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Abstract

Image patch modeling in a light field

by

Zeyu Li

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

Understanding image content is one of the ultimate goals of computer vision, and ef-
fectively and efficiently extracting features from images is a key component of all vision
research. This thesis discusses methods related to an image-patch based approach to this
feature analysis. Image-patch based methods have attracted a lot of interest for the analysis
of a single images in application areas such as visual object recognition, image denoising,
and super-resolution computation. The basic idea is to treat a single image as a collection
of independent image patches, each of which can be encoded by, for example, a sparse cod-
ing model. The global characterization of that image is attained by aggregating the patch
codes, which brings some level of shift-invariance and robustness to image noise and signal
degradation.

In this thesis, a new scheme, scene geometry-aware image-patch modeling, based on the
concept of a patch-cube, is proposed to model image patches in a light field, rather than in a
single image. A light field is a collection of images all acquired at the same instant, providing
a set of perspectives on the scene as though observing all of the light information that passes
through a windowing portal (clearly with some discretization and sampling). The scene
geometric information is implicitly incorporated in our modeling process, including depth
and occlusion, without explicit knowledge of 3D scene structure. These extra constraints on
the scene geometry empower our learned features to be less affected by image noise, lighting
conditions, etc. As demonstration, we apply our method to joint image denoising and joint
spatial/angular image super-resolution tasks, where its use of the light field will be seen
to permit it to outperform its image-patch based counterparts. Here, a 2D camera array
with small incremental baselines is used to capture the light field data, and this analysis is
the majority of what we report. Additionally, working with real data from real light-field
cameras, we present novel and highly effective methods for the calibration of these camera
arrays.

In common with the single-image model, learning a good ”dictionary” plays a very im-
portant role in our work – selecting an appropriate set of features that can provide succinct
representations of a scene. Inspired by the success of the image patch-based method [2], we
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show that feature extraction for image patches is closely related to the low-rank kernel ma-
trix approximation using the Nystrom method. The dictionary in sparse coding, or cluster
centers in K-means clustering, are actually landmark points which can better capture the un-
derlying higher-dimensional (manifold) structure of the data. Based upon this observation,
our contribution is two fold: 1) an efficient algorithm to perform Kernel Principle Component
Analysis feature extraction using landmark points, and 2) an alternative method for finding
better landmark points based on Generalized Extreme Value distributions, GEV-Kmeans.
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Chapter 1

Introduction

Over the last few years, considerable effort has been devoted to learning appropriate features
for visual data modeling, and this has attracted a lot of interest in the computer vision,
psychology and machine learning fields. For a given image, a global representation is obtained
by the following layering process [80]: extract image patch features on a regularly-spaced grid
over the input image, encode these features (coding step), apply a non-linearity on the codes
(non-linearity layer), and aggregate the codes within local neighborhoods in a spatial pyramid
fashion (pooling step). Deep learning [33][12][80][76] further proceeds by stacking the above
layers together into a multi-layer deep structure, where the upper layers take, as inputs, the
outputs from the lower layers. The hope is that simple structuring of the common feature
information will make it possible to aggregate the layers in a more systematic way to form
a more complex and expressive structure within a deep learning framework.

As a core part, image patch modeling encodes a small local image patch using a statistical
model, so that the resulting representation, or code, has some desirable properties such as
sparseness, compactness and statistical independence. The bag-of-Words model [63] first
generates a codebook by K-means clustering over all training patches, with each patch then
mapped to the nearest codeword. Sivic et al. [63] adopt the soft-K-means representation
for image patches. Hinton et al. [33] models image patches using a restricted Boltzmann
machine. Among many patch models, the sparse coding method [52] encodes each patch
using a sparse linear combination of pre-trained dictionary atoms. The dominant features of
a local patch, its sharp edges, seem then to be well preserved, which is important to describing
the object we are interested in. This type of research has achieved much success in image
analysis, for example image denoising [27][11], super-resolution [78][36], image inpainting,
visual object recognition [80], etc.

The nature of looking at an isolated image patch from an image introduces some draw-
backs. 1 The texture or appearance of an image patch solely can not distinguish a true-edge,
arising from the color variation across an object from a false-edge, caused by other events
such as occlusion. The former describes a property of a target object, while the latter is

1In an optical flow sense, small image patches introduce an aperture problem.
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only indicative of depth discontinuity within the patch. Further the patch appearance or
the features derived from it, for example HOG[25], SIFT[43], is affected by image noise,
lighting conditions, shifts, distortions and etc. This renders the acquired codes for that
patch unstable, susceptible to variation with those changes. In an object recognition task,
the pooling layer mentioned above achieves some sort of shift and distortion-invariance by
average or maximum pooling over a pre-defined window. In a single image denoising task,
denoised image patches are typically averaged within their spatial neighborhoods. Another
line of work is to incorporate human-derived priors into the coding stage [32][77]. Grosse
et al. [32] learn a shift-invariance feature by constraining the neighboring acoustic features
sharing some characteristics, for example a similar pattern of sparseness. However it is in
general not very clear what kind of priors are suitable.

3D geometry, on the other hand, is less affected by conditions such as illumination, image
noise, relative scale, color variations, etc, and it is felt that this could significantly help the
image modeling. Some efforts have exploited this, for example Socher [64] treats depth data
as another modality to help image patch modeling. Lai et al. [38] formalizes a new feature
by attaching the depth information to the image feature and then uses this concatenated
feature to conduct image recognition tasks. Tosic [68] applies the sparse coding model over
the depth map in a stereo setting by assuming the depth data have different distributions
with respect to distance. All of the above works require the 3D depth information to be dense
and accurate. While 3D information definitely aids the image modeling problem, extracting
dense depth information, for example from multi-view camera systems or Lidar, still presents
a major challenge to the computer vision community.

The light-field camera, on the other hand, is a new framework for image acquisition. It
captures images of an object of interest simultaneously from multiple viewpoints, generally
in a plane. Light field cameras have some unique advantages in comparison with a single
pinhole-imaging camera. For example, light-field cameras (or a 2D camera array that acts as
a light-field camera over a larger baseline), by varying the aperture and exposure time of each
pin-hole camera lens, provide an effective way to balance the trade-off between depth of field
and motion blur. In comparison with the more general unconstrained layout of multiple
camera systems, a 2D grid camera array effectively facilitates extracting scene structure.
Light-field cameras have been successfully used in computational photography[49], depth
recovery [71], image re-focusing[49], and other areas. In comparison with single pinhole
cameras, we believe the slight changes in view-point of a light-field camera can provide
useful structural information about the object of interest, without requiring accurate 3D
depth information, and this also presents more opportunities in image modeling.

In distinction from the micro-sensor 2D grid camera array design, consider our camera
grid as shown in Figure 1.1, which presents an effective way to capture a light field. The
baseline is around 20mm. A method for calibrating such systems is presented in Appendix
A. The camera grid can be treated as a collection of linear 1D imagery arrays, arranged both
horizontally and vertically. By stacking all images in a linear camera array, we formulate
a special type of image, termed an Epipolar Planar Image(EPI) [8][16]. The properties of a
1D EPI-image have been well investigated in [8][16], scene properties can be relatively easily
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Figure 1.1: 2D camera array

inferred, including depth, depth discontinuities, occlusions, and free space [16]. Although
the success of depth recovery from a linear camera array through 1D EPI-image analysis
is clear, accurate depth retrieval from a light-field still poses challenges. In order to get
sufficient overlap among cameras, the inter-imagery baselines in a 2D camera array must
be small. This makes it more difficult to recover depth estimates for objects at a greater
distance. In texture-less regions, estimating slope in an EPI will be ill-posed.

In the first part of this dissertation, we will explore the image patch modeling prob-
lem by considering image data and scene geometrical information simultaneously and in an
integrated way. A geometry-aware sparse coding strategy is then presented to efficiently
encode an image patch respecting geometric constraints embedded in a light-field. Specifi-
cally, instead of treating each image patch as an isolated object, we consider it as part of a
patch-cube, which is formalized by stacking the corresponding image patches from either
horizontal or vertical viewpoints. The horizontal patch-cube, for example, can be also
interpreted as a collection of regular image patches from horizontally-aligned viewpoints,
EPI images, which implicitly encodes the scene geometry information. This dual view of a
patch-cube makes it possible to take advantage of the scene geometric information without
losing the benefit brought by the sparseness principle.

These above horizontal and vertical patch-cube arrangements only consider the cross-
structure of a 2D camera array, meaning, for an image patch Prc, only the camera on the r-th
row and c-th columns are used to provide multiple viewpoints. We further generalize this
idea to the full 2D grid of camera. Leveraging the very complete description of a local image
patch, both its appearance and the neighbors from 2D viewpoints, leads to more meaningful
and robust representations.

We believe our new model to be suitable for different visual tasks. In this dissertation, we
apply our method to joint image denoising and joint angular/spatial super-resolution tasks
in a light-field. The first application is important due to the fact that different sensors are
used in building a 2D camera array. One or more cameras are likely to be degradated or
corrupted by noise. Using the remaining “good” images, with the facility of the implicitly
embedded geometric information, to recover the noisy one(s) is a more economical solution.
Here, we consider the extreme situation where all images are polluted by noise in order to
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explore how well the geometric information can help denoising. On the other hand, the sec-
ond application is of particular importance. Light-field cameras usually have to balance the
trade-of between spatial and angular resolution due to the fact that total sensor resolution
is limited. The angular resolution is critical to the EPI-based image analysis. The larger
the angular resolution, the more viewpoints acquired of the scene, the more accurate the
scene geometry that can be extracted through EPI-image analysis. This will not only bene-
fit depth retrieval from a light-field, but also the image analysis based on the EPI-patches.
Our goal is to effectively interpolate novel viewpoints over the 2D grids, while still respecting
the geometric constraints embedded in a light-field. Performance superior to those of coun-
terpart measures performed on a single image in both applications demonstrates the value
of geometric constraints in the image patch modeling problem.

There are few efforts at joint denoising of multiple images or angular/spatial super-
resolution in a light field in the literature. Zhang et al. [86] try to denoise more general
multi-images, not a 2D camera grid, by assuming knowledge of the correspondences of an
image patch across cameras. Wanner et al. [71][72] have attempted to super-resolve a light
field. Levin [40] and Mitra [47] model all relevant patches using a Gaussian Mixture Model.
All of the above works need pre-computing the 3D depth, and they have not provided a
principled way to address the problem.

In the above, our key insight is to treat EPI-patches as a regular image and explore the
embedded geometrical information, rather than explicitly recovering the scene depth. We
believe any image patch modeling method [63][33][63][52], will benefit from our approach.
The aim of the second part of this dissertation is in the area of single image patch modeling.

In the work presented in Coates et al. [2][21], each image patch is encoded as the truncated
distances with respect to the dictionary atoms constructed by simple K-means clustering or
even randomly chosen training patches. Bureau et al. [17] uses random convolution filters to
train a Convolution Net for object recognition. Saxe et al. [57] argues that the dictionary is
not as important as had previously been thought, arguing instead that the special learning
structure is the key reason for improvement. Inspired by the work of Coates et al. [2] and
Zhang et al. [85], we view feature extraction from an image patch in the context of the
Kernel method [61]. We argue that the feature extraction process is equivalent to the low-
rank approximation of the kernel matrix using the Nystrom method. The Nystrom method
is an efficient technique to generate low-rank matrix approximations from a few landmark
points. By bridging the two fields and utilizing a variety of fixed and adaptive sampling
schemes [74][26][56][85], explored in the Nystrom sampling field, we hope better image patch
features can be learned.

Further, we propose an improved K-means clustering algorithm, GEV-Kmeans, based on
the Generalized Extreme Value (GEV) distribution. Our key observation is that the squared
distance of a point to its closest centroid adheres to the Generalized Extreme Value (GEV)
distribution when the number of clusters is large. In contrast with the K-means algorithm,
we minimize reconstruction error by ignoring those points with lower GEV probabilities (i.e.
rare events), and focus on others points which might be more critical in characterizing the
underlying data distribution. Consequently, our algorithm can handle outliers very well in
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situations where the conventional K-means algorithm suffers.
The rest of this dissertation is organized as follows. Chapter 2 presents a novel geometry-

aware image patch modeling in the context of a light-field by considering the cross-structure
of a 2D camera array. Chapter 3 generalizes the model to leverage the full viewpoints of a 2D
camera array, and applies to two applications: joint image denoising and joint angular/spatial
super-resolution for a light-field. As all these applications are based on how well the EPI-
patches are modeled, we explore two techniques for better image patch modeling in Chapter
4 and 5. Chapter 4 explores the connection between the K-means cluster representation [2]
and Nystrem sampling techniques, and applies it to classification tasks. In Chapter 5, a
new clustering method based on the Generalized Extreme Distribution is proposed. Finally,
Chapter 6 summarizes this dissertation with discussions for future works.
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Chapter 2

Image patch modeling in a light field

In this chapter, we consider the image patch modeling problem in the context of a light field.
We exploit the scene geometric information encoded in the patch-cube – an image patch
and its surrounding patches from multiple viewpoints – without explicitly recovering the
depth of the scene. The scene geometric information embedded in Epipolar Plane Images
(EPIs), including depth, depth discontinuity, occlusion, and so on, provide useful geometry
aware constraints to guide our patch coding process. The applications of our EPI-based
image patch model in a light field will be presented in Chapter 3.

2.1 Introduction

Dividing an image into a collection of overlapped image patches, each of which is encoded
using the sparse coding model [52], achieves much success on many computer vision applica-
tions based on a single image 1, including image denoising [27][11], super-resolution [78][36],
object recognition [80], and so on. However, encoding a local image patch solely based on
its appearance or color, without knowing the 3D geometrical information surrounding it,
renders the resulting code insufficiently stable and susceptible to shift, distortion, illumina-
tion, scale and image noise. More importantly, the scene geometry constraints might not be
satisfied at all.

Different strategies are exploited to achieve relative shift or small-distortion invariance
in the literature. One way is to leverage the spatial pooling, either average or max-pooling,
by aggregating the codes from its spatial neighbors. Another is to enforce the codes from
neighboring image patches following some human-derived priors [32][77]. Thirdly, 3D depth
information, less affected by the image capture conditions, may also be considered along
with image patch appearance or color [38][64][14][13][15][38]. None of these works consider
the image patch representation in conjunction with scene geometric information.

Light-field cameras have emerged over the last decade as a new type of image capture
device – they acquire many images simultaneously from a variety of perspectives over a

1We term this type of methods Image-Based Sparse Coding IBSC in contrast to our work.
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planar imaging surface. For a given small object in 3D space, each of the cameras provides an
image patch from among a 2D grid of viewpoints. These image patches are not distributed
arbitrarily, they follow some constraints enforced by the design of the camera array. [8]
[16] analyze the case of a 1D linear camera array, presenting correspondence-free ranging
by detecting the slope present in the EPI-image, stacking all linear camera’s images along
the direction of camera displacement. Extending from the case of a 1D camera array, we
believe the 2D camera array will provide more information about the properties of an scene.
These high redundancy images provide a good opportunity to employ computer vision tasks
of greater reliability and at lower cost than any collection of generally-positioned single
cameras. These features of a light field camera have been exploited in image refocusing [49],
depth recovery [71], and free-space computation [16]. Although much progress has been made
in high quality depth recovery, it is still difficult to obtain dense depth information from a
light-field camera over a large field of view.

We argue that a complete description of an image patch should include its appear-
ance/texture, coloration, and scene geometric information. In this chapter, we will explore
the image patch modeling problem by considering all this information simultaneously and in
an integrated way. A geometry-aware sparse coding strategy is then presented to efficiently
encode an image patch also respectful of geometric constraints embedded in a light-field,
while avoiding explicit recovery of depth. To our knowledge, there are few works along this
line, and none demonstrably successful.

More specifically, for an arbitrary image patch Prc in the (r, c)-th camera, we begin
by forming a horizontal and vertical patch-cube, denoted as Q(h) and Q(v), respectively.
Q(h) is formalized by first stacking all images of the r-th row and then extracting the cube
surrounding Prc. Q(h) can be regarded in two ways: (1) as a stack of image patches, each
of which is composed from different viewpoints, and (2) a stack of horizontal EPIs [16].
This duality forms the foundation of our approach – any image modeling method should
simultaneously satisfy the geometric constraints implicitly embedded in the observed EPI
patches. Similarly Q(v) can be constructed by stacking all c-th columns of the camera array
around Prc of interest. Further, the two patch-cubes are not independent to each other,
but are linked by sharing the same image patch Prc. Incorporating these extra implicit
geometric constraints will make our image patch model more stable by explicit consideration
of its spatial neighbors observed from different viewpoints. Also these geometry-related
constraints will make our learned features less affected by image noise and image capturing
conditions, which cause considerable degradation in the traditional image patch models
operating on single images.

Our algorithm can be regarded as introducing a new set of geometric constraints into
the sparse coding domain which have not been exploited before. The codes for an image
patch vary and are automatically adjusted by the surrounding geometric information. These
properties overcome difficulties [45] of the traditional IBSC model where fixed-size filters are
applied over different depth levels and are incapable of modeling them all equally well. On
the other hand, EPI patches are relatively simple, full of single-color continuous or broken
line segments [16], and will not change dramatically for a large range of relative depth values.
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They are also easier to model using the sparse coding model in contrast to the case with
arbitrary image patches.

This chapter is organized as follows. In Section 2.2 we review the current related work.
We present the patch-cube concept and its properties in Section 2.3. In Section 2.4, our
geometry-aware image patch model is presented. To demonstrate the value of patch-cube
and the light-field data, an image denoising algorithm, NLM-LF, is developed by simply
extending the Non-Local Mean algorithm [18] using our new image patch similarity mea-
sure in Section 2.5. Experimental results and conclusions are given in Section 2.6 and 2.7,
respectively.

In this Chapter, we only consider the cross-structure subset of a 2D camera array for a
given image patch. In Chapter 3, we will take advantage of the full 2D grid structure and
then apply our models to joint image denoising and angular/spatial super-resolution in a
light-field camera.

2.2 Related work

In this section, we first describe some related image patch modeling methods we are going
to use, and present related works within the multi-camera and light field.

Sparse-coding based image-patch modeling on a single image (IBSC) has been explored
widely recently. Each image patch x is simple enough and can be modeled as:

x = Dα + ǫ (2.1)

where ǫ is additive and i.i.d. (independent and identically distributed) Gaussian noise, and
D is an over-complete dictionary. The coefficients, α, usually very sparse, can be solved by
minimizing the following objective function:

α∗ = argmin
α

J = ||x−Dα||+ λ||α||1 (2.2)

where λ is the Lagrange multiplier to promote the sparsity of α. The image patch can then
be simply reconstructed as:

x̂ = Dα∗ (2.3)

In an image denoising application on a single image, the final denoised image is estimated by
averaging the neighboring reconstructed image patches. The dictionary D is precomputed,
which can be learned using [3][52] or any of several other methods. It has been shown
experimentally that this modeling can guarantee that the dominant edges of an image are
well preserved.

Another line of work is related to the similarity measure between two image patches. The
representative work is non-local mean [18] for image denoising. Given a noisy image u, the
goal is to recover the original image from a noisy measurement v. The pixel value v(i) can
be estimated as a linear combination of the neighboring pixels in the whole image:

v̂(i) =
∑

j∈u

w(i, j)u(j) (2.4)
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where w(i, j) measures the similarity between patch N (i) and N (j) [18]:

w(i, j) =
1

Z(i)
e−

||u(Ni)−u(Nj)||
2

h2 , where Z(i) =
∑

j

e−
||u(Ni)−u(Nj)||

2

h2 (2.5)

where Z(i) is the normalizing constant and the parameter h controls the decay of the expo-
nential function. The core of non-local mean is in measuring image patch similarity. Due to
lack of scene geometrical information, the L2 distance measurement is prone to image noise,
and may also be miscalculated between true and false edges, both with similar appearance.

There have been some related works in modeling images within a light field or general
camera array. For example, [40] and [47] propose that the light-field patches, from different
view points, satisfy a Gaussian Mixture model conditioned on the depth, and that image
denoising or spatial super-resolution be conducted by using this prior knowledge. Wanner
et al. [71][72] models an image using a variational method, with the EPI-image constraints
being used to drive their solution. Spatial and angular super-resolution of 4D light fields can
be conducted using this variational framework. Zhang et al. [86] consider image denoising
in general multi-view images by finding similar patches from multi-view images based on the
depth information. However all of this work relies on the depth information of the scene being
known in advance. It must be noted, though, that robust recovery of depth information over
a large range of distances is not simple. In the Heidelberg work [71], for example, recovering
depth from the light field uses very small baselines, necessary in order for the slopes to be
well bounded, and this renders the problem very difficult when the depth range may be quite
large.

