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ABSTRACT OF THE THESIS 

 

Analysis of a Micro-scale, Tri-axial, Capacitive-based, Differential Force Sensor 

for Haptic Feedback System in Robotic Surgery 

 

by 

 

Francisco Javier Mancillas 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2018 

Professor Robert N. Candler, Chair 

 

It is known that the absence of tactile feedback in robotic surgery represents a limiting factor 

to surgeons.  In effect, the lack of tactile feedback in robotic surgical tools is closely associated 

with tissue damage.  This is especially true among novice surgeons who, not having surgical tools 

that measure compressive sensing, apply excessive force causing tissue crush injuries.  

Additionally, the lack of tactile feedback in the shear directions lead to additional problems, such 

as breaking of sutures due to excessive pull forces.  In view of the lack of tactile feedback, our 

efforts have been focused on developing a highly sensitive micro-scale, tri-axial, capacitive-based, 

differential force sensor.  To this end, we provide relevant derivations to single-element, multi-

axis capacitive sensing including an illustrative discussion on capacitive pressure sensor (CPS) 

theory.  We begin our discussion on CPS theory with the well-known parallel plate capacitor to 

illustrate key physical concepts and move on to more complex structures, such as capacitors with 
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asymmetrical surface areas under deformation.  Whenever possible, we provide explicit 

capacitance expressions for these last structures and demonstrate that such expressions reduce to 

more familiar ones.  To ensure the validity of our theoretical calculations, we have also provided 

results obtained from COMSOL Multiphysics simulations.  It is worth mentioning that for our 

theoretical calculations, we have only considered deformations in the downward direction as a 

result of external forces applied to the top surface of the CPS model so as to facilitate the evaluation 

of capacitance expressions.  For the COMSOL Multiphysics simulations of our proposed 

capacitive force sensor (CFS) model, on the other hand, no restrictions are imposed on the direction 

of deformation.  The design, including sensor location and performance criteria, of our current 

CFS model is also considered as well as its working principle.  
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CHAPTER 1 INTRODUCTION 
 

Minimally invasive surgery (MIS) is characterized by operational procedures in which 

surgeons make small incisions in the skin, typically a few millimeters.  Due to the size of these 

incisions, patients tend to recover quickly and experience less discomfort than with conventional 

surgery.  The many benefits and advantages that MIS offers over traditional open surgery have 

ultimately lead MIS to become more and more predominant in hospitals.  MIS, however, requires 

a high level of dexterity and great precision of laparoscopic instruments, both of which are not 

easily achieved by the novice surgeon, and, as a result, only a limited number of qualified 

candidates can perform such operations.  Not to mention that not all procedures can be done 

through minimally invasive methods.  Although it is undeniable that MIS offers great advantages 

to the patient, it has also introduced new surgical challenges.  For example, the introduction of 

laparoscopic tools into MIS has inadvertently introduced the loss of tactile information from inside 

a patient’s body to the surgeon’s fingertips.  As such, the lack of touch sensation could potentially 

lead to undesirable patient’s complications due to excessive forces being applied to tissues. 

 
 

1.1 History and Predictions of Minimally Invasive Surgery 

In 1901, the first experimental laparoscopy was performed in an animal model.  A German 

surgeon, George Kelling, made a small incision in the abdomen of dogs, insufflated the peritoneal 

cavity with sterile air, and investigated the abdomen with a cystoscope.  He created the term 

coelioskope for his visionary procedure.  Although his work found little support, his research 

established the importance of a sterile pneumoperitoneum to allow visualization, an anchoring 

principle for future laparoscopy.  Near the time of Kelling’s animal experiments, the seeds of 

minimally invasive techniques in humans were being planted.  Hans Christian Jacobaeus, an 
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internist in Stockholm, introduced the term laparothorakoskopie in his unprecedented report on 

laparoscopy and thoracoscopy in humans.  This seminal paper was published in Münchener 

Medizinische Wochenschrift in 1911.  Interestingly, in this paper, Jacobaeus reported thoracoscopy 

as a more promising procedure than laparoscopy [1].   

Over the next several decades, improvements to the techniques and instruments increased the 

popularity of laparoscopy.  However, it was not until after the first laparoscopic cholecystectomy 

(LC) was reported in 1987 by Philippe Mouret in Lyon, France, that the revolution in minimally 

invasive surgery began.  This was in large part due to the introduction of a real-time, high-

resolution video camera that could be attached to the endoscope and allowed a clear magnified 

image of the entire operating field to be shown on a monitor [1], not to mention the shorter recovery 

times experienced by patients.  Today, minimally invasive surgery constitutes nearly six percent 

of the 51 million procedures nationally [2], including 1 million laparoscopic cholecystectomies.  

Although the number of common surgeries already performed laparoscopically is expected to 

continue growing, the current marker for minimally invasive surgery necessitates advances in 

technology.  Specifically, the surgical volume must be large enough for investments to be made to 

improve the current technology and modify existing equipment.  Future projections show that for 

the majority of common surgeries already performed laparoscopically, the number will grow in 

the coming years according to a study done in 2011 [3].  The date obtained from this study, along 

with the 5- and 10-year projections, also suggest that minimally invasive techniques have and will 

continue to be a viable option and a significant part of the future of healthcare [4]. 
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1.2 Robotic Surgery 
 

Robotic surgery is a type of minimally invasive surgery which utilizes miniaturized surgical 

instruments and ultimately allow surgeons to perform delicate surgical procedures.  It comes as no 

surprise, therefore, that more and more top surgeons are choosing to perform surgery with the help 

of robotic tools.  One of these tools is the da Vinci Surgical Robot that allows doctors to operate 

with greater precision and minimal discomfort for the patient.  These systems also offer great 

advantages over traditional laparoscopic surgery, including three additional degrees of motion, 

tremor removal, and elimination of the fulcrum effect—the consequence of manipulating internal 

tissues and organs with laparoscopic instruments outside the body.  One major drawback of robotic 

surgery is that the commercially available robotic surgical systems of today are lacking tactile 

feedback and evidence suggests that a lack of feedback can lead to excessive grip forces, tissue 

crush injuries, and ruptured sutures [5]. 

Surgical robots first appeared in 1985, when Kwoh et al. leveraged an industrial programmable 

universal manipulation arm (PUMA 560) for a neurobiopsy application [6].  Indisputably, robotic 

surgery platforms provide the same benefits as traditional minimally invasive surgery, including 

smaller incisions, shorter recovery times, lower risk of infection, and reduced pain as compared to 

open surgery.  Furthermore, robotics are expected to impact the field of minimally invasive surgery 

as the use of robotics or computer assistance enhances the performance of complex procedures, 

such as elimination of hand tremor, dexterity enhancement, motion scaling and 3D visualization 

[7].  While the adoption of robotic surgical tools accelerates nationwide [3], these systems are 

characterized by an absence of touch sensation, which ultimately impedes transition of more 

delicate procedures.  Likewise, excessive grip forces could induce tissue damage, including scar 

formation, hemorrhaging, perforations, and adhesions [8]. 
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Furthermore, without tactile information, surgeons require additional training to reach 

proficiency on the available surgical robots [9].  Although robotics addresses a subset of surgical 

procedures, efforts to develop and integrate biocompatible sensor arrays with commercial robotic 

surgical systems remain inadequate.  The development of innovative sensing technologies capable 

of restoring touch sensation is therefore critical.  Several researchers have already proposed 

solutions to incorporate force feedback into current laparoscopic tools.  Many of these solutions 

involve adding force sensors, such as strain gauges, to record forces at the tool tip or developing a 

new robotic manipulator used to operate laparoscopic tools and obtain force feedback.  Additional 

work has been done in creating new laparoscopic tools with force feedback incorporated into their 

designs.  However, there still exist many problems within the designs of laparoscopic tools and 

their use in robotic surgery [10]. 

 

 
1.3 Benefits of Minimally Invasive Surgery 
 

By using minimally invasive surgery techniques, surgeons can offer patients many benefits 

over traditional surgeries.  Among the most prominent benefits, we find the following [11]: 

1. Less Pain: MIS procedures cause less post-operative pain and discomfort. Studies have shown 

that patients undergoing MIS procedures report less pain and require smaller doses of pain 

relievers than patients undergoing traditional surgeries. 

2. Shorter Hospital Stay: shorter hospital stay and quicker return to normal activities. Patients 

who undergo MIS procedures are usually able to go home sooner. And, in many cases, the 

patient is able to return to normal activities and work more quickly. 
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3. Less Scarring: MIS procedures require smaller incisions -- which means smaller, less 

noticeable scars. The scars that do form as a result of MIS typically have a less jagged edge -- 

giving them a more appealing look. 

4. Less Injury to Tissue: most traditional surgeries require a long incision. This incision usually 

has to be made through muscle. Muscle needs a significant time to heal after surgery. Because 

there are no long incisions in MIS, surgeons often do not have to cut through muscles to 

complete the procedure -- leading to less tissue damage and quicker recovery. 

