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Abstract 

 
Computational Modeling of Cortical and Behavioral Responses to Emotional Stimuli 

 
by 
 

Samy Abdel-Ghaffar 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley 
 

Professor Sonia Bishop, Chair 
 
 

Emotions are stereotyped responses to situations of high survival value. Recognition of 
these high survival value situations is a necessary precondition to emotional elicitation. As vision 
is the primary human sensory modality, visual perception of an emotional situation is often 
responsible for the elicitation of emotion in humans. This raises the question: how does the 
human brain extract the emotional content from patterns of light on the retina in order to initiate 
appropriate behavioral responses that are adaptive for survival? And how are these emotional 
scenes differentially processed from non-emotional scenes? In order to address these questions I 
conducted a series of experiments using techniques and theory from a broad range of disciplines 
including cognitive neuroscience, machine learning, psychophysics, and affective science. I 
motivate, describe, and interpret these experiments in the five chapters of this dissertation. 

Chapter 1 contains a brief review of the previous scientific findings that motivated this 
dissertation. Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging 
modality which allows researchers to record brain activity with high spatial resolution. 
Traditional techniques used in the analysis of fMRI data have recently been complimented by 
computational machine learning techniques, giving neuroscientists powerful new tools to infer 
the brain’s mechanisms and representations. Voxel-wise modeling (VWM) is one such method. 
Chapter 2 describes a fMRI experiment using a large corpus of naturalistic emotional images and 
VWM analysis to model brain representations of a combined semantic and emotional feature 
space. Principal components analysis (PCA) of voxel tuning was then used to uncover the 
primary dimensions of representation within occipital-temporal cortex (OTC). Alongside 
animacy, the valence and arousal of animate stimuli are primary dimensions of OTC tuning. 
Furthermore, this tuning is better able to predict the appropriate behavioral response to the 
images that subjects viewed than are the semantic and emotional image features used to model 
the fMRI data. These findings suggest that OTC representations of naturalistic emotional images 
may be used by other brain regions to elicit appropriate behavioral responses to situations of high 
survival value depicted in these emotional scenes. 

In order to address several theoretical limitations of the study described in chapter 2, I 
conducted two literature reviews in Chapter 3. The first reviews studies on congenitally blind 
subjects which suggest that OTC contains supramodal semantic representations that may be 
idiosyncratically tuned to support appropriate behavior responses. The second reviews the 
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literature on attention and perception of emotional images and the neural mechanisms that 
subserve these processes. Additionally, Chapter 3 describes seven fMRI analyses of the data 
from chapter 2 that address empirical limitations of chapter 2. These analyses include a 
representational similarity analysis (RSA), univariate SPM analysis, variance partitioning of the 
VWM model in chapter 2, and several control analyses. The findings from these analyses further 
boost our claims from chapter 2 that alongside animacy, the valence and arousal of animate 
stimuli are represented within OTC.  

Often situations of high survival value occur quickly, or are only perceived briefly, and 
thus the human visual system has little information from which action can be taken. Turning 
from cortical to behavioral responses from naturalistic emotional images, in chapter 4 I describe 
an experiment using ultra-rapid image presentation to explore the limits of human performance 
in semantic and emotional valence categorization during a brief glance. Using stimuli and 
categorization tasks from a broader range of semantic and valence categories than had been done 
in previous studies, along with controls for observed response bias, I found that humans can 
accurately categorize both the semantic category (animal, human, object, or building) and 
emotional valence (negative, neutral or positive) of an image when presented for as little as 17ms 
and backwards masked. Furthermore, when the image depicted an emotionally negative scene, 
semantic performance was significantly worse than that for images depicting neutral or positive 
scenes. I also found that only when subjects successfully categorized the semantic category of an 
image was valence categorization also above chance across several valence by semantic category 
conditions. The converse was not true however. This suggests that the semantic information of 
an image must first be extracted before the emotional information can be extracted. This finding 
supports the cognitive primacy hypothesis as opposed to the affective primacy hypothesis, two 
competing hypotheses of visual emotional processing in the field of affective science. Finally, in 
chapter 5, I interpret the results of the experiments described in chapters 2-4 taken as a whole, 
and offer closing remarks. 
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Chapter 1. Introduction 
You are walking down the street, you turn a corner, and there is a huge dog sitting 

directly in your path. Is that Noot-Noot, the friendly neighborhood dog? Or is that an unknown 
dog that will attack? Does it have rabies? Is that a service dog belonging to the woman standing 
nearby? Or is it a mother simply concerned with protecting her young pups several feet away? 
You may only have a brief moment to infer answers to these questions, which have huge 
ramifications for your well being. So what do you do? And more importantly from the scientific 
perspective, how does your brain determine what to do? Each of the above possibilities affords a 
different action, and the first stage in determining the appropriate response involves a visual 
discrimination task. In the remainder of this introduction I will briefly review some of the 
psychological and neuroscientific literature pertinent to answering the question: how does the 
human visual system extract semantic and emotional information useful in determining the 
appropriate behavioral response to situations of high survival value?  

Threatening situations demand quick responses to avoid bodily harm. In now 
foundational work stemming from the study of phobias, Seligman (1971) and Ohman (1975, 
2001) have argued that negative, threatening and animate stimuli such as spiders and snakes have 
been “biologically prepared” by evolution to evoke fast and automatic emotional responses to 
avoid injury and death. They hypothesized that these negative animate stimuli are conferred with 
“prioritized processing” across cognitive processes such as perception, attention, memory, and 
decision making. Decades of research have supported this hypothesis. Negative animate stimuli, 
many of which are images of fearful or angry human faces, have been shown to demand 
attentional resources across many tasks. For example, these negative animate images better grab 
attention when presented as distractor stimuli and are easier to spot in visual search tasks (for a 
review see Pourtois, Schettino, & Vuilleumier, 2013). Perception of so-called biologically 
prepared stimuli is also differentially affected relative to non-emotional stimuli. In continuous 
flash suppression studies, where a fixed image shown to one eye is suppressed by a stream of 
rapidly changing images presented to the other eye in order to render the fixed image non-
conscious, fearful faces break into consciousness faster than do happy faces (Yang, Zald, & 
Blake, 2007).  

Ohman has also hypothesized that a dedicated neural system subserves this observed 
prioritized processing of biologically prepared stimuli (Ohman & Mineka, 2001). In what has 
come to be known as the “two-route hypothesis”, “subcortical fast route”, or “low-road”, 
researchers argue that a subcortical circuit beginning in the retina, connected to the superior 
colliculus, moving on to the pulvinar and ending at the amygdala is where this prioritized 
processing occurs (for a review see Tamietto & de Gelder, 2010). Prioritized processing has also 
been observed in stimuli other than negative animate images (for example see Anderson, 2005, 
Eastwood et al., 2001), and thus the two-route hypothesis has expanded to account for all 
emotional stimuli (Tamietto & de Gelder, 2010). The two-route hypothesis is contentious 
however, and other authors argue that multiple waves or stages of processing within higher order 
visual regions located in occipital-temporal cortex (OTC) suffice to explain the observed 
prioritized processing of emotional visual stimuli (Pessoa & Adolphs, 2010; Pourtois, Schettino, 
& Vuilleumier, 2013). Numerous studies have found evidence for object category selectivity 
within OTC (for a review see Grill-Spector & Weiner, 2014). Regions such as the fusiform face 
areas (FFA) are known be selective to faces (Kanwisher, McDermott, & Chun, 1997), the 
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extrastriate body area (EBA) is selective to bodies (Downing et al, 2001) and the 
parahippocampal place area (PPA) is selective to landscapes and buildings (Epstein & 
Kanwisher, 1998), to name a few.  

Related to questions of where in the brain prioritized processing of emotional stimuli 
occurs is a debate concerning the temporal order of semantic vs. emotional information 
extraction from visual stimuli. The affective primacy hypothesis postulates that emotional 
information is extracted before, and parallel to, semantic information from visual stimuli 
(Murphy & Zajonc, 1993; Zajonc, 1980). Authors arguing for the affective primacy hypothesis 
often invoke the subcortical fast-route as the neural system that subserves this fast and parallel 
processing, as it is independent from the cortical visual system known to extract semantic 
information (OTC) and has been thought to contain fewer synaptic junctions making it a fast 
processing unit (Tamietto & de Gelder, 2010, though see Pessoa & Adolphs, 2010 for 
neurophysiological evidence that OTC is just as fast). Conversely, the cognitive primacy 
hypothesis states that semantic information must first be extracted from visual stimuli, then the 
emotional content of the image can be extracted based on that semantic content (Cohen, Henik, 
& Mor, 2011; van Steenbergen, Band, & Hommel, 2011). As the OTC is well known to 
represent visual semantic content, the “two-route” or “multi-wave” hypothesis for prioritized 
processing of emotional stimuli can be viewed as consistent with the cognitive primacy 
hypothesis if one considers the possibility that OTC is a region where the the combined semantic 
and emotional information of visual stimuli is represented. In this view, a fast feed-forward 
sweep of information processing within OTC first extracts basic semantic information of a visual 
stimulus that is then sufficient to infer the emotional content of the stimulus conferring it with 
prioritized processing. Later processing stages within OTC that incorporate reentrant feedback 
from other brain regions could then further refine the semantic and emotional representations of 
the visual stimulus. In the studies described in chapters 2-4 of this dissertation we present 
evidence in support of this view. 
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Chapter 2. Occipital-temporal cortical tuning to emotional 
natural images predicts associated behaviors. 

Introduction  
The ability to recognize and respond appropriately to emotionally salient stimuli is 

essential to a species’ evolutionary success. Adaptive responses to dangerous situations carry a 
survival advantage, while identification of potential mates facilitates reproductive success. There 
has been considerable interest in identifying the brain mechanisms that support the recognition of 
emotional stimuli. A popular theory is that a subcortical pathway extending from the retina to the 
superior colliculus, through the pulvinar, and on to the amygdala enables the rapid detection of 
danger (LeDoux, 1994; Tamietto and de Gelder, 2010). This theory has been widely adopted to 
explain the processing of emotional visual stimuli in humans (Dolan and Vuilleumier, 2003; 
Ohman et al., 2007). However, evidence for this subcortical pathway primarily comes from 
research in rodents using auditory stimuli (LeDoux, 1994 ). Recent studies have questioned the 
existence of an equivalent pathway for the processing of visual stimuli in primates (Pessoa and 
Adolphs, 2010). Further, it is unclear whether such a subcortical pathway could convey the 
information necessary to guide selection of behavioral responses to different types of emotional 
stimuli. The proposed subcortical pathway has largely been held to convey information about 
stimulus valence (positive versus negative value) and to inform engagement in approach versus 
avoidance. However, the behavioral decisions we make when confronted by emotional stimuli 
are more complex than this. For example, encountering a large bear versus a weak, diseased, 
animal should promote different types of avoidance responses, while human infants and potential 
mates should prompt different types of approach responses. As a result, an optimal mechanism 
for guiding responses to emotional stimuli likely needs to represent more than stimulus valence 
alone. 

So how might we achieve rapid selection of appropriate responses to different types of 
emotional stimuli? Here, we argue that a potentially effective solution might entail the combined 
local representation of emotional and semantic information within the same brain region. The 
occipital temporal cortex (OTC) is a strong candidate for such a region. Information reaches the 
OTC as rapidly as it reaches the amygdala, within 80-140ms (Liu  et al., 2009). In addition, 
neuroimaging studies have revealed rich patterns of semantic selectivity in OTC. For example, 
different parts of OTC preferentially respond to various subclasses of animate and inanimate 
stimuli, including faces, bodies, places and objects (Kanwisher, McDermott, and Chun, 1997; 
Gauthier et al., 2000; Downing et al., 2001; Epstein and Kanwisher, 1998; O’Craven and 
Kanwisher, 2000; Malach et al. 1995; Hansen, Kay and Gallant, 2007; Connolly et al., 2012). 

Relatively little is known regarding the representation of stimulus emotional content 
within OTC. There is some evidence to suggest that stimulus valence and stimulus arousal 
(emotional evocativeness, intensity) can modulate OTC activity (Chikazoe et al., 2014; Mourão-
Miranda et al., 2003; Bradley et al., 2003; Sabatinelli et. al 2007). However, valence and arousal 
are rarely modeled independently in the same experiment making it difficult to interpret these 
findings. In addition, there has been little attempt to investigate whether there is combined 
representation of the semantic and emotional content of stimuli within OTC. A single study to 
date examined both stimulus animacy and stimulus valence but concluded that these were 
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represented within different parts of OTC (Chikazoe et al., 2014). Such prior studies have been 
limited in their scope by adoption of traditional experimental designs with a small number of 
conditions and relatively few stimuli. If we seek to examine how the semantic and emotional 
content of stimuli is co-represented, we need a method for modeling brain responses to a wide 
range of stimuli varying in semantic and emotional features. Outside of the emotion field, a 
voxel-wise multi-feature encoding model framework has been developed that facilitates analyses 
of this nature (Kay et al., 2008; Naselaris et al., 2009; Nishimoto  et al., 2011; Naselaris et al. 
2011). In the study reported here, we used this framework to investigate the representation of 
diverse emotional natural images at a single voxel level, across OTC. In addition, we explored 
whether this representation might suffice to guide behavioral responses to emotional stimuli.  

Our findings revealed representation of natural image semantic and emotional content 
across much of OTC. Principal components analysis of voxel-wise model weights indicated that 
many OTC voxels are co-tuned to semantic and emotional image content. Considering the first 
three components alone, we found co-representation of image animacy and valence as well as 
image animacy and arousal. Scores on these three components explained 20% of the variance in 
novel subjects’ selection of behavioral responses to match image content. Using scores on the 
first twenty components explained 40% of variance in novel subjects’ selection of behavioural 
responses to match image content. This prediction of behavioral responses from OTC 
components based on tuning to both semantic and emotional image content significantly 
exceeded that achieved using OTC tuning to low-level structural image properties or semantic or 
emotional content alone. It also significantly exceeded the variance explained by components 
from PCA performed directly on stimulus features, across images viewed. This is consistent with 
OTC extracting those aspects of semantic and emotional image content that are of value to 
guiding behavior.  

Results 

Using a multi-feature encoding modeling approach to investigate the representation 
of natural image semantic and emotional content. 

Our experimental stimuli comprised 1620 images varying widely in semantic and 
emotional content (see Star Methods for details). We labeled each image for features of interest. 
Using ridge regression, we fit multi-feature encoding models to the functional magnetic 
resonance imaging (fMRI) data acquired while subjects viewed the images (see Star Methods 
and Fig. 2-1A). We tested alternate models by changing the features included as regressors. To 
have sufficient statistical power to fit the multi-feature encoding models used required the 
acquisition of a large amount of fMRI data per subject. The six subjects in our study each 
completed fifty fMRI scans across six 2hr sessions. Thirty training scans, each 7.5 minutes long, 
were used for model estimation, and twenty test scans, each 6 minutes long, were used for model 
validation. Images were viewed for 1s each, with a 3s inter-stimulus interval. Subjects 
maintained foveal fixation and either categorized the valence (negative, positive, neutral) or the 
broad semantic category (human, animal, building, object, scene) of each image. We used these 
two different tasks to ensure that cortical tuning to stimulus emotional content was not only 
observed when task-relevant. Subjects who performed the semantic categorization task in the 
scanner subsequently categorized the images by valence in a post-scan behavioral session. All 
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subjects also rated the images for emotional arousal in this post-scan session (see Star Methods 
for details). 

 
 

  
Figure 2-1. The modeling procedure and the CSVA model. 
(A) BOLD data collected while subjects viewed 1440 images were used for model estimation. Ridge regression was 
used to fit each model to the BOLD time-series for each voxel, using a finite impulse response function with four 2s 
time-bins. Weights were estimated for each model feature for each time-bin. These weights characterize each 
voxel’s response profile or ‘tuning’ to model features. Model validation was conducted using independent fMRI 
data collected while subjects viewed 180 novel images. Voxel-wise feature weights were used to generate a 
predicted time-series for each voxel. This was correlated with the recorded BOLD time-series to obtain a metric of 
model fit that controls for over-fitting, see Star Methods for details. (B) The Combined Semantic, Valence and 
Arousal (CSVA) model comprises 126 mutually exclusive features denoting image semantic category (21 
categories), valence (3 levels) and arousal (2 levels) and 18 additional semantic-emotion (SE) features that carry 
both semantic and emotional information (e.g. mutilated animal; rotten), see Star Methods for further details. Image 
semantic category and SE features were labeled by four independent raters; image valence and arousal were 
assessed by each subject, see Star Methods for further details. Here, five example images are labeled with CSVA 
features using one subject’s valence and arousal responses. 
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Mapping tuning to semantic and emotional image features across cortex.  
Our primary model, the Combined Semantic, Valence and Arousal (CSVA) model (Fig. 

2-1B), describes each image using a combination of mutually exclusive semantic categories, 
subjects’ subjective valence and arousal judgments and a number of additional semantic-
emotional features carrying information about both semantic and emotional content (e.g. ‘rotten 
food’, ‘mutilated animal’); see Star Methods for details. FMRI data from the model estimation 
runs were concatenated and ridge regression used to fit the CSVA model to each subject’s 
BOLD data using a finite impulse response function with four 2s time-bins. Voxel-wise weights 
were estimated for each model feature for each time-bin. These weights were applied to the 
values of feature regressors for the images viewed during the validation scans, generating 
predicted BOLD time-courses for each voxel. We correlated these predicted time-courses with 
the observed validation BOLD time-courses to obtain estimates of model prediction accuracy for 
each voxel (see Star Methods for further details). Figure 2-2 shows the resulting prediction 
accuracies projected onto the cortex of each individual subject. Figure 2-2A shows whole 
cortical prediction accuracy maps for each subject. These maps reveal that the CSVA model 
significantly predicts validation BOLD time-courses across a wide stretch of OTC. Figure 2-2B 
shows a close up of OTC for one example subject. 

In principle, the CSVA model could significantly fit subjects’ BOLD data simply through 
capturing BOLD responses to image semantic or emotional content alone. Given this, we 
compared the fit of the CSVA model against that of a model containing only the semantic 
category features from the CSVA model (the Semantic Only model) as well as against that of a 
model containing only the valence and arousal features (the Emotion Only model). These models 
were fit to the estimation data in the same manner as for the CSVA model. We then used the 
validation data to calculate voxel-wise prediction accuracies and compare these between models. 
A bootstrap procedure was used to compare CSVA model fit against that of each of the other two 
models  (see Star Methods for details). Model comparison was restricted to voxels where at least 
one of the three models showed a significant fit.  

The CSVA model outperformed the Emotion Only model at a group level and for all six 
subjects considered individually (ps<0.05), fig. 2-S1. The CSVA model also outperformed the 
Semantic Only model at the group level and for four out of six subjects considered individually 
(ps<0.05). CSVA model superiority to the Semantic Only model was apparent in stretches of 
OTC adjacent to, and overlapping with, regions with known semantic selectivity including the 
posterior superior temporal sulcus (pSTS), extrastriate body area (EBA), Occipital Face Area 
(OFA) and Fusiform Face Area (FFA), fig. 2-S2. In a supplementary analysis, we examined 
whether coding stimulus emotional content differentially improved model fit for animate versus 
inanimate stimuli. We addressed this by adapting the Semantic Only model such that either 
animate semantic category regressors or inanimate semantic category regressors were replaced 
by regressors coding for semantic category, valence and arousal, fig. 2-S3A. All study 
participants showed a significantly greater increase in prediction accuracies, relative to the 
Semantic Only model baseline, when coding of emotional content was added for animate as 
opposed to inanimate stimuli, fig. 2-S3B. These results suggest that co-representation of stimulus 
emotional and semantic content is stronger for animate than for inanimate stimuli, potentially 
reflecting the greater evolutionarily relevance of emotional animate stimuli. Many of the voxels 
where prediction accuracies increased as a result of coding the emotional content of animate 
versus inanimate stimuli were located within OTC, fig. 2-S3C. Building upon these initial 
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findings, we used CSVA voxel-wise model weights to further examine the structure of voxel-
wise tuning to stimulus animacy and emotional content within OTC. We report these analyses 
next. 

 
 

   
Figure 2-2. CSVA model voxel-wise prediction accuracy scores mapped onto cortex. 
(A) Voxels where activity was significantly predicted by the Combined Semantic, Valence and Arousal (CSVA) 
model are shown on cortical maps for all 6 subjects. For each voxel, prediction accuracies were calculated using the 
z-transformed correlation between the CSVA model predicted time-course and the recorded BOLD time-course for 
the validation dataset. Significance was assessed by permutation testing, see Star Methods for details. The CSVA 
model significantly predicts validation BOLD time-courses across much of OTC. This was consistently observed 
across subjects. (B) Prediction accuracy scores for subject 1; the cortical map is cropped (top) to zoom in on OTC. 
In addition, prediction accuracy scores are projected onto inflated lateral (bottom left) and ventral (bottom right) 
cortical surfaces. Note: Regions of interest (ROIs) are labeled in white, sulci in black. RSC: Retrosplenial Complex, 
OPA: Occipital Place Area, LO: Lateral Occipital cortex, pSTS: Posterior Superior Temporal Sulcus, EBA: 
Extrastriate Body Area, OFA: Occipital Face Area, FFA: Fusiform Face Area, PPA: Parahippocampal Place Area, 
ATFP: Anterior Temporal Face Patch. IPS: Intraparietal Sulcus, STS: Superior Temporal Sulcus, ITS: Inferior 
Temporal Sulcus, CoS: Collateral Sulcus 

PCA on CSVA model feature weights reveals consistent patterns of OTC tuning to 
stimulus animacy, emotional arousal and emotional valence across subjects. 

The modeling framework used here involves the construction and fitting of encoding 
models as opposed to adoption of a decoding approach. The benefit of this approach is that we 
can go beyond simply assessing model fit and interrogate voxels’ response profiles, i.e. their 
‘tuning’, to different stimulus features. The CSVA model includes over 100 features. As a result, 
it is unwieldy to examine and interpret spatial patterns of tuning for each individual feature. 
Instead, we can seek to identify the main structure underlying similarities and differences in 
feature response profiles, across voxels. This can be achieved by applying principal components 
analysis (PCA) to model feature weights across a given set of voxels (Huth et al., 2012).  

We conducted a group-level PCA on CSVA model feature weights across OTC voxels 
where the CSVA model fit significantly and predicted validation BOLD time-series better than 
the Semantic Only model (See Star Methods for details; we note that expanding voxel selection 
to include all cortical voxels where the CSVA model fit significantly produced a highly similar 
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PCA solution, fig. 2-S4). Each of the top three PCs from the group-level PCA accounted for 
significantly more variance than could be explained by covariance between stimulus features 
alone (Fig. 2-3A); see Star Methods. In addition, these group PCs correlated highly with PCs 
extracted when PCA was performed separately on each subject’s data (Fig. 2-3B), indicating 
consistency in the structure of OTC tuning to CSVA model features across subjects. We note that 
this holds for all subjects, including subjects 2 and 4 who categorized images semantically while 
fMRI data were acquired (see Star Methods).  

 
 

  
Figure 2-3. Results of PCA on CSVA model feature weights, across OTC voxels.  
(A) A group-level principal components analysis (PCA) was conducted on the CSVA model feature weights across 
all OTC voxels where model fit was significant and better than that of the Semantic Only model. The scree plot 
shows the amount of variance explained by each of the top ten PCs (in red). PCs from a PCA analysis conducted on 
stimulus features (using the combined design matrix from all 6 subjects) are shown in black. Asterisks indicate 
group PCs that explain significantly more variance than the stimulus PCs (jackknife test, p < 10-8), see Star 
Methods for details. (B) Correlations between the top 3 group PCs and the top 3 PCs from single subject PCAs. The 
significant correlation coefficients between each of the group PCs and the corresponding PCs from the single subject 
PCA for each subject (ps < 10-8) indicate a shared representational structure across subjects.  
 

To explore OTC co-representation of image animacy and emotional content, we 
compared the feature loadings of the top three group PCs to those of seven dimensions of 
theoretical interest (Fig. 2-4). The first of these ‘theoretical’ dimensions comprised a previously 
adopted 4-level index of animacy (human, other mammal, non-mammalian vertebrate 
invertebrate, and inanimate; Connolly et al., 2012). The second comprised a binary index of 
whether image content was animate or inanimate. The third indexed whether humans were 
present in each image or not. The remaining four dimensions separately indexed the valence and 
arousal of animate and inanimate stimuli (see Star Methods for further details). We correlated the 
feature loadings of these theoretical dimensions with those of the three group PCs; this provides 
a measure of how well each theoretical dimension explains the information carried by each PC. 
Bootstrapping was used to determine correlation significance at p<0.05 (see Star Methods for 
further details). This correlational analysis revealed that PC 1 represented both stimulus animacy 
and stimulus arousal (Fig. 2-4). PC 2 primarily represented the arousal value of animate, but not 
inanimate, stimuli. PC 3 represented the valence of animate, but not inanimate, stimuli. Both 
PC2 and PC3 also carried information about animacy in general, though more weakly than PC1. 
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Figure 2-4. Top three dimensions underlying OTC tuning to semantic and emotional image 
features carry information about stimulus animacy and its interactions with stimulus 
arousal and stimulus valence.  
A group-level PCA was conducted on CSVA model feature weights across OTC voxels (see Fig. 2-3). Feature 
loadings on the top three PCs were correlated with feature loadings on theoretical dimensions of interest (given on 
the y axis). Bootstrapping was used to determine correlation significance (see Star Methods for further details). 
Saturated color indicates correlations significant at p < 0.05. PC1 carries information about stimulus animacy and 
the arousal value of both animate and inanimate stimuli. PC2 carries information about the arousal of animate 
stimuli; PC3 carries information about the valence of animate stimuli. PC2 and PC3 also show some tuning to 
animacy in general, though more weakly than PC1. Note. Theoretical dimensions: arousal is coded as high (+1) or 
low (0), valence is coded as positive (1), neutral (0), negative (-1), see Star Methods for details. 

 
To visualize the spatial structure of tuning captured by these PCs, we projected voxel-

wise PC scores onto maps of OTC for each subject (Fig. 2-5 and fig. 2-S5). These maps show 
clear hemispheric symmetry in voxel-wise feature tuning across OTC; they also reveal 
commonalities in spatial transitions in tuning across subjects.   
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Figure 2-5. Structure of OTC tuning as captured by PCA on CSVA model feature weights. 
Mapping PC scores from the group-level PCA of CSVA model feature weights, across OTC voxels, reveals 
considerable spatial structure in tuning to the top three PCs. Maps for two representative subjects (S1 and S2) are 
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shown (see fig.2- S5 for maps from all subjects). Voxel-wise PC scores were calculated as the product of CSVA 
model feature weights for a given voxel by feature loadings for each PC. A RGB color space is used; red = scores on 
PC1, green = scores on PC2, blue = scores on PC3. PC scores are thresholded at 6 standard deviations above and 
below 0, with values beyond the threshold given the maximal (or minimal) color channel value. Areas where MRI 
data was not acquired are shown in black. Both voxels where the CSVA model did not fit significantly and those 
where the CSVA model fit significantly but did not outperform the semantic only model were excluded from the 
PCA (these voxels are shown in grey). PCA maps using CSVA model feature weights from all voxels where the 
CSVA model fit significantly are given in Figure 2-S6. 

 

OTC tuning to emotional natural images predicts behavioral responses.  
A key question is whether OTC tuning to emotional natural stimuli might be able to 

guide selection of behavioral responses in a manner that goes beyond a simple approach - 
avoidance dichotomy. To address this, we asked a separate set of subjects recruited via 
Amazon’s Mechanical Turk to select, from a fixed list, the behavioral responses appropriate to 
the content of each image viewed by our fMRI subjects (see Star Methods for details). The 
frequency with which each image was associated with each behavioral response was calculated 
(Fig. 2-6A). We examined the extent to which OTC tuning to emotional natural stimuli, as 
captured by CSVA model group PC scores, predicted these behavioral responses, across images. 
We varied the number of PCs used from 1 to 21. We capped the number of components extracted 
and used to predict behavior at 21 to facilitate comparison with the Semantic Only model (given 
this latter model’s fewer features, this was the maximum number of extractable PCs). Each 
image was given a score for each PC that represented the product of its features by feature 
loadings for that PC. These scores were used to predict out of sample behavioral responses, 
across images (see Star Methods for details), Fig. 2-6B. The extent to which behavioral 
responses linked to each image were correctly predicted increased with the number of CSVA 
model PCs. The top 3 PCs alone accounted for 20% of explainable variance in behavioral 
responses across images, the top 10 PCs approximately 30%, and the top 20 roughly 40%. 
Notably, this performance was superior to that achieved using components from PCA conducted 
directly on CSVA images features, across stimuli, Fig. 2-6B. This indicates that OTC 
successfully extracts the information carried by CSVA model features that is pertinent to 
determining how to respond to a diverse range of emotional stimuli.  
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Figure 2-6. OTC tuning patterns predict behavioral responses to emotional natural stimuli. 
(A) Subjects recruited through Amazon’s Mechanical Turk platform were shown the emotional natural images used 
in this study and asked to pick one or more behavioral responses appropriate to the content of each image. For each 
image, we calculated the proportion of MTurk subjects that selected each behavioral response. This is illustrated 
here for 10 example images. The behaviors selected between are given on the x axis. Some terms have been 
abbreviated for illustration purposes, the full list is available in the Star Methods. In each row, the proportion of 
subjects selecting each behavior is plotted for a given image. (B) We examined the extent to which OTC tuning to 
emotional natural images, as captured by CSVA group-level PC scores (red line), predicted behavioral responses 
selected, across images. The percentage of out-of-sample variance in behavioral responses explained (y axis) is 
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plotted against the number of PCs included as predictors in an ordinary least squares regression analysis. The shaded 
area around the solid line represents the 95% confidence interval. We also calculated the variance in behavioral 
responses explained using PCs derived directly from PCA on CSVA image features, across images (green line). 
Across all levels of dimensionality considered (nu. of PCs=1 to 21), OTC tuning to CSVA features predicted 
behavioral responses significantly better than components from PCA conducted directly on the features themselves. 
This is consistent with OTC showing selective representation of image semantic and emotional features pertinent to 
behavior. (C). Here, we plot the variance in behavioral responses explained by PCs obtained from PCA on OTC 
feature weights for the CSVA model (red) versus (i) a low-level structural (Gabor) model (purple); (ii) the Semantic 
Only model (dark blue) and (iii) the Emotion Only model (light blue). Given the smaller feature space of the 
Emotion Only model, the maximum number of PCs that can be extracted for this model is six. The poor 
performance of Gabor model PCs in predicting behavioral responses suggests that OTC tuning to low-level image 
structural features is insufficient to guide behavior. Both the Semantic Only and Emotion Only models outperform 
the Gabor model in predicting behavior and perform particularly well at low levels of dimensionality. However, 
their maximal prediction of behavior (at n=21 and n=6 PCs respectively) is significantly less than that achieved by 
the CSVA model using an equivalent number of components.   

  
We next sought to determine whether OTC tuning patterns captured by the CSVA model 

predicted behavioral responses to emotional natural images significantly better than OTC tuning 
to low-level image structure. To accomplish this, we fit a Gabor model to OTC BOLD time-
courses (see Star Methods for details), conducted PCA on Gabor model weights across 
significantly predicted voxels and used the top 1-21 of these PCs to predict behavioral responses 
to each image. Figure 2-6C shows that OTC tuning to emotional images as captured by Gabor 
model PCs explained significantly less variance in behavioral responses than that captured by 
CSVA model PCs (p < 0.05). This indicates that OTC extraction of low-level structural image 
properties alone is unlikely to provide a basis for guiding behavior to emotional stimuli. 
Additional regression analyses revealed that the maximal performance of the Emotion Only 
model (at 6 PCs) and the Semantic Only model (at 21 PCs) was also significantly poorer than 
that of the CSVA model using an equivalent number of PCs, ps < 0.05, Fig. 2-6C. Here, as for 
the Gabor model, PCA was conducted on model weights across all OTC voxels where the model 
in question showed a significant fit.  

 

Discussion 
It has been suggested that we are evolutionarily prepared to respond successfully to 

emotional stimuli, particularly those of animate origin. How we recognize and select responses 
to a wide range of emotional stimuli has remained unclear. Here, we suggest that an efficient 
mechanism for this might involve combined representation of stimulus emotional and semantic 
content. We investigated whether human OTC shows such combined representation and if this 
representation might suffice to guide behavioral responses to a wide range of emotional stimuli. 
Voxel-wise modeling of fMRI data collected while subjects viewed over 1600 emotional natural 
images revealed that many OTC voxels do indeed show combined representation of semantic 
and emotional image content, with this being most apparent for animate stimuli. A separate 
group of subjects selected behavioral responses that best matched image content. Regression 
analyses revealed that OTC tuning patterns, as captured by PCA on CSVA voxel-wise model 
weights, significantly predicted behavioral responses, across images. The amount of variance 
explained significantly exceeded that achieved when PCA was performed directly on stimulus 
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features, across images viewed. It also significantly exceeded that explained by OTC tuning to 
low-level image properties.  

Within OTC, the presence of stretches of cortex with preferential tuning to different 
subtypes of animate and inanimate stimuli is now well established (Kanwisher, McDermott, and 
Chun, 1997; Gauthier et al., 2000; Downing et al., 2001; Epstein and Kanwisher, 1998). In 
contrast, work on the representation of emotional features of visual stimuli in OTC has been 
limited. Our findings suggest that there is integration of semantic and emotional information 
within OTC, with coding of both stimulus valence and arousal for animate stimuli and some 
more limited coding of stimulus arousal for inanimate stimuli. Voxels sensitive to this 
information are found in stretches of cortex adjacent to areas with well-characterized semantic 
selectivity, notably neighboring FFA, EBA and pSTS.  Within these well characterized areas, 
semantic selectivity might have developed to facilitate navigation of our social environments. 
Our current results are consistent with there potentially being further differentiation of this 
tuning within adjacent stretches of cortex – with selective tuning to semantic features in these 
adjacent regions being combined with tuning to stimulus emotional attributes.  

Our results further suggest that OTC co-representation of image semantic and emotional 
content has the potential to guide selection of diverse behavioral responses to a wide range of 
emotional stimuli. Indeed, across the different levels of dimensionality considered (1-21 PCs), 
OTC tuning to semantic and emotional image features better predicted behavioral responses to 
image content than direct use of an equivalent number of dimensions based directly on the 
stimulus feature themselves. This potentially indicates that OTC is effectively compressing and 
extracting stimulus semantic and emotional content of pertinence to behavior.  

When a model of low-level visual structure (Gabor wavelet model) was fitted to OTC 
voxel time-courses, it did a significantly poorer job than the CSVA model in predicting 
behavioral responses. This further indicates that it is the encoding of higher-level features in this 
region of the brain, as opposed to lower-level structural features, that has the potential to be used 
to trigger appropriate behaviors. As information reaches OTC rapidly (Liu, 2009), representation 
of stimulus semantic and emotional content within this part of cortex might be especially well 
suited to drive rapid behavioral responses to emotional stimuli. We note that we are not arguing 
that the amygdala is not involved in the initial learning of emotional value, or indeed in signaling 
the presence of threat. Similarly, we are also not arguing against the presence of co-
representation of semantic and emotional stimulus content within frontal cortex. We suggest, 
instead, that the OTC might be particularly well suited to the long-term storage and rapid 
activation of the representations needed to select between alternate emotional behaviors.  

In summary, our findings reveal that stimulus semantic and emotional content are co-
represented in OTC. This representation is seen in areas of cortex adjacent to, and partially 
overlapping with, areas with known semantic selectivity. This might reflect further 
differentiation of tuning patterns to additionally represent emotional value, allowing for more 
nuanced representation of our complex social environments. Our analyses further indicate that 
this co-representation of semantic and emotional image content within OTC carries information 
sufficient to drive rich behavioral responses to a diverse range of emotional stimuli. Indeed, the 
superior prediction of behavioral responses from OTC tuning to stimulus features than from 
stimulus features themselves possibly indicates that OTC is effectively compressing and 
extracting aspects of semantic and emotional image content that are of value to guiding behavior.  
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Supplemental Methods 

Subject Details 

Data were collected from 6 healthy adult human subjects (4 females, 2 males, mean age = 
24, range = 21-26). All subjects had normal or corrected-to-normal vision. The study was 
approved by the University of California Berkeley committee for protection of human subjects. 
Informed consent was obtained from all subjects prior to participation. 

Experimental Stimuli 
A total of 1620 stimuli were used in total, 1440 during model estimation runs and 180 

during model validation runs. All stimuli were natural images selected from a combination of the 
International Affective Picture System (IAPS) set (Lang, Bradley and Cuthbert, 2008), the Lotus 
Hill image set (Yao, Yang and Wu, 2009), and internet searches. The images were labeled using 
23 mutually exclusive semantic categories: faces, full bodies, body parts, couples, gatherings (2-
9 people), crowds (10+ people), land mammals, water mammals, fish, reptiles, insects, birds, 
savory food, dessert food, household items, vehicles, other artifacts, indoor buildings, outdoor 
buildings, land scenery, sky scenery, water scenery, plants. These categories were based on those 
used by Naselaris and colleagues (Naselaris et al., 2009), with a number of modifications (e.g. 
differentiation between reptiles and insects, elimination of irrelevant categories (texture 
patterns)). Four raters independently categorized each image; their modal categorization was 
used in the models described below. In just one instance no modal category was obtained. This 
was resolved by discussion.  

The small number of images labeled as plants (n = 36) or cars (n = 72) led to the 
possibility of empty feature vectors when stimuli were labeled using composite features for 
semantic category by valence by arousal (see Model Features below). Hence, for all except the 
first two subjects to complete the first estimation and validation fMRI session (subjects 1 and 3), 
these images were removed and replaced with images from the building category. Images were 
displayed at a visual angle of 12 x 12 degrees.  

Procedure 
Subjects completed six fMRI sessions. Four 9.5 minute retinotopy scans (two with 

clockwise/counterclockwise wedges and two with expanding/contracting rings; Huth et al., 2012) 
were completed within session 1. Each of the subsequent five sessions comprised performance of 
the main task. In each of these sessions, participants completed six model estimation scans of 7.5 
min duration and four model validation scans of 6 min duration. A structural scan was also 
acquired at the beginning of each session.  

All stimuli were back-projected onto a translucent screen positioned in the bore of the 
magnet, visible via an angled mirror placed above the subject’s head. Subjects fixated on a 
central white cross. Images were presented for 1 s with a 3 s inter-stimulus-interval during which 
the fixation cross was presented against a grey background with luminance matched to the mean 
luminance of the images in the stimulus set. During each estimation scan, forty-eight images 
were presented twice in a pseudo-random order. Null trials (no image presented) were also 
included, occurring once every eight trials. During validation scans, nine images were each 
presented nine times using a Type-1, Index-1 sequence (Aguirre, 2007) to control for order 
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effects. While viewing the images, subjects performed one of two tasks. Four subjects (1, 3, 5, 
and 6) were asked to categorize the valence of each image as negative, neutral, or positive. To 
control for effects of task, two subjects (2, 4) performed an alternate semantic categorization 
task, categorizing each image as human, animal, object, food, or building/scene. For these two 
subjects, valence categorizations were obtained from the post-scan behavioral sessions (see 
below). 

Post-Scan Behavioral Task 
After the six fMRI sessions were completed, each subject returned to our lab to complete 

an additional behavioral task. Each image viewed within the fMRI sessions was re-presented to 
subjects with the same grey background and degree of visual angle as used in the fMRI sessions. 
Subjects were instructed to first rate the valence of each image as negative, neutral, or positive. 
Labels above the image indicated which button to press for each valence. Following valence 
categorization, the text above the image changed to indicate that image content should be rated 
for arousal using a nine-point scale. At the beginning of the task, subjects were instructed that 
‘positive’ referred to “something you would want to look at, have, or be close to”, while 
‘negative’ referred to “something you wouldn’t want to look at, have or be close to”. Arousal 
was categorized on a continuum from not emotionally intense at all (1) to extremely emotionally 
intense (9). The task was self-paced and took between 3 and 6 sessions to complete, with each 
session lasting 1.5 hours.  

fMRI Data Acquisition 
FMRI data were collected on a 3T Siemens TIM Trio scanner at the UC Berkeley Brain 

Imaging Center using a 32-channel head coil. An echo-planar T2*-weighted imaging (EPI) 
sequence was used with a decreasing slice series, repetition time (TR) = 2.0s, echo time (TE) = 
34 ms, flip angle = 74, voxel size = 2.4 x 2.4 x 3.0 mm, inter-slice gap = 0.75mm, matrix size = 
98 x 98, field of view = 224 x 224 mm. We prescribed 25 axial slices to cover all of temporal 
and occipital cortices, and as much of frontal and parietal cortices as possible. The first 5 
volumes of each scan were discarded to allow for T1 equilibration effects. Anatomical data were 
collected using a T1-weighted MP-RAGE sequence with 1mm isotropic resolution. A separate 
T1 was acquired at the beginning of each scan session. Peripheral recordings: during fMRI data 
collection, pulse oximetry and respiration data were collected using a Biopac recording system 
(Biopac MP150 Data Acquisition Unit, Biopac UIM100C with Nonin 8600FO for pulse 
oximetry, and Biopac RSP100C with Biopac TSD221 for respiration). Eye tracking was 
performed using an Avotec camera and Arrington Viewpoint software. 

fMRI Data Preprocessing 
FMRI data were preprocessed using Matlab version 8.0 (The MathWorks, Natick, MA) 

and SPM8 (Welcome Department of Imaging Neuroscience, London, UK). Blood oxygen level 
dependent (BOLD) images were first converted from DICOM to NIFTI format. Next, 
diagnostics were run on the BOLD time series from each scan. Following an approach similar to 
that adopted by Power and colleagues (Power at al., 2012), and Carp (Carp, 2013), bad volumes 
(with unusually high changes in mean whole-brain signal intensity) were identified using the 
SPM time-series diagnostic tool tsdiffana.m (http://imaging.mrc-
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cbu.cam.ac.uk/imaging/DataDiagnostics). Among other indices, this tool calculates the mean 
square difference of voxel-wise signal intensities between each volume (n) and the previous 
volume (n-1) and divides this by the mean signal across the whole volume averaged over the 
whole time-series. Volumes (both n and n-1) were rejected using an absolute cutoff (the 
recommended default of 10) as this handles differences between subjects in the noisiness of data 
better than a within-subject percentile cut off. In line with findings by Power and colleagues 
(Power et al., 2012), bad volumes tended to correspond to those with notable spikes in 
movement. Bad volumes were replaced by the average of the volumes on either side. Subsequent 
to this initial data-cleaning step, image realignment was conducted to correct for within run head 
movement and to align images between runs. This was then followed by slice time correction. 
An ‘image on/off’ nuisance variable accounting for variance due simply to image presence was 
regressed out of the preprocessed BOLD data. This was coded with a 1 for volumes with a 
stimulus present and 0 otherwise and convolved with a 4 bin FIR function (FIR time bins: 2-4s, 
4-6s, 6-8s and 8-10 s post stimulus onset). Low-frequency voxel response drift was identified 
using a Savitzky-Golay filter with a 120 s window and 3rd degree polynomials and this was 
subtracted from the signal. The mean response for each voxel within each run was then 
subtracted from the BOLD data to account for fluctuations in BOLD signal values across runs. 
Data were neither normalized to common space nor spatially smoothed in order to retain 
maximal resolution for our voxel-wise modeling. 

fMRI Data Modeling 
Models Constructed 

Each image viewed was labeled with a distinct set of features corresponding to the 
feature space for each of the following models:  

 
(1) The ‘Semantic Only’ model. The feature space for this model comprised the 

following mutually exclusive semantic categories: Human-Face, Human-Body, Human-Body-
Part, Human-Couple, Human-Gathering, Human-Crowd, Land-Mammal, Water-Mammal, Bird, 
Fish, Reptile, Insect, Savory-Food, Dessert-Food, Household-Object, Other-Artifact, Indoor-
Building, Outdoor-Building, Water-Scenery, Sky-Scenery, Land-Scenery. Two subjects (1 and 
3) also viewed a small number of images belonging to two additional categories: Plants and Cars 
(see the Stimuli, Task & Procedure section).  Each image was given a ‘1’ for the semantic 
category to which it was most often allocated, across raters, and a ‘0’ for all other categories.  

