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cDepartment of Mathematics, University of California, Irvine, Irvine, CA 92697-3875
dCenter for Mathematical and Computational Biology, University of California, Irvine, Irvine, CA
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Abstract
Receptor-mediated BMP degradation has been seen to play an important role in allowing for the
formation of relatively stable P Mad patterns. To the extent that receptors act as a "sink" for BMPs,
one would predict that the localized over-expression of signaling receptors would cause a net flux
of freely diffused BMPs toward the ectopic, i.e., abnormally high concentration, receptor site. One
possible consequence would be a depression of BMP signaling in adjacent areas since less BMPs
are now available for binding with the same normal concentration of receptors at the adjacent areas.
However, recent experiments designed to examine this possible effect were inconclusive. In this
paper, we investigate the possibility of depression of Dpp signaling outside the area of elevated tkv
in a Drosophila embryo by modeling mathematically the basic biological processes at work in terms
of a system of nonlinear reaction diffusion equations with spatially varying (and possibly
discontinuous) system properties. The steady state signaling morphogen gradient is investigated by
the method of matched asymptotic expansions and by numerical simulations.

1 Introduction
For proper functioning of tissues and organs, cells are required to differentiate appropriately
for its position. Positional information that instructs cells about their prospective fate is often
conveyed by concentration gradients of morphogens, also known as (aka) ligands, bound to
cell receptors (bound-morphogens for short). Morphogens/ligands are "signaling" protein
molecules that, when bound to appropriate cell receptors, trigger the genetic program to assign/
express different cell fates at different concentrations [28,31]. Morphogen activities are of
special importance in understanding the development of a population of uncommitted cells in
an embryo to create complex patterns of gene expression in space. This role of morphogens
has been the prevailing thought in tissue patterning for over half a century; but only recently
have there been sufficient experimental data [6,27,28,31] and adequate analytical studies (see
[5,7,12,13] and references therein) for us to begin to understand how various useful morphogen
concentration gradients are formed.

Dorsal-ventral (belly-back) patterning in vertebrate and Drosophila embryos is now known to
be regulated by bone morphogeneric proteins (BMP). The BMP activity is mainly controlled
by several secreted factors including the antagonists chordin and short gastrulation (Sog). In
Drosophila fruit flies, seven zygotic genes have been proposed to regulate dorsal-ventral
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patterning. Among them, decapentaplegic (Dpp) encodes BMP homologues that promotes
dorsal cell fates such as amnioserosa and inhibits development of the ventral central nervous
system. On the other hand, the chordin homologue Sog promotes the development of central
nervous system.

Typically, morphogen concentration gradients are synthesized at certain part of the embryo,
followed by their diffusion, binding with receptors (or other non-signaling molecules known
collectively as non-receptors) and degradation in appropriate regions [12]. In the above Dpp-
Sog system, the production of Dpp is pretty much uniform in the dorsal region and not at all
in the ventral region while the opposite is true for Sog. The Dpp activity has been found to
have a sharp peak around the midline of the dorsal in the presence of its “inhibitor" Sog (much
more so during the transient phase than in steady state). Intriguingly, mutation of Sog results
not only in a loss of ventral structure as expected, but the amnioserosa is reduced in addition.
This result is paradoxical as the amnioserosa is the dorsal-most tissue and apparently a BMP
antagonist is required for maximal BMP signaling [2,3,21,23].

As the system contains many variables, the question of what leads to a sharp (bounded) Dpp
concentration peak is difficult to tackle by traditional experimental means. In [20], a
quantitative analysis (along with experimental studies) of this phenomenon was undertaken by
extending the one-dimensional dynamic Dpp-Sog system formulated in [10] and [18] for the
evolution of the morphogen activities in the extracellular space with Dpp and Sog produced in
the dorsal and ventral regions, respectively, possibly at different prescribed production rates.
The system allows for diffusion, reversible binding and degradation of the two morphogens,
Dpp and Sog, as well as reversible binding and degradation of Dpp bound to its signaling cell
receptors Thickvein (tkv). The extension consists of allowing the enzyme Tolloid to cleave
Dpp-Sog complexes to (degrade Sog and) free up Dpp molecules. Numerical simulations of
this relatively simple model for the process of dorsal-ventral patterning in [20] were found to
capture the Sog-dependent shuttling of BMPs to the dorsal midline and provide insights into
the unusual dynamics of this gradient formation process.

In the model examined in [20], receptor-mediated BMP degradation plays an important role
in allowing for the formation of relatively stable PMad patterns. To the extent that signaling
receptors act as a "sink" for BMPs, one would predict that the localized over-expression of
these receptors would cause a net flux of free BMPs toward the ectopic (abnormally high)
receptor concentration site. One possible consequence would be a depression of BMP signaling
in adjacent areas since less BMPs are now available for binding with the same concentration
of receptors at the adjacent areas as before. Recently, Wang and Ferguson [30] presented
experiments in which mRNA for the Dpp receptor tkv was injected in a localized fashion into
early embryos. No discernible difference were observed in the PMad patterns that ultimately
developed (unless a constitutively active form of the receptor was used).

The experiment of Wang and Ferguson were carried out by RNA injection; it is not possible
to know whether the levels of ectopic tkv were substantial compared with endogenous tkv and
therefore whether they should have been expected to have any significant influence on BMP
degradation. To gain additional information on this issue, GAL4-UAS was used in [20] to
express ectopic tkv in the head region of embryos and observed its subsequent effects on PMad
staining. As shown in Supplemental Figure S7 of [20] (reproduced from the Supplement of
[20] as Figure 1 below), endogenous tkv expression in the embryonic head region is already
relatively substantial and can be elevated by expressing wild-type tkv using a bcd-GAL4 driver.
When compared with wild-type embryos, those expressing ectopic tkv consistently showed a
narrowing and weakening of the PMad staining pattern over a range of 10–12 cell diameters
posterior to the border of the bcd domain. Thus, the data are consistent with the supposition
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on the model earlier that there would be a depression of BMP signaling outside the area of
elevated tkv.

The experimental results of [20] notwithstanding, a closer examination of the biological
processes at work suggests some uncertainty regarding the actual effects of a localized over-
expression of tkv. Given that there is no shortage of free Dpp throughout the dorsal region of
the embryo in steady state, there is no obvious reason for a depression of bound-Dpp
concentration outside the area of elevated tkv even if some of the free Dpp has been siphoned
off by the ectopic receptors. Furthermore, whether there should be a depression of BMP
signaling may depend on the level of Sog synthesis rate given the Sog-dependent shuttling of
BMPs to the midline. We will investigate these issues herein by obtaining steady state solutions
of a relevant mathematical model for the biological development of interest.

The mathematical model of the aforementioned embryonic development will necessarily be
more complex than those previously analyzed by the authors in [12,13,18,20] and references
therein. Given the spatial variations of the synthesis rates of Dpp and Sog along the dorsal-
ventral axis and the spatial variations of tkv concentration in the anterior-posterior direction,
the model must be at least spatially two-dimensional. With Dpp, Sog and the Dpp-Sog
complexes diffuse freely in the extracellular space, the model must be multi-diffusional even
if we should take the diffusion rates to be (more or less) identical. In Section 2, the roughly
cigar shape embryo will be idealized and simplified to make our first analysis tractable. A two-
dimensional extension of the extracellular model used in [18] for this simplified domain turns
out to be adequate for our purpose. The relevant initial-boundary value problem (IBVP) will
be formulated for the idealized problem. With the new mathematical problem similar to that
treated in [18] except that it is now spatially two-dimensional, much of the theoretical
development in [18] can be extended to assure the existence of a steady state solution. We will
therefore focus on obtaining approximate solutions for the steady state problem to gain insight
to the steady state behavior in the presence of ectopic receptor expression.