5. Higher Accuracy Rate: a higher accuracy rate for most procedures. Because MIS procedures 

use video-assisted equipment, the surgeon has better visualization and magnification of 

internal organs and structure. For patients, this translates into a more accurate and definitive 

procedure. 

For comparison purposes, we have included Table 1.3 which summarizes the pros and cons of 

minimally invasive surgery and traditional open Surgery.  It is worth pointing out that the main 

disadvantage of all MIS is the lack of tactile feedback.  In effect, independent studies have shown 

that traditional laparoscopic surgery and robotic-assisted laparoscopic surgery, without tactile 

feedback, can lead to higher prevalence of suture rupture and premature suture failure, both intra- 

and postoperatively.  Therefore, one can conclude that the addition of tactile feedback to 

laparoscopic and robotic laparoscopic systems can reduce intraoperative complications and result 

in improved patient outcomes [4].   
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Table 1.3 Comparison between MIS and traditional open surgery  
 
 Laparoscopic (MIS) Robotic (MIS) Open 
Advantages Minimal Scarring 

Reduced trauma 
Shorter recovery time 

All benefits of MIS 
Tremor removal  
3D vision 
Scaled movements 
 

Direct patient contact 
Surgeon familiarity 
Availability  

Disadvantages  Diminished tactile 
feedback 
No 3D vision 
Poor dexterity  

Absence of tactile 
feedback 
Longer surgeries 
Expensive tooling  
 

Long recovery 
periods 
Scar formation 
Painful 

 
 
 
 
 
 

CHAPTER 2 CAPACITIVE PRESSURE SENSOR THEORY 
 

2.1 Capacitance of a Parallel Plate Capacitor  

We begin our discussion on capacitive pressure sensor theory with the simplest capacitor 

model that will serve us to illustrate key physical concepts.  Namely, a capacitor formed from a 

pair of parallel plates such as the one shown in Figure 2.1.1.  In this configuration, each plate is 

connected to one terminal of a battery, which acts as a source of potential difference.  If the 

capacitor is initially uncharged, the battery establishes an electric field in the connecting wires 

when the connections are made.  This electric field in the wires causes electrons to migrate in 

opposite direction of the electric field, e.g. the terminal of the battery, until the plate (now 

negatively charged), the wire, and the terminal are all at the same electric potential.  Once 

electrostatic equilibrium is achieved, a potential difference no longer exists between the terminal 

and the plate, and as a result no electric field is present in the wire, and the migration of electrons 

ceases.  The plate now carries an excess negative charge -Q, while the other plate has a deficit of 
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electrons caused by the migration of electrons, leaving this last plate positively charged +Q.  In 

this final configuration, the potential difference across the capacitor plates is the same as that 

between the terminals of the battery.  

Figure 2.1.1 A capacitor consists of two conductors, a positive and negative electrodes or plates, 
so that when it is charged, the conductors carry charges of equal magnitude and opposite sign.  As 
a result, we can describe a capacitor as a device that stores charge and therefore energy. Image 
from Physics for Scientists and Engineers with Modern Physics.    

 

 

Let us compute the capacitance of a parallel plate capacitor by considering two parallel metallic 

plates of equal area 𝐴 are separated by a distance d as shown in Figure 2.1.1.  Once steady state 

conditions are met, one plate carries a negative charge -Q while the other carries a positive charge 

+Q.  We would then expect the capacitance of such configuration to increase as the plate area is 

increased.  This is because the larger the plate area, the larger the amount of charge that can be 

stored on the plate for a given potential difference.  We may also arrive at the same conclusion by 

considering the definition of capacitance, which is defined as the amount of charge 𝑄 can be stored 

per unit volt or potential difference ∆𝑉, 

𝐶 =
𝑄
∆𝑉																																																																				(2.1.1) 
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where ∆𝑉 is defined as the change in potential energy ∆𝑈 of the system when a test charge 𝑞/ is 

moved between two points divided by the test charge, ∆𝑉 = ∆𝑈/𝑞/.  An explicit mathematical 

expression for the potential difference between points 𝐴 and 𝐵 in an electric field 𝑬 is given by 

the line integral  

∆𝑉 = 𝑉3 − 𝑉5 = −6 𝑬 ∙ 𝑑𝒔
3

5
																																																(2.1.2) 

Now, by assuming the accumulated charges are capable of distributing themselves evenly over the 

entire plate area so that the surface charge density 𝜎 becomes constant, 𝜎 = 𝑄/𝐴, we find that 

𝐶 =
𝑄
∆𝑉 =

𝐴𝜎
∆𝑉																																																														(2.1.3) 

Thus, from Equation 2.1.3, we can clearly see that the capacitance increases as the plate area 

increases.  Let us focus on another parameter of importance, namely, the distance 𝑑 that separates 

the plates.  If the battery has a constant potential difference between its terminals, then the electric 

field between the plates must increase as 𝑑 is decreased so that the line integral remains constant.  

On the other hand, if the electric field is constant, then decreasing the distance 𝑑 also decreases 

the magnitude of the potential difference ∆𝑉.  As a result, we expect the capacitance of the pair of 

plates to be inversely proportional to 𝑑.  Having stated the above physical arguments, we proceed 

with our derivation as follows: 

1. Assume that the electric field 𝑬 between the plates is approximately constant as shown in 

Figure 2.1.3.  This assumption is typically valid, as we will show later, provided that 𝑑 ≪

√𝐴.  This last condition is, more often than not, erroneously cited by many authors as the 

distance between the plates being much less than either side of the capacitor, which is 
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certainly valid only for a square capacitor.  Provided the electric field is constant, then, the 

potential difference becomes  

∆𝑉 = 𝑉3 − 𝑉5 = 𝐸𝑑																																																									(2.1.4) 

2. Assume the surface charge density 𝜎 on either plate is constant with magnitude 𝑄/𝐴.  Then, 

using Gausses’ Law, we find that the electric field is given by 

𝐸 =
𝜎
𝜖 =

𝑄
𝜖𝐴																																																													(2.1.5) 

where 𝜖 = 𝜖B𝜖/.  Here, 𝜖B is the relative permittivity of the dielectric material between the 

plates and 𝜖/ is the permittivity of free space and is approximately equal to 8.854 x 10-12 

F/m. 

3. Substituting the expression for the electric field from Equation 2.1.5 into Equation 2.1.4, 

and this last one into Equation 2.1.1, we find that  

𝐶 =
𝑄
∆𝑉 =

𝑄

C𝑄𝑑𝜖𝐴D
 

𝐶 =
𝜖𝐴
𝑑 																																																																		(2.1.6) 

 

Therefore, the capacitance of a parallel-plate capacitor is proportional to the area of its plates and 

inversely proportional to the plate separation, just as we had anticipated from our conceptual 

argument.  
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Figure 2.1.2 [12] The electric field 𝑬 between the plates of a parallel-plate capacitor is uniform 
near the center but non-uniform near the edges.  Such end effects can be neglected if the plate 
separation is small compared with the square root of the area of the plates.  Note that the electric 
field lines (labeled →) originate at the positive terminal and terminate at the negative one.    

 

 

 

 

2.2 Capacitance of a Parallel Plate Capacitor with Asymmetrical Surface Area 

In this section, we begin our discussion with the most general equation of the electric potential 

𝑉 for a charged plate with infinitely small thickness.  For convenience, we express such equation 

for 𝑉 in a suitable form that will be useful in section 2.4 once deformations of the plates are 

introduced.  Having expressed 𝑉 as a surface integral, we subsequently obtain an expression for 

the potential difference ∆𝑉 between two parallel plates, which ultimately allows us to compute the 

capacitance of a parallel plate capacitor with asymmetrical surface area.  That is, a capacitor 

characterized by having dissimilar surface areas for its electrodes and commonly referred to as 

asymmetrical capacitor.  We finally prove, towards the end of this section, that the capacitance of 

an asymmetrical square capacitor reduces to the classical capacitance of a parallel plate capacitor, 

Equation 2.1.6, for a symmetrical square capacitor to ensure the validity of our theoretical results.   
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In section 2.1, we defined the potential difference ∆𝑉 as the change in potential energy divided 

by the charge 𝑞/ of the test charge.  It is customary to set the electric potential to zero (𝑉5 = 0) at 

infinity (𝑟5 = ∞) so that the potential difference becomes 

∆𝑉 = −6 𝑬 ∙ 𝑑𝒔
3

5
= 	−6 𝑘K

𝑞
𝑟L 𝒓
N ∙ 𝑑𝒔

3

5
= −6 𝑘K

𝑞
𝑟L 𝑐𝑜𝑠𝜃𝑑𝑠

3

5
 

∆𝑉 = −6 𝑘K
𝑞
𝑟L 𝑑𝑟

BS

BT
= 𝑘K𝑞 U

1
𝑟3
−	

1
𝑟5
V = 𝑘K𝑞

1
𝑟3

 

where 𝑘K is Coulomb’s constant and 𝒓N is a unit vector in the direction of the electric field.  With 

this reference choice, the electric potential created by a point charge at any distance 𝑟 from the 

charge reduces to  

𝑉 = 𝑘K
𝑞
𝑟 																																																																		(2.2.1) 

Now, let us suppose there is continuous charge distribution such as the one shown in Figure 2.2.1.  