 
(2) The ‘Combined Semantic, Valence and Arousal’ (CSVA) model. Ratings from each 

subject were used to label each image for valence (negative, neutral or positive) and arousal 
(high or low). For subjects who did the valence categorization task in the scanner, each image 
was presented either twice (for images shown in model estimation runs) or nine times (for 
images shown in model validation runs). In both cases, the modal valence value was used. For 
cases in which there was no modal value (e.g. for images categorized once as negative and once 
as neutral), if one of the modes was neutral, the image was coded as neutral. All other images 
without modal responses (e.g. those with one negative and one positive categorization) were 
excluded from analysis (mean = 24 images excluded per subject). For the two subjects who did 
the semantic task within the scanner, post-scan valence categorizations were used. Image arousal 
level (high, low) was determined using a within-subject median split on the post-scan 9-point 
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ratings of image arousal; images rated below the median were categorized as low-arousal, and 
those equal to or above the median were categorized as high-arousal. These labels were used to 
subdivide each semantic category by valence and by arousal. In this manner, new composite 
features were created, each of which had a binary (1/0) value for semantic category, valence, and 
arousal (e.g. Human-Body, neutral valence, low arousal = ‘1’). In addition to these semantic by 
valence by arousal features, 18 additional binary (present =’1’, absent = ‘0’) features that carried 
information about both semantic and emotional image content were also included in the CSVA 
model. These comprised:  Mutilated humans, Mutilated animals, Rotten food, Threat directed 
towards the viewer by a human aggressor, Threat-directed towards the viewer by an animal 
aggressor, Threat directed away from the viewer by a human aggressor, Threat directed away 
from the viewer by an animal aggressor, Romantic couples portrait (i.e. face only), Romantic 
couples full bodies, Human babies, Animal babies, Human social interaction portrait, Human 
social interaction single human (e.g. person playing golf), Human social interaction couples, 
Human social interaction gatherings, Erotica portrait, Erotica single human, and Erotica couples. 

 
(3) The ‘Semantic with Valence by Arousal for Animate Stimuli’ model. This model 

included composite semantic by valence by arousal features (as described in the CSVA model 
above) for images belonging to animate semantic categories. Only semantic features were 
included for images belonging to inanimate semantic categories (as in the Semantic Model). In 
other words, information about image valence or arousal was only included for stimuli belonging 
to animate semantic categories. 

 
(4) The ‘Semantic with Valence by Arousal for Inanimate Stimuli’ model This model 

included composite semantic by valence by arousal features (as described in the CSVA model 
above) for images belonging to inanimate semantic categories. Only semantic features were 
included for images belonging to animate semantic categories (as in the Semantic Model). In 
other words, information about image valence or arousal was only included for stimuli belonging 
to inanimate semantic categories. 

 
(5) The ‘Emotion Only’ model. This model included six composite features indicating the 

valence (negative, positive, neutral) and arousal (high, low) values for each image. The semantic 
category of each image was not included in the model. This resulted in each image being 
assigned a single composite feature that was a combination of subject defined valence and 
arousal (e.g. negative, low-arousal). 

 
(6) The ‘Gabor’ Model. This model was used to assess the representation of low-level 

image structure, specifically variation in luminance contrast across the image. Model features 
comprised the results of filtering each image, after it was grayscaled and zero-meaned, with a set 
of 474 Gabor filters that spanned 4 orientations (0, 45, 90, and 135 degrees) and 5 spatial 
frequencies (1.5, 3, 6,12 and 24 cycles/image) across a square grid of spatial locations covering 
the image (500 x 500 px). The filters were spaced using a grid determined separately for filters at 
each spatial frequency such that adjacent Gabor filters were separated by 3 standard deviations of 
the spatial Gaussian envelope. Feature weights were z-scored across all images to normalize 
differences in energy magnitude due to Gabor filter size. Image processing was conducted using 
the STRFlab toolbox for Matlab (strflab.berkeley.edu). 
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Model Estimation  
Model estimation was performed using custom software written in Matlab. For each 

subject, a design matrix was created for each model with regressors that indicated the presence 
(1) or absence (0) of each of the model’s features for each stimulus. Each of these feature 
regressors was convolved with a finite impulse response (FIR) filter, resulting in 4 new 
regressors for each feature, each one representing a time delay of 2-4, 4-6, 6-8 and 8-10 seconds 
from stimulus onset, respectively. Taking the dot product of these regressors with a set of linear 
weights is functionally equivalent to convolution of the original feature with a linear temporal 
kernel that has nonzero entries for 2-4, 4-6, 6-8, and 8-10 second delays. Six movement 
parameters, as estimated by SPM 8, were also included in the model as nuisance regressors. 

For each subject, fMRI data from the model estimation runs were concatenated. L2-
penalized (ridge) linear least square regression was used to find feature regressor weights which 
mapped the model features onto the BOLD time-series for each voxel. L2-penalized regression 
requires specification of a hyper-parameter lambda, which determines the amount of penalization 
applied during feature weight estimation (i.e. how much the feature weights are shrunk towards a 
Gaussian distribution). A range of 10 lambda values logarithmically scaled from 10-9 to 105 
were tested. K-folds cross-validation was used to determine the optimal value of lambda. 
Specifically, for each value of lambda, each model was fit on 9/10ths of the estimation data by 
selecting 27 of the 30 estimation runs without replacement. Using the weights estimated, voxel-
wise BOLD time-series were predicted for the remaining 1/10th of the data. This was repeated 
until all runs had been included once in the held-out data. Concatenating the 10 predicted 
sections of the data resulted in a predicted time-series for the entire estimation dataset for each 
voxel. This complete predicted time-series was correlated with the actual recorded BOLD time-
series and the single lambda value which produced the highest mean correlation value across all 
voxels was selected. Although selecting lambda individually for each voxel would almost 
certainly result in higher model performance, we opted to use a single value across all voxels in 
order to keep feature weights on the same scale and allow for subsequent principal components 
analysis of feature weights across voxels (see below). The final feature weights used were 
created by re-estimating the weights across all the estimation data using the selected best lambda 
value. This fitting procedure was repeated for each model and each subject. 
 
Model Validation 

Model validation was performed using custom software written in Matlab. For each 
subject, the voxel-wise prediction accuracy of each model was assessed using the concatenated 
BOLD time-series from the validation runs. Completely new images were viewed within these 
runs. As in model estimation, a design matrix was constructed for each model by creating 
regressors to indicate the presence or absence of each model feature for each of the images 
viewed during the validation scans. This design matrix was then convolved with four FIR bins 
(2-4s, 4-6, 6-8s and 8-10s post stimulus onset). The feature weights obtained during model 
estimation were multiplied with the FIR-convolved validation design matrix to produce voxel-
wise predicted BOLD time-series for the 6760 seconds of validation data. We correlated these 
predicted time-series with the observed validation BOLD time-series to obtain estimates of 
model prediction accuracy for each voxel, which provide a metric of model fit that controls for 
over-fitting. Permutation testing was used to determine the significance of this correlation for 
each voxel for each model. Please see the Quantification and Statistical Analysis section for 
more details.  
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We note that correlation values reported here are not scaled by each voxel’s noise ceiling, 
and hence are lower than those reported in papers where such scaling is used. Noise ceiling 
calculations require exact repetition of validation stimuli in the same order. This has the 
advantage of allowing a measurement of the amount of explainable variance, assuming that 
responses to the same stimuli in the same order are constant. Given potential issues of 
habituation across multiple presentations for emotional stimuli, we chose to minimize order 
effects by presenting images in a pseudo-randomized Type-1, Index-1 order (Aguirre, 2007). A 
consequence of this is that we separately predict voxel-wise responses to each individual 
presentation of a given stimulus. Inevitably this is noisier than predicting averaged responses 
across several stimulus presentations leading to lower raw prediction values but similar power to 
detect prediction significance given the increased number of data points available without 
averaging. 
 
Model Comparison 

We compared the voxel-wise prediction performance of the CSVA model to that of the 
Semantic only and Emotion Only models. Voxels whose activity were significantly predicted by 
any one of the three models were included in these comparisons. Correlations between predicted 
validation BOLD time-series and actual validation BOLD time-series were computed for each 
voxel for each model as described above. We then calculated the proportion of these correlations 
that were greater for the CSVA model compared with the Semantic Only and Emotion Only 
models. We used a bootstrap test to determine whether this proportion was significant. Please see 
the Quantification and Statistical Analysis section for more details. The same method, and 
cortical mask was used to compare the Semantic Only model against the Semantic with Valence 
by Arousal for Animate Stimuli (SVAA) and the Semantic with Valence by Arousal for 
Inanimate Stimuli (SVAI) models. 

PCA of CSVA model feature weights  
Principal components analysis (PCA) of CSVA model feature weights, across voxels, 

allows us to identify consistent patterns of co-tuning to image features, i.e. to identify image 
features to which voxels tend to show similar responses. We conducted a PCA of CSVA model 
feature weights across all voxels within OTC where the CSVA model fit significantly (as 
assessed by significant prediction of the BOLD time-series for the validation dataset) and 
outperformed the Semantic Only model. The weights from the 4-6 s and 6-8 s FIR bins were 
averaged together for each feature, as these time points correspond to the peak of the BOLD 
hemodynamic response function (HRF). Non-centered PCA was applied to these weights. The 
feature weights associated with vehicle and plant semantic categories were excluded as only 2 of 
the 6 subjects viewed stimuli from these categories. Both group-level and subject-wise PCA 
analyses were conducted. 

For the group-level PCA, voxels were concatenated across subjects. Some of the structure 
in feature tuning across voxels may merely reflect co-variance between stimulus features. Hence, 
we sought to identify the top group PCs for which the amount of variance explained was more 
than achieved by consideration of stimulus features alone. To address this, we used a jackknifing 
procedure. Please see the Quantification and Statistical Analysis section for more details. This 
resulted in the retention of the top three PCs. 
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We next calculated the similarity between the top three group PCs and the top three PCs 
from each subject-wise PCA. This was achieved by correlating the group and single subject PC 
vectors of feature loadings (fig. S4B). Since the ordering of the PCs is by explained variance, the 
ordering of components at the group level may not always be the same as that at the single 
subject level. To ensure we were comparing single subject PCs to group PCs that were capturing 
similar dimensions, the top three single-subject PCs were re-ordered so that each single-subject 
PC was matched to the group PC with which it had the highest correlation. If there were conflicts 
(where the highest correlation for 2 or more single subject PCs was with the same group PC), we 
resolved them by selecting the single subject PC that was closest to the group PC in its ordering. 
This was done recursively where necessary.  

 
Interpreting the top 3 group-level PCs  

By correlating theoretically informative dimensions with each of the group PCs it is 
possible to investigate the aspects of stimulus content encoded by each PC. Each theoretical 
dimension of interest was formalized as a vector comprised of values for each of the CSVA 
model features. We used three theoretical dimensions to explore the representation of animacy. 
The first of these comprised a four-level scale of animacy (Connolly et al., 2012), with inanimate 
objects at the bottom of the 0-3 point scale, followed by invertebrates and non-mammalian 
vertebrates, then non-human mammals, with humans at the top of the scale. We also used a 
simpler binary animacy dimension where features indicating that the stimulus was animate were 
given a ‘1’ and features indicating that the stimulus was inanimate were given a ‘0’. The third 
dimension specifically coded for presence (1) or absence (0) of humans. The remaining 
dimensions encoded the perceived valence (positive =+1; negative=-1, neutral =0) and arousal 
(high = 1; low =0) of stimuli from either animate or inanimate semantic categories. As an 
example, the fourth dimension encoded the perceived valence of all animate stimuli. Here, all 
CSVA composite features indicating an image was perceived as positively valenced and 
belonged to one of the 12 animate semantic categories were given a ‘1’, all CSVA composite 
features indicating an image was perceived as negatively valenced and belonged to one of the 12 
animate semantic categories were given a ‘-1’, and all CSVA composite features indicating an 
image was perceived as neutrally valenced and belonged to one of the 12 animate semantic 
categories were given a ‘0’.  To determine the valence for each of the 18 semantic-emotion 
features in the CSVA model, we took the mode of the valence categorizations for stimuli 
possessing that feature across subjects. Finally, inanimate stimuli were given the value that 
equated to the mean of animate stimulus values, in order to exclude their influence on the 
correlation with the PCs. In a parallel fashion, we also created dimensions that coded inanimate 
stimulus valence, animate stimulus arousal and inanimate stimulus arousal. 

The vector for each theoretical dimension of interest was correlated with the CSVA 
feature loadings for each of the PCs from the group-level PCA on CSVA model feature weights, 
across OTC voxels. We used a bootstrap procedure to assess the significance of these 
correlations. Please see the Quantification and Statistical Analysis section for more details.  

Prediction of behavioral responses  
We next sought to test whether patterns of tuning to semantic and emotional content in 

OTC could predict behavioral responses to the emotional stimuli. To investigate this, Amazon 
Mechanical Turk (AMT) workers were presented with 25 potential behavioral responses and 
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asked to select the response(s) that would be appropriate to take if confronted with the content of 
a given image from our stimulus set. The 25 behavioral responses included were informed by 
recent theoretical work (LeDoux, 2012) and extended to fit our stimulus set. They were as 
follows: Bond with, Take Care of Young with, Nurture/Raise, Procreate with, Be Affectionate 
with, Have Sex with, Play with, Gain Social Support from, Gain Nutrition from, Gain Gustatory 
Satisfaction from, Relieve Thirst with, Use to Facilitate Activity, Take Shelter in, Warm Oneself 
with, Empathic Response to Suffering, Empathic Response to Joy, Prolong Looking at, Curtail 
Looking at, Retreat from, Defend Self from Aggressor, Defend Self from Unwanted Sexual 
Attention, Avoid Predation by Fleeing, Avoid Predation by Freezing, Avoid Disease by Not 
Touching, Avoid Toxins by Not Consuming. In total 49 workers allocated a total of 27516 
behavioral responses with a mean of 2 behavioral responses per worker per image, with 9 
workers evaluating the behavioral responses suited to the content of each image. Four of these 
behavioral responses (Relieve Thirst with, Warm Oneself with, Defend Self from Unwanted 
Sexual Attention, Avoid Predation by Freezing) were rarely assigned to our images (less than 1% 
of total responses) and hence excluded from further analyses.  

In order to compare models’ prediction of behavioral responses, we conducted additional 
PCAs on voxel feature weights for the Gabor model, the Semantic Only model and the Emotion 
Only model, respectively. We included all OTC voxels where the model in question significantly 
fit the validation BOLD time-series. For both the CSVA model and these additional comparison 
models, we projected the vector of feature values for each image into the PCA space of each 
model. This was achieved by calculating the inner product of the images’ feature vector with 
each of the PC loading vectors. For models incorporating emotion features (the CSVA and 
Emotion only models), we used the modal values of valence and arousal, across subjects, for 
each image. For the Emotion Only model, this procedure resulted in 6 PC scores per image, for 
the Semantic Only model, this procedure resulted in 21 PC scores per image. For the remaining 
models, we retained the top 21 PC scores per image to match the number of PCs in the Semantic 
Only model.  

In addition, we conducted PCA on CSVA model image features, across images, 
concatenating design matrices across subjects. We also projected the vector of feature values for 
each image into this PCA space, retaining the top 21 PC scores per image. 

The final step entailed using these PC scores to predict the behavioral responses allocated 
to each image. This effectively allows us to determine how well the tuning captured by each 
model predicts behavioral responses to each image. We conducted a series of regression analyses 
using PCs from each of the PCAs described above. We varied the number of PCs entered as 
regressors; this number was increased in steps of 1 from 1 to n (n = 21 except for the Emotion 
Only model, where n=6), see Fig. 2-6B. In order to control for over-fitting we used leave-one-out 
cross-validation (LOOCV) to calculate the amount of variance explained in the behavioral 
responses (R2). Please see the Quantification and Statistical Analysis section for more details.  

Supplementary PCA across all cortical voxels 
The PCA on OTC CSVA model feature weights, described above, was conducted across 

voxels limited to OTC where the CSVA model showed a significant fit and performed better 
than the Semantic Only model. We anticipated this would best capture the structure of tuning to 
emotional natural stimuli within OTC. To compare the structure of tuning to emotional stimuli 
captured in this manner to that achieved using all cortical voxels whose time-courses were 
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significantly fit by the CSVA model, we repeated the PCA described above relaxing the 
selection criteria – simply including all voxels whose activity was significantly predicted by the 
CSVA model. Figure 2-S5A shows the amount of variance explained by the top 10 group-level 
PCs of this expanded-voxel-selection PCA, and figure 2-S5B shows the correlation between the 
top three PCs from this analysis and those from the OTC-restricted PCA reported in the main 
text. Figure 2-S5C shows the projection of PC scores from this supplementary PCA onto cortical 
flatmaps.  

Visualization of fMRI results 
Flatmap Construction and ROI labeling 

Cortical flatmap construction was conducted using PyCortex (Gao et al., 2015). This 
python tool makes use of the Freesurfer image analysis suite for cortical reconstruction and 
volumetric segmentation (http://surfer.nmr.mgh.harvard.edu/). Following initial automatic 
segmentation, white matter and pial surface maps were hand edited to remove any remaining 
artifacts and the surface was regenerated. In order to flatten the cortical surface, five relaxation 
cuts were made into the surface of each hemisphere and the surface crossing the corpus callosum 
was removed. The calcarine sulcus cut was made at the horizontal meridian in V1 using 
retinotopic mapping data from Session 1 as a guide.  

Early visual regions V1-V4 were defined using the retinotopic mapping data. In addition, 
a simple semantic model with 8 categories (Faces, Bodies, Body Parts, Multiple People, 
Animals, Food, Objects, Scenes) was fit to the estimation data and used to identify the following 
functional landmarks on each subject’s flat map: RSC, Retrosplenial Complex; OPA, Occipital 
Place area; LO, Lateral Occipital cortex; pSTS, Posterior Superior Temporal Sulcus; EBA, 
Extrastriate Body Area; OFA, Occipital Face Area; FFA, Fusiform Face Area; PPA, 
Parahippocampal Place Area; ATFP, Anterior Temporal Face Patch. We also label the following 
sulci: IPS, Intraparietal Sulcus; STS, Superior Temporal Sulcus; ITS – Inferior Temporal Sulcus; 
CoS, Collateral Sulcus; Post-CS, Post Central Sulcus; CS, Central Sulcus; SF, Sylvian Fissure. 
Note, these ROIs are only for orientation of the viewer and were not used to constrain any of our 
analyses.  

 
Display of PC scores on the cortical maps 

A RGB color key was used to project voxel-wise PC scores for the top three group PCs 
onto individual subjects’ cortical maps (red = loading on PC1, green = loading on PC2, blue = 
loading on PC3). Voxel-wise PC scores were calculated as the product of CSVA model feature 
weights for a given voxel by feature loadings for each PC. PC scores were thresholded at 6 
standard deviations above and below 0, with values beyond the threshold given the maximal (or 
minimal) value. Thus, a value of 0 for a given color channel is 6 s.d.’s below a PC score of 0, a 
value of 128 for a given color channel has a PC score of 0, and a value of 255 is 6 s.d.’s above a 
PC score of 0. 

Quantification and Statistical Analysis 
Model prediction significance testing 

We calculated voxel-wise prediction accuracies for each model for each subject. As 
described further in the Methods section above, the feature weights obtained during model 
estimation were multiplied with the FIR-convolved validation design matrix to produce voxel-
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wise predicted BOLD time-series for the validation data-set. We calculated voxel-wise 
prediction accuracy scores by correlating these predicted time-series with the observed validation 
BOLD time-series. Permutation testing was used to determine the significance of model 
prediction for each voxel. The following procedure was used. We randomly shuffled validation 
data-set images without replacement, and convolved the resulting feature regressors with the FIR 
filters to create a randomized FIR-convolved validation design matrix. This randomized design 
matrix was then multiplied by the feature weights for each voxel from model estimation. This 
created a predicted validation BOLD time-series for each voxel. This predicted time-series was 
correlated with the observed validation BOLD time-series for the same voxel. This was repeated 
5000 times for each voxel, producing a null distribution of prediction accuracy scores (i.e. 
correlations) for each voxel. Significance was determined on a voxel by voxel basis by 
evaluating the proportion of values in this null distribution that fell below the actual prediction 
accuracy score for that voxel for the model in question. We corrected for multiple comparisons 
by using the Benjamini-Hochberg procedure to apply a false discovery rate (FDR) correction 
across all cortical voxels within the subjects’ flat-map (q < 0.05).  

 
Model Comparison 

In order to compare model fit between two models a bootstrap procedure was used to 
estimate a distribution of prediction accuracy scores for each voxel for each model by resampling 
across the 20 validation runs with replacement, 1000 times. Pairs of models were compared by 
examining the relative proportion of voxels better predicted by one model than the other, for 
each of these 1000 iterations. We calculated a z-value from the mean and standard error across 
these 1000 ratio values, after subtracting 0.5 (chance level, both models perform equally). A p-
value indicating the extent to which one model was superior to the other was then computed 
from the resulting z-value.  

 
Principal component significance testing  

We conducted group-level and subject-wise PCAs of CSVA model feature weights, 
across voxels (see Methods for voxel selection, time-bin selection, and other details.) For the 
group-level PCA, voxels were concatenated across subjects. In order to determine which group 
PCs explained significantly more variance than stimulus features alone we conducted a jackknife 
test. Thirty sets of voxel-wise feature weights were created by holding out each estimation run in 
turn and estimating the feature weights for each voxel using the remaining twenty-nine runs. 
PCA was conducted on each of the resultant thirty sets of feature weights. A standard jackknife 
test was used to determine whether the amount of variance explained by the top PC from each of 
these jack-knifed PCAs was significantly greater than that explained by the top stimulus feature 
PC (i.e. the first component from a PCA conducted on the presence or absence of stimulus 
features across images). This procedure was repeated for subsequent PCs until the difference in 
variance explained by the PC from the group PCA of CSVA model feature weights, across 
voxels, and the corresponding stimulus PC was no longer significant. This procedure was used to 
determine the group PCs retained for further consideration. 

 
Relating PCs to hypothetical dimensions 

Three PCs were retained from the group PCA of CSVA model feature weights (see 
section above). We investigated the aspects of stimulus content encoded by each of these PCs by 
correlating each of them with hypothetical dimensions of interest. The hypothetical dimensions 
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were formalized as vectors comprised of values for each of the CSVA model features (see 
Methods for further details). To assess the significance of correlations between the PCs and the 
hypothetical dimensions, we created a bootstrapped distribution for each correlation using 
randomized sampling with replacement. Specifically, we resampled CSVA model features with 
replacement 5000 times and re-estimated the correlations between the group PCs and 
hypothetical dimensions across the sampled features. In this manner, we obtained a distribution 
of 5000 values for each correlation. This distribution was then used to conduct a bootstrap test 
for significance and to obtain the 95% confidence interval. An alpha threshold of 0.05 was used 
to determine significance.  

 
Predicting behavioral responses from OTC tuning  

We investigated how well OTC tuning, as captured by the CSVA model, could predict 
behavioral response to the images viewed. We compared this prediction performance with that of 
three alternative models of OTC tuning and with that achieved using image features (as labeled 
by the CSVA model) as opposed to brain responses to these features. In each case, feature 
dimensionality was reduced using PCA. 

More specifically, PCA was conducted on feature weights for each of the four models 
considered (see Methods), across OTC voxels, and the inner product of each images’ feature 
vector with each of the PC loading vectors calculated. This gave a score for each image on each 
PC for each model. PC scores for each image were also obtained using PCA on the CSVA model 
image features themselves.  

These PC scores were entered into regression analyses to predict behavioral responses for 
each image (see Methods). We used leave-one-out cross-validation (LOOCV) to calculate the 
amount of variance in behavioral responses explained. This form of cross-validation controls for 
over-fitting of the behavioral responses. For each model, and each behavioral response, each of 
the images was left out one at a time. The PC scores for the other images were then used to 
predict the proportion of raters that allocated the behavioral response to the left out image. This 
was conducted in turn for all of the images. The amount of variance explained was summed 
across iterations, giving the total amount of variance in workers’ selection of this one behavior 
that could be explained by a given set of PC scores. This was repeated across behaviors. This 
LOOCV R2 value was then scaled by the total explainable variance in behavioral mappings (this 
reflecting the consistency in behaviors selected for each image across MTurk workers.) 
Bootstrapping across images was used to determine confidence intervals for the scaled LOOCV 
R2. Specifically, across 1000 iterations, images were randomly sampled with replacement, and 
the above procedure repeated. The resultant 1000 scaled LOOCV R2 values were used to 
calculate confidence intervals. 

 
Transforming prediction accuracies to z-values 

We transformed model prediction accuracies to z-values for display on each subject’s 
cortical map (Fig. 2-2 and figs. 2-S1 – 2-S3). To do so, we first converted the correlation of the 
predicted and actual validation BOLD time-series to a t-statistic using the following equation: 

 
t = r*sqrt((n-2)/1-r^2) 
 
where r is the Pearson correlation coefficient and n is the number of validation volumes 

(3380). We then converted that t-statistic to a z-value by first finding the probability of the t-
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value using the student’s-t cumulative distribution function, and then using the normal 
probability density function to find the z-value associated with that probability value. 

Supplemental Figures 
 

 

  
Figure 2-S1. Improvement in voxel-wise prediction accuracies for the CSVA model relative 
to the Emotion Only Model. 
Cortical maps for each subject show voxels where prediction accuracy was greater for the CSVA model than the 
Emotion Only model. Voxel-wise prediction accuracy values for each model were z-transformed and subtracted (see 
the Quantification and Statistical Analysis section of the Star Methods for full details). Only voxels whose activity 
was significantly predicted by any one of the following three models were included in these comparisons: CSVA, 
Emotion Only and Semantic Only. 
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Figure 2-S2. Improvement in voxel-wise prediction accuracies for the CSVA model relative 
to the Semantic Only Model. 
Cortical maps for each subject show voxels where prediction accuracy was greater for the CSVA model than the 
Semantic Only model. Voxel-wise prediction accuracy values for each model were z-transformed and subtracted 
(see the Quantification and Statistical Analysis section for full details). Only voxels whose activity was significantly 
predicted by any one of the following three models were included in these comparisons: CSVA, Emotion Only and 
Semantic Only. 
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Figure 2-S3. Cortical tuning to stimulus emotional content is greatest for animate stimuli. 
(A). We examined the extent to which including the valence and arousal of either animate or inanimate stimuli 
improved model fit over and above modeling semantic category information alone. To investigate this, we 
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constructed two additional models. The Semantic with Valence by Arousal for Animate Stimuli (SVAA) model 
includes features for each semantic category, but only stimuli belonging to animate semantic categories are also 
labeled for valence and arousal. The Semantic with Valence by Arousal for Inanimate Stimuli (SVAI) model 
includes features for each semantic category, but here only stimuli belonging to inanimate semantic categories are 
labeled for valence and arousal. (B) This plot shows the percentage of cortical voxels where the SVAA and SVAI 
models, respectively, outperformed the Semantic Only model, for each individual subject (see the Model 
Comparison section of the Star Methods for details). For all six subjects, labelling valence and arousal features for 
animate images improved model fit to a greater extent than labelling valence and arousal features for inanimate 
images (* = p<.005). Significance was calculated using a bootstrap test (see the Quantification and Statistical 
Analysis section of the Star Methods for details). (C) Here we show relative prediction accuracies for the SVAA 
model versus the SVAI model projected onto cortical maps for each subject. This subtraction effectively indicates 
the extent to which baseline prediction accuracies achieved by modeling image semantic category are improved to a 
greater extent by including valence and arousal features for animate than for inanimate stimuli.  
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Figure 2-S4. Results of group-level PCA on CSVA model feature weights when voxel 
selection is expanded to include all cortical voxels where the CSVA model showed a 
significant fit.  
(A) The top three PCs from this analysis explained significantly more variance than the top three stimulus PCs 
(jackknife test, p < 10-8;, stimulus PCs derived from PCA on the design matrix concatenated across subjects). This 
parallels the finding from the PCA reported in the main text where two additional voxel selection criteria were used 
(voxels within OTC only; CSVA model fit > Semantic Only model fit), see Fig. 2-4. (B) Correlation matrix shows 
correlations between the top three Group PCs from this ‘expanded’ voxel-selection PCA and the ‘restricted’ voxel 
selection PCA reported in the main text. Each corresponding PC shows a correlation of r>=0.95.   
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Figure 2-S5. PC scores from the CSVA model are projected onto OTC flat maps for each 
subject. 
A principal components analysis (PCA) was conducted on CSVA model feature weights for all OTC voxels where 
CSVA model fit was significant and superior to that of the Semantic Only model. PC scores were calculated as the 
product of CSVA feature weights for a given voxel by feature loadings for each PC. Here, a RGB color space is 
used to map PC scores onto cortex (red = scores on PC1, green = scores on PC2, blue = scores on PC3). PC scores 
are thresholded at 6 standard deviations above and below 0 with values beyond the threshold given the maximal (or 
minimal) color channel value. Consistent spatial structure of voxel-wise tuning to the top three group PCs is 
observed across subjects. Note. Areas where MRI data was not acquired are shown in black. Both voxels where the 
CSVA model did not fit significantly and those where the CSVA model fit significantly but did not outperform the 
semantic only model were excluded from the PCA (these voxels are shown in grey). PCA maps using CSVA model 
feature weights from all voxels where the CSVA model fit significantly are given in fig. 2-S6.   
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Figure 2-S6. PC scores from PCA on CSVA model weights, across all cortical voxels where 
the CSVA model fits, are projected onto cortical flat maps for each subject. 
Here, we map PC scores onto cortex using the top three PCs from PCA on CSVA model weights across all cortical 
voxels where the CSVA model fit was significant. As illustrated in fig. 2-S4, when voxel selection is expanded in 
this manner, the top three PCs are highly correlated with those from the OTC analysis reported in the main text 
(rs>.95). As in Fig. 2-5 and fig. 2-S5, a RGB color space is used to map PC scores onto cortex (red = scores on PC1, 
green = scores on PC2, blue = scores on PC3). PC scores are thresholded at 6 standard deviations above and below 
0.  
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Chapter 3. Addressing Limitations of Chapter 2  

Introduction 

In the previous chapter we reported findings from a voxel-wise modeling (VWM) fMRI 
study that explored representation of naturalistic emotional stimuli within occipital-temporal 
cortex (OTC). We found that subjective emotional valence and arousal, in addition to semantic 
category information, were represented within OTC, that this representation of emotional content 
was predominantly present for animate as opposed to inanimate stimuli, and that tuning to 
combined emotional and semantic content within OTC better predicted appropriate behavioral 
responses than did the image features themselves, OTC tuning to low-level structural image 
information, or OTC tuning to semantic or emotional content alone. Here, I address potential 
limitations of this study at both a theoretical and empirical level.   

First, I will address potential theoretical limitations of the study through two literature 
reviews. In chapter 2 we claim that we’ve found evidence for representation of emotional content 
in addition to semantic content. One potential criticism is that we have not clearly specified how 
we define ‘semantics’. Of pertinence to this is an active debate as to whether OTC simply 
differentiates visual object categories (Goodale & Milner, 1992), or represents more abstract 
semantic information. If OTC representations can be used to determine appropriate behavioral 
responses to emotional stimuli, as we suggest in chapter 2, then it is important that OTC can 
represent the abstract semantic content of those emotional stimuli, and not just visual features of 
them. Thus, the first literature review (section 1) will report on a fairly new body of work which 
addresses the question of whether OTC representation subserves visual object category 
information, or whether it represents supramodal (i.e. a combination of visual, auditory, 
gustatory, or tactile stimuli) semantic information.  

The second theoretical issue to be addressed concerns whether we can distinguish 
representation of stimulus emotional content from influences of emotional salience on attention. 
While studies of how emotional visual stimuli are represented within OTC are few, there is a 
large literature which has studied how emotional visual stimuli influence attention. The 
behavioral effects, and neural underpinnings, of this type of attentional modulation will be 
reported in the second literature review (section 2). 

In addition to the above theoretical issues, this second chapter will also address some 
empirical limitations of the study reported within chapter 2. In total, seven quantitative follow-up 
analyses are reported, conducted e using the same fMRI data set as used in the analyses of 
chapter 2. A recent study (Chikazoe et al., 2014) exploring representation of semantic and 
valence information within ventral temporal cortex (VTC) found representation for both using a 
form of multivoxel pattern analysis (MVPA) called representational similarity analysis (RSA), as 
well as a traditional univariate SPM analysis. In chapter 2 we argued that using VWM, which is 
a powerful new approach to neuroimaging, allowed us to discover the combined representation 
of semantic and emotional tuning within OTC that we found. In order to demonstrate whether the 
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findings we’ve reported on in chapter 2 could have been found using other methods, both RSA 
and univariate SPM analyses were conducted. We report those in sections 3 (RSA) and 4 
(univariate SPM analysis) of follow-up analyses.  

Figure 2-2 (and figs 2-S1 - 2-S3) shows the results of a model comparison between the 
full combined semantic, valence, and arousal (CSVA) model and semantic only and emotion 
only models. This revealed that the CSVA model outperformed both semantic only and emotion 
only models within OTC. Variance partitioning is a technique that allows the total variance 
explained by a model to be partitioned into unique and combined partitions for several subsets of 
model features. In section 5 we report findings from a variance partitioning of CSVA model 
explained variance across cortex, which is a more precise way of determining whether the full 
CSVA model outperforms models containing either only semantic or emotional features.  

In chapter 2, a PCA was done across voxel feature weights within OTC to determine the 
primary dimensions of tuning within that region, and those dimensions were then used to predict 
appropriate behavioral responses to all stimuli used in the study. It is known that representations 
within regions of early-visual cortex (EVC) such as V1 are well modeled using low-level 
structural features of visual stimuli (such as Gabor wavelets), while regions of OTC not within 
EVC are better modeled by semantic categories than low-level features (Naselaris et al., 2009). 
In order to determine whether the results of the OTC PCA done in chapter 2 could be driven by 
voxels within EVC, two separate PCAs were done on voxels within EVC, and those within OTC 
regions outside of EVC. The results from these analyses were then used to predict appropriate 
behavioral responses to the study images, as was done in chapter 2. Those results are reported in 
section 6.   

Chikazoe and colleagues (2014) and others (Ongur & Price, 2000; Shenhav, Feldman-
Barrett, & Bar 2013) have reported representation of emotional valence within the part of frontal 
lobe known as orbitofrontal cortex (OFC). In order to compare our findings from OTC with 
OFC, and other frontal regions, additional PCAs were conducted on voxel feature weights from 
OFC voxels, as well as all frontal voxels not within OFC (motor cortex was also excluded) and 
reported in section 7.  

While OTC is better modeled by semantic categories than low-level structural features 
(Naselaris et al., 2009), regions within OTC are still retinotopically organized (Arcaro et al., 
2009; Grill-Spector & Weiner, 2014) and thus any correlations between CSVA model stimulus 
condition and location of that stimulus within the visual field could result in type II error that is 
not about the CSVA conditions of interest, but rather our choice of stimuli. Another key issue is 
that fMRI coding may reflect axonal inputs into a region rather than the region's representational 
tuning itself (Logothetis, 2001; Logothetis et al., 2008). Hence controlling for gabor 
representation allows us to control for such influences from early visual cortex upon the bold 
activation in later OTC regions. In order to determine whether the results of the PCA on voxel 
feature weights conducted within OTC were not a result of retinotopic organization correlated 
with semantic category, we controlled for the effects of a Gabor wavelet model on the BOLD 
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signal and re-fit the PCA. Results from this new PCA, and their comparison with the original 
PCA results from chapter 2, are reported in section 8.  

Finally, physiological arousal is known to modulate the fMRI BOLD signal (Verstynen 
& Deshpande, 2011). It has been argued that emotional stimuli may give rise to physiological 
arousal and hence activation thought to reflect the emotional content of stimuli might merely 
reflect associated physiological arousal. To control for this, we included nuisance regressors in 
our VWM CSVA model created from respiration rate and pulse oximetry data collected at scan 
time. The results of this control analysis are reported in section 9. 
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1. Literature Review: Supramodal Representations within OTC 

As part of the visual cortex, the ventral occipital temporal cortex (VOTC) has 
traditionally been thought of as playing “the major role in the perceptual identification of 
objects” (Goodale & Milner, 1992). In that seminal 1992 work, Goodale & Milner suggested that 
the visual cortex can roughly be divided into two pathways. The ventral pathway, consisting of 
regions within VOTC and labelled the “what” pathway, was thought to be responsible for object 
recognition. The dorsal pathway, consisting of regions of the posterior parietal cortex and 
labelled the “where” pathway, was thought to “mediate the required sensorimotor 
transformations for visually guided actions”. A large body of neuroscientific research exists 
which spans decades and which has examined the functional properties of neural processing 
within visual cortex (for a review see Grill-Spector & Weiner, 2014). Recently however, the 
field has seen a renewed interest in VOTC processing following the huge successes of artificial 
deep neural networks to classify image object categories, starting with AlexNet in 2012 
(Krizhevsky, Sutskever & Hinton, 2012). This renewed interest has raised some interesting new 
questions concerning the nature of processing within VOTC. Does VOTC simply extract object 
categories for use by other brain regions responsible for cognitive processes such as memory, 
decision making and cognitive control as the traditional view holds? Or are its representations 
idiosyncratically specialized to subserve the appropriate behavioral outcomes, such as 
navigation, social cognition and tool use, that are appropriate to the various types of objects it is 
selective to? Is the observed VOTC category selectivity supramodal in nature, integrating 
information for auditory, tactile, and other sensory modalities? And are the representations found 
within VOTC semantic in nature, or is the object selectivity observed simply a function of 
groupings of complex visual features? While these questions are still largely unanswered, several 
recent and compelling review articles make arguments in attempts to answer them.  

The first of these articles, by Ricciardi et al (2014), reviews a growing body of literature 
investigating both VOTC processing of object categories and posterior parietal processing of 
motion discrimination and spatial localization, all within the congenitally blind. Previous work in 
sighted individuals has found evidence for multi-modal object representations (including 
auditory, tactile, olfactory, and gustatory stimuli) within VOTC regions (Amedi et al., 2005a, 
2005c; Peelen et al., 2010; Ricciardi et al., 2006; Lacey et al., 2007; Pascual-Leone and 
Hamilton, 2001). These findings suggest that VOTC may represent more than simply visual 
object categories, but rather represent supramodal semantic information. As many authors have 
pointed out however, these findings could simply be VOTC activity that results from the recall of 
visual imagery, which is known to elicit similar VOTC responses to those elicited by visual 
stimulation of the same stimulus (Ishai, 2010; Ishai et al., 2000). Studies of supramodal VOTC 
object category selectivity within the congenitally blind overcome the limitations of these 
studies, as congenitally blind individuals have no visual memories to recall. Nearly 40 such 
studies outlined by Ricciardi and colleagues (2014) have shown similar patterns of activity 
within VOTC both between sighted and congenitally blind subjects, and across sensory 
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modalities (for example: De Volder et al., 2001; Lambert et al., 2004; Pietrini et al., 2004; Poirier 
et al., 2006; Ptito et al., 2009; Ricciardi et al., 2007; Vanlierde et al., 2003; Weeks et al., 2000). 
These studies use stimuli such as: visual images; auditory sounds elicited by the objects in 
question; written, spoken or braille words; haptic stimulation; and sensory substitution devices, 
which create non-visual “sensory-scapes” through training. For example, Mahon et al. (2009) 
found that the well studied animate-inanimate gradient found from medial-to-lateral VOTC is 
present in congenitally blind subjects using auditory stimuli, and sighted subjects using both 
auditory and visual stimuli. Ricciardi (2014) also present evidence from numerous studies on 
cross-modal cortical plasticity in both the congenital/early blind and patients with later onset 
blindness. Here a differentiation is made between cross-modal plasticity, defined as the 
“potential of the human brain to reorganize itself” under sensory deprivation (blindness in this 
case), and supramodal representation, defined as an abstract structural or semantic representation 
not attributable to cortical plasticity. These studies highlight differences between 
congenitally/early blind subjects and sighted subjects. Task difficulty differentially affects the 
recruitment of occipital cortex between congenitally blind subjects and sighted subjects, where 
higher cognitive, perceptual, and simple sensorimotor tasks activate occipital cortex in sighted 
subjects but only higher cognitive and perceptual tasks do so in congenitally blind subjects 
(Noppeney, 2007). Additionally, cross-modal functional activations are smaller in those with 
later onset blindness than in those with congenital/early blindness, suggesting that cortical 
plasticity decreases as a function of the age at which blindness occurs. Ricciardi and colleagues 
argue that, while cross-modal cortical plasticity is a real phenomenon in which regions of 
sensory cortex not utilized due to lack of afferent innervation are repurposed, this phenomenon 
cannot account for the similar supramodal activation observed in both sighted and blind subjects 
such as that seen in the Mahon et al. 2009 study. While these findings provide compelling 
evidence of supramodal semantic representation of object category within VOTC, in a recent 
paper, van den Hurk et al. (2017) point out that these studies utilize congenitally/early blind 
subjects, most of whom have had some minimal visual stimulation, if not visual experience. To 
address this concern, van den Hurk and colleagues studied congenitally blind subjects where a 
portion had anophthalmia, a disorder characterized by an absence of oculi (eyes). Using face, 
body, scene and object related natural sounds they found that information contained within 
VOTC responses in the congenitally blind could discriminate these stimulus categories. 
Furthermore, they found that MVPA models built using that the patterns of activity in blind 
subjects could successfully be applied to the brain activity of sighted subjects in order to predict 
the visual object categories seen when that brain activity was recorded. This is perhaps the 
strongest evidence to date that VOTC represents supramodal semantic information concerning 
object categories.  

