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On the Delicate State of Instability of a Vertical Riser

Transporting Fluid

Hyung-Taek Kima, Oliver M. O’Reillya,∗

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley CA 94720,

USA

Abstract

The variation in the dynamic characteristics of a flexible riser as the riser transitions from
a vertical riser to a catenary-type riser is investigated. It is well known that the straight
configuration of a flexible vertical riser conveying fluid destablizes in a divergence-type
instability once the velocity of the transporting fluid exceeds a critical speed. As ex-
pected, the instability persists if a slight horizontal offset is introduced at the hang-off
point. However, as demonstrated in this paper, if a finite horizontal offset is introduced
then the instability vanishes and the resulting static configuration of the catenary-type
riser is stable regardless of the transport speed of the fluid.

Keywords: flexible riser, top end horizontal offset, Kirchhoff’s rod theory, stability,
top tension, internal fluid transport,

1. Introduction

The subject of this paper is the dynamics of a riser that transports fluid from the
seabed to and from a moored vessel. Referring to Figure 1(a), if the hang-off point H is
directly above the mooring point (or well head) O and the riser is vertical, then it is well
known that the straight equilibrium configuration of the riser will become unstable if the
speed of the fluid being transported by the riser is sufficiently large. If the hang-off point
H is displaced so as to produce a so-called top end offset, then it is easy to deduce that
the equilibrium configuration of the riser assumes the shape of a catenary. Indeed for a
given value of the so-called top tension at the hang-off point, it is possible to have two
configurations of the catenary-type riser (cf. Figure 1(b)).1 The configuration with the
shorter length is stable while the configuration with the longer length is unstable when
fluid transport is considered. What is not understood is how an unstable vertical riser
(labelled v in Figure 1(b)) can be stabilized as a catenary-type riser (labelled i in Figure
1(b)) for all fluid transport speeds when a horizontal offset is introduced. The purpose
of the present paper is to resolve this issue and to explain the remarkable transition
to stability that occurs when the horizontal offset is increased from zero. Our analysis

∗Corresponding author, Tel.: +1 510 642 0877, oreilly@berkeley.edu
1The use of top tension to help classify the configurations of the riser is due to Chucheepsakul and

his coworkers (see, e.g., Chucheepsakul and Monprapussorn (2001)).
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Fig. 1. (a) Flexible riser used in marine environments for oil and gas development process, which has a
non-zero top end horizontal offset (XH) from the vertical axis; and (b) three static riser configurations
that have the identical magnitude of tension at the hang-off point H. Previous work by Monprapussorn
et al. (2007) showed that the vertical riser labeled v can experience a divergence-type instability. Our
earlier work (Kim and O’Reilly (2019a)) established that the shorter riser, which is labeled i, is stable
while the longer riser, which is labeled ii, can only become unstable in a flutter-type instability provided
the effects of fluid transport in the riser are included in the model.

assumes that the top tension remains constant and the length of the undeformed riser
changes accordingly.

An outline of this paper is as follows. In the next section, a brief review of the
literature on divergence-type instability of vertical risers is presented. This review is
complemented by a related discussion on catenary-type risers. The model for the riser
and the numerical schemes used to solve the boundary-value problem for the static con-
figuration and the linear vibration analysis are summarized in Section 3. A summary of
the dynamics of the riser when a horizontal offset is introduced is presented in Section 4
and the main results of the paper are summarized in Section 5.

2. Background on Stability of Risers

By way of background, research on the destabilizing effects of internal flow on the
dynamics of pipeline dates to the pioneering work by Päıdoussis (1966). Surveys of this
field, including discussion of the wide range of applications, can be found in Ibrahim
(2010), Ibrahim (2011), Päıdoussis (2014), and Päıdoussis (2016). The vast majority of
works in this area consider a straight pipe. For example, Ni et al. (2011) investigated
the effects of the boundary conditions on the instabilities in a straight riser that are
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present as the internal fluid speed is increased (quasistatically). They demonstrated that
the instability was either a divergence type or flutter type depending on the boundary
conditions. Their work also inspired the related investigations by Chang and Modarres-
Sadeghi (2014), Ritto et al. (2014), and Sazesh and Shams (2019).

