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Abstract

Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti.

The public health utility of these indicators is based on the assumption that greater mosquito

abundance increases the risk of human DENV transmission, and therefore reducing expo-

sure to the vector decreases incidence of infection. Entomological survey data from two lon-

gitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken

approximately six months apart were analyzed. Indicators of Ae. aegypti density were calcu-

lated from cross-sectional and longitudinal entomological data collected over a 12-month

period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate

risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-

month risk of DENV seroconversion. RRs estimated using cross-sectional entomological

data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae.

aegypti densities were not associated with an increased risk of DENV seroconversion. Use

of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to

1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95%

CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti den-

sities calculated from longitudinal entomological data were associated with DENV serocon-

version, whereas those measured cross-sectionally were not. Ae. aegypti indicators

calculated from cross-sectional surveillance, as is common practice, have limited public

health utility in detecting areas or populations at high risk of DENV infection.

Author summary

In this study, we compared measures of entomological risk collected through routine

household entomological monitoring by estimating an association with human DENV

infection. Longitudinal entomological and human serology data from Iquitos, Peru, were
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used to test associations between Ae. aegypti indices and the 6-month risk of DENV sero-

conversion. Our analysis found no association between cross-sectional measures of Ae.

aegypti abundance and the risk of DENV seroconversion. Longitudinal measures of Ae.

aegypti were better proxies for DENV risk, primarily among adult stage mosquito indica-

tors. DENV transmission is complex and time-varying; the relationship between vector

density and risk is not static nor adequately characterized through periodic entomological

surveillance. While entomological monitoring will continue to serve a role in the evalua-

tion of vector control interventions (e.g., comparing pre- and post-intervention abun-

dance), our analysis challenges the validity of most Ae. aegypti indicators as adequate

proxies for true DENV exposure risk.

Introduction

Dengue virus (DENV), which is transmitted by the bite of female Aedes aegypti mosquitoes,

causes more human morbidity and mortality than any other arthropod-borne virus [1]. Since

the 1950s, dengue has spread via the globalization of trade and travel, rapid urbanization and

expansion of vector habitats [2]. The four serotypes (DENV1, DENV2, DENV3 and DENV4)

occur throughout the tropics and infect approximately 390 million persons per year [1]. Until

effective DENV vaccines become broadly commercially available, vector control will remain

the primary prevention strategy in most dengue endemic settings [3] and even as vaccines

become accessible vector control will be needed to supplement vaccine efforts [4], as well as

control of other arboviruses also vectored by Ae. aegypti.
The World Health Organization recommends monitoring vector abundance for the targeting

and evaluation of vector control interventions [5]. Ae. aegypti monitoring was first employed in

yellow fever control programs in the first half of the 20th century [6, 7]. Since then, over two do-

zen indicators have been proposed to quantify abundance of Ae. aegypti. Entomological monitor-

ing data are typically collected from households sampled from neighborhoods or blocks on a rou-

tine or ad hoc basis [8]. The frequency of entomological data collection also varies by setting, and

WHO guidelines recommend implementation occur at a frequency from “weeks to months” [5].

As such, entomological monitoring surveys impose cross-sectional measurement of the highly

dynamic Ae. aegypti population. Monitoring indicators vary by mosquito life stage (adults, larvae

and/or pupae), availability of larval development sites (infestation indices), and process of collec-

tion (fixed trap or human-based surveys such as adult aspirator collections, household inspection

for larvae) [9]. The public health utility of these indicators is based on the assumption that greater

mosquito abundance increases the risk of DENV transmission, and therefore reducing exposure

to the vector decreases incidence of infection. Further, by identifying “hot spots” of Ae. aegypti
infestation, targeted vector control would be an efficient use of limited intervention resources

[10].

To date, studies have not shown a consistent association between various indices and infec-

tion or disease outcomes [7]. This may be due to several limitations inherent to the large-scale

measurement of Ae. aegypti densities. First, there is no established threshold of Ae. aegypti den-

sity associated with an increased risk of human DENV infection [11]. Second, entomological

survey techniques may not capture the fine spatial and temporal variability in an urban setting

due to the constraints dictated by household-based monitoring, and the fact that indices are cal-

culated from cross-sectional prevalence measures, not derived from continuous monitoring.

Third, while adequate sampling of immature and adult populations requires consideration of

vector dynamics [12] and spatial relationships [13], the data do not capture the daily productivity

Entomological monitoring measures as proxies for dengue infection
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of individual larval development sites or the activity of individual mosquitoes over their lifespan

[8, 14]. Finally, previous attempts to quantify the association between vector abundance and den-

gue outcomes may also have been biased due to measurement error caused by operational con-

straints and collection procedures [9], and methodological issues, such as restricting the analysis

outcomes to infected people who sought treatment or small sample size [7].

Ae. aegypti densities may also fail to describe risk of DENV infection due to the complexity

of transmission. The probability of transmission is dependent on human movement to intro-

duce DENV into mosquito populations and the presence of susceptible individuals that mos-

quitoes infect to perpetuate new rounds of transmission [15]. Because Ae. aegypti are daytime-

biting mosquitoes that are highly adapted to the human urban environment [16], their fre-

quent biting contact with susceptible human hosts is mediated by social and economic [17]

factors that govern human movement through times and spaces where they encounter mos-

quitoes [18]. While high concentrations of Ae. aegypti within or around a household present

an opportunity for clustered DENV transmission, it ignores transmission occurring in other

places [19, 20].

To help predict risk and direct public health interventions, there is substantial interest in an

improved understanding of the utility of Ae. aegypti monitoring measures in terms of an asso-

ciation with DENV infection, according to mosquito life stage and spatial scale of measure-

ment. We aimed to systematically examine measures of entomological risk collected through

routine household surveillance with human DENV infection using longitudinal entomological

and human serology data to test associations between Ae. aegypti indices and the 6-month risk

of DENV seroconversion.

Methods

Ethics statement

Written informed consent (and assent for children 8–17 years of age) was obtained for all indi-

viduals providing serological data. Written informed consent was provided by parents or guard-

ians for children under 18 years of age. Written consent (1999–2003) or oral consent (2008–

2010) was obtained from an adult head of household for entomological surveys as approved by

the institutional review boards. Oral consent for entomological surveys was documented upon

obtaining access to the household and heads of households were provided information sheets

describing the data collection procedures. Data collection procedures were approved by the

University of California, Davis (Protocols 2002–10788 and 2007–15244), Instituto Nacional de

Salud, and Naval Medical Research Center Institutional Review Boards (Protocols NMRCD.