In a more nuanced reading of the literature regarding supramodal representation within 
VOTC, Bi, Wang & Carmazzo (2014) concluded that supramodal (or multi-modal) 
representations within VOTC exist in a heterogeneous fashion dependant on the object category, 
or domain, of the stimulus. Bi argues for a tripartite distinction in multi-modal representations 
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within VOTC across object domains related to (i) spatial navigation, (ii) animate (non body-part) 
items, and (iii) body-parts and manipulable objects. Regions within medial fusiform gyrus and 
parahippocampal gyrus are well known to show selectivity to pictures of scenes and buildings 
(Epstein & Kanwisher, 1998), and have been implicated in spatial navigation tasks (Kamps, Lall 
& Dilks, 2016; Park & Chun, 2009). Across several studies of the congenitally blind, supramodal 
representations were found within these regions, elicited by various domains including haptic 
touch (Wolbers et al., 2011) and auditory words (He at al., 2013). Studies of sighted individuals 
showed similar results, eliciting multi-modal VOTC activity to scene and building stimuli 
(Fairhall et al., 2014; Adam & Noppeney, 2010). Animate items more strongly activate regions 
of lateral posterior fusiform cortex. In the congenitally blind, various forms of stimuli depicting 
either human faces or non-human animals elicited no lateral posterior fusiform selectivity when 
presented as auditory words (Mahon et al., 2009), mental imagery (Lambert et al, 2004), or 
haptic stimulation (Kitada et al., 2010). Numerous studies in sighted studies showed conflicting 
results for supramodal representation within lateral posterior fusiform cortex. Lateral occipital 
temporal cortex (LOTC) shows strong selectivity to images of body parts and small, manipulable 
objects. Across multiple modalities, selectivity to tools in LOTC was seen in both sighted (Lewis 
et al., 2005; Noppeney et al., 2006; Tranel et al. 2005) and congenitally blind subjects (Peelen et 
al., 2013). Studies that tested activity related to body-parts also found supramodal representation 
within LOTC, including verbal or haptic stimuli in sighted subjects (Costantini et al, 2011) and 
haptic and sensory substitution devices in congenitally blind subjects (Striem-Amit & Amedi, 
2014; Kitada et al., 2014). Selectivity to words (Le et al. 2000; Rogers et al., 2006) and visual 
imagery (Kitada et al. 2009) in sighted subjects did not not show supramodal representation to 
tools or body-parts within LOTC, however. Thus, a closer reading of the empirical findings 
regarding supramodal representation within VOTC reveals evidence for supramodal 
representation of some object categories (i.e. scenes/buildings and body-parts/tools), but not 
other object categories (i.e. animate human faces, bodies and non-human animals). This 
conclusion is in contrast to the conclusions made by Ricciardi and colleagues that supramodal 
representation exists within VOTC without regard to object category. Interpreting these findings 
as a whole, Bi and colleagues further speculate that the relationship between the visual shape and 
functional relevance of the objects in this tripartite domain classification drives these observed 
differences in VOTC supramodal representations. They argue that visual shape strongly 
constrains our ability to physically interact with inanimate objects, and to a much smaller degree, 
and in a less articulated manner, for animate objects. This differentiation suggests that visual 
features of inanimate artifacts may be defined both by their visual characteristics and their 
potential action value, and thus their representations may be accessible through different 
modalities, making them supramodal. For example, a long thin object (e.g. a knife) affords the 
act of cutting while a flat solid object (e.g. mallet) affords the act of pounding. Whereas the 
affordances animate objects confer are much less dependent upon their size and shape than are 
inanimate artifacts. For example, a dog and wolf can have a very similar size and shape, but the 
dog often affords approach and petting while the wolf afords avoidance. Or a ladybug may afford 
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cultivation as they are considered cute and beneficial to gardens, but a black widow spider 
affords an avoidance response as it is deadly. 

Extending the arguments made by Bi et al. that some object category representations 
within VOTC combine visual shape and action potential information, Peelen and Downing 
(2017) recently argued that object recognition of all object categories is unlikely to fully account 
for the category selectivity observed in VOTC. Rather, they argue that VOTC representations are 
likely tuned in an idiosyncratic fashion in support of various behaviors relevant to the different 
object domains, such as spatial navigation for scenes, social cognition for human faces and 
bodies and tool use for objects and body parts. They cite several studies which show that VOTC 
category selectivity can be dissociated from high-level visual object representations. For 
example, Weisberg et al, (2007) showed that LOTC activity to images of complex novel objects 
increased after training subjects to use those objects as tools, suggesting that LOTC represents 
how objects can be used as tools, not just the (perhaps view-invariant) shape representation of 
those objects. Pointing to the previously mentioned literature on the congenitally blind, Peelen & 
Downing argue that the supramodal nature of object representation within VOTC supports the 
hypothesis that these regions are tuned to allow for domain-appropriate behavioral responses. 
Additionally, they cite increasing evidence for selective connectivity between category-selective 
VOTC regions and other brain regions known to serve domain-related functions (Bracci et al., 
2012; Hutchison et al., 2014; Simmons and Martin, 2012). For example, a recent functional 
connectivity analysis (Simmons and Martin, 2012) using the posterior superior temporal sulcus 
(implicated in biological motion) as a seed region found connectivity to multiple regions 
involved in social cognition, including fusiform face area, posterior cingulate/precuneus 
(involved in theory of mind), insula (associated with visceral-emotive responses), anterior 
temporal pole (representations of social information), medial prefrontal cortex (underlies social 
reasoning) and amygdala. Taken together, this combination of functional, as opposed to visual 
object, representation, supramodal representation, and connectivity with functionally related 
brain regions suggests that VOTC “category-selective responses are closely aligned with 
knowledge of what a thing means to the observer; that is, the cognitions and behaviors an object 
is associated with.”  

If semantic representation is defined as the combination of supramodal representation and 
tuning to object function, and not just shape, these recent empirical and theoretical advancements 
towards understanding representations within VOTC suggest that semantic information is indeed 
represented within VOTC. Using this definition of semantic information does not, however, 
eliminate the possibility that semantic information is also represented in other regions. For 
example, a large literature on semantic representations within the temporal pole (see Binder & 
Desai, 2011 for a review), as they relate to memory, indicates that indeed supramodal 
representations exist there as well. One possible explanation for this could be that supramodal 
semantic information is represented in different regions for use in different cognitive or 
behavioral processes. OTC could store supramodal semantic information relevant to appropriate 
behavioral action, while temporal pole represents supramodal semantic information relative to 
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memory formation and retrieval. For example, Simmons and Martin (2012) and Hutchison et al. 
(2014) showed that temporal regions (pMTG) implicated in tool use are functionally connected 
with ventral premotor regions. There is no a priori reason to believe that the brain contains only 
one region to store abstract semantic information about the world.  

In chapter 2 we reported findings indicating that a combined semantic valence and 
arousal model (CSVA) predicts bold activity in much of OTC, and that it does better than either 
a semantic or valence by arousal model alone. A principal components analysis of voxel feature 
turning revealed that primary dimensions of representation within OTC include not only 
semantic information (animacy), but arousal for both animate and inanimate stimuli, and valence 
for animate stimuli. We then showed that at low dimensionality, tuning from OTC to the CSVA 
model better predicted appropriate behavioral responses to the emotional stimuli used to fit the 
model, than did stimulus features alone, low-level structural Gabor features, or semantics and 
valence by arousal alone. These findings are in line with the hypothesis that OTC represents 
semantic information tuned to appropriate behavioral response. Furthermore, it extends this 
theoretical position by suggesting that valence and arousal are important dimensions of 
representation within OTC that contribute to determining what the appropriate behavioral 
response should be. 
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2. Literature Review: Perception and Attention for Emotional 
Images 

Within the attention and motivation literatures, a substantial number of studies have 
investigated the differential effects of negative (versus neutral or positive) stimuli on behavior, 
and to a much less degree of emotional (versus neutral) stimuli. Across numerous visual tasks, 
increases in attention to negative, relative to neutral or positive, stimuli have been observed (for 
reviews see: Vuilleumier, 2005; Pourtois, Schettino, & Vuilleumier, 2013). This increased 
attention confers “prioritized processing” upon stimuli of high survival value (i.e. emotional 
stimuli). For example, visual search tasks are done faster when the target is either a negative 
stimulus compared with a neutral stimulus (Ohman et al., 2001) or positive and negative stimulus 
relative to emotional stimulus (Eastwood et al., 2001), and this effect cannot be explained by 
low-level visual features such as contrast or luminance. In an emotional stroop task, with words 
classically conditioned to negative stimuli, subjects takes longer to read the words for emotional 
(negative) stimuli than they do for neutral stimuli (Richards & Blanchette, 2004). Tasks invoking 
the attentional blink are less often missed when the preceding stimulus is emotional (negative or 
positive) versus neutral (Anderson, 2005). Using binocular rivalry tasks, Alpers and colleagues 
have found that emotional (positive and negative) images are the first to be perceived, and 
occupy consciousness for more time, than do neutral images (Alpers & Pauli, 2006; Alpers & 
Gerdes, 2007). Additionally, fearful faces break into consciousness more quickly than do happy 
faces or neutral faces in a continuous flash suppression paradigm (Yang, Zald, & Blake, 2007). 
Finally, in tasks utilizing exogenous cueing (dot probe task) to elicit spatial orienting behaviors, 
invalid negative cues are more distracting that neutral invalid cues (Brosch et al, 2011; Mogg & 
Bradley, 1999; Pourtois, et al., 2005). This confluence of evidence for the prioritized processing 
of emotional stimuli raises the question, what brain mechanisms are responsible for this 
prioritized processing? 
 Increased activity to emotional stimuli, relative to neutral stimuli, has been repeatedly 
observed within sensory cortices across numerous fMRI, PET, EEG & MEG neuroimaging 
experiments. This effect has been found in visual cortex using varied stimuli types such as 
images of faces depicting both positive and negative emotional expressions (using PET: Morris 
et al., 1998; and using fMRI: Pourtois et al., 2010; Phan et al., 2002), negative threat words 
(using fMRI: Tabert et al., 2001), complex positive and negative emotional scenes (using PET: 
Lane et al., 1999; and using fMRI: Sabatinelli et al., 2005, 2007, 2010), and fear-conditioned 
stimuli (using fMRI: Armony & Dolan, 2002). Primary visual cortex (area V1) as well as several 
regions of extra-striate cortex (e.g. FFA, EBA) have shown this increased activity for emotional 
rather than neutral stimuli. Additionally, these effects seem to occur regardless of whether the 
subject is attending to the emotional stimulus or not (Morris et al., 1998; Vuilleumier et al., 
2001). Enhanced activation to emotional stimuli has also been observed within auditory cortex, 
in response to angry and happy voices (Grandjean et al., 2005; Ethofer et al., 2012, 2009), as 
well as nonverbal vocalizations such as screams (Fecteau et al., 2007). Vuilleumier and 
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colleagues (2005, 2013) have argued that this increased activity in response to emotional versus 
neutral stimuli within sensory cortices is a plausible mechanism for the observed prioritized 
processing of such emotional stimuli, and may be mediated by the amygdala as will be discussed 
later on. Other forms of selective attention such as bottom-up (or exogenous) and top-down (or 
endogenous) attention are known to similarly increase activity within regions of sensory cortices 
relevant to the emotional stimulus.  Vuilleumier and colleagues argue that emotional, or 
“motivated”, attention should be considered as a separate form of attentional modulation. Several 
studies have shown a triple dissociation in terms of behavior and neural activity between bottom-
up, top-down, and emotional attention (Brosch et al., 2011; Kiel et al., 2005). These three forms 
of attention modulation can all increase sensory cortical activity in an additive fashion, 
suggesting that three separate neural mechanisms are responsible for their observed behavioral 
effects. If emotional attentional is a dissociable process from endogenous and exogenous 
attention, that what brain regions subserve the sensory cortex modulation observed when 
perceiving emotional versus neutral stimuli? 

The amygdala, a subcortical region located in the medial temporal lobe, has been 
implicated in a large number of studies as being critically involved in sensory cortical 
modulation to emotional stimuli. Vuilleumier and others (Vuilleumier, 2005; Lang and Davis, 
2006; Amaral et al., 2003) have argued that, due to its strong bidirectional connections with 
sensory cortices (Amaral et al., 2003; Catani et al., 2003; Gschwind et al., 2012), it is a likely 
source of emotional gain control to those regions. Additionally, amygdala activity has shown 
correlations with visual cortical activity (i.e. functional connectivity) in a number of studies 
(Sabatinelli et al., 2005), in both primary visual cortex (Morris et al., 1998) and FFA (Pessoa et 
al., 2002). Additional evidence in support of this hypothesis has come from neuropsychological 
lesion studies. Examining epileptic patients with either unilateral hippocampal or amygdalar 
lesions using a spatial attention task and fMRI, Vuilleumier and colleagues (2004) found that 
while both groups of patients (and healthy controls) showed amplified FFA activity to task-
relevant vs. task-irrelevant faces, only those patients with amygdalar lesions showed a lack of 
FFA amplification to fearful vs. neutral faces. Similar findings were reported for patients with 
epilepsy and medial temporal lobe sclerosis (and lesions), with lesion patients showing reduced 
activity in several OTC regions to fearful versus neutral faces relative to healthy controls 
(Amaral et al., 2003). Finally, patients with amygdala lesions do not show the same decrease in 
the emotional attentional blink task relative to healthy controls (Anderson, 2005), again 
suggesting amygdala’s functional role in the modulation of emotional attention. While it seems 
likely that the amygdala plays a causal role in the amplification of sensory cortices which 
subserves emotional attention, there is still debate as to how signals reach the amygdala to serve 
this function in the first place.  

Several theories hypothesize different roles that the amygdala may play in emotional 
visual processing. The traditional view, termed the two-route hypothesis, postulates that a 
dedicated subcortical “low-road” from the retina, to the superior colliculus, to the pulvinar and 
finally to the amygdala processes unconscious emotional (mostly threatening) visual stimuli, and 
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a “high road” from the retina, to the lateral geniculate nucleus (LGN) of the thalamus, and on to 
the visual cortex processes conscious emotional visual stimuli (Ohman & Mineka, 2001; 
Tamietto & de Gelder, 2010). Alternatively, two related theories (the “two-stage” theory: 
Vuilleumier, 2005; Pourtois, Schettino, & Vuilleumier, 2013 and the multiple-waves theory: 
Pessoa & Adolphs, 2010) both hypothesize that fast, feed-forward processing through the visual 
cortex propagates signals to the amygdala, which then sends re-entrant signals back to the visual 
cortex. The survival imperative that threatening stimuli be processed quickly to avoid bodily 
injury has led proponents of the two-route hypothesis to argue that cortical processing of visual 
stimuli could not explain the observed prioritized processing of emotional stimuli. However, new 
research regarding connectivity between sub-cortical visual regions and visual cortex has shown 
that numerous “short-cut” projections exist from LGN, superior colliculus and pulvinar to many 
regions of striate and extrastriate occipital, as well as ventral-temporal regions of visual cortex 
(Pessoa & Adolphs, 2010; Pourtois, Schettino & Vuilleumier, 2013). Latencies of information 
processing to visual cortex through these “short-cuts” are thus on par with processing latencies to 
the amygdala via the “low road” (Pessoa & Adolphs, 2010; Pourtois, Schettino & Vuilleumier, 
2013). As Pourtois and colleagues argue (2013), there is thus  
“no reason to assume that preattentive or unconscious emotion processing might be ‘magic’ and 
benefit from an exclusive ‘low’ route, just like evidence for subliminal perception fo words or 
numbers (Dehaene et al., 1998, 2001; Kouider and Dehaene, 2007) or unconscious priming of 
motor processes (Eimer and Schlaghecken, 2002, 2003) does not require the existence of 
dedicated subcortical pathways to the corresponding cortical areas.” 

Whether or not the amygdala’s modulatory role in the processing of visual emotional 
stimuli is subserved by dual subcortical and cortical routes, or simply feedforward cortical 
processing, does not shed light on whether the amygdala is also necessary for the discrimination 
of emotional stimuli. Conclusions from early studies of epileptic patients with amygdala lesions 
indicated that indeed these patients showed deficits in the recognition of fearful faces and other 
signals of threat (Adolphs et al., 1994, 1995; Adolphs, 1999; LaBar et al., 1995). More recent 
studies have shown that this observed deficit in a patient (SM) with bilateral amygdala lesions is 
one of attention, and not actually a deficit of emotional discrimination (Adolphs et al., 2005; 
Kennedy and Adolphs, 2010). Perceiving the shape of the eyes is crucial to the discrimination of 
fearful facial expressions. As shown using eye tracking, SM was not attending to the eye regions 
of the faces with fearful expressions. Once given explicit instruction to attend to the eye regions, 
SM’s observed deficit in discrimination disappeared. This neuropsychological evidence strongly 
suggests that the deficits from amygdala lesions are attentional, and not perceptual per se, in 
nature. Thus, at least in patient SM, processing done within the amygdala is not necessary for 
discrimination of different emotions.  

The experiment described in chapter 2 reported finding representations of arousal and 
valence for primarily animate stimuli across regions of OTC. These findings are consistent with 
the “two-stage” and “multi-wave” theories of emotional attention, which hypothesize that fast, 
feed-forward information processing within the ventral stream (OTC) of the visual cortex 



45 
 

projects to the amygdala, which in turn amplifies the representations of the emotional stimuli 
within visual cortex. We found that the primary dimensions of representation within OTC 
contain elements of arousal for both animate and inanimate stimuli and that this representation 
was much higher for animate than inanimate stimuli. Additionally, representation of valence 
within the top 3 dimensions of OTC was only found for animate stimuli.  

Given the evidence that activity within OTC increases for emotional vs. non-emotional 
(i.e. high vs. low arousal) images, could this “gain function” for emotional stimuli explain our 
findings from chapter 2? While it is almost certain that the emotional stimuli used for the VWM 
study of chapter 2 elicited emotional attention mechanisms, this explanation cannot account for 
all of our findings for several reasons. First, a simple “gain” should affect all OTC voxels in a 
similar fashion, but we saw different regions of OTC more impacted by arousal, as represented 
in PC1 scores, than others. Second, if a gain function was responsible for our findings we would 
expect to see the same amount of representation of arousal for animate and inanimate stimuli, but 
we saw the opposite. PC 1 was much more highly correlated with arousal for animate stimuli 
than it was for arousal of inanimate stimuli. Finally, we found differential representation of 
negative and positive animate stimuli, as evidenced by a correlation of PC 3 with valence for 
animate stimuli. Taken together, these findings paint a picture of differential representation for 
emotional stimuli, not a simple gain function for arousing stimuli.  
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3. Representational Similarity Analysis (RSA) 

Introduction 

Representational similarity analysis (RSA) is a form of multi-voxel pattern analysis 
(MVPA) that quantifies stimulus similarity across voxels in a brain region with stimulus 
similarity of one or more theoretical models of interest. In 2014 Chikazoe and colleagues used 
RSA to investigate representation of low-level structural features, animacy and valence of static 
images within early-visual cortex (EVC), ventral temporal cortex (VTC), and orbitofrontal 
cortex (OFC). Their findings suggested that low-level features were best represented within 
EVC, animacy was best represented within VTC, and valence was best represented within OFC. 
Additionally, they found significant representation of valence within VTC, although this 
representation was significantly less than that of animacy. Likewise, they found significant 
representation of animacy within OFC which was significantly less than representation of 
valence was within OFC. A searchlight analysis further revealed that representation of valence 
and animcy within VTC were not within the same regions. In contrast with these findings, in 
chapter 2 we argued for a combined representation of semantics, valence and arousal within 
occipital-temporal cortex (OTC). One possibility for this difference in findings is that RSA is not 
well suited to revealing co-representation of emotional content (e.g. valence) and animacy. 
Another possibility is that insufficient data was collected to provide the power needed to observe 
such representation.  Here, we address this by conducting a RSA using the same well-powered 
dataset as was used for the VWM analysis of chapter 2. In addition, we separately model both 
valence and arousal, in contrast to Chikazoe et al., 2014 where only valence was modeled. We 
used full Spearman rank correlations to conduct the RSA due to its relaxed constraints (nonlinear 
monotonic relationship as opposed to the linear relationship of a Pearson correlation) on the 
relationship between the brain and model dissimilarity matrices, as well as being standard in the 
field (see Table 3-1 for review of RSA techniques used in recent relevant studies). We also used 
partial Spearman correlations to control for possible effects of low-level structural image 
features, as well as animacy and emotion. 

To explore the multi-voxel pattern of activity within the regions of interest (ROIs) from 
both our chapter 2 study and Chikazoe’s and colleagues’ 2014 study, we created seven ROIs (see 
ROI section below). The first ROI is simply the occipital temporal cortex (OTC) ROI used in 
chapter 2. The second ROI contains voxels from regions V1-V4 in early visual cortex (EVC). 
Third, we created an OTC ROI with all the EVC voxels removed, to allow for an analysis of 
voxels within visual cortex that are not best characterized by low-level structural features 
(Naselaris et al., 2009). In order to compare these findings with those from the Chikazoe et al. 
(2014) paper, we also defined the same VTC and OFC ROIs as those authors had used. 
Additionally we created a second VTC ROI where the few EVC voxels contained within the 
VTC ROI were removed to again remove voxels best modeled by low-level structural features. 
Finally, as our results from chapter 2 indicated, the CSVA model we used fit within regions of 
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frontal cortex not contained within OFC. To better understand the representation within those 
frontal regions we defined a second frontal cortex ROI containing all the voxels in frontal lobe 
except for those within the OFC ROI and motor cortex.  

Methods  

Region of Interest (ROI) Definitions 

The following seven Regions of Interest (ROIs) were defined in the following ways: 
 

1. Occipital-Temporal Cortex (OTC): This ROI was defined anatomically and comprised all 
regions within the Occipital lobe and the Temporal lobe. The ROI was drawn onto the 
cortical surface, and began at the anterior portion of the Sylvian Fissure (lateral sulcus). It 
extends all the way up the Sylvian fissure continuing straight to the parieto-occipital 
sulcus on the lateral surface. It ends just above the retrosplenial cortex (RSC) on the 
medial surface. See Figure 3-1 below for flatmaps showing the voxels included in this 
ROI. 
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Figure 3-1. Occipital-Temporal Cortex (OTC) ROI Projected onto the Cortical Surface. 
Flatmaps showing voxels included in the OTC ROI in red for all six subjects. Voxels in grey were excluded from the 
ROI, and voxels in black were outside of the MRI slice prescription, and not collected.  
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2. Early-Visual Cortex (EVC): This ROI comprised functionally localized areas V1, V2, V3 
& V4, defined using retinotopic mapping data collected across four scan runs, two with 
clockwise/counterclockwise wedges and two with expanding/contracting rings. (for 
details see chapter 2 methods and Huth et al., 2012). See Figure 3-2 below for flatmaps 
showing the voxels included in this ROI. 

 

 
Figure 3-2. Early Visual Cortex (EVC) ROI Projected onto the Cortical Surface. 
Flatmaps showing voxels included in the EVC ROI in red for all six subjects. Voxels in grey were excluded from the 
ROI, and voxels in black were outside of the MRI slice prescription, and not collected. 
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3. non-EVC Occipital-Temporal Cortex (non-EVC OTC): This ROI included voxels from 
the entire Occipital and Temporal lobes, as defined in the OTC ROI, excluding voxels 
contained within early visual areas V1, V2, V3 & V4. See Figure 3-3 below for flatmaps 
showing the voxels included in this ROI. 

 

 
Figure 3-3. non-EVC OTC ROI Projected onto the Cortical Surface. 
A flatmap showing voxels included in the OTC ROI, that were not within the EVC ROI, in red for all six subjects. 
Voxels in grey were excluded from the ROI, and voxels in black were outside of the MRI slice prescription, and not 
collected. 
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4. Ventral Temporal Cortex (VTC): This ROI was defined just as the VTC ROI was defined 
in Chikazoe et al., 2014 using structural ROIs defined in the AAL template (Tzourio-
Mazoyer et al., 2002; Rolls, Joliot, & Tzourio-Mazoyer, 2015). The following AAL 
regions were combined together: lingual gyrus, parahippocampal gyrus, fusiform gyrus 
and inferior temporal cortices in the bilateral hemispheres. These AAL ROIs were back-
projected from MNI space to subject anatomical space using a non-linear transformation 
(inverse spatial normalization from SPM8), and then into subject functional space using a 
linear 12-dimensional affine transformation (spatial co-registration from SPM8). See 
Figure 3-4 below for flatmaps showing the voxels included in this ROI. 

 

 
Figure 3-4. Ventral Temporal Cortex (VTC) ROI Projected onto the Cortical Surface. 
A flatmap showing voxels included in the VTC ROI in red for all six subjects. Voxels in grey were excluded from 
the ROI, and voxels in black were outside of the MRI slice prescription, and not collected. 
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5. non-EVC VTC: This ROI consisted of all VTC ROI voxels, as defined above, except 
those contained within functional localized regions V1, V2, V3, & V4 (EVC ROI). See 
Figure 3-5 below for flatmaps showing the voxels included in this ROI. 

 

 
Figure 3-5. non-EVC VTC ROI Projected onto the Cortical Surface. 
A flatmap showing voxels included in the VTC ROI, that were not within the EVC ROI, in red for all six subjects. 
Voxels in grey were excluded from the ROI, and voxels in black were outside of the MRI slice prescription, and not 
collected. 
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6. Orbitofrontal Cortex (OFC): This ROI was defined using 4 structural ROIs defined in the 
AAL template (Tzourio-Mazoyer et al., 2002; Rolls, Joliot, & Tzourio-Mazoyer, 2015), 
namely the superior, middle, inferior and medial OFC in the bilateral hemispheres. These 
AAL ROIs were back-projected from MNI space to subject anatomical space using a 
non-linear transformation (spatial normalization from SPM8), and then into subject 
functional space using a linear 12-dimensional affine transformation (spatial co-
registration from SPM8). See Figure 3-6 below for flatmaps showing the voxels included 
in this ROI. 

 

 
Figure 3-6. Orbitofrontal Cortex (OFC) ROI Projected onto the Cortical Surface. 
A flatmap showing voxels included in the OFC ROI in red for all six subjects. Voxels in grey were excluded from 
the ROI, and voxels in black were outside of the MRI slice prescription, and not collected. 
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7. non-OFC Frontal Cortex: This ROI was defined using the following 5 AAL template 
structural ROIs: superior, middle, and superior medial frontal regions, as well as frontal 
inferior operculum and frontal inferior triangularis. These ROIs were back-projected into 
subject functional space in the same manner as the OFC ROI. See Figure 3-7 below for 
flatmaps showing the voxels included in this ROI. 

 

 
Figure 3-7. non-OFC Frontal Cortex ROI Projected onto the Cortical Surface. 
A flatmap showing voxels included in the Frontal Lobe ROI, that were not within the OFC ROI or within motor 
cortex, in red for all six subjects. Voxels in grey were excluded from the ROI, and voxels in black were outside of 
the MRI slice prescription, and not collected. 

Representational Similarity Analysis (RSA) 

A representational similarity analysis (RSA) was conducted separately for each subject 
using BOLD data collected during the thirty scans (7.5 minute each) collected for model 
estimation for the study outlined in chapter 2. Across these thirty runs, a large set of naturalistic 
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emotional images (n=1440) spanning 21 semantic categories and six valence (negative, neutral, 
positive) by arousal (high, low) conditions were presented for one second, with a three second 
inter-stimulus interval (ISI). RSA is done by creating multiple representational dissimilarity 
matrices (RDMs) of both brain activity (called brain RDMs) and stimulus feature model 
predictions (called model RDMs), and then quantifying the pairwise similarity between a single 
brain RDM and a single model RDM, possibly controlling for the variance explained by other 
model RDMs (Kriegeskorte, Mur & Bandettini, 2008; Chikazoe et al., 2014; Diedrichsen & 
Kriegeskorte, 2017). To create the brain RDMs, preprocessing of the BOLD data was first 
conducted using SPM 8, which comprised slice time correction, realignment, and linear 
detrending. The data was also coregistered to the T1 anatomical image for the searchlight 
analyses using spatial coregistration in SPM 8, as this analysis was done in anatomical space on 
the cortical surface. High-pass filtering was not done (beyond linear detrending) to avoid the 
accidental removal of low-frequency stimulus signals resulting from only 2 presentations of each 
stimulus. Spatial smoothing was also not done as is customary with RSA (Diedrichsen & 
Kriegeskorte, 2017). SPM 8 was then used to estimate a t-contrast across all brain voxels for 
each of the 1440 estimation stimuli, which quantified each voxel’s average response to each 
stimulus relative to baseline. Each unique image was assigned an event, and the resulting t-
contrast for that event was used as the response amplitudes for the brain RDMs. Nuisance 
regressors accounting for movement were also included in the model, as well as a constant bias 
term per run to account for differences in baseline BOLD activity between runs. Voxel selection 
within SPM was done by providing an explicit mask which was the same voxel-selection mask 
as was used for the VWM analyses in chapter 2. Additionally, implicit masking was disabled by 
setting the threshold to negative infinity (the SPM default is 80%), which tells SPM not to 
discard any voxels based on mean signal relative to the global mean signal. All RSAs were done 
using custom Matlab scripts that utilized the CosMoMVPA toolbox (Oosterhof, Connolly, & 
Haxby, 2016).  

RSA was then conducted both on specific ROIs, and across all grey-matter cortical 
voxels using a searchlight procedure. The ROI brain RDMs were created using the above defined 
ROIs for voxel selection. For each ROI, stimulus pairwise Pearson’s correlations between the 
response amplitudes (t-contrast values) of all selected voxels were estimated between all 1440 
estimation stimuli, resulting in a single brain RDM per ROI. As this experiment was not 
designed with RSA in mind, we checked the magnitude of correlations between adjacent images 
within the design matrix. The mean correlation of design matrix columns across all images was 
0.01, while that for adjacent images was 0.2 (s.d.=0.34, min=0, max=0.5). This showed that the 
response amplitudes would be estimable and decently powered. All ROI brain RDMs were 
created using the CosMoMVPA function “cosmo_target_dsm_corr_measure”. The stimulus set 
used in this experiment consisted of 1440 images, which resulted in a brain RDM that is larger 
than most monitors can display. Thus, to visualize the brain RDM we averaged the brain RDMs 
per ROI using both the animate by valence by arousal features used for the model RDMs, which 
is more easily interpretable, and the semantic by valence by arousal features used in the CSVA 
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model described in chapter 2. For each ROI, and the whole brain, a brain RDMs was calculated 
by first averaging response amplitudes of all stimuli within the same animate (or semantic) by 
valence by arousal condition for each subject individually. Brain RDMs were then created from 
these averaged response amplitudes, the RDM values were then Fisher transformed, a group 
averaged brain RDM was created by averaging across subjects, and the value were reverse Fisher 
transformed for visualization. The resulting matrix was then ordered by the rows/columns of the 
RDM first by whether the stimulus associated with the row/column was animate or inanimate (or 
the semantic category), then by negative, neutral or positive (valence), and finally by low and 
high arousal. 

In addition to RSA within our 7 ROIs, a searchlight procedure was used that selected the 
100 closest grey-matter voxels to each cortical voxel, and created a “searchlight” brain RDM 
using these 100 voxels. The 100 closest voxels were determined on the cortical surface, using 
FreeSurfer generated cortical surfaces. To determine the 100 closest voxels in cortical surface 
space the “cosmo_surficial_neighborhood” function was used. The relevant neighborhood 
function just described was then passed in to “cosmo_searchlight” function, using the 
“cosmo_target_dsm_corr_measure” function as the measure of similarity between model and 
brain RDMs. This measure function can be used to either calculate full correlations between 
brain and model RDMs (Spearman rank-order correlation was used) or to estimate partial 
correlations (partialling out variance in the brain RDM accounted for by other model RDMs 
before calculating a pairwise Spearman correlation between brain and model RDMs). The result 
of the RSA for each “searchlight” brain RDM is a correlation value for pairwise partial 
correlations [e.g. with variance explainable by Gabor wavelet model covaried out], assigned to 
the central cortical voxel of the current “searchlight”, and the analysis repeated across all cortical 
voxels. 
 Creation of the model RDMs was done using custom Matlab scripts only, as no RSA 
toolboxes the author is aware of offer this functionality. The models for these RDMs consisted of 
the animacy, valence, arousal and gabor features used to fit the voxel-wise models in chapter 2. 
The following model RDMs were created, using the distance metrics specified: 

1. Gabors - Cosine distance in the 426 feature gabor feature space 
2. Animacy 4 level - Euclidean in the 4 feature space  
3. Animacy 2 level - Binary 
4. Semantics - Binary across the 21 semantic categories used in the CSVA model. 
5. Valence 1-Dimensional - Euclidean in the 3 dimensional positive, neutral, negative space.   
6. Arousal - Binary between high & low 
7. Valence by Arousal 2D - Euclidean in the two dimensional Valence by Arousal space. 

This results in 6 points in the 2-D space: high-negative, low-negative, high-neutral, low-
neutral, high-positive, and low-positive. There is a distance of 1 between each valence 
level (thus a difference of 2 between negative and positive), and a distance of 1 between 
both arousal levels. 
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8. Animacy by Valence by Arousal - Euclidean distance in 3-D animacy (2-Level), valence 
and arousal spaces, as defined above in the Animacy 2-Level and Valence, and Arousal 
models. This results in 12 points in the 3-D space: animate-high-negative, animate-low-
negative, animate-high-neutral, animate-low-neutral, animate-high-positive, animate-low-
positive, inanimate-high-negative, inanimate-low-negative, inanimate-high-neutral, 
inanimate-low-neutral, inanimate-high-positive, and inanimate-low-positive. There is a 
distance of 1 between animate and inanimate, a distance of 1 between each valence level 
(thus a difference of 2 between negative and positive), and a distance of 1 between both 
arousal levels. 

9. Animacy by Valence - Euclidean distance in 2-D animacy (2-level) by valence (3-level) 
space. This results in 6 points in the 2-D space: animate-negative, animate-neutral, 
animate-positive, inanimate-negative, inanimate-neutral, and inanimate-positive. There is 
a distance of 1 between animate and inanimate and a distance of 1 between each valence 
level (thus a difference of 2 between negative and positive). 

10. Animacy by Arousal - Euclidean distance in 2-D animacy (2-level) by arousal (2-level) 
space. This results in 4 points in the 2-D space: animate-high, animate-low, inanimate-
high, and inanimate-low. There is a distance of 1 between animate and inanimate, and a 
distance of 1 between high and low arousal. 

11. Animate Only Valence by Arousal - Custom Distance: 1 between all 6 Animate by 
Valence by Arousal categories and the single inanimate category. Then either the 1D or 
2D Valence by Arousal Distances specified above. 

12. Animate Only Valence - Custom Distance: 1 between all 3 animate x Valence categories 
and the single inanimate category. Then 1 between animate negative and neutral and 
animate neutral and positive, and 2 between animate negative and positive. 

13. Animate Only Arousal - Binary 
14. Inanimate Only Valence by Arousal - Custom Distance: 1 between all 6 Inanimate by 

Valence by Arousal categories and the single animate category. Then either the 1D or 2D 
Valence by Arousal Distances specified above. 

15. Inanimate Only Valence - Custom Distance: 1 between all 3 Inanimate by Valence 
categories and the single animate category. Then 1 between inanimate negative and 
neutral and inanimate neutral and positive, and 2 between inanimate negative and 
positive. 

16. Inanimate Only Arousal - Binary 
 
The ROI RSAs were then calculated by estimating Spearman rank-order correlations between 
each ROI brain RDM and each model RDM. This resulted in a r x m matrix of full 
correlations between ROI brain RDMs and model RDMs, where r is the number of ROIs 
and m is the number of models tested. Correlations between model feature spaces were low 
(Fig. 3-8). However, to be confident in our interpretation of model to brain RDM relationships, 
we also conducted partial Spearman correlations to control for shared variance among the feature 
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spaces. Partial Spearman correlation was done using the “cosmo_target_dsm_corr_measure” 
function from the CosMoMVPA toolbox. This function implements partial Spearman correlation 
by taking as inputs: (a) the list of voxels (ROI) to create a ROI brain RDM, (b) the final model 
RDM, and (c) a list of control model RDMs that will be partialed out. As Spearman correlation 
(and partial correlation) is simply Pearson’s correlation on the rank-ordering of two identical 
length vectors, all of these RDMs are first converted into rank-orders, and then separate multiple 
linear regressions are fit to the rank-ordered ROI brain RDM and the rank-ordered final model 
RDM, using the rank-ordered control model RDMs as the independent variables in both 
regressions. The residuals from both regressions, which are now in rank-order, are then subjected 
to a Pearson correlation, resulting in the partial Spearman correlation.  For the ROI RSA, partial 
correlations were calculated for each model using two sets of control model RDMs. First, only 
the Gabors model RDM was partialed out of all models (except the Gabors model itself). 
Second, the below list details the “complete” set of control model RDMs used in the partial 
Spearman correlation between each of the final model RDMs and each ROI brain RDM.  

 
1. Animacy 4-level - Gabors, Valence 1D, & Arousal 
2. Animacy 2-level -  Gabors, Valence 1D, & Arousal 
3. Semantics - Gabors, Valence 1D, & Arousal 
4. Valence 1D - Gabors, Animacy 2-level, & Arousal 
5. Arousal - Gabors, Animacy 2-level, & Valence 
6. Valence by Arousal 2D -  Gabors, & Animacy 2-level 
7. Animacy by Valence by Arousal - Gabors 
8. Animacy by Valence - Gabors, & Arousal 
9. Animacy x Arousal - Gabors, & Valence 
10. Animate Only Valence by Arousal - Gabors, Animacy 2-level 
11. Animate Only Valence - Gabors, Animacy 2-level, & Arousal 
12. Animate Only Arousal - Gabors, Animacy 2-level, & Valence 
13. Inanimate Only Valence by Arousal - Gabors, Animacy 2-level 
14. Inanimate Only Valence - Gabors, Animacy 2-level, & Arousal 
15. Inanimate Only Arousal - Gabors, Animacy 2-level, & Valence 

 
The single subject RSA results for all RSAs by models were then Fisher transformed, averaged 
across all subjects, and reverse Fisher transformed for visualization of group results. This was 
done on the full correlations, the partial correlations of the Gabors model, and the “complete” 
partial correlations described in the above list. To calculate significance of these group RSA 
results, the subject-specific correlation values were Fisher transformed and subjected to one-
tailed t-tests across subjects. These results were corrected for multiple comparisons using a 
Bonferroni correction across all r ROIs x m models.  

The searchlight RSAs were done in an analogous manner to the ROI RSAs, on a subset 
of the models tested in the ROI RSA, just across all cortical voxels, as explained above. Partial 
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Spearman correlations were calculated for the following 5 model RDMs, using the “complete” 
set of control model RDMs described in the list above: 

1. Animacy 2-level 
2. Animate Only Valence 
3. Animate Only Arousal 
4. Inanimate Only Valence 
5. Inanimate Only Arousal 

Additionally, a partial Spearman correlation searchlight RSA was done on the Animacy 2-level 
model RDM using only the Gabors model RDM. These searchlight analyses resulted in 6 cortical 
maps per subject, one for every RSA done. To determine significance of these searchlight 
correlation values, the correlation coefficients were convert to t-statics using the equation: 

�   =  �   ∗  ���� (
(� −2)

(1−� 2)
), where t is the t-statistic calculated, r is the correlation coefficient, 

and n is the number of samples in the vectors being correlated. The Students-t cumulative 
distribution function (cdf) was then used to determine the p-values for all voxels. A Bonferroni 
family-wise error correction for multiple comparisons was then done across all cortical values 
using a threshold of p=.05. Only those voxels that survived the Bonferroni correction had their 
correlation coefficient values displayed on the flatmaps. We note however, that with 1440 
stimuli used in this analysis, the resulting RDMs had 1,036,080 entries. As such, a correlation 
value of just 0.0017 was significant (p<.05, uncorrected), which resulted in most of cortex being 
significant for our 5 models tested. Additionally, permutation tests of several sample correlations 
were done using 1000 permutations, which resulted in a maximal null-distribution value of 
~0.002 which indicates that a p-value of 0.001 has an r-value of ~0.002. Results from the 
permutation tests were in line with the results from the t-statistic conversion method to calculate 
significance, thus the t-statistic conversion was used to calculate significance as it is much more 
computationally efficient. In order to show more meaningful maps, we also showed flatmaps 
where the r-values were thresholded to only display those with a correlation above 0.05. This 
number was determined by finding the smallest r-value that would be significant if the 
calculation of significance had used an n=1440, the number of independent stimuli in the 
experiment.   
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Table 3-1: Description of methods used in selection of higher visual neuroscience studies 
using RSA. 

Paper Models Tested Brain 
RDM 
Distance 
Metric 

Model RDM 
Distance 
Metric 

Pairwise 
Correlation 
Metric 

Partial 
Correlation
/Stepwise 
Regression 

GLM 
Models 
Used 

1 18 structural, 
animacy, or 
face models 

Pearson Pearson Spearman n/a n/a 

2 Low-level, 
Animacy, 
Valence 

Pearson Low-level - 
Euclidean, 
Animacy - 
Non-subject 
1-17 ratings, 
Valence - 
Subject 1-7 
positive &  1-
7 negative 
ratings 

n/a Stepwise 
Regression  
- Two 
models fit 
in single 
GLM, then 
Spearman 
Correlation 
on 
residuals 
using 
remaining 
model. 
Done on all 
3 models. 

Yes, with 
all 3 
models. In 
ROIs and 
searchlight. 