Extending the aforementioned works to catenary-type risers is challenging because
the equilibrium configuration is not trivial. As a result, recourse to numerical methods
must be made. However, considerable progress has been made in understanding the
dynamics of catenary-type risers (cf. Chucheepsakul et al. (2003), Santillan et al. (2010),
and Chatjigeorgiou (2010)). In particular, stability criteria for the catenary-type riser
and the destabilizing effects of fluid flow are now more fully understood (cf. Kim and
O’Reilly (2019a)). One aspect that has not been reported previously is the stabilization of
a vertical riser, such as the configuration labelled v shown in Figure 1(b), when a sufficient
large horizontal offset is introduced. The analysis in the present paper demonstrates how
stabilization occurs. We show that the stability characteristics of a catenary-type riser
whose horizontal offset is non-zero, such as the configuration labelled i in Figure 1(b), are
noticeably different from the phenomenon observed for a vertical riser. For example, the
vertical riser has a critical speed of internal flow at which the lowest natural frequency of
the riser drops down to zero and a divergence-type instability occurs, while the catenary-
type riser can remain stable regardless of the fluid transport speed. Additionally, we will
show how the modal analysis for the vertical riser and the catenary-type riser can also be
dramatically different. To provide this explanation, we found that we needed to extend
and complement earlier works such as Klaycham et al. (2017) and Alfosail et al. (2017)
by considering both in-plane and out-of-plane modes and fluid transport.

3. Modeling a Flexible Riser

As may be seen from the literature, flexible risers are modeled using a variety of
string and rod theories and finite element methods. In the work presented here, we
will use the rod-based model discussed in Kim and O’Reilly (2019a). The rod theory
used for this model is known as Kirchhoff’s rod theory. The theory accommodates non-
planar motions of the rod and is able to model extension, bending, and torsion of the
rod as is discussed in a number of books including Antman (2005), Love (1927), and
O’Reilly (2017). Referring to Fig. 1(a), the rod is assumed to be submerged in a fluid.
Thus, in addition to a gravitational force, a buoyancy force and the effects of an external
current are modeled. The prescriptions for the drag and added mass forces are obtained
from the generalized Morison equation (Morison et al. (1950)). Furthermore, the effects
of transporting a fluid at a constant speed Vi inside the riser is also included. The
parameter values for the riser considered in the present paper are summarized in Table
1. In the interests of brevity, we do not repeat the lengthy formulation of the equations
of motion and solution procedures and instead refer the interested reader to the paper
Kim and O’Reilly (2019a).

After formulating the boundary-value problem, the static configuration of the rod is
computed directly using the MATLAB built-in function ‘bvp4c’ which is a finite difference
code that implements the 3-stage Lobatto IIIa formula (Shampine et al. (2003)). Among
others, the static (equilibrium) configuration will depend on the fluid transport speed,
the buoyancy force on the riser, and the horizontal offset. To examine the stability of a
static configuration, we consider small amplitude perturbations to the static configuration
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Table 1. The values of the parameters used for the riser model in our numerical analyses.

Parametera Symbol Unit Values

density of sea water ρf kg/m3 1025
density of internal fluid ρi kg/m3 998
density of riser ρo kg/m3 7850
outer diameter Do m 0.26
inner diameter Di m 0.20
cross-sectional area of outer pipe Ao = π

(

D2

o −D2

i

)