2001.0008 and NMRCD2007.0007). This ancillary analysis was approved by the Institutional

Review Board at the University of North Carolina at Chapel Hill (Study # 14–3151).

Study site

The analytical cohort was constructed using entomological and serological data collected bet-

ween 1999–2003 and 2008–2010 from two longitudinal cohort studies implemented in Iquitos,

Peru. Iquitos, the largest city in the Peruvian Amazon, has a population of approximately

350,000 [21]. DENV1 is presumed to have been introduced in 1990–1991 [22], followed by

DENV2 in 1995 [23], DENV3 in 2001 [24], and DENV4 in 2008 [25]. Seasonal epidemic levels

of DENV transmission occurred throughout this period [21, 25]. From 1999–2003, study activi-

ties were implemented in four city districts: Maynas, Punchana, Belen and San Juan. During the

period 2008–2010, data were collected from two neighborhoods: Maynas and Tupac Amaru

(located within the Maynas and Punchana districts).

Entomological monitoring measures as proxies for dengue infection
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Entomological and sociodemographic data collection

Procedures for entomological data collection were previously described [13, 21]. Briefly, once

households were enrolled, two-person study teams collected entomological data following a

circuit to survey neighboring households on the same and/or neighboring block (with block

defined as a group of households that shared a common perimeter defined by city streets)

within an approximately two-week period. The entire study area required approximately four

months to complete data collection, upon which entomological surveys resumed following the

same schedule.

Adult Ae. aegypti were collected using CDC backpack aspirators (1999–2009) [26] or Pro-

kopack aspirators (2009–2010) [27] in both the exterior and interior of the participating

household by passing the vacuum tube over common Ae. aegypti resting sites, outside walls,

vegetation, and the entrance of potential larval habitats. Pupae and larvae were collected via

enumeration of all wet containers or other larval development sites that contained water upon

inspection. During surveys, all observed pupae and a sample of larvae were collected in small

plastic Whirlpack bags; larval density was estimated as one of four levels (0, 1–10, 11–100,

>100). All adult, larval and pupal samples were transported to and examined at the study labo-

ratory, counted and identified to species and sex. Pupal data were recorded as observed counts.

The total number of adult male and female Ae. aegypti mosquitoes collected in the interior and

exterior of the dwelling were recorded. Household demographic data were collected for vari-

ables including enumeration of household residents by age and sex, household water source,

sanitation facility, presence of electricity, type of building material, roof structure, and any

reported use of insecticide or larvacide.

Indicators for Ae. aegypti density

The indicators were classified by scale (household or block) and life stage (adult, pupal and/or

larval). Household-level indicators were calculated using the observed survey data. To con-

struct block-level indicators, all household survey data were first aggregated by block using a

unique block identification number and circuit schedule. Indicators were then calculated

using the aggregated block-level Ae. aegypti data. Block-level measures were then linked back

to individual households by matching on block identifier and date of collection. The house-

hold-level indicators and their definitions are summarized in Table 1 and block-level indica-

tors are summarized in Table 2.

Since the distribution of Ae. aegypti counts across all life stages is narrow in most settings,

we dichotomized the continuous indicators to determine if categorical characterization of

mosquito abundance would reflect a better fit to the data. To test categorical (dichotomous)

versions of continuous indicators, a preliminary analysis was conducted to identify cut-off val-

ues by estimating the sensitivity and specificity of the mosquito density in terms of DENV

infection at different levels (data not presented). There is no consensus in the literature as to

what categorical values of mosquito density measures correlate with DENV infection, there-

fore we used the following systematic approach to select categories and then test for an associa-

tion. This approach was used to allow the distribution of the continuous indicator value to

inform categorization without data mining for an association. To choose a categorical cut-

point, the sensitivity of the mosquito density indicator to identify a DENV seroconversion was

calculated for increments of five (e.g., a Breteau Index of 0, 5, 10, etc.), with the exception of

the Potential Container Index, which was estimated for increments of two. The cutpoint was

chosen as>0 if the sensitivity was less than 50% at that value. If cutpoints greater than zero

had a sensitivity >50%, then the cutpoint (not zero) with the highest sensitivity was chosen for

evaluation. Once a categorical variable was defined, it was then tested for an association with

Entomological monitoring measures as proxies for dengue infection
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risk of DENV seroconversion. Categorical classification of continuous indicators tested is

listed in Tables 1 and 2. Data on eggs or exact larval counts were not collected in the parent

study; therefore, indices relying on this information could not be tested.

Cross-sectional entomological indicators were calculated using vector data from a single

entomological survey observation. Longitudinal household-level indicators were calculated as

an average of entomological data observed within the 12 months preceding the start of the

seroconversion interval (up to three survey visits collected approximately every four months).

If a paired sample interval began before any entomological data collection, the cross-sectional

measure of mosquito density was used. For block measures, indicators were calculated by aver-

aging block-level densities calculated from surveys conducted within 12 months from the start

of the seroconversion interval.

Serological data collection and outcome classification

In the parent study, members of households selected for entomological monitoring were asked

to provide blood samples every six months [21, 33]. Samples were collected at the participant’s

home, stored in ice and transported to the study laboratory within four hours of collection.

Sera were tested at two (1999–2003) and four (2008–2010) serum dilutions plaque reduction

neutralization test (PRNT) [34] at the United States Naval Medical Research Unit No. 6 labora-

tory in Lima, Peru. To identify seroconversion to DENV, a serum sample was considered posi-

tive for DENV if a dilution neutralized 70% of the test virus (PRNT70) [21, 33].

The primary outcome of interest in this analysis was seroconversion to any circulating

DENV serotypes as determined by PRNT70. The longitudinal serological samples used in this

analysis were previously reviewed to determine seroconversion [33]. In brief, to minimize mis-

classification of serological data, the full serological profile of subjects was reviewed as follows:

if the increase in titer that reduced DENV plaques between a negative sample and a subsequent

Table 1. Summary of household-level indicators of Aedes aegypti tested for an association with seroconversion to DENV

Indicatora Definition/Formula Aedes aegypti Life

stage

Variable

type

Adult Ae. aegypti in the household Number observed Adult Continuous

Exposed defined as any adults observed (>0) Adult Categorical

Adult female Ae. aegypti in the

household

Number observed Adult Continuous

Exposed defined as any adult females observed (>0) Adult Categorical

Presence of adult Ae. aegypti indoors

[28]

