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Abstract

This paper develops a new econometric method to estimate continuous time processes from
discretely sampled data. This method extends the maximum likelihood technique to cases where
the transition density of the process cannot be computed in closed form but can nevertheless be
computed by simulation. The asymptotic properties of the estimator are obtained, showing it to
have the same behavior in large samples of the (unknown) true likelihood estimator. That is, the
simulated likelihood estimator is consistent and asymptotically normal. The econometric method
is used to estimate the parameters of a broad family of processes for the short term interest rate
and test some restrictions to well known models of the term structure.
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1 Introduction

For most time series, the process generating the observations can be seen as
continuous, even though the observations are only made at discrete inter-
vals. In fact, modelling the data generating process in continuous time has
important advantages, since continuous time models are, in some ways, more
fundamental than discrete time models of statistical time series. First, a par-
ticular continuous time process is compatible with (infinitely) many different
discrete time processes, in the sense that it generates the same joint distri-
bution for any given sample. Second, continuous time models are not tied to
the time interval at which the observations happen to be made. This charac-
teristic is particularly important for nonlinear models, since these models do
not preserve their distributional characteristics at different time intervals!.

Discrete time statistical models have nevertheless been widely used in the
literature since, when the time interval of the statistical model coincides with
the observation interval, these models usually lead to likelihood functions or
moment conditions that are easily computed. On the contrary, the likelihood
or moment conditions of nonlinear continuous time processes observed at
discrete intervals are for most cases unknown.

Among Markovian continuous time processes, diffusions? are a particularly
interesting class. First, modelling a data generating process as a diffusion is
very parsimonious since it involves specifying only its local mean and variance
and yields a very precise statistical specification for estimation. Furthermore,
the class of Ito processes is closed under a variety of nonlinear transforma-
tions and there is available a calculus that allows the explicit computation of
the processes followed by (nonlinear) transformations of any given process.
Finally, diffusions approximate well a wide variety of commonly used discrete
time processes.

LConsider a simple example. Suppose that we observe a time series with a given interval,
and model it by a nonlinear but conditionally Gaussian process, such as GARCH, with time
interval equal to the periodicity of observations. For a given sample, it is easy to construct
the likelihood function and optimize it numerically. But, if we choose a frequency for the
model that is different from the periodicity of the data, if we encounter missing data, or if
the observations are irregularly spaced, the conditional distribution of the process between
observations will not be normal anymore.

2We will loosely refer to diffusions as Ito stochastic differential equations (SDE).



Diffusions are one of the major building blocks in Finance theory, where a
number of methods are available for pricing derivatives given the processes
followed by the underlying assets or state variables. In order to use these
models it is, however, necessary to be able to estimate the parameters of the
process followed by the underlying asset or state variables.

In this paper, we consider the problem of parametric estimation of diffusions
from discretely sampled data. This problem has received some attention
in the literature, but, so far, there does not seem to be any completely
satisfactory method available.

The traditional literature on the estimation of diffusions has dealt with the
few cases for which the transition density (and thus the likelihood) or the
(conditional) moments of the process are known. As an interesting recent
example in the term structure literature, Pearson and Sun (1994) estimate
the parameters of the (unobservable) processes followed by the factors in
Cox, Ingersoll and Ross’ (1985) model. They make use of the fact that the
transition density of the state variables is known, since they follow square root
processes, to construct the likelihood function of a sample of bond prices. For
the same model, Gibbons and Ramaswamy (1993) use unconditional moment
conditions to estimate the factor processes’ parameters with GMM.

Hansen and Scheinkman (1994) have recently extended the class of models
for which we can use econometric methods based on the true moments of
the data generating process. They show how to obtain moment conditions
from the infinitesimal generators of a variety of stationary Markov processes.
These moment conditions can then be used in GMM?3. This method requires
that the process be stationary and ergodic.

The rest of the literature has dealt with the problem of unknown moments
and conditional densities by developing methods to approximate these quan-
tities.

The simplest approch in this literature has been to approximate the moments
of the continuous time process by the moments of its Euler discretization,
with discretization interval equal to the sample frequency. Chen, Karolyi,

3Conley, Hansen, Luttmer and Scheinkman (1995) estimate a semi-parametrized diffu-
sion for the spot interest rate based on these moment conditions.



Longstaff and Saunders (1992) provide an illustration of this method, esti-
mating a constant elasticity of variance model of the spot interest rate. The
problem with this method is that the estimator is biased because of time
aggregation.