If we break up such configuration into elements of charge 𝛥𝑞, we may evoke the superposition 

principle to compute the total electric potential 𝑉 at point 𝑃 for finite point charges 

𝑉 = 𝑘KY
𝑞Z
𝑟ZZ

																																																															(2.2.2) 

As 𝛥𝑞 becomes infinitesimally small, the above Riemann sum becomes an integral 

𝑉 = lim
^→_

𝑘KY
𝛥𝑞
𝑟Z

^

Z`a

= 𝑘K 6
𝑑𝑞
𝑟 																																															(2.2.3) 
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Figure 2.2.1 The electric potential at the point 𝑃 due to a continuous charge distribution can be 
computed by dividing the charge distribution into elements of charge 𝑑𝑞 and summing the electric 
potential contributions over all elements.  The color map is used to represent all surface area 
patches of charge 𝑑𝑞 at the same height z.   

 

 

Using Equation 2.2.3, we therefore find that the electric potential 𝑉 at the point P (𝑥/, 𝑦/, 𝑧/) of a 

charged plate with infinitely small thickness and surface charge density 𝜎 = 𝑑𝑞/𝑑𝑆 such as the 

one shown in Figure 2.2.2 is given by the surface integral 

𝑉(𝑥/, 𝑦/, 𝑧/) = 𝑘Kg
𝜎𝑑𝑆

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + (𝑧 − 𝑧/)L]a/L
k

																		(2.2.4) 
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Figure 2.2.2 Deformed charged plate with infinitesimal thickness and surface 𝑆.  The region 𝐷 is 
the projection of the surface 𝑆 into the 𝑥𝑦-plane.  In this case, such projection is a rectangle, but it 
might not be the case for other surfaces.   

 

 

For reasons that will become clear in Section 2.4, it is convenient to transform the surface integral 

Equation 2.2.4 into a more suitable form 

V(𝑥/, 𝑦/, 𝑧/) = g𝑓o𝑥, 𝑦, 𝑔(𝑥, 𝑦)qr1 + s
𝜕𝑔
𝜕𝑥u

L

+ s
𝜕𝑔
𝜕𝑦u

L

	𝑑𝐴
v

																			(2.2.5) 

where 𝑧 = 𝑔(𝑥, 𝑦) describes the surface 𝑆 in which the charge resides and 𝑓o𝑥, 𝑦, 𝑔(𝑥, 𝑦)q ≡

𝑘K𝜎/[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + (𝑔(𝑥, 𝑦) − 𝑧/)L]a/L.  For a flat parallel plate, 𝑔(𝑥, 𝑦) is constant, 

and, as a result, its partial derivatives with respect to 𝑥 and 𝑦 vanish.  Therefore, the electric 

potential for a flat parallel plate reduces to  
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V(𝑥/, 𝑦/, 𝑧/) = g𝑓o𝑥, 𝑦, 𝑔(𝑥, 𝑦)q	𝑑𝐴
v

 

V(𝑥/, 𝑦/, 𝑧/) = 𝑘Kg
𝜎𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + (𝑔(𝑥, 𝑦) − 𝑧/)L]
a
Lv

														(2.2.6) 

We are now in the position to compute the potential difference ∆𝑉 between two flat parallel 

plates of unequal surface areas.  Such charge system is illustrated in Figure 2.2.3.  To facilitate the 

amount of computation, we let the top plate be located at 𝑧 = 𝑧/ so that 𝑔(𝑥, 𝑦) = 𝑧/.  Similarly, 

we let the bottom plate be at 𝑧 = 0 so that 𝑔(𝑥, 𝑦) = 0.  Then, the potential difference of the charge 

system at the points 𝑃a(𝑥/, 𝑦/, 𝑧/) and 𝑃L(𝑥/, 𝑦/, 0) is given by 

∆𝑉 = 𝑉x − 𝑉y = 𝑉[𝑃a(𝑥/, 𝑦/, 𝑧/)] − 𝑉[𝑃L(𝑥/, 𝑦/, 0)]																										(2.2.7) 

where 

𝑉x = 𝑘K {	g
𝜎a𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
Lv|

+g
𝜎L𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑧/L]
a
Lv}

	~ 

𝑉y = 𝑘K {	g
𝜎a𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑧/L]
a
Lv|

+g
𝜎L𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
Lv}

	~ 
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Figure 2.2.3 Charge system of two flat parallel plats of dissimilar surface areas.  In this case, the 
top plate consists of charge +𝑄 and surface charge density 𝜎a = 𝑑𝑄a/𝑑𝑆a; the bottom plate, on 
the other hand, of −𝑄 and surface charge density 𝜎L = 𝑑𝑄L/𝑑𝑆L.  Note that plates’ projections 
into the 𝑥𝑦-plane (not shown) are 𝐷aand 𝐷L for the top and bottom plates, respectively.   

 

Combining like terms, we obtain  

∆𝑉 = 𝑘K {g�
1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
L
−

1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑧/L]
a
L
�

v|

𝜎a𝑑𝑦𝑑𝑥~ −												 

𝑘K {g�
1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
L
−

1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑧/L]
a
L
�

v}

𝜎L𝑑𝑦𝑑𝑥~			(2.2.8) 

 

Typically, 𝜎 is a function of position because as the capacitor is being charged, the charges 

have to distribute themselves over the entire plate’s surface area.  Thus, we would expect a higher 

density of charge near the center of the plate as the capacitor is being charged, assuming the 

connection of the plate with the wire is located at the center of the capacitor, of course.  Under 
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steady state conditions, however, we would expect the charges to distribute themselves evenly 

over the entire area, resulting in constant surface charge density.  Therefore, if we assume that the 

surfaces charge densities are indeed constant and evoke the charge neutrality condition, Equation 

2.2.8 can be further simplified.  The charge neutrality condition and the assumption of constant 

surface charge densities for the plates are summarized as follows  

𝑄a + 𝑄L = 0	
𝑄a
𝐴a

= 𝜎a
𝑄L
𝐴L

= 𝜎L

	

⎭
⎪
⎬

⎪
⎫

																																																												(2.2.9) 

Solving for 𝜎L in terms of 𝜎a, we find that 𝜎L = −𝜎a(𝐴a/𝐴L).  Thus, Equation 2.2.8 for the 

potential difference of our charged system reduces to 

∆𝑉 = 𝑘K𝜎a UΓa +
𝐴a
𝐴L
ΓLV																																																		(2.2.10) 

where 

Γ̂ = g�
1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
L
−

1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑧/L]
a
L
�

v�

𝑑𝑦𝑑𝑥 

From the definition of capacitance 𝐶, Equation 2.1.1, we finally obtain the capacitance of a flat 

parallel plate with dissimilar surface areas 

𝐶 =
𝑄
|∆𝑉| =

𝑄a

|𝑘K
𝑄a
𝐴a
�Γa +

𝐴a
𝐴L
ΓL� |

=
𝐴a

𝑘K �Γa +
𝐴a
𝐴L
ΓL�
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𝐶 =
𝐴a

𝑘K �Γa +
𝐴a
𝐴L
ΓL�

																																																						(2.2.11) 

An explicit capacitance value may be obtained for a square capacitor with asymmetrical 

surface areas given by 𝐿aLand 𝐿LL.  Let us compute the capacitance of such configuration.  For 

computational convenience, let us evaluate the integral 𝐼 given by Equation 2.2.12, which, in turn, 

would allow us to obtain explicit solutions for Γa and ΓL, and ultimately determine the capacitance 

of our configuration.   