Number observed Adult Continuous

Exposed defined as any adult indoors (>0) Adult Categorical

Presence of adult female Ae. aegypti

[28] indoors

Number observed Adult Continuous

Exposed defined as any adult female indoors (>0) Adult Categorical

Single Larval Method[29] # containers with�1 larvae Larvae Continuous

Exposed defined as SLM >0 Larvae Categorical

Presence of pupae in the household Exposed defined as any pupae observed in containers (>0) Pupae Categorical

Pupae per Hectare[14] # pupae/household area measured in hectare Pupae Continuous

Pupae per Person[14] # pupae/household population Pupae Continuous

Container Index

(Receptacle Index)[6]

# of containers infested with larvae or pupae/ total number of containers

inspected x 100%

Pupae, Larvae Continuous

Exposed defined as CI >0 Pupae, Larvae Categorical

Stegomyia Index[30] # positive containers (larvae or pupae)/population x 1000 Pupae, Larvae Continuous

Exposed defined as SI >0 Pupae, Larvae Categorical

aParentheses signify different names for the same indicator.

doi:10.1371/journal.pntd.0005429.t001
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sample was at least 20% and all subsequent samples were positive, the subject was determined

to have seroconverted. However, if subsequent PRNT results were not consistent with respect

to seroconversion (e.g., negative-positive-negative), the subject was classified as not having

seroconverted. For this study, serological results for all paired samples were classified as a

binary outcome (any seroconversion versus no seroconversion).

Construction of analytical cohort

Fig 1 illustrates the construction of the analysis cohort. Serological data were reviewed to iden-

tify paired sample observations taken approximately six months apart that could be linked to

household entomological data. To account for operational constraints around serology collec-

tion, the at-risk interval was defined as 140 to 220 days. Each paired sample interval for which

a subject was susceptible to any of the circulating DENV serotypes (DENV1 and DENV2: all

study years; DENV3: 2001–2010; DENV4, 2008–2010) was included in the risk set.

For household-level indicators, entomological data were matched by the date nearest the

end of (but within) each paired serological sample interval. For block-level indicators, datasets

were constructed by restricting to serological observations from blocks in which at least five

households were surveyed, using the month and year of block data collection to anchor in

time block-level densities to serology. Finally, longitudinal densities were calculated by averag-

ing entomological data collected in the 12 months preceding the start of the seroconversion

interval. Fig 2 illustrates how cross-sectional and longitudinal measures of vector abundance

were calculated and linked to the 6-month seroconversion paired sample interval.

Table 2. Summary of block-level indicators of Aedes aegypti tested for an association with seroconversion to DENV

Indicatora Definition/Formula Aedes aegypti Life stage Variable type

Breteau Index[5] (# containers infested/total households) x 100 Pupae, Larvae Continuous

Exposed defined as BI� 5 Pupae, Larvae Categorical

House Index

(Premise Index;

Aedes Index) [6]

(# households infested /total households) x 100% Pupae, Larvae Continuous

Exposed defined as HI � 5 Pupae, Larvae Categorical

Adult Premise Index[9] # premises positive for adult females/#premises x 100 Adult Continuous

Exposed defined as APrI� 5 Adult Categorical

Adult Density Index[9] # adult females / # of premises Adult Continuous

Exposed defined as ADI > 0 Adult Categorical

Pupa Index[28] (# pupae/total number households inspected) x 100 Pupae Continuous

Exposed defined as PI > 5 Pupae Categorical

Pupae per Hectare[14] # pupae/household area (hectare) Pupae Continuous

Pupae per Person[14] # pupae/household population Pupae Continuous

Infested Receptacle Index[31] # positive containers/total number of households Pupae, Larvae Continuous

Exposed defined as IRI > 0 Pupae, Larvae Categorical

Container Index

(Receptacle Index)[6]

# containers infested/total number of containers inspected x 100% Pupae, Larvae Continuous

Exposed defined as CI � 5 Pupae, Larvae Categorical

Potential Container Index[32] (# potential breeding sites + # positive breeding sites)/households inspected Pupae, Larvae Continuous

Exposed defined as PCI� 2 Pupae, Larvae Categorical

Stegomyia Index[30] # positive containers (larvae or pupae)/population x 1000 Pupae, Larvae Continuous

Exposed defined as SI > 0 Pupae, Larvae Categorical

aParentheses signify different names for the same indicator.

doi:10.1371/journal.pntd.0005429.t002

Entomological monitoring measures as proxies for dengue infection
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Fig 1. Construction of the Analysis Dataset. Fig 1 presents the construction of the analytical cohort based on inclusion criteria.

doi:10.1371/journal.pntd.0005429.g001

Entomological monitoring measures as proxies for dengue infection
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Statistical analysis

The association between each Ae. aegypti indicator and the 6-month risk of DENV seroconver-

sion was estimated using a log binomial generalized estimating equation (GEE) [35], separately

for each household-level and block-level indicator, and for both the cross-sectional and longi-

tudinal scenarios. The log link with a binomial distribution allowed for estimation of risk ratio

point estimates by exponentiating the beta coefficient for the indicator variable and calculation

of 95% confidence intervals (CI) [36]. For models using household-level densities, the GEE

accounted for clustering due to repeated individual measures and dependence due to house-

hold membership using an exchangeable correlation structure; models for block-level densities

accounted for repeated observations from individuals and block level membership. A priori,
we chose dengue transmission season, participant age and sex as confounding variables for use

in all adjusted analyses of household-level indicators and season, participant age (dichoto-

mized at 18 years), and any reported use of larvacide by the head of household for adjustment

of all block-level indicators. Dengue transmission season was defined as by the start of the

seroconversion interval (May-August (reference group), September-December, January-

April). All analyses were conducted in SAS/STAT software, version 9.4 of the SAS system for

Windows (SAS Institute, Cary, NC).

Sensitivity analyses

Sensitivity analyses were conducted to account for possible bias resulting from construction of

the dataset. The objective of the sensitivity analysis was to determine if the adjusted risk ratios

were sensitive to decisions made to construct the analytical dataset. To implement these analy-

ses, the same method as described in the main analysis was employed. First, different inclusion

criteria for serological observations was used to test more restrictive or relaxed scenarios, as

well as stratification by study years. Second, sensitivity analyses included alternate strategies

for linking serology to entomology. Third, vector densities were calculated from entomological

data 6 months prior to serology compared to 12 months prior to serology. Finally, the analysis

was stratified by aspirator type used during data collection.