Lo (1988) has proposed approximating the transition density of the diffu-
sion by a numerical solution of the forward Kolmogorov partial differential
equation (PDE) with appropriate boundary condition. Note that, to approx-
imate the likelihood function, this PDE has to be solved for every point in
the sample. This is clearly very demanding computationally. Nevertheless,
this method has been applied by Mella-Barral and Perraudin (1993). Unfor-
tunately, there is no analysis available of the discretization error induced by
the numeric methods used in the solution of the PDE.

Duffie and Singleton (1993) have proposed an estimation method that ap-
proximates the unconditional moments of the process by moments obtained
from simulations of its sample paths. These simulated moments can then be
used with GMM. An important advantage of this method is that it is us-
able to estimate the processes followed by unobservable state variables that
drive the uncertainty of the variables in the sample. Additionally, the paper
shows how to control the bias induced by the simulation. However, when the
method is applied to diffusions, an additional error is made in the discretiza-
tion of the process, which the paper does not show how to control. Another
problem is that the method imposes very strong requirements in terms of
stationarity of the process to be estimated.

Gourieroux, Monfort and Renault (1992) have proposed an indirect method
that extends Duffie and Singleton’s and that has been specialized to the
estimation of diffusions by Broze, Scaillet and Zakoian (1994). This approach
involves the use of an auxiliary criterium* and an auxiliary parameter for
which an estimation method with good properties exists. Then, this criterium
is “incorrectly” maximized for values simulated according to the true model.
Finally, the estimator for the true model parameters is calibrated by the
difference between the estimators of the auxiliary parameter obtained by the
appropriate method and the simulated method.

4Which can be the exact likelihood of an approximate model or an approximation of
the exact likelihood of the model.



He (1990) proposes approximating the conditional sample moments by a
binomial discretization. With this approach there is only a discretization
error, which is controlled for, and no simulation error. However, this method
is computationally heavy, since it requires that a binomial tree be evaluated
for every observation in the sample, every time the objective function is
computed.

Finally, Ait-Sahalia (1995) explores the relationships that exist between the
marginal and conditional densities of a diffusion and its drift and diffusion,
using a nonparametric kernel estimator of the densities to conduct inference
on the parameters defining the diffusion. This method again requires sta-
tionarity of the processes to estimate.

Our method has elements of several of these papers, being closest in spirit
to the papers by He and Lo. We propose a method for approximating the
likelihood function by simulation that is both feasible computationally and
that provides an estimator that inherits from the true likelihood estimator
the right asymptotic properties.

Making use of the fact that the processes we want to estimate are Markovian,
we write the likelihood function as the product of the transition densities be-
tween consecutive observations. These transition densities are not known.
We approximate them by the transition densities of an Euler discretization
of the diffusion. That is, we split the interval between two consecutive obser-
vations in many small intervals and consider the Euler discretization of the
diffusion, which is a particularly simple, conditionally Gaussian, discrete time
process. We then look at the transition densities between the observations
in our sample of this discrete time process.

However, this transition density is also unknown. So, we estimate it by
taking a large number of simulations of the discretized process between the
two observations. In doing these simulations, we make use of the fact that
the transition density between observations of the Euler approximation is a
convolution of Gaussian densities. Our simulation method can be interpreted
simply as a numeric method for computing the multiple integrals involved in
this convolution.

We are able to control the discretization and the simulation errors asymp-



totically and we show that our estimator converges to the (unknown) true
maximum likelihood estimator and that it has the same properties in large
samples.

This method has several advantages. First, as a likelihood maximizing esti-
mator, this estimator uses all the information about the transition density
of the process instead of just using the information about some arbitrarily
chosen moments. This advantage is even more marked over methods that
use only unconditional moments and that, therefore, do not use information
about the transitions of the process.

Second, the method is computationally feasible on a personal computer. Al-
though, it requires the computation of a large number of trajectories of a
finely discretized process between each two consecutive observations, these
are simple to compute recursively.

And, finally, our method imposes relatively mild conditions on the diffusion
to be estimated. In particular, we do not impose conditions on the rate of
mixing of the process in order to show that our estimator is equal asymptot-
ically to the true likelihood estimator. This is particularly important since a
great many diffusions that have been used in models of asset prices are not
stationary.

This paper is organized as follows. In section 2, we explain the econometric
method. Section 3 shows the convergence of our simulated likelihood estima-
tor to the true likelihood estimator. Section 4 shows the asymptotic prop-
erties of the true likelihood estimator of our estimator simulated likelihood
estimator. In section 5, we illustrate our method, estimating a parametric
process for the spot interest rate. Section 6 concludes the paper.

