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STRUCTURE AND PERTURBATION ANALYSIS OF TRUNCATED'
SVD FOR COLUMN-PARTITIONED MATRICES

ZHENYUE ZHANG* AND HONGYUAN ZHAt

Abstract. We present a detailed study of truncated SVD for column-partitioned matrices. In
particular, we analyze the relation between the truncated SVD_ of a matrix and the truncated SVDs
of its submatrices. We give necessary and sufficient conditions under which truncated SVD of a
matrix can be constructed from those of its submatrices. We also present perturbation analysis to
show that an approzimate truncated SVD can still be computed even if the given necessary and
sufficient conditions are only approximately satisfied. :

1. Introduction. In many applications, it is desirable to compute a low-rank
approximation of a given matrix A € R™*" and the matrix A can be large and/or
sparse, see [5], for example, for a list of application areas. The theory of singular
value decomposition (SVD) provides the following characterization of the best low-
rank approximation of A in terms of Frobenius norm || - || [3]. (Similar results hold
for general unitarily-invariant norms.)

THEOREM 1.1. Let the SVD of A€ R™*" be A=UXVT with

Y= diag(ﬂ, B Umin(m,n)); 012> ... 2 Omin(m,n)

and U and V orthogonal. Then for 1 < k < min(m,n),

min(m,n)
3" o? = min{ ||A - B||% | rank(B) < k}.
i=k+1
And the minimum is achieved with besty(A) = Uy diag(o1, ..., ax) V¥, where Ui and

Vi are the matrices formed by the first k columns of U and V, respectively. Further-
more, bestix(A) is unique if and only if o > oky1-

In this paper, we call bestx(A) a truncated SVD of A, which is obtained by
truncating the expansion

min(m,n)
—_ T
A= E ;U]

i=1

up to the kth term. Here U = [uy,...,um] and V = [vy,...,vs]. Algorithms for
computing (truncated) SVD, even in the case when A is large and sparse are well
established [1, 2, 3]. In this paper we are concerned with an interesting issue which
is motivated by some of the results developed in [12] where we dealt with the rela-
tion of truncated SVD and a special indexing method latent semantic indezing used
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in information retrieval. We will build on the results obtained in [12] and study
truncated SVD of column-partitioned matrices in greater generality. We observed
that in some applications, the A is naturally partitioned into several block columns:
A =[A;,..., A,]. In text categorization applications, for example, each column of A
represents a document in a given text corpus, and A; consists of all the documents in
the text corpus that are about a particular topic . In dynamic information retrieval
applications, A; can be the documents from an old text corpus, and A4z, ..., A,
are document collections added dynamically as new documents become available [9].
An important problem from those applications is the following: we have computed
the truncated SVD of some of the A;’s, say, bestg[A1, ..., A:],t < s, and the matrix
[A1, ..., At] has been discarded and is therefore no longer available. How can we con-
struct a truncated SVD of A from bestx[A;, . . ., A¢] and the remaining [As41, ..., 4;]7?
To answer this question we need to study the relation between the truncated SVD
of a matrix and the truncated SVDs of its submatrices. It turns out that a general
theory can be developed and the questions we are interested in can be answered by
certain special cases of the general theory.

The rest of the paper is organized as follows: In Section 2, we give necessary
and sufficient conditions that guarantee a truncated SVD of a column-partitioned
matrix 4 can be perfectly constructed from truncated SVD’s of its submatrices. The
orthogonality of certain submatrices of A plays an important role in specifying those
conditions. We also relate the sufficient conditions to a class of matrices with the
so-called low-rank-plus-shift structure [6, 7, 10]. In Section 3, we expand the results
in Section 2 to the case where the necessary and sufficient conditions are only approx-
imately satisfied by the given matrix' A. We show that a truncated SVD of A can
be approximately constructed from truncated SVD’s of its submatrices. Along the
way, we prove some novel perturbation bounds for truncated SVD of a matrix that
are of their own interests. The case for matrices with low-rank-plus-shift structure is
analyzed in some detail, and an improved perturbation bound is also derived.