Similar to the simpler one-dimensional case of a uniform receptor expression treated in [18],
the restriction of complete immobility of Dpp (as suggested by Eldar et al [5]) is not required
for the existence of a steady state behavior for the present problem (see also [20]). For a
sufficiently high Sog synthesis rate, we will be able to obtain an outer (asymptotic expansion)
steady state solution with respect to the small Dpp-to-Sog synthesis rate ratio for our problem.
More remarkably, the effects of ectopic receptor expression for this case can be obtained from
the aforementioned outer solution alone without the rather complex inner solutions (and the
attendant matching) required in a related problem in [9] or numerical simulations as in [29] to
deal with the layer phenomena in the neighborhood of the various receptor concentration and
synthesis rate discontinuities. Conditions under which there would be a depression of bound-
Dpp concentration posterior to the elevated tkv area can then be analyzed. We will also examine
the relatively high Dpp synthesis rate case and show that a regular perturbation solution is
sufficient for the determination of the effects of ectopic receptors. The intermediate case of
comparable Dpp and Sog synthesis rates admits no useful simplifications and will be
investigated by accurate numerical simulations.

2 The Mathematical Model
2.1 Idealized Geometry for the Extracellular Domain

Depending on the stage of development it is in, an embryo may be of different shapes. For the
period of development of interest here, the embryo of a Drosophila fruit fly is typically
somewhere between the shape of a football and a cigar and may be treated as a prolate spheroid
(see Figure 2(A)) for the purpose of analysis. For an extracellular model, we are concerned
mainly with biological activities on the surface of the embryo with the various concentration
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gradients being scalar fields defined on the surface of the prolate spheroid. While we can
formulate the equations governing these concentration gradients in terms of the conventional
prolate spheroidal coordinates with the z–axis along the length and through the center of the
cross section) of the embryo), we will in our preliminary study of this problem simplify it
substantially by mapping the relevant part of the surface domain into a rectangle in the Cartesian
plane.

For our investigation, we imagine cutting the prolate spheroidal surface along the one
continuous mid-line of both dorsal and ventral part of the embryo (see Figure 2 (B, C)). Given
the symmetry of development activities with respect to the dorsal and ventral mid-line, we only
need to consider one of the two half prolate spheroidal surfaces resulting from the fictitious
cut. We further map the relevant half prolate spheroidal surface (consisting half of the dorsal
region and the adjacent half of the ventral extending from the dorsal mid-line to the ventral
mid-line) into the rectangular region ΩXY in the X, Y–plane, which spans from −Ymax/4 to
Ymax/4 in the polar direction and from 0 to Xmax in the azimuthal direction. Note that Ymax is
the circumference of the average cross section of the embryo with the z–axis of the prolate
spheroidal coordinate system (which is parallel to the direction of the antero-posterior axis and
the x–axis of the Cartesian rectangle ΩXY) as its normal (see Figure 2 (D)).

As indicated in the Figure 2 (D), Sog is synthesized at a constant rate VS and only in the ventral
region while Dpp at a constant rate VL only in the dorsal region. Both diffuse away from the
respective localized source and bind with each other while Dpp also binds to signaling receptors
Thickvein (tkv) which is attached to the cell membrane. Some of these complexes will degrade
while others dissociate to free up morphogens and receptors for new binding action. Generally,
the receptors also degrade and new one generated at a rate VR. The model in this paper will not
have an explicit account for the synthesis, internalization (through endocytosis) and
degradation of (free or bound) receptors. As System B in [12] and [17], we limit ourselves to
the case of a fixed receptor concentration R(X) corresponding to the case of a receptor synthesis
rate matching its degradation rate with internalization implicit in receptor-mediated
degradation. (An alternative and equally unrealistic interpretation would be that degradation
of a bound Dpp complex destroys only the Dpp molecule and releases the receptor involved
for binding with another free Dpp molecule.) The omission of an explicit account of receptor
renewal and internalization results in no way affect the usefulness of our analysis; we have
already established in [14, 17] that the BVP governing the steady state behavior of more general
models which include receptor renewal and internalization can be reduced the corresponding
BVP for the simpler fixed receptor system. The effects of the more general case of receptor
renewal have also been examined and will be reported in a future publication.

2.2 The Initial-Boundary Value Problem
The allowable set of developmental activities of the two interacting morphogens Dpp and
Sog in our model is summarized schematically in Figure 3.

For an analytical and computational study of the biological phenomenon of interest, the
essential features of these activities are described mathematically by a system of partial
differential equations and auxiliary conditions [20]. This approach was first applied to study
the development of the Drosophila wing imaginal disc [4,11,12]. The three basic biological
processes involving Dpp in the wing disc are diffusion for free Dpp molecules, their reversible
binding with renewable receptors, and degradation of the Dpp-receptor complexes (aka bound
Dpp). The main purpose of [11,12] was to investigate the role of diffusion in the formation of
a Dpp-receptor concentration gradient in the wing disc. That system was extended to include
the effect of Sog on the Dpp activity in a dorsal-ventral configuration [10] in an embryo with
the cleavage of Dpp-Sog complexes by Tolloid implicitly incorporated into the system through
the complete recovery of Dpp after cleavage (while the Sog components degrade). The cleavage
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and recovery phenomenon has been suggested by previous experimental studies [19,22]. An
even more general system was investigated in [18] where we allowed fractional recovery (in
an extracellular model) through the fraction parameter τ, 0 ≤ τ ≤ 1, with τ = 1 corresponding
to complete recovery.

The setting for dorsal-ventral patterning in a Drosophila embryo during development with
localized over-expression of tkv receptors is different and more complex than those considered
in [12,13,14,15,18,20]. As shown in the sketch of the dorsal-ventral cross-section of the embryo
in Figure 2, Dpp is only produced in the dorsal region (with the temporally uniform rate
VL(X)) while Sog is only produced in the ventral region (with the rate VS(X)). With tkv over-
expressed along only a part of anterior-posterior direction, the biological development of the
embryo is no longer uniform in that direction as it was in the problem investigated in [18]. The
appropriate mathematical model for the problem must now be (at least) spatially two-
dimensional.

Let [L(X, Y, T)], [S(X, Y, T)], [LS(X, Y, T)] and [LR(X, Y, T)] denote the concentration of Dpp,
Sog, Dpp-Sog complexes and Dpp-receptor complexes, respectively. The first three
concentrations diffuse with coefficients of diffusion DL, DS, and DLS, respectively, and the
concentration of immobile receptor is fixed at every location (X, Y), possibly nonuniformly
distributed over the solution domain. Then the system of equations governing the morphogen
dynamics as indicated in Figure 3 consists of the following four coupled differential equations,
three of them being second order nonlinear partial differential equations (PDE) of the reaction-
diffusion type while the other being a first order ordinary diffferential equation (ODE):

(1)

(2)

(3)

(4)

(5)

where H(z) is the Heaviside unit step function, equal to unity for positive z and zero for z < 0.

In the four differential equations above, the parameters kon, koff and kdeg are the binding rate
constant, dissociation rate constant and degradation rate constant, respectively, for Dpp-
receptor complexes while jon, joff and jdeg are the corresponding rate constants for Sog-Dpp
complexes. The parameter τ in (1) assume a value in the interval [0, 1] giving the fraction of
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Dpp freed up by the degradation of the bound morphogen complex and returned to the free
morphogen pool available for binding with receptors or Sog molecules. There is no return if
τ = 0 and complete return if τ = 1. The quantity [R(X, Y)] in (1) and (2) is the initial tkv receptor
concentration at the location (X, Y) before the onset of Dpp synthesis and [R(X, Y)] − [LR(X,
Y)] being the unoccupied receptor concentration at (X, Y) still available for binding with
Dpp. Three special receptor distributions of interest in the subsequent development are:

1. a spatially uniform distribution with [R(X, Y)] = [R̄0];

2. a distribution [R(X, Y)] = [Rh(X)] uniform in Y but with two different segments of
uniform receptor expression in X as given by

(6)

for some positive constant Δh

3. a distribution [R2(X)] with three uniform segments of receptor expression in the X
direction as given by

(7)

for some positive constants Δℓ and Δg.