2 Simulated Maximum Likelihood

In this section, we describe the econometric method. For notational simplic-
ity, only univariate diffusion processes are considered here. The results can
easily be extended to the multidimensional case.



Consider a complete probability space, (€2, F, P), where a standard Brownian
motion, W, is defined. Let Y be defined by the SDE

dY (t) = a(Y (t), t; 0)dt + b(Y (t), t; 0)dW (t) (1)

with initial value Y(0) € IR. The functions a and b of Y and t depend on
an unknown parameter vector . In order to characterize the dynamics of
Y, we are interested in estimating this parameter. We make the following
assumptions.

Assumption 1 The drift and the diffusion function are sufficiently regular
for the existence of a unique strong solution to (1). Sufficient conditions are
the usual linear growth and uniform Lipschitz continuity®.

Assumption 2 Let 8 € © C IR, where © is a compact parameter set that
contains the true parameter vector 6.

Now, suppose the process Y is sampled at N + 1 discrete points in time
to, t1, ..., tn, and let Y(n) = (Yo, Y4, ..., Yn) denote this random sample, where
Y, is the observed realization of Y at time t, for n =0,1,..., N.

Given the discretely sampled data and the specification of the process Y, we
denote by P(Y (n);6) the joint distribution of Y ) and let p(Y(x); f) denote
the density representation of P(Y(x);#). When considered as a function of
9, this joint density is obviously the likelihood function® of Y (), denoted
L(Y (ny;0). Since Y is a Markovian process, the joint density p may be
written as the following product of conditional densities

N-1

L(Y(n);8) = p(Yo,t0;0) 1] p(Yns1,tns1]Yn, tn; 6) (2)

n=0
For simplicity, we denote L(Y (n);8) by Ly(6).

Assumption 3 In a neighborhood of the true parameter 6°, Ly (f) is twice
continuously differentiable in 6. Furthermore, E[(0Ln(6)/00)(0Ln(6)/00")]
has full rank and is bounded for all 8 € ©.

5See Karatzas and Shreve (1988).
6See Dhrymes (1994, Sections 5.2 and 5.3) for a discussion of the definition of the
likelihood function and the problem of estimation within the probability space defined.




This assumption insures the identifiability of §y in the parametric class of
likelihood functions considered.

Deriving the likelihood function then reduces to calculating the transition
density functions p(Yn+1, tnt1|Yn, tn;0) and the unconditional density at the
initial time”.

The problem we face is that the likelihood function is in general unknown,
since the transition densities (and unconditional density) that constitute it
are unknown. We therefore procede to approximate the transition densities
between each pair of consecutive observations by the transition densities of
a discretization of the diffusion. We take this discretization to have a time
interval many times smaller than the interval between observations.

Now, we still have the problem that not even the transition densities of the
discretized process between observations are known. We can nevertheless
compute them numerically by taking many simulated paths of the discretized
process and taking the mean of an appropriate function of these simulated
values.

In a simpler way, we propose a method of numerically computing the tran-
sition densities of the diffusion that can then be replaced in the likelihood
function. For alln = 0,1, ..., N —1, and given 6, we discretize the process Y,
starting from Y, at time ¢,, in order to approximate the density of Y at time
tni1, and evaluate it at the observed realization Y, ;. Then, we can use this
value to substitute for p(Y,41, tnt1|Yn, tn; 8) in the likelihood function.

We first discretize the process Y between times ¢, and tn+18. There is an
infinity of discrete time processes that approximate Y in this interval. We
thus choose a particularly simple one: The Euler approximation®.

“See Karlin and Taylor (1981) for a characterization of the unconditional density of a
diffusion.

8For an excellent reference to the discretization of diffusions see Kloeden and Platen
(1992).

9There are more efficient schemes than this one, namely the one proposed by Milshtein
(1974) and further enhanced by Pardoux and Talay (1985). However, for our purposes
the Euler scheme seems appropriate, although any other scheme with Gaussian transitions
would do. GARCH approximations of stochastic volatility processes as in Nelson (1990)
are of particular interest.



Without loss of generality, normalize the length of the intervals [t,,tn1] to
1 and split them into M equal subperiods of length A = 1/M and let Y,(M)
be the discrete-time process defined, for m = 0,..., M — 1, by!°

(M o (M (M
Yti+zm+1)h = Y;Eﬁ-znh + ha (Yts.+2nha tn + mh)
(M M
+ b (Y;f1+3nh7 tn + mh) Agﬂﬁz(mﬂ)hw (3)

with initial value YtiM ) — Y., where
Aiﬁ?(mﬂ)hw = W(t, + (m + 1)h) — W(t, + mh)

Note that the processes Y™, for all n, are defined on the same probability
space as Y.