2. Necessary and Sufficient Conditions. As mentioned in Section 1, we are
interested in finding conditions on a column-partitioned matrix A = [Ay,..., 4]
such that a truncated SVD of A can be constructed from those of the A;’s. At first
glance, using only truncated SVD’s of the A;’s certainly loses some information about
the original matrix A. Therefore, in general, we can not expect to reconstruct a
truncated SVD of A perfectly from those of the A;’s. The goal of this section is to
find conditions under which this can be done. We first present a general result which
gives the necessary and sufficient condition for a matrix and its perturbation to have
the same truncated SVD’s.

NoTE. Throughout the rest of the paper, we will use the following convention:
whenever besty (B) is mentioned for a matrix B, it is implicitly assumed that o (B) >
ok+1(B) so that besti{B) is uniquely defined.

THEOREM 2.1. Let A= B + C. Then bestx(A) = best(B) if and only if

CTbesti(B) =0, beste(B)CT =0, ox(B) > grs1(A).

Proof. We first deal with the “only if” part of the proof which is rather straight-
forward. Since

(A — besty (4))7 best, (4) = 0,
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it follows from besti(A) = best,(B) that
(A ~ besti(B))T bestx(B) = 0.

Substituting A with B + C and using the equality (B — bestx(B))T bestx(B) = 0, we
obtain

CTbeStk(B) = 0.

We can similar show besty(B)CT = 0. Also ox(B) > ox41(A) follows from o4 (A) =
or{B) and ok (4) > or+1(A4). '
Now we prove the “if” part. Let the SVD of B and C be

PN
B:.[Ul,Uz][ ' Zzl[vl,vz]T, ¢ =QDG",

respectively, where ©; € R¥** and the matrices are partitioned conformally. Then
besty(B) = U1E;:Vi. Now the conditions CTbests(B) = 0 and bests(B)CT = 0
implies

'U;-”c =0, CVi=0.
Let the SVD of U Z2V 4 C be
U2,V +C = D5,V
It is readily verified that UTU; = 0, and V V; = 0. Therefore,

) .
A._——B-I-C:[Ul,Uz][ ! iz][VhVZ]T

gives the SVD of A. Since omin(Z1) = 0k(B) > ok41(A), it follows that omin(S1) >
Omax(22), and therefore

besty (A) =U 1\ = bestk(B),

completing the proof. O ‘ ,

REMARK. We notice that the condition ox(B) > oxt1(A) does not impose an
upper bound on the norm of the perturbation matrix C. Even when k = 1, for certain
C with norm as large as possible the condition can still be satisfied.

With the above general result, let us now consider A partitioned in various forms.
First we partition A as A = [41, Ay, where A; € R™*" i = 1,2. To apply the result
of Theorem 2.1, we will write A as the sum of two matrices. For example,

A= [Al, O] + [0, Az], A= [beStkl(Al), 0] + [Al - bestkl (Al), Ag],

and so on. With these kinds of partitions, the proof of the following corollaries follows
straightforwardly from Theorem 2.1, and therefore is omitted here.
COROLLARY 2.2. Let A = [A;, As]. Then

bestx(A) = bests ([A1, 0])
if and only if
Albestr (A1) =0, or(A1) > ok(A).
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COROLLARY 2.3. Let A= [A1,As) and k1 < n;. Then
bestr(A) = besty([bestk, (A1), A2])
if and only if
(A1 — bestg, (A1))Tbestx([besty, (A1), A2]) =0, ok ([bestx, (A1), A2]) > ox41(A).

COROLLARY 2.4. Let A =[A1, Ao} and ky < ny and ky < ny. Then
besty(A) = besty ([bestx, (A1), besty,(A42)])
if and only if |
[A1 — besty, (A1), Ay — best, (A2)]7 best ([bestx, (A1), best, (42)]) =0,
ok ([best, (A1), best, (Az)]) > ok11(4).