In the following section, we will look at a light field, or more precisely a 2D grid camera
array, and describe some of its important properties.

2.3 2D grid camera array

Our light-field data is captured using a 2D grid camera array, shown in Figure (1.1) in
Chapter 1.

Given a N × M 2D camera array (4 × 4 in this case) {Cij}(each image has resolution
S × T ), and the reference camera denoted as Cref,ref, any 3D point P = (X, Y, Z) will form
images on all cameras {(xij, yij)}, where i = 1, . . . , N and j = 1, . . . ,M (see Figure 2.1).
The horizontal and vertical baselines for camera Cij are defined as the horizontal/vertical
distance between the camera centers Cij and the reference camera, respectively:

b
(h)
ij = ||Cij − Ci,ref||2

b
(v)
ij = ||Cij − Cref,j||2 (2.6)

From the light-field camera structure, we have the following for each camera row:

yij = yi,ref, d
(h)
ij = xij − xi,ref (2.7)
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Figure 2.1: Images of a 3D point P in a 2D camera array

and similarly, for each camera column we have:

xij = xref,j, d
(v)
ij = yij − yref,j (2.8)

where d(h) and d(v) are the horizontal and vertical disparities, respectively. The Epipolar
Plane property provides for the disparity varying only horizontally in each row of cameras and
vertically in each column of cameras. Further, it is easy to verify the following relationship:

d
(h)
ij

b
(h)
ij

=
d
(v)
ij

b
(v)
ij

∝
1

Z
(2.9)

This fact basically states that the horizontal and vertical disparities of P are not inde-
pendent, and can be simply linked by the horizontal and vertical baseline. In comparison
with the binocular stereo scenario, multiple baselines will form a richer cue for solving the
correspondence problem.

A 2D grid camera system can be naively regarded as a collection of horizontal and vertical
1D linear camera arrays, which has been studied for many years. Following [8][16], we form

the horizontal Epipolar Planar Image (EPI)2, denoted as E
(h)
(i,y) (i = 1, . . . , N), of size M ×T

2Here, we assume the horizontal and vertical baselines are equal, and EPIs can be formalized by stacking
images together directly.
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Figure 2.2: Horizontal and vertical EPI-images in a light field.

by stacking the y-th image row of all i-th camera row images (see the Fig 2.2-bottom).

Similarly, the vertical EPI E
(v)
(j,x) (j = 1, . . . ,M) of size S×N is formed by stacking the x-th

image columns of all j-th camera column images (see Fig 2.2-right). Then the first two terms
in Eqn 2.9 can be measured as the slope of an EPI, which are both inversely-proportional
to the depth Z [16][8].

Let’s look closer at the EPI images generated horizontally and vertically, and treat an
EPI as a collection of EPI-patches. Fig 2.2-bottom shows the EPIs E

(h)
y acquired for two

different rows y, labeled as (I) and (II), respectively. Fig 2.2-right shows the vertical EPI

image E
(v)
x , labeled as (III). Our observations are as follows:
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• EPIs are visually simpler than the original image. (1) Due to the photometric con-
sistency condition, an EPI contains only connected or broken line segments, and the
color along those segments is roughly constant. (2) The complexity of an EPI-patch
will be simpler than arbitrary image patches (only rotation of lines since the depth is
limited);

• The two image patches, labeled as A and B in the original image, with different
depths and being located at the object boundary, can not be distinguished using their
appearance only. However, their corresponding EPI patches, (a) and (b), in EPI (I)
show different slopes, which clearly indicates the depth difference;

• The occlusion becomes obvious by merging different viewpoint images. The broken-
line pattern in EPI-patch (c)/(d) indicates that corresponding image patch (C)/(D) is
occluded from some viewpoints horizontally/vertically;

• For true edges [83], induced by the color difference on an object, each image patch (from
different viewpoints) will be shifted-versions of each other, with the magnitude of the
shift determined by the relative depth of this patch with respect to the viewpoint.
However, the line segment pattern in both the horizontal and vertical EPI-patches
should be similar, indicating the same depth;

• For false edges [83] induced by the depth discontinuity or occlusion, the EPI-patch
contains broken-line segment patterns. The horizontal and vertical occlusion could be
different. On the other hand, slight change of viewpoints will cause the image patches
to differ dramatically;

• Given an image patch P from one camera, it will be part of both horizontal and vertical
EPI-patches simultaneously. That is, if P is changed, it will affect both the horizontal
and vertical EPI-patches.

Different from an image patch extracted from one regular image, which solely contains the
appearance or color information, the EPI image provides complementary geometric infor-
mation about the scene. This provides another perspective for viewing the image patch
modeling problem.

Such rich geometric information in a 1D camera array has been widely used in numerous
applications. Okutomi et al. [50] take advantage the adaptive baseline to balance the trade-
off between precision and accuracy in stereo matching for depth recovery, using modified
sum-of-squared difference (SSD) values within a lateral displacement camera array. Gelman
[29] compresses multi-images using EPI. Others [16][8][71][72] recover the scene depth by
detecting the slopes in EPI images while respecting the occlusion constraints.
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2.4 Image patch model in a light field

Motivated by the success of the sparse coding model [52] in image patch modeling and
opportunities with the 1D linear camera structure, we marry the two and aim at attaining
a good image-patch model. We argue that a good image patch model should satisfy the
following criteria: (1) the dominant edges in that patch be well preserved in the reconstructed
version and (2) the reconstructed image patch respect the geometric constraints at that
patch. The EPI patches, both horizontal and vertical, implicitly contain such geometric
information and can easily fulfil the second requirement without explicit recovery of depth.
In other words, after denoising in a light field, the reconstructed EPI images, both horizontal
and vertical, should preserve the light field properties as much as possible (see section 2.3
for detail). Further, since the geometric information is usually less affected by image noise
and lighting conditions, we expect our image patch representation to be more robust and
stable.

In this section, we first present the concept of patch-cube, a collection of image patches
acquired from different viewpoints. Then, we will show that the IBSC model based on a
single image is not sufficient in a light field framework. Finally, we treat the EPI image as
a regular image, analyze EPI patches from the sparse-coding point of view, and present our
new patch-based model developed within the context of a light field.

2.4.1 The Patch Cube

Suppose we are interested in a local image patch P0, with size of (2w + 1)× (2h+ 1), from
the (r, c)-th camera in a 2D camera array. Instead of treating this patch as stand-alone and
only looking at its appearance and color, we also look at the surrounding image patches from
nearby viewpoints. In this chapter, we only consider the cross-structure, meaning we just
consider the cameras on the r-th row and the c-th column for the chosen image patch in the
central view. The full 2D set of viewpoints will be modeled in the next chapter.

The horizontal patch-cube Q(h), see Figure 2.3-Left, can be constructed by stacking
along the t direction all |C| images in the r-th row, with size (2w+1)×(2h+1)×(2t+1). Note
that this construction is just a stacking process, we do not need the 3D depth information
to localize the corresponding patches. Q(h) 3 can be viewed from two directions:

• Along the t-direction, Q(h) can be regarded as the collection of 2t+1 image patches,
each of which comes from one camera and has size (2w + 1) × (2h + 1): Q(h) =

{P (h)
−t , . . . , P0, . . . , P

(h)
t },

• Along the y direction, we have 2h + 1 horizontal EPI-patches with size (2w + 1) ×

(2t+ 1), 4 denoted as: Q(h) = {E(h)
−h , . . . , E

(h)
0 , . . . , E

(h)
h }.

3 The superscripts ·(h) and ·(v) represent the horizontal and vertical, respectively.
4In this presentation, we denote the image patch and EPI-patch differently.
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Figure 2.3: Horizontal and Vertical patch-cube in a light field

Similarly, the vertical patch-cube Q(v) is formed by stacking all of the corresponding patches
with respect to P0 from 2t + 1 cameras on the c-th column. Q(v) can be viewed either as:
{E(v)

−w, . . . , E
(v)
0 , . . . , E

(v)
w } or {P (v)

−t , . . . , P0, . . . , P
(v)
t }.

The intermingling of the EPI-patches and image patches can be further described as: 5

E
(h)
i =




P
(h)
t,(i,:)
...

P
(h)
−t,(i,:)


 , E

(v)
j =

(
P

(v)
t,(:,j) . . . P

(v)
−t,(:,j)

)
(2.10)

That is, the i-th horizontal EPI patch is the i-th row of all horizontal image patches, and
the vertical EPI-patch is constructed as the j-th column of the vertical image patches. Also,
the horizontal and vertical patch-cubes share the same image patch P0 in which we are
interested. That is, the central image patch P0 can be reconstructed from both the horizontal
and vertical EPI patches:

P0 =




E
(h)
−t,(0,:)
...

E
(h)
t,(0,:)


 =

(
E

(v)
−t,(:,0) . . . E

(v)
−t,(:,0)

)
(2.11)

We argue that the patch-cube is a complete description of a local image patch: it con-
tains enough information to describe the appearance of an image patch, and also encompasses

5 We denote X(i,:) as the i-th row of a matrix X and X(:,j) as its j-th column.
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the scene geometric information in the vicinity of that patch, embedded in the horizontal
and vertical EPI-patches.

One thing worth mentioning is that the patch-cube is different from the regular spatial
neighbors of an image patch from a single image, where each of them is solely a shifted version
of the other. How to model these in a shift-invariant fashion, or how to include any priors
to better capture these changes, are not clear at this point. After all, we expect our code or
representation to not be affected through simply shifting by several pixels. However, putting
the image patch of interest in the context of patch-cube, and viewing the patch-cube from
the other direction, the resulting EPI-patches contain strong statistical regularities. These
will serve as good constraints to regularize our image patch coding.

More specifically, this dual view of an image patch from its neighboring viewpoint images
provides new insights on the image patch modeling problem. Due to the intermingling,
modeling each image patch in a patch-cube is not arbitrary, but highly correlated. When
we model the image patch, we want the resulting EPI-patches to have similar patterns
reflecting their similar geometry. The horizontal and vertical patch-cubes are also not
independent from each other. For example, if we presume the depth of P0 to be roughly the
same (occlusion could be slightly different from horizontal to vertical direction), we should
observe similar line-patterns in EPI-patches within both patch-cubes.

This new type of redundant data presents a novel challenge for machine learning and
computer vision researchers. In the next section, we will first show that the current image
patch sparse-coding based method is not sufficient to capture this geometric information and
present, in the following, the method we have developed.

2.4.2 Why modeling an image patch from a single image is not

enough

In this section, we treat the patch-cube as a collection of regular image patches, and model
them using the sparse-coding model. We inspect how the traditional IBSC model behaves
in a light field camera by checking whether the geometrical scene information is preserved.
The EPI patches, due to their properties, can serve as a good geometric measurement.

We first learn the dictionary related with the local image patches using the method
described in [39], as shown in Fig 2.7-(a).6 Then each image patch in the horizontal patch-
cube can be reconstructed as7:

vec(h)
[̂
P

(h)
t′

]
= Dα

(h)
t′ , t′ = −t, . . . , t

We further decompose the dictionary D into sub-blocks: D(i,:) is the sub-matrix relating to
the i-th row of P0. Similarly, D(:,j) represents the sub-matrix relating to the j-th column.

6To simplify the explanation, we train one single dictionary from the local patches from all images.
7vec(h)[·] and vec(h)[·] represent a matrix as a vector in row-major and color-major fashion, respectively.
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The EPI-patch E
(h)
i is composed of each i-th row of the image patch P

(h)
t′ :

vec(h)
[
Ê

(h)
i

]
=




D(i,:) 0 . . . 0
0 D(i,:) . . . 0
...

...
. . .

...
0 0 . . . D(i,:)







α
(h)
−t

α
(h)
−t+1
...

α
(h)
t


 (2.12)

Similarly, the vertical EPI-patch can be reconstructed as:

vec(v)
[
Ê

(v)
j

]
=




D(:,j) 0 . . . 0
0 D(:,j) . . . 0
...

...
. . .

...
0 0 . . . D(:,j)







α
(v)
−t

α
(v)
−t+1
...

α
(v)
t


 (2.13)

Due to the properties of the patch-cube, we expect the reconstructed EPI-patches to
satisfy: (1) sharp edges be well preserved (which indicate the scene geometric information,
especially occlusions and depth discontinuities), and (2) EPI-patch patterns are preserved
across image patch modeling.

From Eqn 2.12 and 2.13, we have several observations:

• For a true edge at non-zero disparity, the image patches are shifted versions of each
other. Following [32], we assume the codes for those shifted copies of P0 share the
same sparseness pattern, which means that all {α} in Eqn 2.12 has the same non-
zero elements position, then each row of the EPI-patch will be reconstructed using the

same elements of the dictionary. Therefore each row of Ê
(h)
i turns out to be roughly

the same, which leads to the reconstructed EPI-patch being blurred;

• Given P0 at a depth discontinuity, the appearance of each image patch will change
dramatically due to the viewpoint change, and so do the codes generated from the
sparse coding model. In general, we have nothing to predict the behavior of the recon-
structed EPI-patches. Several experimental results will show that the reconstructed
EPI-patches are actually blurred;

• The horizontal and vertical patch-cubes are not independent from each other. It is
difficult for one single code for the central image patch P0 to satisfy the EPI constraints
on both patch-cubes.

To validate our claim experimentally, the following experiment is conducted on the
Knight image dataset from the Stanford Light Field archive 8, see Fig-(2.4). We pick a
7 × 7 patch, P0, in the central view, (9, 9)-th camera, from the 2D camera array, shown in
Fig-(2.4)-(a). Notice this image patch locates on the object boundary, half of which is about

8See Section 2.6 for details
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the background. Our goal is to check whether the traditional IBSC can still preserve the
geometry information embedded in the EPI-patches. The top-row of Fig-(2.4)-(b), (c), (d)
and (e) show the horizontal and vertical image patches around P0, and the horizontal and
vertical EPI-patches, respectively. The middle-row shows the results from the IBSC model:
we model each image patch separately using sparse coding model, the reconstructed image
patches are shown in the middle-row of Fig-(2.4)-(b), (c). Also the resulting reconstructed
EPI-patches are shown in the middle-row of Fig-(2.4)-(d) and (e). From the figure, we can
see that the IBSC model can blindly and faithfully reconstruct the input image patches,
however serious blur occur in the resulting EPI-patches. Since the patterns in EPI-patches
are related to scene geometry, this suggests the IBSC model cannot respect image geometric
structure. More experimental results will be given in the Experimental section.

The fact that the IBSC model only considers the appearance and color will worsen the
problem. Given several image patches with similar appearance/color, but differing depth,
IBSC model will encode these patches similarly. Due to the intermingling between image
patches and EPI-patches, one single set of codes is hard to satisfy all geometric constraints
at different geometric surroundings, depth, for example. Also, the IBSC model is more
affected by image noise, lighting conditions, etc.

2.4.3 Motivation

In comparison with directly modeling the image patches, modeling the EPI-patches provides
the following benefits: First, the EPI-patch contains scene geometric information, including
depth of the patch and any occlusion information, etc. Therefore, it is less affected by the
image capture conditions. Second, the EPI-patch consists of only lines and line segments,
and the color along such line segments is mostly uniform, which make this EPI-patch simpler
than an arbitrary natural image patch. More importantly, no matter whether P0 is a true
edge or located at a depth discontinuity, the EPI patches will be similar from the perspective
of geometry, where it is easier to pose priors or constraints for our problem. In contrast, the
IBSC model has difficulties to compensate dramatic image patch appearance change due to
viewpoint change, especially at occlusion or depth discontinuities. Knowing these will also
help in object segmentation and performing spatial pooling in object recognition.

To validate our ideas and compare with the IBSC model, we continue the experiments
conducted in Section 2.4.2 (see Fig (2.4)).9 Instead of modeling the image patches in a patch-
cube as the IBSC model, we directly apply the sparse coding model on the horizontal and
vertical EPI-patches (top row in Fig-(2.4)-(d) and (e)), respectively. The reconstructed EPI-
patches are shown in the bottom row of Fig-(2.4)-(d) and (e), respectively, and further the
resulting reconstructed image patches are shown in the bottom row of Fig-(2.4)-(b) and (c).
To make the comparison more clear, Fig-(2.4)-(f) shows in order: the original image patch
from the (9, 9)-th camera, the horizontally reconstructed, vertically reconstructed image

9The more complete algorithm follows later.
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(a) Target image patch(blue
square)

(b) Horizontal image patches (c) Vertical image patches

(d) Horizontal EPI patches (e) Vertical EPI patches

(f) Our final reconstructed image
patches

Figure 2.4: Reconstruction of image patch VS EPI-patch. Original image patch shown in
(a). See Sec.2.4.2 and 2.4.3 for details.
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patches, and our final reconstructed image patch of P0. The final one is just an average of
the two.

From the figure, we can see that: 1) the sharp edges in both horizontal and vertical
EPI-patches are all preserved, and 2) we can also faithfully reconstruct the original image
patch P0. To make the comparison fair, both IBSC model and our model use roughly the
same number of non-zero elements for the sparse coefficients.

This scene geometrical information, such as depth and occlusion, are automatically em-
bedded in EPI images. By analysing this information, without explicitly recovering the
depth, we will gain structural insights without the cost and risk of range computation. Our
goal is different from that of IBSC: faithfully reconstruct the image patch and preserve
the sharp edges that are present. A further goal of ours is to ensure the reconstructed im-
age patch respects the scene structural information, including depth and occlusions, while
ensuring that the horizontal/vertical structural information is consistent.

Observing the power of the patch-cube, we will explore it in the context of joint image
denoising in a light field. In this following section, 2.4.4, our new image patch model in
a light field camera will be presented. In Section 2.5, we also show that the patch-cube
idea can boost performance of the Non-Local Mean denoising method. In this chapter, we
consider only the cross-structure in a light field. In Chapter 3, we will further extend our
patch-cube concept to the 2D grid, instead of the cross structure in a 2D camera array.

2.4.4 Scene geometry-aware image patch modeling

We seek a simple formulation to explore the solution space: given a light field and an image
patch P0, and the associated horizontal/vertical patch-cube: Q(h) and Q(v), our goal is
simply to model this image patch so that geometrical information embedded in the light
field is respected.

To simplify notation, we assume the patch-cube has equal dimension n×n×n, and the
dictionary has size d×N , where d = n2 and N >> d. The horizontal and vertical dictionary,
D(h) and D(v), have been trained (see Section 2.4.7 for further details.)

Generative model for image patch in a light-field

Given an image patch P0, we are not interested in directly modeling its appearance/intensity
alone. Instead we will look at the patch-cubes surrounding it, which can located at an
arbitrary image in a 2D camera array.

We treat each EPI-patch in a horizontal patch-cube as a regular image patch and model
it as:

vec(h)(E
(h)
i ) = D(h)αi + ǫ, i = 1, . . . , n (2.14)

Similarly, each EPI-patch in the vertical patch-cube can be modeled as:

vec(v)(E
(v)
j ) = D(v)βj + ǫ, j = 1, . . . , n (2.15)
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where ǫ is additive and i.i.d white noise. D(h) ∈ Rd×N and D(v) ∈ Rd×N are the dictionaries
precomputed on the horizontal and vertical EPI-patches, respectively.10. Similar to the
IBSC model, we assume d << N and both of the codes, {αi} and {βj}, contain many
zeros. By enforcing coefficients αi and βj to be sparse, we can preserve sharp edges in the
EPI-patches, both horizontally and vertically. This is precisely what we want in preserving
scene geometric information. Further, since the EPI-patch is usually more simple than the
regular image patch, we hope greater sparsity can be achieved.

After finding the optimal sparse coding of {αi} and {βj}, the target patch P0 can then
be reconstructed from horizontal and vertical directions, respectively. We re-organize the
horizontal and vertical dictionaries as stacks of the following sub-matrices:

D(h) =




D
(h)
(1,:)

D
(h)
(2,:)
...

D
(h)
(n,:)



d×N

, D(v) =




D
(v)
(:,1)

D
(v)
(:,2)
...

D
(v)
(:,n)



d×N

(2.16)

then the patch P0 can be reconstructed as: 11

P̂
(h)
0 =




(
D

(h)
0 α1

)T
(
D

(h)
0 α2

)T

...(
D

(h)
0 αn

)T



=




(α1)
T

(α2)
T

...

(αn)
T



(
D

(h)
0

)T
(2.17)

and

P̂
(v)
0 =

[
D

(v)
0 β1 D

(v)
0 β2 . . . D

(v)
0 βn

]
= D

(v)
0

[
β1 β2 . . . βn

]
(2.18)

That is, the image patch P0 can be reconstructed by collecting either all 0-th rows of the

reconstructed horizontal EPI-patches of {Ê(h)
i }, or the 0-th columns of the vertical EPI-

patches {Ê(v)
j }.