3 Bodies vs. 
Faces vs. 
Places vs. 
Objects 

Pearson Subject 
image 
similarity 
judgments 

Pearson n/a n/a 

4 Low-level 
(LL), 
6 Object 
Category 
(OC) models, 
Semantic 
Features (SF) 

Pearson LL - Pearson, 
OC - Binary, 
SF - Cosine 
angle 

Spearman Partial 
Spearman’s 
Correlation
, partial out 
8 models 
then find 
partial 
correlation 
on the 
remaining 
9th model. 
Done for 
all models. 

n/a 



61 
 

5 Faces vs. 
bodies vs. 
Natural 
Inanimate vs. 
Artificial 
Inanimate 

Pearson Pearson (for 
MEG brain 
RDM) 

Spearman 
to compare 
fMRI and 
MEG 
RDMs 

n/a n/a 

6 Object Size, 
Object 
Category, 
Spatial GIST 
Descriptors 
(Gabor 
wavelets), 
Spectral GIST 
Descriptors 

Leave-
one-
participa
nt-out 
(LOPO) 
cross- 
validatio
n of 
Correlati
on  

Binary n/a n/a GLM on 
Object Size 
& 
Category, 
GLM on 
GIST 
features, 
 

 
Numbers in column 1 refer to the following papers: 

1. Kriegeskorte et al., 2008 
2. Chikazoe et al., 2014 
3. Charest et al., 2014 
4. Clarke & Tyler, (2014) 
5. Cichy, Pantazis, & Oliva, (2014) 
6. Watson, Young, & Andrews, (2016). 
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Figure 3-8. Spearman Correlations between all model RDMs for Two Sample Subjects. 
Correlation matrix showing Spearman rank correlations between the representational dissimilarity matrices (RDMs) 
for all 16 models evaluated in this analysis for subject 1 (top) and subject 2 (bottom). Correlations between the 
Gabor Model and all other models was very low. Correlation between the 2 and 4 level animacy, and semantics 
models were high. Models containing valence, arousal, or both across all stimuli all were moderately to highly 
correlated, but were not highly correlated with the valence, arousal and valence by arousal models for only animate 
or inanimate stimuli.   
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Results  

Representational similarity across stimulus conditions of animacy by valence by arousal 
was quantified for each ROI by correlating activity patterns to these stimulus conditions across 
all voxels from each region, creating a representational dissimilarity matrix (RDM) per ROI. 
Figure 3-9 presents group-averaged RDM plots of all seven ROIs, plus an RDM for the whole 
brain for reference. Across all RDMs plotted, an animate vs. inanimate divide can be seen, as has 
been reported previously for VTC and OFC (Kriegeskorte et al, 2008; Chikazoe et al, 2014). 
This divide is more striking within OTC and VTC ROIs however, and even slightly more so 
when excluding EVC voxels from both OTC and VTC. Furthermore, animate high arousal 
stimuli are more dissimilar to other high arousal animate stimuli than they are to low arousal 
stimuli within the two VTC and two OTC ROIs, as are inanimate stimuli, although perhaps to a 
lesser extent. This effect is also present within OFC, the non-OFC Frontal ROI and EVC, 
although to a lesser extent. Additionally, positive low and high arousal stimuli show decreased 
dissimilarity to each other relative to other valence categories within the two VTC and OTC 
ROIs. Figures 3-10 - 3-17 show brain RDMs averaged, and ordered by, the 126 feature semantic 
by valence by arousal model (as described in chapter 2) for all seven ROIs and the whole brain. 
While a similar pattern emerges here as was seen in the animacy by valence by arousal RDMs 
(Fig. 3-9), a more nuanced differentiation can be seen between the semantic categories. For 
example, looking at dissimilarity between the six valence by arousal face categories within the 
non-EVC VTC ROI, we can see clear similarity between negative and positive high arousal 
stimuli, as well as between low and high arousal positive stimuli. This pattern was not present for 
body-parts however. In order to quantify these effects, RSA was conducted on each ROI by 
comparing theoretical model RDMs with brain RDMs from each region. 
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Figure 3-9. Group-Averaged Brain RDMs showing Similarity of Stimulus Representation 
Within ROIs.  
Matrices plotting group-averaged dissimilarity of stimulus representation across all voxels within seven ROIs, and 
the whole brain. Voxel stimulus representations were averaged across animacy by valence by arousal conditions per 
subject, and all pairwise linear correlations of these stimulus representations for each condition were averaged 
across subjects. Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity 
values are represented colder (blue-green) colors. A higher dissimilarity value is the result of lower Pearson’s 
correlation between the multivoxel pattern of activity of two stimulus conditions, across the given region, and vice 
versa for lower dissimilarity values. As has been reported previously (Kriegeskorte et al., 2008), across all seven 
ROIs, and the whole brain, an animate vs. inanimate divide can be seen, although it is much more prominent within 
the two VTC and two OTC ROIs, as would be expected from previous findings. Additionally, within the two VTC 
and two OTC ROIs, high arousal stimuli are less dissimilar to each other than they are to low arousal stimuli. This 
pattern is also present within OFC and non-OFC Frontal ROIs, although to a less extent. Finally, within the two 
VTC and OTC ROIs, animate positive low and high arousal stimuli show decreased dissimilarity to each other 
relative to other valence categories, suggesting animate positive stimuli may have a common similarity structure 
within these regions.   
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Figure 3-10. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation in the Whole Brain. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the whole brain. 
Voxel stimulus representations were averaged across 126 semantic by valence by arousal conditions per subject, and 
all pairwise linear correlations of these stimulus representations for each condition were averaged across subjects. 
Each of the 21 semantic categories is labeled, while the six valence by arousal categories are represented by a 
colored tree, where red hues represent negative, green hues represent neutral and blue hues represent positive and 
saturation represents low vs. high arousal (as depicted in the figure key). Higher dissimilarity values are represented 
by hotter (yellow-red) colors and lower dissimilarity values are represented colder (blue-green) colors. Pixels 
colored with bright red were missing across all six subjects. A higher dissimilarity value is the result of lower 
Pearson’s correlation between the multivoxel pattern of activity of two stimulus conditions, across the given region, 
and vice versa for lower dissimilarity values. No clear patterns of similarity can be seen across the whole brain. 
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Figure 3-11. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation Within the EVC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the early visual 
cortex (EVC) ROI (see Fig. 3-1 for definition). Voxel stimulus representations were averaged across 126 semantic 
by valence by arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for 
each condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. While clear similarity 
exists within similar semantic categories (e.g. all face stimuli are similar), there is not a high level of differentiation 
between valence by arousal categories. 
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Figure 3-12. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation  Within the OTC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the occipital-
temporal cortex (OTC) ROI (see Fig. 3-2 for definition). Voxel stimulus representations were averaged across 126 
semantic by valence by arousal conditions per subject, and all pairwise linear correlations of these stimulus 
representations for each condition were averaged across subjects. Each of the 21 semantic categories is labeled, 
while the six valence by arousal categories are represented by a colored tree, where red hues represent negative, 
green hues represent neutral and blue hues represent positive and saturation represents low vs. high arousal (as 
depicted in the figure key). Higher dissimilarity values are represented by hotter (yellow-red) colors and lower 
dissimilarity values are represented colder (blue-green) colors. Pixels colored with bright red were missing across all 
six subjects. A higher dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern 
of activity of two stimulus conditions, across the given region, and vice versa for lower dissimilarity values. Clear 
similarity exists within similar semantic categories (e.g. all face stimuli are similar). Additionally, interesting 
patterns of similarity between high arousal negative and positive stimuli exist within most of the human semantic 
categories as well as buildings and food.  
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Figure 3-13. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation  Within the non-EVC OTC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the non-EVC OTC 
ROI (see Fig. 3-3 for definition). Voxel stimulus representations were averaged across 126 semantic by valence by 
arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for each 
condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. Clear similarity exists 
within similar semantic categories (e.g. all face stimuli are similar). Additionally, interesting patterns of similarity 
between high arousal negative and positive stimuli exist within most of the human semantic categories as well as 
buildings and food. Furthermore, similarity between positive faces is observed.  
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Figure 3-14. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation Within the VTC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the ventral-temporal 
cortex (VTC) ROI (see Fig. 3-4 for definition). Voxel stimulus representations were averaged across 126 semantic 
by valence by arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for 
each condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. Clear similarity exists 
within similar semantic categories (e.g. all face stimuli are similar). Additionally, interesting patterns of similarity 
between high arousal negative and positive stimuli exist within most of the human semantic categories as well as 
buildings and food. Furthermore, similarity between positive faces is observed.  
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Figure 3-15. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation Within the non-EVC VTC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the non-VTC OTC 
ROI (see Fig. 3-5 for definition). Voxel stimulus representations were averaged across 126 semantic by valence by 
arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for each 
condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. Clear similarity exists 
within similar semantic categories (e.g. all face stimuli are similar). Additionally, interesting patterns of similarity 
between high arousal negative and positive stimuli exist within most of the human semantic categories as well as 
buildings and food. Furthermore, similarity between positive faces is observed.  
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Figure 3-16. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation Within the OFC ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the orbitofrontal 
cortex (OFC) ROI (see Fig. 3-6 for definition). Voxel stimulus representations were averaged across 126 semantic 
by valence by arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for 
each condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. While clear similarity 
exists within similar semantic categories (e.g. all face stimuli are similar), there is not a high level of differentiation 
between valence by arousal categories. 
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Figure 3-17. Group-Averaged Brain RDMs showing Similarity of Semantic by Valence by 
Arousal Category Representation Within the non-OFC Frontal ROI. 
Matrix plotting group-averaged dissimilarity of stimulus representation across all voxels within the non-OFC Frontal 
ROI (see Fig. 3-7 for definition). Voxel stimulus representations were averaged across 126 semantic by valence by 
arousal conditions per subject, and all pairwise linear correlations of these stimulus representations for each 
condition were averaged across subjects. Each of the 21 semantic categories is labeled, while the six valence by 
arousal categories are represented by a colored tree, where red hues represent negative, green hues represent neutral 
and blue hues represent positive and saturation represents low vs. high arousal (as depicted in the figure key). 
Higher dissimilarity values are represented by hotter (yellow-red) colors and lower dissimilarity values are 
represented colder (blue-green) colors. Pixels colored with bright red were missing across all six subjects. A higher 
dissimilarity value is the result of lower Pearson’s correlation between the multivoxel pattern of activity of two 
stimulus conditions, across the given region, and vice versa for lower dissimilarity values. While clear similarity 
exists within similar semantic categories (e.g. all face stimuli are similar), there is not a high level of differentiation 
between valence by arousal categories. 

 
Theoretical models consisting of low-level features (Gabor wavelets), semantics, 

animacy, valence, arousal, and interactions between animacy, valence and arousal were specified 
for each of the 1440 stimuli used in model estimation of the VWM analysis in chapter 2, 
resulting in 16 theoretical models of interest (see RSA methods section for model details). RDMs 
were then calculated for each of these 16 models of interest (see RSA methods section for 
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distance metrics used for each model RDM). RSA was then conducted by correlating (Spearman 
rank correlation) each brain ROI RDM with each model RDM, resulting in an r (# of ROIs) by m 
(# of models) correlation matrix. Figure 3-18 shows a plot of this matrix for the full pairwise 
correlations of ROI brain RDMs and model RDMs. These results showed that the 2-level 
Animacy model (animate, inanimate) was significantly represented within EVC (p<.05), and 
within OTC (ps<.001) and VTC (ps<.05), both including and excluding EVC, but in neither of 
the frontal ROIs (ps>.1). The 21-feature semantic model showed significant representation 
within all ROIs tested (ps<.05), indicating that representations of semantic within frontal regions 
are more nuanced than the broad animate vs. inanimate gradient found within OTC (Sha et al., 
2013; Grill-Spector & Weiner, 2014). Representation of arousal only, and the valence by arousal 
interaction, were significant only within OTC and non-EVC OTC ROIs (ps<.05), whereas 
valence only was not significantly represented within any of the ROIs. The interaction of 
animacy by valence, animacy by arousal, and animacy by valence by arousal were all significant 
within EVC, OTC including and excluding EVC and VTC including EVC (ps<.05). These 
findings are consistent with our findings reported in chapter that a combined semantic, valence, 
and arousal model (CSVA) out performed both a semantic only and an emotion model (valence 
by arousal) within OTC (Fig. 2-2 & figs. 2-S1 - 2-S3). Within non-EVC VTC, the animacy by 
arousal and animacy by valence by arousal interactions were also significant (ps<.05). Of the 3 
animacy by emotion interactions, representation within frontal regions was only significant for 
animacy by arousal (p<.05), and only within the non-OFC Frontal ROI.  

To further interrogate these animacy by emotion interactions, we tested for differential 
representations of emotion within either only animate or only inanimate stimuli. This also 
allowed for a comparison between results from this RSA with those from the PCA we reported in 
chapter 2. Breaking down the animate stimuli by either valence, arousal, or valence by arousal, 
we found significant representation of all three of these animate emotion models within OTC and 
VTC, both including and excluding EVC (ps<.05). These findings are inline with results from 
the PCA conducted in chapter 2, which found that the top 3 dimensions of representation within 
OTC contain information pertaining the the arousal and valence of animate stimuli. Furthermore, 
representation of arousal and valence by arousal for animate stimuli were significant in both 
frontal ROIs (ps<.05), but valence for animate stimuli was significant in neither. Turning to 
inanimate stimuli, representation of valence, arousal, and valence by arousal were also all 
significant for OTC & VTC including and excluding EVC (ps<.05). These findings are 
somewhat different from those from the PCA of voxel feature weights done in chapter 2. Both 
studies found evidence for representation of arousal of inanimate stimuli within OTC, but only 
this RSA found evidence for the valence of inanimate stimuli within OTC. Finally, OFC showed 
significant representation for valence and valence by arousal of inanimate stimuli (ps<.05), but 
not arousal of inanimate stimuli, and all 3 inanimate emotion models were significant within the 
non-OFC Frontal ROI (ps<.05).  
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Figure 3-18. Group Averaged Results from an RSA done within ROIs, across 16 models. 
Correlation matrix showing group-averaged similarity, as quantified by full Spearman rank correlation, between 
brain RDMs created from seven ROIs, and 16 model RDMs (see methods for details of model definitions). Each 
row represents a single model, and each column a single ROI. Stars indicate those correlations that are significant 
from a one-tailed t-test of Fisher transformed correlations, across subjects (p<.05, Bonferroni corrected).  

 
In addition to the full Spearman correlations just reported, partial Spearman correlations 

were also calculated between ROI brain RDMs and model RDMs. First, the Gabor wavelet RDM 
was partialed out of the RSA between all ROIs and all 15 remaining model RDMs (Fig. 3-19). 
The pattern of significance was exactly the same across all r (# of ROI) by (m-1) (# of models 
minus the Gabor model itself) representational similarity analyses, suggesting that these results 
were not influenced by low-level structural features. A second set of partial correlations were 
calculated which controlled for gabors, animacy, valence, and arousal in all RSAs (see RSA 
methods section for details). Crucially, when controlling for effects of animacy, valence and 
arousal, the pattern of significance across correlations was nearly identical here, bar two 
exceptions (Fig. 3-20). The arousal only model was no longer significant within OTC once 
gabors, animacy and valence were controlled for, and the valence by arousal model was no 
longer significant within non-EVC OTC once gabors and animacy were controlled for.  
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Figure 3-19. Partial Correlations ROI RSA accounting for variance from Gabors. 
Correlation matrix showing the group-averaged similarity, as quantified by partial Spearman rank correlation, 
between brain RDMs created from seven ROIs, and 15 model RDMs (see methods for details of model definitions). 
For each RSA result shown, the Gabors Cosine model was partialed out of both brain ROI RDM and model RDM 
before taking the Spearman rank correlation. The Gabors Cosine model was not shown in this figure because 
partialing it out would leave no variance left to explain. Each row represents a single model, and each column a 
single ROI. Stars indicate those correlations that are significant from a one-tailed t-test of Fisher transformed 
correlations, across subjects (p<.05, Bonferroni corrected).  
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Figure 3-20. Partial Correlations ROI RSA accounting for variance from Gabors, Animacy 
and Emotion. 
Correlation matrix showing the group-averaged similarity, as quantified by partial Spearman rank correlation, 
between brain RDMs created from seven ROIs, and 15 model RDMs (see methods for details of model definitions). 
For each RSA result shown (except the Gabors Cosine model itself), the Gabors Cosine model was partialed out of 
both brain ROI RDM and model RDM, the Animacy 2-Level model was partialed out of all models not containing 
Animacy, and the Valence and Arousal models were partialed out of all models not containing Valence or Arousal, 
respectively. Then the Spearman rank correlation was taken on the residuals of the brain ROI RDMs and the model 
RDMs. Each row represents a single model, and each column a single ROI. Stars indicate those correlations that are 
significant from a one-tailed t-test of Fisher transformed correlations, across subjects (p<.05, Bonferroni corrected).  
 

In order to further investigate the spatial layout of these representations, searchlight 
analyses were conducted on the cortical surface. At each vertex on the cortical surface, the 
nearest 100 voxels were sampled, and a brain RDM constructed from those sampled voxel 
values. Partial Spearman correlations (controlling for Gabors, animacy, valence and arousal) 
between these brain RDMs and five selected model RDMs were then projected onto the cortical 
surface. In addition, partial Spearman correlations for the 2-Level Animacy model were done, 
controlling only for Gabors. Although a strict Bonferroni family-wise error (FWE) correction 
was conducted, much of cortex was found to be significant within all five models and across all 
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six subjects. In order to determine significance, most studies using searchlight RSA combine 
Fisher transformed single-subject searchlight correlations in a second level t-test analyses that is 
done within a normalized brain space. Since VWM is done on the single-subject level, we 
wanted to make the comparison between our VWM results and these RSA searchlight results in 
the native subject space. Thus, in order to calculate significance of RSA at a single subject level, 
p-values must be calculated on the correlation coefficients themselves. Due to the large number 
of stimuli in this study (n=1440), the RDM vectors correlated were very large (n=1,036,080) as 
they contained the pairwise similarity values between all 1440 stimuli. This meant that a very 
small correlation value resulted in a significant p-value, even after Bonferroni correction. We 
thus decided to threshold these correlation maps and only show values with a correlation 
coefficient (r-value) greater than 0.05, which is the smallest r-value that would be significant 
(p<.05, uncorrected) for a correlation between 1440 values, the number of independent stimuli 
(Figs. 3-21 - 3-26). While these maps display quantitatively derived values, they show the peaks 
of the similarity topography across the cortical surfaces for a somewhat arbitrary threshold. It 
could be argued that p<.05 is also an arbitrary threshold, however. In any case, we interpret these 
maps with this caveat in mind.  

The results from the thresholded searchlight RSA (see previous paragraph) suggest that 
animacy is strongly represented within non-EVC OTC (panel A of Figs 3-21 - 3-26) across all 
6/6 subjects. Additionally, controlling for valence and arousal by partialing them out did not 
qualitatively change the results for the Animacy model (panel B of Figs 3-21 - 3-26) for all 6/6 
subjects. Valence for animate stimuli showed peaks within non-EVC OTC for all 6/6 subjects 
(panel C of Figs. 3-21 - 3-26), while valence for inanimate stimuli (panel D of Figs. 3-21 - 3-26) 
showed peaks only within 3/6 subjects (1 of those only showed 1 small cluster above threshold). 
Crucially, some of the same regions that showed peak representation to animacy also showed 
peak representation to valence for animate stimuli, which was mostly (although not exclusively) 
within FFA for five of the six subjects. These findings suggest that the significant representation 
of valence for inanimate stimuli within the non-EVC OTC ROI may have been driven primarily 
by a subset of the subjects. Peaks of representation for arousal of both animate (panel E of Figs. 
3-21 - 3-26) and inanimate stimuli (panel F of Figs. 3-21 - 3-26) were present within non-EVC 
OTC for all six subjects. These findings are inline with findings from both the ROI RSA and the 
PCA analysis of OTC voxel features weights reported in chapter 2. 
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Figure 3-21. Flatmaps showing Searchlight RSA Results for Subject 1. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.  
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Figure 3-22. Flatmaps showing Searchlight RSA Results for Subject 2. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.   
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Figure 3-23. Flatmaps showing Searchlight RSA Results for Subject 3. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.  
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Figure 3-24. Flatmaps showing Searchlight RSA Results for Subject 4. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.   
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Figure 3-25. Flatmaps showing Searchlight RSA Results for Subject 5. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.   
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Figure 3-26. Flatmaps showing Searchlight RSA Results for Subject 6. 
Flatmaps showing the results from doing searchlight RSAs on the cortical surface. Spearman correlation was used to 
determine similarity between brain and model RDMs, and significance of these correlations was determined by 
converting them into t-statistics and doing t-tests on the resulting values. Bonferroni correction at p<.05 was used 
for multiple comparisons correction. Due to the large number of stimuli, the resulting RDMs were large (>1,000,000 
samples), and thus significance levels for the RSA was extremely low (r>.0017 for a p<.05, uncorrected). Thus, 
much of cortex was found to be “significant” and so voxels were further masked by including only those voxels 
where the Spearman correlation is greater than 0.05. This value (0.05) corresponds with the smallest correlation 
coefficient with a significant correlation (p<.05) 1440 elements, which is the number of independent stimuli used in 
the RSA.   
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4. Univariate SPM Analysis 

Introduction 

The results reported in chapter 2 resulted from a voxel-wise modeling (VWM) analysis of 
BOLD data collected while subjects viewed a large number of naturalistic emotional images 
(n=1440 for model estimation, n=180 for model validation). VWM is a newer technique that 
offers several advantages over traditional univariate analysis (such as SPMs). Univariate 
analyses use a limited number of experimental conditions as regressors of interest, and calculate 
contrasts of those regressors to create statistical parametric maps (SPMs). The amount of data 
collected for univariate studies is often relatively small per subject, which limits the number of 
experimental conditions that can be tested. Additionally, inference is done using the same set of 
data that the model weights were estimated from, likely resulting in over-fitting. Finally, 
traditional univariate analyses using Gaussian kernels to spatially smooth the BOLD data which 
requires assumptions about the size of activation clusters expected. Spatially normalization it to a 
template brain is also used, which requires non-linear transformations and interpolation of the 
functional data. Both of these transformations lead to loss of information at the single voxel 
level. VWM overcomes these limitations of univariate analyses in three ways. First, by using 
regularized regression to estimate models, many more regressors (or features) can be fit to the 
same size data set as could be fit using standard ordinary least squares regression (OLS, used by 
SPM, FSL & AFNI neuroimaging packages). This allows for the construction of models that can 
more accurately describe the complex nature of representations within the brain. Second, model 
fit is quantified by predicting a held out set of validation, which greatly reduces the possibility of 
over-fitting to the data. Third, the BOLD data is not spatially smoothed nor spatially normalized 
to a template brain, all analyses are done within the subjects’ native functional space, which 
prevents unnecessary loss of information. While all of these arguments can be made at a 
theoretical level, the question still remains: would the same results would have been found doing 
a traditional univariate analysis? Hence we conducted a univariate analysis using SPM in order 
to answer this question. 
 

Methods  

fMRI preprocessing 

Data were preprocessed using Matlab version 8.0 (The Math- Works, Natick, MA) and SPM8 
(Welcome Department of Imaging Neuroscience, London, UK). After conversion from DICOM 
to NIfTI format, diagnostics were run on the time series for each imaging run using the identical 
procedure defined in chapter 2 supplemental Method Details, in the “fMRI Preprocessing” 
section. Subsequent to this initial data-cleaning step, image realignment (correcting for head 
movement) was conducted, followed by slice time correction. No high-pass filter was used, 
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rather a 3rd order Savitzky-Golay filter with a window of 200 seconds was used to remove low-
frequency scanner noise, as was done for the data used in the voxel-wise models fit in chapter 2. 
Finally, spatial smoothing was conducted using a Gaussian kernel with a full-width-to-half-
maximum value of 5mm. 

fMRI Data Analysis 

General linear modeling of the BOLD data was conducted using SPM 8 on data collected during 
30 estimation runs (7.5 minutes each) of the experiment described in chapter 2. Across these 
thirty runs, a large set of naturalistic emotional images (n=1440) spanning 21 semantic categories 
and six valence (negative, neutral, positive) by arousal (high, low) conditions were presented for 
one second, with a three second inter-stimulus interval (ISI) (see supplemental “Method Details” 
for more details). The GLM was only fit to cortical voxels, as was done in the voxel-wise 
modeling from chapter 2. The per stimulus labels for animacy (animate/inanimate), valence 
(negative/neutral/positive) and arousal (high/low) described in chapter 2 were also used here. 
The valence and arousal ratings were defined by each participant separately in post-scan 
sessions. The animate/inanimate labels were defined by the mode of four independent raters. 
Onsets for each of the 12 animacy by valence by arousal conditions were modeled using delta 
functions and then convolved with the canonical hemodynamic response function (HRF), giving 
12 regressors of interest. Six realignment (movement) nuisance regressors were included in order 
to reduce task-unrelated variance (noise). Per run constant bias terms were also included to 
account for between run differences in baseline BOLD signal.  Voxel selection within SPM was 
done by providing an explicit mask which was the same voxel-selection mask as was used for the 
VWM analyses in chapter 2. Additionally, implicit masking was disabled by setting the threshold 
to negative infinity (default 80%), which tells SPM not to discard any voxels based on mean 
signal relative to the global mean signal. Following estimation of the GLM, contrasts of beta 
weights were created to isolate cortical regions responsive to various combinations of the 
animacy, valence and arousal labels. An F-contrast testing whether the full model (Animacy by 
Valence by Arousal) fit significantly in all brain voxels was calculated, and significant voxels 
(p<.001, uncorrected) were selected for use in the remaining contrasts of interest. For each 
contrast of interest, an F-statistic map was calculated, along with two t-statistic maps (one in 
each direction of the contrast, e.g. Animate minus Inanimate & Inanimate minus Animate for the 
Animacy contrast). Hypothesis testing was then done using these contrast maps, where 
significance of the F-statistic indicated that the contrast was significantly different from 0, and 
the t-contrasts indicating that the t-statistic was significantly greater than or less than 0. 
Correction for multiple comparisons was then applied across all selected cortical voxels (see 
above) using the false discovery rate (FDR), with a q-value of 0.05. These F & t statistic maps 
were then projected onto cortical flatmaps, and only voxels that survived the FDR correction 
were displayed. The following 10 contrasts were defined across all 12 regressors of interest, 
namely (Animate-Negative-Low, Animate-Negative-High, Animate-Neutral-Low, Animate-
Neutral-High, Animate-Positive-Low, Animate-Positive-High, Inanimate-Negative-Low, 
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Inanimate-Negative-High, Inanimate-Neutral-Low, Inanimate-Neutral-High, Inanimate-Positive-
Low, Inanimate-Positive-High).: 

1. Animacy: (All Inanimate = -1, All Animate = +1) 
2. Valence: (All Negative = -1, All Neutral = 0, All Positive = +1) 
3. Arousal: (All Low-Arousal = -1, All High-Arousal = +1) 
4. Valence by Arousal: (All High-Positive = +1, All High-Negative =-1, All Low-Positive = 

-1, All Low-Negative = +1, All Neutral=0) 
5. Animacy by Valence (All Animate-Positive = +1, All Animate-Negative = -1, All 

Inanimate-Positive = -1, All Inanimate-Negative = +1, All Neutral=0) 
6. Animacy by Arousal (All Animate-High-Arousal = +1, All Animate-Low-Arousal = -1, 

All Inanimate-High-Arousal = -1, All Inanimate-Low-Arousal = +1) 
7. Animate Only Valence (All Animate-Negative = -1, All Animate-Neutral = 0, All 

Animate-Positive = +1, All Inanimate = 0) 
8. Animate Only Arousal (All Inanimate-High-Arousal = +1, All Inanimate-Low-Arousal = 

-1, All Animate=0) 
9. Inanimate Only Valence (All Inanimate-Negative = -1, All Inanimate-Neutral = 0, All 

Inanimate-Positive = +1, All Animate = 0) 
10. Inanimate Only Arousal (All Inanimate-High-Arousal = +1, All Inanimate-Low-Arousal 

=  -1, All Animate = 0) 

Results  

SPM was used to fit an Animacy (animate, inanimate) by Valence (negative, neutral, 
positive) by Arousal (high, low) model, with 12 regressors of interest, to all 30 runs of estimation 
data collected for the experiment described in chapter 1. Animacy was used instead of all 21 
semantic categories from the CSVA model given that regularization is not used in standard 
univariate SPM analyses and given that we sought to test whether the effects and interactions of 
animacy, valence and arousal observed with voxelwise modeling could be identified using a 
standard univariate SPM analysis. ). An F-contrast was calculated across all 12 model regressors 
of interest and those voxels with a significant fit (p < .001, uncorrected) were selected for further 
use. Across all six subjects F-tests revealed that the main effects of Animacy, Valence & Arousal 
(Figs. 3-27,3-30,3-33,3-36,3-39,3-41) were significant within at least some regions of OTC 
(p<.05, FDR corrected within voxels selected as described above). Main effects of Animacy 
showed significant activity across most of OTC for all six subjects. Activity corresponding to the 
main effect of Valence was significant across many regions of OTC for four of the six subjects, 
with more sparse activity in response to valence seen for two of the six subjects. Activity 
associated with the main effect of Arousal was significant throughout most of OTC for five out 
of six subjects, and within many, but not most, regions of OTC in the remaining subject. The 
interaction of Animacy by Valence (Figs. 3-27,3-30,3-33,3-36,3-39,3-41) was significant within 
some regions of OTC for three of the six subjects, with two additional subjects showing a single 
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small cluster. Additionally, the interaction of Animacy by Arousal (Figs. 3-27,3-30,3-33,3-36,3-
39,3-41) showed significant activation within OTC for four out of six subjects. 

In order to examine the direction of the main effects of Animacy, Valence & Arousal in 
OTC, uni-directional t-contrast maps were created. Breaking down the main effect of Valence, t-
contrast maps are shown for both the positive greater than negative contrast and the negative 
greater than positive contrast (Figs. 3-28,3-31,3-34,3-37,3-40,3-42). Within OTC, five of the six 
subjects showed significant activation for the positive greater than negative contrast, although 
activation for one of those subjects was predominantly within EVC. Significant activity for the 
positive greater than negative contrast was found within bilateral FFA for four of the six 
subjects, and cortical regions neighboring RSA for five of the six subjects. In comparison, PC 3 
scores from the PCA reported in chapter 2 were high within FFA across all six subjects. PC 3 
was correlated with animate valence, and thus high scores on PC 3 indicate representation of 
positive greater than negative stimuli. Thus, FFA seems to more strongly represent positive 
stimuli than negative stimuli. Significant activity to valence within frontal regions was also 
observed for all six subjects. Across much of bilateral OFC, the positive greater than negative 
contrast was significant for all six subjects. PC 3 scores from chapter 2 were also high within left 
OFC across all six subjects, suggesting representation of positive greater than negative stimuli 
there. The negative greater than positive contrast was significant for a different subset of five of 
the six subjects. Regions in and near PPA and LO showed significant activity to the negative 
greater than positive contrast for the five subjects were it was significant anywhere within OTC. 
Additionally, PPA showed low PC 3 scores in the PCA reported in chapter 2, inline with these 
univariate findings. Regions of the non-OFC frontal ROI also showed significant activation in 
the negative greater than positive contrast across five of the six subjects. Thus, the main effects 
of Valence within OTC were not driven exclusively by either positive or negative stimuli, 
although patterns of activity within several specific subregions of OTC were consistent across 
subjects.  

For the main effects of Arousal, in contrast (Figs. 3-28,3-31,3-34,3-37,3-40,3-42), the 
high greater than low arousal contrast was significant across much of OTC for all six subjects, 
while no subjects showed significant activity for the low greater than high arousal contrast in 
OTC. Additionally, the high greater than low arousal contrast was significant within similar non-
OTC frontal regions for five of the six subjects. Interestingly, the low greater than high arousal 
contrast was significant across regions of parietal and frontal lobes for four of six subjects, and 
this activity was right-lateralized for three of those four subjects. This effect was not seen across 
the same four subjects when inspecting PC 1 scores from the PCA done in chapter 2. Effects of 
the animate greater than inanimate contrast were seen across wide swaths of OTC for all six 
subjects (Figs. 3-28,3-31,3-34,3-37,3-40,3-42), while only four of six subjects showed 
significant activity for the inanimate greater than animate contrast, with two of those four 
subjects showing only several small clusters of activity. The medial to lateral animacy gradient 
across VTC observed in previous findings (Grill-Spector & Weiner, 2014; Sha et al., 2013) was 
also observed in four of the six subjects using a univariate SPM analysis. The two subjects where 
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this gradient was not fully observed still showed significant activation to animate stimuli within 
fusiform cortex, but there was no significant activation to inanimate stimuli anywhere within 
VTC. In contrast, inspecting results of the PCA from chapter 1 reveals that PC 1 scores of all six 
subjects showed evidence of the animacy gradient across VTC. This difference between 
univariate SPM findings and VWM PCA findings may be explained by the broad range of 
inanimate stimuli modeled using the same regressors in the SPM analysis (the six inanimate 
valence by arousal regressors), whereas they were modeled using different, more specific 
features in the VWM model (54 inanimate semantic category valence by arousal features). 

Next we looked at the interactions of Valence and Arousal with Animacy. The Animacy 
by Valence and Animacy by Arousal interactions were further broken down, and t-contrast maps 
were shown for Valence and Arousal as just described, but for animate and inanimate stimulus 
categories separately. The Animacy by Valence interaction was significant within any OTC 
regions for five of six subjects (subjects 1-4,6), and so we only showed these interaction maps 
for those five subjects. Within animate stimuli, four of five subjects showed significant activity 
(Figs. 3-21,3-24,3-27,3-30,3-35) to either the positive greater than negative contrast (two of five 
subjects) or the negative greater than positive contrast (three of five subjects). Regions between 
RSA and EVC, as well as inferior temporal sulcus (ITC) showed significant animate positive 
greater than negative contrast activity for both subjects where that contrast was significant 
anywhere within OTC. Activity within superior temporal sulcus (STS) was seen for the animate 
negative greater than positive contrast across all 3 subjects showing activity to that contrast 
anywhere within OTC. A different picture for inanimate stimuli emerged (Figs. 3-29,3-32,3-
35,3-38,3-43), as only one of five subjects showed significant activity within OTC for the 
positive greater than negative contrast, and that activity was exclusively located within EVC. 
However, three of five subjects had significant activation to the negative greater than positive 
contrast for inanimate stimuli. Two of these three subjects showed similar activation patterns 
within PPA and OPA for the inanimate negative greater than positive contrast. Thus the 
interaction between Animacy and Valence seems to be driven by both negative and positive 
animate stimuli, but only negative inanimate stimuli. Turning to the Animacy by Arousal 
interaction contrast (Figs. 3-29,3-32,3-35,3-38,3-43), only four of six subjects (subjects 1,3,4,6) 
had any significant activity within OTC and so maps were shown for only those four subjects. 
All four of four subjects showed vast regions of OTC significant in the high greater than low 
arousal contrast for animate stimuli, while only one of four subjects were significant within OTC 
for the low greater than high contrast, and that subject only showed significant activity within 
EVC. For inanimate stimuli, three of four subjects showed significant activity within OTC to the 
high greater than low arousal contrast, and none of the subjects had significant low greater than 
high arousal contrast within OTC. It seems that high arousal stimuli evoke more activity across 
much of OTC than do low arousal stimuli, and that activity was seen across more subjects for 
animate than inanimate stimuli. 

Given these results, can we conclude whether this univariate SPM analysis revealed the 
same conclusions as the VWM analysis reported in Chapter 2? This analysis found strong 
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evidence that in addition to animacy, valence and arousal are both represented within OTC, just 
as the VWM study did (see Fig.2- 2 and figs. 2-S1 - 2-S3). Particularly, regions of FFA, PPA, 
and RSC showed similar activation patterns both across subjects in the univariate analysis and 
between the SPM and VWM analyses. Additionally, similar activity to valence and arousal were 
found in both OFC and non-OFC frontal ROIs in both the SPM and VWM analyses. The results 
investigating evidence for an interaction between animacy and valence, and animacy and arousal, 
are mixed however. Using principal components analysis (PCA) on the feature weights of OTC 
voxels across all size subjects revealed that the top 3 dimensions of representation within OTC 
contain information about arousal for animate stimuli, and to a much lesser degree inanimate 
stimuli, and valence for animate stimuli. Similarity between these group PCs and the single 
subject PCs were highly significant (ps<10-8), suggesting a shared representational space across 
all six subjects. Results from this univariate analysis showed some evidence for interactions 
between animacy and both valence and arousal, but only within subsets of the subjects. The 
Animacy by Valence contrast was significant across multiple OTC regions in three of six 
subjects, although activation was in different OTC regions for those three subjects. An additional 
2 subjects showed a single small cluster for the animacy by valence contrast. Next, we 
investigated the differential effects of animacy on the interaction between animacy and valence. 
Four of the five subjects with any evidence of an OTC Animacy by Valence interaction showed 
increased activation for valence of animate stimuli, while three of five subjects showed increased 
activity for valence in the inanimate stimuli. This effect of valence was driven by positive and 
negative animate stimuli, while exclusively by negative inanimate stimuli. Thus, we see some 
evidence of representation of valence for animate (and less for inanimate) stimuli within OTC, 
although it is only within a subset of subjects, unlike the similar representational space across all 
six subjects in the PCA of chapter 2. In those subjects showing evidence of valence activity for 
animate stimuli there was similarity within several OTC regions such as RSA and STS. A similar 
story emerged for the interaction of animacy by arousal, as four of six subjects showed 
significant activation to that contrast. Looking at animate and inanimate stimuli separately for 
those four subjects revealed evidence that both animate (four of four subjects) and inanimate 
(three of four subjects) stimuli had increased activity for high relative to low arousal images, 
albeit with lower magnitude, across fewer voxels and in fewer subjects for the inanimate stimuli. 
This is in contrast to extremely similar PC 1 loadings across subjects in chapter 2. Again here, 
there is some evidence for representation of an interaction of animacy with arousal, but only in a 
subset of the subjects, and thus the picture is less clear than that presented by the PCA of CSVA 
model feature weights presented in chapter 2.  