REMARK. The conditions listed in Corollary 2.4 seem to be rather complicated,
however, in some situations, we may be able to verify some stronger but simpler
conditions. For example, the following two equalities

(A; — besty, (41))TA2 =0, (Az — besty,(A2))T A1 =0
imply the condition
[A1 — besty, (A1), Az — besty, (A2)] best ([best, (A1), bestx, (42)]) = 0.

An example of this is given in Theorem 2.7.

Now we show another interesting application of Corollary 2.4.

CoOROLLARY 2.5. The equality besti(A) = besty ([besty, (A1), besty, (Az2)]) holds
if and only if for any t; > k;,1 =1, 2,

besty (A) = best,([best,, (A1), best,, (A42)]).

Proof. We just need to prove the “only if” part. Let A; = best;,(4;),é=1,2. It

- is easy to verify that besty,(A;} = bestg,(A;). Now we only need to prove that
bestx ([A1, As]) = besty ([best, (4; ), bestx, (A2)]).
Using Corollary 2.4, we need to first verify that
[A; — besty, (A;), Az — besty, (1‘L)]Tbcfstk([bestkl (4;), bestx,(A2)]) = 0.

Since span{A; —besty,(4;)} C span{A; —besty, (A:)}, the above equality follows from
the given condition. Next the inequality -

ok ([besty, (A1), best,(As)]) < ok ([bests, (A1), beste, (A2)])

follows from a general inequality about the monotonicity of singular values established
in (8]. O
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The results in Corollaries 2.4 and 2.5 can be generalized to the cases where A =
[A1, - .-, As]. We just state the case for Corollary 2.4.

COROLLARY 2.6. Let A = [Ay,...,A,] with A; € R™*" andk; < ni,i =
1,...,s. Then .

besty(A) = bestg ([besty, (A1), .. ., bestg, (As)])
if and only if fori=1,...,s
(A: — besti, (4:))best([besti, (A1), - . ., best, (4,)]) = 0,
and

ok ([bestr, {A1), ..., bestg, (As)]) > ok41(A4).

Matrices with Low-Rank-Plus-Shift Structure. As an application of the
results established in the above corollaries, we consider a special class of matrices
that possess the so-called low-rank-plus-shift structure. This kind of matrices arises
naturally in applications such as array signal processing and Latent Semantic Indexing
in information retrieval [6, 7, 10]. Specifically, a matrix has the low-rank-plus-shift
structure if its cross-product is a low-rank perturbation of a positive multiple of the
identity matrix (cf. Equation (2.1)). We now show that matrices with low-rank-plus-
shift structure satisfies the sufficient conditions of Corollary 2.4.1

THEOREM 2.7. Let A = [A;, As] € R™*" with Ay € R™*": and Ay € R™*X™2,
Assume that

(2.1) ATA =X + o1,

where X is positive semz'-déﬁnite with rank(A) = k. Partition X as X = (X,“),?’j:l
with X;; € R™>X" and let rank(X;i) =k;,i=1,2. Then

(2.2) (A1 — bestr, (41))TA2 =0, (Az — besty,(42))TA; =0,
and furthermore, ‘

besty (A) = besty ([bestx, (A1), bestr,(42)]).

Proof. For i = 1,2, we have A,TA; = X;; + %] with X;; positive semi-definite,
and rank(X;;) = k;. We can write the SVD of 4; in the following form
A; = U; diag(Z, 62 1)V;T = (Ui, Usp) diag(Si, 021)[Via, Vie],
\;vhere V; is orthogonal, and .
Ti=(Di + 0?12, D; = diag(ul, ..., u)
with u(li) >...> uf:l) > 0. Hence
besty, (A:) = UnBiViE,  Ai — besty,(Ai) = aUi V3,

! A similar result was also proved in [12].
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and we only need to show UL A, = 0, and ULA; = 0. To this end, consider the
symmetric positive semi-definite matrix

Di 0 SyULUnE: SiULUnS,

. v
Vi T 2 Vi _ 0 ZiULUnZ: TiULU»E,
[ v, ] (A" A - D) v | = D, A ,
0 .

where for the last matrix in the above equation, blank denotes element by symmetry.
Since a principal submatrix of positive semi-definite is still positive semi-definite, we
obtain

ULUn =0, URUsz =0, ULUzp =0,
and the rank of the matrix

i [ D, S U Un T, ]

(510U Za)T Dy
equals k. Hence by
BT B = diag(Viy, Va1)(4 + o2 1) diag(Vi], V3}),
where B = [best,, (A1), bestg,(A3)], we obtain
ok ([bestk, (A1), besty, (A2)]) > 0 = ok41(A).