Therefore, our final generative process for the target image patch P0 can be represented
as the following by combining Eqn 2.17 and Eqn 2.18:

P0 =
1

2

(
P̂

(h)
0 + P̂

(v)
0

)
+ ǫ =




(α1)
T

(α2)
T

...

(αn)
T



(
D

(h)
0

)T
+D

(v)
0

[
β1 β2 . . . βn

]
+ ǫ (2.19)

10The property will be given later.
11To simplify notation, we assume the sub-matrices related to P0 are labelled D

(h)
0 and D

(v)
0 .



CHAPTER 2. IMAGE PATCH MODELING IN A LIGHT FIELD 21

Based on Eqn 2.19, we assume our patch P0 is generated from horizontal and vertical direc-
tions separately, and also the coefficients {αi} and {βj} satisfy the following distribution:

αi ∼ e−|αi|1 , βj ∼ e−|βj |1

and then average. The average will ensure the final cleaned image will be consistent with
both the horizontal and vertical reconstructions. This constraint provides excellent priors
on how to choose the optimal representation in a sparse coding model.

Therefore, the objective function can be written as:

{{α∗
i }, {β

∗
j }} = argmin

{αi},{βj}

∣∣∣∣
∣∣∣∣P0 −

1

2

(
P̂

(h)
0 + P̂

(v)
0

)∣∣∣∣
∣∣∣∣
2

Fro

(2.20)

s.t. : {α∗
i } = argmin

{αi}

∑

i

[∣∣∣
∣∣∣E(h)

i −D(h)αi

∣∣∣
∣∣∣
2

2
+ λ ||αi||1

]
(2.21)

{β∗
j } = argmin

{βj}

∑

j

[∣∣∣
∣∣∣E(v)

j −D(v)βj

∣∣∣
∣∣∣
2

2
+ η ||βj||1

]
(2.22)

|| · ||Fro is the Frobenius norm of a matrix. Where P̂
(h)
0 and P̂

(v)
0 are the reconstructed

versions of the original patch P0 from horizontal and vertical patch-cubes, respectively.
The first constraint in Eqn 2.21 relates to sparse coding of horizontal EPI-patches, and the
second constraint in Eqn 2.22 relates to sparse coding of vertical EPI-patches. These two
terms aim at getting the model on all EPI-patches to preserve sharp edges there, which is
necessary in preserving scene geometric information. These two processes are linked through
the reconstruction error of the final image patch P̂0 (see Eqn 2.20), in order to guarantee the
two reconstructions are in agreement.

The cost function in Eqn 2.20 serves as a consistency measure between horizontal and
vertical reconstructions. Different objective can be used here, for example we can use l1-type
of cost measure to make the optimization solution more robust to noise:

∣∣∣∣
∣∣∣∣P0 −

1

2

(
P̂

(h)
0 + P̂

(v)
0

)∣∣∣∣
∣∣∣∣
l1

In the following section, we present our iterative algorithm to solve this optimization
problem, followed by our experimental results.
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2.4.5 Optimization

The optimization problem in Eqn. 2.20 is equivalent to the following:

min
{αi},{βj}

∣∣∣∣
∣∣∣∣P0 −

1

2

(
P̂

(h)
0 + P̂

(v)
0

)∣∣∣∣
∣∣∣∣
2

F

+ γ
∑

i

[∣∣∣
∣∣∣E(h)

i −D(h)αi

∣∣∣
∣∣∣
2

2
+ λ ||αi||1

]

+ ζ
∑

j

[∣∣∣
∣∣∣E(v)

j −D(v)βj

∣∣∣
∣∣∣
2

2
+ η ||βj||1

]
(2.23)

where γ and ζ are Lagrange multipliers to control the contributions of Eqn 2.21 and 2.22,
respectively.

Optimization of Eqn 2.23 is difficult due to the coupling between {α} and {β}. Therefore,
in an alternating fashion, we can solve two convex optimizations both as l1-regularized least
squares problems: solving for the coefficients {αi} keeping {βj} fixed, and solving for {βj}
keeping {αi} fixed.

Horizontal Sparse Coding

Suppose we fix {βj}, αi can be solved by minimizing:

α∗
i = argmin

αi

γ

[∣∣∣
∣∣∣vec

[
E

(h)
i

]
−D(h)αi

∣∣∣
∣∣∣
2

2
+ λ|αi|1

]

︸ ︷︷ ︸
1©

+

∣∣∣∣
∣∣∣∣
(
A

(i,:)
0

)T
−

1

2
D

(h)
0 αi

∣∣∣∣
∣∣∣∣
2

2︸ ︷︷ ︸
2©

(2.24)

where the horizontal residual image A0 is defined as:

A0 := P0 −
1

2
P̂

(v)
0 (2.25)

and A
(i,:)
0 is the i-th row of A0. The part labeled 1© is the same as the sparse coding modeling

of the EPI-patch E
(h)
i , which determines sparse coefficients for reconstructing E

(h)
i . However,

the 2© part will further force its 0-th row (corresponding to the i-th row of P0) reconstruction
to be close to the horizontal residual image A0. Essentially, we want to put more weight on
the 0-th row of E

(h)
i and re-distribute the non-zero elements of αi such that not only the

EPI-patch E
(h)
i can be well reconstructed but also the i-th row of the resulting image patch

P̂
(h)
0 to be consistent with the vertical reconstruction.
In order to solve the optimization in Eqn 2.24, we propose two different approaches. The

first approach proceeds by augmenting the original EPI-patch vector to include the residual
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vector A
(i,:)
0 . Eqn 2.24 can be re-written as:

α∗
i = argmin

αi

J = γ

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




vec
[
E

(h)
i

]

(
A

(i,:)
0

)T




(n+d)×1

−

[
D(h)

1
2
D

(h)
0

]

(n+d)×N

αi

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

+ λ|αi|1 (2.26)

Eqn 2.26 can be solved by various methods, Orthogonal Matching Pursuit (OMP), [39],
etc. Another approach is to take gradients with respect to αi as in Eqn 2.27 and apply a
gradient descent optimization:

∂J

∂αi

= 2

[(
D

(h)
0

)T
D

(h)
0 + γ

(
D(h)

)T
D(h)

]
αi

−

[
2γ
(
D(h)

)T
E

(h)
i +

(
D

(h)
0

)T (
A

(i,:)
0

)T]
+ γλ

∂|αi|

∂αi

(2.27)

where ∂|αi|
∂αi

is an all-zero vector except the position corresponding to the largest absolute
value, which equals to the sign of that element.

Algorithm 1 Horizontal sparse coding

Input: D(h) (D
(h)
0 ), E

(h)
i and A

(i,:)
0

Output: αi

1: Argument D(h) using D
(h)
0 , E

(h)
i uing A

(i,:)
0 as in Eqn 2.26

2: Solve Eqn 2.26 using OMP or [39]

Our algorithm is summarized in Algorithm 1.

Vertical Sparse Coding

In a similar manner, we perform the vertical sparse coding by fixing {αi}. The vertical
residual image B0 is defined as:

B0 := P0 −
1

2
P̂

(h)
0 (2.28)

and the j-th column of B0 as B
(:,j)
0 , then we can solve βj by minimizing:

β∗
j = argmin

βj

ζ

[∣∣∣
∣∣∣E(v)

j −D(v)βj

∣∣∣
∣∣∣
2

2
+ η|βj|1

]

︸ ︷︷ ︸
1©

+

∣∣∣∣
∣∣∣∣B

(:,j)
0 −

1

2
D

(v)
0 βj

∣∣∣∣
∣∣∣∣
2

2︸ ︷︷ ︸
2©

(2.29)

Similarly, we want to focus more on the 0-th column of the EPI-patch E
(v)
j , in order to make

the horizontal and vertical reconstructions of P0 consistent.



CHAPTER 2. IMAGE PATCH MODELING IN A LIGHT FIELD 24

As in the previous section, the βj can be solved by the augmented sparse coding model
Eqn 2.30:

β∗
j = argmin

βj

J = ζ

∣∣∣∣∣∣

∣∣∣∣∣∣

[
E

(v)
j

B
(:,j)
0

]

(n+d)×1

−

[
D(v)

1
2
D

(v)
0

]

(n+d)×N

βj

∣∣∣∣∣∣

∣∣∣∣∣∣

2

2

+ η|βj|1 (2.30)

or gradient descent algorithm using the gradient of J with respect to βj:

∂J

∂βj

= 2

[(
D

(v)
0

)T
D

(h)
0 + ζ

(
D(v)

)T
D(v)

]
βj

−

[
2ζ
(
D(v)

)T
E

(v)
j +

(
D

(v)
0

)T
B

(:,j)
0

]
+ ζη

∂|βj|

∂βj

(2.31)

The algorithm is summarized in Algorithm 2:

Algorithm 2 Vertical sparse coding

Input: D(v) (D
(v)
0 ), E

(v)
j and B

(:,j)
0

Output: βj

1: Argument D(v) using D
(v)
0 , E

(v)
j uing B

(:,j)
0 as in Eqn.2.30

2: Solve Eqn.2.30 using OMP or [39]

Final algorithm for image patch modeling

Our final iterative optimization procedure proceeds as in Algorithm 3. Generally speaking,
our algorithm iterates between horizontal and vertical reconstructions of the patch in which
we are interested, not only preserving the sharp edges in all EPI-patches in the patch-
cube, but also ensuring that the horizontal/vertical reconstructions are in agreement with
each other. In practice, our algorithm stabilizes within a few iterations.

Our setting is not particularly sensitive to the initialization of {αi} or {βj}. Taking αi

as an example, we can either solve for Eqn 2.24- 1© using l2 regression by ignoring the l1
constraint, or directly employ sparse coding to get the {αi}.

2.4.6 Another perspective

Let’s revisit Eqn 2.24 to get deeper insight into our algorithm. First, we will re-write it as:
(to simplify the notations, we drop γ)
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Algorithm 3 Modeling image patch P0 in a light-field

Input: D(h), D(v), {E(v)
j }, {E(h)

i } and P0

Output: P̂0

1: Initialize {βj};
2: while not converge do
3: Calcuate vertical residual image B0 using Eqn 2.28;
4: for each row i = 1 : n do
5: Update αi using Algorithm 1
6: end for
7: Calculate horizontal residual image A0 using Eqn 2.25;
8: for each column j = 1 : n do
9: Update βj using Algorithm 2

10: end for
11: end while
12: Calculate P̂0 using Eqn 2.19.
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where E
(h)
i,(k,:) ∈ Rn×1 represents the k-th row of the EPI-patch E

(h)
i . In contrast with treating

each EPI-patch as a regular image and then applying the sparse coding model, we put more
weight on the row of E

(h)
i which relates to the image patch P0 where we are interested.

The amount of weight depends on how well the vertical patch-cube can approximate the
image patch P0. Therefore, each iteration process, both horizontal and vertical sparse coding
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steps, can be treated as a weighted sparse coding strategy. The weights are automatically
determined and adjusted by the reconstruction error associated with the reconstruction of
the other direction.

Similarly, for the vertical reconstruction stage, the cost function in Eqn 2.29 can be
rewritten as:
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where the weight w
(v)
j is defined as the following:

w
(v)
j =

∣∣∣
∣∣∣B(:,i)

0 − 1
2
D

(v)
0 βi

∣∣∣
∣∣∣
2

2∣∣∣
∣∣∣E(v)

j,(:,0) −D
(v)
0 βi

∣∣∣
∣∣∣
2

2

(2.35)

From Eqn 2.32 and 2.34, we can see that: if the horizontal and vertical weights w are
equal to zeros, then our algorithm will be equivalent to separately applying the sparse coding
model on horizontal and vertical EPI-patches, without knowing the other. This is actually
the simplified algorithm we used in Section 2.4.3. On texture-less regions, the weights,
both horizontal and vertical, will be small. However, if strong texture changes or on object
boundaries, our algorithm will then dynamically adjust the weights such that those regions
can be well described to comply to the scene geometry due to multiple viewpoints. Usually,
the horizontal weights will be bigger at the horizontal depth discontinuities and the vertical
weights larger at the vertical depth discontinuities.

In order to further analyze algorithm performance, we apply it on the Stanford Light
Field dataset, using the Lego-Bulldozer image dataset 12. All of the light-field images are
polluted by white noise with standard deviation σ = 75 pixels as our inputs. We evaluate
how the following related quantities evolves before and after optimization, see Fig 2.5:

• The reconstruction error |I− Î|, where I and Î are the original image and the denoised

image. Roughly this reflects our consistency measure P0 −
1
2

(
P̂

(h)
0 − P̂

(v)
0

)
in Eqn

2.20;
12See Section 2.6 for details
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(a) ksvd denoised result (b) our result

(c) recon. error - init (d) recon. error - optim.

Figure 2.5: Comparison of reconstruction error, horizontal and vertical weights: before and
after optimization. See the text for details.

• The horizontal weights and vertical weights: w
(h)
i (Eqn 2.33) and w

(v)
j (Eqn 2.35).

The Fig (2.5)-(a) and (b) show the denoised result comparison between [27] and our
algorithm, we can see that our algorithm performs much better in locations of depth dis-
continuity. The rest of the sub-figures show how our algorithm performs before and after
optimization. Larger pixel discrepancies are observed at depth discontinuities while rela-
tively small discrepancy is observed elsewhere. In comparison with Fig 2.5-(c), Fig 2.5-(d)
significantly reduces the errors at those discontinuities and detail there seems reasonably well
preserved. In the initialization stage, see Fig (2.5)-(e) and (g), we observe large horizontal
and vertical weights value on horizontal and vertical discontinuity, respectively. In the ho-
mogeneous regions without too much texture, smaller weights are observed. Our algorithm
will more focus on those regions with larger weights, where scene geometric information from
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(e) hori. weights - init (f) hori. weights - optim.

(g) vert. weights - init (h) vert. weights - optim.

Figure 2.5: (continued)Comparison of reconstruction error, horizontal and vertical weights:
before and after optimization. See the text for details.

multiple viewpoints will play more important roles. The resulting weights, both horizontal
and vertical, will be efficiently reduced, see Fig (2.5)-(f) and (h), which leads to the recon-
struction error at those regions dropping, see Fig 2.5-(d). One surprising observation is that
our algorithm also performs better in texture-less regions. The reason is simple: although
the EPI-patches contain little obvious pattern there, the simple averaging operation across
multiple viewpoints can effectively reduce the noise. On the other hand, the noise will be
coded equally in the traditional IBSC model, and then the resulting codes will be more
affected by texture-less noise.
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Figure 2.6: DCT responses of hori./vert. EP-I-edges on DCT basis

2.4.7 Discussion

In this section, we will discuss some related problems for our algorithm.

Dictionary

The above discussion assumed the dictionaries, D(h) and D(v), had been precomputed. In
this section, we briefly discuss our process.

First, we collect numerous horizontal and vertical EPI-patches from the Stanford light-
field dataset. Fig 2.6 shows the response histogram of these EPI-patches with respect to
the standard DCT basis. The heavy tails are observed for both horizontal and vertical
EPI-patches, and there seems not to be much difference between the two.

Our dictionaries are trained for horizontal and vertical directions separately, using the
method presented in [27] 13. Also we do not train on R,G and B channels separately, instead
we train a single dictionary by concatenating R, G and B channels as a single vector, in order
to avoid the false color phenomena. We visualize the learned dictionaries from EPI-patches,
both horizontal and vertical (see Fig 2.7b and 2.7c, respectively). The dictionary size is
chosen as 1000. As a comparison, we also show the dictionary atoms learned from the image
patches, see Fig 2.7a.

From the above figures, we can see that all of the dictionary atoms resemble sharp edges
in the patches. However the dictionary atoms in our EPI-patches are more meaningful: these
edges are actually the slope of the EPI-images, representing the actual depth of that atom.
Further, the horizontal and vertical dictionaries seem different in capturing the horizontal and
vertical edges, which was our expectation. We believe the edge patterns, including occlusion,
are different in the natural world. For example, vertical edges will be more numerous than
horizontal edges. Further, due to the properties of EPI-images, having near single color,
and only line segments or broken segments, the EPI-patch patterns are much simpler in our
EPI-dictionaries than those in a regular dictionary. This suggests smaller dictionary sizes

13Other methods can also applied here. In later chapters, our method based on KPCA and GEV is
presented.
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(a) Dictionary on image patches

(b) Dictionary on horizontal EPI patches (c) Dictionary on vertical EPI patches

Figure 2.7: Comparison of leaned dictionaries from image patches and horizontal/vertical
EPI images.

will be sufficient for our modeling problems. Investigating the impact of dictionary size on
the modeling performance will be left as future work.
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Data normalization

Similar to [27], we remove the DC components before applying our model. In distinction,
we keep track of the DC component separately for both horizontal and vertical directions.
During our modeling stage, the reconstruction error is actually measured by putting the
horizontal and vertical DC components back into the horizontal and vertical reconstruc-
tions, respectively. This makes the consistency comparison between horizontal and vertical
reconstructions easier, see Eqn 2.19.

Edge preservation and expressive power

Given an image patch P0, the sharp edges on both directions of EPI-patches are preserved
along with the scene structural information, while also maintaining consistency between
horizontal and vertical directions. However two questions remain to be answered: 1) whether

the sharp edges will still be preserved in our final reconstructed image patch P̂0 and 2)
whether our model has enough representation power to reconstruct any image patches with
arbitrary appearance?

By only looking at Eqns 2.12 and 2.13, we have not much to criticize in how well the
sharp edges are preserved in P̂0. Intuitively speaking, since we aim at preserving the sharp
edges in EPI-patches, we hope the resulting image patch of P0, a collection of corresponding
rows/columns from EPI-patches, will also preserve the dominant edges. The experiments
conducted in Fig 2.4 demonstrates this.

In terms of the second question, there are three components involved in our patch-cubes:
image patch appearance, horizontal shift, and vertical shift. Achieving shift-invariance image
representation is complicated due to the lack of reasonable priors on how the codes change
with respect to the image shift. Modeling the behavior of image patches from different view
points is even more challenging, since the amount of shift is determined by depth, and oc-
clusions introduce even more complexity to the situation. Instead, our method essentially
converts this problem to another space: image patch appearance, sparse coefficients {α} and
{β} for EPI-patches. Our optimization, Eqn 2.20, in spirit, is a linear model by reconstruct-
ing P0 from horizontal and vertical directions separately. From Fig 2.4, we did notice, with
both horizontal and vertical reconstructions, that neither is likely sufficient for reconstruct-
ing the original patch P0, as it can be seen that the horizontal reconstruction has horizontal
blur and the vertical reconstruction has vertical blur. However we can faithfully reconstruct
the original image patch by merging the two, which suggests our model has sufficient repre-
sentational power. Further experimental results will also be shown in Section 2.6. A logical
next step is to consider multiplicative interactions between horizontal and vertical directions
[31].

How to choose the size of t

EPI-patch dictionaries heavily rely on scene depth, since they are essentially capturing line
segments with certain slope, where the slope range is determined by depth range. This
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brings a requirement for the angular resolution of the light field camera – that the stacked
EPI-images contain sufficient viewpoints that the EPI-patch pattern be easily determined.

The EPI-patch size t, see Fig 2.3, is empirically determined by relative depth, rather than
the absolute depth of the scene. A common exercise is to use the horopter notion, which
ensures that zero-disparity is positioned at the middle depth-of-field, which regularizes slope
about a nominal zero. Here, the slope would be balanced about positive and negative, making
line segments easier to extract. This also suggests that our method expects a canonical depth
range, outside of which the line segments become difficult to extract within the EPI-patch.
This will lead to our dictionary failing to cover all possible depths. However, with greater
and greater angular resolution 14 (more view points), the slopes in an EPI-patch become
easier to extract, therefore permitting greater range coverage.

The current IBSC model for single image analysis needs a fixed size filter, and is blind to
geometry. It has been experimentally demonstrated in [45][44] that employing a multi-scale
filter improves image denoising performance, however there is no principled way to choose
an appropriate range of filters. On the other hand, we encode each image patch based on
the geometry of its surround, its code will be automatically adjusted based on the scene
geometry. For example, two similar appearing image patches will be encoded differently if
one is a true edge located on an object and the other is a false edge located across a depth
discontinuities. This provides a handle for incorporating geometrical information into our
algorithms. That is, we will have the capability of manipulating or adapting the sparse
coding model to handle different depth levels, or even occlusion. Also the simplicity of EPI-
patches makes it possible to build a single dictionary which covers enough large depth range
to ensure our learned features automatically adapted to the scene geometry.

