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ABSTRACT OF THE DISSERTATION 
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Professor Shankar Subramaniam, Chair 

Professor Shu Chien, Co-Chair 

 

 Atherosclerotic cardiovascular disease is the top cause of mortality worldwide and has 

imposed a multi-billion-dollar burden on health care and economic growth. Vascular 

endothelial cells form the lining of the interior walls of blood vessels and are in direct contact 

with blood circulating through the vasculature. These endothelial cells exhibit physiological and 

pathophysiological responses to hemodynamic forces, including the formation of 
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atherosclerotic lesions.  The exact mechanisms of the dynamic response to hemodynamic 

forces by endothelial cells remain unclear. The advent of high-throughput sequencing 

technologies, along with the advent and growth of bioinformatics as a discipline, has brought 

with them an unprecedented ability to generate rich biological datasets and interrogate 

biological mechanisms on a systems level.  

In this dissertation, I take a bioinformatics and systems biology approach to 

understanding endothelial response to hemodynamic forces. In chapter 1, I provide an 

overview on atherosclerosis, endothelial cells, hemodynamic forces, and the in vitro 

techniques used to study them. In chapter 2, I describe a systems biology analysis of time-

series RNA-seq data that describes a dynamical map of endothelial response and a 

reconstruction of differences in transcriptional regulation across two different forms of 

hemodynamic forces. In chapter 3, I describe the study and characterization of several 

individual genes identified in my RNA-seq analysis, including LEENE, a long non-coding RNA 

whose relevance to endothelial homeostasis and shear stress was discovered through 

analysis of high-throughput sequencing data. In chapter 4, I describe a web suite constructed 

for the explicit purpose of data integration, along with integrated analysis of histone ChIP-seq 

data and RNA-seq data of endothelial cells exposed to shear stress. Chapter 5 concludes this 

dissertation with a discussion on the future directions and challenges of systems biology in 

application to atherosclerosis and endothelial cells.
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Chapter 1: General Introduction to Atherosclerosis, Endothelial Cells, and the 

Application of “omics” Data 
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Atherosclerosis, Endothelial Cells, and Hemodynamic Forces 

Atherosclerosis is the buildup of plaques in arteries over long periods of time. These 

plaques consist of lipids, cellular waste products, and other materials. The formation of 

plaques begins in childhood, beginning as so-called “fatty streaks”. Over time, these streaks 

can develop into intermediate lesions and slowly progress to fibrous, complex plaques. These 

plaques restrict arterial blood flow by narrowing the arterial lumen, impairing the ability of the 

body to supply oxygen to cells and placing greater burden on the heart’s ability to pump blood. 

In advanced stages of atherosclerosis, the plaques can rupture, which leads to the formation 

of blood clots (thrombosis), which can lead to heart attacks, strokes, and other vascular 

complications. Although the initial fatty streaks are observed in childhood, it is not until 

decades later that these plaques reach a stage of development where they are capable of 

causing vascular complications [Ross, 1993].  

The manifestation of atherosclerosis has been observed in ancient populations, 

including individuals from ancient Egypt and ancient American civilizations [Thompson et al, 

2013]. It would not be until the 17th century when William Harvey would describe the circulation 

of blood flow, and not until the 18th century when Rudolf Virchow would form the modern 

concept of the pathogenesis of plaques in arterial walls [Slijkhuis et al, 2009]. In the 

contemporary 21st century, atherosclerotic cardiovascular disease is described as the leading 

cause of mortality worldwide, with its prevalence linked to lifestyle factors and higher 

population BMI [Barquera et al, 2015]. 

 The mechanisms of atherosclerotic plaque formation are complex and include diverse 

cellular elements such as platelets, macrophages, and monocytes [Baeyens et al, 2016; 

Gimbrone et al, 2013; Gimbrone et al, 2016]. Arguably the most crucial cellular elements are 

vascular endothelial cells (ECs), which line the interior arterial wall as a monolayer (known as 

the endothelium) and, by the nature of their physiological location, comprise the interface 
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where atherosclerotic plaques may form. The role of endothelial dysfunction in atherosclerosis 

has been hypothesized and studied since the 1970s [Ross, 1993]. Endothelial cells in healthy 

individuals perform a variety of functions. Their membrane proteins allow for the adhesion of 

leukocytes, which can then pass through the endothelium and into other tissue. Endothelial 

cells can control blood pressure through the processes of vasodilation and vasoconstriction via 

nitric oxide production. The endothelium is also involved in angiogenesis – the creation of new 

blood vessels, and in thrombosis – the process of blood clotting [Chiu et al, 2011]. 

 In addition to being in direct contact with circulating blood, endothelial cells exhibit 

physiological responses to the forces exerted by blood flow. These forces are referred to as 

hemodynamic forces, and are determined by the composition of the blood and the geometry of 

the blood vessel in which the blood flows. Generally, in straight portions of the vasculature, the 

blood flow is pulsatile – with a positive mean flow rate and with a significant net direction. In 

bent and curved portions of the vasculature, the blood flow is disturbed – with an irregular 

pattern of flow that includes oscillatory, reciprocating flow with little mean flow rate. Pulsatile 

blood flow exerts pulsatile shear stress (PS) on the endothelium, whereas disturbed flow is 

associated with oscillatory shear stress (OS) on the endothelium. Endothelial cells exposed to 

PS exhibit an atheroprotective endothelial phenotype, with atherosclerotic plaques rarely 

developing in these regions over time. Endothelial cells exposed to OS exhibit an atherogenic 

endothelial phenotype, with plaques frequently forming in these regions. This association 

between atherosclerosis and shear stress has been explicitly established by previous studies, 

which measured the waveforms of flow analyses in human arterial geometries that are 

considered “susceptible” or “resistant” to plaque formation [Baeyens et al, 2016; Chiu et al, 

2011; Chistiakov et al, 2016; Dai et al, 2004]. 

 There are several well-defined molecular mechanisms for endothelial responses to 

different forms of shear stress. ECs feature several mechanosensors that include VE-
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cadherin, integrins, and ion channels [Zhou et al, 2014; Gerhold et al, 2016]. The upregulation 

of Krüppel-like factor 2 (KLF2) is a well-established hallmark of endothelial response to PS 

[Dekker RJ et al, 2006; Parmar et al, 2006], along with endothelial nitric oxide synthase 

(eNOS) upregulation and activity [Hecker et al, 1994]. Compared to laminar or pulsatile flow, 

disturbed flow impairs endothelial homeostasis through many major processes. Disturbed flow 

increases the permeability of the endothelium, allowing for a greater number of 

macromolecules to enter the extracellular matrix and thereby allowing for more opportunities 

for plaque to build and rupture. Disturbed flow induces higher levels of reactive oxygen 

species via the upregulation of NADPH oxidase (NOX) and dysfunction of mitochondrial 

respiration chain. Disturbed flow causes a higher rate of endothelial proliferation and turnover 

in part due to mTOR activation. Disturbed flow also elicits a pro-inflammatory response 

through the activation of NF-κB and AP-1 transcription factors (TFs), thereby regulating 

adhesion molecules such as VCAM-1 and E-selectin and cytokines such as MCP-1. 

Endothelial cells under disturbed flow also have a nonuniform morphology, whereas under 

laminar flow they tend to be elongated in the direction of flow [Chiu et al, 2011; Chistiakov et 

al, 2016]. 

 The mechanisms of EC response to distinct shear stresses have been inferred 

primarily from signaling and transcriptional measurements [Zhang et al, 2012; Simmons et al, 

2016; Qiao et al, 2016; Ohura et al, 2003; Sangwung et al, 2017]. The means by which 

endothelial response to shear is studied in our collaborating labs in vitro is through an 

apparatus known the parallel-plate flow chamber. This device consists of a polycarbonate 

base plate, two gaskets, and a glass slide with EC monolayer. The base plate has inlet and 

outlet ports where fluid flows in and out of the device, passing over and exerting fluid shear 

stress on the endothelial cells. Cultured medium is used as fluid and flow is induced using an 

external pump [Chiu et al, 2011]. Depending on the settings of the pump, our collaborating 
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labs can simulate pulsatile shear stress of 12 ± 4 dyn/cm2 and oscillatory shear stress of 0.5 ± 

4 dyn/cm2. These flow rates can be consistently maintained for periods of 24 hours. Although 

these flow patterns are imperfect models of the observed blood flow patterns in vivo, studies 

using this in vitro setup have successfully replicated key phenotypic features of endothelial 

shear response. Compared to endothelial cells exposed to OS and PS in vivo, endothelial cells 

exposed to OS and PS in a flow chamber have similar relative morphologies, similar relative 

rates of proliferation and migration, similar permeability, and similar levels of gene expression 

for key genes, including inflammation-related genes such as NF-κB [Chiu et al, 2011]. 

“Omics” data and atherosclerosis 

 High-throughput sequencing “omics” technologies have become a common component 

in biological experiments. Ever since the first sequence of a human genome was completed in 

2003, the paradigm of biological research has dramatically shifted towards generating “omics” 

data for biological systems of interest in order to generate hypotheses for later validation. 

Different “omics” data sets provide insight on different components of cellular systems and 

therefore generate different hypotheses. RNA-seq data sets are generated in order to study 

the gene expression of samples across conditions [Conesa et al, 2016]. ChIP-seq data sets 

provide insight on transcription factor binding sites and histone modifications [Mundade et al, 

2014]. Chromosome conformation capture-based studies, such as 4C and hi-C, offer a 

glimpse into chromatin-chromatin interactions and chromosomal architecture [Dekker J et al, 

2013]. These data sets, when integrated, can offer valuable systems-level insights to 

physiology and disease [Sun et al, 2016]. 

 Many studies have generated and used “omics” data to study the pathogenesis of 

atherosclerosis and endothelial dysfunction. A review by R. Simmons, S. Kumar, and H. Jo 

covers several publications that investigated methylomic and transcriptomic data sets 

[Simmons et al, 2016]. Although prior studies have examined transcriptional regulation from 
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RNA-seq data of ECs under shear stress, the majority of these studies only look at a single 

time point post-shear [Qiao et al, 2016; McCormick et al, 2017; Maleszewska et al, 2016]. The 

inherent limitation to taking a single temporal “snapshot” of transcriptional regulation is the 

inability to examine how the expression levels of different genes change relative to each other 

over time.  

The ability to study co-expression over time allows for the creation of hypotheses that 

define causal mechanisms. For example, if gene A is differentially expressed immediately 

before (or at the same time as) gene B, then gene A may have a role in the regulation of gene 

B. This hypothesis is strengthened if gene A is a transcription factor, or if gene A has been 

shown to regulate gene B in a previous study, even in a different cellular context. A 2012 study 

generated time-series transcriptional profiles of porcine ECs exposed to shear using 

microarray techniques, and provided an initial insight into temporal mechanisms [Zhang et al, 

2012]. However, time-series RNA-seq studies that study endothelial response to shear stress 

are rare, particularly because of the complex experimental design and the prohibitive cost of 

generating a time-series “omics” data set of sufficient temporal resolution. Furthermore, while 

the promise of integrating disparate “omics” data sets in order to generate comprehensive 

mechanistic hypotheses remains lucrative, many studies focus on only one type of “omics” 

data set, again likely due to prohibitive costs and complex experimental design. 

 Our collaborating labs have generated “omics” data sets on human umbilical vein 

endothelial cells (HUVECs) exposed to oscillatory shear (OS) and pulsatile shear (PS) using a 

parallel-plate flow chamber experimental design. These data sets, along with other, non-

sheared EC data sets, are outlined in Table 1.1. The ten time point RNA-seq data offers an 

opportunity to generate hypotheses on a level of resolution previously unseen with sheared 

endothelial cells. The ChIP-seq data sets and 4C data sets alongside the RNA-seq data sets, 

all generated by the same collaborating labs with the same experimental design for shear 
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application, allows for the unique opportunity for data integration and complex hypothesis 

formulation.  

 Chapter 1 is a modified presentation of “Systems Biology Analysis of Longitudinal 

Functional Response of Endothelial Cells to Shear Stress" as it appears in PNAS 2017 by 

Nassim E Ajami, Shakti Gupta, Mano R Maurya, Phu Nguyen, Julie Yi-Shuan Li, John Y-J 

Shyy, Zhen Chen, Shu Chien, and Shankar Subramaniam. The dissertation author was the 

primary author of this material. 

 

  



8 
 

Table 1.1: All “omics” data sets generated by collaborating labs. 

Data 
Type 

Experiment Details Conditions 

RNA-seq 
Time-series shear 

10 time points 
OS, PS, “low flow” 

(~ST) 

RNA-seq 
Time-series shear 

4 time points 
OS, PS, ST 

RNA-seq Overexpression 
KLF2, SREBP2, AMPK,  

AMPK + SIRT1 

RNA-seq Shear, 16 hours OS, PS 

ChIP-seq 
H3K27ac, 24 hrs 

H3K27me3, 24 hrs 
H3K4me, 24 hrs 

OS, PS 

4C 
KLF2, NOS3 loci – 24 

hrs 
OS, PS 
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Introduction 

In this chapter, we explore the dynamics using RNA-seq measurements at several 

distinct time points followed by temporal longitudinal analysis of the mechanisms of response. 

We present a dynamical map of endothelial response, as well as reconstruct the differences in 

transcriptional regulation, across OS and PS conditions.  The analysis of temporally 

longitudinal data shows the evolution of cellular response to stress, implicating genes 

representing several cellular and tissue functions including oxidative stress, inflammation, and 

cell cycle. This study provides the first detailed temporally longitudinal experimental study and 

systems model of endothelial responses to shear stress.   

Methods 

Cell Culture and Shear Stress Experiments. Human umbilical vein endothelial cells 

(HUVECs) were cultured in medium M199 (Gibco) supplemented with 15% FBS (Omega), 3 

ng/mL β-EC growth factor (Sigma), 4 U/mL heparin (Sigma), and 100 U/mL penicillin-

streptomycin [Chen et al, 2010]. Culture conditions of human umbilical vein endothelial cells 

(HUVECs) and shear stress experiments for OS, PS, and low flow (static) conditions were 

performed as previously described [Chen et al, 2010; Guo et al, 2007]. Pulsatile shear flow 

(PS) or oscillatory shear flow (OS) was applied to ECs with a shear stress of 12 ± 5 dyn/cm2 or 

0.5 ± 5 dyn/cm2, respectively. Samples for RNA sequencing analysis were collected at 1, 2, 3, 

4, 6, 9, 12, 16, 20, and 24 hours after exposure to shear. ECs were also exposed to a “low 

flow” condition, i.e. 0.5 dyn/cm2 laminar flow, and designated as a “static” flow condition (ST). 

Samples for RNA sequencing analysis were collected at hour 1 for the ST condition. Two 

biological replicates were collected for each time point and for each shear condition. All wet 

lab experiments were conducted by our collaborating labs. 

RNA isolation and RNA-seq Library Preparation. The total RNA from HUVECs were 

extracted by using mirVana miRNA Isolation Kit (Ambion, Cat#AM1560). The RNA quality was 
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assessed by RNA Integrity Numbers (RIN), using an Agilent Bioanalyzer and all RNA samples 

used in this study had a RIN over 9.7 out of 10. The RNAs were polyA selected, fragmented, 

and random hexamer primed using Illumina TruSeq stranded mRNA sample preparation kit. 

Constructed cDNA library was subjected to single-ended 100-bp sequencing on Illumina Hi-

seq 2000 instrument, generating an average of 30 million reads per sample. All wet lab 

experiments were conducted by our collaborating labs. 

RNA-seq Data Analysis. RNA-seq fastq files were aligned to the Human Reference 

Genome (version hg19 / Human.B37.3) and converted to raw Refseq transcript count files 

(Refgene) using the Omicsoft Aligner (OSA) [Hu et al, 2012]. Raw refseq transcript counts 

were combined into raw gene counts by summation. Raw gene counts were normalized and 

analyzed for differential expression using DESeq2 [Love et al, 2014]. Pairwise comparisons of 

OS vs PS, OS vs ST and PS vs ST were performed for each time point. In comparisons 

against ST, the ST condition was always set to hour 1. In the case of OS vs PS, data were 

compared at each respective time point. After completing the differential expression analysis, 

only the genes with mean normalized read count greater than 5 were considered for further 

analysis. A raw p-value cutoff of 0.05 was used to determine differential expression of genes 

across conditions. Adjusted p-values were not used for differential expression analysis 

because of the prohibitively low number of differentially expressed genes in the early hours of 

shear exposure. 

Temporal Map of Functional Regulation. Gene Set Enrichment Analysis (GSEA) was 

used for pathway enrichment analysis and was performed on the log fold change values of 

genes between OS vs PS [Subramanaian et al, 2005]. Pathway enrichment analysis was also 

conducted through the ConsensusPathDB platform spanning the KEGG, Reactome, and 

Wikipathways databases [Kanehisa et al, 2016; Kamburov et al, 2011] on all genes with p-
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value < 0.05. Functional pathways describing temporal activation were constructed through a 

combination of curated pathways and manual literature search.  