𝐼 = 6 6
1

(𝑥L + 𝑦L + 𝑧/L)
a
L
𝑑𝑦𝑑𝑥

�/L

y�/L

�/L

y�/L

																																						(2.2.12) 

Using symmetrical arguments, it can be shown that the integral 𝐼 is equivalent to  

𝐼 = 86 6
1

(𝑟L + 𝑧/L)
a
L

�
L����

/

�
�

/
𝑟𝑑𝑟𝑑𝜃 

𝐼 = 8𝑧/ 6 �
𝐿

2𝑧/𝑐𝑜𝑠𝜃
�1 + s

2𝑧/
𝐿 𝑐𝑜𝑠𝜃u

L

�

a
L
− 1�

�
�

/
𝑑𝜃																										(2.2.13) 

By definition 𝐿 ≫ 𝑧/, so that (L��
�
𝑐𝑜𝑠𝜃)L < 1.  Therefore, we may use the Binomial Theorem to 

expand the expression in square brackets to first order, which results in  

𝐼 ≈ 8𝑧/ 6 �
𝐿

2𝑧/𝑐𝑜𝑠𝜃
�1 +

1
2 s
2𝑧/
𝐿 𝑐𝑜𝑠𝜃u

L

� − 1�
�
�

/
𝑑𝜃 
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𝐼 ≈ 8 �
𝐿
2 ln

o√2 + 1q +
𝑧/L

𝐿
√2
2 − 𝑧/

𝜋
4
�																																						(2.2.14) 

We are now in the position to evaluate Γaand ΓL, provided we take the potential difference at the 

center (𝑥/ = 𝑦/ = 0) of the square plates of sides 𝐿a and 𝐿L.  Doing so results in the following Γ 

values 

Γa = 8 �𝑧/
𝜋
4 −

𝑧/L

𝐿a
√2
2
� 				&				ΓL = 8 �𝑧/

𝜋
4 −

𝑧/L

𝐿L
√2
2
�																									(2.2.15)	 

Substituting the Γ values of 2.2.15 into Equation 2.2.11, we obtain the capacitance 𝐶 of an 

asymmetrical parallel plate capacitor with surface areas given by 𝐴a = 𝐿aL and 𝐴L = 𝐿LL 

𝐶 =
𝐴a

𝑘K �Γa +
𝐴a
𝐴L
ΓL�

 

𝐶 =
𝐿aL

8𝑘K ¢𝑧/
𝜋
4 −

𝑧/L
𝐿L
√2
2 £ U1 + C

𝐿a
𝐿L
D
L
V
																																					(2.2.16) 

For a capacitor with equal surface area and neglecting the second term in the parenthesis (this 

assumption is valid since 𝑧/ ≪ 𝐿), Equation 2.2.16 reduces to the classical capacitance for a 

parallel-plate capacitor (Equation 2.1.6) 

𝐶 =
𝐿aL

16 C 1
4𝜋𝜖D C𝑧/

𝜋
4D

=
𝜖𝐴a
𝑧/

																																													(2.2.17) 
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2.3 Deformation Theory  
 

In this section, we present relevant concepts from The Theory of Elasticity by Lev Davidovich 

Landau and Evgeny M Mikhailovich Lifshitz [13] to illustrate key terminology.  The reader 

familiar with basic deformation theory may omit this section and jump to section 2.4 without loss 

of generality.    

 

2.3.1 The Strain Tensor 

The displacement of a point due to the deformation is given by the displacement vector 𝒖 

𝒖 = 𝒓¥ − 𝒓 = 〈𝑥a¥ − 𝑥a, 𝑥L¥ − 𝑥L, 𝑥§¥ − 𝑥§〉																																							(2.3.1)  

Or, equivalently,  

𝑢Z = 𝑥Z¥ − 𝑥Z 

Consider two points that are close together, then the distance squared between the points, using 

Einstein’s summation convention, is given by  

𝑑𝑙L = 𝑑𝑥aL + 𝑑𝑥LL + 𝑑𝑥§L = 𝑑𝑥ZL																																														(2.3.2) 

𝑑𝑙¥L = 𝑑𝑥a¥
L + 𝑑𝑥L¥

L + 𝑑𝑥§¥
L = 𝑑𝑥Z¥

L = (	𝑑𝑥Z + 𝑑𝑢Z)L																											(2.3.3) 

with Equation 2.3.2 before deformation and Equation 2.3.3 after deformation.  But 𝑑𝑢Z =

C«¬­
«®¯
D𝑑𝑥°, so the distance after the deformation 𝑑𝑙¥ becomes  

𝑑𝑙¥L = 𝑑𝑙L + 2𝑢Z°𝑑𝑥Z𝑑𝑥°																																																				(2.3.4) 

where 𝑢Z°is the strain tensor and is given by  
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𝑢Z° =
1
2 s
𝜕𝑢Z
𝜕𝑥°

+
𝜕𝑢°
𝜕𝑥Z

+
𝜕𝑢�
𝜕𝑥Z

𝜕𝑢�
𝜕𝑥°

u																																													(2.3.5) 

Note that all indices (𝑖, 𝑘 and 𝑙) run from 1 to 3 so interchanges are permissible without affecting 

any summation.  We also note that the strain tensor 𝑢Z°  is symmetrical (𝑢Z° = 𝑢°Z) and can be 

diagonalized.  That is, only the diagonal components (𝑢aa, 𝑢LL,	and 𝑢§§) of the strain tensor are 

different from zero.  If the strain tensor is diagonalized, then 𝑑𝑙¥L becomes 

𝑑𝑙¥L = (𝛿Z° + 2𝑢Z°)𝑑𝑥Z𝑑𝑥° 

𝑑𝑙¥L = o1 + 2𝑢(a)q𝑑𝑥aL + o1 + 2𝑢(L)q𝑑𝑥LL + o1 + 2𝑢(§)q𝑑𝑥§L																			(2.3.6) 

where 𝛿Z°is the Kronecker delta function and 𝑢(Z) = 𝑢ZZ.  Along the 𝑖³´ principal axis, then 

𝑑𝑥Z¥ = o1 + 2𝑢(Z)q
a/L
𝑑𝑥Z 				→ 				

𝑑𝑥Z¥

𝑑𝑥Z
− 1 = 	

𝑑𝑥Z¥

𝑑𝑥Z
−
𝑑𝑥Z
𝑑𝑥Z

=
(𝑑𝑥Z¥ − 𝑑𝑥Z)

𝑑𝑥Z
 

where (µ®­
¶yµ®­)
µ®­

 is the relative extension along the 𝑖³´ principal axis.  Using Equation 2.3.6 for 𝑑𝑙¥L 

and ignoring second order terms in the appropriate Taylor Series expansion, we find that  

(𝑑𝑥Z¥ − 𝑑𝑥Z)
𝑑𝑥Z

= o1 + 2𝑢(Z)q
a
L − 1 ≈ ¢1 +

1
2
o2𝑢(Z)q£ − 1 ≈ 𝑢(Z)																	(2.3.7) 

From Equation 2.3.7, we can clearly see that when the relative extensions are small compared with 

unity, the strains are small.  As a consequence, the third term in parenthesis of Eq. 2.3.5 is in the 

second order of smallness and we may be ignore it.  Therefore, for small deformations, the strain 

tensor takes the following form 
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𝑢Z° =
1
2 s
𝜕𝑢Z
𝜕𝑥°

+
𝜕𝑢°
𝜕𝑥Z

u																																																							(2.3.8) 

 

2.3.2 The Stress Tensor 

When a deformation occurs, the arrangement of the molecules is changed, and the body ceases 

to be in its original state of equilibrium.  Forces therefor arise which tend to return the body to 

equilibrium. These internal forces which occur when a body is deformed are called internal 

stresses.  In the theory of elasticity, these forces are near-action forces, which act from any point 

only to neighboring points.  Hence it follows that the forces exerted on any part of the body by 

surrounding parts act only the surface of this part.  This assertion is not valid when the deformation 

of the body results in macroscopic electric fields in it, such as pyroelectric and piezoelectric bodies.   

Let us consider the total force on some portion of the body: 

6𝐹𝑑𝑉																																																																					(2.3.9) 

where 𝐹 is the force per unit volume.  However, from the above assertion, the resultant force can 

be represented as the sum of the forces acting on all the surface elements.  That is, for any portion 

of the body, each of the three components of the resultant of all the internal stresses can be 

transformed into an integral over a surface if we recognize that the vector 𝐹Z must be the divergence 

of a tensor of rank two, e.g.  𝐹Z =
«¸­¯
«®­¯

.  Then, 

6𝐹𝑑𝑉 = 6𝐹Z𝑑𝑉 = 6
𝜕𝜎Z°
𝜕𝑥Z°

𝑑𝑉 = ¹𝜎Z° 𝑑𝑓°																																(2.3.10) 
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where 𝜎Z°is the stress tensor. 