The system of four differential equations (1)–(4) above is sixth order in the spatial variables.
Given the symmetry with respect to the dorsal and ventral midline, we need only to consider

the problem for the rectangular part  of the actual domain.
Along the boundary ∂ΩXY of ΩXY, we have the following homogeneous Neumann conditions:

(8)

for all T > 0 where ∂[G]/∂n is the normal derivative of [G] and ∂ΩXY is the boundary of ΩXY.

The no flux conditions along  follow immediately from the symmetry of the
developmental activities with respect to the dorsal mid-line and ventral mid-line. The no flux
conditions along X = 0 and X = Xmax are more difficult to justify except that there can be no
flux in any direction at the poles of the prolate spheroidal shape embryo. A more realistic
treatment of the problem using (prolate) spheroidal coordinates will be the subject of a separate
investigation.

Until morphogens being generated at T = 0, the biological system was in quiescence so that
we have the homogeneous initial conditions

(9)

for all (X, Y) in ΩXY. The system (1) – (9) defines an initial-boundary value problem (IBVP)
for the four unknown concentrations [L], [LR], [LS] and [S].
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2.3 Non-dimensionalization
To reduce the number of parameters in the problem, we introduce the normalized quantities

(10)

(11)

(12)

(13)

where D is the maximum of DL, DLS, and DS and R̄0 is a representative magnitude of [R]. With
these normalized quantities, we rewrite the IBVP in the following dimensionless form

(14)

(15)

(16)

(17)

where now ∇2( ) = ( ),xx + ( ),yy is the Laplacian in the dimensionless variables (x, y) in the

rectangle . After normalization, the special receptor distributions will
be written as

(18)

with
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(19)

(20)

(21)

For synthesis rates, we will be mainly concerned with the special case

(22)

where H(z) is the Heaviside step function.

The boundary conditions now take the form

(23)

for t > 0 where ∂Ω is the boundary of Ω. The homogeneous initial conditions become

(24)

2.4 Time-Independent Steady State
Similar to what was proved in [18], we expect the various initial concentrations of our embryo
to evolve toward a time independent steady state behavior. For this steady state solution, we
have ∂( )/∂t = 0 so that the governing partial differential equations and boundary conditions
become

(25)

(26)

(27)

(28)
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where we have set dA = dC = dS = 1 to simplify the discussion though the method of analysis
employed is also applicable to the more general case. We can solve (26) for B(x, y) in terms
of A(x, y) to get

(29)

and use the result in (29) to eliminate B(x, y) from (25) to get

(30)

Equations (27), (28) and (30) form a sixth order system of three second order PDE for A(x,
y), C(x, y) and S(x, y). Augmented by the boundary conditions (23), this system can be solved
by various numerical methods for elliptic boundary value problems. However, to gain insight
to the qualitative behavior of the steady state, we will also obtain instead an approximate
solution in the context of the method of matched asymptotic expansions.

3 Matched Asymptotic Expansions for V̄L/V̄S ≪ 1
3.1 Re-scaling of Steady State Problem

It is rather typical in the development of Drosophila of interest here that the synthesis rate for
Sog is substantially higher than that for Dpp. With ε = ῡL/ῡS = V̄L/V̄S ≪ 1, the BVP for the
steady state behavior is amenable to an asymptotic solution by the method of matched
asymptotic expansions. For this purpose, we re-scale the dimensionless steady state BVP by
observing that both S(x) and C(x) are expected to be O(ῡS). On the other hand, we expect A
(x) to be O(ῡL) at most, in fact quite a bit smaller since available free Dpp should eventually
be bound to Sog or receptors given that there is an abundance of Sog molecules. We therefore
set

(31)

with

(32)

(33)

and re-write (30), (27) and (28) as

(34)
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(35)

(36)

where we have taken τ = 1 to simplify the presentation though the analysis would apply to
other values of τ in (0, 1). The remaining unknown B(x, y) is then given in terms of a(x, y; ε)
by (29) written as

(37)

For ε = ῡL/ῡS ≪ 1, we seek an outer asymptotic expansion solution in parametric series of ε:

(38)

3.2 Leading Term Outer Solution
The leading terms a0(x, y), b0(x, y), c0(x, y), and s0(x, y) correspond to the limiting case of ε =
0 (for V̄S = ∞). For this limiting case, equations (34)–(36) reduce to

(39)

and the boundary conditions (23) applied to the leading term quantities.

The second equation in (39) is for c0(x, y) alone. Together with the homogeneous Neumann
condition along the edges of the rectangle, ∂Ω, it requires

(40)

To determine the constant c̄0, we integrate the last equation in (39) over the Ω and apply Green’s
theorem. The Neumann condition on s0 along ∂Ω and the result (40) are then used to give

(41)

The value for c̄0 in turn simplifies the last equation of (39) to
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(42)

with s0 required to satisfy the homogeneous Neumann condition along ∂Ω. The solution of this
BVP is

(43)

where s ̄0 is a constant of integration to be determined by the O(ε) problem. Note that s0 is
(uniform in x and) continuously differentiable but has a simple jump discontinuity in ∂2s0/
∂y2 across y = 0.

Except for the unknown constant s ̄0, we have also a0(x, y) = a0(y) from the first equation in
(44):

(44)

which also does not depend on x, and from (37) the leading term solution for B(x, y)

(45)

which does depend on x (as well as y) through ρ(x, y).

3.3 The O(ε) Problem
To determine the unknown constant s ̄0, we consider the O(ε) problem for a1(x, y), …, s1(x,
y). The governing equations for these unknowns are

(46)

(47)

(48)

with

(49)

Lander et al. Page 11

Stud Appl Math. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The unknowns a1, c1 and s1 are subject to the homogeneous Neumann conditions (8) which
also apply to the O(ε) terms of the problem.

We begin to determine s ̄0 by integrating (46) over Ω. Upon application of the two-dimensional
divergence theorem and the homogeneous Neumann condition on s1, we obtain

(50)

This relation enables us to simplify the corresponding integral of (48) to

or, upon application of the two-dimensional divergence theorem and the homogeneous
Neumann condition on a0,

(51)

For any prescribed distribution of tkv concentration ρ(x, y), this is a condition on a0(y; s ̄0) alone
and thus determining s ̄0 in view of (44).

We may continue the solution process to solve (46) – (48) and the corresponding homogeneous
Neumann conditions to determine c1, s1 and a1. While this BVP is now truly two-dimensional
given the explicit appearance of ρ(x) in (48), the problem is actually tractable (by the method
of eigenfunction expansions for example) because it is linear. However, we will not be
concerned with the results for these higher order terms here but only note the following:

Proposition 1—For ε = V̄L/V̄S ≪ 1, a formal leading outer (asymptotic expansion) solution
for the re-scaled steady state concentrations of (31) is given by (41), (43), and (44) with the
parameter s ̄0 in these expressions determined by (51). The corresponding leading term
signaling Dpp-receptor complex is given by (45).

The results deduced from the leading term outer solution of the problem will obviously be
modified by higher order terms in the outer asymptotic expansions (38) of the
solution.However, the qualitative features of the outer solution are not expected to be changed
by such refinements for sufficiently small ε.