Cluster Analysis of TFs. In order to study the mechanistic regulation of TFs in ECs 

under shear, 1391 putative human TFs were considered based on a previous study 

[Vaquerizas et al, 2009]. These TFs were filtered by entrez ID. Ensembl IDs were translated to 

entrez IDs and gene names using Biomart (downloaded 7/31/2016) [Smedley et al, 2015]. 

Only TFs with a valid entrez ID were considered for further analysis. TFs with valid entrez IDs 

but with gene names that did not match with our data annotation were manually updated to 

reflect the annotation. TFs were then further filtered by (a) whether the gene existed within our 

annotation, (b) their base mean count in our time-series RNA-seq data being greater than 5, 

and (c) being differentially expressed in OS vs. PS in at least one time point. 500 unique TFs 

were isolated in this way.  

The distance matrix for clustering of TFs was calculated using Euclidean distance. 

Figure 2.1A shows the resulting hierarchical clusters. An analysis of the cophenetic distances 

is provided in Figure 2.1B. Based on the size of the distances between clusters, it can be seen 

that the dendrogram is optimally split at three clusters, with diminishing returns for 

distinctiveness of clusters beyond k = 3. Figure 2.1A also displays the mean log2 fold change 

for each cluster, defined as the following: 

𝑀𝑒𝑎𝑛 𝐿𝐹𝐶𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘 =
∑ (

∑ 𝐿𝐹𝐶 𝑜𝑓 𝑇𝐹 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑡
10 )𝑇𝐹

# 𝑜𝑓 𝑇𝐹𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘
 

Through this analysis, it was determined that two of the three TF clusters were biased 

towards downregulation in OS vs PS, while the third cluster was approximately unbiased. 

These two downregulated clusters, when combined, comprise the 96 TFs that were 

designated as “distinctly downregulated in OS vs PS”. 
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The TFs of the remaining third cluster were further analyzed.  Cluster analysis was 

repeated on these TFs exclusively (Figure 2.1C). Joint analysis of the cophenetic distance 

between clusters alongside mean LFC reveals that a selection of five clusters achieves 

adequate separation of clusters by expression bias while maintaining high distance between 

clusters (Figure 2.1D). Combination of clusters 4 and 5 (having mean LFC values of 0.230 and 

0.323, respectively) comprises the 101 TFs that are designated as “distinctly upregulated in 

OS vs PS”. 

Transcriptional Regulatory Network. Using the TRANSFAC database (Version 2015.4) 

[Matys et al, 2003], these TFs were mapped to their published transcriptional targets. The 

identified transcriptional networks, including TFs and its targets, were further filtered based on 

whether they were significantly differentially expressed in OS vs PS for at least one-time point. 

In cases where a TF was listed as a protein complex, we manually assessed all subunit genes 

of the complex and designated the complex to be upregulated or downregulated based on the 

direction of regulation of the majority of genes in the complex. TF complexes with no clear 

direction in expression among their subunits were omitted from the network analysis.    

Results 

ECs were exposed to OS, PS and static condition (ST). RNA-seq samples were 

collected for ten time points across 24 hours. Figure 2.2 summarizes the findings from the 

differential expression analysis. The number of differentially expressed genes increases over 

time across all pairwise conditions. As can be seen in Figure 2.2A, a majority of differentially 

expressed genes are common in both OS vs ST and PS vs ST. However, among this set of 

DE genes are hundreds of genes that are exclusively differentially expressed in OS vs ST but 

not PS vs ST, and vice versa. Figure 2.2B shows the number of differentially expressed genes 

in OS vs PS, further highlighting the importance of the type of shear stress in transcriptomic 

response. In order to study the specific impact of the type of shear on endothelial cell gene 
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expression, we focus on OS vs PS differential expression and its mechanistic and phenotypic 

consequences. We organize the results in terms of phenotypic responses studied as a 

function of time. 

Cell Cycle. Prior work has shown that cell cycle activity in ECs is higher under OS than 

PS [Garcia-Cardeña et al, 2001]. Our GSEA results show consistent upregulation of cell cycle-

related pathways under OS vs PS, with processes related to G1/S phase transition being 

among the top enriched Reactome pathways (Tables 2.1, 2.2, 2.3, 2.4). Figure 2.3 represents 

the G1/S transition pathway obtained from integration of our data, legacy pathways and 

literature [Kanehisa et al, 2016; Sur et al, 2016; Ertosun et al, 2016; Yamaguchi et al, 2010; 

Lolli et al, 2005; Siu et al, 2012]. 

Most of these genes are upregulated in OS beginning at hours 4 or 6. The major 

exceptions are CDKN2D and CCND2. CDKN2D is a repressor of G1/S progression, thus their 

downregulation in OS is consistent with literature [Henley et al, 2012]. The cyclin D genes do 

not show consistent differential expression, but the cyclin E genes, which present an 

alternative pathway to E2F1 activation, are upregulated over time. The expression profiles 

observed in our data is consistent with a previous study by Ohtani et al, which showed that 

E2F1 overexpression can upregulate cyclin E but not cyclin D [Ohtani et al, 1995]. E2F1-

induced cyclin E further activates E2F1, perpetuating G1/S transition – which is reinforced in 

our data by the similar expression profiles between E2F1 and CCNE2. This is also supported 

by the dissimilarity between the expression profiles of cyclin D and cyclin E.  

E2F1 is a TF activated by CDK-mediated phosphorylation of the retinoblastoma (Rb) 

protein. It is an essential contributor to the G1/S transition, and is responsible for the 

transcription of various cell cycle genes including E2F1 itself [Ertosun et al, 2016; Calzone et 

al, 2008]. E2F1 shows observable upregulation in OS vs PS as early as hour 6, achieving 

statistical significance in hour 24, which supports elevated G1/S transition activity in OS vs PS. 
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This finding is consistent with a previous finding that the level of phosphorylated Rb protein, 

which is necessary for the activation of E2F1, decreases in bovine arterial endothelial cells 

when exposed to laminar shear stress, particularly after 4 hours [Lin et al, 2000]. 

To further understand the timing of cell cycle transition in ECs under shear, global 

pathway analysis through the ConsensusPathDB platform was performed separately for OS vs 

ST and PS vs ST [Kanehisa et al, 2016; Kamburov et al, 2011]. We performed a cluster 

analysis on the ratio of p-values between OS vs ST and PS vs ST for all functional pathways. 

Importantly, starting at hour 6, many pathways specific to cell cycle progression begin to show 

differences in enrichment in OS vs PS (Figure 2.4). This finding, combined with the expression 

profile of E2F1 and the GSEA results in Table 2.1 – 2.4, suggests that cell cycle activities in 

OS and PS begins to differ between hours 4 and 6 after the initial exposure to shear.   

The OS-upregulated cell cycle activity is concomitant to the enrichment of other 

prominent pathways such as ribosomal production and activity. The ribosome KEGG pathway 

is among the most strongly upregulated pathways, suggesting a global upregulation of 

ribosomal proteins (Table 2.3). The proteasome is also strongly enriched in hours 20 and 24 

(Table 2.3), potentially indicating an increase in protein expression and degradation, which are 

in concert with increase of cell cycle activity and proliferation under OS. 

Oxidative Stress. ECs under OS are known to undergo greater oxidative stress than 

those under PS [Hsieh et al, 2014; Hsiai et al, 2007; De Keulenaer et al, 1998]. Figure 2.5 

represents a reconstruction of the oxidative stress pathway based on established genes 

involved in oxidative stress responses [Kim et al, 2014; Bhabak et al, 2010; Leopold et al, 

2003; McDonagh et al, 2013; Reyes et al, 2016]. 

The genes that mediate superoxide and hydrogen peroxide production are upregulated 

in OS. For example, NOX4 is upregulated, achieving statistical significance as early as hour 2. 
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SOD1 is not differentially expressed, but mitochondrial SOD2 is distinctly upregulated in OS 

from hour 2 to hour 6, peaking at hour 4.  

The shear-specific transcriptional response of oxidative stress genes varies in OS vs 

PS both in the identity of genes and the timing of their differential expression. Catalase is 

statistically significantly downregulated in OS vs PS starting at hour 9. Glucose-6-phosphate 

dehydrogenase (G6PD), a potent antioxidant protein involved in the pentose phosphate 

pathway, is downregulated in OS vs PS in some of the early hours and from hour 12 onward 

(Table 2.5). Genes for glutathione peroxidases (GPX1, GPX4, GPX8) and peroxiredoxins 

(PRDX2, PRDX4, PRDX6) were upregulated in OS vs PS beginning at hour 20.  

NQO1, a gene that produces an antioxidant enzyme [Dinkova-Kostova et al, 2010], is 

distinctly downregulated in OS vs PS starting in hour 9 (Figure 2.6). JUNB, which transcribes 

NQO1 [Jaiswal et al, 2000], also has a distinct expression profile, being significantly 

downregulated in OS vs PS starting in hour 4. JUNB is the only member of the AP-1 family of 

TFs to be continuously downregulated in OS vs PS.  

The metallothioneins are a family of proteins that are involved in protection from 

oxidative stress, and are also induced by hypoxia [Schulkens et al, 2014]. Several 

metallothioneins, particularly MT1X, were strongly upregulated in OS vs PS, with MT1X 

achieving statistical significance in hour 9. The OS vs PS expression of HIF1A, a hypoxia-

inducible factor, is upregulated with a similar time course and achieves statistical significance 

at hour 4. 

Inflammation. ECs exposed to OS exhibit pro-inflammatory phenotypes through the 

activation of NF-κB and the upregulation of several pro-inflammatory cytokines [Simmons et al, 

2016; Szmitko et al, 2003]. The temporally-varying expression profiles of NF-κB targets and 

canonical pro-inflammatory genes show a sharp OS vs PS upregulation between hours 2 and 

6 (Figure 2.7). Peak upregulation of NF-κB occurs at hour 4, coinciding with the expression 
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peaks for VCAM-1 and E-selectin. MCP-1 (CCL2) and IL8 have clear differences in the 

magnitude of OS vs PS differential expression, with both genes exhibiting statistical 

significance at hours 3, 4, and 6. NF-κB activation has been shown to be influenced by 

oxidative stress [Kim et al, 2014; Tornatore et al, 2012]. The temporal profile of the OS vs PS 

upregulation of NF-κB target genes is consistent with those of NOX4 and SOD2 beginning in 

hour 2 (Figure 2.5). SOD2 overexpression is abrogated after hour 6, consistent with the 

alteration of expression of NF-κB target genes within the same period. 

Endothelial-Mesenchymal Transition. Endothelial to mesenchymal transition (Endo-

MT) is a contributor to cardiovascular disease and has been observed in atherosclerotic 

lesions and severe vasculitis [Evrard et al, 2016; He et al, 2017]. We defined an “endothelial 

marker” gene set and a “mesenchymal marker” gene set from gene lists taken from literature 

[Evrard et al, 2016]. We used these gene sets in GSEA to examine Endo-MT enrichment in 

OS vs PS. Figure 2.8A shows that endothelial marker genes (e.g. NOS3, VWF, and CD34) are 

strongly downregulated as early as hour 6, whereas mesenchymal marker genes (e.g. CDH2, 

TPM1, and FBLN5) are upregulated at some time points beginning in hour 12. This suggests 

that Endo-MT initiation may occur in OS as early as hour 12.  

Oxidative stress, hypoxia, and TGF-β signaling have been shown to drive Endo-MT 

[Evrard et al, 2016]. Genes pertaining to oxidative stress are observed to be upregulated in OS 

vs PS as early as hour 2, while HIF1A is upregulated as early as hour 4. An investigation of 

the TGF-β signaling receptors did not reveal a clear direction of regulation in ECs under shear, 

with a uniform upregulation of both inhibitors and activators being observed (Figure 2.8B). 

Putative Endothelial Transcription Factor Network. TF-to-gene networks were 

constructed using the TRANSFAC database and sets of TFs determined to be distinctly 

downregulated (Figure 2.9) or upregulated (Figure 2.10) in OS vs PS. Several highly 

connected TFs were identified within these networks. Among these highly connected TFs 
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downregulated in OS vs PS are KLF4, considered to be one of the fundamental 

mechanosensitive TF genes [Hamik et al, 2007], and JUNB, described above as a 

transcriptional regulator of the antioxidant gene NQO1. Among the highly connected TFs 

upregulated in OS vs PS are E2F1, described above as crucial to cell cycle progression from 

G1 to S phase, and HIF1A, described above as an important TF in response to oxidative 

stress. Thus, we are able to identify key regulators of endothelial function as hubs that are 

involved in important endothelial pathways, while identifying additional TFs of interest such as 

CEBPB and EGR1. 

Pathway analysis of these networks revealed several TF-TF interactions distinct in OS 

vs PS. The results show a KLF2-RARG-RARB regulatory pathway for preferential OS 

downregulation and a SRF-EGR1-HIF1A regulatory pathway for preferential OS upregulation. 

The expression profiles of KLF2 and RARG indicate that these are strongly downregulated in 

OS vs PS across all time points. The presence of both RXRA, RARG, and a RARG:RXRA 

node targeting RARB suggest that RARG and RXRA form a PS-specific complex for 

transcriptional regulation through interaction with retinoic acid response elements in the 

genome [Germain et al, 2006].  Similar to RARG and KLF2, RXRA is significantly 

downregulated in OS vs PS at most time points.  

The early upregulation of EGR1 in the data in hour 1, followed by the upregulation of 

HIF1A starting in hour 2 and achieving statistical significance in hour 4, offers evidence to 

support the regulation of HIF1A by EGR1 in our system. EGR1 has previously been identified 

as a high-confidence target of retinoic acid receptors [Balmer et al, 2002]. The expression 

profile of EGR1 shows a trend of being inverse to that of RXRA. These suggest that the 

RARG-RXRA complex may repress EGR1 in PS. A schematic of these pathways and their 

expression profiles is shown in Figure 2.11. 
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Functional analysis of these targets reveals that the OS-specific transcription factors 

EGR1, HIF1A, and E2F1 regulate genes related to a variety of functions (Table 2.6). As 

expected, E2F1 is shown to regulate a variety of cell cycle genes, while EGR1 and HIF1A 

regulate several genes pertaining to inflammatory response and cellular adhesion.  

Discussion 

Our study offers the first detailed temporal map of EC regulation. This study, which 

uses multiple time-series RNA-seq data collected from human ECs subjected to physiological 

and pathophysiological flow conditions, examines systematically the functional contexts by 

which the shear-responsive pathways evolve over time. Our longitudinal analysis shows the 

dynamics of functional pathways, thus providing insights into the causal relationships between 

cellular response mechanisms as a function of time. 

Secondary Effects of Differential Cell Cycle Activity. Several genes in the cell cycle 

pathway have functions external to cell cycle progression. The E2F transcription factors can 

modulate many genes relating to apoptosis, post-translational modifications, and metabolic 

functions [Ertosun et al, 2016; Denechaud et al, 2016; Muthusamy et al, 2015]. A recent study 

has implicated E2F1 in autophagy regulation, wherein E2F1 transcriptionally upregulates v-

ATPase, thus promoting the trafficking of lysosomes to the cell periphery, activating mTOR, 

and inhibiting autophagy [Meo-Evoli et al, 2015]. This mechanism is consistent with previous 

findings about mTOR activation under OS [Guo et al, 2007] and our data on the strong 

downregulation of ATG9B in OS vs PS (Table 2.5). This is also consistent with the recent 

finding that laminar shear stress induces autophagy via a SIRT1-dependent mechanism [Liu et 

al, 2015]. Hence, disturbed flow regulation of E2F1 may have a role in the negative regulation 

of autophagy. Additionally, repression of autophagy is also associated with Endo-MT [Singh et 

al, 2015], which occurs in our study on ECs under OS towards the later hours. The activation 

of mTOR through E2F1-induced lysosomal trafficking may provide another mechanism by 
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which E2F1 participates in cell cycle progression in ECs under OS [Guo et al, 2007]. E2F1 

upregulation begins in the mid-range hours of our time-series data on OS vs PS. This 

association is supported by the finding that several v-ATPase genes are also upregulated 

beginning in the mid-range hours (Table 2.5). 

The cyclin-dependent kinases have been shown to have roles that are external to the 

cell cycle. Activated CDK4 has been shown to phosphorylate DNMT1 [Acevedo et al, 2016]. 

ECs under disturbed flow have been observed to undergo DNA hypermethylation via DNMT1 

[Zhou et al, 2014]. The upregulation of CDK4 in OS vs PS in the middle hours and onward 

(Fig. 2A) suggests that DNA hypermethylation may also occur under OS within a similar time 

frame. It has also been shown that CDK2 can phosphorylate the histone methyltransferase 

EZH2 [Siu et al, 2012]. EZH2 expression is upregulated in OS vs PS in the later hours in our 

dataset (Table 2.5). CDK2 has been shown to inhibit FOXO1, a multi-functional TF that is 

coupled with cellular metabolic and survival pathways [Siu et al, 2012], and hence we 

examined the downstream targets of FOXO1 in order to infer the temporal profile of CDK2 

phosphorylation activity in ECs. FOXO1 has been shown to transcribe CDK inhibitors such as 

CDKN2D and CDKN2B [Katayama et al, 2008]. As shown in Figure 2.3, we observe that cyclin 

E, a CDK2 activator, is upregulated in OS vs PS through most time points and achieves 

statistical significance at hour 24. We also observe CDKN2D to be strongly downregulated in 

OS vs PS at most time points. Therefore, we postulate that CDK2 may regulate FOXO1 at the 

protein level beginning in the early hours. These findings suggest that CDK2 is active and may 

be activating EZH2. The CDK2-mediated activation of EZH2, along with the CDK4-mediated 

activation of DNMT1, suggests that DNA hypermethylation in ECs under OS can be explained 

in part by increased cell cycle activity under OS. These findings also provide mechanistic links 

connecting shear stress-regulated cell cycle activity and epigenetic regulation. 
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Secondary Effects of Differential Oxidative Stress Activity. JUNB has been 

implicated in cell cycle processes in addition to transcribing antioxidant genes such as NQO1. 