/4 Ao m2 2.17× 10-2

cross-sectional area of inner pipeb Ai = πD2

i /4 Ai m2 3.14× 10-2

horizontal offset XH m 0
vertical offset H m 300
bending stiffnessc EI Nm2 3.02× 107

axial stiffness EA N 4.49× 109

added mass coeff. Ca - 1.0
normal drag coeff. Cn - 0.7
tangential drag coeff. Ct - 0.03
prespecified top tension TH kN 476.2
internal fluid speed Vi m/s 0− 100
external current speed VF m/s 0
gravitational constant g m/s2 9.81

a Monprapussorn et al. (2007).
b This is the cross-sectional area of the riser through which the fluid is transported.
c The area moment of inertia I = π/64

(

D4

o −D4

i

)

.

using a standard procedure (see, for example, Neukirch et al. (2012)). With the help of
the boundary conditions, we compute eigenvalues and corresponding eigenmodes of the
static configuration of the riser. The eigenvalues are expressed as follows:

λn = Re (λn) + iIm (λn) = δn + iωn. (3.1)

Classic results (see, for example, Atanackovic (1997)) are then used to determine the
linear stability of the static configuration of the riser. In particular, if the real part of
a single λn is positive, then the static configuration is said to be (linearly) unstable.
Otherwise, when δn ≤ 0 for all n, then the static configuration is said to be linearly
stable. That is, small perturbations to the static configuration do not lead to unbounded
motions of the riser.

4. Numerical results and parametric studies

4.1. Validations of Model and Solution Procedures

Prior to examining the effects of the horizontal offset on the dynamic characteristics
and the stability of the riser, we validated our method to compute the static config-
urations and variation of natural frequencies with changes to the internal fluid speed.
To this end, we compared our predicted results with those from Päıdoussis (1975) for
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Fig. 2. The variation of the lowest modes for two types of riser: (a) and (b), a clamped-clamped horizontal
pipe; and (c) and (d), a vertical riser. (a) and (c) show the natural frequencies of the lowest modes,
i.e., imaginary part of eigenvalues (ωn), while (b) and (d) show the real part of the first three (four)
eigenvalues (δn) and can be used to deduce information concerning stability of the static configuration.
The parameter values for the pipe are taken from Päıdoussis (1975) and Päıdoussis (2014)[Section 3.4.1],
The parameter values for the vertical riser are presented in Table 1 and are adapted from Monprapussorn
et al. (2007).
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a clamped-clamped horizontal pipe2 and Monprapussorn et al. (2007) who considered a
pinned-pinned vertical riser. As can be seen from Fig. 2, our results are in good agree-
ment for both types of model. In addition, we see that there exists a critical velocity
where a divergence-type instability occurs. As the speed of internal fluid transport Vi

keeps increasing, the first and second modes merge, and the third and fourth modes also
merge.

4.2. The effects of the horizontal offset XH when the effects of the internal fluid are

omitted
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Fig. 3. (a) Variation of ωn for the lowest four out-of-plane modes (solid lines), and in-plane modes (dashed
lines) with increasing dimensionless horizontal offset XH/H; and (b) static equilibrium configurations
corresponding to distinct values of XH/H: (1) 0; (2) 0.001; (3) 0.05; (4) 0.1; (5) 0.2; (6) 0.3; and (7)
0.38.

After validating our results with previous works, we performed a series of numerical
analyses to determine the quantitative effects of the horizontal offset on the dynamic
response of the riser. For our model, we used the same parameter values as those in
Monprapussorn et al. (2007) that are listed in Table 1. Of particular interest to us in
this paper are solutions with pinned boundary conditions in dimensionless form applied
at the ends O and H of the riser as follows:

AtO :x = 0, y = 0, z = 0, ν̄1 = 0, ν̄2 = 0, ν̄3 = 0,

AtH :x = xH , y = yH , z = zH , ν̄1 = 0, ν̄2 = 0, ν̄3 = 0. (4.1)

2This work is also summarized in Päıdoussis (2014) along with many other applications.
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Fig. 4. The mode shapes of the lowest four out-of-plane bending modes in the YZ plane for various
values of XH/H: ((a) 0; (b) 0.2; (c) 0.3; and (d) 0.38), and in-plane bending modes in the XY plane for
various values of XH/H: ((e) 0; (f) 0.2; (g) 0.3; and (h) 0.38).