3.4 Inner Solution and Receptor Saturation
Whenever an outer solution for ε = V̄L/V̄S < 1 is applicable, the leading term solution of
Proposition 1 generally captures the qualitative effects of localized ectopic receptor expression
with quantitative accuracy improves as ε decreases. However, the formal solution of
Proposition 1 may not be applicable even if the condition ε = V̄L/V̄S ≪ 1 is met. Of the two
factors limiting its applicability, the possibility of supplementary inner asymptotic expansion
solutions adjacent to the solution domain boundaries and discontinuities of system properties
turn out not to be an issue for our problem. Given the homogeneous Neumann boundary
conditions (8) along ∂Ω, there should not be any sharp gradients (leading to layer solution
components comparable to the outer solution in magnitude) adjacent to the edges of Ω. It isalso
evident from (30) that there can be at most a finite jump discontinuity in the second
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derivatives of A(x, y) associated with jump discontinuities of the morphogen synthesis rates
VL(X.Y) and VS(X, Y) and possible jump discontinuities of the receptor concentration R(X, Y)
= R̄0ρ(x, y). By (30), (28), and (27), the concentrations A, S and C and their derivatives are
expected to be continuous (with [LS] = R̄0C having even higher continuous derivatives) there.
The only observable effect of the various discontinuities is seen from the algebraic relation in
(29) for [LR] = R̄0B (see also (37) and (45)) which is calculated from the solution for A after
the implementation of the method of matched asymptotic expansions. These qualitative
conclusions from the form of the partial differential equations for the steady state problem are
supported by the results of numerical simulations of the original initial-boundary value problem
on the evolution of the various concentrations starting from the onset of morphogen synthesis.

The other factor limiting the applicability of the outer asymptotic solution of the Proposition
1 comes from our choice of a model with fixed receptor concentration. For sufficiently large
Dpp synthesis rates (but still small compared to the Sog synthesis rate), the Dpp synthesized
may form such a high concentration of Dpp-receptor complexes to saturate the fixed receptor
concentration. To the extent that our analytical method of solution of for the steady state
problem has no built-in mechanism for enforcing the constraint [LR] ≤ R̄0, the formal
asymptotic solution may be an erroneous description of the steady state signaling gradient. As
we shall see from an example in a later section, a formal asymptotic solution without enforcing
the upper bound on [LR] may result in an (outer) asymptotic solution with [LR] > R̄0 and/or
morphogen concentrations such as [L] and [S] may become negative. As such, the matched
asymptotic solution (whose leading term outer solution is summarized in Proposition 1) is not
the appropriate steady state solution for our problem when V̄L is high for the prescribed R̄0
even if the condition ε = V̄L/V̄S < 1 is met.

We note for emphasis that, for the low receptor saturation case, we do not need to consider
explicitly the relevant inner solutions of the problems even in the neighborhood of the various
synthesis rate and receptor expression discontinuities. For one reason, layer solution
components, if any, do not affect the Dpp, Sog and Sog-Dpp complex concentrations (and their
first derivatives) in a qualitatively significant way throughout the solution domain. In addition,
the Dpp-receptor concentration is computed after the process of matched asymptotic expansion
solution for the BVP,. Hence, we will focus our attention on some possible effects of
morphogen synthesis rates and ectopic receptor expressions on the signaling morphogen
concentration [LR] in the next few sections. These will be deduced from the outer solution
when applicable and on numerical simulations of the initial-boundary value problem otherwise.

3.5 Numerical Simulations
It was pointed out in the previous two sections that for ε = V̄L/V̄S ≪ 1, a leading term outer
solution suffices for describing accurately the effect of ectopic receptor expression prior to
receptor saturation. For a Dpp synthesis rate sufficiently high to result in receptor saturation,
effects of ectopic receptor concentration are generally at variance with the matched asymptotic
solution even for ε ≪ 1 and may vary in rather complex ways depending on the values of the
remaining system parameters. To uncover other possibilities regarding depressed or elevated
[LR] concentration, we will establish in the next section some analytical properties of the outer
asymptotic solution which should hold for the exact solution for the low receptor saturation
and low Dpp-to-Sog synthesis rate ratio. These results are complemented by numerical
simulations of the original IBVP by a finite difference scheme (see [8]). In this finite difference
approach, the diffusion terms are approximated by the second order central difference and the
adaptive Runge-Kutta-Fehlberg-2–3 method [26] is used for the temporal discretization.
Convergence of the calculations and better resolution are observed when the spatial meshes
are refined. The overall accuracy of numerical simulations is second order in space and third
order in time.
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The time evolution simulation code developed for the approach above has been validated by
comparing results obtained for the special case of uniform receptor expression (with ρ(x, y) =
ρo(x, y) ≡ 1) investigated in [18] with those shown in Figure 2 of that paper. The simulation
code for the two-dimensional model of this paper when applied to the uniform receptor
expression problem for the same set of parameter values as in [18] gives numerical results that
are effectively identical to those obtained in Figure 2 of [18] with the corresponding values of
[LR] at the dorsal midline agreeing to the three significant figures. As an independent
consistency check, the steady state value of [LR] from the simulation code was found to be
essentially the same as that calculated from the steady state value of [L] using the steady state
relation (see (29))

(52)

The validated code for numerical solutions of the initial-boundary value problem for the
reaction-diffusion system (14) – (17) will be used extensively to study the effects of ectopic
receptor expression in the next few sections especially for the problem in [20] which stimulated
this research. Typically, simulations were run until T = 20 hrs and the prescribed stringent
change tolerance had already been met. The non-monotone approach to steady state and the
substantial changes between the initial state and the steady state of the [LR] gradient for our
class of Dpp-Sog interaction problems have been documented extensively in [20]. It is therefore
prudent to evolve the various morphogen gradients for an unusually long period to ensure
steady state. A direct solution for the steady state problem is also possible and are being carried
out separately. A time evolution simulation approach is preferred here to facilitate comparison
with the one-dimensional results in [20].

4 Effects of Ectopic Receptor Expression
4.1 The Properties of J(s ̄0)

In order to examine the effects of localized over-expression of tkv in the Drosophila embryo
as determined by Proposition 1, we establish presently some properties of the function J(s ̄0) in
(51) and their consequences, focusing on the receptor distributions R(x, y) = R̄0 (so that ρ(x,
y) = ρo(x, y) ≡ 1) and R(x, y) = Rh(x) ≡ R̄0ρh(x) (as given by (6)) in this section.

Lemma 2—J (s ̄0) is a monotone decreasing function of s̄0.

Proof: For any fixed y, we have from the explicit solution for a0(y) in (44)

so that ∂a0(y; s ̄0)/∂s ̄0 < 0. Since ρ(x) is positive, this implies

For (43) and (44) to be applicable, we must have s ̄0 > 0 in order for s0(y; s ̄0) and a0(y; s ̄0) to
be nonnegative. Hence J(s ̄0) is also positive. By Lemma 2, J(s ̄0) is a monotone decreasing
function of s ̄0; hence J(s ̄0) tends to 0 as s ̄0 → ∞. The argument proved the following result:
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Proposition 3—J(s ̄0) = xmax/4 has exactly one root in (0, ∞). It has exactly one positive root
if J (0) > xmax/4 and no solution if J(0) < xmax/4.

We now examine the root s ̄0 = ζ of J(s ̄0) = xmax/4 for several distributions of the fixed receptor
concentrations uniformly in the dorsal-ventral direction:

(a) Uniform Distribution ρ(x, y) = ρo(x, y) ≡ 1: For this case, the expression for J(s ̄0) involves
only integration of a one-variable function:

(53)

where

(54)

Thus, with ρ = ρo = 1, the condition (51) determines s ̄0 to be ς0 with

(55)

The expression (44) for a0(y; s ̄0) can be used to re-write the integral in (54) as

(56)

and

(57)

The two integrals Im(ς0) and Ip(ς0) in (56) can be evaluated exactly to give

(58)

where

(59)

It is an immediate consequence of Lemma 2 that
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Lemma 4—Io (z) is also a monotone decreasing function of z.

(b) Uniformly Elevated Anterior Receptor Distribution ρ(x, y) = ρh(x): With ρh(x) defined
in (20), we have instead of (53)

(60)

The condition (51) determines s ̄0 to be ςh with

(61)

where δh = xh/xmax = Xh/Xmax < 1, or

(62)

(c) Relative Magnitude of ς0 and ςh: With (61) written as

(63)

where Io(z) as defined in (54), we have then the following relative magnitude of the two roots
ς0 and ςh:

Proposition 5—ςh ≡ [s ̄0]ρ=ρh > [s ̄0]ρ=1 ≡ ς0.