The result of the theorem now follows from Corollary 2.4. [

REMARK. The above results can also be generalized to the cases where 4 =
(AL, ..., 4]

REMARK. By definition k1. < k, k3 < k and k < ki + k2 < 2k, and it is easy to
find examples for which %k + k3 = k or k1 + ko = 2k. In some cases, it is possible to
find a permutation P such that AP = [A;, A2] will have A; with k;, ¢ = 1,2, that are
smaller than those of A. For example,

0
1
A= 1

OO =
O = O
OO -

10 1

It is easy to verify that k = 2. If we take the first two columns as A, and the last two
columns as A3, we have k; = k3 = 2. However, if we take the middle two columns
as A; and the first and last tow columns as A,, we have k; = ky = 1. This example
motivates the following questions: is it possible to find a permutation P such that a
partition of AP = [A;, A;] with A; and A, having about the same column dimensions
will give ky + k2 < 2k? The answer turns out to be no. In the following we show that
we can find a class of matrices A satisfying

ATA-o?I=X

with X positive semi-definite such that for any permutation AP = [4;, A;] we will
have k; = ky = k, provided the column dimensions of A; and A, are no smaller than
k. Let Y € R**™ be a matrix any k columns of which are linearly independent. Let

CTC =YTY +o2I
be the Cholesky decomposition of YTY + ¢?I. Set A = QC, where Q is arbitrary

orthogonal matrix. Then it is easy to see that for any permutation P, a partition of
AP = [A;, As] with column dimensions of A; and A3 at least k will have k; = ks = k.
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3. Perturbation Analysis. In the previous section we give necessary and suf-
ficient conditions to perfectly reconstruct a truncated SVD of a matrix from those
of its submatrices. In this section, we consider the case when these conditions are
no longer satisfied. We first give a general result concerning perturbation bounds
of truncated SVD. The perturbation bound is so derived such that we get back the
result of Theorem 2.1 when the necessary and sufficient conditions of Theorem 2.1
are satisfied. _ '

THEOREM 3.1. Let A= B+ C with ox11(A) < o0x(B). Then

| Allz(|[besti (B)CT || + |CT best (B)I])
ox(B) - "2+1(A)

where Pyest, (B) 15 the orthogonal projector onto the subspace span{besti(B)}.
Proof. Let the SVD of B be

B =UxVT = [U}, Us) diag(Zy, 22)[Vi, Vo]
with ©; € R*** and best,(B) = U; 5, V¥. Write
Cii Ciz ]

{|besti(A) — bestx(B)|] < |

+ ”Pbestk(B)CT“:

S Ty —
cC=U"CV [CZI Cor

with C1; € R¥*% and let

Q21 Qa2 Ga1 Gaa
be the SVD of UT AV with Qli, D; and Gy, all k-by-k matrices. Then we have
lA]] = ||besti(A) — bests(B)]]

R EAE N

&2 i[5 Jowos
!

[ 'Q11D1 —¥1Gu1 —-E:Gyy ]
£1Gy1 + [Ch1, Cr2] [ gu ] =Qu D,
, 21

i

Q21D 0
From (3.3) we have

Y9Ga1 + [Ca1, Cog] [ g; ] =QauD.

It follows that

A = [ C11G11 + C12G21 —X1Gy2
CG11 + (B2 + C22)Gny 0

o0 ohd (8 oo

At C
<tateai + [ 6 ]|
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where we have used ||G13|| = [|G21]|- On the other hand from the equations

(£+0)G=QD, (£+C)Q=GD,

we obtain
G2 | _
£1G12 + [C11, Cha) [ Goo ] = Q12D3,
$1Q12 + [CF, CE) [ 8;: ] = G12Ds.