Now, the one-step transition density of the discret~ time process, Y,SM ) eval-
uated at y at time ¢, + (m + 1)h, given that x was observed at time t,, + mh,
is normal, that is,

¢ (y,tn + (m+ 1)h|z, t, + mh) = ¢(y; = + ha(z, t, +mh), hb(z, t, + mh)?)
where ¢(.; M, V) denotes the normal density with mean M and variance V.

The transition density for several discretization periods can be obtained re-
cursively, for ¢ + 1 > j varying as m, as

+oo
0™yt + i+ Dhleta+38) = [ gy tn + i+ Dhlz, by +h)

dM(z,t, + ih|z, t, + jh)dz

Thus, the conditional density of the discrete time process at the point Y,
at time t,,1 given the observation Y, at time ¢, is

+o00
™ (Vg1 toga| Yo tn) = /_ . 0™ (Yni1, tasa|2, tn + (M — 1)R)
™M (z,t, + (M — 1)h|Yy, t,)dz (4)

19We assume that we are given 8, and do not make explicit the dependence on this
parameter vector for notational ease.



This conditional density is the convolution of m — 1 normal densities and
consists of m — 2 integrals that cannot in general be computed analytically.
In principle, this multiple integral could be computed by traditional methods
of numerical integration, but this becomes computationaly infeasible very
quickly!!. We propose computing this integral by Monte Carlo simulation.

A natural approximation to the transition density can be obtained by look-
ing at ¢™)(Yy11,tn41|Yn, tn) as an expectation of a function of the random
variable Yt%z M—1), - that is, the variable z in (4) - with density ¢M (2, t, +
(M — 1)h|Y,, t,), which can be easily approximated by simulation.

We thus take a large number P of simulations of the stochastic process
Y(M ), using a normal random number generator to produce P independent
Gaussmn sequences {At tm +l)hW(p)}m~0, p = 1,2,..., P, that correspond
to drawin s of the original Brownian motlon 12 In thls way, P observa-
tions of Y +(M _1)n are produced, denoted Y +( Mo 1)h( ) or simply Z(M) for

=1,2,..., P, and an estimate of q(M)(YnH, tnt1|Yn, tn) can be computed as
§MP) (Yo, tnsa [Yas tn) 2 $(Yorr; M(ZE), V(Z5))

where
M(ZM)) = Z3M + ha(ZPD, 8, + (M — 1)h)

V(ZM) = hb(ZM, ¢, + (M — 1)h)*

We can compute the unconditional density for the initial observation when
the process is stationary (and thus time independent) and ergodic. We can
make use of the fact that p(y) = lim;_,. p(y, t|z,0) and simulate the condi-
tional density over a long enough time interval, for any given initial condition,
z, and evaluate it at y = Y. Alternatively, we can use the following equality
obtained from the forward Kolmogorov equation13

p(y) = b2 o) xp{ /

11See McFadden (1989))

12We can apply variance reduction techniques to the Monte Carlo draws in order to
increase the precision of this integration method. See Kloeden and Platen (1992) and
Newton (1990).

13Gee Karlin and Taylor (1981) or Ait-Sahalia (1995).
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where C is just a constant to make the density integrate to one. This inte-
gral can in some parametrizations be computed explicitly, or, in other cases,
numerically. In any case, the first term of the likelihood function will not
effect the value of the function for large enough samples. Of course, when
the process is not stationary, it must be assumed that the first point in the
sample is deterministic.

Finally, we approximate the true likelihood function by its simulated couter-
part

N-1
L%VLP)(O) = é(M’P) (Y07 tO; 0) H Q(M’P)()/n+latn+llymtn;0)

n=0

and the log-likelihood function by

N-1
[(NMyP) (0) = ]-n qA(M‘P) (}/0, tO, 0) + Z ln Q(M’P)(Yn-t-l’ tn+l|Yna tn’ 0)

n=0
The estimator obtained by maximizing lAﬁvM’P)(O) is denoted by é%VM’P).

When using a numerical optimization algorithm, it is necessary to compute
the log-likelihood function for different values of 6 in every iteration. Note
that when 6 changes, the same drawings of the P independent sequences
{Aiﬁ(mﬂ)hW(p)}nﬂf;&, p=1,2,..., P are used. This allows us to obtain an
approximation that is a smooth function of 6 and it is necessary to obtain
the asymptotic results provided in the next section.