To deal with very distant or very closer depth, we can adjust the horopter position to
accommodate the far and near ranges. Essentially, we shift the EPI-patches toward that
depth of interest so the slopes within that range are covered by the training EPI images.
Although our trained dictionary can cover reasonably large depth of field, we need a mixture-
of-model type of algorithm to systematically merge the model at different depth range, which
will be left as future work.

2.5 Non-Local Mean image denoising in a light field

We have demonstrated that the patch-cube in a light field camera contains all necessary and
complete information to describe an image patch. In this section, we will further demonstrate
the value of the patch-cube by showing that it can provide a better similarity measure
between image patches. More specifically, a simple and effective image denoising method –
Non-Local Mean image denoising in a light field (NLM-LF) – is presented to demonstrate
the power the EPI-based patch-cube can bring us.

Given an image patch in a reference image, NLM [18] searches for patches that are
similar to it in the input image, see Eqn 2.4 and 2.5. The similarity measure, l2 distance, is

14A joint angular/spatial super-resolution algorithm is proposed in Chapter 3.
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susceptible to image noise and lighting condition, and inaccuracy in patch grouping lowers
image denoising performance.

Our method differs from Buades et al. [18] by how the neighborhood is defined. Our
neighborhood for a given pixel i is the horizontal and/or vertical patch-cube, that is,

N (i) =
{
i|i ∈ Q(h)(i)

}
∪ {i|i ∈ Q(v)(i)}

To avoid text clutter, in the following we use only the horizontal patch-cube, and the
patch-cubes at pixel i and j are respectively represented as:
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Similar to Eqn 2.5, the linear weights between pixel i and j can be rewritten as:
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where Z(i) is the normalizing constant. Eqn 2.36 calculates the Euclidean distance using
the local image patch in a patch-cube, while 2.37 is based on the EPI-patches. Essentially
we want to re-adjust the patch similarity measure so that it is not only based on color and
appearance, but also on scene geometry. Our motivations are as follows:

• If two patches around pixels i and j have similar color patterns and similar depth,
then Eqn 2.36 acts as an averaging, not differing much from the conventional Non-
Local Mean;

• If two patches have similar appearance, but different depth, their two patches cannot
be differentiated using NLM. However, their EPI-patches will have quite different line
patterns (slopes) which leads to reduced similarity. Larger depth differences usually
suggest two patches are not from the same object;

• If two patches have similar appearance but one has true edges induced by texture
differences on the object and the other has false edges induced by depth discontinuities
or occlusion, the similarity will decrease;

• If two patches have similar appearance but one patch has an occlusion and the other
does not, from the EPI-patches perspective, one will have broken lines, which is a
strong sign that the two patches cannot be similar;
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• Since observed patch color depends on lighting conditions, it will be sensitive to illu-
mination variation and sensor noise; our similarity measure, by focusing on structural
information, will be not be influenced by such noise;

• Conventional Non-Local Mean only measures pixel similarity between patches based
on appearance or color, not scene structure, so will not perform as well where these
elements are noisy.

To validate our algorithm, we performed the following experiments on the Stanford Light-
field archive. Given 17 × 17 images, to each of which we have added i.i.d. Gaussian noise
of N (0, σ2), we compare the denoising effects for the central view, (9, 9)-th camera. The
denoising comparison results are shown in Fig 2.8 (σ = 35) and 2.9 (σ = 50). 15 In both
figures, the first and second column show the comparison of denoising results between [18]
and ours. The third and fourth column further show the detailed comparison on a small
region. From the figures, we can see significant improvement in image quality, especially
at depth discontinuities and high-texture locations. For example, the pixel-based similarity
measure used in [18] can not distinguish the helmet from the background (see the third-
column of Fig 2.8-b), which causes helmet’s edges in the denoised image to be blurred.
However, this geometric information is evident in the setting of a patch-cube, see the clean
helmets’s contour in the recovered images using our method (the fourth-th column of Fig
2.8-b). More interestingly, our method performs much better in repetitive patterns (see the
fourth column of Fig 2.8-b and 2.9-b).

All of these suggest considering scene geometric information can boost denoising per-
formance. In particular, in area of high magnitude noise, the performance boost increases,
suggesting that structure is as important as the appearance/intensity.

2.6 Experimental results

We test our new image patch model in the context of single image denoising in a light-field
on the Stanford Light-field archive [5]. This dataset contains the light-field (17 × 17 views)
data for 11 different scenes. The (9,9)-view of each scene is shown in Fig-2.10.

In this chapter, we inject the same magnitude of white noise on all light-field images,
σ = 25, 35, 50, 75. Our goal is to denoise the central view image, (9, 9)-th camera, from all
the noisy images. In order to better understand our algorithm, the following quantities are
inspected:

• I-H: We denoise the image using only the horizontal patch-cube. The horizontal
parameters {α0} are initialized using the sparse coding model [52];

• I-V: We denoise the image using only the vertical patch-cube. The vertical parame-
ters {β0} are initialized using the sparse coding model [52];

15We only use horizontal patch-cube.
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(a) Lego Bulldozer

(b) Knights

(c) Treasure

Figure 2.8: Denoising comparison with single-image NLM [18] (σ = 35): The 1st and 2nd
column show the results using [18] and ours, respectively. The 3rd ([18]) and 4th (ours)
columns show the detailed comparison on a small region.
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(a) Lego Bulldozer

(b) Knights

(c) Treasure

Figure 2.9: Denoising comparison with single-image NLM [18] (σ = 50): The first and
second column show the results using [18] and ours, respectively. The 3rd ([18]) and 4th
(ours) columns show the detailed comparison on a small region.
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Figure 2.10: Sampled images from [5]: Amethyst, Beans, Bracelet, Bunny, Chess, Flowers,
Knights, Lego Bulldozer, Lego Truck, and Treasure.

• F-H: We run Algorithm 3 five iterations, and the denoised image is calculated using
only the horizontal optimized parameters {α∗}

• F-V: We run Algorithm 3 five iterations, and the denoised image is calculated using
only the vertical optimized parameters {β∗}

• F-HV-1: We run Algorithm 3 one iterations, and the denoised image is calculated
using both the horizontal and vertical optimized parameters;

• F-HV-5: We run Algorithm 3 five iterations, and the denoised image is calculated
using both the horizontal and vertical optimized parameters {β∗};

• I-H-W,I-V-W, F-V-W and F-V-W: horizontal/vertical weights at initialization,
and at optimal;

• I-Err,F-Err: image reconstruction error at initialization and optimal.

Detailed comparison of PSNR

The PSNR (Peak Signal Noise Ratio) for the different image datasets in the Stanford Light-
field archive are summarized in Table 2.1. From the table, we observe:

• Our algorithm, F-HV-5, performs significantly better than the IBSC model, for ex-
ample [27], especially on the situations with high noise level;
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Image/(σ) PSNR
I-H I-V F-H F-V F-HV-1 F-HV-5 [27]

A
m
et
h
y
st 35 32.5457 32.6176 32.9831 33.2844 33.6184 33.6922 31.5822

50 32.0152 32.0999 32.0699 32.3300 32.7118 32.5570 29.8224
75 29.0311 29.0657 29.4447 29.4657 29.5163 29.7509 27.8152

b
u
n
n
y 35 33.2239 33.1330 34.1205 33.9643 34.0439 34.5471 33.8587

50 32.9055 32.9188 33.2175 33.2089 33.4561 33.5274 31.8980
75 29.4462 29.4039 30.0503 29.9184 29.8859 30.2843 29.4007

C
h
es
s 35 31.5215 31.7107 32.1313 32.6637 33.1296 33.1994 32.2640

50 31.1993 31.3207 31.3159 31.7489 32.2902 32.0829 30.0100
75 28.1304 28.1873 28.5679 28.6479 28.7438 28.9727 27.5294

K
n
ig
h
ts 35 29.5858 29.9062 30.3066 30.9681 31.8470 31.5461 31.1107

50 29.0123 29.3707 29.2993 29.9107 30.6443 30.2827 28.9437
75 26.7950 27.0862 27.1611 27.4653 27.6710 27.7287 26.6358

B
u
ll

35 29.6552 29.3713 29.9075 30.0317 31.0879 30.6945 31.4043
50 29.0487 28.8326 29.1096 29.2001 30.1385 29.7359 29.5011
75 26.7839 26.6038 26.9437 26.8812 27.2656 27.2483 27.2858

T
ru
ck

35 32.0428 32.3664 32.6501 33.1682 33.3228 33.5574 32.1797
50 31.7155 32.0086 31.8458 32.2828 32.5528 32.4658 29.9994
75 28.4709 28.6106 28.9845 29.0686 29.0275 29.3419 27.5779

T
re
as
u
re 35 29.2864 29.5291 28.9691 29.9115 30.9015 30.0349 30.1758

50 28.8305 28.9955 28.4271 29.2113 30.0748 29.3117 28.1133
75 26.5061 26.6679 26.4014 26.7774 27.1209 26.8780 25.6871

F
lo
w
er
s 35 32.0056 32.0207 32.1882 32.4914 32.8270 32.7735 31.7788

50 / / / / / / /
75 28.6283 28.6886 28.9206 28.9926 29.0424 29.1971 27.6488

Table 2.1: Comparison of PSNR at each stage

• On the most of datasets and noise levels, I-H or I-V perform similar, both better
that those using [27]. That is, denoising the image either using horizontal or vertical
patch-cube provides improvement;

• F-H and F-V perform better than their counterparts, I-H and I-V, respectively;

• F-HV-5 performs slightly better than F-HV-1, especially for the situations of higher
noise level. This might be due to an overly strong initialization of the sparse coding
model on EPI-patches, which leads the highly non-linear optimization in Eqn 2.23
getting stuck at local minima. In the future, we will investigate different initialization
strategies.
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Figure 2.11: Detailed comparison in a small region for Fig 2.14 (σ = 75): From top to
bottom, left to right: I-H, I-V, F-HV-1, F-H, F-V, F-HV-5

Denoising performance at different stages

In this section, we visually evaluate the performance of our algorithm at different stages
using the image dataset Knight. The results are shown in Fig 2.12, Fig 2.13 and Fig 2.14,
for noise levels σ = 35, 50, 75, respectively. To get a detailed comparison, we also choose a
small window in Fig 2.14 (σ = 75) and visualize the denoised results from different stages,
see Fig 2.11. As we expected, 1) at the initialization stage, the denoised results using patch-
cube along only one direction, either horizontal (I-H) or vertical (I-V), are less satisfying.
For example, I-H, focusing on the horizontal part of a light-field, tends to blur along the
vertical edges; 2) Once we consider both directions, even at initialization (F-HV-1), these
blurring effects diminish. After the optimization, both horizontal and vertical denoising
performance improved. For example, F-H vs I-H, and F-V vs I-V although we still use
only one direction. One thing worth mentioning: the sharp edges can be well preserved
both at initialization and after optimization. The latter seems to slightly smooth the edges.
For example, F-HV-5 is less sharper than F-HV-1. However the former is more visually
appealing without losing the sharp edges, especially at depth discontinuities.

Our algorithm dynamically adjusts the weights based on scene geometry, both hori-
zontally and vertically, during the optimization. More weights will be put on the highly
texture-rich regions and depth discontinuities. For example higher weights are observed hor-
izontally and vertically in I-W and F-W, respectively. These are places indicating the scene
geometry change, for example occlusion, and then our algorithm will focus on those places.
Comparing F-HV-5 and F-HV-1, the weights are much reduced after the optimization.
Also the former performs better at the background texture-less regions. This type of noise
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is easily removed once the geometric information is considered. Also comparing I-Err and
F-Err, the reconstruction error is reduced overall, the depth discontinuities drop the most.
This suggests that our algorithm models these places particularly well by exploiting the scene
geometric structure.

Across all noise levels, improvements increases with noise. This is one of the advantages
of our model: geometric information is less affected by image noise.

Image denoising comparison

In this section, we compare our results with the method in [27] at two different noise level:
σ = 35 and σ = 75. See Fig 2.15 for the overall comparison on the Knight image dataset
[5]. In Fig 2.16, we compare in detail by inspecting a small region for all image dataset:
in each sub-figure, 1) the interested region is shown in the top-row, 2) the first and second
column in the second-row show the denoising comparison at σ = 35, and 3) the third and
fourth column in the second-row show the denoising comparison at noise level of σ = 75.

From the figures, we can see that our algorithm performs much better in locations of
depth discontinuity. Also [27] blurs those high-contrast edges. This is because the image
patches there contain change due to color/texture variation, and a single sparse coding
method might be not adequate for faithful reconstruction. Also on texture-less regions, [27]
seems not very effective, retaining too much noise. Further, the sharper edges seems more
artificial than the results we produced. Lastly, large improvements observed comparing to
[27], especially on higher noise level.

2.7 Conclusion and future work

In this chapter, a new image patch model based on EPI-image analysis has been proposed.
The model considers not only the appearance or color of the interested image patch, but also
the scene geometric information surrounding it. The major edges on both horizontal and
vertical EPI-patches are well preserved, and the consistency from horizontal and vertical re-
construction is ensured. The former empowers our representation to respect scene geometry.
Also, we use a very simple strategy to improve the conventional NLM algorithm for denois-
ing. This viewpoint dependent representation of an image patch, patch-cube, brings new
opportunities to machine learning and computer vision research. In the next chapter, we will
extend this idea to joint denoising and joint angular/spatial super-resolution applications in
a light-field camera.

Due to the special structure of the patch-cube, a future research effort might consider
this in a more systematic way. For example, the EPI-patches in a patch-cube can be
modeled using the manifold learning approach, and achieving viewpoint-invariant image
representation arises as an interesting topic.
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Figure 2.12: Denoise performance for σ = 35: From top to bottom, left to right: I-H, I-V,
F-HV-1, F-H, F-V, F-HV-5, I-H-W, I-V-W, I-Err, F-H-W, F-V-W and F-Err
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Figure 2.13: Denoise performance for σ = 50: From top to bottom, left to right: I-H, I-V,
F-HV-1, F-H, F-V, F-HV-5, I-H-W, I-V-W, I-Err, F-H-W, F-V-W and F-Err
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Figure 2.14: Denoise performance for σ = 75: From top to bottom, left to right: I-H, I-V,
F-HV-1, F-H, F-V, F-HV-5, I-H-W, I-V-W, I-Err, F-H-W, F-V-W and F-Err
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(a) Knight (σ = 35)

(b) Knight (σ = 75)

Figure 2.15: Denoising performance comparison for σ = 35/75 on Knights image dataset.
Left: [27], Right: ours
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(a) Amethyst

(b) Bunny

(c) Chess

Figure 2.16: Detailed denoising performance comparison for σ = 35/75 on different image
dataset. See the text for the details.
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(d) Lego Truck

(e) Treasure

(f) Lego Bulldozer

Figure 2.16: (continued) Detailed denoising performance comparison for σ = 35/75 on
different image dataset. See the text for the details.
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(g) Flowers

(h) Knights

Figure 2.16: (continued)Detailed denoising performance comparison for σ = 35/75 on dif-
ferent image dataset. See the text for the details.
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Chapter 3

Joint image denoising and
spatial/angular super-resolution in a
light field

In Chapter 2 we detailed our patch modeling in a light-field, by only considering the cross-
structure in a 2D camera array for a given image patch. For single image denoising, it
achieves better performance. In this chapter, we generalize this idea to leverage the full
2D set of viewpoints. Two different applications are presented to demonstrate the superior
performance of our methods: joint image denoising and spatial/angular super-resolution in
a light field.

3.1 Introduction

Image denoising and super-resolution are important tasks in the analysis of digital images.
Much research has addressed these issues to date, with most being focused on a single
image, for example denoising [18][27][11], and super-resolution [78][36]. The common theme
is to frame the task as an optimization problem, seeking an improved image which is as
close as possible to the noisy image under some regularization constraints, such as sparsity
[27] or total variation [11]. These methods have been especially successful in preserving the
sharpness of edges in the image. The generic framework, however, fails to perform well in
the presence of high noise, and is independent of scene structure. Light field data presents
an opportunity to move beyond these limitations.

There are many sources of image contamination and poor representation during digital
capture, and these degrade the ability to process and properly assess content. Light-field
data, in particular, has issues with noise, since current acquisition tends to use a single
sensor with overlaid micro lenses, forcing pixel sizes to be small and sampling to be rather
sparse. Also, the noise characteristics for each micro-lens or multi-camera are different. It
is likely that one or more images in the whole 2D image sets have been corrupted in some



CHAPTER 3. JOINT IMAGE DENOISING AND SPATIAL/ANGULAR
SUPER-RESOLUTION IN A LIGHT FIELD 49

manner by noise. Using the remaining “good” images to correct the noisy one(s) is an
economical solution. In this chapter, we are solving the extreme case where all of the images
are potentially corrupted by some sort of noise.

On the other hand, light-field cameras usually have to balance the trade-off between
spatial and angular resolution due to the fact that total sensor resolution is limited. The
angular resolution is critical to EPI-based image analysis. The larger the angular resolution,
the more viewpoints acquired of the scene, the more accurate the scene geometry that can
be extracted through EPI-image analysis (see Chapter 2 for the detailed discussion). This
will not only benefit depth retrieval from a light field, but also the image analysis based
on the EPI-patches (see Chapter 2). However the angular resolution is usually limited by
the camera physical manufacturing considerations and the spatial resolution of each camera.
Our goal is to effectively interpolate novel viewpoints over the 2D grid, while still respecting
the geometric constraints embedded in a light field.

In Chapter 2, a new image patch modeling method is presented to better incorporate
scene geometric information, and to be less affected by image noise, lighting conditions, and
so on. In this chapter, we consider beyond the cross-structure used in Chapter 2, and take
full advantage of all of the viewpoints in a 2D camera array. The aim of this chapter is
to leverage the rich information embedded in the EPIs and perform joint image denoising
and angular/spatial image super-resolution tasks without explicitly recovering scene depth.
More specifically, we focus more on the scene geometry by forcing the reconstructed EPI-
images, after denoising or super-resolving, to maintain the characteristic patterns of their
true counterparts.

We organize this chapter as follows: in Section 3.2, we describe the current state-of-the-
art in image denoising and super-resolution computation. In Section 3.3 we present the two
stages of our joint image denoising algorithm, and present a spatial/angular super-resolution
algorithm in Section 3.4. The experimental results, conclusions and future work are given in
Section 3.5, 3.6 respectively.

3.2 Previous work

There are not many works on joint image denoising and super-resolution [86][40][47]. Most
recent efforts have been focused on single image denoising and super-resolution. Single image
denoising algorithms usually model a noised image using the following generative process:

u(i) = v(i) + ǫ (3.1)

where u(i) is the noisy/observed pixel, v(i) is the cleaned value, and ǫ is the noise perturba-
tion at pixel i, which are i.i.d. Gaussian noise with zero mean and variance σ2.

One line of work, [27][52] is to model each image patch independently based on the sparse-
ness principle [52], meaning each image patch can be modeled as a sparse linear combination
of an over-complete dictionary. The reconstructed image patches from the sparse codes can
effectively preserve the sharp edges within that patch and also suppress image noise. Instead
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of sparseness constraints for each image patch, the Total Variation (TV) based method di-
rectly derives the cleaned image ṽ from u by constraining the problem using Total Variation
[11]. Another line of work is related to the similarity between image patches, for example
[18][24]. Bi-lateral filter [66] uses isotropic filters which depend on not only spatial distance
but intensity difference to avoid blurring edge sharpness.

For super-resolution tasks, many recent works solve for single image super-resolution by
learning a non-linear mapping from a low-resolution image patch to a high-resolution one.
Yang et al. [79] assume the low-resolution and high-resolution local image patches share the
same sparse coefficients, while the latter is over a high-resolution dictionary. [36] models this
mapping as a kernel regression model. Both of these models are trained on a collection of
(low-resolution, high-resolution) image-patch pairs collected beforehand.

In the context of multiple images, [86] proposes an image denoising algorithm in a multi-
view camera setup, merging multiple image patches in a general setting by finding the
correspondences across them. Wanner et al. [71][72] solve the angular and spatial super-
resolution problem in a light-field using variational optimization. Levin at el. [40] model the
EPI structure, or slope field, of a light-field using Bayesian analysis. Mitra [47] model the
light-field patches using a Gaussian Mixture Models (GMM) conditioned on the particular
depth. However, all approaches require depth information to be attained beforehand, which
is time consuming and error-prone.

3.3 Two-stage joint image denoising

Our set up is as follows: Given a light field with N ×M cameras, {Irc}, each of which has
size of S × T and has been contaminated by some type of noise, we want to get the cleaned
version of all images in this light-field.