_ Therefore,
231Gz + £1[C11, C12) Gu | _ £1Q12D2 = G12D3 — [CF;, CT] Qu ] D,
1 3 G21 2 112 V12 Q21 )

and we have
(02(B) = 02 1 (ANIG12ll < [IZ3G12 ~ Gr2 D3|
< ICT, CEMIID:] + [|1Z1[Ch1, Cral I

Recall that || D2f] = ok41(A) < ox(B). Furthermore,
[151{C11, Cralll = [IE1UT CV| = [|V{T (best (B)TC|l < [|CT besty (B))|

and
NCT, Challl = VAT CTUT|| = VT CT| = || Poesta (87 CT Il < [besti (B)CT |I/x(B).
We obtain »
G2l < (Ilbestx (B)CT| + [CT best (B)II)/ (02 (B) — ok 41(A))-

Substituting the above into Equation (3.4) completing the proof. O

REMARK. As mentioned before the condition ox41(A) < o (B) does not imply
an upper bound on the norm of C, i.e., certain C with large norm can still produce a
small perturbation of besty(B).

If we ignore the structural relationship between B and C, we can derive the
following less sharp result.

COROLLARY 3.2. Under the same condition of Theorem 3.1, we have

[|bestx (A) — bestx(B)|| < (_1 + Sé?g)t”fgi”ﬂ;) licll.

REMARK. If we write the SVD of A as
A= f]i)f/T = [U'-l, U~2] dla,g(il y 22)[‘71, VQ]T
It is easy to verify that

besty(B) = U5, V{f = BPy,,
besti (A) = W&, VT = APy,
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where Py, = V) VIT and Py = ‘71‘717' are the orthogonal projectors onto the subspaces
spanV; and spanV/, respectively. Then we can use sin © Theorem to obtain the bound
in Corollary 3.2 [4, Theorem 11.7.2}.

COROLLARY 3.3. Under the condition of Theorem 8.1, if furthermore, we have
BCT =0, then

IIAII

Ibests(4) = bestu(B)| < s sl

CTbesty (B)]-

Proof. It is easy to see that BCT = 0 implies bests(B)CT = 0 and Poest, (5)CT =
0. Then the result directly follows from Theorem 3.1. O

Now as we did in Section 2, we now consider A arranged in various forms. We
partition A as A = [A;, As]; and split A as the sum of two matrices A = B + C, for
example, :

A= [Al,O] + [O,AZ],' A= [bestkl (Al),O] + [Al - bestk1 (Al),A2],

and so on. It is easily verified that for all the splittings used in the following three
corollaries, we always have BCT = 0. Then the following perturbation results follow
directly from Corollary 3.3.

COROLLARY 3.4. Let A = [A;, As] and 0 (A1) > ok41(A). Then

1Al
lec(A'l) - ”’Z+1(A)

[Ibest(4) — besti ([Ar, O])]| < 147 bestys (41)]]

COROLLARY 3.5. Let A = [A;, Aa] with ox([besty, (A1), A2]) > ok+1(A). Then

llAlln
||besti(A) — besti([bests, (A1), A2])|| < o2 (est, (A1), As)) — o2 a(A)’

where

n = [|(Ay — bests, (A1))T besty ([bestx, (A1), Aa])|| < [[(A1 — bestkliAl))TA2||~

COROLLARY 3.6. Let A = [A1, As). If ox([bestk, (A1), bestr,(A2)]) > ox(A),
then

€S —bes €S €S . ”A”T]
st (4)—best ([beste, (A1) besty (Al € yrrmrrymg & P,

where

n = |[|[[A1 — bestg, (A1), A2 — bests,(Az)]Tbests ([bests, (A1), beste,(A2)])|
< max{||(41 — bestkl(Al))Tbesl:k2 (A2)|l, [|(A2 ~ bestx, (A2)) T bestk, (41)][}-

REMARK. It is easy to see that each of the corollaries following Theorem 2.1 are
direct consequences of the corresponding corollaries established above.