JUNB, whose protein level is cell cycle-dependent [Piechaczyk et al, 2008], has been shown 

to inhibit G1-S phase transition via upregulation of CDK inhibitors such as CDKN2A, in 

addition to inhibiting the expression of cyclin D [Piechaczyk et al, 2008]. Thus, JUNB 

expression may have a role in suppressing cell cycle progression under PS, though these 

specific effects of JUNB may require additional data to explain. It has been suggested that 

peroxiredoxin 1 (PRDX1) is a mechanosensitive antioxidant that is upregulated in laminar 

shear stress in bovine aortic ECs [Mowbray et al, 2008]. Although PRDX1 was not significantly 

regulated in our dataset, PRDX2, PRDX4, and PRDX6 were all upregulated in OS vs PS in the 

later hours. Our observed results with these peroxiredoxin genes are partially corroborated 

with publicly available HUVEC data where transcripts are measured 72 hours after laminar 

shear stress, showing a significant downregulation of PRDX2 and PRDX4 [Maleszewska et al, 

2016]. This suggests that the oxidative stress response under OS may involve multiple 

peroxiredoxin proteins. 

TF Network - KLFs as Master Regulators. KLF4 has been shown to induce CEBPB 

expression and can bind directly to the CEBPB promoter [Birsoy et al, 2008]. Time-series 

ChIP-seq studies in mouse liver regeneration systems have shown that mouse Cebpb can 

bind within 2000 bp upstream of the mouse JunB transcription start site, with this interaction 

being strongly observed in hour 3 after a partial hepatectomy [Jakobsen et al, 2013]. In our 

study, CEBPB downregulation in OS vs PS occurs primarily in the early hours, achieving 

statistical significance in hour 4. This may suggest that CEBPB upregulation is dependent on 

the initial imposition of stress on the cell. JUNB is statistically significantly downregulated in 

OS vs PS in hour 4, concurrent with the downregulation of CEBPB. These findings suggest 

that a KLF4-CEBPB-JUNB regulatory pathway is activated in the early hours of shear 
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response. Based on our analysis, we postulate that this pathway has functional consequences 

in cell cycle suppression and oxidative stress response in the later hours. A previous study has 

demonstrated that KLF1 can inhibit E2F2 by binding to an intronic enhancer region [Tallack et 

al, 2009].  Hence, we investigated the ability of KLF2 to directly regulate E2F1. HUVEC 

chromatin state segmentation displayed on the UCSC genome browser [Rosenbloom et al, 

2013; Ernst et al, 2010; Ernst et al, 2014] predicts an enhancer region within the first intron of 

E2F1 from the transcription start site. Scanning of this region using available binding motifs for 

these TFs from TRANSFAC [Matys et al, 2003] detected KLF4 and KLF2 motifs in both the 

forward and reverse strands. This raises the possibility that KLF2 and KLF4 regulate and 

repress E2F1. This repression can be observed at the mid hours in our data set, where E2F1 

expression diverges between OS and PS.  

Combined Gene-TF-Phenotypic Network. In this study, we present a dynamical view 

of the response of ECs to differential shear stress. Figure 2.12 shows the putative regulatory 

network derived from this system-wide time-series analysis between OS and PS. Through 

detailed pathway analysis, we elucidated several key molecular hubs (e.g. TFs) that instigate 

distinct transcriptomes in ECs subjected to atheroprone OS vs atheroprotective PS.  Our study 

verifies and extends the previously studied mechanisms and pathways to provide an 

integrated perspective on the regulation of cellular functions that lead to defined endothelial 

phenotypes. Further, the transcriptional regulation mechanisms provide new insights into 

causality of mechanisms that lead to stress responses. The kinetic hypotheses derived in this 

work also serve to define experiments in animal models that can have implications for 

diseases such as atherosclerosis. The systems biology approach employed in this study may 

well serve as a template for future studies, where the input datasets would be derived via 

various high-throughput “-omics” techniques. These might provide a window on regulatory 
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events at the epigenetic and post-translational levels that could have important 

pathophysiologic implications. 
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Figure 2.1: Details of Cluster Analysis of TFs in TF-to-Gene Network. (A) Dendrogram of 
500 hierarchically clustered transcription factors that were selected based on their level of 
expression. The dendrogram was split into three clusters. Displayed are the mean log fold 
changes per cluster, which is calculated from the log fold change for each transcription factor 
from each time point. (B) Cluster analysis of dendrogram. The selection of three clusters was 
determined by the observed change in magnitude of height cutoff between three and four 
clusters. (C) Dendrogram of the largest of the three clusters with mean LFC 0.047, along with 
(D) further cluster analysis of this cluster. The selection of five clusters was determined by the 
observed stability of mean LFC from five clusters to six, in addition to the drop in difference 
between cutoffs.  
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Figure 2.2: Number of differentially expressed genes. (A) Number of differentially 
expressed genes using the ST condition (hour 1) as control. Top panel: the number of 
upregulated genes; bottom panel: the number of downregulated genes. In each panel, at each 
time point, the left and right bars show the number of differentially expressed (DE) genes for 
OS vs ST and PS vs ST comparisons, respectively. (B) Number of differentially expressed 
genes in OS vs PS. In each panel, at each time point, the left and right bars show the number 
of differentially expressed (DE) genes that are downregulated and upregulated in OS vs PS, 
respectively.  
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Figure 2.3: G1-to-S transition pathway. G1-to-S transition is dependent on the E2F1 
activation through RB phosphorylation, which is facilitated in part by CDK2 (bound to cyclin E) 
and CDK4 (bound to cyclin D). The CDK proteins must be activated by interacting with the 
CDK-activating kinase. CDKs can also be inhibited by proteins such as CDKN2D. OS vs PS 
log fold-change (LFC) data projected onto the custom pathway consisting of genes and 
mechanisms exhibiting differential response between OS vs PS. The heat maps below the 
gene nodes show the time course of transcriptional changes, representing from left to right: 
hours 1, 2, 3, 4, 6, 9, 12, 16, 20, and 24.  
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Figure 2.4: Cluster analysis of functional pathway enrichment. (A) Clustered heatmap of 
log10ratio of the p-values in OS vs ST and in PS vs ST. Positive values indicate that PS has 
the smaller p-value than OS, thus the pathway is more significantly enriched in PS. Negative 
values, vice versa. (B) When the heatmap is divided into two clusters (via hierarchical 
clustering), the smaller cluster shows a distinct difference in enrichment of several cell cycle 
pathways starting around hour 6. This is particularly pronounced with many pathways relevant 
to S phase. 
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Figure 2.5: Reconstructed pathway of oxidative stress and superoxide metabolism. 
Oxygen in the cell is converted to superoxide, hydrogen peroxide, and finally water. Reactive 
oxygen species are also known to activate HIF1A, a marker of hypoxia. The metallothionein 
MT1X is also shown, which is thought to be hypoxia-responsive. OS vs PS log fold-change 
(LFC) data projected onto the custom pathway consisting of genes and mechanisms exhibiting 
differential response between OS vs PS. The heat maps below the gene nodes show the time 
course of transcriptional changes, representing from left to right: hours 1, 2, 3, 4, 6, 9, 12, 16, 
20, and 24. 
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Figure 2.6: AP-1 family of genes and the antioxidant product NQO1. OS vs PS log fold-
change (LFC) data projected onto the custom pathway consisting of genes and mechanisms 
exhibiting differential response between OS vs PS. The heat maps below the gene nodes 
show the time course of transcriptional changes, representing from left to right: hours 1, 2, 3, 
4, 6, 9, 12, 16, 20, and 24. 
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Figure 2.7: NF-κB and NF-κB target genes. OS vs PS log fold-change (LFC) data projected 
onto the custom pathway consisting of genes and mechanisms exhibiting differential response 
between OS vs PS. The heat maps below the gene nodes show the time course of 
transcriptional changes, representing from left to right: hours 1, 2, 3, 4, 6, 9, 12, 16, 20, and 
24. 
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Figure 2.8: Endothelial-mesenchymal transition (EndoMT) and related pathways. (A) 
Raw p-values of custom-made EndoMT pathways through GSEA. P-values that are 
statistically significant are highlighted in red, with one borderline case highlighted in yellow. (B) 
TGF-beta signaling pathway, based on pathways in KEGG and Wikipathways [Gal et al, 2016]. 
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Figure 2.9: Largest contiguous portion of TF-to-target network for TFs that are 
downregulated in OS vs PS. TFs were chosen based on cluster analysis of expression data. 
Gene targets were chosen based on the presence of an entry in TRANSFAC, as well as 
whether the target was differentially expressed in at least one time point. 
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Figure 2.10: Largest contiguous portion of TF-to-target network for TFs that are 
upregulated in OS vs PS. TFs were chosen based on cluster analysis of expression data. 
Gene targets were chosen based on the presence of an entry in TRANSFAC, as well as 
whether the target was differentially expressed in at least one time point. 
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Figure 2.11: Longest paths in TF to gene networks. Pathways were found by observing the 
longest contiguous TF-to-TF pathways in the networks in figures 2.9 and 2.10. Because 
RXRA, RARG, and the RXRA:RARG complex all independently appear in the network in figure 
S4A and all target RARB, it was inferred that an RARG:RXRA complex is a part of this 
regulatory pathway. RARG:RXRA inhibition of EGR1 was inferred from manual literature 
curation [Balmer et al, 2002]. 
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Figure 2.12: Relative differences in gene expression in ECs exposed to OS or PS over 
time. Pathways and genes in red are upregulated in OS vs PS, while those in blue are 
downregulated in OS vs PS. TGF-β signaling pathway is labeled “mixed” because its genes’ 
expression directions were mixed. Divergence in cell cycle activity between OS and PS begins 
by hour 6 with E2F1 upregulation in OS. This divergent cell cycle activity may occur through 
KLF2- and KLF4-mediated repression of E2F1 expression in PS. E2F1 may upregulate v-
ATPase genes under OS, as observed in the intermediate hours post-shear. This promotes 
lysosomal trafficking to the cell periphery, thus activating mTOR and inhibiting autophagy by 
hour 20. The activation of mTOR by E2F1 may also contribute to divergence in cell cycle 
activity through S6K activation [Guo et al, 2007]. Through CEBPB, KLF4 activates JUNB at 
hour 4, which may contribute to KLF4-induced inhibition of cell cycle activity and to anti-
oxidative stress activity in PS. Genes that contribute to ROS production are upregulated in OS 
vs PS by hour 2, and other oxidative stress-related genes exhibit changes up to hour 24. This 
increased ROS production activates NF-κB and promotes several early response genes 
pertaining to inflammation such as MCP-1 and VCAM-1. Inflammation-related genes show 
changes during hours 2-9. KLF2 transcriptionally activates RARG, which forms a heterodimer 
with RXRA and may repress EGR1 activity. EGR1, along with ROS production, 
transcriptionally activates HIF1A, which are all upregulated in OS vs PS. HIF1A is observed to 
be upregulated beginning in hour 4 and may contribute to angiogenesis and to Endo-MT.  
Endo-MT may occur in OS beginning in hour 12. Oxidative stress and autophagy repression, 
both of which occur in OS, also contribute to Endo-MT.   
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Table 2.1: Top enriched pathways through GSEA: The top 10 up-regulated enriched 
Reactome pathways. The analysis examined log fold changes of genes between OS and PS. 
Values represent P values that were corrected for familywise error rate with a Bonferroni 
correction. Values highlighted in red are <0.05. The pathways were sorted by increasing P 
values, with sorting on the first hour, then the second hour, until reaching hour 24. 
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Table 2.2: Top enriched pathways through GSEA: The top 10 down-regulated enriched 
Reactome pathways. The analysis examined log fold changes of genes between OS and PS. 
Values represent P values that were corrected for familywise error rate with a Bonferroni 
correction. Values highlighted in red are <0.05. The pathways were sorted by increasing P 
values, with sorting on the first hour, then the second hour, until reaching the hour 24. 
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Table 2.3: Top enriched pathways through GSEA: The top 10 up-regulated enriched 
KEGG pathways. The analysis examined log fold changes of genes between OS and PS. 
Values represent P values that were corrected for familywise error rate with a Bonferroni 
correction. Values highlighted in red are <0.05. The pathways were sorted by increasing P 
values, with sorting on the first hour, then the second hour, until reaching the hour 24. 
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Table 2.4: Top enriched pathways through GSEA: The top 10 down-regulated enriched 
KEGG pathways. The analysis examined log fold changes of genes between OS and PS. 
Values represent P values that were corrected for familywise error rate with a Bonferroni 
correction. Values highlighted in red are <0.05. The pathways were sorted by increasing P 
values, with sorting on the first hour, then the second hour, until reaching the hour 24. 
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Table 2.5: Log2 fold change of select DE genes in OS vs PS across time. Values that 
achieve statistical significance (raw p < 0.05) are shown. The tables display G6PD, ATG9B, 
select v-ATPase genes, and EZH2. 
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Table 2.6: Select functional pathways pertaining to relevant endothelial functions under 
shear, and listings of the number of their participating genes in the TRANSFAC-derived 
network displayed in Figure 2.10. These genes were then examined for their connection 
with the most central nodes to the original network – EGR1, HIF1A, and E2F1. The number of 
each TF’s differentially expressed (in OS vs PS, p < 0.05) targets that are also among the 
listed pathways are listed in the three right-most columns. 
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Introduction 

In chapter 2, we emphasized a “systems biology” view of endothelial response to 

shear, creating a temporal map of functional endothelial response. In chapter 3, we sought the 

detection of novel patterns in gene expression in the time-series RNA-seq data in order to 

build on existing knowledge of endothelial response to shear. Where applicable, the networks 

and temporal maps developed in chapter 2 will serve as a framework for understanding the 

context of these discoveries. Herein we describe several putative mechanisms of endothelial 

response to shear, inferred from analysis of our data sets. I especially discuss LINC00520, 

which will also be referred to as LEENE (lncRNA that enhances eNOS expression). I 

computationally detected LINC00520 and proposed LINC00520’s role as an enhancer RNA, 

providing putative regulatory targets for the LINC00520 enhancer region, particularly NOS3. 

Our collaborators validated LINC00520 and further developed LINC00520’s proposed 

mechanism of action as a long non-coding RNA that enhances eNOS expression. 

Methods – “Omics” Data Generation and Processing”  

Cell culture, shear stress experiments, and RNA-seq data processing are identical to 

that in chapter 2. All wet lab experiments were conducted by our collaborating labs. The ten 

point RNA-seq time-series data set was analyzed for distinctly expressed genes, as defined by 

discrete categories of expression profiles. Given that there are three possible pair-wise 

comparisons (OS vs PS, OS vs ST, and PS vs ST), and given that there are three possible 

designations for gene regulation (upregulated, downregulated, or not differentially expressed), 

there are 27 possible descriptions for the expression profile of a given gene at a given time 

point (Figure 3.1). Genes were defined as “PS-distinct” if they were differentially upregulated in 

PS vs ST, and differentially downregulated in both OS vs ST and OS vs PS in at least one 

time point. Genes were defined as “OS-distinct” if they were differentially downregulated in PS 

vs ST, and differentially upregulated in both OS vs ST and OS vs PS in at least one time point. 
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This method will be referred to as “point-wise state analysis”. In order to minimize the 

occurrence of false positives, I would add an extra layer of filtration, wherein I would check to 

see if PS-distinct genes were also upregulated in public PS vs ST shear data, collected at 72 

hours [Maleszewska et al, 2016]. I would also perform this check to see if OS-distinct genes 

were also downregulated in this public PS vs ST shear data. 

A similar analysis, which will be referred to as “dynamical state analysis”, was 

conducted with comparisons across time points. Consider, for example, two time points for 

three possible pair-wise comparisons. Then one can consider the 27 possible descriptions for 

the expression profile of a given gene at time point 1 (as described in the previous paragraph), 

the 27 possible descriptions for the expression profile of a given gene at time point 2, and the 

27 possible comparisons of the expression profile for a given condition between time point 2 

and time point 1 (e.g. OS hour 2 vs OS hour 1). This allows for the identification of genes that 

not only exhibit dramatic differential expression across conditions, but also exhibit monotonic 

expression behavior across time. Because the RNA-seq data in this analysis has ten time 

points, the space of possible descriptions for the expression profile based on differential 

expression (up, down, or not differentially expressed) is very large. A simple indexing system 

was developed that allows the user to define the expression profile of interest, and searches 

for the specified expression profile among the analyzed set of genes using regular 

expressions. 