The gradient and Hessian of the simulated log-likelihood function with re-

spect to 6 can be computed explicitly. We see that, for each simulated
transition density,

dgMD(]) 1 & a¢(z,§M>)+a¢(Z,§M>)aZ,gM>
90 az:M 00

de P

p=1

where we write gb(ZI(,M)) for ¢(., M (Z;,(,M))7 V(ZI(,M))) All derivatives can be
computed explicitly, except for lA)I(,M ) = BZI(,M )/06. This derivative can be
obtained from the Monte Carlo simulation of the discretized process as'*

A (M ~ (M (M - (M A (M
Dt(n+)(m+1)h = Dt(n—i—)mh + h(ae(Y;E.+2nha tn+mh)+ ay()/;:f,+3;zh, tn + mh)Dﬁn—l—)mh

14 Qubscripts indicate partial derivatives.
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Cr(M o (M A (M \ (M
; +(b9(Yt£+zwzh7 tn + mh) + by(ytfﬁznh’ th + mh)DtEn%-)mh)Azgn-i-)(m+l)hW
o

with initial value D " = 0. The Hessian can be obtained in a similar way.

in order to show the asymptotic properties of our estimator, we continue as
follows. First, we show the convergence of the simulated maximum likelihood
estimator to the true likelihood estimator. Then, we give the asymptotics of
the true likelihood estimator. This is the subject of the next two sections.

3 Convergence of the Simulated Likelihood
Estimator to the True Likelihood Estima-
tor

In this section we show that the simulated likelihood estimator converges to,
and is asymptotically normal around, the true likelihood estimator. We first
show the convergence of the simulated densities to the true densities as both
the number of discretization intervals, M, and the number of simulations,
P, go to infinity. Then, we show the convergence of the simulated likelihood
function to the true likelihood function, letting the sample size, N, also go
to infinity. We conclude the section with the convergence of the simulated
likelihood estimator to the true likelihood estimator.

We want to characterize the convergence of GMP) (Y, .1, tns1|Ya, ts), & trian-
gular array of random variables indexed by M and P, to p(Yp+1,tn+1|Yn, tn),
a fixed number. We start by giving the following proposition.

Proposition 1 Under assumption 1, as M — oo,

4™ (Yost, tns[Yas tn) = P(Yosrs tnsa Yo, ) = 0 (MY?).

The strong consistency of our estimator of the transition density follows
immediately from an application of the strong law of large numbers.

Proposition 2 Under assumption 1, as M — oo and P — 00, almost surely

qA(M}P)(KHfl’ t'l‘H—lI)/'nv tn) - p(Yn+17 tn+1,}/;27 tn) - O

11



Corolllary As M — oo and P — oo, almost surely the simulated likelihood
function converges to the true likelihood function.

We now characterize the rate of convergence of the simulated transition den-
sity to the true transition density.

Proposition 3 Under assumption 1, as M — oo and P — 00, in such a way
that vP/M — 1,

VP[{MP) (Yoi, tnit|Yartn) — p(Yarts tnsa|Ya, tn)]
~ N(O’ Var(¢(Y(tn), ‘M(Yn+l)a V(Yn+1)))

Note that the asymptotic variance is a finite number that can be consistently
estimated by its simulated counterpart, Var(¢(Z®™); M(Y,41), V(Yay1)). The
asymptotic ratio of M and P means that we should take the number of sim-
ulations to be the square of the number of discretizations. Duffie and Glynn
(1983) show that, for this ratio, the number of basic computations necessary
to compute the simulated density is proportional to M3.

Proposition 4 Under assumptions 1 and 3, as N — oo, M — oo and
P — oo, with VP/M — 1,

(v*7(6) - In(0) = o NP12).
Since the simulated likelihood function converges to the true likelihood func-
tion almost surely for any fixed 6, it follows that the estimator of § from the
simulated likelihood function also converges to the value of the parameters

maximizing the true likelihood function. The following result gives the rate
of this convergence.

Proposition 5 Under assumptions 1 to 3, as N — oo, M — oo and as
P — oo, with VP/M — 1,

ég\/I,P) — Oy = o(N1/2P”1/4).
where Oy is the parameter that maximizes [y (0).

Therefore, the simulated likelihood estimator converges to the true likelihood
estimator as long as P goes to infinity at a rate faster than the square of N.

12



4 Asymptotics

In this section, we characterize the consistency and asymptotic normality of
the true likelihood estimator!® and of our simulated likelihood estimator.