Let us find the relationship between the stress tensor 𝜎Z°  in terms of the strain tensor 𝑢Z°  for an 

isotropic body.  We know that the deformation can be represented as the sum of a pure shear and 

a hydrostatic compression: 

𝑢Z° = s𝑢Z° −
1
3 𝛿Z°𝑢��u +

1
3 𝛿Z°𝑢��																																										(2.3.11) 

where the first term in parenthesis is the shear component with the off-diagonal elements and the 

second term corresponds to hydrostatic compression.  The free energy ℱ of a deformed isotropic 

body is given by  

ℱ = 𝜇(𝑢Z° −
1
3 𝛿Z°𝑢��)

L +
1
2𝐾𝑢��

L																																										(2.3.12) 

where 𝜇 is the shear modulus or modulus of rigidity and 𝐾 is the bulk modulus or modulus of 

hydrostatic compression.  Computing the total differential of the above equation while holding the 

temperature constant, we obtain 

𝑑ℱ = 𝐾𝑢��𝑑𝑢�� + 2𝜇 s𝑢Z° −
1
3 𝛿Z°𝑢��u U𝑑 s𝑢Z° −

1
3 𝛿Z°𝑢��uV 

𝑑ℱ = U𝐾𝑢��𝛿Z° + 2𝜇 s𝑢Z° −
1
3 𝛿Z°𝑢��uV 𝑑𝑢Z° 

𝑑ℱ = U𝐾𝑢��𝛿Z° + 2𝜇 s𝑢Z° −
1
3 𝛿Z°𝑢��uV 𝑑𝑢Z° 
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Dividing both sides by 𝑑𝑢Z°  and evoking the relationship 𝜎Z° = C «½
«¬­¯

D
¾
 from the Thermodynamics 

of Deformation (see [12] for derivation), we finally obtain the desired relationship for the stress 

tensor 𝜎Z°  in terms of strain tensor 𝑢Z°  for an isotropic body: 

𝜎Z° = s
𝜕𝐹
𝜕𝑢Z°

u
¾
= 𝐾𝑢��𝛿Z° + 2𝜇 s𝑢Z° −

1
3 𝛿Z°𝑢��u																												(2.3.13) 

where the subscript 𝑇 refers to the fact that the strain tensor is measured at constant temperature.  

For our purposes, we always assume the temperature to be fixed at room temperature.  Sometimes, 

it might be useful to express the strain tensor in terms of the stress tensor.  To do so, let us proceed 

as follows 

1. Sum 𝜎ZZ of the diagonal terms for hydrostatic compression:       

𝜎ZZ = 𝜎aa + 𝜎LL + 𝜎§§    

substitute each term in the Equation 2.3.13 for stress tensor, then 

𝜎ZZ = 𝐾𝑢�� + 𝐾𝑢�� + 𝐾𝑢�� = 3𝐾𝑢��  

𝜎ZZ = 3𝐾À
𝑢aa 𝑢aL 𝑢a§
𝑢La 𝑢LL 𝑢L§
𝑢§a 𝑢§L 𝑢§§

Á = 3𝐾À
𝑢aa 0 0
0 𝑢LL 0
0 0 𝑢§§

Á = 3𝐾𝑢ZZ																(2.3.14) 

2. Plugging 𝜎ZZ = 3𝐾𝑢ZZ into Equation 2.3.13 for stress tensor and noting that 𝜎ZZ = 𝜎��𝛿Z°  

𝜎Z° = 𝐾 s
1
3𝜎��𝛿Z°u + 2𝜇 ¢𝑢Z° −

1
3 s
1
3𝜎��𝛿Z°u£ 

solving for 𝑢Z° , we finally obtain the strain tensor in terms of stress tensor for an isotropic 

body 
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𝑢Z° =
1
9𝐾 𝜎��𝛿Z° +

1
2𝜇 s𝜎Z° −

1
3𝜎��𝛿Z°u																															(2.3.15) 

From the above equation, we see that for small deformations 𝑢Z°  is proportional to applied 

forces 𝜎Z° , e.g. Hook’s.  Now let us define some parameters that are typically found in literature 

and help us redefine the expressions for stress and strain tensors.  The first of these parameters is 

the Poisson’s ratio 𝜈, which is defined as the ratio of the transverse compression (𝑢®® or 𝑢ÃÃ) to 

the longitudinal extension: 

𝜈 = −
𝑢®®
𝑢��

	,							s−1 ≤ 𝜈 ≤
1
2u																																						(2.3.16) 

and the modulus of extension or Young’s modulus 𝐸 given by 

1
𝐸 =

1
3 s

1
3𝐾 +

1
𝜇u																																																		(2.3.17) 

given the definitions of 𝐸 and 𝜈, the expressions for the stress and strain tensors become 

𝜎Z° =
𝐸

(1 + 𝜈) U𝑢Z° +
𝜈

(1 − 2𝜈) 𝑢��𝛿Z°V																																						(2.3.18) 

𝑢Z° =
1
𝐸
[(1 + 𝜈)𝜎Z° − 𝜈𝜎��𝛿Z°]																																													(2.3.19) 

It can be shown that for an elastic isotropic material, the following relationships hold for 𝐸, 𝜈, and 

𝐺 (shear modulus or modulus of rigidity) 

 

𝐸 = 2(1 + 𝜈)𝐺,									𝐺 =
𝐸

2(1 + 𝜈) , 𝜈 =
𝐸
2𝐺 − 1 
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2.3.3 Deformation of an Elastic Medium Occupying Half-space 

In this section, we consider an elastic medium occupying a half-space (bounded on one side 

by an infinite plane) and attempt to determine the deformation of the medium caused by forces 

applied to its free surface.  The only constraint on the distribution of forces is that they must vanish 

at infinity in such a way that there is no deformation at infinity.  We take the free surface of the 

elastic medium as the 𝑥𝑦-plane and the medium in 𝑧 > 0.  The final results for the displacement 

of points is given by displacement vector 𝒖  

𝒖 = 〈𝑢®, 𝑢Ã, 𝑢�〉																																																										(2.3.20) 

where 

𝑢® =
(1 + 𝜈)
2𝜋𝐸 ��

𝑥𝑧
𝑟§ −

(1 − 2𝜈)𝑥
𝑟(𝑟 + 𝑧)

�𝐹� +
2(1 − 𝜈)𝑟 + 𝑧
𝑟(𝑟 + 𝑧) 𝐹® +

[2𝑟(𝜈𝑟 + 𝑧) + 𝑧L]𝑥
𝑟§(𝑟 + 𝑧)L

o𝑥𝐹® + 𝑦𝐹Ãq� 

𝑢Ã =
(1 + 𝜈)
2𝜋𝐸 ��

𝑦𝑧
𝑟§ −

(1 − 2𝜈)𝑦
𝑟(𝑟 + 𝑧)

�𝐹� +
2(1 − 𝜈)𝑟 + 𝑧	
𝑟(𝑟 + 𝑧) 𝐹Ã +

[2𝑟(𝜈𝑟 + 𝑧) + 𝑧L]𝑦
𝑟§(𝑟 + 𝑧)L

o𝑥𝐹® + 𝑦𝐹Ãq� 

𝑢� =
(1 + 𝜈)
2𝜋𝐸 ��

2(1 − 𝜈)
𝑟 +

𝑧L

𝑟§
� 𝐹� + �

(1 − 2𝜈)
𝑟(𝑟 + 𝑧) +

𝑧
𝑟§
� o𝑥𝐹® + 𝑦𝐹Ãq� 

and 𝑟L = 𝑥L + 𝑦L + 𝑧L.   

Of particular interest are the displacement of points on the surface of the medium, which is 

given by plugging 𝑧 = 0 into the set of Equations 2.3.20.  For illustrative purposes, we have plotted 

the displacements of points in the 𝑧-direction, e.g. 𝑢� from Eq. 2.3.20, in Figure 2.3.1.1 for 𝑧 =

0.4 m, 𝐸 = 750 kPa,  𝑣 = 0.49, 𝐹� = 𝐹® = 𝐹Ã = 10 N.  
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Figure 2.3.1.1 (a) The displacement of points 𝑢� is more pronounced near the origin and quickly 
approaches zero.  This is perhaps more evident if we inspect the contour plot shown in (b).  For 
− a
L
≲ 𝑥, 𝑦 ≲ a

L
, we observe that 𝑢� has already dropped by more than 80% of the maximum 

displacement.   
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2.4 Capacitance of a Parallel Plate Capacitor after Deformation 

In this section, we embark on the task to determine the capacitance of an original parallel plate 

capacitor after deformation as a result of external forces being applied to the surface area of the 

top plate.  We assume that the bottom plate does not go through any deformation as a result of 

forces being applied to the top plate.  This is reasonable assumption since the bottom electrode’s 

thickness is small compared to the insulator’s and can be thought of as being attached to a fixed 

surface unable to deform.  Now, if we assume a uniform compression in the downward direction, 

then we would only need to consider deformations in the z-direction.  This is because an 

infinitesimal decrement in the distance between the plates caused by a force results in a higher 

increment in capacitance than an infinitesimal increment of the surface area by the same force after 

deformation.  Perhaps, this last statement would be more evident if we evoke the parallel plate 

approximation (𝐶~𝐴/𝑑) and assume a uniform compression in the downward direction so that the 

area 𝐴 remains approximately constant.  Then, upon compression, the capacitance of the charged 

system becomes  

𝐶~
𝐴 + ∆𝐴
𝑑 − ∆𝑑 																																																																	(2.4.1) 

From Equation 2.4.1, we can clearly see that since ∆𝐴 is negligible, the capacitance is 

dominated by the change of compression in the downward direction, e.g. ∆𝑑.  For most practical 

applications, a uniform compression is hard, if not impossible, to achieve in practice.  Even if a 

uniform normal force were to be applied to the top surface of a deformable capacitor, the amount 

of compression at each point on the capacitor’s surface would not be the same.  In effect, upon 

application of a uniform normal force, we would expect more deformation at sides of the capacitor 

as these can freely move outward.  For the regions near the center of the capacitor, on the other 
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hand, the amount of deformation is less pronounced.  This is because the atoms constituting the 

regions near the center cannot move freely sideways without colliding with nearby neighbor atoms.  