One important caveat to this analysis is that, although a traditional univariate SPM 
analysis was conducted, the experimental design was created with a VWM analysis in mind. This 
meant that a much larger number of stimuli were used, nearly 10 times comparable studies (see 
Chikazoe et al., 2014 which used 128 stimuli), that spanned numerous semantic and emotional 
categories. The additional power gained from such a design likely contributed to the fact that 
some evidence was found using a univariate analysis that were similar to those found using 
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VWM. In line with our approach, several recent papers (Grice et al., 2017; Normand, 2016; 
Smith & Little, 2018) have argued for the advantages of doing “small-N design” experiments for 
psychology and neuroscience studies, where a large number of samples are collected for a small 
number of subjects. Smith & Little (2018) argue that by focusing experimental power at the 
single subject level, “small-N design” experiments provide high-powered tests of the 
psychological or neuroscientific effects of interest in individuals without worrying about the 
uncontrolled effects of individual differences. By focusing experimental power at the group level 
using “large-N designs”, individual differences are averaged over for the sake of population 
inference. What this exact population is hardly ever gets specified, and given the sampling biases 
known to occur in psychological studies (Henrich et al., 2010), can hardly be considered to be all 
humans. Thus, for phenomena where individual differences do exist, large group averages can 
actually decrease one’s statistically power, as the models specified do not account for all known 
variables. For these reasons, and others, “small-N designs” offer advantages over “large-N 
designs”, and the fact that this study used a small number of subjects and a large number of 
samples could account for the partial success of this univariate analysis in confirming some of 
the findings from Chapter 1. 
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Figure 3-27. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 1. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 1. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left), and Arousal (top-right) were significant within regions 
of OTC, but their interaction (middle-left) was not. The main effect of Animacy (middle-right) was significant 
across much of OTC, and both the interaction of Animacy by Valence (bottom-left) and Animacy by Arousal 
(bottom-right) showed some significant activation within OTC. 
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Figure 3-28. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 1. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 1. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, both the positive greater than negative (top-
left) and the negative greater than positive (top-right) contrast showed significance within many regions of OTC. 
Many regions of OTC showed significant activity to the high greater than low arousal contrast (middle-left), while 
no significant activity for the low greater than high arousal contrast was seen in OTC. The animate greater than 
inanimate contrast (bottom-left) showed significant activation across much of OTC, while the inanimate greater than 
animate contrast (bottom-right) showed limited significant activity within OTC. The animate greater than inanimate 
contrast was significant in regions known to represent animate stimuli, such as FFA and EBA. 
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Figure 3-29. t Contrast Maps breaking down the Interactions of Animacy by Valence & 
Animacy by Arousal for Subject 1. 
Flatmaps for subject 6 showing t-contrasts which breakdown the interactions of Animacy by Valence (rows 1 & 2) 
and Animacy by Arousal (rows 3 & 4) for animate and inanimate stimuli. Voxel selection and multiple comparisons 
correction was done in the same manner as was done for the F-contrasts. Row 1 shows both t-contrasts for Valence 
of just animate stimuli. The positive greater than negative contrast (row 1-left) for animate stimuli was significant 
within much of OTC, as was the negative greater than positive contrast (row 1-right). For inanimate stimuli in row 
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2, the positive greater than negative contrast (row 2-left) reveals no significant activity in OTC, while the negative 
greater than positive contrast (row 2-right) showed significant activity across several regions within OTC. For the 
Animacy by Arousal interaction, row 3 shows contrast maps for animate stimuli. The high greater than low arousal 
contrast (row 3-left) for animate stimuli is significant across much of OTC, while the low greater than high arousal 
contrast (row 3-right) for animate stimuli is not significant within OTC. For inanimate stimuli, the high greater than 
low arousal contrast is not significant within OTC. The low greater than high arousal contrast is significant for one 
small cluster within OTC for inanimate stimuli. 
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Figure 3-30. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 2. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 2. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left) were significant within early-visual cortex (EVC), 
Arousal (top-right) was significant across much of OTC, and their interaction (middle-left) was significant within 
some of OTC. The main effect of Animacy (middle-right) was significant across much of OTC, the interaction of 
Animacy by Valence (bottom-left) was significant in some regions of V1, and Animacy by Arousal (bottom-right) 
showed no significant activation within OTC. 
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Figure 3-31. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 2. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 2. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, the positive greater than negative (top-left) 
contrast showed significant activity within earl-visual cortex (EVC. The negative greater than positive (top-right) 
showed significance within limited regions of OTC. Many regions of OTC showed significant activity to high 
greater than low arousal (middle-left), while no significant activity for low greater than high arousal was seen in 
OTC (it was seen in some Parietal regions however). Both the animate greater than inanimate (bottom-left) and 
inanimate greater than animate (bottom-right) both showed significant activation across much of OTC. The animate 
greater than inanimate contrast was significant in regions known to represent animate stimuli, such as FFA and 
EBA, and the inanimate greater than animate contrast was significant in regions known to represent inanimate 
stimuli such as PPA, RSA and LO. 
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Figure 3-32. t Contrast Maps breaking down the Interactions of Animacy by Valence for 
Subject 2. 
Flatmaps for subject 6 showing t-contrasts which breakdown the interactions of Animacy by Valence (rows 1 & 2) 
for animate and inanimate stimuli. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. Row 1 shows both t-contrasts for Valence of just animate stimuli. The 
positive greater than negative contrast (row 1-left) for animate stimuli shows no significant activity within OTC, 
while the negative greater than positive contrast (row 1-right) for animate stimuli shows some significant activation 
within OTC. For inanimate stimuli in row 2, neither the positive greater than negative contrast (row 2-left) nor the 
negative greater than positive contrast (row 2-right) are significant in OTC. 
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Figure 3-33. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 3. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 3. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left) were significant within limited regions of OTC while 
Arousal (top-right) was significant across much of OTC, and their interaction (middle-left) was again significant 
within limited regions of OTC. The main effect of Animacy (middle-right) was significant across much of OTC, the 
interaction of Animacy by Valence (bottom-left) was not significant in any of OTC, and Animacy by Arousal 
(bottom-right) showed significant activation within some of OTC.  
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Figure 3-34. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 3. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 3. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, both positive greater than negative (top-left) 
and negative greater than positive (top-right) were significant across limited regions of OTC. Many regions of OTC 
showed significant activity to high greater than low arousal (middle-left), while no significant activity for low 
greater than high arousal was seen in OTC (it was seen in Parietal regions however). Only the animate greater than 
inanimate (bottom-left) showed significant activation to the Animacy main effect, across much of OTC. The 
inanimate greater than animate (bottom-right) contrast showed no significant activity within OTC.The animate 
greater than inanimate contrast was significant in regions known to represent animate stimuli, such as FFA and 
EBA. 
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Figure 3-35. t Contrast Maps Breaking Down the Interactions of Animacy by Valence, & 
Animacy by Arousal for Subject 3. 
Flatmaps for subject 6 showing t-contrasts which breakdown the interactions of Animacy by Valence (rows 1 & 2) 
and Animacy by Arousal (rows 3 & 4) for animate and inanimate stimuli. Voxel selection and multiple comparisons 
correction was done in the same manner as was done for the F-contrasts. Row 1 shows both t-contrasts for Valence 
of just animate stimuli. The positive greater than negative contrast (row 1-left) for animate stimuli shows no 
significant activity within OTC, while the negative greater than positive contrast (row 1-right) for animate stimuli 
shows some significant activation within OTC. For inanimate stimuli in row 2, the positive greater than negative 
contrast (row 2-left) reveals some significant activity in early-visual cortex (EVC), while the negative greater than 
positive contrast (row 2-right) is not significant in OTC. For the Animacy by Arousal interaction, row 3 shows 
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contrast maps for animate stimuli. The high greater than low arousal contrast (row 3-left) for animate stimuli is 
significant across much of OTC, while the low greater than high arousal contrast (row 3-right) for animate stimuli is 
not significant within OTC (although it is significant through some of Parietal and Frontal lobes). For inanimate 
stimuli, the high greater than low arousal contrast is significant within OTC. The low greater than high arousal 
contrast is not significant within OTC for inanimate stimuli, however (although it is significant through some of 
Parietal and Frontal lobes). 
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Figure 3-36. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 4. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 4. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left) were significant within some regions of OTC, Arousal 
(top-right) was significant across much of OTC, and their interaction (middle-left) was no significant within OTC 
(although it was within Parietal regions). The main effect of Animacy (middle-right) was significant across much of 
OTC, the interaction of Animacy by Valence (bottom-left) showed only one small significant cluster within OTC, 
and Animacy by Arousal (bottom-right) was significant within some regions of OTC.   
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Figure 3-37. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 4. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 6. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, positive greater than negative (top-left) was 
significant within limited regions of OTC, but negative greater than positive (top-right) was significant across many 
regions of OTC. Many regions of OTC showed significant activity to high greater than low arousal (middle-left), 
while no significant activity for low greater than high arousal was seen in OTC (it was seen in Parietal regions 
however). Both the animate greater than inanimate (bottom-left) and inanimate greater than animate (bottom-right) 
both showed significant activation across much of OTC. The animate greater than inanimate contrast was significant 
in regions known to represent animate stimuli, such as FFA and EBA, and the inanimate greater than animate 
contrast was significant in regions known to represent inanimate stimuli such as PPA, RSA and OPA.  
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Figure 3-38. t Contrast Maps Breaking Down the Interactions of Animacy by Valence & 
Animacy by Arousal for Subject 4. 
Flatmaps for subject 4 showing t-contrasts which breakdown the interactions of Animacy by Valence (rows 1 & 2) 
and Animacy by Arousal (rows 3 & 4) for animate and inanimate stimuli. Voxel selection and multiple comparisons 
correction was done in the same manner as was done for the F-contrasts. Row 1 shows both t-contrasts for Valence 
of just animate stimuli. The positive greater than negative contrast (row 1-left) for animate stimuli shows significant 
activity within one small cluster in OTC, while the negative greater than positive contrast (row 1-right) for animate 
stimuli shows one small cluster of significant activation in OTC. For inanimate stimuli in row 2, the positive greater 
than negative contrast (row 2-left) reveals several small clusters of significant activity in OTC, while the negative 
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greater than positive contrast (row 2-right) is significant across OTC. For the Animacy by Arousal interaction, row 3 
shows contrast maps for animate stimuli. The high greater than low arousal contrast (row 3-left) for animate stimuli 
is significant across much of OTC, while the low greater than high arousal contrast (row 3-right) for animate stimuli 
is not significant within OTC (although it is significant through some of Parietal and Frontal lobes). For inanimate 
stimuli, the high greater than low arousal contrast is significant within OTC, while the low greater than high arousal 
contrast is not significant anywhere for inanimate stimuli. 
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Figure 3-39. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 5. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 5. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left) and Arousal (top-right) was significant across much of 
OTC, but their interaction (middle-left) showed no significant activity within OTC. The main effect of Animacy 
(middle-right) was significant across much of OTC, but the interactions of Animacy by Valence (bottom-left) and 
Animacy by Arousal (bottom-right) showed no significant activation within OTC. 
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Figure 3-40. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 5. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 5. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, positive greater than negative (top-left) was 
significant across much of OTC, but negative greater than positive (top-right) was not significant within OTC. Many 
regions of OTC showed significant activity to high greater than low arousal (middle-left), while no significant 
activity for low greater than high arousal was seen in OTC. Only the animate greater than inanimate (bottom-left) 
showed significant activation across much of OTC. The inanimate greater than animate (bottom-right) showed no 
significant activation. The animate greater than inanimate contrast was significant in regions known to represent 
animate stimuli, such as FFA and EBA. 
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Figure 3-41. Main Effects and Interactions between Animacy, Valence, & Arousal for 
Subject 6. 
Flatmaps showing results from 6 contrasts calculated from a univariate SPM analysis for subject 6. An Animate 
(animate, inanimate) by Valence (negative, neutral, positive) by Arousal (high,low) model consisting of 12 
regressors was fit to the BOLD data. A voxel selection mask was created by calculating an F-contrast across all 
model regressors of interest and selecting those voxels with significant fit (p < .001, uncorrected). Secondary F-
contrasts of interest were then calculated using this voxel-selection mask, and multiple comparison correction was 
done using FDR (q=.05). Main effects of Valence (top-left) and Arousal (top-right) were significant within some 
regions of OTC, as was their interaction (middle-left). The main effect of Animacy (middle-right) was significant 
across much of OTC, and the interaction of Animacy by Valence (bottom-left) and Animacy by Arousal (bottom-
right) were significant across some regions within OTC. 
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Figure 3-42. t Contrast Maps for the Main Effects of Animacy, Valence, & Arousal for 
Subject 6. 
Flatmaps showing univariate SPM t-contrasts of the main effects of Valence (first row), Arousal (second row) & 
Animacy (third row) for subject 6. Each row shows both t-contrasts for the three main effects whose F-contrasts 
where shown in the previous figure. Voxel selection and multiple comparisons correction was done in the same 
manner as was done for the F-contrasts. For the main effect of Valence, positive greater than negative (top-left) was 
not significant within OTC, but negative greater than positive (top-right) was significant across many regions of 
OTC. Many regions of OTC showed significant activity to high greater than low arousal (middle-left), while no 
significant activity for low greater than high arousal was seen in OTC (it was seen in Parietal regions however). 
Both the animate greater than inanimate (bottom-left) and inanimate greater than animate (bottom-right) both 
showed significant activation across much of OTC. The animate greater than inanimate contrast was significant in 
regions known to represent animate stimuli, such as FFA and EBA, and the inanimate greater than animate contrast 
was significant in regions known to represent inanimate stimuli such as PPA, RSA and LO. 
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Figure 3-43. t Contrast Maps Breaking Down the Interactions of Animacy by Valence & 
Animacy by Arousal for Subject 6. 
Flatmaps for subject 6 showing t-contrasts which breakdown the interactions of Animacy by Valence 
(rows 1 & 2) and Animacy by Arousal (rows 3 & 4) for animate and inanimate stimuli. Voxel selection and 
multiple comparisons correction was done in the same manner as was done for the F-contrasts. Row 1 
shows both t-contrasts for Valence of just animate stimuli. The positive greater than negative contrast 
(row 1-left) for animate stimuli shows significant activity within some regions of OTC, while the negative 
greater than positive contrast (row 1-right) for animate stimuli shows several small clusters of significant 
activation in OTC. For inanimate stimuli in row 2, the positive greater than negative contrast (row 2-left) 
reveals no significant activity in OTC, while the negative greater than positive contrast (row 2-right) is 
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significant across OTC, especially within known inanimate-selective regions such as PPA. For the 
Animacy by Arousal interaction, row 3 shows contrast maps for animate stimuli. The high greater than low 
arousal contrast (row 3-left) for animate stimuli is significant across much of OTC, while the low greater 
than high arousal contrast (row 3-right) for animate stimuli is not significant within OTC (although it is 
significant through much of Parietal and Frontal lobes). For inanimate stimuli, the high greater than low 
arousal contrast is significant within early-visual cortex (EVC). The low greater than high arousal contrast 
is not significant anywhere for inanimate stimuli, however. 
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5. Variance Partitioning of CSVA Model Prediction Accuracy 

Introduction 

Variance partitioning (also known as commonality analysis [Nimon & Reio, 2011]) 
allows for the allocation of explained variance in Y (e.g. BOLD data) across multiple feature 
spaces that have correlations between their respective features. Explained variance in Y is 
partitioned into unique variance terms for each feature space, and a shared variance term for all 
combinations of the features spaces under investigation (de Heer, et al., 2017; Nimon & Reio, 
2011). In order to precisely calculate the proportions of variance explained by the combined 
semantic, valence, and arousal (CSVA) model reported in chapter 2, we here conducted a 
variance partitioning of the out-of-sample prediction accuracy scores of the CSVA model. 

Methods  

To conduct variance partitioning, first an all possible subsets (APS) regression is 
conducted. In APS, a separate model is fit for every possible combination of feature sets under 
investigation. For example, in the case of two feature sets, A & B, the following three models 
would be fit: 

1. � = � � ⋅ � � + �, for feature space A 
2. � = � � ⋅ � � + �, for feature space B 
3. � = � � ⋅ � � + � � ⋅ � � + �, for the union of feature spaces A or B, denoted 

AB 
were � is the BOLD data, �� , ��  are the estimated beta-weights for feature spaces A & B 
respectively, and � � , � �  are the design matrices for feature sets A & B respectively. The second 

step is to calculate the variance explained for all models fit. This can be done using either � 2 or 

� 2. The equations for both are given below: 

1. � 2: � 2 = ���� (�̂ ,̂� )2 

2. � 2:� 2 =
∑� (� � −�̂ �̂ )2

∑� (� � −� )2
  

were �̂  ̂is the predicted values of Y for a given model, and �is the mean of Y. The third step is 

to derive a formula that combines the variance explained from the models fit for each unique and 

combined variance term. In this example there are 2 unique variance terms (denoted �� (� )
2  and 

�� (� )
2 ), and one combined variance term (denoted �� (�� )

2 ), whose formulas are: 

1. �� (� )
2 = � ��

2 − � �
2   

2. �� (� )
2 = � ��

2 − � �
2   

3. �� (�� )
2 = � �

2 + � �
2 − � ��

2
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were � �
2 , � �

2 and � ��
2  are the amount of variance explained for models of feature spaces A, B 

and AB respectively, as defined above. Note that � 2could be used instead of � 2. See de Heer et 
al., 2017 for an explanation of variance partitioning using set theory and Nimon & Reio, 2011 
for expansion of the unique and shared variance terms for 3 & 4 feature sets. 
 For this study, we are interested in determining the unique variance explained by the 
following feature spaces:  

(a) � =Semantic features (21 total features) 
(b) � =Valence by Arousal features (6 total features) 
(c) � =Semantic-Emotion Modifiers (18 total features) 
(d) � ⋅ � =Semantic by Valence by Arousal features (126 total features) 

 To do so, 9 models were fitted to each voxel, where the ridge coefficient (lambda) was 
allowed to vary across voxels. 20 values of lambda were selected from a log-space ranging from 
0-1000, and the best fitting lambda was determined using k-fold cross-validation with 50 
partitions. This high number of possible lambdas and cross-validation partitions allow for an 
accurate estimation of the optimal lambda, and thus highest explained variance, per voxel. The 
following 9 models, which comprise an all possible subsets regression across the 4 feature spaces 
of interest, were fit to be used in the variance partitioning: 

(a) � 
(b) � 
(c) � 
(d) � ⋅ � 
(e) � + � 
(f) � + � 
(g) � + � 
(h) � + � + � 
(i) � ⋅ � + � 

Note that because we have an interaction model of indicator variables (Semanic by 
Valence by Arousal), there is no need to fit a full interaction model that would contain the 
Semantic terms, the Valence by Arousal terms, and the Semantic by Valence by Arousal terms. 
Both models explain the same amount of variance since the later’s design matrix is rank 
deficient, and of the same rank as the former’s. 

Then, to calculate the unique and combined variance terms for the four feature sets of 
interest, the following formulas consisting of linear equations combining the above nine models 
were used. A system of nine binary equations (i.e. containing zeros and ones) with nine 
unknowns was defined. Each equation represented one variance partition, and each variable 
represented one of the nine all possible subsets (APS) regression models. Within each equation a 
one indicated that the current APS model contained at least one of the features sets in the current 
partition. To solve this system of equations nine linear equation solvers were used, one for each 
partition. Each solver was given the system of equations as the X variables. For the Y variables, 
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a vector of nine 0s was created containing a single 1 value in the location of the equation for the 
partition to solve. This resulted in nine sets of weights on the APS models (see Table 3-2) which, 
when multiplied by the r2 values from each APS model regression gives the explained variance 
(r2) for the given partition. See Table 3-3 below for the system of equations (the X values) given 
to the solver. Below the equations to calculate each partition from the nine APS model r 2 values 
are given. These equations contain the same information as Table 3-2, just in a more succinct 
form.: 

1. �� (� )
2 = � (� +� +� )

2 − � (� +� )
2  

2. �� (� )
2 = � (� +� +� )

2 − � (� +� )
2  

3. �� (� )
2 = � (� ⋅� +� )

2 − � (� ⋅� )
2  

4. �� (� ⋅� )
2 = � (� ⋅� +� )

2 − � (� +� +� )
2  

5. �� (� +� )
2 = � (� +� )

2 + � (� +� )
2 − � (� +� +� )

2 − � (� )
2  

6. �� (� +� )
2 = � (� +� )

2 + � (� +� )
2 − � (� +� +� )

2 − � (� )
2  

7. �� (� +� )
2 = � (� +� )

2 + � (� +� )
2 − � (� +� +� )

2 − � (� )
2  

8. �� (� +� +� )
2 = � (� +� +� )

2 + � (� )
2 + � (� )

2 + � (� )
2 − � (� +� )

2 − � (� +� )
2 − � (� +� )

2  

9. �� (� ⋅� +� )
2 = � (� ⋅� +� )

2 + � (� ⋅� )
2 −� (� +� +� )

2 − � (� +� )
2  

where the unique variance terms are denoted �� (��� )
2 for feature set XXX, and the combined 

variance terms  are denoted �� (��� +��� )
2  for combined variance between feature sets XXX and 

YYY. Or, see Table 3-2 below for a depiction of these formulae using contrast weights. 

Traditionally, the above technique for variance partitioning uses in-sample � 2or � 2, 
meaning the explained variance is estimated on the same data that the models are fitted on 
(Nimon & Reio, 2011). Voxel-wise modeling (VWM) assesses model fit using out-of-sample 
correlation, or prediction accuracy (�). Conducting variance partitioning on out-of-sample data 
introduces additional technical challenges. When partitioning in-sample variance explained, the 
sum of all the unique and shared terms is guaranteed to equal the variance explained by the “full 
model” (the model consisting of the intersection of all feature spaces). However, when 
partitioning out-of-sample data it is possible that the sum of the unique and shared terms are 
greater than the explained variance of the full model, due to over-fitting in the estimation data 
and sampling error. To address this issue, de Heer et al. (2017) developed  

“a post-hoc correction [that] was applied to the estimated variance explained by 
each model in each voxel. This correction moved the estimates to the nearest values that 
produced no nonsensical results. Mathematically, this involved estimating a bias term for 
the variance explained by each model in each voxel. We began by assuming that the 
estimated variance explained by some model (R2), �̂ ,̂ is a biased estimate of the true 

variance explained, � ∗: �̂  ̂ =� ∗+ � � .” This correction yields one bias term (� � ) for 
each model fit. “Furthermore, because we know that the size of each variance partition 
must be at least to zero, the set theory equations that give the size of each partition can 
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be used to define seven inequality constraints on the bias terms. Assuming that we want 
to find the smallest set of bias parameters (in an L2 sense) that produce no nonsensical 
results, this allowed us to setup a constrained function minimization problem”: 

 

��� {||� ||
2
} �������  ��  ℎ� (� ) ≥ 0 ���  �

= 1, . . . ,� ,�ℎ���  ℎ�  ���  �ℎ�  ����������  �����������  ���  �  �ℎ�  ������  ��  ������
 
This correction was applied separately to the estimated variance explained by all models, for 
each voxel. 
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Table 3-2. Contrast Weights Used to Calculate the Nine Variance Partitions of the CSVA 
model. 

 � (� )
2  � (� )

2  � (� )
2  � (� ⋅� )

2  � (� +� )
2  � (� +� )

2  � (� +� )
2  � (� +� +� )

2  � (� ⋅� +� )
2  

�� (� )
2  0 0 0 0 0 0 -1 1 0 

�� (� )
2  0 0 0 0 0 -1 0 1 0 

�� (� )
2  0 0 0 0 -1 0 0 0 1 

�� (� ⋅� )
2  0 0 0 0 0 0 0 -1 1 

�� (� +� )
2  0 0 -1 0 0 1 1 -1 0 

�� (� +� )
2  0 -1 0 0 1 0 1 -1 0 

�� (� +� )
2  -1 0 0 0 1 1 0 -1 0 

�� (� +� +� )
2  1 1 1 0 -1 -1 -1 1 0 

�� (� ⋅� +� )
2  0 0 0 1 -1 0 0 1 -1 
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Table 3-3. System of Equations Given to Linear Solver to Find the Contrast Weights. 

 � (� )
2  � (� )

2  � (� )
2  � (� ⋅� )

2  � (� +� )
2  � (� +� )

2  � (� +� )
2  � (� +� +� )

2  � (� ⋅� +� )
2  

�� (� )
2  1 0 0 1 1 1 0 1 1 

�� (� )
2  0 1 0 1 1 0 1 1 1 

�� (� )
2  0 0 1 0 0 1 1 1 1 

�� (� ⋅� )
2  0 0 0 1 0 0 0 0 1 

�� (� +� )
2  1 1 0 1 1 1 1 1 1 

�� (� +� )
2  1 0 1 1 1 1 1 1 1 

�� (� +� )
2  0 1 1 1 1 1 1 1 1 

�� (� +� +� )
2  1 1 1 1 1 1 1 1 1 

�� (� ⋅� +� )
2  0 0 1 1 0 1 1 1 1 

Results  

Variance partitioning was done to determine the unique and combined contributions to 
the prediction accuracy of all possible subsets of features spaces of the CSVA model, namely: 
Unique Semantic, Unique Emotion, Unique Modifiers, Semantic * Emotion, Semantic + 
Emotion, Semantic + Modifiers, Emotion + Modifiers, Semantic + Emotion + Modifiers, & 
Semantic * Emotion + Modifiers. Interrogation of these partitions (and combinations thereof) 
was done to determine the amount of variance in the CSVA model that can be attributed to just 
emotion, just semantics and various combinations and interactions of semantics and emotion. 
Figures 3-44 - 3-49 show flatmaps of the following 5 partitions (or combinations), with each 
figure showing all 5 partitions (and the full CSVA prediction accuracy) for one of the six 
subjects. Panel letters from the figure correspond with letters below: 

A. Unique Emotion 
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B. CSVA - Semantic: Consists of the sum of the following 5 partitions - Unique Emotion, 
Modifiers Only, Semantic * Emotion, Emotion + Modifiers, & Semantic * Emotion + 
Modifiers 

C. Unique Semantic 
D. CSVA - Emotion: Consists of the sum of the following 5 partitions - Unique Semantic, 

Unique Modifiers, Semantic * Emotion, Semantic + Modifiers, & Semantic * Emotion + 
Modifiers 

E. Full CSVA Prediction accuracy (for reference) 
F. CSVA - Semantic - Emotion: Consists of the sum of the following 3 partitions - Unique 

Modifiers, Semantic * Emotion, & Semantic * Emotion + Modifiers 
 
The features comprising the Modifier feature space (such as mutilated animals, rotten food, and 
erotic humans) contain combined semantic and emotional information, and so partitions 
including the Modifiers feature space will be considered to contain combined semantic and 
emotion information. Panel A of Figures 3-44 - 3-49 shows that variance explained uniquely by 
the Emotion model can be seen within OTC across all six subjects, however to a lesser degree, 
and across fewer voxels, than that of the full CSVA model prediction accuracy (panel E of Figs. 
3-44 - 3-49). This unique partition of the Emotion model does not include shared variance with 
the Semantic or Modifier feature spaces, nor the interaction feature space of Semantics by 
Emotion. To explore the extent to which variance is explained considering emotion along with 
it’s shared variance and interactions with other feature spaces, we constructed the flatmaps 
contained within Panel B of Figures 3-44 - 3-49. These flatmaps show all variance explained 
except from those partitions including the Semantic feature space alone. On these maps, across 
all six subjects nearly all the OTC voxels that were significantly predicted by the CSVA model 
are significantly explained, indicating that emotion, and interactions between emotion and 
semantics, explains much of the variance explained by the CSVA model in OTC. Extensive 
previous neuroscientific studies have found evidence for the representation of object category 
within OTC (e.g Epstein & Kanwisher,1998). As these studies would suggest, much of OTC is 
uniquely predicted by the Semantic model. Perhaps surprising however, is the amount of unique 
variance explained within OTC voxels by the Semantic model compared with the full CSVA 
model prediction accuracy. The unique Semantic model explained variance is markedly less in 
many voxels across all 6 subjects. Removing variance explained by all 4 partitions that include 
the Emotion Only feature space, shown in Panel D of Figures 3-44 - 3-49, does not reduce 
prediction accuracy to the same extent as removing variance explained by Semantic only 
partitions (panel B). This might be expected given the large role semantic information plays in 
representations of visual stimuli within OTC. Comparing the unique variance explained by 
Semantics (panel C) with variance explained by Semantics and it’s interactions with emotion 
(panel D) however suggest that the interactions of semantics with emotion explain a large portion 
of the variance explained by the full CSVA model. Panel E contains flatmaps where variance 
explained is isolated to only those partitions containing combinations and interactions of 
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semantic and emotion information. Within these flatmaps in 5 of the 6 subjects, large portions of 
the voxels significantly explained by the CSVA model still explain significant variance, 
indicating that in addition to unique variance explained by just the Semantic and Emotion feature 
spaces, the combination of semantic and emotion information are represented across much of 
OTC. 
  



121 
 

 
Figure 3-44: Variance Partitioning of the CSVA model prediction accuracy for Subject 1. 
Variance partitioning was done on the prediction accuracy of the CSVA model, resulting in 9 partitions (see 
methods for details). These flatmaps of subject 1 show (A,B,C,D,F) the prediction accuracy obtained on 5 different 
combinations of partitions and (E) the prediction accuracy of the full CSVA model itself. (A) Unique contributions 
to the explained variance by the Emotion model. Some regions of OTC show significant variance explained by just 
the emotion model, although to a lesser extent, and across fewer voxels, than the full CSVA model. (B) Variance 
explained by emotion alone plus combinations of emotion with semantics and modifiers are shown. Specifically, all 
variance explained by the CSVA model except those partitions that included the semantic model (Semantic Only, 
Semantic + Emotion, Semantic + Modifiers, & Semantic + Emotion + Modifiers). Nearly all OTC regions that were 
significantly predicted by the CSVA model are explained by this combination of partitions, indicating that the 
emotion plus the interaction between emotion and semantics explains much of the variance explained by the CSVA 
model in OTC. (C) Unique contributions to the explained variance by the Semantic model. As previous work has 
suggested, much of OTC is well predicted by this model, although not to the same extent as the CSVA model itself. 
(D) Variance explained by semantic alone plus combinations of semantic with emotion and modifiers are shown. 
Specifically, all variance explained by the CSVA model except those partitions that included the emotion model 
(Emotion Only, Semantic + Emotion, Emotion + Modifiers, & Semantic + Emotion + Modifiers). (E) Prediction 
accuracy of the full CSVA model, shown for reference. (F) Variance explained by the CSVA model removing all 
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partitions including the Semantic or Emotion model alone. Specifically, this shows the sum of the 3 interaction 
partitions (Modifiers Only, Semantic x Emotion, Semantic x Emotion x Modifiers). Large portions of the voxels 
significantly explained by the CSVA model still explain significant variance when only looking only at the 
interactions between semantics and emotion, suggesting the combination of semantics and emotion are represented 
across much of OTC. 
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Figure 3-45: Variance Partitioning of the CSVA model prediction accuracy for Subject 2. 
Flatmaps for Subject 2 are the same as those described for subject 1 in Figure 3-44. (A) Scattered regions within 
OTC show variance explained uniquely by Emotion. (B) Nearly all regions of OTC whose voxels are significantly 
explained by the CSVA model are also significantly explained when removing contributions from just Semantics, 
indicating emotion and it’s interactions with Semantics are represented within OTC. (C) Although many of the same 
voxels show significant variance explained uniquely by Semantics, the amount of variance within these voxels is 
much less than the full CSVA model itself. (D) Removing all partitions including Emotion, but not interactions with 
emotion, slightly reduces the amount of variance explained in much of OTC. (E) Prediction accuracy of the full 
CSVA model, for comparison. (F). Only the interactions between Semantics, Emotion and the Modifiers still explain 
significant variance throughout much of OTC explained by the full CSVA model, indicating the interaction of 
semantics and emotion are crucial to representations within OTC. 
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Figure 3-46: Variance Partitioning of the CSVA model prediction accuracy for Subject 3. 
Flatmaps for Subject 3 are the same as those described for subject 1 in Figure 3-44. (A) Scattered regions within 
OTC show variance explained uniquely by Emotion. (B) Nearly all regions of OTC whose voxels are significantly 
explained by the CSVA model are also significantly explained when removing contributions from just Semantics, 
indicating emotion and it’s interactions with Semantics are represented within OTC. (C) Although many of the same 
voxels show significant variance explained uniquely by Semantics, the amount of variance within these voxels is 
much less than the full CSVA model itself. (D) Removing all partitions including Emotion, but not interactions with 
emotion, slightly reduces the amount of variance explained in much of OTC. (E) Prediction accuracy of the full 
CSVA model, for comparison. (F). Only the interactions between Semantics, Emotion and the Modifiers still explain 
significant variance throughout much of OTC explained by the full CSVA model, indicating the interaction of 
semantics and emotion are crucial to representations within OTC.  
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Figure 3-47: Variance Partitioning of the CSVA model prediction accuracy for Subject 4. 
Flatmaps for Subject 4 are the same as those described for subject 1 in Figure 3-44. (A) Scattered regions within 
OTC show variance explained uniquely by Emotion. (B) Nearly all regions of OTC whose voxels are significantly 
explained by the CSVA model are also significantly explained when removing contributions from just Semantics, 
indicating emotion and it’s interactions with Semantics are represented within OTC. (C) Although many of the same 
voxels show significant variance explained uniquely by Semantics, the amount of variance within these voxels is 
much less than the full CSVA model itself. (D) Removing all partitions including Emotion, but not interactions with 
emotion, slightly reduces the amount of variance explained in much of OTC. (E) Prediction accuracy of the full 
CSVA model, for comparison. (F). Only the interactions between Semantics, Emotion and the Modifiers still explain 
significant variance throughout much of OTC explained by the full CSVA model, indicating the interaction of 
semantics and emotion are crucial to representations within OTC.  
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Figure 3-48: Variance Partitioning of the CSVA model prediction accuracy for Subject 5. 
Flatmaps for Subject 5 are the same as those described for subject 1 in Figure 3-44. (A) Many regions within OTC 
show variance explained uniquely by Emotion, with more voxels in the left hemisphere explaining significant 
variance. (B) Nearly all regions of OTC whose voxels are significantly explained by the CSVA model are also 
significantly explained when removing contributions from just Semantics, indicating emotion and it’s interactions 
with Semantics are represented within OTC. (C) Although many of the same voxels show significant variance 
explained uniquely by Semantics, the amount of variance within these voxels is much less than the full CSVA model 
itself. (D) Removing all partitions including Emotion, but not interactions with emotion, slightly reduces the amount 
of variance explained in much of OTC. (E) Prediction accuracy of the full CSVA model, for comparison. (F). Only 
the interactions between Semantics, Emotion and the Modifiers still explain significant variance throughout much of 
OTC explained by the full CSVA model, indicating the interaction of semantics and emotion are crucial to 
representations within OTC.  
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Figure 3-49: Variance Partitioning of the CSVA model prediction accuracy for Subject 6. 
Flatmaps for Subject 6 are the same as those described for subject 1 in Figure 3-44. (A) Scattered regions within 
OTC show variance explained uniquely by Emotion. (B) Nearly all regions of OTC whose voxels are significantly 
explained by the CSVA model are also significantly explained when removing contributions from just Semantics, 
indicating emotion and it’s interactions with Semantics are represented within OTC. (C) Although many of the same 
voxels show significant variance explained uniquely by Semantics, the amount of variance within these voxels is 
much less than the full CSVA model itself. (D) Removing all partitions including Emotion, but not interactions with 
emotion, slightly reduces the amount of variance explained in much of OTC. (E) Prediction accuracy of the full 
CSVA model, for comparison. (F). Only the interactions between Semantics, Emotion and the Modifiers still explain 
significant variance throughout some of OTC explained by the full CSVA model. 
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6. Principal Components Analysis (PCA) on CSVA Model Voxel 
Feature Weights and Behavioral Response Analysis within 
Occipital-Temporal Cortex (OTC) Subregions 

Introduction 

 Principal components analysis (PCA) was done on the CSVA model feature weights of 
all voxels within OTC where the CSVA model both significantly predicted the BOLD signal, 
and predicted more variance than the Semantic Only model, as reported in chapter 2. This 
included voxels from Early Visual Cortex (EVC), defined as retinotopic regions V1, V2, V3, & 
V4, as well as voxels from anterior occipital and ventral temporal cortex, defined as all OTC 
voxels not in EVC (referred to as non-EVC OTC from here on). Numerous studies have shown 
that regions in EVC are well modeled using Gabor wavelet models (Kay et al., 2008), while 
regions within non-EVC OTC are well modeled using a Semantic model. Thus the contributions 
to the overall spatial and representational structure of the OTC PCA from these two regions is 
likely to be very different than that of the two regions considered separately. In order to 
disentangle the contributions of these two regions, two additional PCAs were conducted on voxel 
feature weights from EVC and non-EVC OTC separately.  

Methods  

PCA 

This analysis was done on the 4 ROIs listed above (EVC, non-OTC EVC, OFC, & non-OFC 
Frontal) exactly as described in two supplemental methods sub-sections of chapter 2 within the 
“fMRI Data Modeling” section of the METHOD DETAILS. They were titled: 

1. “PCA of CSVA model feature weights” 
2. “Interpreting the top 3 group-level PCs”  

Statistical tests were done as described in the two subsections of the QUANTIFICATION AND 
STATISTICAL ANALYSIS section titled: 

1. “Principal component significance testing” 
2. “Relating PCs to hypothetical dimensions”  

Behavioral Analysis 

This analysis was done on the 4 ROIs listed above (EVC, non-OTC EVC, OFC, & non-OFC 
Frontal) exactly as described in a supplemental methods subsection of chapter 2 within the 
“fMRI Data Modeling” section of the METHOD DETAILS. It was titled: 

1. “Prediction of behavioral responses” 
Statistical tests were done as described in the sub-section of the QUANTIFICATION AND 
STATISTICAL ANALYSIS section titled: 
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1. “Predicting behavioral responses from OTC tuning” 
 

Results 

PCA  

Scree plots displaying the amount of variance explained by the top 10 group EVC CSVA 
PCs are shown in panel A of Figure 3-50. The top 3 group EVC PCs explain significantly more 
variance within EVC voxel feature weights than can be explained by the top 3 PCs from a PCA 
done on the stimulus features alone. Thus subsequent analysis of EVC PCs will be limited to the 
top 3 group PCs. Correlations between the top 3 group and single-subject EVC CSVA PCs are 
shown in panel B of Figure 3-50. While all correlations are significant (ps<.05), similarity 
between the group and single-subject PC loadings across subjects is lower, and less consistent, 
than that of the OTC PCs, suggesting that the representational space captured by the CSVA 
model within EVC varies across subjects. PC loadings from the top 3 group PCs of the EVC and 
OTC CSVA PCA were correlated to determine similarity of the representational space between 
the two regions, shown in Panel C of Figure 3-50. As was expected, similarity between the top 3 
EVC and OTC CSVA PCs was low (PC1 r=.41, PC2 r=.49, PC3 r=.48), and confusability 
between the top 2 PCs across the two models was high (PC1 r=.70, PC2 r=.56). Flatmaps 
showing the scores of of the top 3 EVC CSVA PCs within EVC voxels are shown in Figure 3-
51.  These maps reveal a moderate consistency across subjects in spatial structure as defined by 
the top 3 EVC CSVA PCs. 

Within non-EVC OTC, the top 3 group PCs explain significantly more variance than 
stimulus feature PCs, as shown in panel D of Figure 3-50. Additionally, the top PC explains 
approximately 33% of the variance in non-EVC OTC feature weights, compared with 
approximately 10% of EVC feature weight variance explained by the top EVC PC. Panel E 
shows that similarity between the top 3 group and single subject non-EVC OTC CSVA PCs is 
high, and significantly correlated (ps<.01) across all 3 PCs and 6 subjects. Furthermore, as seen 
in panel F of Figure 3-50, the correlations between the top 3 non-EVC OTC and full OTC group 
CSVA PCs are nearly perfect(rs>.99), and uncorrelated with the remaining other top 3 PCs 
(rs<.05). Thus, as might be expected, the spatial structure of the top 3 group CSVA PCs within 
non-EVC OTC (Fig. 3-52) and all of OTC is extremely similar, as can be seen in the flatmaps of 
PC scores in Figure 2-4 and Figure 2-S5. Taken together, these results indicate that the 
representational space and spatial structure recovered by the PCA on OTC voxels done in 
chapter 2 was largely driven by covariance across non-EVC OTC voxel feature weights, and not 
EVC voxel feature weights. 
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Behavioral Response Analysis 

Appropriately responding to external stimuli containing emotional content is crucial to 
survival. Thus, an important question is whether the stimulus information represented within 
OTC could be used to select an appropriate behavioral response to that stimulus. To address this 
question, OTC tuning to emotional stimuli, quantified via PC loadings from PCA on CSVA 
feature weights within OTC, was used to predict appropriate behavioral responses to the stimuli 
(reported in chapter 2). A separate set of subjects selected the behavioral responses appropriate 
to the content of each image (see chapter 2 methods for details), and a linear regression was used 
to predict out-of-sample explained variance by the scores of each image on a varying number of 
OTC CSVA PCs (1 to 21). To determine the separate contributions that EVC and non-EVC OTC 
make to the predictions of appropriate behavioral responses we repeated the same analysis as 
was done on OTC PCs in chapter 2 on both these regions. 
 Tuning to the CSVA model within EVC (as quantified by EVC CSVA PCs) predicted 
behavioral responses better than PCs from the stimulus features themselves for only the top 8 
PCs (Fig. 3-53 panel A), compared with all 21 OTC PCs considered in chapter 2 (Fig. 2-6, panel 
B). In addition to the CSVA model, PCs of models with Semantic Only, Emotion Only, and 
Gabor wavelet features were also used to predict out-of-sample variance in behavioral responses. 
As can be seen in panel B of Figure 3-53, the Gabor model PCs did a poor job of predicting 
behavioral responses, which suggests that although EVC is well predicted by a Gabor wavelets 
model, that tuning to low-level image structural features is insufficient to guide behavior. 
Additionally, both the Semantic Only and Emotion Only models outperform the Gabor model in 
predicting behavior, and the Emotion Only model performs particularly well at low levels of 
dimensionality, while the semantic model is not significantly different from the CSVA model at 
any level of dimensionality. Unlike in OTC as a whole, tuning in EVC to the Emotion Only 
model at its maximal prediction of behavior (at n=6 PCs) is not significantly less than that 
achieved by the CSVA model using an equivalent number of components.  
 In contrast to tuning in EVC, tuning in non-EVC OTC explained nearly identical amounts 
of variance in behavioral responses compared with tuning in OTC as a whole. All 21 non-EVC 
OTC CSVA PCs considered explained significantly more variance than stimulus feature PCs and 
Gabor model PCs, as did OTC CSVA PCs. The Emotion Only and Semantic Only model PCs 
also perform well at low dimensionality, but are then significantly outperformed by non-EVC 
OTC CSAV PCs at their respective maximal prediction of behavior (n=6 and n=21 PCs). The 
extreme similarity (rs>.99) between the top 3 CSVA model PCs from the non-EVC OTC PCA 
and the entire OTC PCA was here shown to extend across higher dimensionality when 
considering the PCs ability to predict appropriate behavioral responses to emotional stimuli. 
These findings suggest that, as with the PCA, the contributions of EVC representations did little 
to alter the explained variance in behavioral responses within OTC, and when excluding EVC 
the results are nearly identical between non-EVC OTC and the entire OTC.   
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Figure 3-50. Results of PCA on voxel feature weights within Early Visual Cortex (EVC) 
and non-EVC OTC. 
(A-C) A group-level principal components analysis (PCA) was conducted on the CSVA model 
feature weights across all Early Visual Cortex (EVC) voxels where model fit was significant and better than that of 
the Semantic Only model. (A) The scree plot shows the amount of variance explained by each of the top ten PCs (in 
red). PCs from a PCA analysis conducted on stimulus features (using the combined design matrix from all 6 
subjects) are shown in black. Asterisks indicate group PCs that explain significantly more variance than the stimulus 
PCs (jackknife test, p < 10-8 ), see chapter 2 Methods for details. (B) Correlations between the top 3 group PCs 
within EVC, and the top 3 PCs from single subject PCAs within EVC. The significant correlation coefficients (r > 
.14, indicated by the dotted line and asterisk on the colorbar) between each of the group PCs and the corresponding 
PCs from the single subject PCA for each subject (ps < 10 -8) indicate a shared representational structure across 
subjects. (C) Correlations between the loadings of the top 3 PCs from PCAs done on EVC voxels and all OTC 
voxels. Lack of similarity between the PCs suggest the representational space of EVC differs drastically from that of 
the OTC as a whole, even though the PCs on all OTC voxels contain those within EVC. (D-F) A second group-level 
principal components analysis (PCA) was conducted on the CSVA model 
feature weights across all OTC voxels not contained within EVC, where model fit was significant and better than 
that of the Semantic Only model. (D) Scree plots showing variance explained by the top 10 PCs for the non-EVC 
OTC PCs. The top 3 PCs explain significantly more variance than do the stimulus feature PCs. Of note is the 
increased amount of variance the non-EVC OTC PCs explain relative to the EVC PCs. (E) Similarity between the 
group and single subject non-EVC OTC PCs is significant, and higher than that seen in the EVC PCs. (F) 
Correlations between the non-EVC OTC, and all OTC PCs is extremely high for the top 3 PCs, suggesting that 
removing the EVC voxels from the PCA does not meaningfully alter the results.  
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Figure 3-51. Top 3 Group PC scores within Early Visual Cortex (EVC). 
A principal components analysis (PCA) was conducted on CSVA model feature weights for all 
EVC voxels where CSVA model fit was significant and superior to that of the Semantic Only 
model. PC scores were calculated as the product of CSVA feature weights for a given voxel by 
feature loadings for each PC. Here, a RGB color space is used to map PC scores onto cortex (red= scores on PC1, 
green = scores on PC2, blue = scores on PC3). PC scores are thresholded at 6 standard deviations above and below 0 
with values beyond the threshold given the maximal (or minimal) color channel value. Moderately consistent spatial 
structure of voxel-wise tuning to the top three group PCs is observed across subjects. Note: Areas where MRI data 
was not acquired are shown in black. Both voxels where the CSVA model did not fit significantly and those where 
the CSVA model fit significantly but did not outperform the semantic only model were excluded from the PCA 
(these voxels are shown in grey).  
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Figure 3-52. Top 3 Group PC scores within non-EVC OTC. 
Here, we map PC scores onto cortex using the top three PCs from PCA on CSVA model weights across all OTC 
voxels not contained within EVC, where model fit was significant and better than that of the Semantic Only model. 
As illustrated in Fig. 3-50, when voxel selection is restricted in this manner, the top three PCs are highly correlated 
with those from the OTC analysis reported in chapter 2(rs>.99). As in Fig. 3-51, a RGB color space is used to map 
PC scores onto cortex (red = scores on PC1, green = scores on PC2, blue = scores on PC3). PC scores are 
thresholded at 6 standard deviations above and below 0. 
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Figure 3-53. Explained variance in behavioral responses by PCs within OTC. 
Subjects recruited through Amazon’s Mechanical Turk platform were shown the emotional 
natural images used in this study and asked to pick one or more behavioral responses appropriate to the content of 
each image. (A) We examined the extent to which EVC tuning to emotional natural images, as captured by CSVA 
group-level PC loadings (red line), predicted behavioral responses selected, across images. The percentage of out-of-
sample variance in behavioral responses explained (y axis) is plotted against the number of PCs included as 
predictors in an ordinary least squares regression analysis. The shaded area around the solid line represents the 95% 
confidence interval. We also calculated the variance in behavioral responses explained using PCs derived directly 
from PCA on CSVA image features, across images (green line). EVC tuning to CSVA features predicted behavioral 
responses significantly better than components from PCA conducted directly on the features themselves for only the 
first 8 PCs. (B). Here, we plot the variance in behavioral responses explained by PCs obtained from PCA on EVC 
feature weights for the CSVA model (red) versus (i) a low-level structural (Gabor) model (purple); (ii) the Semantic 
Only model (dark blue) and (iii) the Emotion Only model (light blue). Given the smaller feature space of the 
Emotion Only model, the maximum number of PCs that can be extracted for this model is 6. The poor performance 
of Gabor model PCs in predicting behavioral responses suggests that although EVC is well predicted by a Gabor 
wavelets model, tuning there to low-level image structural features is insufficient to guide behavior. Both the 
Semantic Only and Emotion Only models outperform the Gabor model in predicting behavior. The Emotion Only 
model performs particularly well at low levels of dimensionality, and it’s maximal prediction of behavior (at n=6 
PCs) is not significantly less than that achieved by the CSVA model using an equivalent number of components. 
The Semantic Only model never predicts significantly more variance than the CSVA model, and does significantly 
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worse than the CSVA model at its maximal prediction of behavior (n=21 PCs). (C-D) We likewise examined the 
extent to which tuning within non-EVC regions of OTC could predict variance in behavioral responses. (C) 
Variance explained by PCA on CSVA model features (shown in red) was significantly higher than that explained by 
PCA on stimulus features (shown in green) across all levels of dimensionality considered. This is consistent with 
OTC, and particularly non-EVC regions of OTC, showing selective representation of image semantic and emotional 
features pertinent to behavior. (D) Tuning in OTC as captured by the Gabor model was similarly poor to that 
captured by tuning in EVC, and significantly less than that captured by the CSVA model in all 21 PCs considered. 
The Semantic Only and Emotion Only models both performed particularly well at low levels of dimensionality, but 
both models explained significantly less variance than the CSVA models at their maximal prediction of behavior (at 
n=21 and n=6 PCs respectively). This finding is nearly identical to the that found when PCA was done on the 
entirety of OTC, as shown in chapter 2. 
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7. Principal Components Analysis (PCA) on CSVA Model Voxel 
Feature Weights and Behavioral Response Analysis within 
Frontal Cortex Subregions 

Introduction 

Many regions of the prefrontal cortex are known to represent both semantics and emotion 
(Ongur & Price, 2000). Many regions of OTC also have direct connections with prefrontal 
regions (Rempel-Clower & Barbas, 2000). Thus, we were interested to know whether CSVA 
model tuning within prefrontal cortex could better predict appropriate behavioral responses to 
emotional stimuli than could OTC tuning, suggesting that prefrontal cortex provides additional 
processing of semantic and emotional information pertinent to appropriate behavioral response. 
Orbitofrontal Cortex (OFC) in particular is known to represent affective properties of visual 
stimuli (Shenhav, Barret, & Bar, 2013; Kawasaki, et al., 2001). We thus conducted two 
additional PCAs on voxel feature weights within OFC significantly predicted by the CSVA 
model, and all other frontal regions excluding OFC and motor cortex (known as non-OFC 
Frontal Cortex from here on, see ROI Definitions section above for details).  