4C and histone ChIP-seq data sets used identical cell culture and shear stress 

experimental design as RNA-seq data sets, described in chapter 2. The construction of 4C 

libraries was performed following previously published protocol [Splinter et al, 2012]. Briefly, 

ECs were crosslinked with 2% formaldehyde, which was quenched with 0.1 M glycine. The 

cross-linked DNA underwent two rounds of digestion respectively by DpnII and CviqI 

recognizing 4 bp restriction sites. Each digestion was followed by a reaction with T4 DNA 
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ligase for proximity ligation. The resulting 4C template was used for the subsequent PCR 

reactions, of which 16 were pooled and purified for next-generation sequencing. The 4C 

sequencing reads were tested for the quality and aligned to human reference genome version 

hg19 by Bowtie 2 [Langmead et al, 2012]. Read numbers in given genomic location were 

counted by BEDTools [Quinlan et al, 2010] and normalized by the total mapped reads per 

sample. 

Pre-processed 5-kb resolution inter-chromosomal hi-C matrices for HUVEC were 

accessed and downloaded online (GEO accession: GSE63525) [Rao et al, 2014; Sanborn et 

al, 2015]. The LINC00520 genomic region was defined as chr14:56240000-56290000 in order 

to span the LINC00520 gene, the detected 4C signals, and the local H3K27ac marks. All 

genomic regions with non-zero signals in the inter-chromosomal matrices that were associated 

with the defined LINC00520 genomic region were located and annotated by gene (or closest 

gene if the region with detected signal was intergenic). These LINC00520-associated genes 

were further filtered depending on whether they were detected to be differentially expressed in 

OS vs PS at any time point. 

KLF2 and KLF4 binding sites were predicted by using regular expression matches in R, 

based on the motifs from TRANSFAC database (Version 2015.4) [Matys et al, 2003]. Genomic 

regions were downloaded from the UCSC genome browser. KLF2 and KLF4 binding sites 

were predicted using DNA sequences from the LINC00520 genomic region spanning -20 kb to 

+5 kb of its TSS in hg19 and from the BY707159 mouse genomic region (chr14: 47,786,094-

47,815,319, mm10). 
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Methods – LINC00520 Validation Experiments  

All validation experiments described in this section, along with the accompanying 

analysis of the data from those experiments, were conducted by our collaborating labs, 

particularly Dr. Zhen Chen and Dr. Yifei Miao.  

Absolute quantification of lncRNA copy number. The RNA copy number was 

performed following previously described protocol [Tripathi et al, 2010]. In brief, in vitro 

transcribed LEENE RNA fragments were used as standard and subjected to reverse 

transcription. The RT product were serially diluted to generate calibration curve. Total RNA 

from known quantity of ECs were subjected to the same RT procedure. The copy number of 

LEENE RNA from resulting RT products were then determined by qPCR. 

Subcellular Fractionation and RNA Isolation. Subcellular fractionation was 

performed following published protocol [Bhatt et al, 2012] with minor modification. Briefly, 

HUVECs from three confluent 150 mm culture dishes were applied as independent triplicates. 

The cells were collected in 200 μL cold cytoplasmic lysis buffer (0.15% NP-40, 10 mM Tris pH 

7.5, 150 mM NaCl) and incubated on ice for 5 min. The lysate was layered onto 500 μL cold 

sucrose buffer (10 mM Tris pH 7.5, 150 mM NaCl, 24% sucrose w/v) and centrifuged. The 

supernatant containing cytoplasmic component was quickly added to TRizol LS for RNA 

extraction. The nuclear pellet was gently suspended into 200 μL cold glycerol buffer (20 mM 

Tris pH 7.9, 75 mM NaCl, 0.5 mM EDTA, 50% glycerol, 0.85 mM DTT). An addition of cold 

nuclei lysis buffer (20 mM HEPES pH 7.6, 7.5 mM MgCl2, 0.2 mM EDTA, 0.3 M NaCl, 1 M 

urea, 1% NP-40, 1 mM DTT) was added, followed by vortex and centrifuge. The supernatant 

containing nucleoplasmic fraction was mixed with TRizol LS for RNA extraction. 50 μL of cold 

PBS was added the remaining pellet and gently pipetted. After vigorous vortex to resuspend 

the chromatin, chromatin-associated RNA was extracted by adding 100 μL chloroform and 

TRizol reagent. RNA samples from three different fractions were dissolved with same amount 
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of RNase-free water and same volume of RNA was used for reverse-transcript and 

quantitative PCR.  

CRIPSR-Cas9 gene editing. Our collaborators designed multiple single-guide RNAs 

(sgRNA) to target the genomic region of LEENE. The sequences of sgRNAs are listed in Table 

3.1. The designed sgRNAs were sub-cloned into the CAS9-T2A-GFP-expression vector 

(Addgene: pX458) using designed BbsI cloning site. All sgRNAs were tested with its cutting 

efficiency in HEK293 cells using the Surveyor Mutation Detection Kit from IDT (Figure 3.2).  

Cell transfection. Two Antisense LNA™ GapmeRs specifically targeting two different 

regions of LEENE (NR_026797) were designed and purchased from Exiqon (Table 3.2). 

siRNA with scrambled or KLF2 targeting sequence were designed and purchased from Qiagen 

(SI03650318 and SI04275110). LNAs or siRNA were separately transfected into ECs with 

Lipofectamin RNAiMAX following the protocol provided by the manufacturer. ECs were 

cultured for another 48 hr after transfection before further analysis. Transfection of ECs with 

GFP-Cas9 with or without sgRNAs were performed with Cytofect™ HUVEC transfection kit 

(Cell Applications). Respective vectors (2 μg) were transfected per well of 6-well plates as the 

cells reached 80% confluency. After one-hour incubation with transfection mixture, antibiotics-

free growth medium was added for another 48 hr culture, before the cells were harvested. 

Monocyte adhesion assay. Monocytes adhesion was performed as previously 

described [Huang et al, 2017]. THP1 monocytes (ATCC) cells were labeled with CellTracker™ 

Green CMFDA Dye (Thermo Fisher #C2925) and seeded on endothelial cell monolayers for 

15 minute. After two washes with M199 complete medium, attached THP-1 cell numbers were 

calculated from five randomly selected views captured by fluorescence microscopy.  

Chromatin isolation by RNA purification (ChIRP), RNA-immunoprecipitation 

(RNA-IP), and chromatin immunoprecipitation (ChIP). ChIRP was performed following the 

protocols as described in previous studies [Chu et al, 2011; Chu et al, 2012; Leveille et al, 
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2015]. Biotin-labeled anti-sense oligo probes were designed and purchased from Biosearch 

Technologies (Table 3.3) following several criteria: 1) number of probes = 1 probe/100 bp of 

RNA length; 2) target GC% = 45; 3) oligonucleotide length = 20 bp; 4) spacing length = 60-80 

bp. The ‘even’ and ‘odd’ pools of probes were diluted into 100 μM concentration. After 24 hr 

treatment with 1 μM ATV or DMSO, 1×107 HUVECs were fixed with 1% glutaraldehyde for 10 

min at room temperature. The pelleted cells were lysed and sonicated for 10 min using the ‘30 

seconds ON, 30 seconds OFF’ program. The sonicated samples were then centrifuged and 

1/100 of supernatant was taken as RNA input and DNA input respectively. 100 pmol probes 

were hybridized with supernatant at 37oC for 4 hr. Afterwards, washed Streptavidin-conjugated 

magnetic beads were mixed with the reaction for another 30 min. Following several rounds of 

washing, beads were resuspended with 1 ml wash buffer and 100 μL mixture was taken for 

RNA isolation using TRIzol. The rest of the ChIRP precipitates underwent DNA isolation. 

qPCR analysis was performed to assess the RNA retrieval rate using β-actin as negative 

control and the LEENE-associated DNA sequences.  

RIP was performed as previously described [Chen et al, 2013]. In general, after 24 hr 

treatment with 1 μM Statin or DMSO, 1×107 HUVECs were cross-linked by UV irritation and 

pelleted. Whole cells were lysed with 500 μL lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 

0.1% NP-40, 1 mM EDTA, and 100 units/ml RNAse inhibitor) and incubated overnight at 4oC 

with 50 μL of Protein G dynabeads that were pre-washed and pre-mixed with antibodies or 

non-specific IgG control. Antibodies used for RIP assays include anti-RNA polymerase II 

(ab817, Abcam), anti-KLF4 (12173, Cell Signaling Technology) and anti-MED1 (A300-793A, 

Bethyl Laboratories). All of the antibodies have been previously authenticated for ChIP use 

[Eid et al, 2015; Riz et al, 2015; Pelish et al, 2015]. Following three times of wash to remove 

non-specific binding, RNA was extracted for qPCR analysis.  
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ChIP assays were performed as previously described [Chen et al, 2015] using the 

same antibodies as RIP. Briefly, HUVECs were treated with 0.75% formaldehyde for 20 

minutes at room temperature. After sonication, the chromatin was immunoprecipitated by 

various antibodies conjugated to protein A or protein Dynabeads. Protein and RNA were 

degraded by proteinase K and RNase A, respectively. The purified chromatin DNA was then 

used as the template for quantitative polymerase chain reaction. As an isotype control, rabbit 

IgG was used in ChIP. 

DNA fluorescence in situ hybridization (FISH). In-house probes detecting eNOS 

and LEENE genomic regions were generated from bacterial artificial chromosome (BAC) 

probes (Source BioScience LifeSciences). The clone IDs are eNOS, RP11-910F16 (length 

183744 bp) and LEENE, RP11-105H21 (length 183093 bp). BAC probes were labeled by 

FISH tag DNA kit (Invitrogen). DNA FISH was performed following previously described 

protocols [Fanucchi et al, 2013; Bolland et al, 2013]. Briefly, HUVECs were seeded on the 

coverslides and fixed directly with 4% formaldehyde and permeabilized with 0.1% 

saponin/0.1% Triton X-100 in PBS for 10 min at room temperature. Cells were then 

equilibrated in 50% formamide/2x SSC for 10 min at room temperature and denatured for 3 

min at 78oC. Afterwards, cells were hybridized overnight in a humidified chamber at 37oC in 10 

μL Hyb buffer (40% dextran sulfate plus 8×SSC) combined with 30 ng DNA FISH probes that 

have been freshly denatured at 78oC for 5 min and cooled on ice. On the second day, the 

slides were washed three times with wash buffer (0.1% Tween plus 4×SSC). Cells were 

counter stained with DAPI, mounted with prolong buffer and imaged with Zeiss Apotome. The 

two probes were considered as proximally associated when the signals were completely 

overlapped or the distance between the centers of the signals < 1 μm. Up to 20 pictures were 

randomly taken from each sample and three researchers were assigned to independently and 

blindly quantify the percentage of the cells showing proximity association.  
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NO bioavailability assay. The NO production from HUVECs was detected as the 

accumulation of nitrate/nitrite by using a Nitrate/Nitrite fluorometric assay Kit (Cayman 

Chemical) as previously described [Chen et al, 2015]. Briefly, the phenol-red free M199 

medium used to culture ECs was collected and centrifuged. The fresh supernatant was used 

for NO assay. Nitrate was first converted to nitrite utilizing nitrate reductase, followed by DAN 

addition to form fluorescent product. The fluorescent signal was read using TECAN Infinite 200 

pro (TECAN) under 360 nm excitation wavelength and 430 nm emission wavelength. The NO 

content was calculated based on the nitrate standard curve.   

Nascent RNA capture. Newly synthesized mRNA species were isolated using Click-iT 

Nascent RNA Capture Kit (C10365, Invitrogen) according to manufacturer’s protocol. Briefly, 

HUVECs were synchronized with 2% FBS in M199 medium for 8 hr, followed by incubation in 

0.2mM of 5-ethymyluridine (EU, an alkyne-modified uridine analog, which is incorporated into 

the nascent RNA) for another 24 hr and total RNA was isolated using TRIzol reagent. A 

copper catalyzed click reaction was performed using 5 μg RNA with 0.5mM azide-modified 

biotin. The mixture was incubated at room temperature for 30 min following RNA precipitation. 

Biotin-label EU-RNA was then pulled down by mixing with Streptavidin T1 magnetic beads at 

room temperature for 30 min and the unbound RNA was washed away. The cDNA synthesis 

was performed directly on the beads using Superscript VILO cDNA synthesis kit (Invitrogen), 

followed by qPCR analysis.  

Quantitative PCR (qPCR). Reverse-transcription of RNA into cDNA was performed 

with PrimeScript™ RT Master Mix containing both Oligo dT primer and random 6mers primer 

(Takara Bio Inc.). KAPA SYBR FAST ROX Low supermix was used for qPCR following 

manufacturer’s suggested protocol. All the primer sequences used were listed in Table 3.4 and 

Table 3.5.  
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Western Blot analysis. Western blot was performed using antibodies against eNOS 

(9572S, Cell Signaling Technology) and β-actin (8457S, Cell Signaling Technology) following 

standard protocol.  

LEENE homology analysis. The sequence similarity between the predominant 

transcript of LEENE (NR_026797.1) and BY707159.1 was calculated by using the EMBOSS 

Water tool, which was designed based on Smith-Waterman algorithm, with default parameters 

[Rice et al, 2000]. 

Animal studies. Animal study protocol was approved by Institutional Animal Care and 

Use Committee of City of Hope, Duarte. Five 8-12 weeks C57BL male mice were randomly 

chosen and euthanized and thoracic aorta (TA) and aortic arch (AA) were isolated in PBS to 

tease out perivascular adventitia. Cleaned vessels were immediately snap-frozen in liquid 

nitrogen following RNA extraction with TRIzol reagent. Based on our collaborators’ previous 

experience, sample size was determined to have enough power to detect an estimated 

statistical difference between two groups. With a sample size of 5 in each group, this study 

can provide 80% powder to detect an effect size of 2 with 0.05 significant level using two-sided 

t-test between two groups. Our collaborators did not expect large variation between two 

groups since the chosen animals are identical or similar regarding their age, gender, and 

background and raised under same condition. In the given case, no blinding was needed.  

Mouse lung endothelial cells isolation was performed following the protocol as 

previously described [Chen et al, 2015] with modifications. For each experiment, the lungs 

from six C57BL male mice at the age of ~6 weeks were pooled, collagen-digested, and CD31-

Sorted.  

Statistical analysis of low-throughput experimental results. First, the statistical 

distribution of each group was confirmed to be normal by using a χ2 test. Statistical analysis 

was then performed using Student’s t-test (two-sided) between two groups or ANOVA followed 
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by Bonferroni post-test for multiple group comparisons. If variances between two groups were 

significantly different (F-test), nonparametric Mann-Whitney test was applied. p<0.05 was 

considered as statistically significant. Power analyses for the animal study have been 

described in the previous section. At least three replicates were performed for all validation 

experiments unless specified. 

Results – in silico Analysis 

I used dynamical state analysis to interrogate the RNA-seq data for expression 

patterns of interest, including “consistent upregulation between conditions across time” and 

“nondecreasing fold changes in a condition across time”. Among 22300 annotated genes, only 

4 were identified as having expression profiles that were upregulated in PS vs ST across all 

time points, but NOT upregulated (i.e. downregulated or not differentially expressed) in OS vs 

ST in all time points. These four genes were KLF2, KLF4, CNR1, and DHH. Zero genes were 

identified as having the converse expression profile (i.e. upregulated in OS vs ST across all 

time points but NOT upregulated in PS vs ST in all time points). 

Using point-wise state analysis, 97 genes were identified as “PS-distinct” and 14 genes 

were identified as “OS-distinct” (Table 3.6). Three of the four identified genes identified in the 

dynamical state analysis were also identified among the PS-distinct genes (KLF2, KLF4, 

DHH). A portion of these OS-distinct and PS-distinct genes were manually curated and 

assessed for how (a) how well-studied the gene is in endothelial cells, (b) how well-studied the 

gene is in shear conditions, (c) if a hypothesis can be proposed about the relevance of the 

gene to endothelial cells under shear, how clear is the hypothesis and how consistent the 

hypothesis is with existing literature on the gene.  

Several genes known to be relevant to endothelial response to shear were identified 

using point-wise state analysis, including KLF2, KLF4, NOS3, THBD [Rochfort et al, 2015], 

and VEGFA [dela Paz et al, 2012]. These genes were considered to already be well-
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characterized and therefore were not considered for further study. Another cohort of genes 

were found to be well-studied in endothelial cells, but not specifically under conditions of 

shear. These genes include ABLIM3, ADAMTS4, APOLD1, ATG9B, CASKIN2, GCH1, GMFG, 

GPER, GRK5, and HEG1. These genes were found to have some studies that already 

describe their functional role, and would be ideal candidates for a future study on novel 

mechanosensitive genes. ATG9B, for example, has known relevance to autophagy 

[Zavodszky et al, 2013] and neighbors NOS3 on the genome, making it a promising candidate 

for a small and focused study on its role in shear stress. 

Novel Hypotheses of Mechanisms Revealed from Distinctly Expressed Genes. 

Some of these identified genes were not well-studied in endothelial cells or in shear, but were 

sufficiently well-studied in other contexts, allowing for the formulation of a shear-specific 

mechanistic hypothesis. One such PS-distinct gene is DHH, which is involved in the hedgehog 

signaling pathway and activates the GLI family of transcription factors [Falkenstein et al, 2014]. 