In order to denoise all images in a light-field, we could naively denoise each image Irc

separately using the method presented in Chapter 2. More specifically, Irc can be regarded
as a collection of image patches, {P ij

rc}, representing an image patch P ij in the (r, c)-th
camera, each of which is associated with a horizontal and vertical patch-cube and can be
denoised by our method in Chapter 2 to get the cleaned patch. The final denoised image
Îrc will be acquired by spatially averaging all of the denoised image patches. However this
process is computationally intensive, and also does not consider all possible viewpoints. In
the following, a simple method is proposed to overcome these shortcomings.

3.3.1 Our method

Here, a simplified two-stage denoising algorithm is presented for denoising all images in a
light field. A sketch of the algorithm is shown in Figure 3.1. Our algorithm proceeds by
performing horizontal denoising, (a) → (b), denoted as hori1, followed by vertical denoising,
from (b) → (c), denoted as vert1:
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Figure 3.1: Joint image denoising diagram

• hori1: Starting from all noisy images, we calculate the intermediate denoised images

{Î(h)rc } by using only one row of cameras. For each row of the image, horizontal EPI
image (where the EPI-patches are extracted from) is formalized and denoised as a
regular image using the method in [27]. 1 The horizontally denoised images can be
reassembled from these denoised EPI-patches.

• vert1: Instead of using the original noisy images {Irc} as inputs, we conduct verti-

cal image denoising using the intermediate denoised images {Î(h)rc } as inputs. More
specifically, the vertical EPI-images are constructed from the horizontally (partially)
denoised images in a light field, and then denoised.

This above procedure can be thought of as one-step iteration of the more general algo-
rithm Algorithm 3 presented in Chapter 2. Let’s look at the behavior for a given arbitrary
image patch P0. The horizontal denoised patch can be calculated by only considering the

1Any off-the-shelf single image denoising algorithm can be used.
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horizontal patch-cube Q(h) as:
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where {αi} are optimized by solving:
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Similarly, the vertical denoising step will only consider the vertical patch-cube. However,
instead of constructing the vertical EPI-patches using the original noised images, we use the

already horizontally denoised images {Î(h)rc }. That is,
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{βj} are solved by minimizing:
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where Ê
(v)
j represents the vertical EPI-patches extracted from the partially denoised images

{Îrc}, instead of the noised images {Irc}. Notice the difference between these equations and
those in Chapter 2. Also, note that our final denoised image is not simply the average the
horizontally and vertically denoised images.

The on-line nature of this updating rule in our simplified algorithm usually leads to faster
convergence. Further, since the vertical denoising is built upon the horizontally (partially)
denoised images, we essentially implicitly consider all of the relevant patches for P0, not just
the cross-structure used in Chapter 2. More specifically, given the image patch P0, all of
the corresponding patches from the 2D grid of viewpoints will contribute to its modeling.
The appearance or color of these patches might change due to viewpoint change, however
EPI-patches on each row and each column, or even diagonally, will reveal part of the scene
geometric structure surrounding P0. This highly redundant information, or geometric con-
straint, makes our image patch modeling more stable, and less affected by image noise and
lighting conditions.

The algorithm is summarized in Algorithm 4. It steps through the horizontal denoising
hori1, followed by the vertical denoising vert1. Similarly, we can also run the optional steps
by denoising vertically vert2 first and then horizontally hori2. The final denoised images will
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be the average of the two steps. The effects of this extra step will be examined experimentally
in Section 3.5. Also note the sparsity constraint Lagrange multiplier in the above two
optimizations, see Eqn 3.2 and Eqn 3.3. Since Eqn 3.3 uses the partially denoised image,
we expect less sparsity in the vertical sparse coefficients {βj} to be sufficient. Therefore,
choosing the appropriate Lagrange multiplier is experimentally important.

Algorithm 4 Joint image denoising

Require: All noisy light-field images {I(i,j)}, where i = 1, . . . , N , j = 1, . . . ,M ;

Ensure: All denoised images {Ĩ(i,j)}
1: //horizontal denoising (Hori1):
2: for each row (i) of the 2D camera array do
3: for each row (y) of the images do

4: Form horizontal EPI E
(h)
i,y using {Ii,1:M}

5: Denoise E
(h)
i,y to get cleaned version Ê

(h)
i,y

6: end for
7: Construct horizontal denoised images for i-th row of 2D array

{
Îi,1:M

}
.

8: end for
9:

10: //vertical denoising (Vert1):
11: for each column (j) of the 2D camera array do
12: for each column (x) of the images do

13: Form vertical EPI Ê
(v)
j,x using horizontally denoised images

{
Î1:N,j

}
;

14: Denoise Ê
(v)
j,x to get cleaned version Ẽ

(v)
j,x ;

15: end for
16: Construct the final denoised images for j-th column of the camera array: Ĩ1:N,j .
17: end for

In the following, we will take a closer look at the joint denoising algorithm.

3.3.2 EPI image denoising effect

The core part is the denoising on EPI-patches instead of the regular image patches, where
scene geometric information has been automatically encoded. During this process, we expect
the EPI-image properties will be preserved as much as possible after our denoising.

To examine how the EPI-image denoising affects the reconstructed image, we run the
following experiments onAmethyst dataset from Stanford Light-field archive [5] (see Section
2.6 in Chapter 2 for detail), shown in Fig 3.2. We construct the horizontal EPI-image from
Amethyst dataset at y = 210, both from the original images (see Fig 3.2-(a)) and from the
noisy images (see Fig 3.2-(b)). Fig 3.2-(c) and Fig 3.2-(d) show the denoised EPI-images
after (Hori1) and (Vert1), respectively. Fig 3.2-(e) shows our final results. As a comparison,
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.2: EPI image denoising effects in a light-field. (a) Noise-free EPI; (b) noisy EPI;
(c) denoised by Hori1; (d) denoised by Hori1 + V ert1; (e) final denoised EPI; (f) denoised
by [11]; (g) denoised by [27]

we also test the EPI-image denoising effect using [11] and [27] as follows: We run [11] or
[27] to denoise the noisy images for all of the 2D images separately and then extract the
corresponding EPI-image from the denoised images. The results are shown in Fig 3.2-(f)
and Fig 3.2-(g), respectively. From the above figures, we can see that:

• Our algorithm not only effectively preserves the dominant edges in EPI-images, but
also is effective in removing noise in texture-less regions;

• Both [11] and [27] perform poorly, the structural information embedded in the EPI-
images has been lost. This suggests that considering each image patch individually
without knowing the scene geometry cannot preserve the scene geometry;

• In our algorithm, the horizontal denoising step, Hori1, is not sufficient to remove all of
the noise, see Fig 3.2-(c). However combining with the vertical denoising step, Vert1,
it is more powerful;

• More interestingly, [27] blurs the EPI-images after denoising, which is what we have
observed in Chapter 2.

Since we are implicitly leveraging the scene structural information, our algorithm is also
more robust to noise than others. More experimental results will be given in Section 3.5.
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3.4 Spatial/Angular super-resolution in a light field

In Section 3.3, a new algorithm was presented to jointly denoise all images in a 2D grid
camera array. We have shown it is a simplified version of the more general image patch
modeling method presented in Chapter 2. In this section, we will apply the same idea to
super-resolve a light-field both angularly and spatially.

Out setup is as follows: Given N ×M images, each having size S × T , we want to get
(3N) × (3M) images, each of size (3S) × (3T ). That is, we do viewpoint interpolation and
triple the number of views. The spatial resolution of each image also will be increased.

3.4.1 Our algorithm

The commonly used methods for single image super-resolution computation model each
image patch independently, without knowing the scene geometric information. We argue
that this strategy is insufficient to maintain scene geometry. Instead, due to the dual view of
the patch-cube, we focus more on the geometry-related EPI-patches, which automatically
encode this scene geometry, including image-patch depth, occlusion, and so on. The resulting
representation for an image patch will better preserve scene geometry. Slightly different from
our jointly denoising algorithm, the key insight here is that the special structure of an EPI-
patch should be preserved after super-resolution.

Our algorithm diagram is shown in Fig 3.3, it proceeds as follows, and also presented as
in Algorithm 5:

• Super-resolving horizontally (Hori1): Starting from the original low-resolution images
on each row of cameras, we build the intermediate partially super-resolved images,
each of which has size S × 3T . More specifically, we treat each horizontal EPI-image
(of size M × T ) as a regular image and super-resolve it using any off-the-shelf single
image super-resolution algorithm. The intermediate partially super-resolved images
are reassembled from all of the above super-resolved EPI-images (of size 3M × 3T );

• Super-resolving vertically (Vert1): From the partially super-resolved images generated
from the first step, we collect all EPI-images (of size S×N) for each column of cameras
and super-resolve them into size 3S × 3N , from which the final super-resolved images
(of size 3S × 3T ) are formed by reassembling the resulting EPI-images;

• (Optional) Post-processing to get rid of ghost imaging along the dominated edges with
very strong intensity changes. This step can be achieved by running some smoothing
filter or Markov Random Field model.

During (Hori1), only the horizontal spatial resolution is enlarged 3×, with the vertical
viewpoints being interpolated implicitly. Specifically, a horizontal EPI-image with sizeM×T
in the low-res light-field will be super-resolved into 3M×3T . Since the EPI-constraints, both
the connected and broken line segments, only characterize the property of scene geometry
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Figure 3.3: Joint angular/spatial super-resolution diagram

and will not be changed due to super-resolution, maintaining these constraints while well
preserving the sharp edges in EPI-images ensures our image representations respecting the
geometry. The previous works ignore this information.

3.4.2 Super-resolve EPI image

The key is to super-resolve each EPI-image. Fig 3.4 shows how different algorithms perform
on 3× an EPI-image: Fig 3.4-(a) and (b) show the resulting horizontal EPI-image at y = 398
and y = 451, respectively; Fig 3.4-(c) show the resulting vertical EPI-images at x = 806.
For each portion, we compare the following algorithm: bicubic interpolation, [79], [27] and
[36].

From the figure, we can see that, 1) the bi-cubic interpolation tends to blur the EPI-image
edge patterns, and the other three algorithms perform better in preserving those edges; 2)
[79] and [27] seems performing oppositely: [79] blurs too much detail, and [27] exaggerates
too much detail and [36] visually performs the best. We also compare the average of PSNR on
our collected training EPI-images of the above methods: 37.6, 37.9, 39.5 and 39.8. Therefore,
in this chapter, [36] will be used as our basic super-resolution tool for each EPI-image.

Also noticing that the broken line segment patterns in an EPI-image where occlusions
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Algorithm 5 Joint angular/spatial super-resolution

Require: All low-res light-field images {I(i,j)}

Ensure: All super-resolved images {Î(i,j)}
1: //Hori1:
2: for each row (i) of the 2D camera array do
3: for each row (y) of the images do

4: Form horizontal EPI E
(i,y)
h using {Ii,1:M}

5: Super resolve E
(i,y)
h to get larger version Ẽ

(i,y)
h

6: Construct the horizontal reconstructed images for i-th row of 2D array Îi,1:M .
7: end for
8: end for
9: //Vert1:

10: for j = 1 : M do
11: for each column x do
12: Form vertical EPI E

(j,x)
v using {Ĩ1:N,j}

13: Super resolve E
(j,x)
v to get larger version Ẽ

(j,x)
v

14: for i = 1 : N do
15: Î(i,j)(:, x) = Ẽj,x

v (:, i)
16: end for
17: end for
18: end for

occur are preserved, see Fig 3.4. In other words, between the two viewpoints, some sort
of occlusion event takes place. This information is particularly important when we want
to synthesize novel views (virtual views). In order to ensure the generated virtual view has
accurate information to make up the unobserved parts, we rely on good quality interpolation
of the EPI-images. Therefore, our goal can be re-stated as: we want to super-resolve the
EPI-images such that the global EPI-patterns are preserved in order to facilitate generating
missing desired views. This is the best we can do – to synthesize sufficiently accurate infor-
mation to faithfully reconstruct across occluded regions. With a smooth surface assumption,
this relationship can still be maintained through magnified views; for the latter case, a new
view will see something that camera 1 could see but camera 2 could not. If we assume the
object surface is smooth enough, we can fill in the missing values for the middle camera
between 1 and 2 by interpolation.

3.5 Experimental results

We test our algorithms, both joint image denoising and spatial/angular super-resolution, on
the Stanford Light-field dataset [5]. The detailed information can be found in Chapter 2. To
save computation, each image has been resized to one third of its original.
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(a) 3X EPI - with y = 398

(b) 3X EPI - with y = 451

(c) 3X EPI - with x = 806

Figure 3.4: Comparison on single EPI-image super-resolution.

3.5.1 Joint image denoising

Our baseline algorithms are Elad et al. [27] 2 and [11] conducted on single images. Given
the ground-truth images, we perturb all of them using Gaussian noise at varying noise levels:
σ = 25, 35, 50, as our inputs.

Single image denoising performance

We first inspect the denoising performance on the central view image, (9, 9)-th camera.
Table 3.1 shows the comparison of the peak signal-to-noise ratio (PSNR) with the baseline
algorithms. Fig 3.6 presents the visual comparison of the denoised images from the different
methods at injected noise level σ = 50. We can see that our algorithm works significantly
better than [27] and [11] in almost all datasets, and only marginally poorer than any of
the others in the remainder. With increasing strength at higher noise levels, our algorithm
performs increasingly better. It can be seen that [27] and [11] exhibit decreasing performance
at texture-less regions. Also comparing with the denoising performance of our method only
operating using cross-structure of a light-field, the results here are very compatible.

2In our experiments, we follow their paper with 8×8 image patch sizes and dictionary size of 256 entries
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To further check the influence of noise levels on the denoising performance, we compare
a small window region on the denoised central view image using Treasure dataset, shown
in Fig 3.5. We can see that: 1) both [27] and our method perform concretely better than
[11]; 2) at lower noise level, [27] is compatable to ours, see Fig 3.5-(a); 3) at higher noise
level, our method performs much better than [27], especially at the depth discontinuity and
high-texture regions. The shaper edges are well preserved at those regions using our method,
while are heavily blurred by [27]. This demonstrate the importance of the scene geometric
information apart from the image appearance/color.

We also show the image denoising results for a high noise (σ = 75) situation and interme-
diate results, as a demonstration of the importance of each step, in Fig 3.7. As we expected,
see Algorithm 4 and Fig 3.1, the horizontal (Hori1, Fig 3.7-(f)) or vertical denoising stage
(V ert2, Fig 3.7-(h)) only can not fully remove the noise. However combining two directions,
either Hori1 + V ert1 (Fig 3.7-(g)) or V ert2 +Hori2 (Fig 3.7-(i)) will be powerful enough to
get satisfied results. Our final result, see Fig 3.7-(e), shows much better improvement over
[27] and [11].

Joint image denoising performance

We also jointly denoise all 17× 17 light-field images, with noise level σ = 50, some views of
which are shown in Fig 3.8.

3.5.2 Spatial/Angular super-resolution

Using the same Stanford light-field dataset, we evaluate our angular/spatial super-resolution
algorithm. Here, we compare the following algorithms: bi-cubic interpolation methods, Elad
et al.[27], Kim et al.[36] and Yang et al.[79].

Single image super-resolution

We inspect the spatial super-resolution performance on a single image. We first compare
the PSNR for one single image (middle (9, 9)-th) using different methods. Here, the image
is super-resolved 3× from its 1

6
version. The results are shown in Table 3.2. In Fig 3.9, we

visually compare our methods with the baseline algorithms. The more detailed comparison
of different algorithms on a small region is shown in Fig 3.10. We can see that 1) all methods
perform better than the simple bi-cubic interpolation in term of preserving the details; 2) the
method in [79] produces a lot of ghosting blur around the strong edges; and 3) our algorithm
performs better than [79], [27], and slightly better than [36] at the depth discontinuity and
occlusion (see Fig 3.10).

Joint super-resolution results

To validate the joint super-resolution performance of our algorithm, we pick two small image
patches from the low-res central image (Here, we are using the Lego-Truck dataset), shown
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Image / (σ) PSNR
[27] [11] ours

Amethyst
25 30.8175 30.0549 32.9654
35 29.1215 28.8256 31.9475
50 27.393 27.391 31.0316

Beans
25 35.1374 33.4295 36.0005
35 32.8649 32.5929 34.8861
50 30.6304 29.0837 33.2675

Bracelet
25 28.2739 24.3033 27.1902
35 26.3248 24.3087 26.0014
50 24.2855 23.6278 25.331

Bunny
25 32.8815 30.8394 34.0787
35 31.1023 30.3825 33.1884
50 29.1187 27.8086 32.0686

Chess
25 31.2923 28.1903 32.5317
35 29.1298 27.8923 31.4029
50 26.9282 26.2984 30.2529

Flowers
25 32.37 30.4921 33.4534
35 30.6279 30.2171 32.5632
50 28.7291 27.9223 31.7162

Knights
25 30.0531 27.613 30.4234
35 27.7266 25.7073 29.6141
50 25.4665 25.2812 28.3168

Bulldozer
25 30.5095 29.6365 30.6145
35 28.7356 28.0499 29.6874
50 26.9881 26.6036 29.0746

Truck
25 31.8174 30.7166 33.5237
35 29.9469 29.2646 32.4453
50 27.8865 27.6979 31.4091

Treasure
25 29.1872 28.10 29.1071
35 27.3456 26.5179 27.9375
50 25.4713 25.064 27.3453

Table 3.1: Comparison of PSNR: denoising the central view
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(a) Treasure (σ = 25)

(b) Treasure (σ = 35)

(c) Treasure (σ = 50)

Figure 3.5: Detailed denoising comparison for Treasure image at different noise levels. From
left to right column: [27], [11], Ours

in Fig 3.11-top and Fig 3.12-top. After we perform the 3× super-resolution of all images,
we display the corresponding patch-cubes on all 51× 51 views produced. From the above
figures, we observe smooth transition of the appearance of local patches after having super-
resolved them. This demonstrates that we can successfully synthesizing the between-camera
virtual views even at the places where depth discontinuities and occlusions occurred. Note
the image patches we chose in low-resolution images have a lot of occlusion.

3.6 Conclusion and future work

In this chapter, we applied our image patch model in a light-field, as presented in Chap-
ter 2, to two important light-field applications – joint image denoising and spatial/angular
super-resolution. Given an image patch located in one camera, we leverage the full set of
viewpoints of that patch, including the more accurate 3D geometric information and its ap-
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Method bicubic [79] [27] [36] ours

Ame 30.6953 31.7175 31.9341 32.1469 32.0932
Chess 30.5456 31.4806 31.9081 31.9624 32.2246
truck 31.2044 32.0392 32.2965 32.2046 32.5524
beans 38.6163 40.5772 41.6229 41.3542 40.1491
bracelet 25.5891 26.3443 26.5002 26.6314 26.8347
bull 29.1348 30.5684 31.0077 31.2390 30.9203

knights 28.9138 30.3265 30.8294 31.2192 31.6194
bunny 35.0439 36.9746 38.2272 38.6603 38.3359
flowers 31.1936 31.9906 32.0403 32.2708 32.4328
treasure 26.5258 27.0775 27.1975 27.2602 27.8484

Table 3.2: Comparison of PSNR: super-resolving the central view

pearance, to perform these two tasks. Our results will be not only more respectful of scene
geometry, but more stable against image noise pollution as well. As the experimental re-
sults demonstrate, our joint image denoising algorithm performs significantly better than the
baseline algorithms, with increasing strength as noise level rises. The angular/spatial super-
resolution algorithm can more accurately span occlusions due to viewpoint change when
synthesising novel perspectives. The experimental results demonstrate superior performance
on both tasks.