Methods  

PCA 

This analysis was done on the 4 ROIs listed above (EVC, non-OTC EVC, OFC, & non-OFC 
Frontal) exactly as described in two supplemental methods sub-sections of chapter 2 within the 
“fMRI Data Modeling” section of the METHOD DETAILS. They were titled: 

1. “PCA of CSVA model feature weights” 
2. “Interpreting the top 3 group-level PCs”  

Statistical tests were done as described in the two subsections of the QUANTIFICATION AND 
STATISTICAL ANALYSIS section titled: 

1. “Principal component significance testing” 
2. “Relating PCs to hypothetical dimensions”  

Behavioral Analysis 

This analysis was done on the 4 ROIs listed above (EVC, non-OTC EVC, OFC, & non-OFC 
Frontal) exactly as described in a supplemental methods subsection of chapter 2 within the 
“fMRI Data Modeling” section of the METHOD DETAILS. It was titled: 

1. “Prediction of behavioral responses” 
Statistical tests were done as described in the sub-section of the QUANTIFICATION AND 
STATISTICAL ANALYSIS section titled: 

1. “Predicting behavioral responses from OTC tuning” 
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Results  

 Results from group PCA on both OFC and non-OFC Frontal Cortex show very similar 
results. In both analyses, only the top group PC explains significantly more variance than the 
stimulus feature PCs (ps<.05) within their respective sets of voxel feature weights (panels A&D 
of Fig. 3-54). While this is true, if stimulus feature PCs were re-ordered by a decreasing amount 
of variance they explain, as are the OFC and non-OFC Frontal CSVA PCs, then the top 3 group 
PCs from both ROIs would explain more variance than the stimulus feature PCs. For this reason, 
and for comparison purposes with the OTC PCs, we will look at the top 3 PCs from OFC and 
non-OFC Frontal Cortex. The amount of variance explained by the top PC differs in the two 
regions however, with the top OFC PC explaining approximately 17% of the variance in OFC 
voxel feature weights, and the top non-OFC Frontal PC explaining approximately 23% of the 
variance in non-OFC Frontal voxel feature weights. Correlations between the top 2 group and 
single subject CSVA PCs from both regions show similarity (rs>.61), and are significantly 
correlated (ps<.05), although less so than OTC CSVA PCs (as seen in panels B & E of Figure 3-
54. The correlations between the third group and single-subject CSVA PCs vary dramatically 
from subject to subject. Investigating the similarity in PC loadings from these two frontal regions 
with those from entire OTC (panels C & F of Figure 3-54) shows that although the top 2 PCs 
from both OFC (PC1 r=.69, PC2 r=.67) and non-OFC Frontal Cortex  (PC1 r=.74, PC2 r=.72) 
are significantly similar to the top 2 PCs from OTC (ps < .05), PCs 1 & 2 are also highly 
confusable in their similarity with OTC PCs 1 & 2 (.52 <= rs <= .56). PC 3 from both frontal 
regions is moderately similar to all 3 PCs from OTC. Projecting voxel scores on the top 3 PCs 
from both OFC and non-OFC Frontal Cortex onto flatmaps (Figs. 3-55 & 3-56) revealed that the 
spatial structure of CSVA model representations within these frontal regions does not show large 
degrees of similarity across subjects. Within OFC this may be due to the relatively few number 
of voxels significantly predicted by the CSVA model itself.  
 Subsequent to doing PCA, the same analysis of appropriate behavioral responses done on 
OTC PCs was conducted on the PCs from both OFC and non-OFC Frontal Cortex (Fig. 3-57). 
OFC and non-OFC Frontal tuning to CSVA features predicted behavioral responses significantly 
better than components from PCA conducted directly on the features themselves for all 
dimensions considered, as was the case for OTC tuning (panels A&C, Fig 3-57). Crucially, the 
amount of variance explained in behavioral responses by either OFC or non-OFC Frontal tuning 
across all 21 PCs considered was not significantly greater than that explained by OTC tuning 
ps>.1). Additionally, both the Semantic Only and Emotion Only models outperform the Gabor 
model in predicting behavior in both frontal regions (panels B&D Fig. 3-57), and while the 
Emotion Only model performs better than the CSVA model at low dimensionality, both the 
Emotion Only and Semantic Only Models predict significantly less variance (ps <.05)  at their 
maximal levels of prediction (at n=6 and n=21 PCs respectively). Thus, results from these PCAs 
indicate that while the CSVA model does significantly predict BOLD activity within frontal 
regions, there is not a high degree of shared representational space within these regions as seen 
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in the low correlations between group and single subject PCs beyond PC 2, this shared 
representational space explains a relatively small amount of variance as only one PC predicts 
significantly more variance than PCs of the features themselves in both OFC and non-OFC 
Frotnal ROIs, and the spatial structure of this representational space across these frontal regions 
lacks similarity, unlike within OTC (specifically non-EVC OTC). Furthermore, the amount of 
variance that OFC and non-OFC Frontal Cortex CSVA tuning can explain in appropriate 
behavioral response to emotional stimuli is no greater than that explained by OTC CSVA tuning. 
This suggests that the processing of the combination of semantic and emotion information done 
by OTC is just as informative in the selection of appropriate behavioral responses to situations 
with emotional content as is that of frontal regions.  
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Figure 3-54. PCA on voxels within Frontal Cortex: Variance explained and similarity of 
PCs. 
(A-C) A group-level principal components analysis (PCA) was conducted on the CSVA model 
feature weights across all Orbitofrontal Cortex (OFC) voxels where model fit was significant (all panels here use the 
same format as described in Fig. 3-50). (A) Only the top OFC PC explains significantly more variance than PCA 
conducted on the stimulus features themselves. The 2nd stimulus PC explains more variance in the OFC voxels’ 
feature weights than the 1st stimulus PC, and as such re-ordering the top 3 stimulus PCs would result in the top 3 
OFC PCs explaining more variance than the stimulus PCs. Thus the top 3 PCs will be shown in subsequent analysis 
for comparison purposes. (B) Correlations between the top 2 OFC group and single subject PC loadings are 
significant, however several correlations between the 3rd group and single subject PC fall below significance. (C) 
Correlations between the loadings of the top 2 PCs are high for PCA done within OFC and OTC, however there is a 
relatively high level of confusability between the two PCs, as the correlations between PCs 1 & 2 from both PCAs 
are also high. Lack of similarity between the third PCs indicates they represent different aspects of semantic and 
emotional information. (D-F) A second group-level principal components analysis (PCA) was conducted on the 
CSVA model feature weights across all Frontal voxels not contained within OFC, where model fit was significant. 
(D) The pattern of variance explained by the top 3 PCs of this model is similar to that of the OFC PCA, with the 
exception that the top non-OFC Frontal PC explains approximately 5% more variance than the top OFC PC. (E) As 
with the OFC PCs, the top 2 group non-OFC Frontal PCs are similar to the single subject PCs, but not the 3rd. (F) 
Similarity between the top 2 non-OFC Frontal PCs was also high with OTC PCs, as was the confusability between 
the 1st and 2nd PCs. The 3rd PCs from non-OFC Frontal and OFC were also not similar to each other, nor to the top 
2 PCs. 
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Figure 3-55. Top 3 Group PC scores within Orbitofrontal Cortex (OFC). 
PC scores from the top three PCs from PCA within OFC is mapped onto cortex. Some similarity in the structure of 
representation within OFC is likely, however the number of voxels significantly predicted by the CSVA model in 
OFC is minimal. As in Fig. 3-51, a RGB color space is used to map PC scores onto cortex (red = scores on PC1, 
green = scores on PC2, blue = scores on PC3), and PC scores are thresholded at 6 standard deviations above and 
below 0. 

 
  



141 
 

 
Figure 3-56. Top 3 Group PC scores within non-OFC Frontal Cortex. 
PC scores from the top three PCs from PCA within Frontal Cortex excluding voxels within OFC is mapped onto 
cortex. Little similarity in the structure of representation across non-OFC Frontal Cortex even though large swaths 
are significantly predicted by the CSVA model. As in Fig. 3-51, a RGB color space is used to map PC scores onto 
cortex (red = scores on PC1, green = scores on PC2, blue = scores on PC3), and PC scores are thresholded at 6 
standard deviations above and below 0. 
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Figure 3-57. Explained variance in behavioral responses by PCs within Frontal Cortex. 
(A) OFC tuning to CSVA features predicted behavioral responses significantly better than components from PCA 
conducted directly on the features themselves for all dimensions considered (all panels here use the same format as 
described in Fig. 3-53). (B). Both the Semantic Only and Emotion Only models outperform the Gabor model in 
predicting behavior. While the Emotion Only model performs better than the CSVA model at low dimensionality, 
both the Emotion Only and Semantic Only Models predict significantly less variance at their maximal levels of 
prediction (at n=6 and n=21 PCs respectively). (C-D) Tuning within non-OFC regions of Frontal Cortex were 
likewise examined. (C) Tuning in non-OFC Frontal regions also significantly better predicted behavioral responses 
than did PCs of stimulus features themselves across all 21 dimensions. (D) As seen in OFC, CSVA PCs from non-
OFC Frontal Cortex predicted significantly more variance than the Emotion Only and Semantic Only models at their 
respective maximal dimensionality, and significantly more than the Gabors model in all dimensions. 
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8. Assessing Stimulus Correlations between Gabor Model 
Features and CSVA Model Features  

Introduction 

The principal components analysis (PCA) on “Combined Semantic Valence & Arousal” 
(CSVA) feature weights reported in chapter 2 aimed to determine primary dimensions of 
representation related to semantic and emotional content within occipital-temporal cortex (OTC). 
It is also known that a Gabor wavelet model (see supplemental materials from chapter 2 for 
details) can significantly predict BOLD activity within some of the same regions of OTC as the 
CSVA model. This raises the possibility that representation within OTC attributed to the primary 
dimensions of the CSVA feature weights should actually be attributed to shared variance, or 
correlations, between the CSVA and Gabor wavelet models. To determine whether this was the 
case in these data, we removed any variance explained by the Gabor wavelet model from the 
BOLD data, refit the CSVA model to those residuals, and then re-calculated the PC scores from 
the top 3 PCs of the original CSVA model. We then compared the resulting PC score pattern 
across OTC of these with the original PC score pattern to determine the extent that Gabor 
wavelet feature correlations with CSVA features affected OTC tuning. 

Methods  

In order to assess the impact of possible stimulus correlations, we removed variance in 
the BOLD signal explained by the Gabor wavelet model, refit the CSVA model to those 
residuals, and re-calculated CSVA PC scores on the resultant feature weights. Specifically, the 
following procedure was used independently on every cortical voxel. 10-fold cross-validation on 
the 30 estimation runs was used to estimate out-of-sample BOLD data predictions for the Gabor 
wavelet model. During each fold, the Gabor wavelet model was fit to 27 of the 30 estimation 
runs, and the resulting feature weights were then used to predict the BOLD data of the remaining 
3 runs. This was repeated for all 10 non-overlapping groups of 3 estimation runs and the results 
were concatenated, resulting in an out-of-sample predicted BOLD time-series for all 30 
estimation runs. This predicted BOLD time-series was then used as a “nuisance regressor”, and 
was regressed out of the original BOLD data time-series. The CSVA model was then re-fit to 
this new BOLD time-series, resulting in a new set of voxel-wise feature weights with Gabor 
wavelet model stimulus correlations controlled for. Finally, these new feature weights were 
multiplied by the top 3 original CSVA PC loadings, resulting in Gabor-controlled voxel-wise PC 
scores. These were plotted on flatmaps. In addition, to assess the degree to which these Gabor-
controlled PC scores differed from the original CSVA PC scores, the Gabor-controlled PC scores 
were subtracted from the original CSVA PC scores for every voxel, and the resultant differences 
were plotted on a flatmap.  
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Results  

 Figure 3-58 shows the results of this analysis. Column A of Figure 3-58 shows the 
difference between the original PC scores and PC scores created by multiplying voxel feature 
weights from a CSVA model with Gabor wavelet model variance removed, and the original 
CSVA PC loadings. Thus, these maps show the effects of stimulus correlations between the 
Gabor wavelet and CSVA models on the CSVA model PC scores. Column B shows maps similar 
to those in column, except that the out-of-sample CSVA model explained variance has been 
removed before refitting the CSVA model. This was done as a sanity check of the method, and 
we expected these maps to be nearly identical to the original CSVA PS score maps shown in 
column D, which they are. Column C shows the difference between columns B and A, showing 
voxel-wise CSVA PC scores that cannot be explained by the Gabor wavelet model. Comparing 
the maps in column C with those in D we see a high degree of similarity across all subjects, 
although they are not identical. Across all subjects, PC scores within EVC shifted to blue and 
magenta hues, indicating high scores on PC 3 and low on PCs 1 and 2. Additionally, voxels in 
the region between LO and pSTS that were largely red (high on PC 1 and low on PCs 2 and 3) 
have become largely magenta (high on PC 1 and 3, low on PC 2), indicating a higher loading on 
PC 3. Finally, many voxels between FFA and pSTS that had been colored yellow (high on PCs 1 
and 2, low on 3) are now colored white, again indicating an increase in scores on PC 3.  Thus, it 
seems that removing variance explained by the Gabor wavelet model caused PC 3 scores to 
increase in several regions of OTC, while largely keeping the spatial structure in tact. This 
indicates that the effect of correlations between Gabor and CSVA features on OTC tuning is 
minimal. 
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Figure 3-58. Correlations between Gabor and CSVA model features do not drive the 
variance captured by the CSVA model PCs in OTC.  
(A) Flatmaps depicting the impact of stimulus feature correlations between the Gabor wavelet model and the CSVA 
model on CSVA model PC scores (PC scores scaled by standard deviation and colored same as in Fig. 2-5 for all 
flatmaps here). Out-of-sample variance explained by the Gabor wavelet model was regressed out of the estimation 
BOLD data, and the residuals were used to re-fit the CSVA model resulting in new feature weights. Voxel-wise PC 
scores accounting for Gabor and CSVA feature correlations were then calculated by multiplying these new feature 
weights with the original top 3 CSVA model PC loadings. Finally, these new PC scores were subtracted from the 
original CSVA PC scores, and that difference visualized on these flatmaps. These differences can be interpreted as 
showing the effects of stimulus correlations between the Gabor wavelet and CSVA models on the CSVA model PC 
scores. (B) 10-fold cross-validation was used to estimate the out-of-sample variance explained by the Gabor wavelet 
model, and thus only 90% of the data was used to estimate the feature weights for each fold. To ensure that this 
reduced amount of estimation data did not hinder our findings, we repeated the procedure using the CSVA model 
itself. The flatmaps in panel B show the subtraction between the new PC scores and the original CSVA model PC 
scores. The pattern of scores across OTC in these flatmaps remains similar to the pattern of the original PC scores 
(panel D), although the magnitude of the scores is less (as can be seen by the less vibrant colors, likely due to 
random noise in the estimated feature weights being subtracted out. This confirms that our cross-validation 
procedure for model estimation is effective. (C) Flatmaps depicting scores from panel B minus those shown in A. 
These maps show voxel-wise CSVA PC scores that cannot be explained by the Gabor wavelet model. The similarity 
between these maps and the original CSVA PC score maps indicates that voxel-wise CSVA model PC scores cannot 
be explained by tuning to Gabor wavelet model features. (D) Original CSVA model PC scores for comparison.   
 
  



147 
 

9. Controlling for Physiological Noise  

Introduction 

Self-reported emotional arousal, as quantified in many of our models, is known to 
correlate with physiological arousal, as quantified by respiration rate and pulse-oximetry 
measures. Thus it is desirable to control for any affect that physiological arousal may have had 
on the BOLD signal. Respiration rate and pulse oximetry data were collected during fMRI 
scanning sessions for all subjects. These data were then preprocessed using the PhLEM Matlab 
Toolbox (Verstynen & Deshpande, 2011) to create nuisance regressors whose explained variance 
was removed from the BOLD signal prior to re-estimation of the CSVA model feature weights 
and prediction of the validation BOLD data. 

Methods  

To control for effects of physiological noise on the BOLD signal, respiration rate and 
pulse-oximetry data were collected on all subjects during fMRI data collection, as noted in 
chapter 2. These time series data were then preprocessed using the Physiological Log Extraction 
for Modeling (PhLEM) Matlab Toolbox (Verstynen & Deshpande, 2011), along with custom 
scripts. This toolbox implements the RETROICOR method (Glover, Li & Ress, 2000) for 
creating nuisance regressors.  As Glover, Li & Ress note: “It is assumed that the physiological 
processes are quasi-periodic so that cardiac and respiratory phases can be uniquely assigned for 
each image in the time series. Accordingly, the physiological noise component y(t) can be 
expressed as a low order Fourier series expanded in terms of these phases”. The toolbox 
generates a sine/cosine phase time-series for the respiration signal, and two cosine/sine phase 
time-series for the pulse-oximetry signal, resulting in 6 time-series whose explained variance in 
the BOLD data is removed. This is done by fitting a general linear model (GLM) using these 6 
physiological nuisance regressors to the BOLD data across the estimation data and validation 
data separately. The residuals from this model were then used to estimate the CSVA feature 
weights exactly as described in chapter 2. The feature weights from this model with 
physiological noise controlled for were then subjected to a PCA as done on the CSVA model in 
chapter 2. The same voxels used on the PCA of the original CSVA model were used in this new 
PCA. Pearson correlation coefficients were then estimated between the top 3 PCs from the 
original CSVA model, and the new CSVA model controlling for physiological noise. 

Results 

 Comparing the prediction accuracy (correlation between predicted and recorded 
validation BOLD data) of the original CSVA model with this “physio-removed” CSVA model, 
we can see that prediction accuracies did not change in any meaningful way (Fig. 3-59). 
Additionally, PCA was done on the voxel feature weights from the “physio-removed” CSVA 
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model. Correlations between the top 3 “physio-removed’ CSVA PCs and the original CSVA PCs 
(Table 3-4) was extremely high (rs>0.99), indicating very little effect of physiological noise on 
the dimensionality of tuning within OTC. Taken together, these results show that physiological 
noise, possibly attributable to emotional arousal, was not underlying the results of our VWM 
analysis of the CSVA model from chapter 2. 
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Figure 3-59. Similarity in Prediction Accuracy when Controlling for Physiological Noise. 
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The PhLEM Matlab Toolbox was used to calculate nuisance regressors which capture low-frequency phase 
information contained in respiration and pulse-oximetry signals. Variance explained in the BOLD data by these 
nuisance regressors was estimated using linear regression, and the residuals were then used to re-fit the CSVA 
model, resulting in feature weights that have been estimated while controlling for the effects of physiological noise 
(“CSVA Physio Controlled”). Scatter plots comparing the voxel-wise prediction accuracy (correlation) values from 
the Original CSVA model and the Physio Controlled CSVA model are shown here. Points on the x=y line show 
equal performance for both models; points above the line indicate voxels where the model on the y-axis (CSVA 
Physio Controlled) performed better, and points below the line indicate voxels where the model on the x-axis 
(Original CSVA) performed better. Controlling for contributions of physiological noise to the BOLD signal does not 
change CSVA model fit across the 6 subjects.   
 

 CSVA Physio Controlled 

 
 

Original CSVA 

 PC1 PC2 PC3 

PC1 0.9997 0.0021 0.0034 

PC2 0.0172 0.9997 -0.0010 

PC3 0.0024 -0.0000 0.9988 

 
Table 3-4. Similarity of Top 3 Principal Component Loadings when Controlling for 
Physiological Noise. 
Pearson correlation coefficients between the top 3 Principal Components (PCs) from the Original CSVA model and 
the Physio Controlled CSVA model. Controlling for the effect of physiological noise on the BOLD data had very 
little influence on the top 3 CSVA model PC loadings, as the high correlations (>.99) between corresponding PCs 
show.  

From Cortical to Behavioral Responses of Naturalistic Emotional 
Images 
 The literature reviews and supplemental analyses described in this chapter provide 
additional evidence, along with the study described in chapter 2, that emotional valence and 
arousal of animate stimuli are represented within OTC. As discussed previously, neuroscientists 
debate the location and nature of the neural mechanisms that subserve the extraction of 
emotional content that confers emotional stimuli with prioritized processing. While these 
findings are consistent with the “two-stage” or “multi-wave” hypotheses (see section 1 of this 
chapter for details) which postulate that a fast, feed-forward sweep of processing within OTC is 
responsible for quick extraction of emotional information, the relatively low temporal resolution 
of fMRI prevents any strong conclusions regarding temporal processes from being inferred from 
these studies. While fMRI temporal resolution is too slow to draw meaningful temporal 
inferences, a rich history of psychophysical experiments has provided temporal constraints on 
the ways in which the visual system processes information. In particular, clever studies utilizing 
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ultra-rapid presentation of naturalistic images and EEG have inferred a 150ms upper bound on 
the processing needed to extract the semantic category of visual stimuli (Thorpe, Fixe, & Marlot, 
1996). The addition of backwards masking to these paradigms have resulted in studies which 
found a 12ms lower bound on the length of processing time that occurs within a given stage of 
the visual feed-forward hierarchy (Bacon-Mace et al., 2005). Several other studies have found 
that humans can extract a wide range of information from a very brief presentation of visual 
stimuli, from object category (Fei-Fei et al., 2007), to emotional valence (Nummenmaa, Hyona, 
& Calvo, 2010).  

Building on these findings, in Chapter 4 we present a study using ultra-rapid presentation 
of naturalistic emotional images and multiple forced-choice (mAFC) categorization of valence 
and semantic category to answer several questions related to human perception of visual images. 
Proponents of the “two-route” hypothesis, which postulates that a subcortical neural circuit (e.g. 
the “low-road” or “fast-route”) subserves the fast, automatic detection of threatening stimuli 
point to the prioritized processing of emotional stimuli as evidence that a dedicated subcortical 
circuit must exist due to the fast temporal nature of the observed behavioral outcomes in 
response to emotional stimuli. This prioritized processing is thought to come from evolved 
mechanisms which detect, and respond, to negative, threatening, animate stimuli. Thus the first 
questions chapter 4 addresses is whether we find evidence of this prioritized processing for 
negative, animate stimuli. Lack of evidence for prioritized processing for negative, animate 
stimuli would be inconsistent with the “two-route” hypothesis. Additionally, many proponents of 
the “two-route” hypothesis also argue that affective information is extracted from images before 
semantic information is extracted, a hypothesis called affective primacy. They argue that the 
subcortical fast route subserves this fast extraction of emotional information in parallel to, and 
before, semantic information is extracted within OTC. In contrast to the affective primacy 
hypothesis, the cognitive primacy hypothesis postulates that semantic information must be 
extracted before emotional information can be extracted, which is consistent with the “two-
stage” or “multi-wave” hypotheses. Thus, in chapter 4 we describe data that in which competing 
patterns of conditional categorization performance support either the cognitive or affective 
primacy hypothesis. These experiments shed light on the related questions around the nature of 
prioritized processing of emotional stimuli and whether the affective or cognitive primacy 
hypothesis is correct, both of which are critical to the arguments made for the existence of a 
subcortical fast route for processing of emotional stimuli. 
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Chapter 4. Ultra-Rapid Affective and Semantic 
Categorization of Naturalistic Images: Support for the 
Cognitive Primacy Hypothesis 

Introduction 

Ultra-Rapid Presentation of Visual Stimuli 
A brief glance can provide information about the surrounding environment which allows 

for adaptive behavior that might mean the difference between life and death. Quickly extracting 
the relevant semantic and emotional information from an information dense sensory world is one 
of the human brain’s most adaptive computational feats. Early studies using rapid serial visual 
presentation (RSVP) of novel images demonstrated that humans can accurately identify objects 
presented for as little as 50ms (Intraub, 1981; Potter, 1975; Potter & Levy, 1969), although the 
novel images are soon forgotten. More recent studies using RSVP have shown evidence for 
accurate object identification with presentation times as short as 15ms (Potter, Staub, Rado & 
O'Connor (2002); Keysers & Perrett, 2002). Additionally, accurate classification of numerous 
image properties under ultra-rapid presentation (<50ms) of single images is well within 
achievable human performance. Observers can determine whether a scene is natural or urban 
(Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007), detect the presence of large objects such as 
vehicles (Van Rullen & Thorpe, 2001) or animals (Thorpe, Fize, & Marlot, 1996), determine the 
basic-level or superordinate-level categories of a scene (Oliva & Schyns, 2000; Rousselet, 
Joubert, & Fabre-Thorpe, 2005), and even determine the pleasantness of a scene (Kaplan, 1992). 
While visual iconic memory could have helped mediate performance in these tasks, a number of 
more recent studies have also found accurate classification on similar tasks using backwards 
masking to control for any effects of iconic memory (Bacon-Mace, Mace, Fabre-Thorpe, & 
Thorpe, 2005; Fei-Fei et al., 2007; Greene & Oliva, 2009a, 2009b; Grill-Spector & Kanwisher, 
2005; Maljkovic & Martini, 2005; Nummenmaa, Hyönä, & Calvo, 2010). While many of these 
studies motivate their experiments by invoking the survival advantage of quick scene processing, 
surprisingly few have used the paradigms here mentioned to study naturalistic emotional scenes 
which contain scenarios where adaptive responses are actually necessary. So what is known 
concerning visual processing of emotional scenes? 

Biological Preparedness 
Arguing from an evolutionary perspective, theorists have proposed that some stimuli are 

“biologically prepared” by our evolutionary past to afford prioritized processing (Ohman, 
Erixon, & Lofberg, 1975; Ohman, Flykt, & Esteves, 2001; Seligman, 1971). Biologically 
prepared stimuli were originally conceived of as threatening, animate stimuli such as spiders, 
snakes and angry faces for which quick responses are highly adaptive. Since then other theorists 
have expanded this conceptualization to include other categories of emotional stimuli (Anderson, 
1990; Murphy & Zajonc, 1993). Numerous studies have found evidence for this prioritized 
processing of emotional stimuli. For example, subjects can identify fear-relevant stimuli faster 
than fear-irrelevant stimuli in a visual search task (Ohman, Flykt, & Esteves, 2001), and in 
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continuous flash suppression studies which render stimuli non-conscious, faces showing fearful 
expressions break into consciousness faster than do faces showing happy expressions (Yang, 
Zald, & Blake, 2007). Recently, several studies using ultra-rapid scene presentations of 
naturalistic emotional stimuli have found evidence that observers can accurately categorize 
pleasant vs. unpleasant images presented to extrafoveal vision (Calvo & Nummenmaa, 2007),  
and that accurate semantic categorization (animal vs. human) is faster for emotional than non-
emotional images, also presented extrafoveally (Calvo & Lang, 2005; Calvo, Nummenmaa, & 
Hyöna, 2008; Nummenmaa, Hyöna, & Calvo, 2010). Together these findings seem to support the 
theory that emotional stimuli benefit from prioritized visual processing. Other studies 
investigating the effects of emotional stimuli on selective attention have found some 
contradictory findings, however. 

Attentional Narrowing 
In a now seminal work, Easterbrook (1959) hypothesized that an emotional stimulus 

serves to narrow the focus of attention onto that stimulus in order to facilitate appropriate 
behavioral responses. As van Steenbergen and colleagues argue (2011), Easterbrook’s original 
hypothesis only related to unpleasant (i.e. negative) situations, although some authors suggest 
any increase of arousal serves to narrow the focus of attention (Anderson, 1990). Using a visual 
anti-saccade task which compares reaction times of pro- vs. anti-saccades, van Steenbergen 
showed that attentional narrowing was indeed only present for negative, and not positive, stimuli. 
Crucially though, their findings were in the opposite direction than expected. They expected that 
the negative stimulus would increase cognitive control, and thus reaction times on the anti-
saccade task would decrease. What they found is an increase in reaction times in the pro-saccade 
task however. In other words, subjects were slower to saccade towards the negative stimuli than 
neutral stimuli. In another study investigating the effects of emotion induction on attention, 
Cohen, Henik & Mor (2011) found that negative task cues impaired task performance in the 
absence of executive process activation. Findings from these studies, and other showing that 
processing of negative events may slow down performance of a subsequent task (Gehring et al., 
1993; Notebaert et al., 2009; Pessoa, 2009; Cohen et al., 2011), might then predict that semantic 
categorization of ultra-rapidly presented images would be slower for negative images relative to 
neutral or positive images. In addition to separately considering the performance of affective and 
semantic categorization tasks under ultra-rapid presentation, comparing the performance of both 
tasks can help shed light on which process occurs first, and potentially illuminate whether one is 
dependent on the other.  

Cognitive Primacy Hypothesis vs. Affective Primacy Hypothesis 
Most theories of emotional processing assume that affective processing is automatic, fast, 

and effortless (Bargh, 1997). This assumption has led some theorists to argue that the affective 
information of a scene can be extracted prior to the extraction of semantic information, a 
hypothesis known as the affective primacy hypothesis (S. T. Murphy & Zajonc, 1993; Zajonc, 
1980). This hypothesis postulates that recognition of the affective information of a scene occurs 
prior to, and independently of, the perception of objects and scene information. Support for this 
hypothesis comes from several lines of research. First, psychophysiological studies presenting 
subliminal backwards-masked emotional images have found increases in both peripheral 
physiology (facial electromyographic responses: Dimberg, Thunberg, & Elmehed, 2000; 
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electrodermal responses: Glascher & Adolphs, 2003; Ohman & Soares, 1998) and central 
nervous system activity (Morris et al., 1998b), which suggests affective processing can occur 
without conscious awareness. Second, emotional priming studies have shown that task-irrelevant 
emotional images, relative to neutral images, influence the performance of subsequent 
categorization tasks, which has been taken to suggest that emotional processing is automatic and 
mandatory (Klauer & Musch, 2003). In addition, central to neuroscientific theories accounting 
for the prioritized processing of biologically prepared stimuli is the assertion that a dedicated 
neural system subserves the fast and automatic processing of emotional visual stimuli (Ohman & 
Mineka, 2001; Tamietto & de Gelder, 2010). A so-called “subcortical fast route” originating in 
the retina, continuing to the superior colliculus, on to the pulvinar and ending in the amygdala is 
presumed to serve the function of a dedicated processing unit for extraction of emotional 
information from visual stimuli (LeDoux, 1994).  

In contrast to the affective primacy hypothesis, proponents of the cognitive primacy 
hypothesis argue that a scene’s semantic information must first be extracted before affective 
meaning can be attributed to the scene (Nummenmaa, Hyona, & Calvo, 2010; Lazarus, 1984; 
Rolls, 1999; Storbeck & Clore, 2007). Evidence for the cognitive primacy hypothesis comes 
from several lines of research. First, studies of neurological patients with damaged or missing 
striate cortex (V1) have found that, while some patients can show somewhat accurate 
classification of facial expressions presented to their blind visual fields (de Gelder, Vroomen, 
Pourtois, & Weiskrantz, 1999), a phenomenon known as affective blindsight, this capacity does 
not generalize to emotional scenes (de Gelder, Pourtois, & Weiskrantz, 2002). Second, more 
recent affective priming studies have called into question whether subliminal affective priming 
can indeed occur with novel stimuli, as the effect was only seen with previously viewed images 
(Calvo & Nummenmaa, 2007) or with conscious recognition of facial identity (Nummenmaa, 
Peets, & Salmivalli, 2008). Third, more recent visual search studies have failed to establish pop-
out effects for emotional relative to neutral targets (Batty, Cave, & Pauli, 2005; Calvo, 
Nummenmaa, & Avero, 2008; Fox et al., 2000; Horstmann & Bauland, 2006). Additionally, 
several recent findings in the affective neuroscience domain have called into question the 
plausibility of a “subcortical fast route” dedicated to extracting emotional information from 
visual stimuli (Pessoa & Adolphs, 2010; Pourtois, Schettino, & Vuilleumier, 2013). Finally, in a 
series of 6 experiments using brief presentations of emotional stimuli, a recent study by 
Nummenmaa, Hyona, & Calvo (2010) made a strong case that semantic categorization can be 
done faster than affective categorization, and that accurate semantic categorization must happen 
before affective categorization can successfully occur. Using both eye saccade and button 
presses subjects categorized the semantic category (animal vs. human) and valence (either 
negative vs. neutral or negative vs. positive) of emotional scene images briefly presented both 
foveally and extrafoveally, across the six experiments. They found that response times for 
semantic categorization were faster than for valence categorization using both eye saccades and 
button presses and when presented both foveally and extrafoveally. In different experiments, 
they also found that semantic category could be accurately categorized (at 20ms) for images 
presented at shorter presentation times than could valence category (at 40ms). Considered as a 
whole, this body of research provides strong evidence in support of the cognitive primacy 
hypothesis as opposed to the affective primacy hypothesis, although several limitations to these 
findings constrain the conclusions that can be drawn from them. 
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The Current Study 
While the studies conducted by Nummenmaa and colleagues (2011) provided perhaps the 

best evidence to date that the human visual system confers prioritized processing of emotional 
stimuli to briefly presented images, and that semantic information must be processed before 
affective information is processed (e.g the cognitive primacy hypothesis), they have several 
limitations. First, Nummenmaa, Hyona, & Calvo (2010) used all animate stimuli (animals vs. 
humans) in their experiments, and as such could not address the issue of whether prioritized 
processing occurs for only animate stimuli, as the biological preparedness hypothesis might 
suggest, or if it generalizes to inanimate stimuli as well. Second, Two alternative forced choice 
tasks (2AFC) were used in all of these studies, thus limiting the conclusions that can be drawn to 
a differentiation of only two classes (pleasant vs. unpleasant, emotional vs. non-emotional, 
animal vs. human) and not a differentiation between, for example the three valence levels of 
negative, neutral and positive or four semantic categories of animal, human, object and building. 
As the biological preparedness hypothesis predicts prioritized processing for negative, 
threatening, and animate stimuli, these task design limitations prevent the authors from 
differentiating task performance of negative, animate stimuli from any other type of stimulus, for 
example. Additionally, it is known that any response bias in categorization tasks can artificially 
inflate %-correct scores, and thus many researchers use a detection theory metric called d-prime 
which accounts for both false positive and hit rates to quantify classification performance. As the 
four previously mentioned ultra-rapid presentations studies looking at naturalistic emotional 
stimuli simply used %-correct scores to quantify task performance, their findings may have been 
mediated by response bias.  

In order to address these limitations, we conducted two studies utilizing a large stimulus 
set of naturalistic emotional images covering multiple animate and inanimate semantic 
categories, with images being chosen such that each of these semantic categories contained equal 
numbers of exemplars categorised by independent raters as negative, neutral or positive. . 
Subjects viewed these stimuli at several brief presentation speeds (17ms, 33ms, 50ms in 
experiment 1 and 17ms & 33ms in experiment 2) and categorized each image for its semantic 
category (animal, human, object, building) and i emotional valence (negative, neutral, positive). 
By asking subjects to categorize the images into 3 valence categories we were able to not only 
address the question of whether emotional images are conferred with prioritized processing 
relative to neutral images, but whether there are differences between processing for negative and 
positive images relative to each others. Furthermore, using both animate and inanimate stimuli 
we were able to test competing predictions made by the biological preparedness and attentional 
narrowing theories. The biological preparedness theory predicts that prioritized processing, and 
thus higher categorization performance of both valence and semantic category, should be present 
for animate negative stimuli relative to all other semantic by valence image categories. 
Conversely, the attentional narrowing theory predicts that all negative stimuli (or even all 
arousing stimuli) would slow down processing of subsequent tasks and thus result in lower 
valence and semantic categorization performance for negative (and perhaps positive) stimuli. 
Finally, we addressed the debate between the cognitive and affective primacy hypotheses by 
comparing the conditional probabilities of getting the semantic task correct conditioned on 
getting the valence task correct, and vice versa. These conditional probabilities indicate if one 
process’ success is necessary for the other’s success. If the cognitive primacy hypothesis is true, 
then semantic categorization must occur before valence categorization, and thus it would predict 
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that the conditional probability of getting the valence task correct would only be above chance 
when the semantic task is done correctly. Conversely, the affective primacy hypothesis would 
predict that the conditional probability of getting the semantic categorization task correct would 
only be above chance when the valence categorization task was done correctly. 

Experiment 1 

Method 

Participants.  

Nineteen volunteers (11 females, 8 males, mean age = 20.78, age range = 18-28) from the 
University of California, Berkeley’s research subject participation pool participated in 
Experiment 1. Participants were compensated $20/1.5 hours. 1 participant was excluded from the 
analysis because of technical issues during the experiment that led to incomplete data. Written, 
informed consent was obtained for all participants before conducting the experiment. The 
experimental protocol for this study was approved by the Committee for the Protection of 
Human Subjects at the University of California, Berkeley. 

Materials.  

1080 images were selected for use in the experiment. These each belonged to one of four 
semantic categories (animal, human, object, and buildings) and one of three valence categories 
(negative, neutral and positive). The image set comprised images from the International 
Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008) and was supplemented with 
images found on the internet in order to have an equal number of images (90) within each of the 
12 semantic by valence categories (e.g. positive-animals, negative-buildings, etc.). These four 
semantic categories were chosen to balance the images in terms of animacy/inanimacy, as 
animacy is known to be a major dimension of representation within visual cortex (Shai et al, 
2013). Image semantic and valence categories was determined by three raters. Where there was a 
difference of opinion, the majority categorization was used. If all three raters differed, the image 
was removed from the stimulus set. 

Procedure.  

Participants attended two experimental sessions, each approximately 1.5 hours in 
duration. During each session, participants were seated in a dark room in Tolman Hall on the UC 
Berkeley campus specifically used for psychological experiments. Images were presented at 12 x 
12 degrees of visual angle on a CRT monitor with a refresh rate of 60Hz. Eighteen blocks, each 
consisting of 30 trials, were presented during each session. In total, each participant viewed 30 
images from each semantic by valence category at each of the three presentation times used (17 
ms, 33 ms, or 50 ms). The total image set was divided into two equal sets (540 images each - one 
for each session), and blocks were counterbalanced across participants to account for order 
effects. On each trial, the stimulus image was presented for a duration of either 17 ms, 33 ms, or 
50 ms, after which four mask images were presented (Fig. 4-1). Mask images were generated 
using an algorithm described in Portilla & Simoncelli (2000) which use pairwise statistics of a 
wavelet pyramid to retain local image structure while breaking global image structure. In each 
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trial, the first mask image presented was generated from that trial’s stimulus image. The 
remaining mask images were generated from one random stimulus image from each of the three 
semantic categories other than the trial image’s category. Within each block, trial order was 
pseudo randomized such that images belonging to the same condition (semantic x valence 
category x stimulus presentation) were not presented sequentially. After stimulus and mask 
presentation, participants were instructed to respond as quickly as possible to a sequence of two 
forced choice categorization tasks, presented in the following order: (a) four-point semantic 
category (animal, human, object, or building), (b) three-point valence category (negative, neutral, 
or positive), followed by a nine-point arousal (emotional intensity) rating task.  

 

Figure 4-1. Experimental Design of Experiment 1. 
Schematic showing the experimental design of experiment 1. Stimulus was shown for one of 3 presentation times 
(17ms, 33ms, 50ms) followed by presentation of 4 texture synthesized masks (17ms presentation time each) 
matched on low-level structural features to the stimulus just presented. A 4AFC semantic categorization task 
(animal, human, object, building) then a 3AFC valence categorization task (negative, neutral, positive) followed. 
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Data Analysis.  

Task performance on both the semantic and valence categorization tasks were quantified 
per participant using a percentage of trials correctly categorized (%-correct), a pairwise d-prime 
(pairwise-d’) score, and 3 (or 4) multiple alternative forced choice d-prime (mAFC-d’) score. 
The %-correct scores were calculated for each presentation speed by semantic by valence 
condition (e.g. 17ms-positive-human), resulting in 36 %-correct scores per participant. 
Aggregate scores were also calculated by collapsed across either semantic, valence or semantic 
and valence categories resulting in 9, 12 and 3 scores respectively. These scores were calculated 
by dividing the number of correct trials by the total number of trials for each condition (or 
aggregate condition).  

