larger

change in temperature in a zone which leads the term (Tzi−Tzn)/Rn,i to approach

0. Our equation can therefore be simplified to:

Mn

d

dt
Tzn = (Tsn − Tzn)cpmzn +Qn + (To − Tzn) /Rn,o (5.11)

Due to mzn , Tsn , and Tzn being optimization variables, the first term in Equa-

tion 5.11 causes the constraint to be non-linear. These constraints can be made

linear using Taylor’s theorem as in Equation 5.12 where T̄sn , T̄zn , and m̄zn are

initial conditions for Tsn , Tzn and mzn , respectively, for all values of t. Selection

of good T̄sn , T̄zn , and m̄zn is discussed in Section 5.4.1.

Mn

d

dt
Tzn = cp(−T̄snm̄zn + m̄znTsn +mznT̄sn + T̄znm̄zn − m̄znTzn −mznT̄zn)

+Qn + (To − Tzn)/Rn,o

(5.12)

Equation 5.12 can be discretized with respect to time as follows:

Tzn(t+ 1) = Tzn(t) +
∆t

Mn

(

cp(−T̄snm̄zn + m̄znTsn(t) +mzn(t)T̄sn + T̄znm̄zn

− m̄znTzn(t)−mzn(t)T̄zn) +Qn + (To(t)− Tzn(t))/Rn,o

)

(5.13)

This Equation will be considered as our first constraint of the system.

Constraint 1: Equation 5.13 – Thermal Model

The remaining constraints are based on the physical properties of the system,

building regulations that the HVAC system must follow, and comfort constraints.
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Constraint 2: Tc(t) ≤ Tm(t) – The cooling coil can only cool the air received from

the economizer.

Constraint 3: Tc(t) ≥ Tc,max – Cooling capacity of cooling coil.

Constraint 4: Ts(t) ≥ Tc(t) – The heating coil can only increase the temperature

of the air supplied by the AHU.

Constraint 5: Ts(t) ≤ Ts,max – Max capacity of heating coil.

Constraint 6: mzn(t) ≥ Vmin,n(t) – The zone’s minimum ventilation required for

occupants. (See Section 5.2.4)

Constraint 7: mzn(t) ≤ mmaxn
– The VAV’s maximum ventilation capacity.

Constraint 8: 0 ≤ D(t) ≤ 1 – Physical damper constraint.

Constraint 9: D(t) ≥ Dmin – Minimum outside air requirement.

Constraint 10:
N
∑

n=1

mzn(t) ≤ AHUmax – The fan’s maximum ventilation capacity.

Constraint 11: ρun
(t) + T+

zn
≥ Tzn(t) ≥ T−

zn
− ρun

(t) – Comfort bound

Constraint 12: ρun
(t) ≥ 0, ρln(t) ≥ 0 – Penalty functions can only increase cost

5.2.4 Given/Precalculated Constants

Using the HVAC efficiently is an important part of energy savings, but savings

can be easily achieved by simply turning a building’s conditioning off. In order

to properly evaluate the system, the zone temperature should fall within the

temperature bounds proposed in ASHRAE Standard 55 [ASH04]. In ASHRAE

55, comfort is defined as a Predicted Mean Vote (PMV) which is a scale from

-3 to 3, where -3 indicates occupants are cold and +3 indicates occupants are
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Parameter Values

Mean Radiant Temperature 75◦F

Humidity 30 %

Metabolic Rate 1.1 W/m2

Clothing 0.8 Km2/W

Air Speed 0.1 m/s

Table 5.2: Parameters used for PMV

hot. An occupant is considered to feel neither too hot or too cold when PMV

is between −0.5 < PMV < 0.5. In the calculation of an ideal temperature we

used the parameters found in Table 5.2. These values contain the humidity of

our region, the metabolism of office workers, and a clothing coefficient that is

approximately that of spring time, when our experiments took place.