This is analogous to Fick’s first law of diffusion which asserts that particles move from regions of 

higher concentration to lower concentration.  In Chapter 4, we will show that this claim is 

consistent with our COMSOL Multiphysics simulations for our capacitive pressure sensor model.  

In the remaining of this section, we propose a mathematical procedure to calculate the capacitance 

of a capacitor after deformation.     

We first let the initial top plate’s surface be flat with surface charge density 𝜎a and its surface 

be described by the function 𝑔a¥(𝑥, 𝑦) = 𝑧/.  Similarly, we let the surface of the bottom plate be 

flat and described by 𝑔L¥ (𝑥, 𝑦) = 0 with surface charge density 𝜎L.  Then, upon application of the 

force 𝑭 = 𝐹®𝒙Ì + 𝐹Ã𝒚Ì + 𝐹�𝒛N on the top plate (𝒙Ì, 𝒚Ì, and 𝒛N are unit vector in the 𝑥, 𝑦, and 𝑧 directions, 

respectively), its new surface becomes 𝑔a(𝑥, 𝑦).  The bottom plate’s surface, on the other hand, is 

undeformed so that its new surface 𝑔L(𝑥, 𝑦) = 𝑔L¥ (𝑥, 𝑦) = 0.  Then, using Equation 2.2.5, we find 

that the potential difference ∆𝑉 between the two plates after deformation becomes 

∆𝑉 = 𝑉x − 𝑉y = 𝑉[𝑃a(𝑥/, 𝑦/, 𝑔a)] − 𝑉[𝑃L(𝑥/, 𝑦/, 0)]																											(2.4.2) 

where 

𝑉x = 𝑘K

⎣
⎢
⎢
⎢
⎢
⎡

	g

r1 + s𝜕𝑔a𝜕𝑥 u
L
+ s𝜕𝑔a𝜕𝑦 u

L
𝜎a𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
Lv|

+g
𝜎L𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑔aL]
a
Lv}

	

⎦
⎥
⎥
⎥
⎥
⎤
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𝑉y = 𝑘K

⎣
⎢
⎢
⎢
⎢
⎡

	g

r1 + s𝜕𝑔a𝜕𝑥 u
L
+ s𝜕𝑔a𝜕𝑦 u

L
𝜎a𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑔aL]
a
Lv|

+g
𝜎L𝑑𝑦𝑑𝑥

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
Lv}

	

⎦
⎥
⎥
⎥
⎥
⎤

 

If we assume constant surface charge densities for both plates, then we may use the relation 𝜎L =

−𝜎a(𝐴a/𝐴L) from the set of Equations 2.2.9 to find the capacitance of the plates after deformation 

𝐶 =
𝐴a

𝑘K �Γa −
𝐴a
𝐴L
ΓL�

																																																									(2.4.3) 

where  

Γa = g{
1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
L
−

1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑔aL]
a
L
~

v|

r1 + s
𝜕𝑔a
𝜕𝑥

u
L

+ s
𝜕𝑔a
𝜕𝑦

u
L

𝑑𝑦𝑑𝑥 

ΓL = g{
1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L + 𝑔aL]
a
L
−

1

[(𝑥 − 𝑥/)L + (𝑦 − 𝑦/)L]
a
L
~ 𝑑𝑦𝑑𝑥

v}

 

Knowing how the top surface is deformed upon application of a force 𝑭, e.g. 𝑔a(𝑥, 𝑦), allow 

us to obtain a numerical solution for the capacitance of the charged system.  A much simpler 

expression than Equation 2.4.3 can be obtained if we make use of the parallel plate approximation.  

To this end, we first assume that we can subdivide the plates into smaller ones with area ∆𝐴 =

∆𝑥∆𝑦.  We further assume that each pair of subdivision (one from the bottom plate and one from 

the top plate) is at the same potential so that all elements (capacitors) are in parallel.  Then, the 

equivalent capacitance 𝐶KÕ is  
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𝐶KÕ = 𝐶a + 𝐶L +⋯+ 𝐶^ =Y𝐶Z

^

Z`a

=Y
𝜖∆𝐴

𝑧/ − 𝑔a(𝑥Z, 𝑦Z)

^

Z`a

 

𝐶KÕ = lim
^→_

Y
𝜖∆𝐴

𝑧/ − 𝑔a(𝑥Z, 𝑦Z)

^

Z`a

= 6
𝜖𝑑𝐴

𝑧/ − 𝑔a(𝑥, 𝑦)
 

𝐶KÕ = g
𝜖𝑑𝑥𝑑𝑦

𝑧/ − 𝑔a(𝑥, 𝑦)
																																																						(2.4.4) 

Again, knowing the surface 𝑔a(𝑥, 𝑦) would allow us to determine the capacitance of the 

charged system.  An unrealistic model but one for which we can readily obtain a numerical value 

for the capacitance from Equation 2.4.4 would be an elastic medium occupying half-space.  To 

this end, we assume that the top plate’s surface area has been deformed in such a way that its new 

surface 𝑔a could be approximated with a displacement function 𝑢� of the insulating material.  This 

is a reasonable assumption, since the insulating material thickness 𝑧/ is typically much larger than 

the thickness of the top electrode’s thickness.   And, as a result, we would expect the top electrode’s 

surface to go through the same amount of deformation as the top surface of the insulating material.  

Due to the big difference in thicknesses between these two materials, we could therefore 

approximate the displacement of points of the insulating material using Equation 2.3.20.  Of 

particular interest is the displacement of points on the surface of the medium, which is obtained 

by substituting 𝑧 = 0 for the z-component of the displacement vector 𝒖.  Doing so, results in 

𝑢�(𝑥, 𝑦) =
(1 + 𝜈)
2𝜋𝐸

1
𝑟 U2

(1 − 𝜈)𝐹� + (1 − 2𝜈)
1
𝑟
o𝑥𝐹® + 𝑦𝐹ÃqV																			(2.4.5) 
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where 𝑟L = 𝑥L + 𝑦L.  Now, substituting Equation 2.4.5 into Equation 2.4.4 for 𝑔a(𝑥, 𝑦), we obtain 

𝐶 =g
𝜖𝑑𝑥𝑑𝑦

𝑧/ −
(1 + 𝜈)
2𝜋𝐸

1
𝑟 �2(1 − 𝜈)𝐹� + (1 − 2𝜈)

1
𝑟 o𝑥𝐹® + 𝑦𝐹Ãq�

																	(2.4.6) 

If the insulating material is Polydimethylsiloxane (PDMS), Equation 2.4.5 can be further 

simplified as the Poisson’s ratio 𝜈 is close to 1/2 and 𝐸 = 750	kPa.  Inserting 𝜈 = 1/2 into 

Equation 2.4.6, we obtain 

𝐶 =g
𝜖𝑑𝑥𝑑𝑦

𝑧/ −
3𝐹�
4𝜋𝐸

1
𝑟
																																																									(2.4.7) 

We would like to point out that in deriving Equation 2.4.7, we are assuming that the 

deformations in the 𝑥 and 𝑦 directions are considered so small that the surface area remains 

approximately constant as the loads are applied.  This is particularly true for small loads for which 

the relationship between strains and stresses is linear.  Note also that the shear components of the 

force 𝑭, 𝐹® and 𝐹Ã, have completely vanished, and, thus, have no effect on the theoretical value for 

the capacitance given by Equation 2.4.7.  This result in quite surprising since this is precisely what 

we would expect upon application of purely shear force.  Note that even the Poisson ratio 𝜈  was 

not exactly 1/2, the first term in square brackets of Equation 2.4.6 goes like 1/𝑟 whereas the 

second term (shear component) goes like 1/𝑟L.  Thus, the shear component of force vanishes faster 

as 𝑟 increases and has little effect on the capacitance value.   We can also readily see from Equation 

2.4.7 that as the normal component of the force 𝐹� increases, the plates are compressed more and 

more, and the capacitance increases.  This effect is somewhat to be expected if we consider the 
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parallel plate approximation for which the capacitance increase as the distance between the plates 

decreases. 