Ethical considerations

Written informed consent (and assent for children 8–17 years of age) was obtained for all indi-

viduals providing serological data. Written informed consent was provided by parents or

guardians for children under 18 years of age. Written consent (1999–2003) or oral consent

(2008–2010) was obtained from an adult head of household for entomological surveys as

approved by the institutional review boards. Oral consent for entomological surveys was docu-

mented upon obtaining access to the household and heads of households were provided infor-

mation sheets describing the data collection procedures. Data collection procedures were

approved by the University of California, Davis (Protocols 2002–10788 and 2007–15244),

Instituto Nacional de Salud, and Naval Medical Research Center Institutional Review Boards

(Protocols NMRCD.2001.0008 and NMRCD2007.0007). This ancillary analysis was approved

by the Institutional Review Board at the University of North Carolina at Chapel Hill (Study #

14–3151).

Results

In total, 13,526 households contributed 90,330 entomological observations and 25,755 paired

serological samples (from 6,775 individuals). A total of 20,176 serological observations could be

linked to entomological data. Fig 1 details the analytical sample size. For the cross-sectional

Entomological monitoring measures as proxies for dengue infection
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household-level analysis, 4,089 household entomological observations (from 1,377 unique house-

holds) were linked to 8,153 paired blood samples (from 3,824 individuals). For the longitudinal

household-level analysis, 15,548 entomological observations from those 1,377 households were

used to calculate average densities and matched to the 8,153 serological observations. The same

set of serological and entomological observations were included in the block-level analyses, with

the exception of 579 serological observations for which a block density could not be obtained (<5

households per block-visit were surveyed). A total of 7,574 serological paired samples (from 3,644

individuals) were used in the cross-sectional and longitudinal block-level analyses.

The mean age of individuals at first paired sample was 20.9 years (standard deviation: 16.3,

range 2–96) and 57.7% of subjects were female. At first study visit, most households contribut-

ing any serological data reported access to electricity (99.7%), piped sanitation (77.1%), and

potable water (75.2%), had open or partially open household roof structure (93.0%), and were

Fig 2. Calculation of cross-sectional and longitudinal measures of vector abundance. Fig 2a (top)

illustrates how cross-sectional measures of vector density were assigned to a six-month paired serological

sample. In Figure 2b (bottom), longitudinal measures of vector density were calculated by taking an average

of indices calculated from survey observations in the period up to 12 months preceding the seroconversion

interval. Captions for panel in Figure 2a. The entomological measurement taken within the seroconversion

interval (and nearest the end of the interval, if there was more than one), was used in the regression analysis as

the entomological indicator variable. Other approaches to linking a single entomological survey observation

with serological data are presented in the SI. The risk ratios estimate the effect of the mosquito indicator on the

6-month risk of DENV infection. Since inapparent was measured using paired sample serology, this outcome is

inherently interval censored. Caption for panel in Figure 2b. Entomological indices collected up to 12 months

before the start of the seroconversion interval were averaged and used in the regression analysis as the

entomological indicator variable, matched to a single 6-month paired sample interval.

doi:10.1371/journal.pntd.0005429.g002
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constructed from either mud and/or wood (49.2%) or concrete and/or brick (50.8%). Only

28.2% of households reported using Abate (larvacide) at enrollment. There were a total of

1,191 seroconversions (14.6%) in the analysis of household level indicators and 1,129 serocon-

versions (14.9%) in the analysis of block-level indicators. Tables 3 and 4 present the distribu-

tion of entomological indicators.

Cross-sectional densities

The adjusted RR point estimates and 95% CI are presented in Table 5. The household-level

point estimates ranged from 0.75 (95% CI: 0.48, 1.34) to 1.05 (95% CI: 0.91, 1.21), suggesting

no difference in the 6-month risk of DENV seroconversion based on Ae. aegypti density. At

the block level, six indicators showed significant protective effects, which could be the result of

higher background immunity, correlation with factors related to lower DENV risk, or chance.

Compared to the adjusted RR estimates, crude risk ratio point estimates were similar for the

household-level indicators and were slightly larger for block-level indicators (S1 Table).

Table 3. Distribution of continuous entomological monitoring indicators for serological observations

Cross-sectional Longitudinal (12 months)

Indicator N Mean SD Min Q1 Q3 Max N Mean SD Min Q1 Q3 Max

Continuous Measures

Household level a

Adult Ae. aegypti 8153 0.7 3.6 0 0 0 163.0 8153 0.5 1.8 0 0 0.5 84.0

Adult female Ae. aegypti 8153 0.4 1.7 0 0 0 51.0 8153 0.3 1.04 0 0 0.3 47.0

Single Larval Method 8153 0.2 0.6 0 0 0 9.0 8145 0.2 0.5 0 0 0.3 6.8

Pupae in household containers 8153 1.7 15.9 0 0 0 642.0 8148 2.1 11.1 0 0 0 289.0

Pupae per Hectare 8153 114.6 1154.4 0 0 0 62879.5 8153 180.6 1639.9 0 0 0 62276.3

Pupae per Person 8139 0.24 2.5 0 0 0 78.0 8143 0.3 3.0 0 0 0 108.7

Container Index 8153 4.3 13.0 0 0 0 100.0 8153 0.4 3.9 0 0 0.1 100.0

Stegomyia Index 8133 0.03 0.1 0 0 0 2.0 8133 0.03 0.1 0 0 0.04 1.5

Block level b

Breteau Index 7574 22.1 23.3 0 5.1 32.7 214.3 7574 26.1 22.7 0 9.4 36.8 404.5

House Index 7574 14.4 12.4 0 4.5 22.0 63.6 7574 16.3 10.7 0 7.5 23.6 63.0

Adult Premise Index 7574 15.3 12.4 0 5.9 23.1 88.9 7574 14.0 8.3 0 7.5 19.4 50.0

Adult Density Index 7574 0.3 0.4 0 0.1 0.4 8.8 7574 0.3 0.3 0 0.1 0.3 3.8

Pupa Index 7574 186.0 418.4 0 0 197.1 9312.5 7574 227.9 345.1 0 39.3 273.3 5283.3

Pupae per Hectare 7574 123.2 279.9 0 0 125.9 7669.7 7574 154.7 242.1 0 26.3 186.8 2611.3

Pupae per Person 7574 0.3 0.6 0 0 0.3 11.9 7574 0.4 0.5 0 0.1 0.4 8.1

Infested Receptacle Index 7574 0.2 0.2 0 0.1 0.3 2.1 7574 0.3 0.2 0 0.09 0.4 4.0

Container Index 7574 5.5 4.9 0 1.7 8.2 33.3 7574 6.2 4.0 0 3.2 8.8 34.5

Potential Container Index 7574 2.8 1.4 0.2 1.7 3.5 9.2 7574 5.9 4.0 0 2.9 8.4 34.5