Perturbation Results for Matrices with Low-Rank-Plus-Shift Struc-
ture. Now we return to matrices with low-rank-plus-shift structure, and we consider
the case the structure is only approximately satisfied. It turns out that the way this
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approximation is quantified has direct impact on the perturbation bounds we can
derive. In the following we provide two theorems one with O(1/€) and the other with
O(€). The difference in the assumptions for the derivation of these two results is very
subtle, but it gives rise to qualitatively different results.

To derive the perturbation bounds, we first need two technical lemmas which were
proved in [12].

LEMMA 3.7. Assume the following equality

[A.W

3 C]:X+E

holds for some symmetric positive semi-definite matriz X Then we have

18Il < V{14l + IEDUCH + 1 £1).-

LEMMA 3.8. Let the symmetric matriz Z be partitioned as

A BT
Z:[B C]

Then ||Z]| < max{||A],||C||} +{|BI|.
THEOREM 3.9. Let A = [A1, Aa] € R™*"™. Assume that for some integer k <
min{m, n} there exists € > 0 for which the eigenvalues of X = AT A — 21 satisfy?
Ai(X)>3e+n, j<Kk
[ (X)] < e, i>k,

where = 21/||X||e + €2 = O(\/€). Partiton X = (X;;)? ;= conformally with that of
A. Define k; such that .

X(Xi)>e,  j<ki
M(Xi)l <€, 7>k,
fori1=1,2. Then

[{bestx (A) — best ([bests, (A1), bestr, (A1)])l| < 72(4) _“;‘EIZ(A) -7

- Proof. By the eigendecomposition of A and the assumptions of its eigenvalues,
we can write X = Y + E, where YTE = 0, and Y is positive semi-definite with
rank(Y) =k, ||E|| < ¢, and

A(Y) = Ae(X) > 3e+ 1.
On the other hand, using the partition of A, we can write

X = ATAl —_ (721 ATAQ
- Ag‘Al A%"Az - 0'21 )

2 We assume that the eigenvalues of a matrix X are ordered in nonincreasing order A;(X),>
- An(X).
1
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Now for ¢ = 1,2, write the SVD fo A; as follows
A = [Ui, Uia) diag(Zi1, Tin) Vi, Vi2) T

where ¥, = diag(oi1,...,0:k;) and ):,-2 = diag(oi k;41,- - - 0i,m;). By definition the
integers k; are chosen such that

o} —ad?>e j<ki,
for i = 1,2. Or equivalently, A\; (AT A; —62I) > ¢ for j < k;, and |A; (AT A; —o?I)| <€
for j > k;. 1t is easy to see that k; < k since 0y < 0;(A).
Next we write A = BW7 = [B,, Bs)W7, where
By = [U11Z11,Un1B21], Bs = [U12%12, U22X32],

and

Vi 0 VW O
0 Vau 0 Vo |’

|

Without loss of generality, we assume that W is orthogonal. (Otherwise replace W
and By by (W, W] and [B,, 0], respectively.) Define

A = best (A) — besty ([bests, (A1), besty,(A1)])-
It can be verified that
bestx [bestk, (A1), besty,(Az)] = bestx[B1, 0JW7T, besty(A) = besty(B)W7T,

lA|l = [Ibests (B) — best ([B1, O])Il-

Now in order to apply Corollary 3.4, we need to verify the condition ox(Bi) >
0x+1(B), and derive a lower bound on o4(B1)? — o2 ,,(B) and an upper bound on
[|B By||. (Notice that || B bestx(B1)|| < {|BY Bi]]-) To this end,

1) we apply Lemma 3.7 twice to obtain an upper bound on ||BY By||. It is easy to
see that both BT B — 0] and B B, — 021 can be written as the sum of a symmetric
positive semi-definite matrix and a matrix with norm no greater than ¢. Applying
Lemma 3.7 to

BTB—O'ZI: [ BlTBl—O'ZI Bferz J

BTB,  BIB,—o?I

gives

IBE Bill < V(BT By~ oI[| + €)(I1B] B2 — o21]Je)
< VIXTT+ €)([1B7 B2 — o1fe).