While informative, the %-correct score can be biased, and so to account for response bias 
d-prime scores were calculated. D-prime scores come from signal detection theory, and quantify 
the difference of Gaussian distributions which model the signal plus noise level and the noise 
level, resulting in an estimate of the signal level alone. Historically d-prime scores are calculated 
on 2 alternative forced choice (2AFC) tasks, however our task consisted of 4 choices and 
calculating pairwise-d’ accounts for bias between the two pairs of categories included, but cannot 
account for bias in the categories excluded. Therefore, we used a technique for estimating d’ on 
mAFC (4AFC in this case) tasks developed by Decarlo (2012) which uses maximum likelihood 
estimation and Gauss-Hermite quadrature for parameter estimation (R code generously supplied 
by Dr. Siegfried Macho, 2014). A single mAFC-d’ score was calculated per participant for the 
semantic categorization task at each speed by valence condition (12 scores), and likewise a 
mAFC-d’ score was calculated per participant for the valence categorization task at each speed 
by semantic condition (9 scores). Aggregate scores across all semantic by valence conditions at 
each speed were also calculated. 

We additionally calculated the pairwise d’ scores on the semantic categorization task for 
all possible pairs of semantic categories (6 pairs by valence by speed = 54 scores), and likewise 
on the valence categorization task on all possible pairs of valence categories (3 pairs by semantic 
by speed = 36 scores). Aggregate scores were also calculated as explained above. Only trials 
were the participant chose one of the two categories of the pairwise d’ were used in the 
calculations. A hit rate was calculated as the proportion of trials answered correctly, and a false 
alarm rate was calculated as the proportion of trials answered incorrectly. The means of standard 
normal distributions for the hit rate (signal plus noise) and the false alarm (noise) were then 
calculated by using those proportions as p-values and entering them into a reverse standard 
normal cumulative distribution function. The false alarm mean was then subtracted from the hit 
rate mean to calculate the pairwise-d’.  
 To test whether %-correct scores were above chance at the group level, and whether both 
mAFC-d’ and pairwise-d’ were above 0 at the group level, t-tests were calculated across 
participant scores. Bonferroni correction for multiple comparisons were done, where results were 
grouped into families that accounted for the entire data set. For example, %-correct scores 
calculated for each speed (3 scores) were grouped together, resulting in a significance threshold 
of /3.  ᶐ
 To detect group-level differences in %-correct scores for the semantic categorization task 
ANOVA was used. Factors of valence, presentation speed and semantic category were used in 
these ANOVAs. Tukey’s post-hoc correction was used to determine which valence category 
comparisons differed significantly. Likewise, ANOVA was used to detect group-level 
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differences in %-correct scores of the valence categorization task with factors of semantic 
category, presentation speed and valence. Tukey’s post-hoc correction was also used here to 
determine which semantic category comparisons differed significantly. To detect differences in 
group-level semantic task mAFC-d’ scores, ANOVA was used with factors of presentation speed 
and valence.  Tukey’s post-hoc tests were also used here to determine which presentation speeds 
and valence categories differed significantly. ANOVA was also used to detect differences in 
valence task mAFC-d’ scores for factors of presentation speed and semantic category.  Tukey’s 
post-hoc tests were also used here to determine which presentation speeds and semantic 
categories differed significantly. 
 To test for evidence supporting either the cognitive primacy or affective primacy 
hypothesis, data from both the semantic and valence categorization tasks were used in 
conjunction to calculate conditional probabilities for each participant. The conditional 
probability of getting the semantic task correct when getting the valence task correct, 
P(Semantic=correct | Valence=correct) or P(S|V), and the conditional probability of getting the 
semantic task correct when getting the valence task wrong P(S|~V) were calculated. 
Additionally, the conditional probability of getting the valence task correct when getting the 
semantic task correct, P(V|S), and getting the valence task correct when getting the semantic task 
wrong P(V|~S) were calculated. T-tests were used to determine significance of these 
probabilities at the group-level, and Bonferroni corrections for multiple comparisons were 
applied using the same families as described above. We looked for two alternate patterns of data 
that would arguably be more supportive of either (i) the cognitive primacy hypothesis or (ii) the 
affective primacy hypothesis. The first pattern comprised both group-level P(S|V) and group-
level P(S|~V) being greater than chance, (indicating that the semantic task was done correctly 
regardless of whether the valence task was done correctly) and the group-level P(V|S) being 
greater than chance but the group-level P(V|~S) being at or below chance, .  This pattern of data 
is consistent with the cognitive primacy hypothesis. Conversely, when both the group-level 
P(V|S) and P(V|~S) were significantly greater than chance, and the group-level P(S|V) was 
significantly greater than chance but the P(S|~V) was not significantly greater than chance, the 
pattern of data was labelled as consistent with the affective primacy hypothesis. We explored the 
presence of either of these patterns at each speed by semantic by valence condition (36 data 
cells). Only those conditions were the marginal probability of getting both semantic P(S) and 
valence P(V) correct were significantly above chance were considered. All analyses apart from 
the calculation of the mAFC-d’ scores were done using custom scripts written in Matlab 2017a 
(The Mathworks, Inc). 

Results 

Semantic Categorization Task.  

Descriptive statistics of group-level %-correct scores for the semantic categorization task 
are shown in Table 4-1. Scores are shown for each speed by semantic by valence condition, as 
well as for speed by semantic, speed by valence and just speed aggregate conditions. To 
determine which scores were significantly above chance performance (25% for the semantic 
task), one-tailed t-tests were used across single subject scores. Results indicated that performance 
in all conditions and aggregate conditions were significantly above chance (ps < .05) after 
Bonferroni correction for multiple comparisons (Table 4-2 and Fig. 4-2A-C). Near ceiling 
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performance was seen for many categories at the 33ms and 50ms presentation times. Using %-
correct accuracy scores is vulnerable to biases, so to check whether participants showed bias we 
investigating the distribution of possible responses on incorrect trials. Participants selected object 
more than 50% of the time, indicating a strong bias to guess object under uncertainty (Fig. 4-
2D). Thus, mAFC-d’ scores were calculated to account for bias, resulting in a single score at 
each speed by valence level, for each participant.  
 
Table 4-1: Semantic Categorization Task %-Correct Descriptive Statistics. 
 

Experiment 1 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 48.3 21.6 39.5 84.1 16.2 40.6 84.3 18.8 49.9 81.4 19.2 46.7 
Human 56.9 14.1 51.1 87.2 11.6 61.5 93.7 10.7 74.1 86.4 15.0 63.8 
Object 64.1 15.0 57.9 90.6 15.8 65.7 86.1 15.3 68.6 85.2 15.8 66.8 
Building 36.3 15.0 30.20 82.8 13.4 54.1 83.0 16.4 53.3 75.6 18.5 47.8 

TOTAL 51.4 19.4 47.6 86.2 16.9 58.0 86.8 17.8 64.2 82.2 19.2 58.00 

 
 

Experiment 1 
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 75.9 16.6 69.1 84.1 12.6 78.9 84.3 13.2 78.8 81.4 14.5 78.1 
Human 78.3 10.2 74.1 87.2 9.0 83.5 93.7 5.0 91.7 86.4 10.4 84.1 
Object 79.1 11.9 74.2 90.6 7.9 87.3 86.1 7.3 83.1 85.2 10.3 71.7 
Building 61.1 16.2 54.4 82.8 12.2 77.8 83.0 12.7 77.8 75.6 17.1 71.7 

TOTAL 73.6 15.6 70.6 86.2 10.8 84.0 86.8 10.8 84.6 82.2 13.9 80.6 
 
 

Experiment 1 
50ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI  M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 84.4 11.4 79.8 88.1 7.7 85 92.0 10.3 87.8 88.2 10.2 85.9 
Human 85.6 7.3 82.6 94.3 4.5 92.4 94.6 4.6 92.7 91.5 7.0 89.9 
Object 85.7 7.7 82.6 85.9 5.5 93.7 93.1 6.7 90.4 91.6 7.9 89.8 
Building 71.9 13.4 66.4 86.9 9.9 82.8 88.7 8.8 85.1 82.5 13.1 79.5 

TOTAL 81.9 11.6 79.6 91.3 8.1 89.7 92.1 8.0 90.6 88.4 10.5 87.3 

 
Experiment 2 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 50.3 14.3 46.1 49.2 17.6 44.0 57.5 15.2 53.0 52.3 16.0 49.6 
Human 52.2 13.0 48.4 62.5 14.3 58.3 84.2 10.0 81.3 66.3 18.3 63.3 
Object 62.4 14.4 58.2 66.2 15.1 61.7 73.4 10.2 70.4 67.3 14.1 65.0 
Building 38.3 14.1 34.1 66.0 13.1 62.1 79.6 12.3 76.0 61.3 21.7 57.7 

TOTAL 50.8 16.3 48.5 61.0 16.5 58.6 73.7 15.7 71.4 61.8 18.6 60.3 

 
 

Experiment 2 
33ms 

Valence 

 
 
 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 72.1 14.0 68.0 78.9 10.1 75.9 86.1 11.3 82.7 79.0 13.1 76.8 
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Semantic 

Human 73.5 10.2 70.5 88.6 6.6 86.6 96.1 6.5 94.1 86.1 12.3 84.0 
Object 77.1 9.0 74.4 88.2 6.6 86.2 86.6 8.7 84.0 83.9 9.5 82.4 
Building 66.6 13.0 62.7 84.8 10.1 81.9 91.8 7.8 89.5 81.1 14.9 78.6 

TOTAL 72.3 12.2 70.6 85.1 9.3 83.8 90.1 9.6 88.7 82.5 12.8 81.5 
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Table 4-2: Semantic Categorization Task %-Correct t-test Results.  
 

Experiment 1  
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 4.6 (17) <.01 1.1 5.8 (17) <.001 1.4 7.3 (17) <.001 1.7 9.9 (53) <.001 1.4 
Human 9.6 (17) <.001  2.3 15.1 (17) <.001 3.6 21.3 (17) <.001 5.0 20.7 (53) <.001 2.8 
Object 11.1 (17) <.001  2.6 12.7 (17) <.001 3. 13.8 (17) <.001 3.3 21.2 (53) <.001 2.9 
Building 3.2 (18) <.05 0.8 10.9 (17) <.001 2.6 9.0 (17) <.001 2.1 10.7 (53) <.001 1.5 

TOTAL 11.6 (71) <.001  1.4 18.3 (71) <.001 2.2 20.4 (71) <.001 2.4 26.9 (215)  <.001 1.8 

 
 

Experiment 1  
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 13.1 (17) <.001  3.1 20.0 (17) <.001 4.7 19.0 (17) <.001 4.5 28.6 (53) <.001 3.9 
Human 22.1 (17) <.001  5.2 29.3 (17) <.001 6.9 58.7 (17) <.001 13.8 43.4 (53) <.001 5.9 
Object 19.3 (17) <.001  4.6 35.4 (17) <.001 8.3 35.3 (17) <.001 8.3 43.2 (53) <.001 5.9 
Building 9.4 (17) <.001  2.2 20.1 (17) <.001 4.7 19.4 (17) <.001 4.6 21.8 (53) <.001 3.0 

TOTAL 26.5 (71) <.001  3.1 48.1 (71) <.001 5.7 48.5 (71) <.001 5.7 60.4 (215)  <.001 4.1 

 
 

Experiment 1  
50ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 22.1 (17) <.001  5.2 34.8 (17) <.001 8.2 27.6 (17) <.001 6.5 45.4 (53) <.001 6.2 
Human 35.1 (17) <.001  8.3 64.6 (17) <.001 15.2 64.3 (17) <.001 15.2 70.2 (53) <.001 9.5 
Object 33.7 (17) <.001  7.9 54.2 (17) <.001 12.8 43.1 (17) <.001 10.2 62.2 (53) <.001 8.5 
Building 14.8 (17) <.001  3.5 26.4 (17) <.001 6.2 30.7 (17) <.001 7.2 32.2 (53) <.001 4.4 

TOTAL 41.5 (71) <.001  4.9 69.6 (71) <.001 8.2 70.9 (71) <.001 8.4 89.2 (215)  <.001 6.1 

 
 

Experiment 2  
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 10.1 (32) <.001  1.8 7.9 (32) <.001 1.4 12.3 (32) <.001 2.1 17.0 (98) <.001 1.7 
Human 12.0 (32) <.001  2.1 15.0 (32) <.001 2.6 34.1 (32) <.001 5.9 22.5 (98) <.001 2.3 
Object 14.9 (32) <.001  2.6 15.6 (32) <.001 2.7 27.3 (32) <.001 4.8 30.0 (98) <.001 3 
Building 5.4 (32) <.001  0.9 17.9 (32) <.001 3.1 25.4 (32) <.001 4.4 16.7 (98) <.001 1.7 

TOTAL 18.2 (131) <.001  1.6 25.0 (131) <.001 2.2 35.6 (131) <.001 3.1 39.3 (397)  <.001 2 

 
 

Experiment 2  
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 19.4 (32) <.001  3.4 30.7 (32) <.001 5.3 31.0 (32) <.001 5.4 41.0 (98) <.001 4.1 
Human 27.2 (32) <.001  4.7 55.2 (32) <.001 9.6 62.5 (32) <.001 10.9 49.4 (98) <.001 5.0 
Object 33.4 (32) <.001  5.8 54.8 (32) <.001 9.5 40.7 (32) <.001 7.1 62.0 (98) <.001 6.2 
Building 18.4 (32) <.001  3.2 33.9 (32) <.001 5.9 49.4 (32) <.001 8.6 37.4 (98) <.001 3.8 

TOTAL 44.6 (131) <.001  3.9 74.2 (131) <.001 6.5 78.1 (131) <.001 6.8 89.2 (397)  <.001 4.5 

 



163 
 

 

Figure 4-2. Semantic Categorization Task Performance for Experiment 1. 
(A-C) Bar plots showing group-averaged percentage of semantic categorization task trials classified correctly in 
experiment 1.  Each plot shows results broken down by semantic and valence categories from trials at one of the 3 
presentation speeds (17ms in A, 33ms in B, and 50ms in C). Error bars show standard error (S.E) across subjects, 
dotted lines indicate chance performance (25%), and stars above each bar indicate which presentation speed by 
semantic by valence conditions were classified with above chance performance (t-tests, Bonferroni corrected: * 
p<.05, ** p<.01, *** p<.001, **** p<.0001). Group level task performance at all semantic by valence conditions 
was significantly above chance at all three presentation speeds. (D) Pie chart showing proportion of incorrectly 
classified semantic categorization task responses for each semantic category, across all subjects. As objects were 
chosen for more than 50% of incorrect responses this figure shows a clear bias to select object when the semantic 
category was unknown. 
 

Descriptive statistics of group-level mAFC-d’ scores are shown in Table 4-3 (Fig. 4-3, 
and Table 4-4). mAFC-d' scores revealed that semantic categorization performance was above 
chance for each valence condition at each duration of presentation (ps < .001) and for each 
duration (ps < .001, collapsing across valence levels). To test for differences in semantic 
categorization task performance as a function of image valence and presentation duration, a two-
way ANOVA was conducted using factors of presentation speed (17, 33, & 50 ms) and valence 
(negative, neutral, & positive), and dependent variable: semantic categorization mAFC-d’ scores 
There were significant main effects of both image presentation speed F(2,161)=16.1, p<.001, 
partial  η2=0.17, and valence F(2,161)=5.2, p<.01, partial  η2=0.06 were significant, but the 
interaction was not (p>.1).  As the main effects of presentation speed and valence were both 
significant, one way ANOVAs collapsing across levels of valence and speed, respectively, were 
conducted. The one-way ANOVA addressing the influence of presentation speed (17, 33, or 
50ms) on semantic categorization mAFC-d’ scores was significant F(2,159)=15.0, p<.001, 
partial η2=0.16. Tukey’s post-hoc tests revealed that mAFC-d’ scores at from images presented 
at 17ms were significantly smaller than those presented at 50ms, M difference=-2.65, p<.001, 
95% CI=(-3.81, -1.50), and mAFC-d’ scores were significantly smaller for when presented at 
33ms versus 50ms, M difference=-1.72, p<.01, 95% CI=(-2.87, -0.56), however the difference 
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between 17ms and 33ms was not significant (p>.1). The one-way ANOVA examining the 
influence of valence category (negative, neutral, positive) on mAFC-d’ scores , collapsing across 
speed of presentation, was also significant f(2,159)=4.3, p<.05, partial η2=0.05. Tukey’s post-hoc 
test revealed that only the difference between negative and positive stimuli was significant, M 
difference=-1.48, p<.05, 95% CI=(-2.70, -0.25), while the differences between negative and 
neutral (p>,1) and neutral and positive (p>.1) were not. mAFC-d’ scores were significantly lower 
for negative than positive stimuli.  

Even though no significant interaction was detected, one-way ANOVAs were conducted 
at each presentation speed, given that this study is investigating ultra-fast perception, and hence 
exploring performance at the different presentation speeds was of interest. These ANOVAs 
revealed significant main effects of valence at all three presentation speeds: at 17ms 
f(2,53)=14.2, p<.001, η2=0.36, at 33ms f(2,53)=10.8, p<.001, η2=0.30, and 50ms f(2,53)=9.6, 
p<.001, η2=0.27. Tukey’s post-hoc test was then used to find which levels of valence differed 
significantly at each presentation speed. Critically, at all 3 speeds negative stimuli were 
semantically categorized more poorly than both neutral and positive stimuli; at 17ms negative vs 
neutral (M difference=-0.35), p<.01, 95% CI=(-0.63,-0.08), at 17ms negative vs positive (M 
difference=-0.61), p<.001, 95% CI=(-0.88,-0.33), at 33ms negative vs neutral (M difference=-
0.63), p<.001, 95% CI=(-1.00,-0.27), at 33ms negative vs positive (M difference=-0.58), p=.001, 
95% CI=(-0.94,-0.21), at 50ms negative vs neutral (M difference=-1.12), p<.001, 95% CI=(-
1.78,-0.44), and at 50ms negative vs positive (M difference=-1.00), p=.002, 95% CI=(-1.67,-
0.33). Neutral and positive stimuli did not differ in semantic categorization mAFC-d’ scores at 
any presentation speed (ps > .1). 
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Table 4-3: Semantic Categorization Task mAFC-d’ Descriptive Statistics. 
 

Experiment 1 
mAFC-d’ 

Speed 

 
 

Valence 

 17ms 33ms 50ms 
M d’ SD 95% CI M d’ SD 95% CI M d’ SD 95% CI 

Negative 1.1 0.3 0.9 1.9 0.5 1.7 2.2 .3 2.1 
Neutral 1.4 0.3 1.3 2.6 0.5 2.4 3.3 1.0 2.9 
Positive 1.7 0.4 1.5 2.5 0.3 2.4 3.2 1.0 2.8 

TOTAL 1.4 0.4 1.3 2.3 0.5 2.2 2.9 1.0 2.7 
 

Experiment 2 
mAFC-d’ 

Speed 

 
 

Valence 

 17ms 33ms 
M d’ SD 95% CI M d’ SD 95% CI 

Negative 1.0 0.3 0.9 1.7 0.3 1.8 
Neutral 1.3 0.3 1.2 2.3 0.3 2.2 
Positive 1.8 0.3 1.7 2.8 0.6 2.6 

TOTAL 1.4 0.5 1.3 2.3 0.6 2.2 
 
 
 

Table 4-4: Semantic Categorization Task mAFC-d’ t-test Results.  
 

Experiment 1 
mAFC-d’ 

Speed 

 
 

Valence 

 17ms 33ms 50ms 
t (df) p d t (df) p d t (df) p d 

Negative 14 (32) <.001 3.3 15.7 (32)  <.001 3.7 32.6 (32)  <.001 7.7 
Neutral 18.8 (32) <.001 4.4 22.4 (32)  <.001 5.3 14.1 (32)  <.001 3.3 
Positive 19.1 (32) <.001 4.5 33.5 (32)  <.001 7.9 13.7 (32)  <.001 3.2 

TOTAL 24.5 (98) <.001 3.3 32.5 (98)  <.001 4.4 22.4 (98)  <.001 3.1 
 

Experiment 2 
mAFC-d’ 

Speed 

 
 

Valence 

 17ms 33ms 
t (df) p d t (df) p d 

Negative 20.9 (32) <.001 3.6 35.1 (32)  <.001 6.1 
Neutral 24.0 (32) <.001 4.2 40.4 (32)  <.001 7.0 
Positive 29.7 (32) <.001 5.2 25.7 (32)  <.001 4.5 

TOTAL 29.9 (98) <.001 3.0 36.5 (98)  <.001 3.7 
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Figure 4-3. Semantic Categorization task mAFC-d’ Scores for Experiment 1. 
To account for the observed response bias in the semantic categorization task from experiment 1 (shown in Fig. 4-2) 
multiple alternative forced choice (mAFC) d’ scores were calculated which account for both false positive and hit 
rates. A score of 0 indicates chance performance. Results are broken down by presentation speed and valence 
category (negative, neutral, positive). Error bars show standard error (S.E) across subjects, stars above each bar 
indicate which presentation speed by valence conditions were classified with above chance performance, while lines 
between bars indicate which presentation speed by valence conditions were significantly different from each other 
(t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, **** p<.0001). Performance was significantly above 
chance at all presentation speed by valence conditions. Critically, negative stimuli were less accurately classified 
than both neutral and positive stimuli were at all presentation speeds. 

Valence Categorization Task.  

Descriptive statistics for the valence categorization task are shown in Table 4-5 (and 
Table 4-6 and Fig. 4-4). As with the semantic categorization task, % correct valence 
categorization scores are shown for each speed by semantics by valence condition, as well as 
aggregate conditions of speed by semantics, speed by valence and speed only. One-tailed t-tests 
comparing %-correct scores with chance level (33.3%) revealed that at the fastest presentation 
speed of 17ms, all neutral categories were significantly identified above chance (ps < .001), 
however this is likely due to a participant bias to respond with neutral when guessing. 
Approximately 63% of incorrect trials were responded to with neutral, as can be seen in Figure 
4-4D. At 33ms, positive human images were correctly categorized for valence significantly 
above chance, M=61.9%, t(17)=6.8, p<.001, d=1.6. This was also true for all neutral categories 
(ps < .05), except neutral humans. At 50ms, positive human images were again correctly 
categorized at an above chance level M=63.1%, t(17)=6.6, p<.001, d=1.6.  At 50ms, 
categorization performance of three negative conditions was significantly above chance, namely: 
negative animals M=49.1%, t(17)=4.7, p<.01, d=1.1, negative humans M=54.4%, t(17)=6.4, 
p<.001, d=1.5, and negative objects M=58.7%, t(17)=6.5, p<.001, d=1.5. As was seen at 33ms, 
all neutral categories were categorized correctly at above chance performance (ps < .05), except 
neutral human categories (p>.1). 
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Table 4-5: Valence Categorization Task %-Correct Descriptive Statistics. 
 

Experiment 1 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 22.4 13.5 16.9 72.4 21.3 63.7, 21.5 23.8 11.7 38.8 31.0 31.7 
Human 23.7 14.4 17.8 62.0 19.5 54.0 41.5 18.7 33.8 42.4 23.5 37.1 
Object 23.7 14.4 17.8 73.7 21.2 65,.0 19.4 16.6 12.6 39.0 30.3 32.1 
Building 13.3 12.5 8.2 75.6 19.1 67.7, 22.4 20.4 14.1 37.1 32.7 29.7 

TOTAL 20.8 14.1 18.0 70.9 20.5 66.9 26.2 21.6 22.0 39.3 29.4 36.0 

 
 

Experiment 1 
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 38.9 13.1 33.5 60.9 32.4 47.7 38.5 29.7 26.4 46.1 28.0 39.7 
Human 41.3 17.0 34.3 50.9 25.1 40.6 61.9 17.9 54.5 51.4 21.6 46.4 
Object 45.9 16.9 39.0 72.4 20.3 64.1 25.9 18.3 18.4 48.1 26.5 42.1 
Building 20.0 13.6 14.4 64.4 29.0 52.6 39.3 29.6 27.1 41.2 30.8 34.2 

TOTAL 36.5 17.9 33.0 62.2 27.6 56.8 41.4 27.3 36.0 46.7 27.0 43.7 

 
 

Experiment 1 
50ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 49.1 14.2 43.2 59.8 31.5 46.9 43.7 32.3 30.5 50.9 27.6 44.6 
Human 54.4 14.0 48.7 46.7 25.4 36.2 63.1 19.1 55.3 54.8 20.8 50.0 
Object 58.7 16.6 51.9 68.9 26.1 58.2 37.0 20.9 28.5 54.9 25.0 49.2 
Building 26.5 16.8 19.6 66.3 31.0 53.6 45.9 32.1 32.8 46.2 31.6 39.0 

TOTAL 47.2 19.6 43.3 60.4 29.3 54.7 47.5 28.0 42.0 51.7 26.6 48.7 

 
 

Experiment 2 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 42.2 16 37.5 65.3 13.2 61.4 26.9 10.9 23.6 44.8 20.8 41.3 
Human 32.5 11.9 29 56.3 16 51.5 47.4 15.7 42.8 45.4 17.5 42.5 
Object 32 13.7 28 70.2 14.5 65.9 30.2 14.5 25.9 44.1 23.3 40.3 
Building 20.5 13 16.7 73.4 17.8 68.2 28.5 22 22 40.8 29.4 35.9 

TOTAL 31.8 15.6 29.6 66.3 16.6 63.9 33.2 18.1 30.6 43.8 23.1 41.9 

 
 

Experiment 2 
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
M % SD 95% CI M % SD 95% CI M % SD 95% CI M % SD 95% CI 

Animal 62.9 18.4 57.5 55.5 18.9 49.9 51.4 16 46.7 56.6 18.3 53.5 
Human 52.0 14.5 47.7 46.6 18 41.2 71.4 13 67.6 56.7 18.6 53.6 
Object 49.7 15.1 45.2 69.1 14.5 64.8 56.4 15.9 51.7 58.4 17.1 55.5 
Building 28.9 13.3 25 66.9 23.8 59.8 46.7 26.9 38.7 47.5 26.9 43 

TOTAL 48.4 19.7 45.5 59.5 21 56.5 56.5 20.7 53.5 54.8 20.9 53 
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Table 4-6: Valence Categorization Task %-Correct t-test Results. 
 

Experiment 1 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal -3.4 (17)  >.1 -0.8 7.8 (17) <.001 1.8 -2.1 (17) >.1 -0.5 1.3 (53) >.1 0.2 
Human -2.8 (17)  >.1 -0.7 6.2 (17) <.001 1.5 1.8 (17) >.1 0.4 2.8 (53) <.05 0.4 
Object -2.8 (17)  >.1 -0.7 8.1 (17) <.001 1.9 -3.5 (17) >.1 -0.8 1.4 (53) >.1 0.2 
Building -6.8 (17)  >.1 -1.6 9.4 (17) <.001 2.2 -2.3 (17) >.1 -0.5 0.8 (53) >.1 0.1 

TOTAL -7.5 (71)  >.1 -0.9 15.5 (71) <.001 1.8 -2.8 (71) >.1 -0.3 3.0 (215) <.01 0.2 

 
 

Experiment 1 
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 1.8 (17) >.1 0.4 3.6 (17) <.05 0.9 0.7 (17) >.1 0.2 3.3 (53) <.01 0.5 
Human 2.0 (17) >.1 0.5 3.0 (17) >.1 0.7 6.8 (17) <.001 1.6 6.1 (53) <.001 0.8 
Object 3.2 (17) >.1 0.7 8.2 (17) <.001 1.9 -1.7 (17) >.1 -0.4 4.1 (53) <.001 0.6 
Building -4.2 (17)  >.1 -1 4.6 (17) <.01 1.1 0.8 (17) >.1 0.2 1.9 (53) >.1 0.3 

TOTAL 1.5 (71) >.1 0.2 8.9 (71) <.001 1.0 2.5 (71) =.07 0.3 7.3 (215) <.001 0.5 

 
 

Experiment 1 
50ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 4.7 (17) <.01 1.1 3.6 (17) <.05 0.8 1.4 (17) >.1 0.3 4.7 (53) <.001 0.6 
Human 6.4 (17) <.001  1.5 2.2 (17) >.1 0.5 6.6 (17) <.001 1.6 7.6 (53) <.001 1.0 
Object 6.5 (17) <.001  1.5 5.8 (17) <.001 1.4 0.8 (17) >.1 0.2 6.3 (53) <.001 0.9 
Building -1.7 (17)  >.1 -0.4 4.5 (17) <.01 1.1 1.7 (17) >.1 0.4 3.0 (53) <.05 0.4 

TOTAL .06 (71) <.001  0.7 7.8 (71) <.001 0.9 4.3 (71) <.001 0.5 10.1 (215)  <.001 0.7 

 
 

Experiment 2 
17ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 3.2 (32) <.05 0.6 13.9 (32) <.001 2.4 -3.4 (32) >.1 -0.6 5.5 (98) <.001 0.6 
Human -0.4 (32)  >.1 -0.1 8.2 (32) <.001 1.4 5.2 (32) <.001 0.9 6.8 (98) <.001 0.7 
Object -0.5 (32)  >.1 -0.1 14.6 (32) <.001 2.5 -1.2 (32) >.1 -0.2 4.6 (98) <.001 0.5 
Building -5.7 (32)  >.1 -1 12.9 (32) <.001 2.3 -1.3 (32) >.1 -0.2 2.5 (98) =.05 0.3 

TOTAL -1.1 (131) >.1 -0.1 22.8 (131) <.001 2 -0.1 (131)  >.1 0.0 9.0 (397) <.001 0.5 

 
 

Experiment 
33ms 

Valence 

 
 
 
 
Semantic 

 Negative Neutral Positive TOTAL 
t (df) p d t (df) p d t (df) p d t (df) p d 

Animal 9.2 (32) <.001  1.6 6.7 (32) <.001 1.2 6.5 (32) <.001 1.1 12.7 (98) <.001 1.3 
Human 7.4 (32) <.001  1.3 4.2 (32) <.01 0.7 16.9 (32) <.001 2.9 12.5 (98) <.001 1.3 
Object 6.2 (32) <.001  1.1 14.2 (32) <.001 2.5 8.3 (32) <.001 1.5 14.6 (98) <.001 1.5 
Building -1.9 (32)  >.1 -0.3 8.1 (32) <.001 1.4 2.8 (32) =.09 0.5 5.2 (98) <.001 0.5 

TOTAL 8.8 (131) <.001  0.8 14.3 (131) <.001 1.2 12.8 (131) <.001 1.1 20.4 (397)  <.001 1 
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Figure 4-4. Valence Categorization Task Performance for Experiment 1. 
(A-C) Bar plots showing group-averaged percentage of valence categorization task trials classified correctly in 
experiment 1.  Each plot shows results broken down by valence and semantic categories from trials at one of the 3 
presentation speeds (17ms in A, 33ms in B, and 50ms in C). Error bars show standard error (S.E) across subjects, 
dotted lines indicate chance performance (33%), and stars above each bar indicate which presentation speed by 
valence by semantic conditions were classified with above chance performance (t-tests, Bonferroni corrected: * 
p<.05, ** p<.01, *** p<.001, **** p<.0001). At 33ms and 50ms, images of positive humans were classified with 
above chance performance, while at 50ms negative images of animals, humans and objects were all classified with 
above chance performance. (D) Pie chart showing proportion of incorrectly classified valence categorization task 
responses for each valence category, across all subjects. As neutral were clearly chosen for more than 50% of 
incorrect responses this figure shows a clear bias to select neutral when the valence category was unknown. 
 
 To account for the observed neutral response bias in the valence categorization task, 
mAFC-d’ scores were also calculated. Table 4-7 contains descriptive statistics for the mAFC-d’ 
scores. One tailed t-tests were conducted to determine whether group-level mean mAFC-d’ 
scores were above zero (Table 4-8). Valence categorization performance was significantly above 
zero for all semantic conditions at each presentation speed (ps < .001), indicating that once the 
neutral bias was accounted for, participants could categorize valence significantly above chance. 
To determine whether significant differences in valence categorization performance exist across 
semantic categories a two-way ANOVA was conducted on valence categorization mAFC-d’ 
scores using factors of presentation speed (17, 30 and 50 ms) and semantic category (animal, 
human, object, building) (Fig. 4-5). Main effects of both presentation speed f(2,215)=53.8, 
p<.001, partial η2=0.35 and semantic category were significant f(3,215)=2.94, p=.034, partial 
η2=0.04, but the interaction was not (p>.1). As the main effects of presentation speed and 
semantic category were both significant, one way ANOVAs collapsing across semantic category 
and presentation speed, respectively, were performed. The one-way ANOVA examining the  
effect of  speed level (17, 33, or 50ms) on valence categorization mAFC-d’ scores was 
significant f(2,213)=52.6, p<.001, partial η2=0.33. Tukey’s post-hoc tests revealed that 
differences in mAFC-d’ scores between all speed levels were significant, where images 
presented at the shorter presentation speed showed smaller d’ scores, meaning they were 
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categorized less well: 17ms vs 33ms M difference=-0.31, p<.001, 95% CI=(-0.44, -0.19), 17ms 
vs 50ms, M difference=-0.53, p<.001, 95% CI=(-0.65, -0.40), and 33ms vs 50ms, M difference=-
0.21, p<.001, 95% CI=(-0.33, -0.09). The one-way ANOVA examining the  effect of  semantic 
category (animal, human, object, building) on valence categorization mAFC-d’ scores was not 
significant however (p>.1). 

Although no significant interaction between presentation speed and semantic category 
was detected in mAFC-d’ scores for the valence rating task, further investigation using one-way 
ANOVAs at each speed level was conducted given our interest in ultra-rapid categorization of 
emotional stimuli. These one-way ANOVAs of semantic category at each presentation speed 
revealed that semantic category was only significant at the 33ms speed, f(3,215)=3.4, p<.023, 
η2=0.13. Tukey’s post-hoc test was then used on the one-way ANOVA of semantic category at 
the 33ms presentation speed  to test for differences in mAFC=d’ across levels of semantic 
category. At 33ms, semantic categorization performance (mAFC-d’) of object images was 
significantly greater than that for building images (M difference=-0.2641), p=.047, 95% 
CI=(0.0022, 0.5259), and semantic categorization performance (mAFC-d’) of human images was 
significantly greater than that for building images (M difference=0.2724), p=.038, 95% 
CI=(0.0106, 0.5342). 
 
Table 4-7: Valence Categorization Task mAFC-d’ Descriptive Statistics. 

 
Experiment 1 
mAFC-d’ 

Speed 

 
 

Semantic 

 17ms 33ms 50ms 
M d’ SD 95% CI M d’ SD 95% CI M d’ SD 95% CI 

Animal 0.3 0.3 0.2 0.7 0.3 0.6 0.9 0.3 0.7 
Human 0.4 0.2 0.3 0.7 0.3 0.6 0.8 0.3 0.7 
Object 0.3 0.3 0.2 0.7 0.3 0.6 1 0.3 0.8 

Building 0.3 0.3 0.2 0.5 0.3 0.3 0.8 0.4 0.6 

TOTAL 0.3 0.3 0.3 0.6 0.3 0.6 0.9 0.3 0.8 
 

Experiment 2 
mAFC-d’ 

Speed 

 
 

Semantic 

 17ms 33ms 
M d’ SD 95% CI M d’ SD 95% CI 

Animal 0.5 0.2 0.4 0.9 0.3 0.8 
Human 0.5 0.3 0.4 0.8 0.2 0.8 
Object 0.5 0.4 0.4 1 0.3 0.9 

Building 0.5 0.9 0.3 0.7 0.4 0.6 

TOTAL 0.5 0.5 0.4 0.9 0.3 0.8 
 
 

Table 4-8: Valence Categorization Task mAFC-d’ t-test Results. 
 

Experiment 1 
mAFC-d’ 

Speed 

 
 

Semantic 

 17ms 33ms 50ms 
t (df) p d t (df) p d t (df) p d 

Animal 5.2 (17) <.001 1.2 8.6 (17) <.001 2.0 10.9 (17)  <.001 2.6 
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Human 6.9 (17) <.001 1.6 12.1 (17)  <.001 2.8 13.5 (17)  <.001 3.2 
Object 4.6 (17) <.001 1.1 11.0 (17)  <.001 2.6 12.3 (17)  <.001 2.9 

Building 4.0 (17) <.001 0.9 6.3 (17) <.001 1.5 8.4 (17) <.001 2.0 

TOTAL 10.2 (71) <.001 1.2 17.6 (71)  <.001 2.1 21.8 (71)  <.001 2.6 
 
 

Experiment 2 
mAFC-d’ 

Speed 

 
 

Semantic 

 17ms 33ms 
t (df) p d t (df) p d 

Animal 10.8 (32) <.001 1.9 19.4 (32) <.001 3.4 
Human 9.4 (32) <.001 1.6 23.2 (32) <.001 4 
Object 8.2 (32) <.001 1.4 18.4 (32) <.001 3.2 

Building 3.4 (32) <.001 0.6 11.5 (32) <.001 2 

TOTAL 11.1 (131) <.001 1 32.8 (131) <.001 2.9 
 
 
 

 

 

Figure 4-5. Valence Categorization Task mAFC-d’ Scores for Experiment 1. 
To account for the observed response bias in the valence categorization task from experiment 1 (shown in Fig. 4-4), 
multiple alternative forced choice (mAFC) d’ scores were calculated which account for both false positive and hit 
rates. A score of 0 indicates chance performance. Results are broken down by presentation speed and semantic 
category (animal, human, object, building). Error bars show standard error (S.E) across subjects, stars above each 
bar indicate which presentation speed by semantic conditions were classified with above chance performance, while 
lines between bars indicate which presentation speed by valence conditions were significantly different from each 
other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, **** p<.0001). Unlike the percent-correct scores 
shown in Figure 4-4, once response bias was accounted for, performance was significantly above chance at all 
presentation speed by semantic conditions. At 33ms, performance for valence categorization of building images was 
significantly worse than that of human and object categories (ps<.05). 
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Cognitive Primacy Hypothesis Vs. Affective Primacy Hypothesis.  

To find evidence for either the semantic or affective primacy hypothesis, four conditional 
probabilities across the semantic and valence tasks were calculated: the probability of getting the 
semantic task correct on trials where the valence task was correctly answered, denoted as the 
probability of semantic task correct (S) given valence task correct (V) (P(S|V), the probability of 
semantic task correct given valence task incorrect (~V) P(S|~V), the probability of valence task 
correct given semantic task correct P(V|S), and the probability of valence task correct given 
semantic task incorrect (~S), P(V|~S)). T-tests were then used to determine whether probabilites 
where significantly above chance at the group level (see the Data Analysis part of the Methods 
section for more information). These conditional probabilities were calculated for all speed by 
semantic by valence conditions (Figs. 4-6, 4-S3, & 4-S4). Only those conditions with above 
chance performance in both the semantic and valence tasks were considered. Additionally, all 
neutral valence conditions were excluded from the analysis due to the neutral response bias in 
the valence categorization task. We note that, although conditions with the object semantic level 
also might be influenced by response bias, they were kept in because we expected to see 
evidence for the cognitive primacy hypothesis, and the object semantic response bias only made 
that more unlikely. This is because semantic categorization accuracy will likely be higher than 
chance for objects due to the selection bias, even though the subject did not accurately perceive 
the category correctly. If classification of semantic category is indeed necessary for valence 
categorization, as the cognitive primacy hypothesis postulates, then those stimuli correctly 
labelled as objects simply due to the response bias should not also get the valence categorization 
task correct, and would then count as evidence against the cognitive primacy hypothesis as we 
quantify it.   

At 17ms, none of the conditions had both significant semantic and valence %-correct 
scores (ps > .1 for valence %-correct). At 33ms, conditional probabilities for positive humans 
were P(S|V)=0.97, t(17)=83.6, p<.001, P(S|~V)=0.87, t(17)=26.0, p<.001, P(V|S)=0.64, 
t(17)=7.2, p<.001, P(V|~S)=0.20, t(17)=-2.4, p>.1, showing support for the cognitive as opposed 
to the emotion, primacy hypothesis (Fig. 4-6). At 50ms positive humans also showed support for 
the cognitive, versus the emotion, primacy hypothesis (Fig. 4-6), with conditional probabilities 
P(S|V)=0.97, t(17)=82.9, p<.001, P(S|~V)=0.88, t(17)=20.5, p<.001, P(V|S)=0.65, t(17)=7.1, 
p<.001, P(V|~S)=0.26, t(17)=-1.0, p>.1. Additionally, at 50 ms responses to images of negative 
animals, humans and objects provided evidence for the cognitive, but not emotion, primacy 
hypothesis (Fig. 4-6). Conditional probabilities for negative animals were P(S|V)=0.91, 
t(17)=27.3, p<.001, P(S|~V)=0.82, t(17)=13.9, p<.001, P(V|S)=0.52, t(17)=6.9, p<.001, 
P(V|~S)=0.45, t(17)=1.2, p>.1, for negative humans they were P(S|V)=0.90, t(17)=34.4, p<.001, 
P(S|~V)=0.8, t(17)=17.3, p<.001, P(V|S)=0.58, t(17)=7.4, p<.001, P(V|~S)=0.40, t(17)=0.9, 
p>.1, and for negative objects they were P(S|V)=0.88, t(17)=29.2, p<.001, P(S|~V)=0.81, 
t(17)=21.9, p<.001, P(V|S)=0.61, t(17)=6.7, p<.001, P(V|~S)=0.45, t(17)=1.7, p>.1. Importantly, 
in none of the presentation speed by valence by arousal conditions did the patterns of conditional 
probabilities provide support for the affective primacy hypothesis. 
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Figure 4-6. Task Performance Conditional Probabilities Showing Evidence of Cognitive 
Primacy Hypothesis for Experiment 1. 
To quantify the co-occurrence of successful categorization of valence and semantic category in experiment 1, 
conditional probabilities for each task were calculated, broken down by presentation speed by valence by semantic 
category conditions (see methods for details). Due to response bias in the valence categorization of neutral images, 
they were excluded from consideration (see methods for reasoning). As the cognitive primacy hypothesis predicts 
valence information cannot be extracted before semantic information, we looked for supporting evidence of the 
cognitive primacy hypothesis under the following circumstances: (i) above chance conditional probability of getting 
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the valence correct when getting the semantic category correct (P(V|S) above chance), (ii) conditional probability of 
getting the valence correct when not getting the semantic category correct (P(V|~S not above chance), (iii) overall 
(marginal) probability of getting both the semantic and valence categories correct was above chance (P(S) and P(V) 
above chance). Bars were colored for those experimental conditions where these constraints were met showing 
evidence of the cognitive primacy hypothesis, and greyed out for those experimental conditions were these 
constraints were not met. None of the experimental conditions showed evidence for the affective primacy hypothesis 
(see methods for description of constraints). Note that the positive human experimental condition at 17ms is greyed 
out because the marginal probability of correct valence categorization (P(V)) was not significant, even though the 
P(S|V) was significant and the P(S|~V) was not. Error bars show standard error (S.E) across subjects, dotted lines 
indicate chance performance (25%), and stars above each bar indicate which presentation speed by semantic by 
valence conditions were classified with above chance performance (t-tests, Bonferroni corrected: * p<.05, ** p<.01, 
*** p<.001, **** p<.0001). 