Stegomyia Index 7574 34.1 36.2 0 7.9 49.0 389.6 7574 40.3 35.8 0 15.4 56.7 679.4

a Sample size of serological observations for household-level indicators varies due to missing data on number of residents reported and missing

entomological data at surveys conducted prior to start of the seroconversion interval. Cross-sectional indices were calculated from entomological data

observed within the seroconversion interval.
b Sample size of serological observations for block-level analysis does not change as these are aggregated measures summarized over a group of

households, but the number of households contributing survey data for any single block survey visit varies.

doi:10.1371/journal.pntd.0005429.t003
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Impact of repeated measures on household-level indicators

Using the average of densities measured in the 12 months prior to the paired sample, the RR

point estimate shifted above the null for categorical measures of adult density, adult female

mosquitoes, and presence of adult mosquitoes indoors (any adults as well as only females),

ranging from 1.25 (95% CI: 1.12, 1.39) to 1.30 (95% CI: 1.17, 1.46). This suggests that the

observation of an adult female mosquito during a household survey performed during the 12

month period prior to collection of paired sera is associated with an approximately 25%

increased risk in acquisition of DENV infection compared to the risk among individuals resid-

ing in households where no adult female was observed at any survey during the 12 months pre-

ceding the paired sera. In addition, four immature stage indicators suggested an elevated risk

of DENV infection: any pupae observed; the Single Larval Method (categorical); Container

Index (categorical) and the Stegomyia Index (categorical).

Impact of repeated measures on block-level indicators

Analysis of block-level indicators that incorporated repeated measures demonstrated a similar

trend in which all measures calculated based on adult mosquito data shifted in comparison to

the cross-sectional analysis: the Adult Premise Index (RR: 1.01; 95% CI: 1.01, 1.02 when con-

tinuous and RR: 1.24; 95% CI: 1.01, 1.48 as categorical) and the Adult Density Index (RR: 1.24;

95% CI: 1.02, 1.50 as continuous and RR: 1.72; 95% CI: 1.22, 2.43 as categorical). The Pupa

Index (categorical) and the Infested Receptacle Index (categorical) were the only immature

stage block-level indicators to demonstrate any association with DENV infection. Figs 3 and 4

compare the risk ratios calculated for cross-sectional to longitudinal densities for both house-

hold and block-level indicators.

Table 4. Distribution of categorical indicators for serological observations

Cross-sectional Within 12 months

Number positive Total (%) Number positive Total (%)

Household level

Any adult Ae. aegypti 1924 8153 23.6 3543 8153 43.5

Any adult female Ae. aegypti 1319 8153 16.2 2578 8153 31.6

Any adult Ae. aegypti indoors 1829 8153 22.4 3364 8153 41.3

Any adult female Ae. aegypti indoors 1249 8153 15.3 2432 8153 29.8

Single Larval Method 1143 8153 14.0 2546 8145 31.2

Any pupae in household containers 610 8153 7.5 1589 8148 19.5

Container Index 1146 8153 14.1 2548 8153 31.3

Stegomyia Index 1146 8153 14.1 2537 8153 31.1

Block level

Breteau Index 5699 7574 75.2 6713 7574 88.6

House Index 5543 7574 73.2 6451 7574 85.2

Adult Premise Index 5976 7574 78.9 6690 7574 88.4

Adult Density Index 6464 7574 85.3 7198 7574 95.1

Pupa Index 5245 7574 69.3 6729 7574 88.9

Infested Receptacle Index 6404 7574 84.6 7219 7574 95.3

Container Index 3603 7574 47.6 4426 7574 58.4

Potential Container Index 5129 7574 67.7 6424 7574 84.8

Stegomyia Index 6148 7574 81.2 6924 7574 91.4

doi:10.1371/journal.pntd.0005429.t004
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Sensitivity analyses

A number of sensitivity analyses were performed to determine if the construction of the ana-

lytical cohort introduced bias. Ae. aegypti densities calculated from 6 months prior to the start

Table 5. Adjusted risk ratios: association between Ae. aegypti and DENV seroconversion