The light-field camera provides a new type of data where the traditional single-view image
can not. The complete description of an image patch, not only its appearance and color, but
also scene geometry (implicitly encoded in the EPI-patches), provides a new perspective on
many computer vision tasks, for example, depth recovery, image denoising, super-resolution,
foreground segmentation, object detection and recognition, and so on. On this platform, all
of the above algorithms can benefit from the highly redundant information in a light-field.
Our future work aims to generalize our algorithms and apply them to some of these related
computer visions tasks.
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(a) Lego Truck

(b) Beans

(c) Bracelet

(d) Bunny

Figure 3.6: Central view denoising comparison for image noise with σ = 50. From left to
right column: [27], [11], Ours
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(e) Chess

(f) Treasure

(g) Knights

(h) Lego Bulldozer

Figure 3.6: (continued)Central view denoising comparison for image noise with σ = 50.
From left to right column: [27], [11], Ours
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(i) Amethyst

(j) Flowers

Figure 3.6: (continued)Central view denoising comparison for image noise with σ = 50.
From left to right column: [27], [11], Ours
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(a) Original image (b) Noisy image

(c) [27] (d) [11] (e) Our final

(f) Hori1 (g) Hori1 + V ert1 (h) V ert2 (i) V ert2 +Hori2

Figure 3.7: Results comparison at image noise level σ = 75. (a) and (b): reference image and
noisy image; (c), (d) and (e): denoised result from [27], [11] and our final results. (f),(g),(h)
and (i) show the intermediate results during our process – Hori1, Hori1 +V ert1, V ert2 and
V ert2 +Hori2. PSNR: [11]=25.8170, [27]=25.4942, ours=29.2042.
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Figure 3.8: Joint denoising results for several views at noise level σ = 50. From top to
bottom and left to right: view of rows and columns 3, 9, and 15.
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Figure 3.9: Single image super-res comparison: Low-res image, Ground truth, bicubic-
interp., [79], [27], [36] and ours.
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(a) Patches we are inspecting

(b) For patch labeled as “Green”

(c) For patch labeled as “Red”

(d) For patch labeled as “Cyan”

(e) For patch labeled as “Yellow”

Figure 3.10: Single image super-res comparison in detail. From left to right: bicubic interp.,
[36], [79], [27] and ours.
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Figure 3.11: Reconstructed patches in the super-resolved light-field - 1
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Figure 3.12: Reconstructed patches in the super-resolved light-field - 2
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Chapter 4

Efficient KPCA feature extraction
with Landmark Points

Inspired by the work of Coates et al. [2] and Zhang et al. [85], we view feature extraction
from an image patch or EPI-patch in the context of the Kernel method [61] and the Nys-
trom sampling in this chapter. Given a point, we model its mapping on the original kernel
eigen-space as a linear combination of some landmark points which span a reduced KPCA
space. Depending on how the landmark points are chosen, the model can be estimated very
efficiently, and we do not even need to compute and store the KPCA eigenvector approxima-
tions. Further, we show there exist close connections between this method and unsupervised
feature learning framework recently proposed in [2][17].

4.1 Introduction

Kernel Principal Component Analysis (KPCA) [60] has been widely used in machine learn-
ing, for example nonlinear dimensionality reduction, manifold learning, image modeling [35]
and etc, due to its capability of capturing the non-linear relationship in a high-dimensional
space. Many problems can be also cast into the KPCA framework, for example locally lin-
early embedding [55], multi-dimensional scaling [23], spectral clustering [48]. However, the
prohibitive computational cost, both in approximating the eigenvectors of the full kernel ma-
trix and on out-of-sample extension of a new testing point, makes it impractical in extracting
non-linear features for large-scale problems.

The literature deals with the first problem using low-rank matrix approximation or ma-
trix completion, which assumes the full kernel matrix (K) is low-rank intrinsically. In the
Nystrom sampling method proposed in Williams et al.[74], only a few columns of K are
selected and used to perform eigen-decomposition, the eigen-pairs of the full kernel matrix
can be recovered by an extra interpolation step. Talwalkar et al.[56] shows that even random
column samples works pretty well in approximating the full kernel matrix. Other sampling
strategies have also been proposed, such as kernel matching pursuit [53], low-rank matrix
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approximation, greedy method, density-based sampling. The interested readers can refer to
[56] and the references therein. [85] recently advocates to use the clustering centers from
K-Means as landmark points which achieves better approximation performance.

The out-of-sample extension of KPCA is another source of huge computational overhead.
Given a testing sample x, we need to store all training points and compute the pairwise
distance of x to every training point, which is usually not affordable if the number of training
samples is large. The common approach to solve this problem is to use a small number of
representative landmark points which can approximate the KPCA eigenvectors well. [59],
[65] tries to find these landmark points either from the existing training samples (reduced set
selection) [54] or construct new vectors (reduced set construction) [20] in the original feature
space. [4] and [6] formulate this problem as an optimization problem. However, none of the
above methods gives satisfactory speedup.

We propose here an efficient KPCA feature extraction method using landmark points.
The eigenvectors of the full kernel matrix are first approximated using cluster-based Nystrom
sampling [85]. We then build a reduced KPCA space using landmark points such that the
mapping of a point in the original KPCA space is preserved after we project it onto this
reduced KPCA space. The combination of the two leads to a very efficient KPCA feature
extraction for large scale problems. If combined with convolution-type structure in patch-
based image modeling, our model can learn more robust features and achieve state-of-the-
art recognition performance in two face recognition benchmark datasets. We also compare
different strategies on how to choose landmark points. Our method is also similar to Kernel
Dependence Estimation [73]

Different from other methods, such as sparse coding [52], which defines a good feature as
a sparse vector which can reconstruct the original signal well, we argue that good features are
those which can preserve the pairwise distances, which in turn can approximate the kernel
matrix well. In this chapter, we focus on the connection between KPCA and the popular
unsupervised feature learning algorithms, such as the Bag-of-Words (BoW) model [63] and
the unsupervised feature learning framework proposed in Coates et al. [2] and Boureau et
al.[17]. We show that the cluster centers or sparse coding dictionary atoms used in those
papers are actually some representative landmark points. From the perspective of Nystrom
sampling, we observe: 1) even random samples from the training set can be used as landmark
points, and 2) the more landmark points we choose, the better the feature quality, which is
consistent with the observations made in [2][17]. Realizing the important roles of choosing
landmark points in unsupervised feature learning, we will further investigate alternative ways
to choosing the landmark points, which will be the main topics of Chapter 5.

The chapter is organized as follows: we first briefly introduce the Kernel PCA and
Nystrom sampling methods [74] in Section 4.2. Then our out-of-sample projection based
on landmark points for KPCA is presented in Section 4.3. The experimental results and
conclusion are presented in Section 4.4 and 4.5, respectively.
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4.2 Kernel Principle Component Analysis and

Nystrom sampling

Given a sample of N points, X = {x1, . . . , xN}, where xi ∈ Rd, KPCA first maps the data
into a high-dimensional (even infinite) feature space using a nonlinear mapping φ(x), and
then performs PCA in that space. Suppose the mapped data matrix is

ΦX = [φ(x1), . . . , φ(xN)]

and the eigen-decomposition of the covariance matrix Σφ = ΦXΦ
T
X is Σφ = USUT , then the

projection of a new point can be written as:

y = UTφ(x)

Since it is impossible to calculate Σφ if we don’t know φ, we turn to finding the gram matrix
or kernel matrix K = ΦT

XΦX , where K(i, j) = 〈φ(xi), φ(xj)〉 = k(xi, xj) and k(·, ·) is a kernel
function. If the kernel matrix can be decomposed as:

K = V ΛV T

then
U = ΦXV Λ− 1

2 (4.1)

therefore the projected point for x0 can be represented as:

y = Λ− 1
2V Tk(x0, ·)

where k(x, ·) = [k(x, x1), . . . , k(x, xN )] ∈ RN×1.
In the above, we assume the data in the feature space has been centered, which can be

achieved by:
K̃ = HKH

where H is the centering matrix

H = I−
1

N
11T

I is an identity matrix and 1 is all-one column vector. Similarly, a testing point φ(x) can be
centered as following:

k̃(x0, ·) = k(x0, ·)− 1
1

N
k(x0, ·)

T1−
1

N
K1+

1

N2
1TK11 (4.2)

where K ∈ RN×N is the full kernel matrix.
Depending on the applications, different kernel functions k(·, ·) can be used [61], such as

Gaussian kernel, polynomial kernel, linear kernel, etc.
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4.2.1 Low-rank matrix approximation of the Kernel matrix

The central task of KPCA is to calculate the eigen-pairs of the kernel matrix K. For a
large-scale problem, it is very hard to directly perform eigen-decomposition on the N × N
matrix. One way is to generate its low-rank approximation K̂ of K based on some criteria:

K ≈ K̂ = LLT (4.3)

where the rank of L is m ≪ N . The quality of the approximation is measured by the
reconstruction error onK: err = ||K−K̂||F . Among many algorithms, the Nystrom sampling
[74] method uniformly samples m ≪ N columns of K. Without loss of generality, the K
matrix can be rearranged based on the sampling as follows:

K =

(
Kmm KT

m,N−m

Km,N−m KN−m,N−m

)

where
L =

(
Kmm KT

m,N−m

)T

Then the original kernel matrix K can be approximated by:

K ≈ EW−1ET (4.4)

and the eigen-pair of K can be approximated by:

Vny = Λ−1
w ETUw, Λny = Λw (4.5)

where (Uw,Λw) are the eigen-pair of the matrix W ∈ Rm×m, up to scale. E is called an
extrapolation matrix, which extends the eigenvector of W to the whole kernel matrix. Since
we only need to perform the eigen-decomposition on m ×m matrix W , the computational
overhead is reduced dramatically. Also if the rank ofK is equal tom, then the approximation
is accurate [74]. Different sampling strategies have been tried.

4.3 Proposed method

In this section, our method is proposed for efficient KPCA feature extraction, which proceeds
by applying cluster-based Nystrom approximation [85] followed by a modified reduced-set
method, which results in a very efficient method to extract non-linear features of KPCA.
Also we will explore the connection of our method with the current unsupervised feature
learning framework[2][17], including the Bag-of-Word model [63].

4.3.1 Eigenvector approximation

Instead of randomly choosing some columns of the kernel matrix to construct the matrix
E and W in Eqn 4.4, Zhang et al. [84][85] presented a novel method to approximate the
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eigen-pairs of K using K-Means clustering. Some theoretical analysis shows the reconstruc-
tion error of the full kernel matrix is bounded by the quantization errors of the K-Means
clustering.

Given the m K-Means cluster centers, {c1, . . . , cm}, we approximate the full kernel matrix
as follows:

K ∼ LLT , where L = EW− 1
2

where E ∈ RN×m and Eij = k(xi, cj), W ∈ Rm×m and W (i, j) = k(ci, cj). The eigen-pairs of
K can be estimated as:

Vkm = LVGΛ
− 1

2
G , Λkm = ΛG (4.6)

where (VG,ΛG) is the eigen-pair of G = LTL:

G = VGΛGV
T
G

In order to obtain the eigenvectors of the centered kernel matrix, K̃ ≈ HKH, we have the
following:

Ṽkm = L̃ṼGΛ̃
− 1

2
G , Λ̃km = Λ̃G (4.7)

where (ṼG, Λ̃G) are the eigen-pair of the matrix G̃ = (HL)T (HL) = LTHL and L̃ =

HEW− 1
2 . Using Eqn 4.1, the eigenvectors of the centered kernel matrix can be written

as:
Ũkm = Φ̃X ṼkmΛ̃

− 1
2

km (4.8)

Noticing Ṽkm ∈ RN×m, actually we can get its smaller version by throwing away the eigen-
vectors corresponding to very small eigenvalues. Also it will be clear from the next section
that we actually do not need to calculate and store Ṽkm.

The above method provides an efficient way to approximate the eigenvectors of the full
kernel matrix. The key observation is that the Nystrom low-rank approximation depends
crucially on the quantization error induced by encoding the training dataset with the cluster
centers. This method is suitable for large-scale problems. Another advantage is that the
eigenvectors found using this method are orthognomal, see Eqn 4.7, which has been shown
to be better than the non-orthognomal counterpart, for example Eqn 4.5.

4.3.2 Out-of-sample projection using landmark points

Although the eigenvector of the full kernel matrix can be approximated very efficiently
using the above method [84], to perform out-of-sample projection for a testing point x0,
we still need to keep all training samples and calculate the pairwise distance between x0

and all the training samples, which is impractical for large-scale problems. In this section,
we first construct a reduced feature space spanned by a few landmark points which could
have different center for speedup reason. A linear projection P is used to associate the two
feature spaces such that we have very similar kernel mapping on both feature spaces for a
given testing point.
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For a sample x0, its projection onto the approximated eigen-space can be calculated:

z(x0) = ŨT
km(φ(xo)−M) = Λ̃

− 1
2

kmṼ T
km[k̃

M(x0, ·)] (4.9)

where z(x0) ∈ Rm×1, M = 1
N

∑
i φ(xi) is mean of all samples in the original feature space,

k̃M(x0, ·) ∈ RN×1 is the centered version of k(x, ·) = [k(x0, x1), . . . , k(x0, xN)]
T with respect

to the sample mean M . In this chapter, a simple linear model is proposed to approximate
the kernel mapping of z(x0) using the reduced feature space spanned by n ≪ N landmark
points (l0, . . . , ln):

ẑ(x0) = P T [k̃l(x0, ·)] + b (4.10)

where ẑ(x0) ∈ Rm×1, P ∈ Rn×m. kl(x0, ·) = [k(x0, l1), . . . , k(x0, ln)]
T ∈ Rn×1, and k̃l(x0, . . .)

is some normalized version of kl(x0, . . .), which will be clear later in this section. And also
the bias term b is omitted here.

To solve for P , we try to minimize the Euclidean distance between the actual projection
z(xi) and its approximated version ẑ(xi) for all the training samples, and form the following
optimization problem:

P ∗ = argminP J =
∣∣∣
∣∣∣Λ̃− 1

2
kmṼ T

kmK̃
M − P T K̃l

∣∣∣
∣∣∣
2

F
+ λ||P ||2F (4.11)

where K̃l =
[
k̃l(x1, ·), . . . , k̃l(xN , ·)

]
∈ Rn×N , K̃M ∈ RN×N is the centered original kernel

matrix. The second regularization term is used to prevent numerical instabilities. Solving
this optimization function, we can get:

P ∗ =
[
K̃l · (K̃l)

T + λI
]−1


K̃lK̃

M · Ṽkm︸ ︷︷ ︸
∗


 Λ̃

− 1
2

km (4.12)

where I is an identity matrix.
The computation cost of using Eqn 4.12 comes from the part marked as “*”. Noticing

K̃M ∈ RN×N , K̃l ∈ Rm×N and Ṽkm ∈ RN×m, we need to keep a copy of N × N matrix
and also the complexity is O(N3). Actually depending how we construct our reduce feature
space, including choosing the landmark points and the centering matrix, Eqn 4.12 can be
significantly simplified accordingly:

� Using the same cluster centers {c1, . . . , cm} as our out-of-sample projection landmark
points, and further we center all points with respect to M using Eqn 4.2, Eqn 4.12 can
be simplified as:

P ∗ = ṼG (4.13)

Above, we use the facts: K̃l = L̃T , K̃M ≈ L̃L̃T and L̃T L̃ = ṼGΛ̃GṼ
T
G . It is easy to

prove that the reconstruction error in Eqn 4.11 is zero in this case. That is, we can
perfectly reconstruct our kernel mapping in our reduced feature space. Given a testing
point x0, however, we have to calculate the full kernel matrix K when applying Eqn
4.2 to center its image φ(x0), which is impractical for large-scale problems;
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� Using the same K-Means center, or uniformly sampled n training samples, as our
landmark point for out-of-sample projection. But for speed reasons, we center all
samples using the sample mean of the landmark points only: m = 1

n

∑
i φ(li). More

specifically, for a given point x0, we get its centered version by:

k̃ml(x0, {lk}) = k(x0, {lk})− 1
1

m
1Tk(x0, {lk})−

1

m
Klandmark1

T +
1

m2
1TKlandmark11

T

(4.14)
where Klandmark ∈ Rn×n, and Klandmark(i, j) = k(li, lj). Comparing with Eqn 4.2, it is
very easy to compute and store Klandmark when n ≪ N , which will dramatically speed
up the out-of-sample projection. Then Eqn 4.12 can be simplified as:

P ∗ =
[
K̃l · (K̃l)

T + λI
]−1

K̃lL̃ṼG (4.15)

Here, we again use the fact: K̃M ≈ L̃L̃T , and L̃T L̃ = ṼGΛ̃GṼ
T
G .

We will experimentally examine and compare these strategies in our experimental section
4.4.

4.3.3 Analysis

Our out-of-sample model bears some similarities with the reduced set method [59] [65], which
is a common method to get a sparse representation in order to speed up the kernel method.
Eqn 4.9 is equivalent to:

Ũkm ≈
[
φ̃(l1) φ̃(l2) . . . φ̃(ln)

]
P

That is, each eigenvector of the kernel matrix K̃ is assumed to be a linear combination of the
few landmark points. The landmark points are either chosen from the original training set
or constructed by pre-image optimization [59]. Different from [59], we construct our reduced
feature space not only using landmark points but also using different centering matrix, which
leads to very efficient out-of-sample projection suitable for large-scale problems.

The efficiency of our method roots in merging kernel matrix approximation using cluster-
based Nystrom sampling [85] and the modified reduce-set method. More specifically, if we
use the Nystrom sampling method [74] to approximate the kernel eigenvectors, plugging Eqn

4.5 into Eqn 4.12 and using the fact K ≈ EW− 1
2ET , we have:

P ∗
ny =

[
K̃l · (K̃l)

T + λI
]−1

K̃l

[
ẼW− 1

2 ẼT · ṼnyΛ̃
− 1

2
ny

]
(4.16)

We can see that computational overhead is twice that of our method (see Eqn 4.15). Another
benefit is that we do not even need to compute and store the kernel eigenvector (Eqn 4.7),
which is obvious in Eqn 4.15.
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Our method can be regarded as a general version of the Bag-of-Words model based on
soft-Kmeans clustering. In the BoW model, K-means clustering is first applied on image
features, such as SIFT/HoG, to get the cluster centers {c1, . . . , cm}, each new feature xo can
then be coded using those centers:

code(x0) =
[
exp(− ||x0−c1||

σ2 ) exp(− ||x0−c2||
σ2 ) exp(− ||x0−cm||

σ2 )
]

This soft-Kmeans coding strategy has gained success in many computer vision tasks. Al-
though it has some probabilistic interpretation (such as Gaussian Mixture Model), it still
lacks some justification of why it works. In this section, instead of directly using the above
equation, we argue that we should perform two extra steps: centering and projection, as
suggested by Eqn 4.13. Even Eqn 4.13, as shown here, is a very rough approximation of
the KPCA projection by assuming the full kernel matrix with rank m. An even better
approximation can be acquired by Eqn 4.12.

Putting the Bag-of-Words model in the setting of the Nystrom sampling framework, we
show that cluster centers are actually landmark points. The more points we choose, the
better we can approximate the full kernel matrix, and the better is the feature quality. Also
even some random samples from the training set can be selected as the landmark points in
order to get reasonable features. These observations are confirmed by [2][17].

4.4 Experimental results

We tested our algorithm on several publicly available datasets: Ionosphere, Dorothea, Gisette
from the UCI machine learning repository [1], and two face recognition datasets: Yale ex-
tended B [30] and AR face database [46].

For the two face recognition experiments, we adopt the convolution-type patch-based
representation for each image [2]. The projection matrix P is first learned from randomly
sampled 30, 000 patches from all the training images. Given a testing image, we calculate the
KPCA feature z for each sliding window patch and then form a sparse vector by applying:

f(z) = max(0, z − z̄)

where z̄ is the mean of z. Those sparse vectors are spatially averaged over a 2 × 2 grid
on that image, and the final vectors is constructed by concatenating the four vectors. The
average pooling strategy can handle slight image shift, deformation, and also is robust to
noise. Our baseline algorithm is [2], where each patch is coded using its Euclidean distances
to all cluster centers.

4.4.1 UCI dataset

The three UCI datasets used in this chapter are summarized in Table 4.1. All of the three
dataset are binary classification problems. Ionosphere is to identify whether some type
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Dataset # train # test # features

Ionosphere 175 176 34
Dorothea 800 350 100000
Gisette 6000 1000 5000

Table 4.1: UCI dataset used in this chapter. For Ionosphere, we randomly split 50% as
training and testing set. For Dorothea and Gisette, we report the classification accuracy on
the validation set.

of structure exists in the ionosphere. Dorothea is a drug discovery dataset, the goal is
to classify a Chemical compound represented by structural molecular features as active or
inactive. The Gisette dataset challenge is to separate the digits ’4’ and ’9’.