Here, ν̄1,2 are bending strains and ν̄3 is the torsional strain in the rod, which correspond
to the bending and torsional moment, respectively.

After solving the static equations, the modal characteristics of the riser are investi-
gated. Our first set of analyses ignored the effects of the transported fluid. That is, the
transport speed is set to zero (Vi = 0). We then extended the work of Monprapussorn
et al. (2007) by considering both out-of-plane and in-plane vibrations of the riser simul-
taneously. The variation of the lowest four out-of-plane modes and in-plane modes are
shown in Fig. 3(a). The companion Fig. 3(b) shows static equilibrium configurations
for several values of the horizontal offset. It should be noted that as the horizontal offset
is increased, the magnitude of top tension is kept constant (TTop = 476.2 kN) and the
length of the undeformed riser is increased accordingly. Referring to Fig. 3(b), when
the offset (XH/H) is less than 10-3, the out-of-plane and in-plane modes are practically
identical. Because the rod modeling the riser is assumed to be isotropic (EI1 = EI2),
these results are anticipated. As the horizontal offset is increased, however, it is inter-
esting to note that the eigenvalues associated with out-of-plane modes on the YZ plane
and the in-plane modes on the XY plane begin to separate. That is, as XH increases
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and the curvature on the XY plane ν1 becomes increasingly non-uniform, the isotropy of
the rod is insufficient for the two sets of modes to remain similar. For the riser with a
sufficiently large horizontal offset, for example XH/H > 0.01, the natural frequencies of
the out-of-plane modes and in-plane modes are remarkably different, as we can see from
the considerable difference between the solid and dashed lines for each mode in Fig. 3(a)
for large values of XH/H.

The mode shapes of the lowest four out-of-plane modes on the Y Z plane are shown
in Fig. 4(a)-(d), and the corresponding in-plane modes are shown in Fig. 4(e)-(h) for
several distinct values of the horizontal offset XH/H. As can be deduced from those
figures, the out-of-plane mode shapes are invariant under changes in XH , while in-plane
mode shapes show noticeable changes as XH/H is increased from 0. As the curvature
ν1, which is initially zero for the vertical riser, becomes increasingly nonuniform, the
static configuration looses symmetry and the riser becomes stiffer in-plane compared to
out-of-plane. Accordingly, the two types of modes become increasingly distinct. Further,
the natural frequencies of in-plane modes increase while those of out-of-plane modes do
not change significantly.

Referring to the in-plane modes (i.e., the modes on the XY plane) for the riser that
has non-zero horizontal offset shown in Fig. 4(f)-(h), we observed that the fundamental
mode appears at first glance to be akin to a second mode that has a nodal point along
the static configuration. Additionally, the second mode appears to be a third mode with
a pair of nodal points, and so on. However, this illusion can be attributed to the fact that
the mode shapes are superposed on static configurations that have significant curvatures.
We take this opportunity to note that similar results for the deformed mode shape have
been reported by Bylsma et al. (1988) for a simple suspended chain and Eroglu and
Tufekci (2018) for a highly deformed beam.

As discussed in our earlier works (Kim and O’Reilly (2019a,b)), the modes for the
static configurations are always stable so long as the internal fluid speed Vi is set to zero.
Thus, all the static solutions shown in Fig. 1(b) and those shown in Fig. 3(b) are linearly
stable regardless of the values of horizontal offset (XH/H).