We first introduce some notation. Denote the gradient of the conditional
density of observation n by u,(6). Then

d
un(0) = 25 1np(YalYo 1)

and thus N
dln Ly(6) _
-5 = ;%(9)-

By construction, Eg[u,(0)|F,-1] = 0, implying that {dln Ln(0)/df,F,} is a

square integrable martingale, given the boundedaess of second derivatives in

assumption 3. Denote the second derivatives of the transition densities by
dun(6)

d?
vp(0) = p77) Inp(Y,|Yno1) = 7R

It is well known that, almost surely,

Eplvn(6)| Fn1] = —Eolun (0)| Fo-1)-

In order to simplify notation, we now introduce

N
WO) = S enld
e

d
- nz::l d—GQ_ lnp(Yn|Yn—l)

N

In() = Y Eglui(6)|Fni]

n=1
N

2
= Z Eg i lnp(YnIYn_1) 5
= do

'5We broadly follow Hall and Heyde (1980) in obtaining the asymptotic properties of the
true likelihood estimator and specialize the relevant conditions to the case of diffusions.

13



from what follows that
IN(0) = —Eg[In(0)|Fn-i]
and therefore Jy(60) + In(f) is a martingale.

We now investigate the consistency of the maximum likelihood estimator. In
order to do that, the function dln Ly/d# is expanded around the true value
0o of the parameter, and evaluated at the optimum, 8y,
d N
@ ln LN(ON) = Z un(«90) —_ (GN - Oo)fN(go)
n=1
+  (On — 60)[In(O) + In(60)]

where 0} = 6y + v(On — 6p) with |y| < 1. Notice that, since 8y maxi-
mizes In Ly, the left hand side is simply zero. Rearranging the terms of this
expansion in order to isolate (fy — 6p), it follows that

(On — 60)[1 — In(60) " (In(6x) + In(60))]

= ]’1\](00)_1 2:1 ’U,n(eo)‘.

We make a further assumption.

Assumption 4 Iy(6p) — oo, in the sense that NIy(f)\ — oo, for any
A € R¥. A sufficient condition is that the gradient of the transition densities
be bounded.

We can now state the following proposition, that shows the consistency of
the true likelihood estimator.

Proposition 6 Under assumptions 1 to 4, as N — oo,
9N - 6() — O

Regarding the fluctuations of the estimator around the true value of the
parameter, we can see that, as N — oo,

In(80) (6 — B0) ~ In(680)"2 S wa(f),

n=1

14



Now, the right hand side is a martingale difference array, and we can apply
to it a Central Limit Theorem!®.

Assumption 5 The ratio of the gradient of the transition densities to the
transition densities converges, or, if divergent, does so at a rate that is
slower that the rate of convergence of Iy(6y)~1/? to zero. A sufficient condi-
tion is that the transtion densities be strictly positive and their gradient be
bounded?”.

Proposition 7 Under assumptions 1 to 5, as N — o0,

In(80)/*(8 — o) ~ N(0,1),

We are now ready to establish the asymptotic fluctuations of the simulated
likelihood estimator, 0}3,”’13), around the true value of the parameter, 8.

Write X X
G0 — gy = (B8P — i) + (O — 60) (5)

Notice that the first term on the right hand side is shown in proposition 5 to
behave asymptotically, as N — oo, as

é}(\ll\lvp) _ 0N —_ O(NI/ZP—1/4)
The second term is shown in proposition 6 to behave as
1/2
I "(60)(On — 60) ~ N(0,1)
Hence, multiplying equation (5) by I}V/Z(Go), gives, as N — 00,
I (o) (6" — 00) = I/*(00) (6 — 60) + I*o(N/2P1*)
We can show that the second term in the right hand side is asymptotically

negligible when P goes to infinity at a rate faster than the fourth power of
N and state the following proposition.

18Gee Davidson (1994, Section 24.2).
17See the comments on the proof of proposition 7.
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Proposition 8 Under assumptions 1 to 5, as M — oo, P — ooand N — oo,
with v/P/M — 1 and N/P'* — 0,

1N (86) (89" — 8p) ~ N(0,1)

Finally, note that a consistent estimator of In(6p) is In( AJ(VM’P)).

5 Application to the Short Term Interest Rate

In this section we apply our econometric method to estimate a parametric
diffusion for the short term interest rate that has been proposed by Ait-
Sahalia (1995). The short rate is parametrized as follows

dr(t) = [ag + aar(t) + agr?(t) + ag/r(t)]dt + [Bo + Byr(t) + Bor(t)]dW (t)

Ait-Sahalia provides conditions on the parameter values to insure existence,
stationarity and positivity of the process.

We study this parametrization for two reasons. First, because it encompasses
several of the specifications for the short rate process found in the literature,
which can therefore be tested. Second, because it allows us to verify the
existence of nonlinearities in the drift reported by Ait-Sahalia.