Proof: The claim follows immediately from  and Lemma 4 for
any positive Xh so that δh = xh/xmax = Xh/Xmax > 0.

(d) Receptor Distribution Uniform in the Dorsal-Ventral Direction: For a piecewise
continuous function of x alone, ρ(x, y) = ρvd(x), we have

(64)

With a0(y; s ̄0) given by (44), the integral remaining in (64) can again be evaluated exactly with

(65)

Lander et al. Page 16

Stud Appl Math. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where

(66)

A particular application of this type of ectopic receptor distributions will be discussed in
Section 5.

It is also possible to investigate the effects of ectopic receptor distributions whose ectopicity
varies in both the X and Y directions. We illustrate with the following example:

(e) Receptors Concentration Nonuniform in Both X and Y: The effect of a localized over-
expression of tkv more akin to the one shown in panels A and B of Figure 1 for the
Drosophila embryo is also possible. The distribution in panel A may be approximated by

(67)

or

(68)

where Δ > 0, Δg ≥ 0 and 0 ≤ Δℓ ≤ 1 + Δ. For this dorsal-ventral nonuniform receptor distribution,
Lemma 2 and Proposition 3 continue to hold since their proofs apply to all positive receptor
concentration. Hence J(s ̄0) as defined in (51) continues to be a monotone decreasing function
of s ̄0 and J(s ̄0) = xmax/4 has exactly one root in (0, ∞) if J(0) > xmax/4.

4.2 Signalling Receptor Concentration
From (37), we have

(69)

where s0(y; s ̄0) and η are given by (43) and (57), respectively.

a. ρ(x, y) = 1: We have for this case s ̄0 = ς0 and therewith

(70)

b. ρ(x, y) = ρh(x): For this case, we have similarly s ̄0 = ςh and therewith
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(71)

As a principal aim of our research effort, we wish to learn whether [LR] is depressed outside
the region of elevated receptor expression. For this posterior end range xh < x ≤ xmax where the
normalized receptor concentration is unit, i.e., ρh(x) = 1, we have

(72)

From this follows the next result which addresses the question that motivated this investigation:

Proposition 6—At low receptor occupation and the outer solution applies, over-expressing
Dpp receptors tkv on the anterior half of the embryo reduces PMad activation in cells on the
posterior part of the embryo.

Proof: The observation is an immediate consequence of (70), (71) and Proposition 5.

When receptor occupation by Dpp is low so that the asymptotic solution of Section 3 applies,
we now see that an elevated receptor concentration in the anterior end of the embryo invariably
leads to a depression of signaling bound morphogen concentration posterior to the region of
elevated receptor concentration, whether the depression is noticeable depends on the magnitude
of the Dpp synthesis rate (with values of all other parameters fixed).

As for the effect of ectopic tkv expression on the signaling [LR] at the anterior end of the embryo
(the site of ectopic receptors), we have for 0 < x < xh

(73)

The comparison with the corresponding expression for ρ(x) = 1 in the same region now depends
on the magnitude of Δ, whether it is sufficiently large to compensate for the reduction by a
large s ̄0 in the denominator. In particular, we have

Proposition 7—At low receptor occupation so that the outer asymptotic solution applies,
over-expressing Dpp receptors tkv on the anterior end of the embryo by a sufficiently large
concentration so that

(74)

elevates PMad activation in cells on the part of the embryo with the ectopic receptors. The
opposite is true if the inequality in (74) is reversed at least for a part contiguous to the dorsal
midline.
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4.3 Elevated Anterior Receptor Expression
For the asymptotic solution to be applicable, we must have ε = V̄L/V̄S ≪ 1, i.e. V̄L must be
small compared to V̄S. To illustrate the diverse range of possible steady state configurations in
different range of ε (within and outside the range ε ≪ 1), the 2-D numerical simulation code
will be applied in this section to the problem investigated in Figure 5 of [20] which stimulated
this research. In addition to V̄L = 1 nM/s = 10−3µM/s and V̄S = 0.08 µM/s investigated in that
figure, we will also examine cases with V̄L = 2.5 × 10−4µM/s and with V̄S = 0.6 µM/s and
10−3µM/s. The remaining values of the different parameters for the problem used in [20] are
given in Table (1).

Remark 8—For these parameter values, we have αL = (gL + fL)/hL ≃ 4.367 × 10−4,
  and η = 0.00117374…. We will be interested in cases

corresponding to the six different combinations of values of V̄L and V̄S fixing other parameter
values as given in Table (1).

With Dpp synthesized only in the dorsal region and diffused away fromits localized source,
the steady state distribution of Dpp expression [L] is expected to reach its maximum at the
dorsal midline Y = −Ymax/4 and decreases monotonically in both directions toward its minimum
at Y = Ymax/4. Since the steady state [LR] is an increasing function of [L] (see (29) or (69)), it
also attains its maximum at the dorsal midline Y = −Ymax/4. Shown in Figure 4 is a two-
dimensional plot of the steady state signaling gradient [LR] for the case R(X, Y) = Rh(X) with
V̄L = 0.25 × 10−3 µM/s and V̄L = 0.6 µM/s. It provides the numerical evidence confirming these
qualitative features of the [LR] expression. As such, we will focus our discussion on the
signaling gradient along the dorsal midline assisted at times by one-dimensional plots of
midline graphs such as the one in Figure 5 for [LR] at Y = −Ymax/4. Given the level of [LR] for
a uniform receptor expression reported in Table (2) below (in rows with δh = 0), it is clear that
the signaling gradient is now depressed at the posterior end (where there is the same uniform
receptor expression) and elevated at the anterior end (where there is an ectopic receptor
expression), at least in an interval adjacent to Xh. The elevation and depression become more
uniform in X < Xh and X > Xh, respectively, for higher Sog synthesis rates VS.

Starting from quiescence, the non-monotone approach to the steady behavior of the Dpp-Sog
interaction has been found to be similar to the one-dimensional problem already discussed
extensively in [20]. Hence, it will not be further elaborated herein. Instead, we will present
results on the steady state [LR] at different locations of the dorsal midline in the direction of
the anero-posterior axis to illustrate the complexity of possible outcomes of the same ectopic
receptor expression depending on the magnitude of the two ligand synthesis rates (with all
other wing disc rate constants fixed). We will discuss separately the signaling gradient for two
particular values of the Dpp synthesis rate, first for V̄L = 0.25 × 10−3 µM/s and then for V̄L =
10−3 µM/s for which some observations were given in [20].

4.3.1 Signaling Morphogen Gradient [LR] for V̄L = 0.25 × 10−3 µM/s: In Table (2), the
signaling morphogen gradient [LR] at the dorsal midline are given for V̄L = 0.25 × 10−3 µM/
s. The results for a uniform receptor expression (with R̄0 = 3 µM) throughout the solution
domain are given in the odd rows (with δh = 0) for V̄S = {0.001, 0.08, 0.6 and ∞} µM/s,
respectively. The results for V̄S = ∞ corresponds to those obtained from the outer asymptotic
solution while those for finite V̄S were obtained by the simulation code for the IBVP. For a
uniform receptor distribution, the dorsal midline values of [LR] shown are independent of X
as expected and tend to the asymptotic solution as V̄S increases from 0.08 µM/s to 0.6 µM/s
with the latter nearly equal to the asymptotic value. For V̄S = 1 nM/s = 10−3 µM/s however, we

have  so that the Sog synthesis rate is relatively low leading to a level of Sog concentration
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in steady state that is too low to shuttle enough Dpp back to the anterior end for additional
binding with available receptors to achieve the level of [LR] given by the outer asymtptotic
solution.