4.3. The effects of a horizontal offset when an internal fluid is being transported

In this section, the effects of the horizontal offset XH on the dynamic characteristics
and stability of the riser as the speed of transport Vi of the internal fluid is varied are
discussed. Fig. 5 shows the variation of the natural frequencies of the lowest four out-
of-plane and in-plane bending modes at several distinct values of the horizontal offset.
As mentioned previously, as the hang-off point moves further away from the zero offset
position, the out-of-plane and in-plane bending modes become distinct when the riser
has a horizontal offset of 3 × 10-6 (cf. Fig. 5(c)) or higher (cf. Fig. 5(d)-(i)). 3 As
can be inferred from Fig. 5(c)-(d), for equilibrium configurations with the horizontal
offset ranging from 3 × 10-6 to 3 × 10-5, the separation of the out-of-plane and in-plane
modes takes place at 61.1 m/s, i.e., the critical velocity at which the first mode of the
vertical riser (Fig. 5(a)) or near vertical riser (Fig. 5(b)) destabilizes. As the offset keeps
increasing, the velocity at which the separation of the two types of modes is triggered
continues to decrease (cf. Fig. 5(e)-(f)). Thus, the configurations with significant values

3It is noted that the precision of bvp4c solver is 16 digits, as a default value provided by Matlab.
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Fig. 5. The variations in the natural frequencies (ωn) of the lowest four bending modes as a function
of the transport speed Vi of the internal fluid for various values of the dimensionless horizontal offset
(XH/H): (a) 0 (Vertical riser); (b) 3× 10-7; (c) 3× 10-6; (d) 3× 10-5; (e) 3× 10-4; (f) 3× 10-3; (g) 0.03;
(h) 0.3; and (i) 0.38. For the results shown in (a), the critical speed of internal fluid transport for the
onset of instabilities are listed in Table 2. The solid lines show the out-of-plane bending modes while
the dashed lines show the in-plane bending modes.

of horizontal offset such as Fig. 5(g)-(i) have distinct modal characteristics for the out-
of-plane and in-plane modes as soon as the fluid is being internally transported. This
observation is consistent with the findings discussed in the previous section.

As regards the stability of the static configurations when the transport of the internal
fluid with non-zero speed is taken into account, it should be noted that all of the out-of-
plane and in-plane modes shown in Fig. 5 are stable except for two cases ((a) and (b)).
That is, the real part of the eigenvalues are nearly zero and negative as shown in Fig. 6.
For the results shown for the vertical riser and nearly vertical riser (XH/H < 6 × 10-7)
in Fig. 5(a)-(b), and Fig. 6(a)-(b), it is apparent that critical velocity values exist
where the corresponding modes become unstable. It should be noted that the value
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Fig. 6. The variations of the real part of the eigenvalues (δn) of the lowest four bending modes as a
function of the transport speed Vi of the internal fluid for various values of the dimensionless horizontal
offset (XH/H): (a) 0 (Vertical riser); (b) 3× 10-7; (c) 3× 10-6; (d) 3× 10-5; (e) 3× 10-4; (f) 3× 10-3;
(g) 0.03; (h) 0.3; and (i) 0.38. The solid lines show the out-of-plane bending modes while the dashed
lines show the in-plane bending modes.

XH/H = 6 × 10-7 is the exact point captured by our numerical methods where the
separation of th out-of-plane modes and in-plane modes occurs. The results shown in
Fig. 5(b), and Fig. 5(c), which correspond to the horizontal offsets XH/H = 3 × 10-7,
and XH/H = 3 × 10-6, respectively, are displayed in order to highlight the separation
that starts to occur when XH/H = 6× 10-7.

We interpret the case where the hang-off point is given a small (XH/H < 6 × 10-7)
displacement as a perturbation of the vertical riser. The results for this case show that
when fluid is being transported at a speed beyond the critical speed, then the vertical
riser is unstable both to perturbations that satisfy the boundary conditions and those
that perturb the hang-off point.