DHH has previously been shown to be mechanosensitive [Ni et al, 2010], and the TF-to-gene 

network described in chapter 2 (Figure 2.9) indicates that GLI1 has a role in the PS-specific 

network together with several differentially expressed target genes. Analysis of the expression 

profiles of these target genes reveals that STMN3, a stathmin protein involved in the function 

of microtubules, has an expression profile is strongly downregulated in OS vs PS similar to 

DHH’s expression profile. Therefore, we propose that PS can modulate cell morphology 

directly via the hedgehog signaling pathway through the production of DHH (Figure 3.3). 

Another such promising PS-distinct gene is C1orf21. A previous proteomics study 

[Rolland et al, 2014] implicated C1orf21 as interacting with DRAM1, a gene that regulates 

autophagy via the lysosome [Zhang et al, 2013]. Although DRAM1 is not differentially 

expressed, a future study of C1orf21 and DRAM1 on the protein level could reveal a 

mechanosensitive mechanism by which endothelial autophagy is modulated via C1orf21 
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expression. Other PS-distinct genes of potential interest that are not well-studied in shear 

conditions are GCKR (also known as GKRP), an inhibitor of the metabolic protein glucokinase 

[de la Iglesia et al, 1999], and DUSP4, a phosphatase responsible for activating p38 [Barajas-

Espinosa et al, 2015]. 

Other genes offer a more complex picture of endothelial regulation, being understudied 

in endothelial cells and shear, but also having several studies in other contexts that present 

contradictory or unclear conclusions. CXCR4, which is an OS-distinct gene, is known to be 

directly inhibited by KLF4 [Li et al, 2015], and interacts with the ligand CXCL12. CXCR7, on 

the other hand, is a PS-distinct gene that shares the same ligand. The CXCR7-CXCR4-

CXCL12 axis of regulation is well-studied in cancer and is involved in a variety of cellular 

functions such as proliferation and migration [Pozzobon et al, 2016; Duda et al, 2011]. The 

role of this regulatory axis has not been studied in ECs under shear, despite the distinct 

expression and mechanosensitivity of these chemokine receptors. A future study that explores 

the dynamics of these proteins in shear is likely to produce novel insights into mechanisms of 

atherosclerosis. 

Another such set of genes are HYAL1 and HYAL2, lysosomal acid hydrolases that 

were both identified as PS-distinct. HYAL2 in particular was identified via dynamical state 

analysis as a gene whose expression profile is nondecreasing in PS vs ST, suggesting a long 

term ramping in upregulation of HYAL2 in PS over time. HYAL proteins are involved in the 

degradation of hyaluronan (HA), a glycosaminoglycan that is part of the extracellular matrix 

and can form high molecular weight polymers [Triggs-Raine et al, 2015; Chowdhury et al, 

2016]. HYAL2 proteins are localized to the cellular surface in order to target high-molecular 

weight HA, and HYAL1 proteins are localized to the lysosome in order to target low-molecular 

weight HA [Triggs-Raine et al, 2015]. Previous studies reveal that HA levels may modulate 

inflammation, eNOS activity, proliferation, and angiogenesis [Genasetti et al, 2008; Kong et al, 
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2016], but the direction of regulation is not clear. The role of HA in the extracellular matrix 

proximal to the endothelium, along with the relationship between HA and shear, offer 

questions that would make for promising exploratory studies. 

In silico Identification and Characterization of LINC00520. Another PS-distinct 

gene of interest was LINC00520 (aka C14orf34). This was the only gene detected through 

point-wise state analysis that encoded a long non-coding RNA (lncRNA). Long non-coding 

RNAs are a large class of non-coding RNAs that are >200 bp in length (as opposed to, for 

example, microRNA). Over 27,000 lncRNAs have been predicted/annotated in the human 

genome10, but relatively little is known about their biological function, and classification of an 

RNA molecule as a lincRNA can be ambiguous due to a generic lack of functional 

characterization [St Laurent et al, 2015]. 

In order to develop a more sophisticated hypothesis on the function of LINC00520, I 

then examined the LINC00520 genomic region in the 4C-NOS3 and H3K27me3, H3K27ac, 

and H3K4me1 ChIP-seq data sets. These data sets, generated under OS and under PS with 

two replicates apiece, show distinctive shear-specific patterns in the LINC00520 region. Figure 

3.4 offers a visualization of this data taken together. The preponderance of H3K27ac and 

H3K4me peaks detected in the LINC00520 region suggest that this is an active enhancer 

region [Rivera et al, 2013], making LINC00520 a potential enhancer RNA. The detected 4C 

peaks suggest that this putative enhancer region may interact with the NOS3 gene (aka 

eNOS), an important factor in maintaining vascular homeostasis that also appeared among the 

PS-distinct genes [Tousoulis et al, 2012]. Strikingly, the 4C peaks are only present under PS, 

and the acetylation peaks are higher under PS as well compared to OS. 

In order to further clarify the unique standing of LINC00520 expression as a lncRNA, I 

isolated all noncoding RNA (any transcript with a refseq ID that began with “NR”) and 

exclusively analyzed all exclusively ncRNA-producing genes using the pipeline illustrated in 



63 
 

Figure 3.5A. Among the 2054 lncRNAs identified in the RNA-seq, I first filtered for those 

differentially regulated by PS vs. OS at hour 24. These flow-regulated lncRNAs are listed and 

ranked based on their differential expression in the heatmap in Figure 3.5B. Because of the 

observation that NOS3 and LINC00520 may interact, I then filtered for lncRNAs that were 

positively correlated with NOS3 over the entire time course (correlation coefficient >0.8). The 

RNA level of LINC00520 emerged as the top-ranked candidate and was highly correlated with 

NOS3 expression levels (correlation coefficient 0.85, Figure 3.5C). The temporal course of 

flow-regulated NOS3 and LINC00520 RNA levels showed similar patterns, i.e. a sustained and 

robust induction by PS. Figure 3.5D compares the expression profiles of NOS3 and 

LINC00520, along with KLF2, KLF4, and the pro-inflammatory vascular cell adhesion molecule 

1 (VCAM1). Notably, mRNAs encoding KLF2 and KLF4, which are key TFs of NOS3 [Lin et al, 

2005; Jiang et al, 2014] and are also PS-distinct genes, were significantly induced by PS as 

early as hour 1, reached their highest levels at hours 4 and 6, and remained induced at hour 

24.  

When examining our KLF2 overexpression RNA-seq data, it was also found that 

LINC00520 is overexpressed when KLF2 is overexpressed. Because KLF2 is 

mechanosensitive and is upregulated in PS, this further reinforces the hypothesis that 

LINC00520 is mechanosensitive and PS-distinct, while also suggesting that its mechanism of 

expression may involve KLF2. The timing of differential expression is also consistent with this 

hypothesis – KLF2 is statistically significantly differentially expressed (p < 0.05) from hour 1 

onward, while LINC00520 slowly increases in PS upregulation over time, achieving statistically 

significant differential expression in hour 6 and onward. Finally, KLF2 can transcriptionally 

regulate NOS3 [Lin et al, 2005], offering yet another potential regulatory link between 

LINC00520 and NOS3. 
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In order to further understand the role of the LINC00520 genomic region as an 

enhancer, Hi-C HUVEC data (GEO ID: GSE63525) was mined and searched for interactions 

with the LINC00520 genomic region [Rao et al, 2014; Sanborn et al, 2015]. A total of 2794 

genes were found to overlap with regions interacting with the LINC00520 genomic region. Of 

these genes, 1177 were differentially expressed in OS vs PS. Figure 3.6 showcases the 

enriched pathways for these 1177 genes. Pathways pertaining to hemostasis (i.e. wound 

repair), focal adhesion, and VEGFA signaling feature prominently among the list of enriched 

pathways. The enrichment of VEGFA pathways is particularly interesting, as VEGFA is among 

the PS-distinct genes in table 2 alongside LINC00520. 

While this computational approach was sufficient to propose hypotheses about the 

genomic region of LINC00520, further work was required for characterizing the role of the 

LINC00520 molecule itself. Depending on their subcellular localization (i.e. in the nucleus or 

cytoplasm), lncRNAs can regulate gene expression through diverse mechanisms. A group of 

lncRNAs has previously been identified as nucleus-retained and chromatin-associated [Wang 

et al, 2016; Viereck et al, 2016; Tripathi et al, 2010; Michalik et al, 2014]; they can serve as 

scaffolds or guides in cis or in trans to recruit TFs, transcriptional co-activators, or chromatin 

remodelers, and/or to promote long-range DNA (e.g. promoter-enhancer) interaction, thus 

resulting in transcriptional activation [Trimarchi et al, 2014; Wang et al, 2011; Hacisuleyman et 

al, 2014].  For example, the lncRNA Firre has been shown to be localized around its site of 

transcription in X-chromosome in the embryonic stem cells and mediate trans-chromosomal 

interaction [Hacisuleyman et al, 2014].  LncRNAs can also be classified depending on their 

encoded genomic locations (i.e. intragenic, intergenic, or enhancer regions) and the 

associated histone modifications [St Laurent et al, 2015]. A new class of lncRNAs have 

emerged as lnc-eRNA or elncRNA, which are encoded in enhancer regions marked by Histone 
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3 lysine 4 monomethylation (H3K4me1) and Histone 3 lysine 27 acetylation (H3K27ac) [Li et 

al, 2016; Devaux et al, 2015]. 

The regulatory role of lnc-eRNAs, especially those in the vascular ECs, had not been 

explored. Furthermore, literature on LINC00520 was scant, with fewer than 20 papers 

mentioning the gene (even in passing as part of a broader GWAS data analysis) as of 

December 2016. In that same period of time, no papers existed that connected LINC00520 

and shear stress in any way. The putative connection with NOS3 in particular was very 

promising. Endothelial nitric oxide synthase (eNOS, also known as NOS3), which is central to 

endothelial homeostasis and vascular function, is regulated at multiple levels [Forstermann et 

al, 2012], including post-translational modifications (such as phosphorylation and acetylation) 

[Fulton et al, 1999; Chen et al, 2010] and transcriptional regulation by transcription factors 

(TFs) [Shaul et al, 2002]. It has been established that eNOS transcription is largely regulated 

by Krüppel-like factors 2 (KLF2) and 4 (KLF4), two key TFs in endothelial identity and vascular 

homeostasis [Sangwung et al, 2017]. The expression and activity of KLF2 and KLF4 can be 

altered by a number of mechanical (e.g. hemodynamic flow), biochemical (e.g. pro-

inflammatory stress), and pharmacological stimuli (e.g. cardiovascular protective drugs), 

leading to differential transcriptional regulation of eNOS as well as other genes important in 

endothelial biology [SenBanerjee et al, 2004; Zhou et al, 2012]. There is also evidence that 

eNOS expression can be regulated through histone modifications [Fish et al, 2005; Gan et al, 

2005]. However, whether and how long-range DNA interaction coordinates with TF binding 

and histone modification to modulate eNOS transcription in endothelial cells (ECs) remains 

essentially unknown. LINC00520 appeared to be a putative mechanosensitive lncRNA, 

associated with an enhancer region, relevant to eNOS expression. Therefore LINC00520, a 

putative “lncRNA that enhances eNOS expression”, will be referred interchangeably as 

“LEENE” and as its official name LINC00520. 
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Results – Validation of LINC00520 (LEENE) as a mechanosensitive lnc-eRNA relevant to 

endothelial homeostasis.  

All validation experiments were conducted by our collaborating labs, particularly Dr. 

Zhen Chen and Dr. Yifei Miao. 

LEENE is known to have two transcripts. The predominantly expressed transcript in 

ECs contains exons 1, 3, and 4, while the less abundant transcript in ECs contains all four 

exons. We referred to FANTOM5 [Lizio et al, 2015] and confirmed that neither LEENE 

transcripts have any coding potential. Using absolute quantification assay with qPCR, we 

determined the copy number of LEENE in untreated HUVECs to be ~10 copies and the copy 

number of LEENE in HUVECs exposed to PS to be ~40 copies. Both LEENE transcripts were 

upregulated in PS compared to OS (Figure 3.5E). As shown in Figure 3.5F, qPCR with LEENE 

RNA-specific primers also revealed the significantly higher level of LEENE in ECs subjected to 

PS compared to OS. To confirm the flow regulation of LEENE in ECs and explore its relevance 

to endothelial function, we tested whether LEENE is differentially regulated by tumor necrosis 

factor alpha (TNFα, which exerts pro-inflammatory effects similar to OS, and atorvastatin 

(ATV), which confers endothelial protective effects similar to PS. Resembling the opposite 

effects of OS and PS, TNFα decreased, while ATV increased the level of LEENE. These 

findings are in line with the differential levels of KLF2/KLF4-eNOS signaling (Figure 3.5G). 

Because KLF2/KLF4 can transactivate eNOS through TF binding sites (TFBS) in the 

eNOS promoter regions [Atkins et al, 2007], we next searched for TFBS in the DNA region in 

and near LEENE locus. As illustrated in Figure 3.7A, the region spanning -20 kb ~ +5 kb of 

LEENE TSS contains multiple TFBS for KLF2 and KLF4. We subsequently overexpressed 

KLF2 and KLF4 in ECs to experimentally verify whether these key TFs can upregulate LEENE. 

Indeed, we found increased levels of LEENE by the overexpression of KLF2 or KLF4 in ECs, 

with eNOS as a positive control (Figure 3.7B and C). To confirm the association of such TFs 

on the promoter of LEENE, we have performed ChIP-qPCR, which detected a robust binding 
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between KLF4 and multiple regions within the promoter region of LEENE (marked by 

H3K4me3 peaks, Figure 3.7A); these interactions were significantly increased by Ad-KLF4, 

which mimics the effect of PS and ATV (Figure 3.7D). In contrast, when we knocked down 

KLF2 in ECs, the PS-regulated LEENE was substantially decreased (Figure 3.7E). The 

combined computational analysis and experimental results in Figure 3.5 and Figure 3.7 

suggest that LEENE is 1) co-regulated with eNOS downstream of KLF2 and KLF4, and 2) 

induced in conditions that promote endothelial homeostasis but suppressed by stimuli that 

impair endothelial function. 

LEENE RNA is nucleus-localized and its genomic locus is in proximity 

association with eNOS promoter. To gain insights into the biological function of LEENE, we 

first determined its subcellular localization. As shown in Figure 3.8A, LEENE RNA transcripts 

were predominantly detected in the nucleus of ECs, i.e., as chromatin-associated and 

nucleoplasm-localized, with only a minor fraction in the cytoplasm, suggesting that its 

biological function is mainly in the nucleus. To this end, we used MALAT1 as a positive 

control, which has been previously identified as nucleus-enriched lncRNA [Tripathi et al, 2010]. 

We also used DANCR as the cytoplasm-enriched lncRNA control and CasC7 and TUG1 as 

the controls for lncRNAs localized in both nucleus and cytoplasm [van Heesch et al, 2014; 

Long et al, 2016] (Figure 3.9). We then assessed the genomic features and neighboring genes 

of LEENE. As recently described, LEENE is located 110 kb downstream of KTN1 and 321 kb 

upstream of PELI2 [Henry et al, 2016]. Unlike LEENE, the mRNA levels of neither KTN1 nor 

PELI2 were differentially regulated by PS or OS in ECs (Figure 3.10A). These results suggest 

that LEENE is transcribed independently from its neighboring genes. The strong enhancer 

marks (i.e. H3K27ac and H3K4me1 peaks) surrounding LEENE including the 5’, gene body, 

and 3’ regions (Figure 3.8B) suggest that LEENE genomic locus may act as a distal enhancer 

to mediate transcriptional activation in ECs. We did find that PS led to significant increase in 
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the H3K27ac in the LEENE region as measured by ChIP-qPCR, indicating the activation of 

LEENE as an enhancer in ECs subjected to PS vs. OS (Figure 3.8C). 

Among the 1177 genes that were identified in the Hi-C data analysis and were 

differentially expressed in OS vs PS RNA-seq data, 81 of these genes were found to be highly 

correlated with LEENE (Figure 3.11), and eNOS was among the top hit with the highest 

correlation (Figure 3.11). The inter-chromosomal interaction between eNOS (chr7: 

150,700,000-150,705,000) and LEENE (chr14: 56,280,000-56,285,000) in HUVEC is 

illustrated in Figure 3.8E. Of note, such interaction is absent in human epithelial and HeLa 

cells (Figure 3.12), which do not express detectable level of endogenous eNOS.   

To confirm the proximal association between eNOS and LEENE, we performed DNA 

FISH, which has been commonly used to validate the chromosomal association revealed by 

chromatin conformation capture-based methods [Giorgetti et al, 2016]. Indeed, we observed 

the localization or juxtaposition of eNOS and LEENE probes in 8-10% of ECs under PS, the 

physiological flow condition (Figure 3.8F). To further confirm and quantitatively compare the 

LEENE-eNOS inter-chromosomal interaction in ECs under different flow conditions, we 

performed high-resolution 4C-seq in HUVECs subjected to PS and OS using the H3K27ac- 

and H3K4me1-enriched peak region in the eNOS promoter as the bait (Figure 3.13). This 

region was previously identified to be crucial for endothelial-specific eNOS expression [Fish et 

al, 2005]. Consistent with the Hi-C data, 4C-seq also revealed the chromosomal proximity 

between the LEENE enhancer and eNOS promoter and this interaction is substantially 

increased in ECs subjected to PS as compared with OS (Figure 3.8G).  