Apply Lemma 3.7 to

BT B, — o] = [ 22, 0] TUL U220, ]

222U2T2U12212 252 — 0‘2[
yields

1212050z %00l < (152, — o? 11| + ) (|53, — o21]| + €) < 4€?,
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where we have used ||£2, — ¢%]|| < €. By Lemma 3.8, we obtain [|BY B2 — o2I|| < 3¢
and hence

183 Bill < 2V[1X[le + €2 = n.
2) we now give an lower bound on o4 (B1)? — 62, (B). Write

BT B, — oI BT B, ]

Tp 27 _
BB "I—[ B%"Bz—aﬁl]“L[B{Bl

Use perturbation bounds for eigenvalues, we have
Ak (X) = A (BT B — 02I) < M\ (diag(BT B, — ¢%I, BY B, — o%I)) + 1.
The condition Ag(X) > 3¢ + n implies
Ae(BY By - ¢I) > ||B] B, — o1},
because [|BY B, — o2I|| < 3¢. Thus
|loR(B1) — oR(A)| = [M(BT By — 0*I) = M (X)| < ||B] Bell < 7.
It follws that
7i(B1) — 0741(B) 2 0}(A) = n — 0f,1(A) > e+ 1> 0.
Finally, by Corollary 3.4, we have

IBIIBT Ball - Allm
Ul%(Bl) - 0'134.1(3) - 02(14) - 0'134.1(14) )

Al <

completing the proof. O
EXAMPLE 1. Let s be small, and for any o > s, define

ci=V1i+02+52, ¢y =Vo2+s2 ecz=Vo2+s2, e=cls’.

Let A = [Al, Az] with

1
1 D 1 —sDJ .
A= Ay = e . with J = 1,
1 ,/1+sz[sDJ] 2 ,/1_,_32[ D ] w [1 } .

and D = diag(ci, ¢z, ¢3). It follows that

A= 1 D I —sJ
T V1 s? D sJ T ’
It can be verified that
Allg(ATA~—0'ZI) =1+s? >E>IA1"2(ATA—021)|, i=3
M(ATA; —?I) =1+ 52(1+ 0?2 — s?) > e > (M 2(4TA - 2])|, j>2,
for i = 1,2. Hence k = 2, and k; = k5 = 1. It can be verified that

C1

V14 s?

bestg (4) = fe1,es][er — seq, sez + e4]T,
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1

besty, (A1) = e

[—86363 + cié4, 0, 0]

' . 1
[ce1 + scgeg, 0, 0], bestklv(Al) = _I\/_:_-{—:s—z

So we have

best ([besty, (A1), besty, (A2)]) = [bestk, (A1), besti, (A2)].

and

' sc1 €
||Ibest (A) — [bestk, (A1), bestr, (A2)]]| = Jite Vixes

THEOREM 3.10. Let A = [A}, Ao]. If there exists ¢ < 0% and integer k such that
M(ATA = o21) > e > [N (ATA - 0?I)|,
for j > k+1, and Ae(AT A; — 021) > €, =1,2. Then

(A1 — besti (41))T Aall < m1,  [|(A2 — besti(A42))T Ail| < o

and

A
(3.5) [{|bestr(A) — besty ([besty, (A1), bestr, (A2)])]] < /\—”—lj—e-,
where

24|12 ) e o1
/\k(A?A,'~0'ZI) 0'+\/0'2—6,

"= (a+'2||Au'+ 2,

241 ) €

- 3 = 2 A 3
n = max{n, 72} (‘7+ Al + o+ vol—¢

/\min

Amax = max g (AT A; — o%D), Amin = min Me(AT 4; — o%1).
1=1, 1=1,

Proof. Denote Aj = A;j{AT A — 02I), and

Ar = diag(Ar,.. ., M), Az = diag(Mess- -, An)-

The the eigendecomposition of AT A — ¢ and the SVD of A can be written as

ATA - o] = V diag(Ay, A)VT, A =Udiag(y/A? + 021,1/A3 + > 1)V”

for some orthogonal matrices U and V. Let E = U diag(0,01 — \/AZ + o21). It can
be verified that ||E|| < ¢/(¢ + Vo? —€) = 7, and '