We conclude that for risers that have vertical equilibrium configurations (i.e., vertical
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risers), instability at a critical value of the fluid transport speed is inevitable. Right
beyond this point, however, finite values of the horizontal offset produce stable static
configurations that are almost vertical and thus similar in appearance to a vertical riser
(cf. Fig. 3(b)). For instance, for the offset XH/H = 3 × 10−6, instead of becoming
unstable as the transport speed Vi of the internal fluid is increased, the out-of-plane and
in-plane modes separate and remain stable (cf. Fig. 5(c)) as the dimensionless horizontal
offset is increased to 0.38,4 both the lowest four out-of plane and in-plane modes remain
stable (cf. Fig. 6(d)-(f)).

Our results are in agreement with our earlier work (Kim and O’Reilly (2019a)). In
that paper, we showed that a catenary-type flexible riser with a non-zero horizontal
offset remains stable (even when the effects of fluid transport are considered) provided
the static configuration is the shorter of the two configurations having the same value of
top tension (TTop) and the prescribed top tension is above the critical top tension.

Table 2. The speed of internal fluid at which instability occurs.

Type of instability
Divergence Fluttera

1st 2nd 3rd 4th 1st 2nd

Critical internal fluid speed [Vi, m/s] 61.1 80.5 91.5 100.4 92.2 107.7
a Flutter-type instability is found with combinations of modes, i.e., the 1st flutter instability
involves the 1st and 2nd bending modes, and the 2nd flutter instability features the 2nd and
3rd bending modes.

4.4. The effects of internal fluid speed

Since the effects of internal fluid on the stability of both vertical risers and catenary-
type risers have now been described, we now focus attention on the sudden change in
stability characteristics as XH/H is varied. The results shown in Fig. 7, and Fig. 8
demonstrate, respectively, the variation of imaginary (ωn) and real (δn) parts of the
lowest four eigenvalues as XH/H increases for distinct values of the internal fluid speed
Vi.

As can be seen in Fig. 7(a)-(c) and Fig. 8(a)-(c), as long as Vi is below the critical
speed 61.1m/s for a vertical riser, the riser remains stable regardless of the value of the
horizontal offset. When the flow rate crosses a critical value, the stability characteristics
can suddenly change depending on the value of XH/H. This phenomenon can be seen
in Fig. 7(d)-(f) and Fig. 8(d)-(f). Consider a riser whose horizontal offset is zero or is
given a small perturbation, i.e, the riser is nearly vertical, when the speed of the internal
fluid is 80 m/s. This speed is intermediate between the first critical speed (61.1 m/s) and
the second critical speed (80.5 m/s). As can be seen from Fig. 7(d) and Fig. 8(d), only
the first mode becomes unstable. Then, when Vi = 100 m/s, which is right before the
frequency of the fourth bending mode becomes zero (when Vi = 100.4 m/s), the first and

4It should be noted that the dimensionless horizontal offset XH/H = 0.38 is the largest offset that
can sustain the prescribed value of top tension (TTop = 476.2kN). For offsets larger than 0.38, no static
configurations are possible because the prescribed top tension value is below the critical top tension (TCr)
for the riser. For additional details on this matter, see Kim and O’Reilly (2019a), and Chucheepsakul
and Monprapussorn (2001).
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Fig. 7. The variations of the natural frequencies (ωn) of the lowest four bending modes as a function of
the dimensionless horizontal offset XH/H for various values of the internal fluid transport speed Vi: (a)
0; (b) 30; (c) 60; (d) 80; (e) 100; and (f) 120 m/s. The solid lines show the out-of-plane bending modes
in the Z-direction, while the dashed lines show the in-plane bending modes on the Y Z plane.

the second mode are unstable, the third mode is unstable, and only the fourth mode is
stable (Fig. 8(e)). In the end, when Vi ≈ 120 m/s, the first and the second mode merge
and the third and the fourth mode combine and all of the four modes are unstable (Fig.
8(f)). Even at these large values of Vi, however, as long as the riser configurations are
not vertical, i.e., XH/H > 6× 10-7, then the riser will remain stable.