LEENE enhancer region forms proximal association with eNOS to enhance eNOS 

transcription. To examine whether the LEENE-associated enhancer plays a role in positive 

regulation of eNOS transcription, we employed CRISPR-cas9 gene editing to remove the ~10 

kb enhancer region of LEENE immediately upstream of its TSS, as illustrated in Figure 3.14A. 
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The sgRNA-guided cas9 cutting efficiency was first verified using the surveyor assay in human 

embryonic kidney (HEK) 293 cells (Figure 3.15A) and then in ECs using genomic PCR assay 

with primers probing the 5’ and 3’ ends of the targeted region (Figure 3.15B). As a result of the 

enhancer ablation, the transcription of LEENE and eNOS was significantly suppressed, in both 

DMSO (a control vehicle) and ATV-treated ECs (Figure 3.14B). These changes in gene 

expression were attendant with similar changes in the proximity association between eNOS 

and LEENE, as revealed by DNA FISH (Figure 3.14C-D). We also deleted the coding region of 

LEENE in ECs and examined the eNOS expression in ECs. As shown in Figure 3.14E, the 

coding region deletion of LEENE also significantly decreased eNOS. Taken together, the 

LEENE enhancer forms long-range DNA interaction with eNOS promoter, serves as a 

prerequisite for eNOS expression under both untreated and statin-induced conditions. On the 

other hand, LEENE RNA transcript may also mediate, at least in part, this positive regulation 

of eNOS. 

LEENE RNA transcript regulates eNOS expression and endothelial function at 

the transcriptional level. To further address the role of LEENE RNA transcript, we inhibited 

LEENE using LNA Gapmers, which can effectively silence the target nuclear RNA via an 

RNase H-mediated degradation [Watts et al, 2012]. First, we tested two LNAs targeting two 

separate regions of LEENE in ECs under basal condition (Figure 3.16A). Compared with the 

scrambled control, both LEENE-inhibiting LNAs decreased the eNOS mRNA levels in 

HUVECs (Figure 3.16A). To confirm this result, we also silenced LEENE in human aortic 

endothelial cells (HAoECs), i.e., ECs with a different origin, and observed a similar effect in the 

suppression of eNOS mRNA expression (Figure 3.17). In contrast to the suppressive effect on 

eNOS, LEENE LNAs led to an increased transcription of pro-inflammatory molecules 

intercellular adhesion molecule 1 (ICAM1) and VCAM1 (Figure 3.18). Next, we further 

demonstrated that inhibition of LEENE RNA decreased eNOS expression at the protein level 
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in ECs under pharmacological or physiological stimuli, i.e. ATV or PS (Figure 3.14B and 

Figure 3.19). To examine the functional regulation of LEENE in ECs, we performed a 

monocyte adhesion assay, which has been commonly used to assess the eNOS-mediated 

endothelial function. As shown in Figure 3.16C and Figure 3.16D, inhibition of LEENE 

significantly increased the number of monocytes adhering to ECs subjected to PS.  

To mimic the effect of LEENE induction by PS, ATV, and KLF2/KLF4, we 

overexpressed LEENE in its predominant form (encoded by Exons 1, 3, and 4) in ECs using a 

CMV-driven and GFP-tagged adenovirus. With comparable transfection efficiency as control 

GFP vector (Figure 3.20), LEENE overexpression increased the mRNA levels of eNOS in both 

HUVECs and HAoECs (Figure 3.16E and Figure 3.20). In line with the increased eNOS 

transcription, LEENE overexpression also led to increased eNOS protein level (Figure 3.16F 

and Figure 3.19) and eNOS-derived NO production (Figure 3.16G).  Collectively, results in 

Figure 3.16 suggest that LEENE RNA positively regulates eNOS expression and its 

associated endothelial function. 

LEENE RNA promotes RNA Pol II-mediated nascent mRNA transcription of 

eNOS. We next examined the molecular mechanism that explains how LEENE promotes the 

eNOS transcription. Because enhancer-promoted transcription typically requires TFs, Mediator 

(Med) complex [Lai et al, 2013] and RNA Polymerase II (Pol II) [Li et al, 2012], and lncRNAs 

have been suggested to bind these factors/complexes to promote transcription [Yang et al, 

2013], we hypothesized that LEENE RNA transcript may promote eNOS transcription by 

facilitate the recruitment of one or more of these transcriptional activators in the LEENE-eNOS 

loci.  

We first tested whether there is an increased binding between LEENE and these TFs 

in ECs treated with ATV. As shown in Figure 3.21A-C, RNA-IP revealed that the associations 

of LEENE RNA with Pol II, KLF4, MED1, and were substantially enhanced in ECs treated with 
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statin. As an isotype control, IgG did not pull down significant amount of LEENE RNA, and the 

association of LEENE RNA with IgG was not altered by statin treatment (Figure 3.22). In order 

to test whether LEENE RNA associate with LEENE-eNOS loci, we performed chromatin 

isolation by RNA purification (ChIRP) assay with two pools of biotin-labeled RNA probes 

(even-numbered and odd-numbered), each with 5 probes containing sequences 

complementary to the respective regions of LEENE (Figure 3.21D). We were able to 

recover/enrich LEENE RNA specifically and efficiently, with β-actin RNA as a negative control 

(Figure 3.23A). Of note, this enrichment of LEENE was not achieved with biotin-labeled LacZ 

probes (Figure 3.23B).  In the LEENE-enriched chromatin precipitates, the DNA sequences in 

LEENE enhancer region and eNOS promoter were also detected, suggesting that LEENE 

RNA indeed interact with these chromosomal regions (Figure 3.21E). Furthermore, these 

interactions were increased by statin treatment, which induces eNOS and LEENE (Figure 

3.21E). As an additional control, we performed ChIRP assay in HEK293 cells, which do not 

express detectable level of endogenous eNOS. Compared to ChIRP performed using ECs, 

LEENE ChIRP using HEK293 cells revealed virtually no binding between LEENE RNA and the 

genomic loci of LEENE and eNOS (Figure 3.23C). Importantly, the statin-induced interaction 

between LEENE RNA and eNOS locus appears to be region-specific because this was absent 

for the 150 kb up- or downstream of LEENE encoding PELI2 and KTN1 respectively (Figure 

3.23D). 

Next, to test whether LEENE is required for the recruitment of KLF2/KLF4, Med1, and 

RNA Pol II to enhancer eNOS transcription, we determined the association of these proteins 

with the eNOS promoter in LEENE-depleted cells. As shown in Figure 3.21F, compared with 

ECs transfected with scramble LNA, LEENE LNA resulted in the reduced association between 

RNA Pol II and multiple eNOS promoter regions, although that between KLF4 or Med1 and 

eNOS promoter regions did not change (Figure 3.24). In line with the inhibitory effect of 
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LEENE LNA in Pol II binding to eNOS promoter, LEENE LNA caused a significant decrease in 

nascent eNOS mRNA level, which is quantified by nascent RNA pulldown combined with 

qPCR (Figure 3.21G). Collectively, Figure 3.21 suggests that LEENE RNA regulates the 

transcription of eNOS gene by facilitating the recruitment of RNA Pol II and the resultant 

nascent RNA transcription.  

Mouse homologue of human LEENE. Next, we explored the conservation of LEENE 

between human and mouse. First, we compared the genomic structure of chromosomal region 

between KTN1 and PELI2 in human vs. mouse and found an expressed sequence tag (EST) 

(identifier BY707159.1) located in the similar region in mouse chromosome 14 as LEENE. 

Similar to the human LEENE, BY707159.1 is also transcribed from the negative strand (Figure 

3.25A), and the surrounding DNA region contains multiple KLF2/KLF4 binding sites (Figure 

3.25B). Comparison of the sequences of BY707159.1 showed that 472 out of 680 bp were 

aligned to the Exons 1, 3, and 4 of the human LEENE (Figure 3.25C). To explore its functional 

and disease relevance, we examined the level of BY707159.1 in the mouse artery. It is well 

established that the mouse thoracic aorta (TA) and aortic arch (AA) are associated, 

respectively, with distinct flow patterns and opposite endothelial phenotypes, and that eNOS is 

expressed at a significantly higher level in TA than AA31. Hence, we determined the 

transcription level of BY707159.1 in TA and AA isolated from C57BL mice. As shown in Figure 

3.25D, the level of BY707159.1 was ~8 fold higher in TA than AA; this recapitulates the PS-

induction and OS suppression of LEENE levels in the human ECs (Figure 3.5). Further, we 

have isolated lung ECs from C57BL mice and examine the potential regulation of eNOS by 

LEENE homolog in mouse. As shown in Figure 3.25E, LNA inhibiting of LEENE homolog 

indeed decreased the mRNA level of eNOS. These findings suggest that LEENE regulation of 

eNOS may be a conserved mechanism in mouse and human. 
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Discussion Of LEENE Study 

 We have identified LEENE, a lncRNA encoded by a distal enhancer region that forms 

proximal association with the eNOS locus. LEENE RNA enhances RNA Pol II binding to the 

eNOS promoter, thereby enhancing eNOS transcription. Inhibition of LEENE at either genomic 

(i.e. DNA) or transcriptional (i.e. RNA) level suppresses eNOS transcription, whereas 

overexpression of LEENE increases levels of eNOS and its derived NO bioavailability. 

Elucidation of this mechanism provides novel insights into the epigenetic modulation of 

endothelial gene expression in health and disease. All of this was successfully pursued 

through the analysis of transcriptomic, epigenetic, and chromatin structure “omics” data, 

followed by robust experimental validation.  

 To identify the lncRNAs that potentially regulate eNOS transcription, we employed a 

systems biology approach to profile flow-regulated endothelial transcriptomes. Among all the 

lncRNAs that are differentially regulated by PS vs. OS, LEENE ranked at the top 

(log2FC=1.93, correlation coefficient=0.85) (Figure 3.5B-D). Indeed, LEENE RNA was found 

to be regulated in concert with eNOS in ECs under hemodynamic, biochemical, and 

pharmacological stimuli (Figure 3.5F-G). At the transcriptional level, LEENE and eNOS are co-

regulated by KLF2 and KLF4 (Figure 3.7). The hierarchical regulation of KLF2 and KLF4 

upstream of LEENE and eNOS is reflected by the early induction of KLF2/KLF4, preceding 

that of LEENE and eNOS (Figure 3.5D). The identification of KLF2/KLF4-induced LEENE 

expands the repertoire of these TF-regulated transcriptional targets. In line with this notion, a 

recent report identified globally enriched TF binding motifs for KLFs in ECs using ChIP-seq 

and ATAC-seq [Zhou et al, 2017]. Therefore, KLFs may regulate a broader spectrum of 

transcriptional targets, including not only the protein-coding genes [Atkins et al, 2007], and 

miRNAs [He et al, 2017; Hergenreider et al, 2012], but also lncRNAs. 
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 While there have been extensive studies on the regulatory mechanisms of eNOS 

expression at multiple levels, there is a lack of information on the role of epigenetic 

modulation, particularly through lncRNAs and long-range DNA interaction. Summarizing the 

findings from our study, LEENE may enhance eNOS expression through two layers of 

regulations: 1) LEENE enhancer serves as a distal enhancer that forms proximal association 

with eNOS promoter (Figure 3.8 and Figure 3.14); 2) in such a chromosomal context, LEENE 

RNA transcript induced by KLF2/KLF4 facilitate the binding of RNA Pol II to promote nascent 

RNA transcription of eNOS (Figure 3.21). To tease out the reciprocal requirement of these two 

layers, we found that in ECs with LEENE enhancer ablated, overexpression of LEENE failed to 

induce eNOS expression (Figure 3.26A). Furthermore, in these LEENE enhancer-deleted 

cells, the association between LEENE transcript and eNOS locus is significantly decreased 

under both untreated and ATV-treated conditions (Figure 3.26B). These findings support the 

notion that the proximity association between LEENE and eNOS loci would be a prerequisite 

for the association of LEENE RNA to eNOS promoter; without the LEENE enhancer region, 

LEENE RNA is not sufficient to enhance eNOS transcription. This hypothesis is illustrated in 

Figure 3.27. It remains to be explored how do the LEENE and eNOS loci come in proximity 

and form the promoter-enhancer contact in ECs but not other cells types, and whether LEENE 

RNA transcript per se further stabilize such inter-chromosomal interaction. 

Considering the genomic feature of LEENE, one may classify LEENE as an enhancer 

RNA (eRNA) as LEENE is encoded in a ~300 kb H3K27ac-enriched and H3K4me-enriched 

region. However, comparing to most eRNAs reported to promote nearby gene transcription in 

cis [Espinosa, 2016], LEENE does not seem to affect its neighboring genes, because 1) its 

RNA level is discordant with neighboring KTN1 and PELI2, which do not show differential 

expression in ECs subjected to different flow patterns or overexpression of KLF2/KLF4 (Figure 

3.10A-B); and 2) neither LNA knockdown nor CRISPR deletion of LEENE locus affects its 
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adjacent KTN1 expression (Figure 3.10C-D). Intriguingly, LEENE transcription is highly 

concordant with eNOS, the key endothelial molecule encoded on chromosome 7. Despite the 

seemingly distinct chromosomal territories, LEENE and eNOS loci show proximal association 

in ECs, both under untreated or ATV/PS-treated conditions (Figure 3.8E-G and Figure 3.14C-

D). This is in line with the emerging notion that lncRNAs may facilitate co-regulation of genes 

involved in similar biological processes [Engreitz et al, 2013]. Given the molecular 

mechanisms identified in this study, we reason that LEENE would be an example of lnc-eRNA 

or elncRNA, which is a transcript with initiation sites overlapping with enhancer regions and 

presence in current lncRNA databases [Li et al, 2016; Rothschild et al, 2017].  

Other than eNOS, LEENE may interact with genomic loci encoding a set of genes that 

are involved in multiple pathways crucial for endothelial homeostasis, e.g., cell adhesion and 

VEGF signaling (Figure 3.6). In addition, LEENE may also regulate other genes important for 

endothelial function through indirect mechanism. For example, we found that LEENE LNA 

decreases, whereas LEENE overexpression increases thrombomodulin (Tm), another KLF2 

transcriptional target in ECs (Figure 3.28) [Lin et al, 2005]. In reference to the HUVEC Hi-C 

data, there is a lack of direct interaction between LEENE and Tm loci (Figure 3.29). The 

complete repertoire of LEENE-regulated transcriptome remains to be characterized.  

In addition to LEENE, we also identified a number of other lncRNA loci in the eNOS 4C 

libraries, such as MALAT1 and MIAT (Figure 3.30), all of which have been shown to be 

abundantly transcribed and play functional roles in ECs [Michalik et al, 2014; Yan et al, 2015]. 

The chromosomal contacts of other lncRNAs with eNOS may recruit additional chromatin 

remodelers to modulate eNOS transcription. These mechanisms may coordinate with TF-

binding and histone modifications to organize the chromatin conformation of eNOS, 

contributing to its transcriptional control. Given the recent study demonstrating the poor CpG 

content and the lack of flow-altered DNA methylation status in eNOS promoter [Jiang et al, 
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2014], our findings suggest that the lncRNA-mediated chromatin remodeling may be an 

important factor other than DNA methylation in epigenetic regulation of eNOS, with both 

spatial and temporal control. 