As discussed in Chapter 4, PMV does not properly reflect how a user actually

feels, so users are encouraged to provide feedback to the system using our voting

application. We use the leaderboard strategy as discussed in Chapter 4 since

it was found to encourage users to vote, but not necessarily vote in an energy

conscious mindset. When a user votes on their preference, we assume that their

preference does not change during the time horizon of the prediction. Therefore

each zone has a upper comfort bound, T+
cn
, and a lower comfort bound , T−

cn
based

on the occupants last vote.

Meeting AMV standards are only required when the zone is occupied. There-

fore, we have two constraints based on the occupancy prediction, On(t), where

n is the zone. The unoccupied bounds are the constants, T+
zu(t), T

−
zu(t). This is

written in Equation 5.14 and 5.15.
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T+
zn

=







T+
cn

if On(t) > 0

T+
zu if On(t) = 0

(5.14)

T−
zn

=







T−
cn

if On(t) > 0

T−
zu if On(t) = 0

(5.15)

Alongside comfort requirements, there are also ventilation requirements to re-

duce gases that build up in a room. To fall within ASHRAE Standard 62.1 [ASH07]

the zone must be properly ventilated. By knowing the number of occupants we

can find the exact minimum required cubic feet per minute (CFM) for each zone.

The amount of CFM required is shown in Equation 5.16, whereRp is the minimum

CFM per person, Ra is CFM per ft2, Pz is the number of occupants and Az is the

zone’s area. For an office the Rp = 5CFM/person and Rp = 0.6cfm/ft2. The

square footage of each zone is [275, 725, 725, 400, 300, 700, 400, 400], respectively.

A conversion from CFM, which is a unit of volume, to kgps is approximated by

using air pressure at sea level at 70◦F .

Vmin,n(t) = RpOn(t) +RaAn (5.16)

The final precalculated value in our system that is retrieved is weather fore-

casting used for To. Forecasts are retrieved from the OpenWeatherMap API [Ope].

5.3 Implementation Details

In order to solve the model described in the previous sections we used the pro-

gramming language Julia [BEK17] using the optimization library JuMP [DHL17].

JuMP allows for different solvers to be interchanged with relative ease. To solve

our quadratic objective problem with linear constraints, we use an Interior Point
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Optimizer (Ipopt) [WB06], which is standard solver and capable of solving non-

linear optimization problems. To solve a problem which models a building of size

N = 9 and time steps τ = 6 takes on average 0.2 seconds. As building actuation

is done on the scale of minutes, the time it takes to solve for a single optimization

problem is well within what is considered acceptable.

Every 5 minutes, we solve the optimization problem and gather the solved

variables to be actuated. Within the buildings management system (BMS), we

can set our desired points for each variable through out the building and allow

the normal building control routines to take control. An example of how we

control would be setting the point for the mass flow. For each zone, our solution

contains the flow for each zone which can then be set as required mass flow can

be set via the BMS. We only adjust the setpoint, and the building is capable

of changing the supply fan’s speed and damper position for each zone to meet

the needs of all the zones. Another possible way of control, is to include the

damper position and fan speed within our model, however this adds additional

complications on the number of setpoints required to control the building and

requires to add additional complexity to the model. It is also possible that these

lower level setpoints are not available to be controlled by the BMS interface.

Because of these reasons we chose to use the high level set point method. The

points we set every actuation period include all zones’ mass flow (mzn), zones’

supply temperature(Tsi), and cooling temperature (Tc). In order to avoid issues

with static pressure, we do not modify the outside air damper position and allow

the BMS to use it’s standard econmizer control routines.
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Figure 5.3: 3-D Model of building

5.4 Evaluation

Evaluation of this model was conducted at the University of California, Merced

campus during the summer. Experiments were run during the summer where the

temperature were at lows of 61◦F to highs 96◦F . We chose a single floor office

space with a square footage of 5750ft2, as depicted in Figure 5.3. This building

contains 40 workers that occupy the building between 6:00am and 2:00am.

5.4.1 Model Evaluation

In Section 5.2.3.1, a non-linear thermal model and linear thermal model was

established. In this section we confirm that both models are accurate to what

occurs in an actual building.