The even rows in Table (2) with δh = 4/11 give the corresponding results for a localized elevated
receptor expression Rh(X) (see (6)). In the interval Xh < X ≤ Xmax, a comparison of the steady
state [LR] concentration for the two different receptor expressions clearly shows a close
agreement between the asymptotic and simulation values of [LR] at the dorsal midline near the
Xh and less so near the end Xmax. The agreement throughout the interval gets better as V̄S
increases from 0.08 µM/s and more Dpp molecules are shuttled away by a higher concentration
of Sog. There is clearly a depression of [LR] concentration in the posterior portion of the
solution domain X > Xh (as well as a qualitative agreement even for the case V̄S = 1nM/s (ε =
1) for which the asymptotic solution is not applicable.)

In the region with elevated receptor expression, 0 ≤ X < Xh, the situation is more complicated.
The outer asymptotic steady state solution for the receptor distribution Rh(X) shows a higher
steady state [LR] concentration than the corresponding (uniform) concentration for a uniform
receptor distribution throughout the sub-interval [0, Xh). On the other hand, the numerical
solutions for the IBVP shows a higher [LR] concentration only for V̄S = 0.6 µM/s; moreover,
the elevation in [LR] for this (and other) Sog synthesis rate is nonuniform, closer to the
asymptotic solution near Xh and considerably smaller near X = 0. Since the asymptotic steady
state solution for [LR] does not depend on V̄S (or more correctly corresponds to the limiting
case of V̄S = ∞), the lower level of [LR] near X = 0 appears to be due to less Dpp-Sog binding
and hence more Dpp-receptor binding resulting in more receptor-mediated degradation of
Dpp for the given moderate synthesis rate V̄L.

For V̄S = 0.08 µM/s, numerical solutions show an elevated level of [LR] only for the part of the
interval [0, Xh) near X = Xh, the location for the abrupt change of receptor expression. For this
lower Sog synthesis rate (which is still large compared to the Dpp synthesis rate), [LR] is
actually depressed near the end X = 0. The nonuniform distribution in the antero-posterior
direction reflects the fact that receptors near Xh has the rights of first refusal to bind with
Dpp freed up from the degradation of the Dpp-Sog complexes being transported back to the
anterior end. For the given V̄L and a lower V̄S such as 0.08 µM/s, the amount of Sog produced
does not lead to a sufficiently large concentration of Dpp-Sog to be transported to the anterior
end and degrade, freeing up sufficient Dpp to diffuse further away from Xh for the unoccupied
receptors near X = 0.

To put it another way, for a fixed Dpp synthesis rate, we get an elevated expression of [LR] at
the tip of the anterior compartment away from the location of the abrupt change in receptor
expression at Xh of Rh(X) only if the Sog synthesis rate is sufficiently high. When all other
biological rate constants of the embryo are held fixed, we need a high level of Sog expression
for the formation of a level of [LS] concentration to be transported from the ventral region back
to the entire dorsal region, to dissociate and degrade, freeing up enough Dpp to be binding with
receptor tkv everywhere in the anterior compartment. At the same time, it appears from
numerical solutions of the IBVP that the abrupt change of receptor expression at Xh would
invariably results in a boundary layer phenomenon on both sides of the discontinuity of the
receptor distribution. The elevation and depression of the steady state signaling [LR]
concentration in a narrow region (in the anterior and posterior side, respectively) adjacent to
Xh are more pronounced than expected from the informal asymptotic consideration.

4.3.2 Non-signaling Gradients for V̄L = 0.25 × 10−3 µM/s: When the asymptotic steady state
solution is applicable, there is also a close agreement between the asymptotic and simulation
results for [LS], [S], and [L] except for the expected spatial nonuniformity in both X and Y
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directions with the latter similar to those shown in Figure 5 in [18]. The corresponding
asymptotic and numerical solutions for [L], [S] and [LS] are given in the Table (3) for V̄S =
0.08 µM/s to demonstrate the qualitative agreement for this set of parameter values, particularly
near X = Xh. The nonuniformity in the X direction is more pronounced for [L] and [S]. The
variation with X (computed but not shown here) reduces considerably for V̄S = 0.6 µM/s or
larger.

4.3.3 Signaling Morphogen Gradient [LR] for V̄L = 10−3 µM/s: For a sufficiently high
Dpp synthesis rate, there would be more than enough Dpp for binding to saturate the available
tkv receptors (which is fixed in our model), at least in an interval 0 < |Y − Ymax/4| < dy centered
at the dorsal midline along the posterior end of the embryo in steady state. This is evident from
the dorsal midline values of [LR] for the case of a uniform receptor expression shown in Table
(4) for V̄S = 0.6 µM/s and 0.08 µM/s. A graph of [LR] at the dorsal midline for V̄S = 0.6 µM/s
is shown in Figure 6 to illustrate the saturation. Thus the higher Dpp synthesis rate V̄L =
10−3 µM/s coupled with a sufficiently high Sog synthesis rate leads to a saturation of available
receptors in the posterior segment. The asymptotic steady state solution is not applicable in
this case as the method of solution does not take into account receptor saturation. In fact, that
solution gives a steady state [LR] concentration in excess of the prescribed receptor
concentration (see the case V̄S = ∞ in Table (4)). The inappropriateness of such a solution is
also reflected in its (unacceptable) negative steady state concentrations for the free Sog and
Dpp molecules (not shown herein).

At the lower Sog synthesis rate of V̄S = 10−3 µM/s, the steady state [LR] at the dorsal midline
given in Table (4) is at about 1.98.. µM at the two ends of the embryo, which is nowhere near
saturation for the available receptors (with R̄0 = 3 µM) and seemingly consistent with that
predicted by the outer asymptotic solution (≃ 2.04..). However, the agreement is somewhat
fortuitous since the outer asymptotic solution also does not apply in this case given V̄S = V̄L so
that ε is not small compared to unity and a leading term regular perturbation solution is also
mathematically inappropriate. Biologically, the expression of Sog at the ventral region is not
sufficiently high so that not enough Dpp is transported to the dorsal region for binding with
the available receptors in that region (except in the neighborhood of Xh where it is accomplished
at the expense of similar activities near Xh on the posterior side).

While the results for V̄L = 10−3 µM/s in Table (4) clearly demonstrate the limitation of the outer
asymptotic steady state solution obtained in Section 3, they do not in any diminish value of the
analytic solution since its applicability can easily be decided by examining whether the
concentration of signaling Dpp-receptor complexes meets the restriction [LR] ≤ R̄0 and whether
the remaining concentration gradients are nonnegative. We simply do not use the outer
asymptotic solution if either of the two constraints is not met. In this context, it is of some
interest to point out that while the asymptotic steady state solution gives an [LR] concentration
well in excess of the allowed upper bound for the case of a uniform receptor expression, the
corresponding solution for the piecewise constant receptor expression satisfies all the
inequality constraints and can therefore be used to study this phase of the embryonic biological
development.

4.3.4 Summary: The developments in this section show the complementary nature of the
analytical and numerical methods. The former has the advantage of exhibiting more explicitly
the dependence of the solution on the various system parameters while the latter applies to a
broader region in the parameter space. To simplify our analysis and computation, we have
chosen to work with a model with a prescribed tkv receptor concentration fixed for all time.
The restriction limits the applicability of the asymptotic solution developed in section 3 which
by nature does not take into account the constraint of a fixed receptor concentration during the
solution process.
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With all other rate parameters fixed, the asymptotic steady state solution provides an adequate
description of the signaling morphogen gradient concentration [LR] for moderate Dpp synthesis
rates V̄L that do not saturate the fixed receptor concentration R̄0 (such as the case V̄L = 2.5 ×
10−4 µM/s reported in Table (2)). For these moderate Dpp synthesis rates, the distribution of
[LR] in the anterior-posterior direction obtained by the (more accurate) numerical simulations
tends to the asymptotic solution (with a uniform distribution on both sides of the receptor
concentration discontinuity) for higher and higher Sog synthesis rates, e.g., for V̄S = 0.6 µM/
s or higher. More importantly (pertaining to the purpose of our investigation), these results
established the existence of a depressed [LR] concentration in the posterior end of the embryo
when there is an ectopic receptor expression in the anterior end. The asymptotic solution helps
delineate more explicitly the mechanism responsible for the depression.