The cross-species conservation of lncRNAs is a challenging and key topic in the 

epigenetics field as the estimated sequence homology between human and mouse lncRNAs is 

only 20% [Hezroni et al, 2015]. We identified BY707159.1, which is similar to human LEENE in 

several aspects including sequences, genomic structure, TFBS enrichment, differential 

regulation by flow patterns, and its gene regulation of eNOS (Figure 3.25). Given the 

conservation of Firre in the repeating RNA domains [Hacisuleyman et al, 2014], it is possible 

that LEENE is conserved between human and mouse in regions/domains important for its 

molecular function. Our findings set the stage for future systematic exploration of the functional 

roles of LEENE as an epigenetic player in cardiovascular health and diseases. 
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Figure 3.1: Visualization of the 27 possible point-wise states for a given gene’s 
expression across three pairwise conditions and three possible states of regulations. 
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Figure 3.2: Quality control of CRISPR-Cas9 gene editing system targeting LEENE 
promoter/enhancer (ED) (a and b) and coding region (CD) (c). (a) Surveyor assay for ED 
sgRNA-guided cas9 cutting efficacy in HEK293 cells. Select sgRNAs targeting respectively 5’ 
or 3’ ends were used to test the cutting efficiency as compared to control vector. (b) PCR 
validation of ED region of Cas9 targeting position as illustrated in Fig. 4a. The spliced and 
ligated 10 kb region is amplified in CRISPR-targeted but not control ECs. (c) Surveyor assay 
for CD sgRNA-guided cas9 cutting efficacy in HEK293 cells. Select sgRNAs targeting 
respectively 5’ or 3’ ends were used to test the cutting efficiency as compared to control 
vector. 
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Figure 3.3: Proposed mechanosensitive mechanism of regulation of endothelial 
morphology. DHH, an integral component of the hedgehog signaling pathway, is upregulated 
in PS vs ST while being downregulated in both OS vs ST and OS vs PS. DHH signaling 
activates the Gli family of transcription factors. Among the Gli targets is STMN3, a stathmin 
protein that is involved in microtubule formation and function. The expression profile of STMN3 
exhibits strong similarity with the expression profile of DHH, indicating a potential signal 
transduction from shear to transcriptional regulation. 
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Figure 3.4: LINC00520 region with visualized histone ChIP-seq and 4C datasets. Red 
data represents the OS condition, while blue data represents the PS condition. Seven distinct 
acetylation and methylation peaks can be observed on and upstream of LINC00520’s gene 
body. This is a screenshot of the UCSC Genome Browser [Rosenbloom et al, 2013; Ernst et 
al, 2010; Ernst et al, 2014]. 
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Figure 3.5: Co-regulation of LEENE and eNOS. (a) Pipeline for assessing LINC00520’s 
unique regulatory standing as a lncRNA. (b) Heatmap of RNA levels of flow-regulated 
lncRNAs derived from RNA-seq. (c) Scatter plot of the flow-regulated lncRNAs ranked by 
differential expression (DE) fold change (FC) at 24 hr (PS/OS) and correlation with eNOS 
mRNA level. (d) Time course of log2FC of mRNAs encoding various genes. (e) Structure of 
LEENE gene encoding two RNA transcripts. Trans-exon primers used in qPCR were designed 
to amplify fragments flanking Exons 3 and 4. RNA-seq tracks depicting FPKM of LEENE in 
ECs under PS or OS for 24 hr. (f, g) qPCR detection of various RNA transcripts in ECs 
subjected to PS or OS (in f) or TNFα (100 ng/ml) or atorvastatin (ATV) (1 μM) (in g) for 24 hr. 
Data are presented as mean±SEM, n=5 in each group. *p<0.05. 
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Figure 3.6: Pathway enrichment analysis from 1177 genes that are differentially 
regulated between OS and PS and interact with LEENE genomic loci. Pathway 
enrichment analysis was conducted using CPDB [Kamburov et al, 2011]. 
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Figure 3.7: KLF2 and KLF4 transcriptionally regulate LEENE. (a) Putative KLF2 and KLF4 
binding sites in LEENE enhancer/promoter based on the conserved KLF2 and KLF4 binding 
motifs (shown on the top). Middle tracks display H3K27ac and H3K4me1 ChIP-seq signals in 
LEENE locus, and the inset shows H3K4me3 ChIP-seq signals in the putative LEENE 
promoter region from ENCODE HUVEC data; arrows indicate regions detected in ChIP-qPCR 
(Fig. 2d). (b–d) HUVECs were infected with respective adenoviruses for 48 h. RNA levels of 
KLF2, KLF4, LEENE, and eNOS were detected by qPCR (in b and c) and KLF4 binding to 
promoters of eNOS and LEENE was quantified by ChIP-qPCR analysis (in d). (e) qPCR of 
respective RNA levels in ECs transfected with scramble control (Ctrl) or KLF2 siRNA. Data are 
presented as mean ± SEM, n = 5 in each group. * indicates p < 0.05 compared to respective 
controls using Student’s t-test. 
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Figure 3.8: LEENE RNA is nucleus-localized and its DNA lies in enhancer region 
interacting with eNOS promoter. (a) qPCR quantitation of LEENE and MALAT1 in 
subcellular fractions from ECs, plotted as percentages in association with chromatin (Chr), 
nucleoplasm (Nuc), and cytoplasm (Cyt). (b) ENCODE HUVEC ChIP-seq signals in 400 kb 
(top tracks) and 50 kb (bottom tracks) regions surrounding LEENE. Regions in shades were 
selected for H3K27ac ChIP-qPCR in (c). (d) Flow chart of integrative Hi-C and RNA-seq 
analyses. (e) LEENE–eNOS interaction map generated from GEO HUVEC Hi-C analysis. Red 
pixels represent interactions between two regions, respectively, in chr7 (X-axis) and chr14 (Y-
axis). The highlighted regions correspond to eNOS promoter and LEENE enhancer regions. (f) 
Representative image of DNA FISH with respective probes recognizing LEENE and eNOS 
genomic loci. Arrow indicates proximity association between two loci. Scale bar = 10 μm. (g) 
4C-seq mapping of inter-chromosomal interactions between eNOS bait (249 bp) and lncRNAs 
listed in Figure 3.5B. Each line in the circoplot represents an interaction and the color intensity 
reflects the normalized reads of ligated DNA ends. Chromosomes are numbered around the 
circle. Data are presented as mean ± SEM, n = 5 in each group. * indicates p < 0.05 compared 
to OS based on Student’s t test. 
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Figure 3.9: Subcellular quantitation for lncRNAs DANCR, Casc7, and TUG1. qPCR 
quantitation of DANCR (a), CasC7, and TUG1 (b) in subcellular fractions from ECs, plotted as 
percentages in association with chromatin, nucleoplasm, and cytoplasm. Data are presented 
as mean±SEM. ANOVA followed by Bonferroni post-test is applied. n=5/group. 
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Figure 3.10: Transcription of LEENE neighboring genes. (a) Time course of log2FC 
(PS/OS) of LEENE and mRNAs encoding KTN1 and PELI2. (b-d) qPCR quantification of 
KTN1 in ECs with (b) KLF2 or KLF4 overexpression, (c) LEENE knock-down with two different 
gapmerLNA (50 nM), or (d) CRISPR-cas9 gene editing targeting LEENE promoter/enhancer 
regions. Data are presented as mean±SEM. ANOVA followed by Bonferroni post-test is 
applied, n=5/group. 
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Figure 3.11: Heatmap of flow-regulated 81 genes in LEENE interactome. Heatmap 
demonstrates the flow-regulated 81 genes in the LEENE interactome in Figure 3.8D, with 
eNOS as one of the top correlated transcripts with LEENE. 
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Figure 3.12: Hi-C analysis of LEENE-eNOS interaction map in non-EC cell types. LEENE-
eNOS interaction map generated from Hi-C data from human mammary epithelial cells HMEC 
(a) or HeLa cells. Red pixels represent interactions between two regions respectively in chr 7 
(X axis) and chr 14 (Y axis). The highlighted regions correspond to eNOS promoter and 
LEENE enhancer regions. Note that no red pixel was shown in the overlapped highlighted 
region. (c) A genome-wide contact matrix produced by Hi-C. Each pixel represents a 
chromosomal interaction using 5-kb windows; intensity corresponds to the total number of 
reads. 

  



90 
 

 

Figure 3.13: Histone ChIP-seq tracks of eNOS promoter/enhancer region from four 
different cell types. ENCODE histone ChIP-seq signal from four different cell types 
surrounding eNOS promoter/enhancer region. Shaded area indicates eNOS 
promoter/enhancer regions. The red arrows indicate 4C library primers directions and 
locations. HMEC, human mammary epithelial cells; H1-hESC, human embryonic stem cells. 
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Figure 3.14: Gene editing of LEENE locus influences eNOS transcription. (a) Schematic 
illustration of CRISPR-Cas9 targeting strategy. Regions in red and orange indicate, 
respectively, the upstream enhancer/promoter region or the coding region deleted by sgRNA-
guided Cas9, resulting in enhancer deletion (ED) and coding region deletion (CD) in LEENE 
locus. (b) LEENE and eNOS RNA levels in ECs transfected with control Cas9 plasmid (Ctrl) or 
“ED” Cas9-sgRNAs were quantified using qPCR. (c) DNA FISH for proximity association of 
LEENE and eNOS genomic loci. ECs transfected with control (Ctrl) or “ED” Cas9-sgRNAs 
were treated with DMSO or ATV (1 μM) for 24 h. Scale bar = 10 μm. (d) Percentage of cells 
with LEENE and eNOS proximity association (distance <1 μm). n = 678 in “DMSO-Ctrl” group; 
n = 425 in “DMSO-ED” group; n = 632 in “ATV-Ctrl” group; n = 581 in “ATV-ED” group. (e) 
qPCR quantification of LEENE and eNOS RNA levels in ECs transfected with control Cas9 
(Ctrl) or “CD” Cas9-sgRNAs. All data are presented as mean ± SEM. n = 5 in each group 
unless specified. *p < 0.05 compared with “Ctrl” or between indicated groups based on 
Student’s t-test. 
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Figure 3.15: Quality control of CRISPR-Cas9 gene editing. Quality control of CRISPR-
Cas9 gene editing system targeting LEENE promoter/enhancer (ED) (a and b) and coding 
region (CD) (c). (a) Surveyor assay for ED sgRNA-guided cas9 cutting efficacy in HEK293 
cells. Select sgRNAs targeting respectively 5’ or 3’ ends were used to test the cutting 
efficiency as compared to control vector. (b) PCR validation of ED region of Cas9 targeting 
position as illustrated in Figure 3.14A. The spliced and ligated 10 kb region is amplified in 
CRISPR-targeted but not control ECs. (c) Surveyor assay for CD sgRNA-guided cas9 cutting 
efficacy in HEK293 cells. Select sgRNAs targeting respectively 5’ or 3’ ends were used to test 
the cutting efficiency as compared to control vector. 
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Figure 3.16: LEENE RNA regulates eNOS expression and EC function. (a–e) HUVECs 
were transfected with LNA (50 nM) targeting Exon 4 of LEENE. Basal RNA levels of LEENE 
and eNOS were detected by qPCR in (a). Protein levels of eNOS in HUVECs treated with ATV 
or PS were revealed by immunoblotting. (c, d) ECs were transfected with scramble or LEENE 
LNA before subjected to PS for 12 h. Fluorescence-labeled THP-1 cells were added to the EC 
monolayer, and the monocytes adhering to ECs were visualized by fluorescence microscopy 
(scale bar = 100 μm). The representative images are shown in (c) and the quantification based 
on five randomly selected fields per group per experiment are shown in (d). (e–g) HUVECs 
were infected with Ad-GFP or Ad-LEENE for 48 h. RNA levels of LEENE and eNOS were 
detected by qPCR (e), protein level of eNOS in HUVECs was revealed by immunoblotting (f), 
and NO production was measured by a fluorometric assay (g). Densitometry analysis of 
immunoblotting shown in (b) and (f) was performed (Figure 3.19). Data are presented as 
mean ± SEM. n = 3–5 in each group. Student’s t test was used. * indicates p < 0.05 compared 
to scrambled control or Ad-GFP in respective experiments. 
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Figure 3.17: Effect of LEENE knock-down on eNOS mRNA level in HAoECs. Knock down 
of LEENE with LNA decreased mRNA expression of eNOS in HAoECs. Error bars represent 
mean±SEM, n=5/group. Student’s t-test is applied, *p<0.05. 
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Figure 3.18: Effect of LEENE knock-down on pro-inflammatory gene expression. 
Knockdown of LEENE with LNAs induced ICAM1 and VCAM1 mRNA levels in HUVECs. Error 
bars represent mean±SEM, n=5/group. ANOVA followed by Bonferroni post-test is applied, 
*p<0.05. 
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Figure 3.19: Densitometry quantification of Western Blot experiments. (a) Figure 3.16B, 
under statin treatment; (b) Figure 3.16B, under PS condition; (c): Figure 3.16F. Error bars 
represent mean±SEM, n=5/group. Student’s t-test is applied, *p<0.05. 
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Figure 3.20: Overexpression of LEENE using adenovirus. (a) GFP images from HUVECs 
infected with Ad-GFP or Ad-LEENE adenovirus. (b) LEENE and eNOS RNA/mRNA in HAoEC 
infected with Ad-GFP or Ad-LEENE. Error bars represent mean±SEM, n=5/group. Student’s t-
test is applied, *p<0.05. 
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Figure 3.21: LEENE RNA promotes RNA Pol II binding and eNOS transcription. (a–c), (e) 
HUVECs were treated with ATV for 24 h. The binding of RNA Pol II, KLF4, and MED1 to 
LEENE RNA was determined by RIP followed by qPCR (a–c). (d) Predicted secondary 
structure of LEENE RNA based on minimum free energy (MFE) and fragments complementary 
to ChIRP probes are labeled with numbers 1–10. Color scale shows the probabilities for every 
nucleotide to hold the structural position. Following ChIRP, interactions between LEENE RNA 
and respective DNA regions of LEENE and eNOS were detected by qPCR (in e). (f, g) Static 
ECs were transfected with scramble or LEENE LNA. The binding of RNA Pol II to eNOS 
promoter was determined by ChIP-qPCR with three primer sets flanking three regions 
upstream of eNOS TSS (in f). (g) Nascent RNA was captured in static ECs transfected with 
scramble or LEENE LNA. eNOS mRNA level was detected by qPCR. Data are presented as 
mean ± SEM, n = 5 in each group. *p < 0.05 compared with respective control in each 
experiment. In (a–c), * denotes p < 0.05 compared with DMSO; in (e), * indicates p < 0.05 
between Ctrl and ATV using even-numbered probes; † denotes p < 0.05 between Ctrl and ATV 
using odd-numbered probes; in (f) and (g), * means p < 0.05 between scramble vs. LNA 
groups. Student’s t-test was applied.  
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Figure 3.22: IgG isotype control for the RIP assay. Error bars represent mean±SEM, 
n=5/group. Student’s t-test is applied. 
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Figure 3.23: Quality and negative controls of LEENE ChIRP assay. (a) RNA retrieval rate 
using LEENE probe under DMSO or atorvastatin (ATV) treatment, quantified by qPCR. (b) 
RNA retrieval rate using LEENE or LacZ probe to pull-down LEENE RNA or β-actin under 
basal condition (DMSO). (c) LEENE ChIRP assay detecting LEENE RNA and LEENE 
enhancer/eNOS promoter region interactions using HUVECs or HEK293 cells. Error bars 
represent mean±SEM, n=5/group. (d) LEENE ChIRP qPCR detection of 150 kb up- an 
downstream regions respectively encoding PELI2 and KTN1. Error bars represent 
mean±SEM, n=5/group. ANOVA followed by Bonferroni post-test is applied. 
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Figure 3.24: Effect of LEENE depletion on KLF4/Med1 binding to eNOS promoter. KLF4 
and Med1 were immunoprecipitated from ECs transfected with scramble LNA or LEENE LNA 
and their bindings to eNOS promoter region were detected by qPCR. Error bars represent 
mean±SEM, n=5/group. Student’s t-test is applied.  
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Figure 3.25: LEENE homolog in mouse. (a) Comparison of human LEENE and mouse 
BY707159.1 loci. (b) Putative KLF2/4 TFBS in DNA region encoding BY707159.1, indicated by 
blue (for KLF2) and red (for KLF4). (c) Sequence alignment between human LEENE and 
BY707159.1. (d) Measurement of BY707159.1 RNA levels in thoracic aorta (TA) and aortic 
arch (AA) using qPCR. (e) qPCR of BY707159.1 and eNOS RNA level in isolated mouse lung 
ECs transfected with scramble or LEENE LNA. In each experiment, lungs from four animals 
were pooled for isolation and transfection. Data are average from four independent 
experiments. Error bars present mean ± SEM. * indicates p < 0.05 between AA and TA in (d) 
and between scramble and LNA in (e) based on Student’s t-test.  
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Figure 3.26: LEENE enhancer is prerequisite to LEENE RNA-eNOS locus association 
and LEENE RNA is not sufficient to enhance eNOS level. (a) HUVECs were transfected 
with control (Ctrl) cas9 plasmid or Cas9-sgRNA targeting LEENE enhancer region (CRISPR-
ED) 24 hr before infection with Ad-GFP or Ad-LEENE for another 48 hr. eNOS mRNA level 
was quantified by qPCR. (b) ChIRP detection of eNOS genomic locus binding with LEENE 
RNA in ECs transfected with Cas9 and sgRNA targeting the enhancer of LEENE and treated 
with DMSO or ATV. Error bars represent mean±SEM, n=5/group. ANOVA followed by 
Bonferroni post-test is applied, *,#p<0.05. 
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Figure 3.27: Schematic illustration of LEENE–eNOS regulatory mechanism. The LEENE-
associated enhancer (located in chr14) forms proximity association with eNOS locus (in chr7) 
under both static/basal/control (ctrl) (a) and stimulated conditions (PS or statins) (b), but is at a 
higher probability in the latter condition. In both conditions, KLF2 and KLF4 transcriptionally 
regulate LEENE and eNOS through binding to TFBS in the promoters of both genes. The 
LEENE RNA transcripts serve as guides to facilitate RNA Pol II binding to the promoter of 
eNOS. This enhancer lncRNA-mediated transcriptional regulation positively modulates the 
nascent eNOS mRNA synthesis to promote endothelial function. 
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Figure 3.28: Effect of LEENE knock-down or overexpression on Tm mRNA level. 
Inhibition of LEENE by LNA decreased (a), while LEENE overexpression increased 
thrombomodulin mRNA level (b). Error bars represent mean±SEM, n=5/group. Student’s t-test 
is applied, *p<0.05.  
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Figure 3.29: Hi-C analysis of LEENE-Tm interaction map in HUVECs. LEENE-Tm 
interaction map generated from Hi-C data from HUVECs. Red pixels represent interactions 
between two regions respectively in chr 20 (X axis) and chr 14 (Y axis). The highlighted 
regions correspond to Tm promoter and LEENE enhancer regions. Note that no red pixel was 
shown in the overlapped highlighted region. 
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Figure 3.30: Detailed gene information of 4C-seq circoplot. Each line in circoplot depicts a 
chromosomal interaction between lncRNAs and eNOS bait as revealed by 4C-seq. Blue lines: 
PS; red lines: OS.  
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Table 3.1: sgRNA sequences. 
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Table 3.2: LEENE LNA-GapmeRs sequences. 
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Table 3.3: LEENE ChIRP probe sequences. 
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Table 3.4: Human primer sequences. 
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Table 3.5: Mouse primer sequences. 
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Table 3.6: List of PS-Distinct and OS-Distinct genes. PS-distinct genes are statistically 
significantly (a) upregulated in PS vs ST, (b) downregulated in OS vs ST, (c) downregulated in 
OS vs PS, and (d) upregulated in 72-hr PS vs ST data from Maleszewska et al, 2016. OS-
distinct genes are statistically significantly (a) downregulated in PS vs ST, (b) upregulated in 
OS vs ST, (c) upregulated in OS vs PS, and (d) downregulated in 72-hr PS vs ST data from 
Maleszewska et al, 2016. 