A= A+ E = Udiag(\/A2 + ¢2I,01)VT
has the low-rank-plus-shift structure. Now partition

E=[Ey, B, A=I[A,A4,)
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conformally as that of A. Then ||E;|| < 7. Since
ATA- 1= ATA- oI+ E, E=Vdiag(0,As)VT = (E:j)?;o,.
It can be verified that A7 A; — 0% = AT A; — azf + E;i;, and we have |
Me(AF A= 0?]) > M(AT i = 01) - ||l
>M(ATAi —62I)—e>0
It follows that rank(AT A; — ¢2I) = k. By Theorem 2.7, we have
(A1 — bestp(41))TA2 =0, (Az — besti(42))T 4y = 0.
Denote A; = best (ﬁ,) — bestg(A;) — E;. Then
1Ad) < llbeste (As) — besti(Aq)]| + 15

It follows from Corollary 3.4 that

1) —best, (A: Al* A= Al .
IIbesty (A:)—bestx (A;)]] < (1 + 2(A) - UZH(/L-)) (B = (1 + 2704 = 02> B3]

and therefore

ol Al ) -
A< (2+ 220 ) o
lad ( e

here we have used [[4;]] < [|A[l, |4:]] < ||Al], and ox41(A;) = o. Since

A; — bestk(A;) = A; — bestk(A,-) + A,

we have
(A1 — besti(41))T Azfl = ||AT Az — (A1 — bestx(4i)]|
< 1 A:l} Al + 0k+1(1‘11)IIE2||
< (o + 2/ Al + 2[|AIR/ M (AT AL — o*1))7 = 1.
We can similarly prove ||(Az — besfk (A2))T Al < 2. Now it follows from

ok ([besti (A1), bestg(Az)]) > max ok(Ai),

that

or([besti (A1), besty (A2)]) — 07,1 (A) > i{l;lf,)z(/\k(A;r Ai — %) — € = Apax — €.
Finally Corollary 2.4 and the above give (3.5). O

REMARK. We notice that in order for the perturbation bound to be of order O(e),
Amin needs to be of order O(1). _

EXAMPLE 2. Now we construct a class of matrices that satisfy the conditions
of Theorem 3.10. For any orthonormal matrices U; and Vi with k columns, let
A = diag(Ay,..., Ag), where \; > 02 >0fori=1,...,k Let

Dy = (AVAZ+eI) YA = (6?2 —€)I), Dy =+/I—-D?, U =[Uy,Uit][D1, D)7,
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where Ui is any orthonormal matrix of k columns that is orthogonal to U. Define

Ay =UAVE, Az =UsVAZ +elVT.

It follows that
X = [A1, A2 [Ay, Ao] - 01 = [ IA’;"Al A§A; ey ]

[ ATA -0 ATA —cI+e] _[AFAy—0?T ASAy—0?I] [e 0
= AT A, AT A; = | AT A, — 0T ATA, — o2 00"

Hence,

M(X)>200—dt+e)>e, j<k,
A (X)) < e, j>k,

and by definition ky = k3 = k.
REMARK. For the case where ky < k and ko < k, 1f we replace bestg, (4;) and
besty, (A2) by besti(A1) and bestx(A2), the error

HA = ||bestr(A) — besty [besty (A1), bestr(Az)]|]
may still be O(1/€). For example, in Example 1, we have
beStg[beStz(Al), best (Az)] = beStz[beStl(Al), beStl(Az)].

Therefore,

/ €
[|best2(A) - bestz[bestg(z‘h),beStz(Az)]“ = m
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