On the other hand, for relatively low Sog synthesis rates such as V̄S = 0.08 µM/s, the [LR]
concentration near the anterior end X = 0 may even be, somewhat surprisingly, lower than the
level for the case of a uniform receptor distribution, the elevated level of receptor concentration
notwithstanding. An explanation for this somewhat unexpected result was given in subsection
4.3.1.

For the same rate parameter values but higher Dpp synthesis rates at the level of V̄L = 10−3

µM/s, the available free Dpp eventually saturate the available receptors (of fixed concentration)
for the uniform fixed receptor case and at least in the posterior region for the receptor
distribution Rh(x) ectopically expressed at the anterior end. For these case, the asymptotic
solution gives a signaling gradient [LR] in excess of the available receptors in some region of
the embryo (and possibly negative concentration for the Sog and Dpp-Sog gradients) and hence
would be inappropriate for the problem. Such a limitation on the asymptotic steady state
solution would not be present in a model allowing for receptor renewal.

5 Signaling Morphogen Concentration for Ectopic Expression at Both Ends
5.1 Properties of J(s ̄0)

If we examine panel B of Figure 1 more closely, we would see that there seems to be an over-
expression of receptors at both ends of the anterior-posterior axis. To find out what our model
would predict for this configuration of receptor over-expression, we consider the following
normalized distribution of receptor concentration:

(75)

For this ρ(x, y), we have instead of (63)

(76)

where ςA is the solution of

(77)

or
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(78)

with Bm and Bp given in (59).

Proposition 9—ςA ≡ [s ̄0]ρ=ρA > [s ̄0]ρ=ρo ≡ ς0.

Proof: This follows from the fact that the right hand side of (77) is less than  and Io is a
monotone decreasing function of s ̄0 by Lemma 4.

5.2 Signalling Receptor Concentration
We now compare the signaling Dpp for the normal case of a uniformly distributed receptor
concentration with one that is over-expressed at the two ends of the anterior-posterior axis,
particularly the interval xℓ < x < xg where the latter is not over-expressed.

For the uniformly distributed case, we have [LR]ρ(x)=1/η R̄0 is given by (70) as before. For ρ
(x) = ρA(x), we have for the range xℓ < x < xg,

(79)

where the inequality is a consequence of Proposition 9. The implication of (79) is summarized
in the following proposition:

Proposition 10—At low receptor occupation so that the out asymptotic solution applies,
over-expressing Dpp receptors tkv at both end of the anterior-posterior axis reduces PMad
activation in cells in the region Xℓ < X < Xg outside the location with ectopic receptors.

For the intervals where tkv is over-expressed, the situation is again more complicated. In the
range 0 < x < xℓ, we have

(80)

The comparison with the corresponding concentration for a uniform receptor distribution now
depends on the magnitude of Δℓ. In particular, we have

Proposition 11—At low receptor occupation so that the out asymptotic solution applies,
over-expressing Dpp receptors tkv at both ends of the anterior-posterior axis by a sufficiently
large concentration at the anterior end so that
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(81)

elevates PMad activation in the interval 0 < x < xℓ while the opposite is true if the inequality
in (81) is reversed at least for a region contiguous to the dorsal midline. A corresponding result
applies to the posterior end.

5.3 Numerical Results for the Illustrative Example
To provide numerical evidence in support of a depressed signaling gradient expression for an
ectopic receptor distribution of the type RA(X) defined in (7), we consider such a receptor
distribution with Δℓ = Δg = 0.02 cm. Given the the symmetry of RA(X), a similar symmetry
expected of the corresponding [LR] expression is confirmed by the two-dimensional plot of its
steady state as in Figure 7 for V̄L = 0.25 × 10−3 µM/s and V̄S = 0.6µM/s the corresponding one-
dimensional plot for its graph along the dorsal midline. Hence, we can limit our discussion to
the steady state behavior for the anterior half of the embryo (as in reporting the numerical
results shown in Table (5) and Table (6)).

From the numerical results for the case V̄L = 0.25 × 10−3µM/s reported in Table (5), we see a
good qualitative agreement between the numerical simulation results for V̄S = 0.6µM/s and the
asymptotic results. As shown in Figure 8, the numerical solution for [LR] along the dorsal
midline for V̄S = 0.6µM/s is nearly uniform within the three subinterval [0, Xℓ), (Xℓ, Xg) and
(Xg, Xmax]. This is consistent with the prediction by the asymptotic steady state solution.
Furthermore, the trend of [LR] is toward the asymptotic solution as V̄S increases from
10−3µM/s.

For the higher Dpp synthesis rate V̄L = 10−3µM/s, the agreement between the numerical and
asymptotic solution is also good but in a different way. With more Dpp available, the same
Sog synthesis rate V̄S = 0.6µM/s proportionally less Dpp toward the anterior end of the embryo,
especially near the anterior vertex. Consequently, there is a more pronounced nonuniformity
in each of the three subintervals (qualitatively similar to the distribution for Rh(X)), decreasing
in magnitude from Xℓ to 0 (and by symmetry from Xg to Xmax). Because of less transport, more
Dpp molecules are degraded, especially in the waist region of the embryo Xℓ < X < Xg resulting
in a lower [LR] concentration than that for V̄L = 0.25 × 10−3µM/s. On the other hand, the
discrepancy between numerical and asymptotic solution for [LR] is substantially less than those
of Table (5) for the lower Dpp synthesis rate case.

6 Asymptotic Behavior for V̄L ≫ V̄S

For the biologically less realistic case of V̄S/V̄L = 1/ε ≪ 1, the structure of the BVP admits a
regular perturbation solution in powers of 1/ε. The governing equations for the leading term
solution, {a0, …, s0}, corresponds to setting 1/ε = 0 in (34)–(36) to get

(82)

(83)
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(84)

Note that the form of equations (35) and (36) is not changed by setting 1/ε = 0; nor is the
equation (37) giving b(x, y; ε) in terms a(x, y; ε):

(85)

More importantly, (82) is an equation for a0(x, y) alone and, augmented by the homogeneous
Neumann condition along the edges of the rectangular domain, may be solved separately.

Proposition 12
A unique nonnegative solution of the BVP for a0 exists with

(86)

where the constant au is given by

Proof—Evidently, aℓ = 0 is a lower solution for the problem. On the other hand, we have

given ρ ≥ 1. With ∂au/∂n = 0, au is an upper solution for the BVP. Hence, a solution of the
BVP problem exists and is bounded as in (86) [1,24,25]. Uniqueness is proved as in [13].