Discussion 
The results from experiment 1 showed that, when controlling for response bias using 

mAFC-d’ scores, humans can accurately categorize both the semantic and valence content of 
naturalistic emotional images that are presented as briefly as 17ms and followed by backwards 
masking.  Additionally, categorization of semantic content is influenced by the emotional 
valence of the images. Negative images were categorized significantly worse than were both 
neutral and positive images, findings that are inline with findings from the attentional narrowing 
literature that stimulus negative valence can impede cognitive task performance, such as the 
Attention Network Test (Cohen, Henik, & Mor, 2011) and anti-saccade tasks (van Steenbergen, 
Band, & Hommel, 2011). In contrast, valence categorization performance was not influenced by 
the semantic category of the images. Taken together, these findings contradict predictions made 
by the biological preparedness hypothesis, which would predict improved categorization 
performance for  negative, animate stimuli. Finally, when both the semantic and valence 
categorization tasks were performed with above chance accuracy, the conditional probability of 
getting the valence categorization task correct was only above chance when the semantic task 
was also done correctly, whereas the reverse did not hold true.  This is consistent with the 
proposal that semantic information must first be extracted before affective information can be 
determined, which supports the cognitive primacy hypothesis as opposed to the affective 
primacy hypothesis.  

Experiment 2 
In order to replicate our findings and address several limitations of experiment 1, a 

second experiment was conducted. First, the valence ratings used as ground truth for the valence 
categorization task in experiment 1 had been determined by the majority rating of three raters. 
We were thus concerned that performance on the valence judgment in Experiment 1 might have 
been underestimated as a result of disagreement between our in-house raters and participants. To 
better ensure that each image used was consistently allocated to a given valence category, all 
images used in experiment 2 were independently rated by 18 subjects on Amazon’s mechanical 
turk website, in addition to the original three in-house raters. Only those images where the modal 
response of mechanical turk workers agreed with all three in-house raters were used for 
experiment 2. Second, a number of the object category images from Experiment 1 depicted the 
object against a plain white background, which led to the concern that they may have been easier 
to identify. This might alter their identifiability relative to images from other semantic categories 
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given that briefly presented images of scenes located against inconsistent or uncommon 
background colors are more difficult to identify (Boyce, Pollatsek, and Rayner, 1989; Goffaux, 
et al., 2005). Thus, all images of objects with a white background were replaced with images of 
objects in their natural environments. Third, in order to control for any confounds of task order, 
trials in experiment 2 were counterbalanced so that the semantic categorization task came first on 
half of the trials and the valence categorization task came first on the other half of trials, per 
subject. 

Method 

Participants.  

Forty-three volunteers (22 females, mean age = 19.43, age range = 18-25) from the 
University of California, Berkeley subject population participated in Experiment 2. Participants 
were compensated $20/1.5 hours. 10 subjects were excluded for not completing the full set of 
sessions, for expressing that they misunderstood the task after having completed the experiment, 
if they finished the experiment extremely quickly or slowly, or if they were found not paying 
attention to the task. Written, informed consent was obtained for all participants before 
conducting the experiment. The experimental protocol for this study was approved by the 
Committee for the Protection of Human Subjects at the University of California, Berkeley. 

Materials.  

720 images were selected across the same four semantic categories (animal, human, 
object, and building) and valence categories (negative, neutral, and positive) as were used in 
Experiment 1. Only 720 images were required here, as opposed to the 1080 used in experiment 
1, as only two of the three original presentation times were used (17ms and 33ms). The majority 
of images were a subset of those used in experiment 1. Ratings of semantics, valence and arousal 
for all images used in Experiment 1 without a white background were rated by 18 participants on 
Amazon Mechanical Turk. Only those images where the modal response of the Mechanical Turk 
participants agreed with the in-house raters’ categorization, on both semantic and valence 
categories, were retained for use in experiment 2. Where necessary to keep an even balance of 
images across semantic by valence conditions, new replacement images were obtained from the 
internet. These images were rated by both the in-house raters and 18 Amazon Mechanical Turk 
participants, and the same criteria was used to determine eligibility for inclusion in the final 
stimulus set. Eight randomizations of the stimulus set were created such that each image was 
seen at either the 17ms or 33ms presentation speed, had either the semantic or valence 
categorization task come first, and was presented in one of two orders. Equal numbers of both 
males and females were assigned to each randomization. 

Procedure.  

The experimental procedure for Experiment 2 was identical to that of Experiment 1,with 
two exceptions. First, only two stimulus presentation speeds were used, namely 17ms and 33ms. 
The 50ms presentation speed was excluded because subjects were at near ceiling performance on 
the semantic categorization task in Experiment 1. Thus, the stimulus set was broken down into 
24 blocks of 30 stimuli each. Twelve blocks were shown in the first session, and twelve in the 
second session. Second, to control for possible task order effects, task order was counterbalanced 



176 
 

such that within each block equal numbers of trials had the semantic task first and the valence 
task first.  

Data Analysis.  

Analysis of data from Experiment 2 followed in exactly the same manner as was done in 
Experiment 1. One additional analysis was done to determine whether task order had any affect 
on either the semantic or valence categorization task performance. A 4-way ANOVA was 
conducted on both the semantic and emotion % correct scores, with factors for presentation 
speed, semantic category, valence category and task order. An additional 3-way ANOVA was 
done on the mAFC-d’ scores from the semantic categorization task with factors for presentation 
speed, valence category and task order. Finally, a 3-way ANOVA was done on the mAFC-d’ 
scores from the valence categorization task with factors for presentation speed, semantic 
category and task order. 

Results 

Semantic Categorization Task.  

Descriptive statistics of group-level %-correct scores for the semantic categorization task 
from Experiment 2 are shown below those for Experiment 1 in Table 4-1. Scores are shown in 
the same manner as for Experiment 1. Results of one-tailed t-tests indicated that semantic 
categorization was significantly above chance  (ps < .01) in all conditions and aggregate 
conditions after Bonferroni correction for multiple comparisons (Table 4-2 and Fig. 4-7A-B). As 
with Experiment 1, near ceiling performance was seen for many categories at the 33ms 
presentation times. The response bias to select the object semantic category when guessing (Fig. 
4-7C) was also seen here in experiment 2, as it was in experiment 1 (as indicated by 
disproportionate selection of the object category when incorrect). Thus, mAFC-d’ scores were 
again calculated in the same manner as in Experiment 1 to account for this bias.  
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Figure 4-7. Semantic Categorization Task Performance for Experiment 2. 
(A-B) Bar plots showing group-averaged percentage of semantic categorization task trials classified correctly in 
experiment 2.  Each plot shows results broken down by semantic and valence categories from trials at one of the 2 
presentation speeds (17ms in A, and 33ms in B). Error bars show standard error (S.E) across subjects, dotted lines 
indicate chance performance (25%), and stars above each bar indicate which presentation speed by semantic by 
valence conditions were classified with above chance performance (t-tests, Bonferroni corrected: * p<.05, ** p<.01, 
*** p<.001, **** p<.0001). Group level task performance at all semantic by valence conditions was significantly 
above chance at all three presentation speeds. (C) Pie chart showing proportion of incorrectly classified semantic 
categorization task responses for each semantic category, across all subjects. As objects were chosen for nearly 50% 
of incorrect responses this figure shows a clear bias to select object when the semantic category was unknown. 

 
Descriptive statistics of group-level mAFC-d’ scores are shown in Table 4-3 (see also 

Fig. 4-8). Reproducing our findings from experiment 1, semantic task performance as quantified 
by mAFC-d’ scores was found to be significantly above chance for all speed by valence 
conditions, as well as aggregate valence conditions, (ps < .001, Table 4-4). A two-way ANOVA 
was conducted on the mAFC-d’ scores using factors of presentation speed and valence to test for 
differences in semantic categorization task performance. Both main effects of presentation speed 
f(2,197)=54.5, p<.001, partial  η2=0.17, and valence f(2,197)=43.1, p<.001, partial  η2=0.14 were 
significant, but there was no significant interaction (p>.1). As the both the main effects of 
presentation speed and valence were significant, as they were in experiment 1, one way 
ANOVAs were conducted by collapsing across levels of speed and valence. The one-way 
ANOVA on speed level (17, 33) was significant f(1,196)=34.1, p<.001, partial η2=0.15, 
revealing that semantic task performance is significantly better at presentation speeds of 33ms 
than at presentation speeds at17ms. The one-way ANOVA of semantic task mAFC-d’ scores on 
valence category (negative, neutral, positive) was also significant f(1,195)=12.9, p<.001, partial 
η2=0.12. Tukey’s post-hoc test revealed that, in addition to a significantly worse semantic task 
performance for negative versus positive stimuli as was seen in experiment 1, M difference=-
1.14, p<.05, 95% CI=(-1.66, -0.61), semantic task mAFC-d’ scores for neutral images were 
significantly smaller than for positive images, M difference=-0.66, p<.01, 95% CI=(-1.19, -0.13). 
The difference in semantic task mAFC-d’ scores between negative and neutral images was not 
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significant however(p=.09), with negative stimuli trending towards worse performance than 
neutral stimuli. 

As in experiment 1, although no significant interaction was detected, one-way ANOVAs 
were conducted at both presentation speeds because this study is investigating ultra-fast 
perception. Theses one-way ANOVAs revealed significant differences across levels of valence in 
semantic task mAFC-d’ scores; at 17ms f(2,53)=55.5, p<.001, η 2=0.54, and at 33ms 
f(2,53)=50.6, p<.001, η2=0.51. Tukey’s post-hoc test was then used to find which levels of 
valence differed significantly at each presentation speed. For 17ms, as seen in Experiment 1, 
semantic categorization was significantly poorer both for neutral images than for negative 
images, (M difference=-0.31, p<.001, 95% CI=(-0.50,-0.13)) and for positive images than for 
negative images (M difference=-0.80), p<.001, 95% CI=(-0.98,-0.62). Additionally, in 
Experiment 2 semantic categorization performance was significantly better for positive images 
than for neutral images (M difference=-0.48), p<.001, 95% CI=(-0.67, -0.30)). Likewise at 33ms, 
semantic categorization performance of negative images was significantly greater than for 
neutral images (M difference=-0.64, p<.001, 95% CI=(-0.89,-0.38)), and for positive images (M 
difference=-1.07, p=.001, 95% CI=(-1.33,-0.82)). Additionally, at 33ms semantic task mAFC-d’ 
scores were greater for positive images than they were for neutral images (M difference=-0.44, 
p=.001, 95% CI=(-0.69,-0.18)). 
 

 

Figure 4-8. Semantic Categorization task mAFC-d’ Scores for Experiment 2. 
To account for the observed response bias in the semantic categorization task from experiment 2 (shown in Fig. 4-9) 
multiple alternative forced choice (mAFC) d’ scores were calculated which account for both false positive and hit 
rates. A score of 0 indicates chance performance. Results are broken down by presentation speed and valence 
category (negative, neutral, positive). Error bars show standard error (S.E) across subjects, stars above each bar 
indicate which presentation speed by valence conditions were classified with above chance performance, while lines 
between bars indicate which presentation speed by valence conditions were significantly different from each other 
(t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, **** p<.0001). Performance was significantly above 
chance at all presentation speed by valence conditions. Critically, negative stimuli were less accurately classified 
than both neutral and positive stimuli were at both presentation speeds, and positive stimuli were more accurately 
classified than both negative and neutral stimuli were at both presentation speeds. 
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Valence Categorization Task.  

Descriptive statistics of the %-correct scores for the valence categorization task in 
Experiment 2 are shown below those for Experiment 4-1 in Table 4-5 (and Table 4-6 and Fig. 4-
9). At 17ms (Fig. 4-9A), one-tailed t-tests revealed above chance valence categorization 
accuracy for negative animals M=42.2%, t(32)=3.2, p<.05, d=0.6, and positive humans 
M=47.4%, t(32)=5.2, p<.001, d=0.9. Additionally, as in Experiment 1, all neutral categories 
were significantly identified above chance (ps < .001). At 33ms (Fig. 9B), valence categorization 
of positive human images was again significantly above chance, M=71.4%, t(32)=16.5, p<.001, 
d=2.9, as was also true for images of positive animals M=51.4%, t(32)=6.5, p<.001, d=1.1, and 
images of positive objects M=56.4%, t(32)=8.5, p<.001, d=1.5. Additionally valence 
categorization of three negative image categories was significantly above chance, namely for 
images of negative animals M=62.9%, t(32)=9.2, p<.001, d=1.6, images of negative humans 
M=52.0%, t(32)=7.4, p<.001, d=1.3, and images of negative objects M=49.7%, t(32)=6.2, 
p<.001, d=1.1. As seen in experiment 1, valence categorization of all neutral image categories 
was significantly above chance (ps<.01). Also as seen in experiment 1, a response bias in the 
valence categorization task to select neutral when guessing was seen in Experiment 2, with 
approximately 57% of incorrect trials categorized as neutral (Fig. 4-9C).  
 

 

Figure 4-9. Valence Categorization Task Performance for Experiment 2. 
(A-B) Bar plots showing group-averaged percentage of valence categorization task trials classified correctly in 
experiment 2.  Each plot shows results broken down by valence and semantic categories from trials at one of the 2 
presentation speeds (17ms in A, and 33ms in B). Error bars show standard error (S.E) across subjects, dotted lines 
indicate chance performance (33%), and stars above each bar indicate which presentation speed by valence by 
semantic conditions were classified with above chance performance (t-tests, Bonferroni corrected: * p<.05, ** 
p<.01, *** p<.001, **** p<.0001). At 17ms, images of positive humans were classified with above chance 
performance, while at 33ms positive and negative images of animals, humans and objects were all classified with 
above chance performance. (C) Pie chart showing proportion of incorrectly classified valence categorization task 
responses for each valence category, across all subjects. As neutral were clearly chosen for more than 50% of 
incorrect responses this figure shows a clear bias to select neutral when the valence category was unknown. 
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 To account for the observed neutral response bias in the valence categorization task of 
experiment 2, mAFC-d’ scores were again calculated. Table 4-7 contains descriptive statistics for 
the mAFC-d’ scores. mAFC-d’ scores for the valence categorization task were significantly 
above zero for  all speed by semantic conditions (ps < .001; Table 4-8 and Fig. 4-10). A two-way 
ANOVA with speed and semantic factors and dependent variable valence categorization mAFC-
d’ scores revealed that the main effect of speed was significant f(1,263)=28.5, p<.001, partial 
η2=0.10 with valence categorization performance significantly worse at presentation speeds of 
17ms than at presentation speeds of 33ms. The main effect of semantic category was not 
significant however, nor was the interaction (ps>.1).  
 

 

Figure 4-10. Valence Categorization Task mAFC-d’ Scores for Experiment 2. 
To account for the observed response bias in the valence categorization task from experiment 1 (shown in Fig. 4-9), 
multiple alternative forced choice (mAFC) d’ scores were calculated which account for both false positive and hit 
rates. A score of 0 indicates chance performance. Results are broken down by presentation speed and semantic 
category (animal, human, object, building). Error bars show standard error (S.E) across subjects, stars above each 
bar indicate which presentation speed by semantic conditions were classified with above chance performance, while 
lines between bars indicate which presentation speed by valence conditions were significantly different from each 
other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, **** p<.0001). Unlike the percent-correct scores 
shown in Figure 4-9, once response bias was accounted for, performance was significantly above chance at all 
presentation speed by semantic conditions. At 33ms, performance for valence categorization of building images was 
significantly worse than that of object categories (p<.05). 

 

Effects of Task Order.  

To test for possible effects of task order, a 4-way ANOVA was conducted on both the 
semantic and valence %-correct scores, using factors of presentation speed (17 & 33ms), 
semantic category (human, animal, object, building), valence (negative, neutral, positive) and 
task order (semantic task first, valence task first). Main effects of task order was not significant 
in either analysis (ps>.1), nor were the two-way interactions between task order and semantic, 
task order and valence, or task order and presentation speed (ps>.1). A 3-way ANOVA using 
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factors of presentation speed (17 & 33ms), valence (negative, neutral, positive) and task order 
(semantic task first, valence task first) was conducted on the mAFC-d’ semantic scores and 
neither the main effect of, nor two-way interactions with, task order were not significant there 
(p>.1). A second 3-way ANOVA using factors of presentation speed (17 & 33ms), semantic 
category (human, animal, object, building) and task order (semantic task first, valence task first) 
was conducted on the mAFC-d’ valence scores and neither the main effect of, nor two-way 
interactions with, task order was not significant there either (p>.1).  

Cognitive Primacy Hypothesis Vs. Affective Primacy Hypothesis.  

In the same manner as in Experiment 1, conditional probabilities were calculated for all 
speed by semantic by valence conditions (Fig. 4-11, 4-S5 & 4-S6). All conditions showing 
support for the cognitive as opposed to the affective primacy hypothesis in Experiment 1 also 
showed support for the cognitive as opposed to the affective primacy hypothesis in Experiment 
2. This was now apparent at shorter presentation times. At 17ms, conditional probabilities for 
positive human images were P(S|V)=0.97, t(33)=53.1, p<.001, P(S|~V)=0.73, t(33)=18.1, 
p<.001, P(V|S)=0.54, t(33)=7.0, p<.001, P(V|~S)=0.09, t(33)=-6.6, p>.1, showing support for the 
cognitive as opposed to the affective primacy hypothesis (Fig. 4-11). At 33ms, positive human 
images also showed support for the cognitive as opposed to the affective primacy hypothesis 
(Fig. 4-11), with conditional probabilities being P(S|V)=0.99, t(33)=103.3, p<.001, 
P(S|~V)=0.88, t(33)=23.5, p<.001, P(V|S)=0.74, t(33)=17.1, p<.001, P(V|~S)=0.11, t(33)=-4.8, 
p>.1. At 33ms, images of negative animals, humans and objects also showed evidence for the 
cognitive as opposed to the affective primacy hypothesis (Fig. 4-11). Conditional probabilities 
for images of negative animals were P(S|V)=0.80, t(33)=24.2, p<.001, P(S|~V)=0.61, t(33)=9.4, 
p<.001, P(V|S)=0.70, t(33)=11.8, p<.001, P(V|~S)=0.47, t(33)=2.9, p>.1, for images of negative 
humans they were P(S|V)=0.81, t(33)=29.7, p<.001, P(S|~V)=0.66, t(33)=15.6, p<.001, 
P(V|S)=0.57, t(33)=8.9, p<.001, P(V|~S)=0.40, t(33)=1.9, p>.1, and for images of negative 
objects they were P(S|V)=0.83, t(33)=32.4, p<.001, P(S|~V)=0.71, t(33)=17.2, p<.001, 
P(V|S)=0.54, t(33)=6.9, p<.001, P(V|~S)=0.39, t(33)=1.5, p>.1. Additionally, at 33ms images of 
positive animals and positive objects also showed support for the cognitive as opposed to the 
affective primacy hypothesis (Fig. 4-11). The conditional probabilities were: positive animals 
P(S|V)=0.92, t(33)=27.3, p<.001, P(S|~V)=0.77, t(33)=16.9, p<.001, P(V|S)=0.56, t(33)=6.8, 
p<.001, P(V|~S)=0.23, t(33)=-2.0, p>.1, and positive objects P(S|V)=0.92, t(33)=49.7, p<.001, 
P(S|~V)=0.80, t(33)=20.0, p<.001, P(V|S)=0.60, t(33)=9.5, p<.001, P(V|~S)=0.35, t(33)=0.3, 
p>.1. Replicating our findings from experiment 1, in none of the presentation speed by valence 
by arousal conditions did the patterns of conditional probabilities provide support for the 
affective primacy hypothesis. 
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Figure 4-11. Task Performance Conditional Probabilities Showing Evidence of Cognitive 
Primacy Hypothesis for Experiment 2. 
To quantify the co-occurrence of successful categorization of valence and semantic category in experiment 2, 
conditional probabilities for each task were calculated, broken down by presentation speed by valence by semantic 
category conditions (see methods for details). Due to response bias in the valence categorization of neutral images, 
they were excluded from consideration (see methods for reasoning). As the cognitive primacy hypothesis predicts 
valence information cannot be extracted before semantic information, we looked for supporting evidence of the 
cognitive primacy hypothesis under the following circumstances: (i) above chance conditional probability of getting 
the valence correct when getting the semantic category correct (P(V|S) above chance), (ii) conditional probability of 
getting the valence correct when not getting the semantic category correct (P(V|~S not above chance), (iii) overall 
(marginal) probability of getting both the semantic and valence categories correct was above chance (P(S) and P(V) 
above chance). Bars were colored for those experimental conditions where these constraints were met showing 
evidence of the cognitive primacy hypothesis, and greyed out for those experimental conditions were these 
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constraints were not met. None of the experimental conditions showed evidence for the affective primacy hypothesis 
(see methods for description of constraints). Error bars show standard error (S.E) across subjects, dotted lines 
indicate chance performance (25%), and stars above each bar indicate which presentation speed by semantic by 
valence conditions were classified with above chance performance (t-tests, Bonferroni corrected: * p<.05, ** p<.01, 
*** p<.001, **** p<.0001). 

Discussion 
Experiment 2 addressed the same questions as did experiment 1, with the aim of 

reproducing the results while controlling for several limitations. Using mAFC-d’ scores to 
control for response bias, revealed that both semantic and valence categorization can be 
performed above chance at 17ms, replicating the finding from experiment 1. The decrease in 
semantic categorization performance for negative, relative to neutral and positive, images was 
also replicated. We now also observed better semantic categorization performance for positive, 
relative to negative and neutral, images. This effect was not observed in experiment 1.  

Turning to valence categorization task performance, this was not significantly influenced 
by the semantic category of the image, also replicating findings from experiment 1. Semantic and 
valence categorization task order was counterbalanced in experiment 2 to control for effects of 
task order. Analysis of variance concluded that neither task order had no significant influence 
upon task performance for either the semantic or valence categorization tasks, controlling for 
factors of presentation speed, valence and semantic category and their two-way interactions with 
task order. Finally, the conditional probability of accurately categorizing valence was only above 
chance when the semantic category was also accurately chosen for those conditions where both 
semantic and valence categorization tasks were done at above chance level. This again provided 
support for the cognitive primacy hypothesis as opposed to the affective primacy hypothesis, 
replicating the findings from experiment 1 here as well. Interestingly, evidence for the cognitive 
primacy hypothesis was observed for the same valence by semantic conditions as in experiment 
1, but at a faster presentation time. One possible explanation for this increase in performance is 
the higher quality stimuli that were used in experiment 2. Only stimuli from experiment 1 that 
had a modal rating from 18 Amazon Mechanical Turk works that agreed with 3 in-house raters 
were used for this study, and thus images whose valence category was somewhat ambiguous 
were excluded from this study. 

General Discussion 
In the two experiments reported here, we used rapid presentation of naturalistic emotional 

images to explore humans’ ability to categorize the semantic category and valence of natural 
images at presentation times that likely curtail processing to be predominantly feed-forward. By 
using a stimulus set more diverse in semantic categories than previous studies, conducting 
multiple alternative forced choice (mAFC) tasks upon both image semantic category and valence 
(negative, positive and neutral), and controlling for response bias by using mAFC-d’ scores, this 
study was able to address more questions than previous studies using a similar paradigm. In both 
experiments conducted, we found that semantic categorization of images presented for just 17ms 
could be done with better than chance performance, in line with previous findings (Greene & 
Oliva, 2009; Grill-Spector & Kanwisher, 2005; Nummenmaa, Hyona, & Calvo, 2010). The 
biological preparedness hypothesis would predict that negative stimuli might require shorter 
presentation durations for correct categorization than neutral stimuli (Ohman & Mineka, 2001).  
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Some authors might contend that this should also be true for positive stimuli (Tamietto & de 
Gelder, 2010; Zajonc, 1980). On the other hand, evidence from the attentional narrowing 
literature has shown performance costs incurred for tasks completed after viewing negative 
visual stimuli (Cohen, Henik, & Mor, 2011; van Steenberge, Band, & Hommel, 2011), and thus 
these findings might predict impaired categorization performance for negative stimuli relative 
and neutral and positive stimuli. In experiment 1 we found that semantic categorization was 
poorer for negative images relative to neutral and positive images, at all three presentation 
speeds. This finding was replicated in experiment 2, and additionally positive stimuli were found 
to be categorized significantly better than negative and neutral stimuli across both presentation 
speeds. Thus, these findings show that although increased performance is present for some 
emotional stimuli (namely positive), there is a differential effect by valence. This differential 
effect does not support the biological preparedness hypothesis, but rather is in line with findings 
from the attentional narrowing literature.  

While narrowing of attention to the negative stimulus emotional content, which thus 
draws attention away from the semantic content of the image, could perhaps explain our 
semantic categorization findings, a problem for the attentional narrowing theory is our finding 
that valence categorization is poor, even for negative stimuli, at short presentation times. Another 
interesting hypothesis that might, better,explain our findings is the concept of “cognitive 
paralysis” (Leach, 2004, 2005). According to this hypothesis, the supervisory attentional system 
(SAS) becomes disabled under threat. Using the example of disasters in which many victims 
often perish because of a lack of adaptive behavior, Leach argues that “cognitive paralysis” 
occurs because the main role of the SAS is to allow survival responses to be prepared prior to 
facing threat, not when directly faced with a threat. If executive mechanisms are temporarily 
disabled when viewing negative stimuli, it could take longer to perform any explicit task 
regarding negative images, as we observed. If “cognitive paralysis” does indeed explain our 
findings, and the cognitive primacy hypothesis is true, this explanation also raises another 
question, namely: if semantic information is extracted before valence information, and negative 
stimuli cause cognitive paralysis in a semantic categorization task, how does the brain infer an 
image is negative without also knowing it’s semantic category resulting in high semantic 
categorization performance for negative images (which we didn’t see)? One possible explanation 
is that both semantic and valence information is successfully extracted during brief presentations 
of emotional images, which leads to temporary disabling of executive mechanisms necessary to 
do the semantic categorization task which do not come back online until after the visual stimulus 
representations in OTC are extinguished due to backwards masking.  

Nummenmaa, Hyona, & Calvo (2010) also found evidence that humans can quickly 
categorization briefly presented emotional images, and that this categorization was faster for 
semantic categorization than it was for valence categorization. However, in that study only 
negative and positive images were used, and thus conclusions about the relative performance on 
negative, neutral and positive images could not be made.  Furthermore, Nummenmaa and 
colleagues (2010) also used images of only animals and humans, and thus could not generalize 
their findings to inanimate stimuli. Importantly, they also restricted their analyses to percent 
change scores and did not calculate d-primes. Based on percent-correct scores, they concluded 
that categorization of pleasant vs. unpleasant images presented for 20ms and backwards masked 
could not be done with above chance performance. Findings from experiment 1 showed that 
when using percent-correct scores, valence was categorized at above chance levels for only 
neutral images, which was likely due simply to the large response bias to select neutral when the 
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valence category was unknown. However, controlling for response bias through the use of 
mAFC-d’ scores revealed that even at 17ms, images of all semantic categories were identified at 
above chance performance. Similar findings emerged from experiment 2, although at 17ms even 
without controlling for the response bias, images of positive humans were significantly 
categorized with above chance performance. This relative increase in categorization performance 
may have been the result of the valence of the images used for experiment 2 being less 
ambiguous after more raters and more stringent criteria were used in determining the “ground 
truth” valence of those images. Thus, by using more sophisticated metrics of categorization 
performance than simple percent-correct scores, and optimizing image selection, we determined 
that affective information can be extracted from images presented as briefly as 17ms. Further 
exploring the valence categorization task as a function of semantic category revealed no 
significant differences in performance across semantic categories in either experiment 1 or 2. 
While the biological preparedness hypothesis would have predicted that animate stimuli should 
be processed sooner than inanimate stimuli, we found no evidence for this in our data, although 
in experiment 2 we did see that the valence of negative animals and positive humans were 
categorized at above chance levels before correcting for response bias suggesting those valence 
by semantic conditions may have some temporal processing advantage over others.  

We turn finally to the question of whether our findings support either the cognitive or 
affective primacy hypothesis. Direct comparison of performance between the semantic and 
valence categorization tasks was not possible due to the differing levels of chance performance. 
Hence, we addressed this issue by calculating the conditional probabilities of getting one task 
correct conditioned on getting the other task correct or incorrect, and vice versa. These 
conditional probabilities provide insight into whether semantic or affective information is 
extracted first. Positive human images presented for 33ms in experiment 1, and 17ms in 
experiment 2, showed above chance performance on the valence task only when the semantic 
task was also done correctly (P(V|S) > 33%, but P(V|~S) < 33%), but performance on the 
semantic task was significant both when the valence task was done accurately (P(S|V) ) or not 
(P(S|~V). This was also found for negative animals, humans and objects at 50ms in experiment 1 
and 17ms in experiment 2. While these findings do not establish causality, together with previous 
findings (Nummenmaa, Hyona, & Calvo, 2010) they are consistent with the cognitive primacy 
hypothesis which asserts that semantic information is extracted before affective information. 
Furthermore, they are also inconsistent with the affective primacy hypothesis which asserts that 
affective information is extracted prior to, and independently of, semantic information.  

In summary our findings indicate that negative valence appears to interfere with the 
processing of rapidly presented stimuli required for performance of categorization tasks. 
Furthermore, for categorization performance at least, there is greater evidence for semantic than 
affective primacy and little, if any, evidence for any advantage being conferred by biological 
preparedness. This suggests that while stimulus valence might be extracted rapidly by subcortical 
systems involved in such instinctual behaviors as freezing, it does not seem to feed-forward in a 
manner able to inform performance of simple categorization tasks. This has important 
implications for the mechanisms by which we determine how best to rapidly respond to 
emotional stimuli in our environment.  
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Supplemental Figures 
 

 

Figure 4-S1. Semantic Categorization Task Pairwise-d’ Scores for Experiment 1. 
Semantic categorization task pairwise d’ scores between all six possible pairs of semantic categories from 
experiment 1. While more traditional, these d’ scores cannot account for false positives from the two semantic 
categories not in the pair, unlike the mAFC-d’ scores shown in Figure 4-3. A score of 0 indicates chance 
performance. Each plot shows results from one presentation speed (17ms, 33ms, 50ms), and scores are broken down 
by valence and semantic category pairs. Error bars show standard error (S.E) across subjects, stars above each bar 
indicate conditions that were classified with above chance performance, while lines between bars indicate which 
conditions were significantly different from each other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, 
**** p<.0001).  
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Figure 4-S2. Valence Categorization Task Pairwise-d’ Scores for Experiment 1. 
Valence categorization task pairwise d’ scores between all three possible pairs of valence categories from 
experiment 1. While more traditional, these d’ scores cannot account for false positives from the valence category 
not in the pair, unlike the mAFC-d’ scores shown in Figure 4-5. A score of 0 indicates chance performance. Each 
plot shows results from one presentation speed (17ms, 33ms, 50ms), and scores are broken down by semantic 
category and the valence category pairs. Error bars show standard error (S.E) across subjects, stars above each bar 
indicate conditions that were classified with above chance performance, while lines between bars indicate which 
conditions were significantly different from each other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, 
**** p<.0001).  
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Figure 4-S3. Valence Categorization Task Performance as a Function of Semantic 
Categorization Task Performance for Experiment 1. 
Bar plots showing valence categorization task performance in experiment 1 for each presentation speed by valence 
condition, with the four true semantic categories broken down by the four possible subject responses to the semantic 
categorization task. Valence categorization performance is thus plotted as a function of semantic categorization 
performance. Error bars show standard error (S.E) across subjects and dotted lines indicate chance performance 
(25%). Images of positive humans are better categorized as positive when the semantic category human is also 
correctly classified across all three presentation speeds. Additionally, at 50ms, images of negative animals, humans 
and objects are better classified as negative when their respective semantic category is correctly classified. The 
response bias to select neutral images when the valence category is unknown makes interpretation of this figure for 
neutral images difficult. 
  



189 
 

 

Figure 4-S4. Semantic Categorization Task Performance as a Function of Valence 
Categorization Task Performance for Experiment 1. 
Bar plots showing semantic categorization task performance from experiment 1 for each presentation speed by 
semantic category condition, with the three true valence categories broken down by the three possible subject 
responses to the valence categorization task. Semantic categorization performance is thus plotted as a function of 
valence categorization performance. Error bars show standard error (S.E) across subjects and dotted lines indicate 
chance performance (33%). It does not seem that getting the valence category correct is associated with getting the 
semantic category correct across all speed by semantic category conditions. 
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Figure 4-S5. Semantic Categorization Task Pairwise-d’ Scores for Experiment 2. 
Semantic categorization task pairwise d’ scores between all six possible pairs of semantic categories from 
experiment 2. While more traditional, these d’ scores cannot account for false positives from the two semantic 
categories not in the pair, unlike the mAFC-d’ scores shown in Figure 4-8. A score of 0 indicates chance 
performance. Each plot shows results from one presentation speed (17ms, 33ms), and scores are broken down by 
valence and semantic category pairs. Error bars show standard error (S.E) across subjects, stars above each bar 
indicate conditions that were classified with above chance performance, while lines between bars indicate which 
conditions were significantly different from each other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, 
**** p<.0001).  
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Figure 4-S6. Valence Categorization Task Pairwise-d’ Scores for Experiment 2. 
Valence categorization task pairwise d’ scores between all three possible pairs of valence categories from 
experiment 2. While more traditional, these d’ scores cannot account for false positives from the valence category 
not in the pair, unlike the mAFC-d’ scores shown in Figure 4-10. A score of 0 indicates chance performance. Each 
plot shows results from one presentation speed (17ms, 33ms), and scores are broken down by semantic category and 
the valence category pairs. Error bars show standard error (S.E) across subjects, stars above each bar indicate 
conditions that were classified with above chance performance, while lines between bars indicate which conditions 
were significantly different from each other (t-tests, Bonferroni corrected: * p<.05, ** p<.01, *** p<.001, **** 
p<.0001). 
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Figure 4-S7. Valence Categorization Task Performance as a Function of Semantic 
Categorization Task Performance for Experiment 2. 
Bar plots showing valence categorization task performance in experiment 2 for each presentation speed by valence 
condition, with the four true semantic categories broken down by the four possible subject responses to the semantic 
categorization task. Valence categorization performance is thus plotted as a function of semantic categorization 
performance. Error bars show standard error (S.E) across subjects and dotted lines indicate chance performance 
(25%). At 17ms, images of positive humans are better categorized as positive when the semantic category human is 
also correctly classified, while at 33ms all positive image categories are better categorized as positive when their 
semantic category is correctly classified. Additionally, at 33ms, images of negative animals, humans and objects are 
better classified as negative when their respective semantic category is correctly classified. The response bias to 
select neutral images when the valence category is unknown makes interpretation of this figure for neutral images 
difficult. 
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Figure 4-S8. Semantic Categorization Task Performance as a Function of Valence 
Categorization Task Performance for Experiment 2. 
Bar plots showing semantic categorization task performance from experiment 1 for each presentation speed by 
semantic category condition, with the three true valence categories broken down by the three possible subject 
responses to the valence categorization task. Semantic categorization performance is thus plotted as a function of 
valence categorization performance. Error bars show standard error (S.E) across subjects and dotted lines indicate 
chance performance (33%).  
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Chapter 5. Conclusions 
This dissertation began with a question: how does the human visual system extract 

semantic and emotional information useful in determining the appropriate behavioral response to 
situations of high survival value? Throughout the previous three chapters I have presented 
evidence, and reviewed previous scientific findings, in an attempt to answer this question. In 
chapter 2 I reported the results of a voxel-wise modeling analysis of fMRI data collected while 
subjects viewed over 1600 emotional naturalistic images. Using machine learning techniques to 
control for model overfitting and to handle the large feature spaces modeled, I reported that a 
combined semantic, valence and arousal (CSVA) model was able to predict brain activity across 
wide swaths of OTC. These predictions were greater than predictions made by a semantics only 
or emotion only across a significantly greater number of voxels, across subjects. Using a group-
level principal components analysis (PCA) on the CSVA model weights across voxels within 
OTC revealed the top 3 dimensions of this representational space accounts for more than 50% of 
the variance in those model weights. By comparing the top 3 PCs with several hypothetical 
dimensions, we showed that, in addition to animacy, valence and arousal information were 
contained within these dimensions, but predominantly for animate stimuli. We next aimed to 
determine whether OTC tuning might be useful, in a linear manner, to determine the appropriate 
behavioral responses to the images that subjects viewed in the scanner. To that aim, we used 
each image’s scores on a varying number of CSVA model PCs to predict the appropriate 
behavioral responses to those images. The amount of variance explained by the CSVA model 
PCs significantly exceeded that achieved when using PCs of the stimulus features themselves, 
across all images viewed. Furthermore, CSVA model PCs also explained significantly more 
variance than that explained by OTC tuning to low-level image properties, semantic features 
alone, or emotional features alone. We interpreted these findings as evidence that, in addition to 
semantic information, the valence and arousal of predominantly animate stimuli are represented 
within OTC in such a fashion as to allow for a linear readout of that information useful to 
selection of the appropriate behavioral response to the emotional scenes viewed. Additionally, it 
is unlikely that these findings are simply a result of a “gain” function due to emotional attention, 
as a simple “gain” could not account for the observed valence representation of animate stimuli 
within OTC. 

These findings from chapter 2 were not without limitations however. In chapter 3 I 
addressed theoretical limitations relating to our claim that semantic information is represented 
within OTC. Recent studies involving the congenitally blind have shed light on the supramodal 
nature of object category selectivity within OTC, indicating that this region does in fact represent 
abstract semantic information and not just visual feature information. Furthermore, a 
reassessment of the traditional role of OTC as an object detector, along with new empirical 
findings, suggest that the representations within OTC may be idiosyncratically structured to 
allow for appropriate domain-specific behavior, such as navigation when viewing landscapes, 
social cognition when viewing human faces, and tool manipulation when viewing inanimate 
artifacts. In a second literature review, I recounted behavioral and neuroscientific studies 
investigating the perception and attentional effects of emotional visual stimuli. It is well 
established that emotional stimuli (especially negative stimuli) command attention. 
Neuroscientific research suggests that re-entrant projections from amygdala to visual cortex 
increase neural firing relevant to the emotional stimulus, acting as a gain function which 
accounts for this attentional capture. The mechanisms and brain regions involved in signally the 
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amygdala to activate this gain function are debated, however. Two competing hypothesis argue 
that either a fast subcortical route (the “two-routes” hypothesis) or fast feed-forward sweep of 
OTC (the “two-stage” hypothesis) extract the emotional information necessary to alert the 
amygdala to initiate this gain function.  

Chapter 2 also contained the results of seven empirical analyses of the fMRI dataset 
collected for the study in chapter 2 that address methodological limitations of that chapter. In a 
2014 paper, Chikazoe and colleagues used representational similarity analysis (RSA) to argue 
that valence and animacy are represented within VTC, but not in the same regions. This 
conflicted with our findings from chapter 2 that the combination of semantics, valence and 
arousal are all located within overlapping regions of OTC. To resolve this discrepancy we 
conducted a RSA and found that indeed animacy, valence, and arousal are represented within the 
overlapping regions of OTC. Additionally, to test whether our findings from chapter 2 could be 
inferred using simpler univariate approaches, we conducted a univariate SPM analysis. We found 
that although representation of animacy, and valence and arousal for animate stimuli, could be 
found within OTC, valence of animate stimuli were not necessarily found in overlapping regions 
across subjects. In order to determine the contributions to model CSVA performance made by 
semantic vs. emotional features we partitioned the out-of-sample variance explained by the 
CSVA model in chapter 2. We found that the when removing variance explained by either 
semantic features or emotional features an impressive amount of variance was still explained by 
the combined representation of semantic and emotional information. Finally, several control 
analyses were conducted. The first of which showed that early visual cortical (EVC) voxel 
tuning could not account for the PCA results reported in chapter 2. Furthermore, tuning in frontal 
lobe regions was no better than that in OTC at explaining appropriate behavioral responses. By 
regressing out variance in the fMRI BOLD signal accounted for by respiration and heart rate 
signals, we showed that physiological noise did not meaningfully alter CSVA model 
performance nor dimensionality of the top 3 PCs of OTC tuning. Finally, we showed that by 
removing out-of-sample variance accounted for by a low-level structural model did not 
drastically change OTC scores on the top 2 PCs, while it had a mild effect on PC 3 scores. Taken 
together, these supplemental analyses suggest that, while the results from our VWM study 
showed a more clear picture of the role emotion plays in OTC representations, our small-N study 
utilized a large stimulus set which was well powered to allow even RSA and univariate SPM 
analyses to uncover some of the same representations as the VWM analysis of chapter 2.  

Turning from cortical to behavioral representations of naturalistic emotional images, in 
chapter 4 we reported findings of two categorization task experiments using briefly presented 
emotional images. Replicated across two experiments, and using mAFC-d’ scores to control for 
response bias, we found that both semantic (animal, human, object, buildings) and valence 
(negative, neutral, positive) categories can be accurately identified at presentation times as short 
as 17ms. In contrast to predictions made by the biological preparedness hypothesis, we found 
that negative stimuli were less accurately categorized than were neutral or positive stimuli across 
both experiments. Additionally, in experiment two, where ambiguous stimuli had been removed, 
the semantic category of positive stimuli was better identified than was the semantic category of 
negative or neutral stimuli. This suggests a penalty for the categorization of negative images, and 
perhaps a benefit for the categorization of positive images. By calculating the conditional 
probabilities of accurately completing one task (e.g semantic) when accurately completing the 
other (e.g. valence), we looked for support of either the affective or cognitive primacy 
hypotheses. At several presentation speeds and across several semantic by valence conditions, 
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the valence categorization task was only done accurately when the semantic categorization task 
was done accurately. The converse of this was not true however as the semantic categorization 
task done accurately regardless of whether the valence task was done accurately. This was 
observed in both experiments. We took these results as evidence in support of the cognitive 
primacy hypothesis, and found no evidence in support of the affective primacy hypothesis. 

Interpreting these findings together with the previous literature reviewed in this 
dissertation, a picture is beginning to emerge of the possible brain regions and representations 
involved in the perception of naturalistic emotional images that can initiate appropriate 
behavioral responses to the situations of high-survival value depicted in those images. While still 
speculative, and in need of further research to flush out, I suggest that supramodal 
representations across multiple sensory cortices form a semantic “network” that represents 
external stimuli, which subserves synchronization of perception and attention across modalities, 
and which allows for the initiation of appropriate behavioral responses to those stimuli.  Feed-
forward passes through the sensory cortices of this network may serve to elicit rudimentary 
emotional information which, in concert with the pulvinar and amygdala, initiate a gain function 
which boosts multimodal sensory processing of those stimuli through reentrant feedback serving 
to focus attentional and behavioral resources towards the high survival-value stimulus.  
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