Our data set consists of observations of the same interest rate that has been
studied by Ait-Sahalia. We use the seven day eurodollar rate as a proxy
for the instantaneous interest rate. Our data were taken from Datastream
and consist of Bankers’ Trust middle quotes for deposits at the close of the
London market. We obtain 514 weekly'® observations from October 14, 1983
to August 13, 1993. In Figure 1 we show a plot of the time series of the data
and Table 1 reports summary statistics.

We estimate the diffusion by simulated likelihood, taking 15 discretization
intervals between each pair of observations and 225 simulated paths of each

18Using weekly data can be seen as a compromise between high frequency and avoiding
microstructure problems.
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discretized process'®. We use the numeric optimization method proposed by
Berndt, Hall, Hall and Hausman (1974) to maximize the simulated likelihood
function. The computation time of the simulated likelihood on a 486DX2
personal computer is of the order of 15 minutes.

The results of the simulated likelihood estimation are presented in Table 2
and the corresponding drift and diffusion functions are plotted in Figures 2
and 3. We obtain results that are similar to the results of Ait-Sahalia, except
that our estimated diffusion function is practically linear whereas his looks
more like a parabola. Some of our parameter estimates are not significative,
namely the estimates for fy, ;1 and B;. The estimate of 3 is very close to
one, which gives some support to a linear diffusion function.

We test three constrained models. In all of these, we model the diffusion
function as constant elasticity of variance and try different drift functions.
Table 3 reports the simulated log-likelihood values for the constrained models
as well as for the general model. We use a likelihood ratio test to compare
the different nested specifications. We find that all constrained models can
be rejected with respect to the general model. However, among the different
models with constant elasticity of variance, we find that we cannot reject a
quadratic drift with respect to the general drift, and that we cannot reject
a linear drift with respect to a quadratic drift. The case of linear drift is
nevertheless rejected when compared with the quadratic drift. We conclude
that the case for a nonlinear drift is not as strong as reported by Ait-Sahalia®.

6 Conclusion and Future Work

We develop a new econometric method to estimate parametric diffusions
from discretely sampled data. The method consists on the optimization of
a numerical approximation to the likelihood function. This approximation
is based on a Monte Carlo simulation of a discretization of the continuous

'YWe experimented several diferent sizes for the discretization interval and found that,
for the interval chosen, the simulated densities were very stable to variations in the number
of intervals (and corresponding changes in the number of simulations).

20 Although for identification of the drift, it is fundamental to have a long sample, and
the sample used by Ait-Sahalia covers a longer time span.
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time process. We are able to control the rate of this approximation and show
that our estimator inherits the asymptotic properties of the true likelihood
estimator.

Our method has four important advantages over others that have been pro-
posed in the literature. First, it shares the asymptotic properties of true
likelihood estimation. Second, it makes use of all the information in the
sample, rather than just the information in some moments. Third, it is
computationally feasible. And, fourth, it can be applied to non-stationary
processes.

A number of issues remain to be investigated for this econometric method.
First, the small sample properties of the method should be examined. Sec-
ond, other discretization schemes can be used, in particular it would be in-
teresting to use the GARCH approximations to diffusions studied by Nelson
(1990). Finally, the method can in principle be extended to cover regime
switching models, jump-diffusions and processes with barriers.
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Appendix

Proof of Proposition 1 Under regularity conditions for the drift and vari-
ance of the process?!, it is known that

N - 1
BV = Yt PT = Y(t) = Ya] =0 (7).

From Chebyshev’s inequality, it follows easily that the convergence of the
process in mean square to zero at a given rate implies convergence of the
transition densities at the square root of that rate. O

Proof of Proposition 2 Recall that
. 1 & :
q(M’P)(Yn-Hv tai1[Yn, tn) = P };1 ¢(Yn+1; M(Z;(;M))a V(Z}()M)))

where the elements in the sum are i.i.d. and such that

E[¢(Ynr1; M(Z8M), V(ZID))] = ¢™) (Yai1, trs1|Ya, tn)-

Hence the Strong Law of Large Numbers applies and, almost surely,
Q(M’P) (Yn+17 t'n+1|Yna tn) - q(M) (Yn+17 tn+1|Yn7 tn) - 0
as P — o0o. Use of proposition 1 completes the proof. O

Proof of Proposition 3 Write

\/I_) [Q(MYP) (Yn+1, tn+1|Yna tn) - p(Yn—H» tn+1|Ym tn)]
F ¢(Z1(1M)) - q(M) (Y;H—la tn+1|Yna tn)

:El B

+ \/ﬁ[q(M) (}/n+1, tn+1|Ym t'n) - p(Yn-H’ tn+1|Yn7 tn)]

Now, proposition 1 ensures that the second term converges pointwise to zero
whenever M — oo.