Having the piecewise C2 solution for a0(x, y), equations (83) and (84) together with the relevant
homogeneous Neumann conditions may be solved for c0(x, y) and s0(x, y). Note that the two
PDE (83) and (84) are linear in the two unknowns. Actual solutions may be obtained by methods
similar to those used in [16,29]. However, for the purpose of delineating the effects of locally
over-expressed tkv on cell signaling, we need only the solution of (82) with which we can
calculate [LR] from (85). The numerical solution for the BVP for a0(x, y) is straightforward.
Given that  is typically small compared to unity, we note also the singular perturbation
structure of (82) with respect to the parameter μL so that asymptotic solution for large μL is
also possible. Sample solutions have been obtained for typical sets of parameter values used
in [13,16,29]. The results on depression of Dpp signaling by localized over-expression of
receptors are qualitatively different from that stated in Proposition 6 for ρ(x) = ρh(x) regarding
the the abrupt depression of the bound morphogen concentration posterior to the region of the
elevated receptor concentration.
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7 Conclusion
When the receptor expression is ectopic in the anterior end of an Drosophila embryo, a simple
mathematical model based on the essential biological processes for morphogen gradients in
Drosophila embryos identified in [12,20] show that a depression of the signaling Dpp-tkv
concentration in the posterior does occur under suitable conditions. At the same time, a lack
of Dpp-tkv concentration depression as noted in the work of Wang and Ferguson [30] is now
seen to be possible for a number of reasons including:

• Sufficiently high Dpp and Sog synthesis rates that saturate the fixed receptor
expression throughout the posterior portion of the embryo (see the case V̄L = 10−3

µM/s and V̄S = 0.6µM/s in Table (4))

• A sufficiently low Sog synthesis rate that does not shuttle much if any Dpp to the
anterior region except in a narrow layer adjacent to the location of receptor expression
discontinuity as seen from the case of V̄S = 10−3µM/s in both Table (2) and Table (4).
(Not shown by the Tables is the substantial depression of [LR] in each case is confined
to a narrow region with the width of the region becoming narrower as V̄L increases.)

• A relatively low elevation of the receptor expression in the anterior region which
allows enough Dpp for binding in the posterior region (except for a narrow
phenomenon near Xh) as shown in Table (2) for V̄S = 10−3µM/s

It is also seen from Table (2) (and the graphs for [LR] for the case of V̄L = 2.5 × 10−4µM/s not
shown herein) that the depression in the posterior region (and the elevation in the anterior
region) becomes more uniform in X with increasing V̄S. This suggests that the partial depression
over a small subinterval of the posterior end near the location of receptor expression
discontinuity for the case of Rh(X) may be the consequences of three different phenomena:

• A very low Sog synthesis rate V̄S that transports to the nearby anterior region only the
Dpp and Dpp-Sog in a narrow layer adjacent to the location Xh of the discontinuity
in Rh(X)

• Intermediate Sog synthesis rates that manage to shuttle sufficient Dpp and Dpp-Sog
away from a finite interval (Xh, Xg) in the posterior region to the anterior region with
Xg substantially smaller than Xmax.

• The receptor expression is elevated at both end (qualitatively similar to the results for
RA(X)) leading to an [LR] gradient elevated at both ends and depressed in region of
normal receptor expression in between (see Table (5) and Table (6))

The results from our simple mathematical model also offered new insight not previously
observed. One important result of this category is the variability of the elevation in [LR] in the
region of ectopic receptor expression. From the asymptotic analysis of Sections 3 and 5, we
now know that [LR] expression may be elevated, unchanged or even depressed depending on
the combinations of the various rate parameter values. In particular, we have from Propositions
7 and 11 that

• An elevation of the receptor expression in the ectopic region not sufficiently high
would result in no change or a depression (rather than an elevation) of signaling
morphogen gradient [LR] in the anterior region if it does not meet the condition (such
as (74) for Rh(X) and (81) for RA(X)) required for an elevated [LR] expression

It should be noted that some of the results obtained by our asymptotic analysis and numerical
simulation are consequence of our simplifying assumption of a fixed receptor expression
throughout the embryo which may or may not persist should we allow for receptor synthesis
and renewal. It should persist if the receptor-mediated Dpp degradation rate constant is the
same as the degradation rate constant of unoccupied receptors. Research results for the more
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realistic model allowing for receptor renewal will be reported elsewhere. Meanwhile, the
results for the fixed receptor expression model reported herein should serve much more than
a proof of concept on how we may address the question whether there should be a depression
of BMP signaling posterior to the anterior region of ectopic receptor expression and how it
should depend on the level of Sog synthesis rate and other rate constants.
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Figure 1.
Localized expression of Tkv leads to reduced PMad activation in adjacent cells (reproduced
from Figure 7 of the SOM for [20]): A) Endogenous tkv expression in a wild-type embryo.
Note that expression is elevated in the sections of head relative to the trunk region. At this
stage, tkv expression is restricted to the dorsal region of the embryo. Embryos are viewed from
a dorsal perspective with anterior to the left in this and subsequent panels. B) Over-expression
of a UAS-tkv transgene in the head with the bcd-GCN4/GAL4 driver results in increased tkv
expression in an anterior cone of cells that circumnavigates the entire D/V axis in the head
region (bracket). The level of ectopic tkv expression in dorsal cells is approximately equal to
that of endogenous tkv. C) PMad staining in a wild-type embryo. D) PMad staining in an
embryo expressing tkv in the head under the control of the bcd-GCN4/GAL4 driver. Note that
the width and level of PMad expression is decreased in trunk cells lying posterior to the domain
of tkv over-expression. This depression of PMad staining extends for 10–12 cells. (Reprinted
from Developmental Cell, Volume 8, Claudia Mieko Mizutani, Qing Nie, Frederic Y.M. Wan,
Yong-Tao Zhang, Peter Vilmos, Rui Sousa-Neves, Ethan Bier, J. Lawrence Marsh and Arthur
D. Lander, Formation of the BMP Activity Gradient in the Drosophila Embryo, pp. 915–924,
June 2005, with permission from Elsevier.)
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Figure 2.
(A) Prolate spheroidal surface domain; (B) dorsal and ventral portion of prolate spheroidal
surface; (C) half of the mirror-symmetric domain; (D) idealized half domain as a rectangle in
the X,Y - plane.

Lander et al. Page 30

Stud Appl Math. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Schematic Diagram of Biological Processes.
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Figure 4.
Two-dimensional plot of the [LR] distribution for the fixed receptor expression Rh(X) (with
ectopic expression in 0 ≤ X < Xh = 0.02 cm) for V̄L = 2.5 × 10−4µM/s and V̄S = 0.6µM/s.
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Figure 5.
Distribution of [LR] in the anterior-posterior direction at the dorsal midline for the fixed
receptor expression Rh(X) (with ectopic expression in 0 ≤ X < Xh = 0.02 cm) for V̄L = 2.5 ×
10−4µM/s and V̄S = 0.6µM/s

Lander et al. Page 33

Stud Appl Math. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Distribution of [LR] in the anterior-posterior direction at the dorsal midline for the fixed
receptor expression Rh(X) (with ectopic expression in 0 ≤ X < Xh = 0.02 cm) for V̄L =
10−3µM/s and V̄S = 0.6µM/s.
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Figure 7.
Two-dimensional plot of the [LR] distribution for the fixed receptor expression RA(X) (with
the same ectopic expression in 0 ≤ X < Xℓ = 0.02 cm and Xg = 0.035 cm < X ≤ Xmax) for V̄L =
2.5 × 10−4µM/s and V̄S = 0.6µM/s.
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Figure 8.
Distribution of [LR] in the anterior-posterior direction at the dorsal midline for the fixed
receptor expression RA(X) (with the same ectopic expression in 0 ≤ X < Xℓ = 0.02 cm and Xg
= 0.035 cm < X ≤ Xmax) for V̄L = 2.5 × 10−4µM/s and V̄S = 0.6µM/s.
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Table (4)

[LR] at Dorsal Midline (V̄L = 10−3µM)

V̄S δh [LR]x=0 [LR]x=xh− [LR]xh+ [LR]x=xmax

10−3µM/s
0 2.0432.. 2.0432.. 2.0432.. 2.0432..

4/11 1.9868.. 2.9233.. 1.4645.. 1.9893..

0.08µM/s
0 2.9428.. 2.9428.. 2.9428.. 2.9428..

4/11 2.8211.. 5.9636.. 2.2612.. 2.9456..

0.6µM/s
0 2.9934.. 2.9934.. 2.9934.. 2.9934..

4/11 4.1176.. 8.0755.. 2.8289.. 2.9927..

∞
0 7.8208.. 7.8208.. 7.8208.. 7.8208..

4/11 8.3495.. 8.3495.. 2.7832.. 2.7832..
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