The following feature extraction methods are compared, “R”/“C” represents using ran-
dom samples or cluster centers as landmark points:

• N-KPCA + R/C: the kernel eigenvectors are estimated by Nystrom sampling KPCA
[74], and the out-of-sample projection uses all training points;

• A.1 + R / C: the kernel eigenvectors are approximated by Nystrom sampling KPCA
[74], the same landmark points are used for out-of-sample projection, see Eqn 4.16;

• A.2 + R / C: the kernel eigenvectors are approximated by cluster-based Nystrom
sampling [85], the same landmark points are used for out-of-sample projection, see
Eqn 4.15;

• KPCA: we use full KPCA model to extract features;

After extracting features for each sample, we apply linear SVM for classification. The results
on UCI datasets are summarized in Fig 4.1. From the above results, we have the following
observations:

• Our approximation methods achieves classification accuracy similar to Nystrom-KPCA
and KPCA; On some datasets, e.g., Giestte, our method is even better than KPCA
– one possible reason is the denoising effects; and our method is cheaper to compute;

• The classification performance of randomly-chosen landmark points or cluster centers
is very close. On the Dorothea dataset, A.1 is systematically better than A.2. How
to choose reasonable landmark points depends on the characteristic of the dataset we
use;

• The model with “cluster centers” performs better when the number of samples is very
small, for example, 5%. In real applications, this is usually what we expect.
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(a) Ionosphere dataset

(b) Dorothea dataset

(c) Gisette dataset

Figure 4.1: Classification accuracy on Ionosphere,Dorothea and Gisette dataset. Left: clas-
sification accuracy with number of samples ratio (m/N); Right: classification accuracy with
number of PCA dimension (d).

• Depending on the dataset, we can choose fewer kernel eigenvectors without losing much
accuracy, which further reduces the computational cost. E.g., when we choose d = 400
for the Gisette dataset, we can reach similar classification as with d = 600.
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# sampl. [2] A.2+C A.2 + R

30 94.1987±1.0734 93.0926±0.9350 91.0128±1.0409

84 97.0367±0.4938 97.9062±0.6312 97.8854±0.5798
144 97.8297±0.3098 98.7396±0.4022 98.8147±0.3017
300 98.2958±0.5496 99.2696±0.1338 99.2487±0.1631
500 98.7897±0.3010 99.5270±0.1524 99.4783±0.1597

Table 4.2: Classification accuracy for YaleB database

4.4.2 Yale Extended Face database B

The Extended Yale B database is a face recognition benchmark dataset, it contains 2414
frontal-face images of 38 individuals. The cropped and normalized 192 × 168 face images
were captured under various laboratory-controlled lighting conditions. Each image is down-
sampled to the size of 48 × 42, without any other preprocessing. The patch size we used is
12× 12.

We follow the similar experimental protocol of [75][82]: For each subject, we randomly
select half of the images for training (32 images per subject), and the other half for testing.
We run the above processes 10 times, and report the average classification rate and its
standard deviation in Table 4.2. In our experiments, we compare two landmark point-
selection strategies (“R”: random samples, or “C”: K-Means clustering center), a linear
SVM is used as our classifier.

From Table 4.2, we have the following observations:

• The more landmark points we choose, the higher is the classification rate. That is, the
quality of the extracted feature is closely correlated with how good we can approximate
our kernel matrix, and KPCA can effectively extract non-linear features from the high
dimensional data;

• The performance of “A.2+C” is systematically better than “A.2 + R”, which means
that carefully choosing landmark points can definitely improve classification perfor-
mance;

• If we choose the number of samples to be 600, our A.2 can reach 99.5% and KPCA+ny
is 99.7% accuracy;

• The state of the art accuracy reported is 99.4% [82]. They use a carefully designed
weighted sparse coding model to extract features, and all training samples are treated
as dictionary atoms, which is very expensive to compute.
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#samp. [2] A.2 + C A.2 + R

30 92.56±0.6 92.19±1.2 91.67±1.1

54 94.99±0.8 95.59±0.7 94.83±0.8

150 96.30±0.5 97.59±0.4 97.7±0.4

500 96.90±0.4 98.63±0.3 98.47±0.4

800 97.2±0.4 99.1±0.2 99.0±0.2

Table 4.3: Classification accuracy for AR database

4.4.3 AR face database

The AR database consist of over 4000 frontal images for 126 individuals. For each individual,
26 pictures were taken in two separate sections. These images include more facial variations
including illumination change, expressions, facial disguises, and fewer training samples per
subject compared to the Extended Yale B database. In the experiment (similar to [75][82]),
we choose a subset of the dataset consisting of 50 male and 50 females subjects. For each
subject, 14 images with only illumination change and expressions were selected: the seven
images from section 1 for training, and the other seven from section 2 for testing. The images
are downsampled with dimension 165× 120 and converted to grayscale.

Following the similar experimental protocols of [75], [82], three experiments are conducted
to test our KPCA feature extraction. The patch size used is 15× 15.

Only considering illumination and expression

In this experiment, we only consider the faces with illumination and expression changes. We
run our experiments 30 times, and report the average classification rate and its standard
deviation, shown in Table 4.3. Again, we observe that our method is systematically better
than [2] in most cases. The carefully chosen landmark points helps classification performance.
As reference, the-state-of-the art accuracy is 96.0% in [82], which uses a robust sparse coding
model.

Face recognition with real disguise

We use the same experimental setting as in [75][82]. A subset AR database is used in this
experiment.

• disguise test 1: we train our model on the non-occluded frontal views (with different
facial expressions), and test it on the face images with sunglasses and scarf. The results
are summarized in Table 4.4;

• disguise test 2: We train our model on non-occluded frontal faces (with different il-
luminations) in Section 1, and test our model on the disguised images (with various
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Alg. SRC [75] GSRC [81] RSC [82] [2] Ours

Glass 87.0% 93.0% 99.0% 80.3±0.8 99.7%±0.26
Scarf 59.5% 79.0% 97.0% 86.5±0.7 96.7± 0.67

Table 4.4: Classification accuracy for AR face database with disguise test 1

Alg. glass-sec1 scalf-sec1 glass-sec-2 scalf-sec2

SRC[75] 89.3% 32.3% 57.3 % 12.7

GSRC[81] 87.3% 85% 45% 66%

RSC[82] 94.7% 91.0 % 80.3% 72.7 %

[2] 73.7083±5.53 77.0±0.9428 46.0 ±4.2426 44.3333±0.9428

Ours 98.9333±0.3651 93.4167±1.0351 83.7917±0.5893 78.7333±1.8012

Table 4.5: Classification accuracy for AR face database with disguise test 2.

illuminations and sunglasses or scarf) for both sections. Table 4.5 shows the compari-
son. In this experiment, patch size is 15 × 15, the number of cluster centers used are
1000, 1000, 1500 and 1500, respectively).

From the above two tables, we can see our method performs better than the state of
art algorithms in these two experiments. One of the reasons is that our KPCA feature
extraction method, as a better BoW model, can capture more robust and meaningful image
features. On the other hand, the patch-based image representation we use is suitable for
these classification tasks. Although about 40% of the face is blocked, the average-pooling
strategy can still pick up enough information to distinguish faces.

4.5 Conclusion and future work

We have presented a very efficient method for Kernel PCA feature extraction based on land-
mark points for large scale problems. The experimental results demonstrate the effectiveness
and efficiency of our method. Also the current success of the unsupervised feature learn-
ing framework can be explained by our method. We show that carefully selected landmark
points are important to getting robust and more meaningful image features when the number
of landmark points is moderate. The following chapter will investigate alternative ways to
select better landmark points in order to further improve feature quality.
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Chapter 5

GEV-clustering

Recent studies have shown that K-means, with larger K, can effectively learn local image
patch or EPI-patch features; accompanied with appropriate pooling strategies, it performs
very well in many visual object recognition tasks. An improved K-means cluster algorithm,
GEV-Kmeans, based on the Generalized Extreme Value (GEV) distribution, is proposed
in this chapter. Our key observation is that the squared distance of a point to its closest
center adheres to the Generalized Extreme Value (GEV) distribution when the number of
clusters is large. Differing from the K-means algorithm, we minimize the reconstruction
errors by ignoring those points with lower GEV probabilities (i.e. rare events), and focus
on others points which might be more critical in characterizing the underlying data distri-
bution. Consequently, our algorithm can handle outliers very well in situations where the
conventional K-means algorithm suffers. Experimental results demonstrate the effectiveness
of our algorithm.

5.1 Introduction

In order to perform a high-level visual task, an unsupervised feature learning framework
has been proposed [2][34], attaining much success in many visual object recognition tasks.
A feature learning algorithm is employed over a large number of randomly sampled local
image patches in order to learn feature representations. The learned features, after some
non-linearity and spatial pooling (average or max-pooling), are fed into a linear SVM for
classification. [2] has shown that, after appropriate pre-processing, K-means clustering per-
forms surprisingly well in comparison with other more sophisticated models, such as Re-
stricted Boltzmann Machine [33], sparse coding [51], etc. [2] also shows that classification
performance increases as the number of cluster centers used in the K-means increases.

Given a set of points in a high-dimensional space, the goal of the K-means algorithm
(Lloyd’s algorithm) [42] is to find cluster centers that minimize the sum of squared distances
from each data point to its closest cluster center. It is well known that the K-means algorithm
is prone to outliers and very sensitive to initialization. A natural question to ask is: with
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better K-means centers, could we further improve the classification performance? To resolve
this, many models have been proposed. Kmeans++[7] initializes the centers in an incremen-
tal fashion: a point x′ is chosen as the k-th center with probability yk−1(x

′)/
∑

x∈X yk−1(x),
where yk−1(x) is the minimal squared distance of x to the current k − 1 centers. Since
the farthest point still has high probability, it continues to suffer from outliers. Tseng [69]
presents a weighted K-means algorithm to penalize the outlying objects of a cluster, however
the weights are manually designed based on some human-provided priors.

The Generalized Extreme Value (GEV) distribution [22] is a family of probability distri-
butions based on extreme value theory. It unifies three types of extreme value distribution
– Gumbel, Frechet and Weibull – each of which is a limiting case for different types of un-
derlying distribution. GEV is often used to model the largest/smallest value from a block of
observations, as the block size becomes large. Fernando et al. [28] use GEV to find the best
threshold to binarize text documents and scene objects, Scheirer et al. [58] uses GEV for
merging classification scores of multiple classifiers in visual object recognition. Burghouts et
al. [19] uses Weibull distributions to model the distances from one reference feature vector
to other vectors.

In this chapter, an improved K-means clustering is proposed based on the GEV distribu-
tion, which performs better with outliers – the learned centers maintain diversity and also
reduce unnecessary redundancy. We first cast the K-means algorithm to a block extrema
optimization problem. Given K cluster centers, the minimal squared distance(MSD) of
a given point x to all K centers, y(x) = mink{||x − ck||

2}, is a block minimum among the
blocks of size K. Then the K-means algorithm essentially tries to minimize the average MSD
over all training points. With large enough K, we found MSD empirically adheres to Type II
Generalized Extreme Value (GEV) distribution. Given a point, its GEV probability of MSD
essentially tells how likely this MSD occurs based on the training set. Those points with very
low GEV probabilities, either very close to the current chosen centers (very small MSD) or
high-probability outliers (with very large MSD), are ignored when we minimize the overall
reconstruction errors. Instead, we focus on those points with large GEV probabilities, which
are potentially more relevant to the underlying data distribution in high-dimensional space.
Therefore, our algorithm has less sensitivity to outliers.

From the algorithmic point of view, our method differs from the K-means algorithm in the
way it updates centers. Given a set of points within a cluster, instead of uniformly averaging
them to get the new center as K-means, we downgrade all the points with too low/high
distance to the centers. Essentially we move the center to the most probable position such
that the new center is more likely in the sense of GEV distribution. By doing so, we maintain
the diversity and remove the unnecessary redundancy among the cluster centers.

The remaining sections are organized as follows: in Section 5.2 we briefly introduce the
Generalized Extreme Value distribution (GEV); in Section 5.3 our GEV-Kmeans clustering
algorithm is presented; the experimental results, conclusion and future works are presented
in Section 5.4 and 5.5, respectively.
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5.2 Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution [22] is a family of continuous probability
distributions based on extreme value theory. It unifies three types of extreme value dis-
tribution families, Gumbel, Frchet and Weibull. By the extreme value theorem the GEV
distribution is the limit distribution of properly normalized extrema of a block of independent
and identically distributed (i.i.d.) random variables.

The formal definition of GEV follows: given a random variable X, we observe its i.i.d.
finite sample: {x1, x2, . . . , xK}, then the block extreme value Y = min(X1, . . . , XK} approxi-
mately follows the Generalized Extreme Value (GEV) distribution. The Probability Density
Function (PDF) is given by

f(x;µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ

σ

)](−1/ξ)−1

×

exp

{
−

[
1 + ξ

(
x− µ

σ

)]−1/ξ
}

(5.1)

for 1 + ξ(x − µ)/σ > 0. (µ, σ, ξ) are location, scale and shape parameters, respectively.
Depending on the value of ξ, GEV is equivalent to Gumbel, Frchet and Weibull distributions.
Fig 5.1 shows the density function for these three types of distribution family. In particular,
the Type II GEV distribution, asymmetric and heavy tailed on the right-hand side, will be
used in this chapter.

Some basic statistics measures are given as:

mean =





µ+ σ Γ(1−ξ)−1
ξ

if ξ 6= 0, ξ < 1

µ+ σγ, if ξ = 0
∞ if ξ ≥ 1

(5.2)

and

variance =





σ2(g2 − g21) if ξ 6= 0, ξ < 1/2
σ2π2/6, if ξ = 0
∞ if ξ ≥ 1/2

(5.3)

where Γ and γ are the Gamma function and Euler’s constant, respectively, and gk = τ(1−kξ).
The GEV distribution has been widely used in modeling block extrema problems. [28]

uses GEV to find the best threshold for binarizing text documents and scene objects, while
[58] uses it for merging classification scores from multiple classifiers for visual object recog-
nition.

Many problems in machine learning and computer vision can be cast as block-extrema
problems. For example, in an Ordinary Least Squares problem, β∗ = argminβ||x − Dβ||2

(where D is the design matrix), the optimal β can be acquired by finding the one which
gives the smallest reconstruction errors, within a big block: {||x−Dβ1||

2, . . . , ||x−DβK ||
2}.

Each βi could be a random sample from some distribution. Here, we apply GEV theory to
improve the K-means clustering algorithm.
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Figure 5.1: PDF for three types of GEV distribution [22].

5.3 GEV-Kmeans clustering

In this section, we present the setup of our GEV-K-means algorithm, to be followed by the
optimization and analysis. Here, we use Ck for the k-th cluster, or the k-th cluster centers,
interchangably (the context should clarify). Also for brevity, we use minimal squared
distance and MSD equally.

5.3.1 Setup

Given a set of observations {x1, x2, . . . , xN}, where xi ∈ Rd, K-means clustering aims to
partition theN observations into K sets C = {C1, C2, . . . , CK} so as to minimize the following
objective function:

min
{ck}

J =
1

N

∑

i

min
k

{||xi − ck||
2} ≡

1

N

∑

i

yi (5.4)

here yi is the minimal squared distance of xi to all centers:

yi = min
k

{
||xi − c1||

2, . . . , ||xi − cK ||
2
}

(5.5)

Observe that yi is actually a block-min among all K squared distances. To connect Eqn
5.5 with the GEV distribution, we first define the following random variable:

D = ||X − CL||2
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where L ∈ RK is a random variable, only one of its component is 1, indicating which cluster
X is in. By randomly sampling L K ′ times (K ′ could be different from K), we further define
a new random variable:

Y = min
all K′ samples

{||X − CL1||
2, . . . , ||X − CLK′ ||2} (5.6)

Notice each squared distance ||X − DLk||
2 is an i.i.d. sample of our random variable D,

and also follows the N(0, σ)2 distribution with heavy tail. Since we are only interested in
the block-min, we can model the distribution of Y as a Type II Generalized Extreme Value
(GEV) distribution.1

Knowing the distribution of Y , we can reformulate the K-means clustering as the following
optimization problem:

min
{ck}

J = EP (Y )Y

s.t.: {µ∗, σ∗, ξ∗} = argmax
N∑

i=1

logP (yi|µ, σ, ξ) (5.8)

1 + ξ∗(yi − µ∗)/σ∗ > 0, ∀i

where P (y|µ, σ, ξ) is a GEV distribution as defined in Section 5.2, EP (Y ) is the expectation
of Y with respect to the distribution of P (Y ). The second constraint comes from the re-
quirement of the GEV distribution in Section 5.2. That is, we first fit the GEV distibution
based on the observed training data, and then minimize the expected minimal squared
distance with respect to this distribution. We know already that EP (Y )Y = µ + σ τ(1−ξ)−1

ξ

for Type II GEV distributions.
In this chapter, we make the following simplification: instead of sampling multiple times

to construct the GEV variable of Y using Eqn 5.6, we use the determinstic process as in Eqn
5.5. Although the assumption required by the GEV distribution is not satisfied here, we can
still well approximate it with a GEV distribution in practice (see experimental section for
verification). Therefore, the final optimization problem we end up with is the following:

min
µ,σ,ξ,{ck}

J =α

(
1

N

N∑

i=1

yi

)
−

1

N

N∑

i=1

logP (yi|µ, σ, ξ)

s.t.: 1 + ξ(yi − µ)/σ > 0, ∀i (5.9)

1Also, the above sampling process is similar to the generative model of conventional K-means clustering.
Randomly sampling Lk is equivalent to randomly sampling from the prior of clusters, i.e., P (C). This prior
could be flat(uniform) or follow some other prior distribution. Each cluster can be an additive Gaussian
model, and all clusters share the same Gaussian noise variance.

x = ck + ǫ (5.7)
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where we use the empirical expectation of ÊY instead of EPY , and α is a penalty term which
balances the two items above. It turns out that this simplification leads to a closed-form
updating rule for centers. Given a point x, P (y) simply measures how likely, or how often,
its MSD of y could occur; this differs from the probability that x should be assigned to a
cluster.

Notice the difference from the conventional K-means algorithm which does not have the
second term. Equivalently, the K-means algorithm will treat the distribution of Y as uniform.

Our objective function in Eqn 5.9 balances the reconstruction errors and their likelihood
of GEV probabilities. Equivalently, for a given point, the reconstruction error is inversely-
proportional weighted by the GEV probability of its MSD. Points with very small P(y)
value, or equivalently having too small/big MSD distance (rare events), are basically ignored
when we collect the reconstruction errors (since the very large value of its log-likelihood will
overshadow the reconstruction error). Instead, we focus on the majority of other points with
reasonable P(y) values, which are more relevant to the underlying data distribution.

Let’s further illustrate this by considering the following scenario: Given current centers,
for those points with very low reconstruction errors but low P(y) values, K-means will be
happy to accept the current centers since the goal of K-means is to reduce the reconstruction
error. However GEV-kmeans further checks the P(y) value. Lower P(y) values could be
caused by two situations: 1) the MSD of those points are very small – in this case, those
points are very close to the current chosen centers and they can be explained very well using
current centers, which are “uninteresting” for our problem; and 2) the MSD of those points
are very large, that is, those points are extremely likely to be outliers with respect to the
current centers. GEV-kmeans will reorganize the centers to avoid this situation until we find
more reasonable cluster centers.

Our algorithm and its detailed analysis will be presented in sections 5.3.2 and 5.3.3,
respectively.

5.3.2 Optimization and algorithm

To solve for the optimization problem in Eqn 5.9, an EM-style algorithm is employed, mean-
ing: we first solve for the GEV parameters (µ∗, σ∗, ξ∗) by fixing centers; and then update
centers by fixing the GEV parameters.

For the first part, we use the Matlab function “gevfit” to find the Maximum Likelihood
Estimation (MLE) of the GEV parameters, which automatically takes care of the constraints.
To update the centers, we take the first-order gradient of J with respect to ck:

∂J

∂ck
=

1

N

∑

i∈k

(α + Ai +Bi)(ck − xi) (5.10)
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Algorithm 6 GEV-Clustering

Initialize {ck};
(Optional) Run K-means algorithm several steps;
repeat

Calculate minimum squared distance {yi} using Eqn 5.6, and fit the GEV model
using {yi} to get (µ, σ, ξ);

update centers {ck} using Eqn 5.11;
until Converge

and setting to zero, provides the following update rule:

c∗k =
∑

i∈k




α + Ai +Bi∑
j∈k(α + Aj +Bj)︸ ︷︷ ︸

wi


 xi (5.11)

where

Ai =
1 + ξ

σ

1

1 + ξ yi−µ
σ

, Bi =
−1

σ

[
1 + ξ

yi − µ

σ

]−1/ξ−1

and i ∈ k means all points have minimal Euclidean distance with respect to the k-th cluster.
The algorithm is summarized as follows in Algorithm 6. Similar to [42], it is easy to show

that our algorithm converges: in the first step of Algorithm 6, we minimize the negative
log-likelihood based on the current centers; and in the second step, we further minimize the
objective function by updating centers. Empirically, a fast convergence speed is observed,
usually within about 20 iterations.