The unknowns in a building would be the capacitance, Mn, the resistance,

and the thermal load, Q, of each zone. Based on the thermal model alone, each

zone’s constants are independent to each other, which makes solving these values
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Figure 5.4: Non-Linear Thermal Model

possible by running a regression using historical data. Which data is chosen

is crucial since during normal operations of the HVAC system the change in

temperature will be near zero between each time step. It is therefore advantageous

to use the warm-up period at the start of the day when the system is at its coolest

for our training data. At the start of the day, the system is trying to reach the

desired set point as quickly as possible. The above parameters could also be more

accurately trained by perturbing the system causing large changes in temperature.

When making the original thermal model into a linear problem, we had to

generalize the relationship using a first order Taylor series. For this linear function

to be accurate, we must choose initial points near the range we are evaluating the

function. For both zone temperature and supply temperature, this is relatively

easy. The change in a zone temperature will be small through out each time step

so T̄zn was set to be equal to Tzn(0). For supply temperature, we can make the

assumption that during the summer this temperature will be in cooling mode

and near 55◦F and for heating 80◦F . The mass flow m̄zn is probably the most

difficult parameter to choose since it can range from Vmin,n(t) to mmax,n. Any
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Figure 5.5: Linear Thermal Model

value between these two are valid, but for our test we picked a value at Vmin,n(t).

As stated in Equation 5.16, the minimum ventilation is calculated for each zone

dependent on occupancy and size of zone at each timestep. We use the above

values when evaluating the linear model.

To evaluate the model’s accuracy, we step through historical data of the build-

ing during normal operation and pass known variables such as the supplied tem-

perature, current temperature, and mass flow into our thermal model to find

t + 1. With historical data we can compare the predicted temperature to the

zone’s temperature and determine the accuracy of the model by calculating the

Root Mean Square Error (RMSE). The Figure 5.4 shows the non-linear thermal

model which follows the ground truth closely. Figure 5.5 is the linear model on

the same day as Figure 5.4. The ground truth is the expected temperature in

∆t seconds. RMSE for the non-linear and linear thermal models are 0.0120 and

0.0146, respectively. This RMSE means that 95% of data falls within +/ − 2

times or less then +/− 0.03◦F which in our application is more than acceptable.

The previous figures were based solely on historical data during normal modes
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Figure 5.6: Zone 2: Predicted vs. Measured Zone Temperature Results
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Figure 5.7: Zone 1: Predicted vs. Measured Zone Temperature Results
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Figure 5.8: Fan quadratic regression

of operation within the building and provides a fairly low error. Once we begin

to use the CoolUs system, the expected temperature and actual temperature

varied more when compared to historical data. Figure 5.6 and Figure 5.7 show

the expected predicted zone temperature and the actual zone temperature using

CoolUS. In Figure 5.6, you can see a RMSE of 0.2090, which is greater then the

error from historical data, but still makes most predictions +/ − 0.4180 within

the actual temperature. Figure 5.7 does not do as well of a job with the system

constantly either undershooting or overshooting the predicted temperature. After

inspecting the room, the room is found to have several large appliances including

a soda vending machine and a residential refrigerator. Both of these devices have

condensers, which transfer heat to the environment and activate periodically. Due

to this, the assumption that load is constant is not necessarily true when large

thermal load objects are in inside a room. This zone had a RMSE of 0.8651.

Based on the flow values and a power metered fan, we are able to check if the

fan power usage is indeed the one presented in Equation 5.7. Figure 5.8 shows a

second degree polynomial fit and the testing set of data. The RMSE for this fit
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Figure 5.9: Energy comparison between baseline (b) and CoolUs(m)

is 0.9051 which is a reasonable for our application. This is likely due to the high

noise during 1.5 kgps to 3 kgps.