 

CHAPTER 3 SENSOR DESIGN AND WORKING PRINCIPLE 
 

In this chapter, we present previous work done by our research group.  Our major goal here is 

to provide the reader with relevant information pertinent to our proposed sensor design and its 

working principle.  The two aspects we highlight here concerning sensor design are the relevance 

of its location and its performance criteria, such as sensitivity and load dynamic range.  The 

working principle, on the other hand, is of particular interest because explicit theoretical 

expressions for capacitive values are given and can be compared with the ones obtained from our 

COMSOL Multiphysics simulations.  Since this chapter is essentially a summary, the reader is 

strongly encouraged to refer to pages 15-35 of reference [4] for a detailed description of this 

chapter.   

 
3.1 Sensor Location and Performance Criteria 
 

There are essentially four surgical grasper locations on which sensors can be integrated; each 

location with advantage and disadvantages as shown in Figure 3.1.  Sensors integrated on the 

grasper tip, however, offer the most realistic representation of loads during surgery and have been 

proven to give accurate measurements during delicate surgical tasks, provide direct tissue-sensor 

interaction, and offer better spatial resolution.  It was for these reasons that our proposed sensor 

was based on tip-integrated technologies, from which the capacitive modality was preferred.   This 

preference was given due to its many advantages such as excellent sensitivity, large dynamic range, 

good spatial resolution, and controllable noise susceptibility.  Two of these advantages, sensitivity 
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and dynamic range, are of particular interest since they are used as performance metrics required 

for detection of loads during surgical procedures for which dynamic range is 1 mN to 20 N, 

although loads exceeding about 14 N (285 kPa over a 56.4 mm2 grasper area) result in tissue injury 

[14].   

 
Fig. 3.1 Locations on the robotic grasper that have been identified as possible locations for sensor 
systems [4].   

 
 
 

3.2 Working Principle  
   

Our proposed capacitive force sensor is designed in such a way that it would provide both 

normal and shear force data with high sensitivity for robotic surgical applications.  The sensor is 

designed as a single-sided capacitive sensor for simpler integration with electronics and the 

surgical grasper.  Furthermore, the design was motivated by the need to protect the sensor surface 

from sterilization and surgical environments while allowing for accurate measurements of the 

tissue-grasper interface [4].  The schematics of such design are shown in Fig. 3.2, while a top-view 

of the device along with a cross-sectional view are both displayed in Fig. 3.3.  To aid in the 
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discussion of our sensor’s working principle, we will constantly refer to the sensor layout shown 

in Fig. 3.4, which highlights key parameters in the evaluation of capacitive values.   

 
Fig. 3.2 Design of a multi-axis force sensor for haptic feedback system in robotic surgery. ∎	Au 
gold, ∎ polydimethylsiloxane (PDMS), ∎ substrate [4].  The material used for the electrodes was 
chosen to be gold because of its high electrical conductivity and its adhesiveness to PDMS, which 
was chosen as the insulator because of its stable flexibility, heat-restiveness, and insulating 
properties. 
 

 
 
 

Fig. 3.3 Top and cross-sectional views of the proposed multi-axis force sensor.  	top gold plate, 
bottom gold plate, PDMS.  Adapted from [4]. 
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Fig. 3.4 Capacitive values to be computed for the proposed multi-axis force sensor.  Note that all 
the perimeter top electrodes (𝐶Z^’s) have the same area.  Adapted from [4].   

 
 

3.2.1 Compressive Sensor Theory 
 

When a compressive normal force is applied to the proposed sensor, the signal is registered 

through the series combination of the two middle capacitors (𝐶��ÛÜ), because the measurement is 

setup to be a single-ended measurement.  That is, a measurement in which one of the compressive 

electrodes is used for the excitation while the other one is used for the response.  Notice also from 

the cross-sectional view of Fig. 3.3 that the bottom gold electrode is common for both compressive 

electrodes so that when a single-ended measurement is made, the compressive electrodes 

(capacitors) act as a series combination.  From circuit theory, we know that the equivalent 

capacitance 𝐶KÕ	for two capacitors (𝐶a and 𝐶L) in series is given by  

 

𝐶KÕ = 	
𝐶a𝐶L
𝐶a + 𝐶L

																																																															(3.2.1) 
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Since the middle capacitors are identical, 𝐶KÕ =
a
L
𝐶a =

a
L
𝐶��ÛÜ.  Now, from the stress-strain 

relation given by Eq. 2.3.19, 𝑢Z° =
a
Ý
[(1 + 𝜈)𝜎Z° − 𝜈𝜎��𝛿Z°], we know that for a linear elastic 

isotropic material 𝑢�� =
a
Ý
𝜎��.  In particular, for the 𝑧-component,  

 

𝐸 =	
𝜎�
𝑢�
=

𝐹/𝐴
∆𝑧/𝑧/	

=
𝐹/𝐴

(𝑧 − 𝑧/		)/𝑧/	
																																											(3.2.2) 

 

Solving for 𝑧 and substituting it into the parallel plate approximation, Eq. 2.2.17, we obtain 

𝐶 = 	
𝜖𝐴Ü�Þ³K

C1 − 𝐹
𝐸𝐴D𝑧/

																																																										(3.2.3) 

Thus, using Eq. 3.24 we find that the equivalent capacitance as a function of applied (normal) force 

for the compressive sensors is given by 

 

𝐶KÕ = 	
𝜖𝑠L

2𝑧/ C1 −
𝐹
𝐸𝐴D

																																																							(3.2.4) 

 

Note that in deriving Eq. 3.2.3, we have assumed that that force will be equally distributed across 

the top sensor surface area 𝐴��ÛÜ and that the amount of compression 𝑧 is the same for all points 

on 𝐴��ÛÜ.  In chapter 4, we will verify the validity of these assumptions.  
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3.2.2 Shear Sensor Theory 
 

When a shear force is applied 𝑥 direction, the capacitance of the middle capacitors does not 

change, and the equivalent series capacitance between the positive (negative) input capacitance 

terminal 𝐶Z^a(x)	o𝐶Z^a(y)q and excitation terminal 𝐶K®� is found to be 

 

𝐶a,L =
𝜖
𝑧 ¢

𝐴K®�𝐴Z^a(±)
𝐴K®� + 𝐴Z^a(±)

£																																																				(3.2.5) 

 

where 𝐴K®� and 𝐴Z^a(±) are the overlap areas of the excitation and positive (negative) electrodes, 

respectively, and are defined by 

 

	
𝐴K®� =

𝑠𝑙
4

𝐴Z^a(±) = C
𝑠
4 ± 𝑥D 𝑙

	à																																																								(3.2.6) 

 

Now, because the shear sensing electrodes are designed to make a differential measurement, 

uniform compression will not result in a registered shear measurement.  One way to visualize this 

effect is to think about the following scenario: imagine the shear electrodes go through the same 

amount of compression, so the that 𝐶a  and 𝐶L from Eq. 3.2.5 are exactly the same.  Then, a 

differential capacitance measurement is 𝐶 = 𝐶a − 𝐶L	which is exactly equal to 0.  If there is a shear 

component to the force, on the other hand, the differential capacitance in the 𝑥 direction 𝐶® 

becomes 

 

𝐶® = 𝐶a − 𝐶L 
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𝐶® =
𝜖𝐴K®�L

𝑧
�

𝐴Z^a(x) − 𝐴Z^a(y)
o𝐴K®� + 𝐴Z^a(x)qo𝐴K®� + 𝐴Z^a(y)q

� 

 

𝐶® =
𝜖
2𝑧 ¢

𝑠L𝑙𝑥
𝑠L − 4𝑥L£																																																							(3.2.7) 

 

Following a similar argument and exploiting the symmetry of the sensor, we find that the 

differential capacitance due to a shear force in the y direction is given by  

 

𝐶Ã =
𝜖
2𝑧 ¢

𝑠L𝑙𝑦
𝑠L − 4𝑦L£																																																							(3.2.8) 

 

To find the change in capacitance due to an applied shear force, it is necessary to define a 

couple parameters first.  The shear modulus 𝐺, which measures the resistance of solid to the motion 

of internal planes sliding past each other, is defined as the ratio of the shear stress 𝜏 to the shear 

strain 𝛾 and is given by Eq. 3.2.8.  Fig. 4 illustrates the effect of a shear force 𝐹 on a rectangular 

block. 

 

𝐺 =
	𝜏
𝛾 =

𝐹/𝐴
∆𝑥/𝑧																																																													(3.2.9) 
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Fig. 3.5 A rectangular block under shear stress.  