5.3.3 Analysis

From an algorithmic point of view, our method differs from Kmeans only in how we update
the centers, and we still use the minimal distance as a measure to label each point with the
nearest center. As in Eqn 5.11, the new center is a linear combination of the points within
this cluster, the weights w depend on the values of A+B, whose shape is shown in Fig 5.2.
We can see that: A+B reaches its peak at some MSD, and is negative if the MSD is smaller
than some value, decreasing slower when MSD increases, and never dropping below zero.
One interesting consequence is that if most points within a cluster have very small MSD,
then the sum of

∑
i∈k(α + Ai + Bi) in Eqn 5.11 will be negative.

To see how the weights of wi affect the updating of centers, we pick two clusters, visualize
the image patches within that center and their weights using Eqn 5.11 (see Fig 5.3-Top
and Bottom, respectively). Fig 5.3-Top shows a very typical cluster during our iterations.
We can see that weights are maximum at some MSD distance, and drop quickly on lower
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Figure 5.2: Value of A+B, with GEV parameters: µ = 18.4, σ = 13.4, ξ = 0.1111

MSD values and more slowly on larger MSDs. That is, when we update the center for
this cluster, we favor those with reasonable MSD and simultaneously downgrade points with
larger/smaller MSDs. This brings two benefits: a) if some points have MSD greater than the
optimal distance, meaning they are potentially outliers, we will not consider them equally
with points of optimal distance, but downgrade them; b) those points with MSD smaller
than the optimal distance will also be downgraded. In other words, after linear averaging,
we move our center to a new position such that all of the points within this cluster have
larger P (y), i.e., are more probable. Doing this can effectively remove outliers.

More interestingly, Fig 5.3-Bottom visualizes a cluster where
∑

(A + B + α) < 0. We
can clearly see that we will prefer points with very large/very small MSD distance, rather
than optimal distance. The consequence is that the updated center will be considerably off
the current center in order to reduce the objective function. It is very likely that this cluster
(visually speaking, for example, gray image patches with right-top corner having a dot)
could be a dangling outlier. Consequenctly, this center will be deleted at the next iteration,
and all of its associated points will be reclustered into other centers. During this process,
the objective function will be temporarily increased. Empirically, many cluster centers are
deleted during the first few iterations, with most arising from a negative sum-of-weights in
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Eqn 5.11.

(a) Cluster 1 – Left:image patches; Right: weights w

(b) Cluster 2 – left:image patches; Right: weights w

Figure 5.3: image patches within each cluster and their weights w

Conceptually, Fig 5.3-Top and Bottom corresponds to the scenarios shown in Fig 5.4-Left
and Right, respectively. Suppose we have three data point clouds as shown in Fig 5.4, with
PointSet 3 being outliers.

(a) If we already have the centers for PointSet 1 and PointSet 2 (see Fig 5.4-Left), how
do we update these centers with the presence of PointSet 3? Since the MSDs for all
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Figure 5.4: Simple example. Left: we have known C1/C2; Right: we have known three
centers C1/C2/C3.

points in PointSet 3 are very high (with low P(y) values), we will update the first
center (only) by discounting all points in 3. That is, a dangling point set, possibly
being outliers, will not significantly influence our centers;

(b) Now, consider if we already have three clusters for our dataset. Since the PointSet
3 are dangling outliers, we would like to get rid of its corresponding center. Most of
the points in PointSet 3 have very small minimum squared distance, therefore the
corresponding A+B will be negative. Consequently, the center C3 will be removed at
the next iteration.

Notice our algorithm can effectively delete inappropriate centers without adding new
ones. However, the number of centers will stabilize quickly. At the end of all iterations, the
new centers will have the following properties: a) the MSD for points within each cluster
will have higher probability, being neither too large nor too small; and b) the reconstruction
error will be very small.

5.3.4 Initialize K-means Clustering

From the above analysis, a new initialization method is proposed for K-means based on the
GEV distribution. Comparing with the conventional initialization methods, our method,
considering the data distribution property, will give better reconstruction errors. The algo-
rithm is summarized in Algorithm 7.

5.4 Experimental results

In this section, we first conduct experiments to demonstrate the GEV distribution can help
find better cluster centers and then conduct experiments to verify the proposed GEV-Kmeans
clustering algorithm on the CIFAR-10 visual object recognition image benchmark database
[67].
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Algorithm 7 Initialize K-means using GEV

Set cluster centers C to be empty;
Randomly choosing a sample x and adding to C;
repeat

Calculate minimum squared distance {yi} using Eqn 5.6, and fit the GEV model
using {yi} to get (µ, σ, ξ);

Randomly sampling a value v from GEV (µ, σ, ξ), and choosing the correspoinding
sample into C
until K centers are chosen

data/K 10 20 30 50 100

Cloud 1 8.8 18.8 24.8 34.8 45.9
Cloud 2 -2.7 2.9 11.3 22.5 37.3

image seg. 1.0 -5.4 5.3 13.3 31.0
Lenna 45.8 81.0 85.4 93.3 /

Table 5.1: Improvement factor of reconstruction error

5.4.1 UCI dataset

Cloud 1, Cloud 2, image segmentation and Lenna are popular clustering datasets [1].
In this section, we use this dataset to demonstrate our initialization method for K-means
clustering. For K chosen cluster centers, the reconstruction/quantization error is calculated
as:

Err =
N∑

i=1

min
k

{||xi − ck||}

We initialize the K-means using our method, and then run K-means clustering. Then
we calculate the improvement ratio of the reconstruction error with respect to the error
of Kmeans with random initialization. Ten runs are conducted for each K, we report the
average improvement factor. The results are shown in Table 5.1:

5.4.2 CIFAR-10

The CIFAR-10 dataset [67] is a benchmark image database for the visual object recogni-
tion task. It contains 50K/10K training/testing color images, each with size 32 × 32. Ten
categories are considered, including car, plane, etc.

Here, to compare the capability of our GEV-Kmeans algorithm against the conventional
K-means algorithm, we exactly follow the experimental protocol of [2]. 1) 400K 6×6 random
patches are extracted from the training images; 2) preprocessing: each local image patch
undergoes contrast normalization, and whitening is applied on all image patches; 3) using
the processed images patches, we perform GEV-Kmeans clustering, and cluster centroids are
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Figure 5.5: Histogram of minimum squared distance and the estimated Probability
Density Function of GEV distribution. Left: the centers are initialized randomly; Right:
after 100 iterations.

learned. After learning the centers, each 6 × 6 patch can be mapped into a feature vector
z ∈ RK : zk = ||x− ck||2, further we threshold z to get the final sparse feature representation
for this patch by: fk(x) = max{0, µ(z) − zk}, where µ(z) is the average of vector z (see [2]
for details); 4) each 32× 32 image is divided into 6× 6 patches with stride equal to 1, and,
with average pooling on a 2 × 2 grid, the final vectors are concatenated into a long vector
(R4K); 5) linear SVM is applied on these vectors for classification.

Here, we initialize the GEV-kmeans with five steps of the K-means algorithm, with the
K-means’ centers initialized randomly.

GEV assumption on MSD

We argue that the minimum squared distance satisfies a GEV distribution. To verify
this assumption, we apply our GEV-Kmeans clustering algorithm to the pre-processed image
patches. Fig 5.5-Left/Right shows the acquired normalized histogram overlayed with the
estimated Probability Density Probabilities (PDF), at iteration 1 and 100, respectively. Since
our algorithm will remove some of the clusters, the initial K we set is 1300, and the final
number of GEV-Kmeans centers reaches 1210.

First we validate our assumption by visual inspection. From Fig 5.5, we can see that the
normalized histogram of MSD and the fitted GEV Probability Density Function match quite
well, visually. As a simple goodness-of-fit measure, we compare the sample mean

∑
i yi/N

and expectation (EY = µ + σ τ(1−ξ)−1
ξ

), empirical standard deviation and the standard

deviation σ
√

g2 − g21 at iteration 1 and 100, respectively (see Table 5.2). The parameters
for the GEV distribution, (µ, σ, ξ), are estimated for each iteration. We can see that the
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Iter. sample mean EY sample std std(Y )

1 27.9909 28.1062 21.0654 22.423
100 27.8237 27.8520 20.089 20.4640

Table 5.2: Validation of GEV assumption

numbers match well. In other words, the assumption that the MSD’s distribution can be
approximated by a GEV distribution appears valid, in practice.

Visualization of learned centers

Before we present classification results, we visualize the cluster centers we learned using our
GEV-Kmeans in Fig 5.6. Similar to K-means and other methods such as sparse coding,
the K-means algorithm, etc, the learned centers resemble Gabor-like filters. Notice that our
centers are sorted based on their standard deviation.

Classification Performance

After we learned the cluster centers using GEV-Kmeans, we follow the experimental protocol
in [2] for classification. Again, we use five steps of K-means to initialize our centers, and
performed 25 iterations of GEV-Kmeans. As with the K-means algorithm, GEV-Kmeans is
sensitive to the initialization. In this chapter, we run GEV-Kmeans five times and report
the one giving the best classification accuracy. In order to train the linear SVM, we fine
tune the penalty parameter C in the SVM on one set of experiments for each K, and use it
for all five runs.

Also, since the GEV-Kmeans clustering algorithm could delete centers during the early
iterations, and the number of centers stabilizes quickly, the number of centers is not exactly
the same as [2] used. The actual number of centers of our results are: [108, 408, 811, 1224,
1630, 4020]. To fairly compare with the K-means result in [2], we run the algorithm in [2]
three times for K = 100, 400, 800, 1200 separately, and choose the one which gives the best
accuracy. Since we don’t fine tune the linear SVM parameters C for those experiments, the
results shown in the figure are slightly poorer than those reported in [2].

The classification accuracy on the CIFAR-10 dataset using different number of centers is
summarized in Fig 5.7.

From the figure, we have the following observations:

(a) For all K, GEV-kmeans outperforms K-means, which demonstrates better cluster cen-
ters can be achieved using our GEV-kmeans algorithm;

(b) When K = 1224, our algorithm (78.10%) outperforms the K-means algorithm with
K=1600 centers, 77.9%.
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Figure 5.6: Visualization of learned clustering centers. The centers are sorted by their
standard deviation, from low to high.

(c) We can gain more when the number of centers is moderately large. One possible reason
is that the GEV distribution requires a relatively large number of i.i.d. samples when
taking the block maxima/minima. Therefore, the GEV approximation is more suitable
with this range of number of centers. When the number of centers reaches much higher,
the gain of GEV-Kmeans decreases. Our classification accuracy is 79.77%, while K-
means in [2] can reach 79.6%. There is no longer a need to carefully choose good
centers in this situation. This is also consistent with the observations of Lee et al. [2].

The best classification accuracy on the CIFAR-10 dataset, 81.5%, is achieved using Orthog-
onal Matching Pursuit (OMP-1) (with dictionary size equal to 6000) as feature extractor
for each patch and “soft threshold” as non-linearity layer on top of the OMP-1 codes [21].
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Figure 5.7: Classification accuracy using different number of centers.

Although our algorithm cannot achieve the state-of-the-art results on the CIFAR-10 dataset,
we experimentally demonstrate our GEV-kmeans algorithm can learn better features than
K-means clustering algorithm. One possible reason is that we can handle outliers well.

Reconstruction Error

Finally, we compare the reconstruction error:

Recon. error =
1

N

N∑

i=1

min
k

||x− ck||
2

between GEV-kmeans and K-means algorithm, see Fig 5.8. The cluster centers learned from
GEV-kmeans cause slightly greater reconstruction errors than K-means. However, our goal
in Eqn 5.9 is not to reduce this error, but to get better cluster centers.
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Figure 5.8: Reconstruction Errors of GEV-kmeans and K-means

5.5 Conclusion and future work

An improved K-means clustering algorithm based on GEV distribution, GEV-Kmeans, has
been proposed to learn better features. It outperforms the K-means algorithm when K is
moderately large. We first cast K-means clustering as a block extrema optimization prob-
lem, and approximate the distribution of the minimal squared distance using the GEV
distribution. With this data-dependent global information, our learned centers are less sen-
sitive to outliers, with computational overhead comparable with the K-means algorithm.
Experiments show that our algorithm works better with a moderate number of cluster cen-
ters. Future work, could apply the GEV-kmeans algorithm with other non-linearity layer
and pooling layers as suggested in Coates et al. [21] and also extend the approach to sparse
coding.
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Chapter 6

Conclusions and future works

In this dissertation we have explored the image-patch modeling problem by considering
image data and scene geometric information in an integrated manner. A geometry-aware
sparse-coding strategy is presented to efficiently encode an image patch while remaining
respectful of the geometric constraints embedded in a light-field. Two applications based
on this model are applied: joint image denoising and angular/spatial super-resolution, in
a light-field. Experimental results show the superiority of the developed method over its
counterparts – image modeling based on a single image.

Additionally, two efficient image patch modeling methods are proposed, based on Kernel
Principle Analysis and the Generalized Extreme Distribution. Both of these methods show
better performance than others in a number of challenge classification tasks. As a modeling
tool for EPI-patches, our next step is to further improve performance using these two image-
patch modeling methods.

Light-field data provides a new type of image information, rich in redundancy and ex-
pressive of the geometric structure of a scene. We expect that exploiting the redundant
information embedded in a light-field will lead to discovery of other benefits relevant to
computer vision challenges beyond those we focussed upon in this thesis.
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Appendix A

2D grid camera array calibration

The calibration of a 2D camera array, see Fig 1.1 in Chapter 1, is essential for our light-field
data application. In this chapter, our calibration scheme is presented and evaluated.

A.1 Setup

The goal of our calibration is to guarantee the following criteria: 1) Each row of cameras
only has vertical disparity (see Eqn 2.7), and 2) Each column of cameras only have horizontal
disparity (se Eqn 2.8). See Fig 2.1 in Chapter 2.

Some previous works have been presented along this line previously [9][62][10][41][37]. [70]
uses plane + parallax idea for calibration a 2D grid cameras. [41] presents a work to rectify a
1D linear camera array. During this chapter, we divide the calibration process into two steps:
1) geometrical calibration, finding the internal and external parameters of all cameras with
respect to a chosen reference camera, and 2) the rectification process, which guarantees the
horizontal and vertical disparity disappearing for each row and column, respectively. The
second step is cast into a non-linear optimization problem, finding a homography matrix for
each camera with respect to the reference camera such that certain alignment goals are met.

Similar to the other camera calibration systems, we use a checker board as our calibration
target, where we know the checker size and have carefully measured their colors (used to
also adjust colors across all 2D cameras).

A.2 Geometric calibration

Since the cameras share the same overlap of the checker-board, it is much easier to find
the corresponding checker corners across all 2D images. After finding the corresponding
points, we minimize the re-projection errors of all points, in order to get the geometrical
parameters of all cameras. With respect to a chosen reference camera, each pinhole camera
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Figure A.1: Optimized camera centers after Geometrical Calibration.

is charactered by the following parameters:

{Kij, Rij , Tij}, i ∈ {1, . . . , R}, j ∈ {1, . . . , C} (A.1)

After this stage, the optimized camera centers layout after the geometric calibration is shown
in Fig A.1. It can be shown that all cameras’ centers are approximately on a plane.

We also calculate the horizontal baseline vector b(h) ∈ RC (see Eqn 2.6 in Chapter 2)
by averaging the baseline of (i, j)-th cameras with respect to the reference camera across all
rows. Similarly, we get the vertical baseline vector b(v) ∈ RR (see Eqn 2.6 in Chapter 2).

The second rectification stage will take these estimated camera parameters and refine
them to meet our final goal.

A.3 2D rectification process

Our setup is described as follows: given a calibrated 2D camera array, {Cij}, where i =
1, . . . , R and j = 1, . . . , C, we want to find a set of homography matrices, {Hij}, such that,
the warped images after H will be strictly a 2D light field. In this work, we assume Hij will
wrap the (i, j) image to the reference camera’s image plane, Cref,ref .

The basic assumption is our cameras are physically approximately located on a 2D grid.
This error is determined or dominated by how far our physical design of cameras is off the
ideal 2D grid situations.

Initial guess of {Hij}

After getting the geometric parameters of all cameras, we can roughly estimate the homog-
raphy matrices which will be applied to each camera:

Hij = Kref,refRij(Kij)
−1 (A.2)

Nonlinear refinement

The initial guesses of the homography matrices are further refined using a non-linear opti-
mization process.
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Given a 3D point P , it projects on the 2D camera array and forms the image points, see
Fig 2.1:

{x(P )
i,j , y

(P )
i,j }, i ∈ {1, . . . , R}, j ∈ {1, . . . , C}

Due to the special structure of our 2D camera array, we have the following observations:

⋆ Xslope: For each i-th row, we define a 2D line formed by the x-coordinates of C image
points, {xi,·}, with respect to the horizontal baseline, as lh = {s, u} 1. Then all lines
should be the same across all rows. The slope s in the horizontal EPI-image represents
the depth of the 3D point of P (see Eqn 2.9);

⋆ ∆Y: For each i-th row, the vertical disparity will disappear. That is, the y-coordinates
of C image points, {yi,·}, are all equal:

y
(P )
ij − y

(P )
i,j′ = 0, j, j′ ∈ {1, . . . , C}, j! = j′ (A.3)

⋆ Yslope: Similarly, for each j-th column, we define a 2D line formed by the y-coordinates
of R image points {y·,j}, with respect to the vertical baseline, as lv = {t, v}. Then all
these lines should be the same across all columns. Similarly, the slope t is the depth
of P (see Eqn 2.9);

⋆ ∆X: For each j-th column, the horizontal disparity will disappear. That is, the x-
coordinates of R image points, {x·,j}, are all equal:

x
(P )
ij − x

(P )
i′,j = 0, i, i′ ∈ {1, . . . , R}, i! = i′ (A.4)

⋆ Finally, the slope of the horizontal/vertical 2D lines, lh and lv, should be the same
for all row and column, s = t. That is, the depth recovered from each row and each
column of 1D camera array should be the same.

Base on the above observations, the following optimization problem is formulated to
refine the homography matrices for all cameras, where each part is labeled as the above
description:

{H∗
ij} = argmin

{Hij}




R∑

i=1

∣∣∣∣xi,· − (s× b(h)
i + u)

∣∣∣∣2
︸ ︷︷ ︸

Xslope

+ ||yi,· − yi,·||
2

︸ ︷︷ ︸
∆Y


+




C∑

j=1

∣∣∣∣y·,j − (s× b(v)
j + v)

∣∣∣∣2
︸ ︷︷ ︸

Yslope

+ ||x·,j − x·,j||
2

︸ ︷︷ ︸
∆X


 (A.5)

where yi,. and x.,j is the mean of {yi,.} and {x.,j}, respectively. {s = t, u, v} are not part of
the parameters and are estimated in the least-square sense for each point P .

1A line is defined as: l : y = s× x+ u.
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Figure A.2: Optimization converge.

Ave Error X-slope ∆X Y-slope ∆Y

before 41.81 46.98 20.23 62.64 37.39
after 0.51 0.73 0.60 0.40 0.33

Table A.1: Detailed errors in pixel before and after the optimization.

A.4 Experimental results

In this section, we test our calibration algorithm on the 6× 6 camera array to demonstrate
our calibration performance. The objective function converges monotonically and reaches
the reasonable solution within roughly 100 iterations, as shown in Fig A.2. Table A.1 shows
the detailed error distribution before and after optimization, see Eqn A.5 for the detailed
description of each term. It can be seen that our optimization is very effective to reduce the
expected errors.

To validate the rectification performance, given a 3D Point, we inspect the projected
locations across all 6× 6 images before and after our optimization, see Fig A.3. We can see
that the optimal homography matrices from our non-linear refinement meet our goal for a
light field, see Section A.3.

In order to visually inspect the rectification performance, we choose an image point from
the middle-view image and also draw the corresponding points across all 6× 6 images after
optimization, see Fig A.4-top and bottom, respectively. From the figures, we can see that:
1) the vertical disparity disappears for each row of cameras, and 2) the vertical disparity
disappears for each column of cameras. Also note the reference points (Top/Bottom in Fig
A.4) locate at different depth level, which suggests our algorithm can cover large depth range.
Finally, Fig A.5 shows all rectified images.
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(c) Xslope / Yslope projected by H0 and H∗.

Figure A.3: Optimization results on a point. (a). The observed locations for a 3D point P .
(b). From Left to Right: the projected locations using the initial H0 and the optimized H∗,
respectively. (c): Xslope / Yslope using the initial H0 and the optimized H∗, respectively.
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Figure A.4: Rectification on a point. Top/Bottom: show the corresponding points for a
chosen reference image point, labeled as “squared-block”, across 6× 6 images.
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Figure A.5: Rectified images
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