5.4.2 Energy Usage

With a well fit model, this section focuses on the energy analysis of a deployment

on a real building. We compare energy usages over five days with similar high-

est temperature and average temperature within the same month in the same

building. The first strategy in described as the baseline strategy which is a static

schedule control strategy commonly used in buildings. This strategy keeps each

zone’s temperature within set bounds assuming full occupancy during the sched-

ule occupied time The system noted as “m” for MPC is using the CoolUs system

as described in the previous sections. Figure 5.9 zooms into two days out of the

five to show how the energy expenditure fluctuates through out the day.

Figure 5.9 is the breakdown of how energy was used through out the experi-

ment compared to the baseline. In this figure we can see that CoolUs consistently

outperforms the baseline in heating, cooling, and ventilation through the entire
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System Heating (kwh) Ventilation (kwh) Cooling (kwh) Total (kwh)

Baseline 1372.88 144.17 1229.81 2746.86

CoolUs 906.43 (-34.0%) 111.14 (-22.9%) 559.17 (-54.5%) 1576.7456 (-42.6%)

Table 5.3: Energy Usage
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Figure 5.10: Baseline and CoolUs Mass Flow Patterns

day. The energy saved is due to reduction of mass flow blown into the room and

a reduction in the temperature of cooling. During our experiments, the baseline

used 1170 kg of air while the CoolUs system used 820 kg which is a 30.0% re-

duction in ventilation. On average using the baseline the cool air temperature is

52◦F and CoolUs uses 62◦F cooled air. Table 5.3 shows the energy usage during

the evaluation period of the baseline and CoolUs system over a work week period.

The total reduction of the energy usage is 42.6% with the majority of the savings

coming from the decreasing in cooling at 54.5%.

A reduction in air flow reduces the amount of air that needs to be cooled. In

Figure 5.10, we can see a fluctuation in the amount of ventilation for a single zone,

the break room. Peaks occur when the HVAC is attempting to condition a room,

while the valleys are period when only minimum ventilation based on occupancy
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is used. Figure 5.11 shows the occupancy for the break room and by comparing

these two figures side by side, we can see some overlap during extended periods of

occupancy such as 2:00am until 6:00am, but the room is being ventilated during

unoccupied periods such as 6:00am to 7:00am. This is due our system using a

predicted occupancy to precondition a zone. The baseline does preconditioning

also, but based on a rule which begins to precondition an hour before occupants

are schedule to enter a zone.

5.5 Summary

In this chapter we show that an accurate model can be developed for a build-

ing’s thermodynamics. This model has a root mean square error of 0.0146 and

0.2090 when compared to historical data and when actually used in a zone with

a constant load, respectively. A five day study controlling a building showed that

our system can decrease HVAC energy usage by 42.6% using a combination of

occupancy detection, comfort voting, and a model predictive control framework.
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CHAPTER 6

Conclusion

In this thesis, we covered several topics in the smart building domain. We first

started by focusing on energy savings that can be achieved by detecting occupancy

using a novel sensing technique. Using this new sensor and our regression pipeline

we obtain a root mean square error of 0.35 when evaluated in 10 building zones

over three weeks. After discussing occupancy sensing, we focused on thermal

comfort of participants and how to influence how occupants participate in thermal

voting systems. Several feedback types were evaluated to see which feedback

mechanisms can reduce energy cost while maintaining thermal comfort. Using the

occupancy sensing and participatory sensing, we combined these two techniques

to create a model based approach to reduce monetary expenditure in buildings.

The occupancy detection technique was used to ensure the zones within a building

were only conditioned when occupied and pre-condition before occupants enter a

space. The comfort data we used was capable of adapting the thermal constraints

of a zone depending on how they voted on their thermal comfort. By combining

these two methods, we were able to reduce energy expenditure by 42.6% during

our week long evaluation using our model predictive approach.

Based on this work, there are many avenues for future work to be taken.

The optimization problem developed in the end can be further expanded to take

additional elements into consideration such as non-constant thermal load. There

are also stochastic model prediction methods that can be explored to take the
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probabilistic nature of changes in occupancy and comfort. This stochastic model

would also require work towards a probability model of human comfort.
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