Cross-sectional Measure Longitudinal Measure

Indicator Risk Ratio 95% CI Risk Ratio 95% CI

Household levela

Adult Ae. aegypti (continuous) 1.00 0.99 1.01 1.02 1.00 1.05

Any adult Ae. aegypti (categorical) 1.02 0.90 1.15 1.25 1.12 1.39

Adult female Ae. aegypti (continuous) 0.99 0.97 1.02 1.04 1.00 1.09

Any adult female Ae. aegypti (categorical) 1.03 0.90 1.18 1.29 1.16 1.44

Any adult Ae. aegypti indoors (categorical) 1.04 0.92 1.18 1.26 1.13 1.40

Any adult female Ae. aegypti indoors (categorical) 1.05 0.91 1.21 1.30 1.17 1.46

Single Larval Method (continuous) 0.97 0.88 1.06 1.07 0.98 1.16

Single Larval Method (categorical) 0.92 0.79 1.08 1.23 1.11 1.38

Pupae in household containers (continuous) 0.99 0.99 1.00 1.00 1.00 1.00

Any pupae in household containers (categorical) 0.96 0.78 1.18 1.21 1.07 1.37

Pupae per Hectare (continuous) 1.00 1.00 1.00 1.00 1.00 1.00

Pupae per Person (continuous) 0.96 0.92 1.01 1.00 0.98 1.02

Container Index (continuous) 1.00 1.00 1.00 0.98 0.95 1.00

Container Index (categorical) 0.92 0.78 1.08 1.23 1.11 1.38

Stegomyia Index (continuous) 0.75 0.42 1.34 1.06 0.61 1.82

Stegomyia Index (categorical) 0.92 0.78 1.08 1.24 1.11 1.38

Block levelb

Breteau Index (continuous) 1.00 0.99 1.00 1.00 1.00 1.00

Breteau Index (categorical) 1.03 0.91 1.17 0.89 0.76 1.05

House Index (continuous) 0.99 0.99 1.00 1.00 0.99 1.00

House Index (categorical) 1.04 0.92 1.17 0.91 0.79 1.00

Adult Premise Index (continuous) 1.00 0.99 1.00 1.01 1.01 1.02

Adult Premise Index (categorical) 0.87 0.76 0.98 1.24 1.01 1.48

Adult Density Index (continuous) 0.96 0.84 1.10 1.24 1.02 1.50

Adult Density Index (categorical) 0.83 0.72 0.95 1.72 1.22 2.43

Pupa Index (continuous) 1.00 1.00 1.00 1.00 1.00 1.00

Pupa Index (categorical) 1.00 0.89 1.12 1.30 1.08 1.57

Pupae per Hectare (continuous) 1.00 1.00 1.00 1.00 1.00 1.00

Pupae per Person (continuous) 0.78 0.65 0.87 0.98 0.88 1.10

Infested Receptacle Index (continuous) 0.62 0.46 0.82 0.93 0.72 1.20

Infested Receptacle Index (categorical) 0.98 0.85 1.14 1.75 1.23 2.50

Container Index (continuous) 0.99 0.98 1.00 1.01 0.99 1.02

Container Index (categorical) 0.96 0.86 1.07 1.00 0.90 1.11

Potential Container Index (continuous) 0.91 0.87 0.96 1.01 1.00 1.03

Potential Container Index (categorical) 0.76 0.67 0.85 0.99 0.86 1.15

Stegomyia Index (continuous) 1.00 1.00 1.00 1.00 1.00 1.00

Stegomyia Index (categorical) 0.99 0.86 1.13 1.13 0.93 1.39

aAdjustment variables: DENV transmission season (May-Aug, reference group (ref); Sept-Dec, Jan-Apr); participant sex (Male; Female, ref); Participant

Age (<18 years, ref;�18 years).
bAdjustment variables: Season; reported use of larvacide (yes; no, ref); participant age.

doi:10.1371/journal.pntd.0005429.t005
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of a seroconversion interval followed a similar pattern as results presented in Table 5 (S2

Table). Sensitivity analyses in which the inclusion of seroconversion events was relaxed and

restricted did not alter interpretation of the main findings (S1–S3 Figs, S3–S5 Tables). Future

comparison of relaxed serological inclusion criteria were compared with the 6 and 12 month

longitudinal entomological measures of Ae. aegypti (S4–S6 Figs). When analyzed separately,

use of different aspirators over the course of data collection did not result in substantially dif-

ferent results for adult stage measures (S6 Table).

Discussion

The principal finding of this analysis is that a higher household level Ae. aegypti density calcu-

lated from cross-sectional entomological data was not associated with an increase in the risk of

DENV infection. Compared to cross-sectional measures, the average Ae. aegypti density in the

past 12 months resulted in more plausible effect estimates, especially for adult indices which

monitor the life stage relevant to DENV transmission. Entomological evidence suggests that

Fig 3. Forest plot of household-level indicators of Ae. aegypti abundance. Fig 3 compares the adjusted risk ratio and 95% CI for household-level

indicators of vector density for the cross-sectional and longitudinal scenarios.

doi:10.1371/journal.pntd.0005429.g003
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Ae. aegypti populations in Iquitos are highly variable in time and space [37] and the indices

obtained from trimestral surveys are unlikely to capture all of the fine-scale temporal variation

that occurred. The lack of an association between cross-sectional measures of larval, pupal and

adult stage indicators of Ae. aegypti abundance suggests that measures of entomological risk

calculated from periodic household surveys are not sufficient proxies for the 6-month risk of

DENV infection. The lack of association may be the result of cross-sectional entomological

survey procedures in which adult data are measured over a short period of time, resulting in

lower or higher densities being attributed to the entire risk period [38]. By comparing mea-

sures of Ae. aegypti density calculated from cross-sectional data to an average density, we are

able to explore the potential for non-differential measurement error of mosquito abundance to

bias the association between Ae. aegypti monitoring indicators and DENV infection towards

the null. This may be due to the large proportion of households with low levels of infestation

being misclassified as having no Ae. aegypti present when relying on a single measurement.

Immature stage indicators were not associated with risk of DENV infection, with the excep-

tion of a few categorical indicators calculated from longitudinal data. This could be due to

Fig 4. Forest plot of block-level indicators of Ae. aegypti abundance. In Figure 4, the adjusted risk ratio and 95% CI for block-level indicators of

vector density for the cross-sectional and longitudinal scenarios are compared.

doi:10.1371/journal.pntd.0005429.g004
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high larval mortality, the short lifespan of larvae and pupae, and brief time interval of data col-

lection, resulting in immature population measures that do not always correlate in space and

time with the biologically relevant adult measures [39]. For block-level indicators, aggregating

household data could skew calculation of the indicator if the distribution of larval and pupal

counts was concentrated in only a few households. Block-level indicators such as the Breteau

Index and the House Index, which classify containers or households as “infested” if any larvae

or pupae are observed, may not capture the contribution of container productivity. The pupae

per person and pupae per hectare measures are sensitive to bias from inaccuracies in popula-

tion or area data, as well as sampling error as the pupal life stage is ephemeral [40]. We also

compared the number of infested containers at enrollment to the number observed in subse-

quent study visits to confirm that long-term participation in the study was not associated with

improved household container management (data not presented). Prior studies also show that

the spatial distribution of these measures in Iquitos varied considerably over time [37, 39].

Strengths

The major strengths of this analysis include the use of DENV infection (not disease) as an out-

come, examination of longitudinal data, and its generalizability to similar settings in which

routine, periodic entomological surveillance is conducted. While dengue disease is relevant

from a public health perspective and easier to quantify, DENV infection, measured as serocon-

version, is more important in terms of understanding patterns of transmission from mosqui-

toes to humans. Most prior studies of entomological indicators and dengue outcomes [7] used

symptomatic disease as the outcome. Symptomatic cases represent the small fraction of all

infections that were severe enough to seek medical evaluation, thus introducing selection bias.

This analysis also benefitted from longitudinal serological data, which enabled exclusion of

paired sample observations once an individual was determined to no longer be at risk of infec-

tion by circulating serotypes.

Most prior studies used cross-sectional entomological data to test for an association with

dengue outcomes. Longitudinal entomological monitoring allowed the use of multiple (1 to 3

per household) mosquito measures per household. This may overcome some of the measure-

ment error of entomological assessment and account for the temporal variability associated

with entomological data collection, in which a household with lower levels of abundance could

be misclassified as “unexposed” to Ae. aegypti. Our results comparing the RRs estimated from

cross-sectional to longitudinal entomological measures of Ae. aegypti abundance suggest the

possibility that in any single entomological survey, a household with low-levels of Ae. aegypti
infestation may be misclassified as having no infestation, at least for adult stage measures of

abundance, which would bias the RR downwards.

The objective of this analysis was to evaluate the utility of periodic entomological monitor-

ing as a proxy for DENV infection risk as it is typically implemented in the control setting.

Under this monitoring framework, our findings are likely generalizable to similar dengue-

endemic settings as the timing of serological and entomological collection employed are repre-

sentative of the routine periodic monitoring used in dengue control programs. Our data have

an added advantage given they were generated as part of a research study, and were subjected

to rigorous monitoring of field collection procedures.