5. Conclusions

In this paper, the change in the stability characteristics of a riser as the horizontal
offset XH and transport speed Vi were varied was discussed. The top tension remained
constant during these variations and, thus, the undeformed length of the riser was also
varied. The riser was modeled using Kirchhoff’s rod theory and is able to accommodate
bending, torsional, and extensional deformations. In addition, fluid-structure interactions
including internal fluid transport and buoyancy were accounted for in the model. The
model and the numerical methods used to determine the static configuration and dynamic
response were also validated with published results from the literature.

As the horizontal offset is increased from zero, the shape of the static configuration of
the riser changes from vertical to catenary-like. In addition, the out-of-plane modes and
in-plane modes start to show distinct behaviors. By analyzing the changes to the static
configurations and dynamic characteristics, we are able to demonstrate how the instabil-
ity associated with a critical transport speed vanishes when the offset XH/H becomes
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Fig. 8. The variations of the real parts of the eigenvalues (δn) of the lowest four bending modes as a
function of the dimensionless horizontal offset XH/H for various values of internal fluid transport speed
(Vi): (a) 0; (b) 30; (c) 60; (d) 80; (e) 100; and (f) 120 m/s. The solid lines show the out-of-plane bending
modes in Z direction, while the dash lines show the in-plane bending modes on Y Z plane.

greater than 6 × 10-7. That is, when the hang-off point is given a finite displacement
from zero.

From the free-vibration analysis about a static configuration, we presented the vari-
ation of the out-of-plane and in-plane bending modes to quasistatic variations in both
the transport speed of the internal fluid as well as the horizontal offset. These results
are graphically summarized in Fig. 9. Results pertaining to small (< 6 × 10-7) values
of XH/H in this figure should be interpreted as perturbations to the hang-off point and
thus stability results for the vertical riser. With this in mind, the results summarize the
instability of the vertical riser as the transport speed Vi is increased and the stability of
the catenary-type riser and its concomitant finite value of XH/H regardless of the value
of Vi. The stability results for the catenary-type riser are consistent with the results
reported in Kim and O’Reilly (2019a).

The fact that the vertical riser can be stabilized by simply giving a finite horizontal
displacement to the hang-off point is reminiscent of a similar phenomenon for a loaded
column. An initially straight vertical column that is fixed at one end and loaded with a
compressive vertical force buckles when the load exceeds a critical value (buckling load).
However, it is possible to give the column an initial curvature and in so doing buckling
can be avoided. An application of this result to the spinal column is presented in Lotz
et al. (2012). These authors also interpret the introduction of curvature as an unfolding
parameter for a pitchfork bifurcation. Such an interpretation can also be applied to the
vertical riser by considering the horizontal offset as a unfolding parameter.

13



From our work, we conclude that both divergence and flutter type instabilities take
place in the vertical riser transporting fluid when the fluid transport speed reaches crit-
ical values. A small horizontal offset separates the out-of-plane and in-plane bending
modes and enables the riser to avoid the instability regardless of the magnitude of the
fluid transport speed. We also confirmed that flexible risers with a considerable offset
remain stable, regardless of the transport speed of the internal fluid, so long as the static
configuration satisfies a certain criterion5. Our principal results are expected to provide
effective and useful guidelines regarding the stability of marine flexible risers.

5As discussed in our earlier work (Kim and O’Reilly (2019a), the prescribed top tension should not
be below the critical top tension, and the static configuration of interest should be the shorter of the
two possible configurations that can exist with the same value of the top tension.
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Fig. 9. The variation of the lowest three out-of-plane ((a),(c), and (e)) and in-plane ((b), (d), and (f))
bending modes (ωn, Z axis) along both the dimensionless horizontal offset (XH/H, X axis) and the
internal fluid speed (U , Y axis), displayed in three dimensional plot: (a) 1st out-of-plane bending mode;
(b) 1st in-plane bending mode; (c) 2nd out-of-plane bending mode; (d) 2nd in-plane bending mode; (e)
3rd out-of-plane bending mode; and (f) 3rd in-plane bending mode.
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