 
 

The shear modulus can also be expressed as follows: 
 

𝐺 =
	𝐸

2(1 + 𝜐	)																																																											
(3.2.10) 

 
where 𝐸 is the elastic modulus and 𝜐 is the Poisson’s ratio.  Setting Eq. 3.2.9 and Eq. 3.2.10 equal 
to each other and solving for ∆𝑥 = 𝑥, we obtain  
 

𝑥 =
2𝐹𝑧(1 + 𝜐)

𝐴𝐸 																																																									(2.3.11) 

 
For a small displacement ∆𝑥 = 𝑥, Eq. 3.2.7 can be further simplified to Eq. 2.3.12 
 

𝐶® ≈
𝜖𝑙𝑥
2𝑧 																																																																(3.2.12) 

 
Finally, substituting Eq. 2.3.11 into Eq. 3.2.12, we obtain an expression that relates the 
capacitance to the applied shear force 𝐹: 
 

𝐶® ≈
𝜖𝑙(1 + 𝜐)
𝐴𝐸 𝐹																																																									(3.2.13) 

 
 

Chapter 4 COMSOL Multiphysics Results 
 

In this chapter, we present the capacitive values obtained from COMSOL Multiphysics for our 

micro-scale, tri-axial, capacitive-based, differential force sensor model shown in Figure 4.1 and 

commonly referred here as Capacitive Force Sensor (CFS).  Special attention is given to the two 

idealities presented in section 3.3—uniform compression and the parallel plate approximation—
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and how the introduction of these idealities makes the theoretical capacitive values deviate from 

the ones obtained from COMSOL Multiphysics.  Our first efforts consist of various illustrations 

of how the CFS’s surface is modified under compressive and shear loads.  Recall from section 2.4 

that knowing how the surface is deformed upon application of a force 𝑭 allow us to obtain a 

numerical solution for the capacitance of a parallel plate after deformation.  Thus, having a clear 

visualization of how the CFS’s surface is deformed would allow us to decide what approximations 

can be made when computing the capacitance of a charged system.  In the remaining of this 

chapter, we provide plots of the capacitance as function of applied force for our CFS model and 

some figures of merit such as sensitivity.   

 
Fig. 4.1 Top view of our proposed capacitive force sensor (CFS), adapted from [4].  The 
parameters were chosen as follows: 40 nm gold electrode thickness; 50 µm insulator thickness 𝑧/; 
2.5 mm rectangle length 𝑙; 0.75 mm rectangle width 𝑠/2; and, 1.5 mm square side 𝑠. 

 
 
 
4.1 Sensor’s Capacitance under Compressive Loads  
  

The realized CFS model using COMSOL Multiphysics is illustrated in Figure 4.2.  Please note 

that unless otherwise stated, we will be focusing on the corner shown in Figure 4.2 (b) for reasons 

that will become clear later on.  Also, for clarifications purposes, the orientation of the 𝑥yz 
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coordinate axis will always be given on the bottom left corner of all the COMSOL Multiphysics 

figures.  Having stressed these points, let us begin with our analysis of what happens when a 

uniform compressive force is applied on the top surface of our CFS model.  As shown in Figure 

4.3, as the load increases in magnitude, the points on the top surface go through larger and larger 

displacements whereas all the points on the bottom surface stay fixed.  That the points on the 

bottom of the CFS stay fixed is to be expected, since it was chosen as fixed boundary condition.   

Now, inspecting a top view of our CFS model, we notice that top edges of the CFS, particularly 

the corners, experienced the most deformation while the points near the center of the CFS are 

hardly deformed even for loads as large as 4 N as shown in Fig. 4.4.   Notice also from the cross-

sectional view of Fig. 4.4 that the amount of compression slowly increases from the center of the 

CFS towards the side, e.g. the 𝑥𝑧-plane.  We would expect, therefore, that the points near the center 

go through approximately the same amount of compression.  The validity of the compressive 

capacitance given by Equation 3.2.3, which makes use of the parallel plate approximation, is 

confirmed, at least for our range of tested compressive loads.   

 
  
Fig. 4.2 Realized CFS model using COMSOL.  (a) A see-through diagram is shown here to 
appreciate the electrodes, particularly the bottom electrode which would otherwise not be visible.  
(b)  Zoom-in of the corner that the blue arrow in (a) points to. 

            

(a) (b) 



 42 

Fig. 4.3 Deformation of the CFS under various uniform compressive loads.  Here, the amount of 
compression is given by F_z and is uniformly applied throughout the top of the CFS.  The legend 
on the right-hand side shows the magnitude of the displacement.   
 

      
 

      
 
 
 
 
 
 
 
 
 



 43 

Fig. 4.4 Top and cross-sectional views of the CFS under a uniform compressive load of 4 N.  
 

      
 
 

 

It is worth mentioning that Equation 3.2.3 is only for valid for ½
Ý5
≪ 1 and is, therefore, not 

much useful for our studies.  We do have, however, experimental results for the normal capacitance 

as a function of applied force, shown in Fig. 4.5, which are in close agreement with the capacitive 

values obtained from COMSOL Multiphysics, shown in Fig. 4.6.  Notice also the linearity of both 

plots from which the sensitivity, a figure of merit, can be obtained from the slope.  The sensitivity 

for the experimental results is approximately 3 fF/N whereas that from COMSOL Multiphysics 

0.7 fF/N.  
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Fig. 4.5 Experimental results for normal capacitance as a function of applied force [15]. 

 
 
Fig. 4.6 COMSOL results for normal capacitance as a function of applied force. 

 
 
 
4.2 Sensor’s Capacitance under Shear Loads 

Our analysis for this section begins with the deformation effect of a shear load on the top 

surface of our CFS model.  As shown in Figure 4.7, as the load increases in magnitude, the points 
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on the top surface go through larger and larger displacements whereas all the points on bottom 

surface stay fixed as this last surface was chosen as fixed boundary condition.  We also notice that 

as the shear load increases, the thickness of the CFS, relative to the bottom surface, decreases.  

This effect is of particular interest, since even if a differential capacitive measurement was made, 

we would still have to account for this decrease in thickness.  Recall from Eq. 3.2.5, 𝐶a,L =

ä
�
s 5åæç5­�|(±)
5åæçx5­�|(±)

u, that thickness 𝑧 is fixed, when, if fact, it is being reduced as larger and larger shear 

loads are applied.  We would, therefore, expect a higher capacitive value than the theoretical one 

for large loads.   

Note also that this reduction in thickness would also have significant implications on the 

compressive capacitive values for large shear loads.  The differential capacitance given by 

Equation 3.2.13 would therefore be valid only for small loads such that 𝑧 remains approximately 

constant.  In addition, we would also like to point out that since the shear electrodes are not 

completely aligned with the bottom electrode—some of the shear electrode’s surface area lies 

outside of the bottom electrode when viewed from above—we would expect strong fringe field 

effects and, therefore, a non-linear relationship between shear capacitance and force.  In fact, this 

is precisely what the COMSOL Multiphysics simulations predict as shown in Fig. 4.8.  
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Fig. 4.7 Deformation of the CFS under various shear loads.  Here, the magnitude of the shear force 
is given by F_x and is applied on the top of the CFS.  The legend on the right-hand side shows the 
magnitude of the displacement.   
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Fig. 4.8 Shear capacitance as a function of applied (shear) force in the positive 𝑥-direction for (a) 
the shear electrode 𝐶Z^a(y) and (b) the shear electrode 𝐶Z^a(x).  Notice the capacitance for 𝐶Z^a(y) 
is slightly bigger than 𝐶Z^a(x) for all shear loads.  This is because as the shear force in the positive 
𝑥-direction increases, the overlapping area for 𝐶Z^a(y) increases while that for 𝐶Z^a(x) decreases.  
That the shear capacitance for 𝐶Z^a(x) continues to increase as the shear force increases is due to 
the decrease in thickness of the CFS.  Note also the predicted non-linear relation between 
capacitance and shear force.  It is worth mentioning that this relation also holds true for the 
differential capacitance shown in (c). 
 

   
 
 

 
 

 

(a) (b) 

(c) 
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4.3 Summary and Conclusion  
 

We have tested and confirmed the validity of some of the theoretical capacitance 

approximations for our capacitive force sensor.  In general, it was found that for small applied 

loads, such that the relationship between stress and strain is linear, our approximations hold true.  

Given that the chosen insulating material, PDMS, exhibits a non-linear behavior between strain 

and stress, we anticipated that for large loads, our approximations would no longer remain valid 

as verified by our COMSOL Multiphysics simulations.  This was particularly true for shear 

capacitances, without mentioning the fringe field effects, which would have to be taken into 

account for better capacitance estimates.  We believe that knowing how the electrode’s surface is 

deformed can yield more accurate capacitive values.  This is because the gamma functions from 

section 2.4 can be directly evaluated to obtain a numerical solution for capacitance, assuming only 

a constant charge density.  Current work is being done to optimize the sensitivity of our current 

capacitive force sensor model.  And strongly believe that by adjusting the geometric parameters 

from our current capacitive force sensor model, we can achieve this without the need to fabricate 

the capacitive force sensor model again, but rather with the aid of COMSOL Multiphysics.  
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