21 Assumption 1 is sufficient, see Pardoux and Talay (1985).
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We can apply the Lindeberg-Feller Central Limit Theorem to the first term
in the right hand side of the equality above as in Duffie and Glynn (1993).
Notice that, from the local Brownian property of diffusions??, as M — oo,

O (Yara; M(ZSM), V(Z)) = 9(Z™; M(Yin), V (Yaia) + o(1/VM)
and it follows that
Varl(Yai1; M(ZS™), V(Z8M))] = Var[¢(ZM; M(Yai), V (Yasa))+o(1/VM)
which converges to a finite positive constant. O

Proof of Proposition 4 Denote by z(-P) the difference between the sim-
ulated transition and the true one

:L"SLM’P) = d(M’P) (KH—I: tn+1|)/n7 tn) - p(}/n—Ha tn+1 lY;za tn)

Proposition 3 implies that (™) is of order P~'/2 as P tends to infinity. It
is then possible to characterize the rate of convergence of the log-likelihood
functions as follows.

Taking z = oM7) and p = p(Yos1, tus1|Ya, t), write

[gM P (YVas1,tnsa| Yo t)] = 1[p(Yai1,tni1|Ya, tn)]
= In(z+p)—lnp=In(l+z/p)

Use of a simple Taylor expansion for fixed p, as x — 0, gives
In(1 + z/p) ~ z/p + o(z) = o(P~7?)

where the last equality follows from the previous results. Summing this
difference of logarithms over all the N elements of the sample, gives the
result. O

Proof of Proposition 5 Expanding 5(6) around 6y and evaluating it at
GJ(VM’P) gives
Oly o Ply

~ A 1.
(8" = L (6w) + (OF"" — )5 (6) + 5 (B — 6w) 23 (6R)

228ee Amaro de Matos (1995).
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. . . A(M,P .
where 0}, is a convex combination of 6" ) and On. The term corresponding
to the first derivative in the expansion is zero since, by construction,

8[1\( (HN)

I (6)

A similar expansion of [ around 9%"’})) and evaluated at Oy gives

82l( 1P)

M
1(0) = 0+ 05 0) 2 500 L e Z T

where 03 is a convex combination of 0( ) and 0y. Since &y /06? is
bounded by assumption 3 and i( P) converges to [y, we can sum both ex-

pansions, rearrange the terms and use the result of the previous proposition
to obtain the result. O

Proof of Proposition 6 As in Hall and Heyde?, it suffices that Iy(6y) — oo
as N — oo for the right hand side to go almost surely to zero. Hence, as
N — oo and almost surely,

(6 — 60)[1 — In(60) (i (6") + In(60))] — O.

Now, since there exists 6** between §* and 6 such that

dJn(6*)
a6

the term converging to zero may be decomposed in

In(67) = Jn(60) + (6" — 0o)

. B . . _dJn(6**

(6= B0)[1 = Iy (0o)™ (I (Bo) + In (Bu))]) + (3 — 0u) 0" — 60) (80) 2007
If In(fy) — o0 as N — oo, the second term converges to zero provided
that Jy has bounded gradient, which is insured by assumption 3. Regarding
the first term, since Jy + Iy is a martingale, the sum converges to zero in
the mean. Divided by Iy and summed to 1, the term in square brackets

2Gee Section 6.2 and Theorem 2.18.
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Table 1
Summary Statistics for Short Term
Interest Rate

r Ar
Mean 0.07147 -0.000125
Std. Dev. 0.02178 0.005229
p(1 week) 0.97109 -0.420478
p(1 month) 0.95945 -0.000626
p(3 months) 0.92019 0.104542

p(6 months) 0.84208 0.063245




Table 2

Simulated Likelihood
Parameter Estimates

InL = 2048.56
Estimate Std.Error
[0 7 -6.66E-3 3.28E-3
a, 4.98E-2 2.20E-2
o -3.065 1.2097
(o B 6.27E-4 3.31E4
Bo -1.10E-3 7.20E-4
B -1.61E-3 5.17E-3
Bz 2.87E-2 1.80E-2
Bs 9.06E-1 1.01E-1




gL S

Table 3
Simulated Likelihood Values

Different Models
Model SLV
Linear Drift, CEV Diffusion 2028.98
Quadratic Drift, CEV Diffusion 2032.60
General Drift, CEV Diffusion 2034.43
General Model 2056.59




Figure 1

Seven Day Interest Rate
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