Limitations

Our results should be interpreted in light of several limitations. First, a large proportion (9,739

of 20,176) of serological data failed to meet the 6-month inclusion criteria, which could have

resulted in bias due to their exclusion. Results from sensitivity analyses to include paired

Entomological monitoring measures as proxies for dengue infection
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samples taken more than six-months apart did not qualitatively change our findings (S1–S3

Figs). Second, the entomological and serological monitoring data relevant for DENV trans-

mission did not perfectly coincide temporally, possibly leading to bias due to time of mea-

surement. In sensitivity analyses, results were not sensitive to different approaches to link

entomology and serology (S1–S6 Figs). Our dataset contains more entomological monitor-

ing data than would be available in most control settings. Even with a detailed longitudinal

dataset of domestic vector density, we did not observe informative associations with DENV

risk. Therefore, our study reveals the inherent limitations of using Aedes survey methods. The

design of any entomological surveillance system should consider operational feasibility given

the investment needed to generate sufficient data to describe temporal and spatial variability

in vector density. While ovitraps were not used in the parent studies, we expect ovitrap-based

sampling of Ae. aegypti to still be subject to the same limitations that apply to monitoring

pupal, larval and adult mosquitoes. Alternatives that need to be evaluated include fixed trap

methods, such as ovitraps or adult trapping methods that can monitor larger areas continu-

ously overtime, better capturing temporal differences. Monitoring traps still presents opera-

tional challenges. Methods using fixed traps usually sample fewer houses than are possible

with household-based survey methods [41]. Novel technologies that capture house-to-house

temporal differences are yet to be developed.

Second, even though the use of averages is not the most sophisticated method to incorpo-

rate temporal lags, it is implementable in basic statistical software and may be of utility to den-

gue program managers. Furthermore, in the control setting, it is highly unlikely that DENV

infection outcomes would be well-resolved in time with entomological surveillance data as

DENV infection cannot be monitored in real-time. Our study reports the relative risk of

DENV seroconversion in a six-month period, an outcome similar in length to periods of

increased dengue activity that occur seasonally in many endemic settings. While the temporal

resolution between entomological and serological data collection in our study was not well

resolved, our results provide quantitative evidence to challenge the use of periodic Ae. aegypti
surveillance to generate suitable surrogates for DENV risk.

Third, while PRNT70 is the most specific serological test for dengue infection, results from

this assay may be biased due to cross-reactions from antibodies directed against multiple sero-

types present in a single sample or with closely related viruses. The algorithm used to classify

seroconversions was conservative, possibly underestimating the number of seroconversions,

but this bias is likely non-differential with respect to mosquito density. We also acknowledge

the possibility that block or neighborhood-level susceptibility to DENV may affect the perfor-

mance of Ae. aegypti indicators, but it was not possible to address it in the analysis without

full enumeration and serological testing of the entire study population, not just sampled indi-

viduals. Nevertheless, in the endemic setting, an assumption that herd immunity exists would

only further undermine the utility of entomological monitoring endpoints to serve as corre-

lates of infection. To ensure individuals in our analysis were susceptible to DENV infection,

we reviewed longitudinal serological profiles to exclude those who were likely no longer at risk

of the circulating serotype. We also tested a household-level variable estimating the proportion

of susceptible individuals but this had no impact on the overall results (data not presented).

While our results may be generalizable to other areas with endemic transmission, this analysis

should be repeated in a setting with a largely susceptible population to determine if household-

based entomological surveillance is associated with DENV risk in such locations. Nevertheless,

the majority of infections in our dataset were DENV3 and DENV4, which were novel at the

time of introduction in the community, so herd immunity may not have played a significant

role for a large subset of our data.

Entomological monitoring measures as proxies for dengue infection
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In this analysis, continuous indicators were tested as linear terms to maintain consistency

with their definitions in the literature. It is possible that log-transformation or inclusion of

polynomial terms could improve model fit, but such manipulation would reduce interpretabil-

ity. For continuous indicators, the RRs measure the relative risk for a one-unit change in the

indicator value; these measures are likely not informative for targeting interventions. From a

public health perspective, categorical indicators are more useful to trigger vector control activi-

ties. In Iquitos, levels of infestation were heavily dispersed and binary classification (any v.

none) was most informative.

Finally, it is possible that vector control efforts could have reduced the vector population,

making it difficult to detect an association between Ae. aegypti density and DENV risk. Over

the period included in this analysis, there were large scale vector control interventions from

October 2002-Jan 2003 and others in late 2003 [42]. Nevertheless, the majority of our data

included periods where there was not extensive vector control. We did control for household

larvacide use as a covariate in the analysis of block-level indicators to account for the possibil-

ity that some households implemented some form of vector control.

Conclusions

Our results provide the first quantitative evidence of the limited utility of Ae. aegypti monitor-

ing indicators as proxy measures of DENV infection. DENV transmission is complex and

time-varying; the relationship between vector density and risk is not static nor adequately

characterized through periodic entomological surveillance. None of the RRs presented in this

analysis represent a causal relationship between household or block-level mosquito density

and true exposure to DENV. It is logistically impossible to monitor human-vector contact to

establish where and when mosquito-human interaction and infection occurs. Therefore, Ae.

aegypti indicators serve as surrogates of true exposure, which will always remain unmeasured.

Although adult measures that incorporated longitudinal data demonstrated an association

with DENV seroconversion in our study, it is possible that some unmeasured variable associ-

ated with social network patterns, housing quality and day-time human movement further

modifies dengue risk.

Entomological monitoring indicators were not designed to account for the complexity of

human-vector interaction, particularly given the role human movement may extend the

boundaries of contact; it is likely that a substantial proportion of transmission occurs outside

the home [18]. Technological advances in mosquito monitoring may eventually enable dengue

control programs to quantify fluctuations in mosquito populations with greater precision

across time and space. Nevertheless, DENV infection is difficulty to identify in real-time, espe-

cially given that most infections are inapparent in endemic settings. Without information on

where and when individuals are infected, even detailed data of domestic vector density will

require aggregation or categorization in order to attribute mosquito density to an interval-

defined outcome (such as the six-month seroconversion window, as in this analysis) as DENV

infection is measured at a coarse temporal interval.

Globally, the incidence of dengue has continued to intensify and expand despite significant

investments in vector control [1, 43]. While vector control remains the only prevention strat-

egy available to reduce DENV transmission in most settings, the persistence of DENV suggests

transmission dynamics require a more complex understanding of human-vector interaction.

Entomological monitoring will continue to serve a role in the evaluation of vector control

interventions as it will be necessary to compare entomological measures of risk pre- and post-

intervention as indicators of impact. Our analysis challenges the validity of most Ae. aegypti
indicators as adequate proxies for true DENV exposure risk, and challenges the assumption
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that domestic vector data correlate with DENV transmission. In dengue-endemic settings

such as Iquitos, single cross-sectional measures of adult mosquito density and the immature

stage indicators commonly used by dengue control programs, such as the Breteau Index and

Container Index, will likely fail to predict risk of DENV infection. Measuring adult mosquito

density over multiple occasions may be the best option, but is difficult to implement. Our find-

ings should be considered in the development and revision of enhanced DENV surveillance

guidelines. Dengue control programs weighing the operational feasibility and cost of entomo-

logical monitoring against the limited utility of these indicators may wish to seek alternative

monitoring frameworks that incorporate human dengue-related outcomes, such as passive

case detection, and where possible, sero-surveys and active case detection.
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S1 Fig. Sensitivity analysis of cross-sectional household level indicators including paired

serology samples taken 335–395 days apart. Risk ratios and 95% CI for an analytical dataset

in which any serological paired sample taken within 335–395 days apart was split into two six-

month intervals, then included in the analysis (in red). If a seroconversion occurred during

that interval, it was assigned to the first six-month interval. Cross-sectional entomological data

was matched to serological data by using the entomological data collected closest to the end of

the paired sample interval (if there was>1 entomological measure observed within the paired

sample interval). The results from the main analysis (in blue) are presented for comparison.

(PNG)

S2 Fig. Sensitivity analysis of cross-sectional household level indicators including paired

serology samples taken 335–395 days apart. Risk ratios and 95% CI for an analytical dataset

in which any serological paired sample taken within 335–395 days apart was split into two six-

month intervals, then included in the analysis (in red). If a seroconversion occurred during

that interval, it was assigned to the second six-month interval. Cross-sectional entomological

data was matched to serological data by using the entomological data collected closest to the

end of the paired sample interval (if there was >1 entomological measure observed within the

paired sample interval). The results from the main analysis (in blue) are presented for compar-

ison.

(PNG)

S3 Fig. Sensitivity analysis of cross-sectional household level indicators including paired

serology samples taken 210–335 days apart. Risk ratios and 95% CI for an analytical dataset

in which any serological paired sample taken within 210–335 days apart that was originally

excluded from the analysis was included based on the range of dates coinciding with the

annual estimated epidemic curve as described in Stoddard et al (2014 PLoS NTDs), then

included in the analysis (in red). Cross-sectional entomological data was matched to serologi-

cal data by using the entomological data collected closest to the end of the paired sample inter-

val (if there was >1 entomological measure observed within the paired sample interval). The

results from the main analysis (in blue) are presented for comparison.

(PNG)

S4 Fig. Sensitivity analysis of longitudinal household level indicators including paired

serology samples taken 335–395 days apart and longitudinal measures taken from prior 6

and 12 months. Risk ratios and 95% CI for an analytical dataset in which any serological
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paired sample taken within 335–395 days apart was split into two six-month intervals, then

included in the analysis. If a seroconversion occurred during that interval, it was assigned to

the first six-month interval. Longitudinal entomological data was matched to serological data

by averaging observations within 6 (in red) and 12 months (in blue) preceding the seroconver-

sion interval. The results from the main analysis (in green) are presented for comparison.

(PNG)

S5 Fig. Sensitivity analysis of longitudinal household level indicators including paired

serology samples taken 335–395 days apart and longitudinal measures taken from prior 6

and 12 months. Risk ratios and 95% CI for an analytical dataset in which any serological

paired sample taken within 335–395 days apart was split into two six-month intervals, then

included in the analysis. If a seroconversion occurred during that interval, it was assigned to

the second six-month interval. Longitudinal entomological data was matched to serological

data by averaging observations within 6 (in red) and 12 months (in blue) preceding the sero-

conversion interval. The results from the main analysis (in green) are presented for compari-

son.

(PNG)

S6 Fig. Sensitivity analysis of longitudinal household level indicators including paired

serology samples taken 210–335 days apart and longitudinal measures taken from prior 6

and 12 months. Risk ratios and 95% CI in which any serological paired sample taken within

210–335 days apart that was originally excluded from the analysis was included based on the

range of dates coinciding with the annual estimated epidemic curve as described in Stoddard

et al (2014 PLoS NTDs), then included in the analysis. Longitudinal entomological data was

matched to serological data by averaging observations within 6 (in red) and 12 months (in

blue) preceding the seroconversion interval. The results from the main analysis (in green) are

presented for comparison.

(PNG)

S1 Table. Crude RR and 95% CI. Table of crude risk ratios (RR) and 95% confidence intervals

(CI) for comparison with Table 4 presented in the main analysis.

(DOCX)

S2 Table. Comparison of time period for longitudinal entomological measures. Compari-

son of indicators calculated by averaging entomological data collected 6 and 12 months from

start of seroconversion interval.

(DOCX)

S3 Table. Adjusted RRs and 95% CI for inclusive serological criteria. Adjusted risk ratios

(RR) and 95% confidence intervals (CI) in which any positive serological result was classified

as a seroconversion event compared to the RR and 95% CI presented in the main analysis in

which discrepant longitudinal serological samples were excluded.

(DOCX)

S4 Table. Adjusted RRs and 95% CI for more restrictive serological criteria. Adjusted risk

ratios (RR) and 95% confidence intervals (CI) in which any serological result that tested posi-

tive for more than one serotype in the same paired sample was excluded compared to the RR

and 95% CI presented in the main analysis in which these serological samples were included.

(DOCX)

S5 Table. Adjusted RRs and 95% CI for more restrictive serological criteria, excluding any

serological result with evidence of prior DENV1 or DENV2 infection. Adjusted risk ratios
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(RR) and 95% confidence intervals (CI) in which any serological sample collected between Jan-

uary 2001-December 2003 had prior evidence of DENV1 or DENV2 infection was excluded

compared to the RR and 95% CI presented in the main analysis in which these serological sam-

ples were included.

(DOCX)

S6 Table. Adjusted RRs and 95% CI stratified by aspirator type. Adjusted risk ratios (RR)

and 95% confidence intervals (CI) for cross-sectional adult stage measures of Ae. aegypti com-

paring data collected during periods in which the aspirator was changed in 2009: 1999–2008,

the CDC backpack aspirator and 2010, the Prokopack aspirator.

(DOCX)
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