PS-Distinct Genes 

ABLIM3, ACVRL1, ADAM15, ADAMTS4, ADARB1, ALS2CL, AMMECR1L, APOLD1, 
ARHGEF15, ARRDC2, ASAP2, ATG9B, C1orf21, C1QTNF6, CALML4, CASKIN2, 
CCDC69, CCM2L, CLCF1, CRTAC1, CXCR7, DENND4B, DGKA, DHH, DLL1, 
DNASE1L1, DOCK6, DUSP4, EHBP1L1, ENDOD1, ESAM, FAM65A, FOXP1, GCH1, 
GCKR, GPER, GRK5, HEG1, HR, HSPA12B, HSPA1A, HYAL1, HYAL2, IL3RA, 
INPP5K, ITGB5, ITPR3, ITSN2, JOSD1, KCNJ12, KIAA1161, KLF13, KLF2, KLF4, 
LINC00520, LPCAT4, MAP4K2, MN1, MOB2, MYO1C, NAGA, NDRG4, NDST2, 
NOS3, NPEPPS, PLCD3, PLXND1, PMP22, RAB11A, RECK, RNF213, RUSC1, 
S100A10, SEMA4B, SIGIRR, SLCO2A1, SPTBN1, SPTBN5, ST3GAL1, ST8SIA6, 
STARD8, STOM, STXBP1, SULF1, SYNE3, TBC1D1, TBC1D2, TECPR1, TENC1, 
THBD, TNFAIP1, TOB2, TRAK1, TSC22D3, VANGL1, VEGFA, ZNF467 

OS-Distinct Genes 

C9orf89, CCZ1, CXCR4, EIF2AK1, ENC1, ETV6, GLIPR1, GMFG, LYPLA2, MAGEF1, 
MEX3A, PCSK1, STX6, TNFRSF21 
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Introduction 

Many tools already exist to statistically analyze “omics” data. All sequencing data 

comes in the form of discrete count data, which conforms to Poisson and negative binomial 

statistical models. Several statistical frameworks exist for comparative analysis of count data, 

including edgeR, DESeq2, and FourCSeq [Schurch et al, 2016; Klein et al, 2015]. Analysis of 

ChIP-seq data typically involves a “peak calling” step, wherein genomic areas with enriched 

number of reads are identified as protein-bound regions. Several tools exist for comparative 

analysis of ChIP-seq data [Steinhauser et al, 2016]. However, the consistency of results 

between these packages is reported to be low. Furthermore, although peak-calling can identify 

locations on the genome that constitute “signal” in ChIP-seq data, peaks in similar regions of 

the genome across multiple data sets may not align very well with each other, making it 

difficult to conduct a proper 1:1 comparison. 

Furthermore, it can be difficult for traditional “wet lab” biologists to analyze their own 

NGS data.  Different NGS analysis packages (of which there are numerous) can produce 

different results for the same data set, while also demanding high technical programming 

skills. It remains an open challenge to create useful analysis pipelines that do not impose 

demands of computational skill on their users. Various web suites and web-based workflows 

have emerged in order to meet this demand [Li et al, 2016; Sun et al, 2017; Afgan et al, 2016; 

Dhariwal et al, 2017]. 

We present D-ChIP, an analysis platform for count data that is designed with data 

management, statistical analysis, and data integration in mind. Users can securely upload data 

sets and select which data files correspond to “experimental” and “control” data sets for on-site 

comparative analysis using DESeq2’s statistical framework. Count data are binned into 

genome-wide non-overlapping windows, allowing for efficient 1:1 comparative analysis of 

genomic regions across omics data sets. Users can visualize the features of their data sets 
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through an on-site genome browser. Users can also download summary files that describe the 

results of the comparative analysis in binned windows proximal to annotated genes. Overall, 

these tools provide users with an efficient and streamlined means of comparative analysis of 

multiple omics data sets. 

Implementation - Methods 

The D-ChIP analysis process takes variableStep WIG files as input and approximates 

the area under the curve within fixed intervals of chromosomal coordinate space. Figure 4.1 

illustrates the concept – Figure 4.1A shows the projection of a graphical file of count data on 

the UCSC genome browser. This projection generates a curve whose area positively scales 

with the amount of read coverage. Figure 4.1B illustrates the means of area estimation – WIG 

files define the number of counts detected per genomic location at a user-defined “span” 

parameter of genomic locations (default WIG span: 10). The span can be thought of as the 

width of an individual bar in a bar graph, while the number of counts can be thought of as the 

height. The area under the curve of a given window in the graph in figure 4.1A can therefore 

be estimated by summing the areas of these bars within the interval, a basic calculus 

technique. The result is a series of areas per genomic window, where the size of the window 

can be user-defined. Figure 4.1C is a post-analysis visualization of 1000-nucleotide window 

areas along the same region of the genome represented in Figure 4.1A. The shape of the plot 

is retained between the UCSC genome browser projection and the analyzed data 

visualization, with the added information of statistical significance. Because these genomic 

windows are standardized in size, there is no need for a peak-calling or peak-overlapping 

analysis step.  

The D-ChIP algorithm takes advantage of the sequential properties of a WIG file, which 

report chromosomes in ascending order and chromosomal positions within each chromosome 

in ascending order. An active window is defined independently of the data, consisting of a 



124 
 

chromosome, a beginning position, and an ending position that is determined by the window 

size. The data from each wig file is parsed line-by-line in Python, with each line of data 

occupying its own element in a list. This allows for the simultaneous mapping of all wig files to 

the active window, while retaining individual information from each data set. The area within 

each window is the sum of the value of each WIG file line (the “height” of the bar graph) 

multiplied by the WIG span (the “width” of the bar graph). The final output is a tab-delimited 

spreadsheet where each row is a genomic window and each column is the value of the area 

within the genomic window in each provided data set. In order to reduce the file size of the 

final output, genomic windows that uniformly have area values of 0 across all conditions are 

not saved. 

Once these area estimates are complete, the raw area counts are normalized using the 

between-sample normalization technique described in DESeq2. Statistical analysis between 

selected experimental and control data sets is done using DESeq2, where the features of the 

count data are the genomic windows. All outputs other than the raw area counts are comma-

delimited. 

Implementation - Structure and Interface 

D-ChIP was implemented using Django 1.8 and uses a SQLite database. All scripts are 

written in Python 2.7, with the exception of the DESeq2 script, which is written in R and 

executed through Python. Figure 4.2 summarizes the workflow of D-ChIP and the prerequisite 

navigation. Figure 4.3 provides an outline of the system architecture, while Figure 4.4 offers 

screenshots of the web interface itself. There are three primary analysis steps when using D-

ChIP: Initial data submission, differential expression analysis, and basic data integration. 

Initial Data Submission. Users can submit data for analysis by navigating to the 

“Analyze Data” page linked on the top header. The provided form (as seen in Figure 4.4) 

prompts the user to define which genome annotation applies to their data (GRCh37, GRCh38, 
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GRCm38), their desired window size (default: 1000), a name for their submission, and which 

files they would like to upload for analysis. Only bam and wig files are valid for submission. 

Users are expected to upload multiple files per submission. At minimum, a user must upload 

enough data per submission in order to perform a differential expression analysis (a control set 

and an experimental set). For users with large amounts of data (e.g. time-series data), it is to 

the user’s discretion whether they would prefer to upload portions of their data sets across 

multiple submissions, or whether they would prefer all of the data to be uploaded in one 

submission. 

Once the files are successfully uploaded, D-ChIP converts any submitted bam files into 

wig files using samtools [Li et al, 2009]. All wig files are then run through the D-ChIP algorithm, 

which calculates the “area under the curve” for each window (of user-specified size) across the 

genome. All data sets in a given submission are normalized together using DESeq2’s built-in 

normalization method. Users are notified by email when the window-binning calculations are 

complete. They are also notified by email if these calculations fail to complete. 

Differential Expression Analysis. In order to perform comparative analysis on their 

successfully uploaded and windowed data sets, users can navigate to the individual 

submission page listed on the “Analyze Data” page. All uploaded data sets will be listed within 

the submission page, with the option to toggle the classification of each data set as 

“Experiment”, “Control”, or “Neither”. This is designed for the case where a user may have 

many uploaded data sets in a given submission, but is interested in comparing two subgroups 

at a time. The selected experimental and control conditions are compared using DESeq2’s 

standard analysis. When conducting DESeq2 analysis, only the selected experimental and 

control data sets are included in the design matrix and statistical analysis. 

In order to reduce computational time and eliminate low-confidence results, some 

genomic windows are filtered out prior to DESeq2 analysis. Windows are eliminated if their 
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average normalized count across all conditions in the submission are lower than the window 

size divided by the wig file step size. This is designed such that the cutoff parameter becomes 

more stringent when the resolution of the data is low (i.e. broader step sizes). Larger genomic 

windows are expected, on average, to provide larger area values than smaller genomic 

windows, and the cutoff adjusts its stringency accordingly. Eliminated windows remain within 

the analyzed file, but are temporarily removed during the DESeq2 analysis and therefore are 

not assigned p-values. Users are notified by email when the differential expression analysis is 

complete. They are also notified by email if these calculations fail to complete. 

There are two output files from this analysis. The first output is a larger file that lists a 

genomic window per row, along with each window’s normalized area per compared condition 

and the statistical output given by DESeq2 analysis. The second output is a condensed file 

aimed towards emphasizing genomic regions that contain genes – which we call the “Gene 

Summary” file. Each row corresponds to a different Ensembl Gene ID (annotations 

downloaded from from BioMart), along with the gene name and chromosome. The 

spreadsheet also lists “Most significant log2FC” and “Adj. P Value”. D-ChIP defines a gene’s 

region as the gene body, the 5000-base upstream region of a gene, and 5000-base 

downstream region of a gene. “Adj. P Value” indicates the most significant p-value among the 

genomic windows in a given gene’s region, while “Most significant log2FC” indicates the log2 

fold change of the genomic window with the most significant p-value. Lastly, the second output 

contains a “% significant windows in gene region” column, which indicates the percentage of 

windows within a gene region that have statistically significant p-values (FDR-adjusted p < 

0.05). 

Furthermore, users have the option to visualize completed analyses on the D-ChIP 

website. The submission page post-analysis will indicate summary information on the number 

of windows found to be differentially modified, along with statistics by chromosome. A plotting 
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tool will allow users to specify an Ensembl Gene ID, a gene name, or chromosomal 

coordinates (e.g. chr1:100000-102000). D-ChIP will display the normalized area values for 

each genomic window for each compared condition. If a gene name or Ensembl Gene ID is 

selected, the plot will display the gene body, 5000 nucleotides upstream, and 5000 nucleotides 

downstream. The plot will also indicate which genomic windows are differentially modified, 

showing which windows have raw p-values < 0.05 and which windows have FDR-adjusted p-

values < 0.05. 

Users are also permitted to upload raw count data in the form of a comma-separated 

value (.csv) file if they wish to conduct standard differential expression analysis on RNA-seq 

data using DESeq2. This allows for the use of RNA-seq data sets in downstream integration 

analysis using D-ChIP, as well as offering a simple means to conduct differential expression 

analysis on data. Visualization for RNA-seq differential expression is not offered, and the only 

output file is the standard DESeq2 output file. 

Basic Data Integration. Users can access D-ChIP’s data integration features by 

navigating to the “Integrate Data” page linked on the top header. There are two available 

features – integration by genomic windows and integration by genes.  

The “integration by windows” feature allows users to compare different DESeq2 results 

for commonly significant genomic windows. Only comparisons that have successfully 

completed differential expression analysis will appear listed on the “Integrate Data” page. The 

output is a spreadsheet that combines summary statistical data for each comparison, as well 

as two columns that indicate the frequency across data sets that a genomic window is 

statistically significant – one column for counting raw p-values, the other for FDR-adjusted p-

values. Comparisons can only be selected together if they have identical window sizes, and 

RNA-seq data analyses cannot be selected as they do not incorporate windows in their 

analysis. 
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The “integration by genes” feature allows users to compare different results for 

commonly significant genes. This uses the “Gene Summary” files for all data sets regardless 

of window size, as well as the standard DESeq2 results from RNA-seq analysis. The output is 

similar to the “integration by windows” output, only using genes instead of windows for the 

comparison. Because of the smaller size of the output file and because of the relative ease of 

identifying biologically relevant genomic features using genes as compared to windows, some 

summarizing information on the “integration by genes” analysis is displayed on the data 

integration page upon analysis completion, including a total number of genes differentially 

expressed across all selected conditions and a preview of the list of genes. 

User-Data Management and Access. D-ChIP is designed to facilitate user-friendly 

organization of uploaded data while maintaining high security of data. Users must create 

personal accounts and authenticate their account with a valid email address. Data sets 

uploaded by a user can only be accessed by that user. Submissions are listed on the “Analyze 

Data” page as soon as the user’s files complete uploading. All uploaded files are stored on the 

database in a secure folder specified for the user. All analyzed files on the submission page, 

such as differential expression analysis results, are also stored on the database for quick user 

access. If users have already analyzed multiple combinations of data sets within one 

submission, then they will be able to rapidly toggle between different combinations without 

redoing the analysis. All results can be downloaded as comma-delimited files. All submissions 

have the option to be deleted by the user – deleting a submission deletes all associated files 

with the submission, including both uploaded and analyzed files. Data files generated on the 

“Integrate Data” page are always generated upon the user’s request, and are not stored in the 

database long-term. 
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Example Analysis 

 As part of the testing process for D-ChIP, the H3K27ac ChIP-seq data set generated 

by our collaborating labs was analyzed using the D-ChIP pipeline. Gene summary results were 

sorted by minimum adjusted p-value within the gene region, followed by the percentage of 

significant windows within the gene region. 221 genes were detected to have 25% or more 

1000-nucleotide windows within their genomic region to be differentially acetylated between 

OS and PS. Among these genes include KLF2 (28.57% differentially acetylated, most 

significant p-value 1.75 x 10-9), KLF4 (37.5% differentially acetylated, most significant p-value 

3.13 x 10-9), and LINC00520 (48.15% differentially acetylated, most significant p-value 1.89 x 

10-6). All three of these genes have been discussed extensively in the previous chapters. The 

recapitulation of these established shear-relevant genes in our H3K27ac ChIP-seq data 

analysis demonstrates the utility of D-ChIP’s methodology, as well as the utility of % 

differentially modified regions per gene region as a ranking metric. 

 Furthermore, 6 other genes that were detected as PS-distinct (as described in chapter 

3) were detected among these top ranking genes. The detected genes were ADAMTS4, 

CASKIN2, DHH, DLL1, HSPA12B, and INPP5K. DHH (37.5% differentially acetylated, most 

significant p-value 4.28 x 10-7) has been extensively described in chapter 3 as a PS-distinct 

gene with a proposed mechanism influencing endothelial morphology. ADAMTS4 (32% 

differentially acetylated, most significant p-value 3.95 x 10-4) and CASKIN2 (34.62% 

differentially acetylated, most significant p-value 2.24x 10-10) were described in chapter 3 as 

PS-distinct genes that were found to be previously studied in endothelial cells, but not 

specifically under conditions of shear. A previous study by Hsu et al connected ADAMTS4 

expression to anti-angiogenesis [Hsu et al, 2012]. A 2016 dissertation written by Sarah Beth 

Mueller of Duke University discusses Caskin2 protein in extensive detail as a suppressor of 

EC proliferation and migration and an eNOS interactor [Mueller, 2016]. By the filtration 
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analysis of RNA-seq data described in chapter 3, along with the unbiased analysis of 

differential acetylation using D-ChIP, ADAMTS4 and CASKIN2 have been identified as 

excellent candidates for a future shear stress experiment with a clear connection to endothelial 

phenotype (angiogenesis, proliferation, and eNOS regulation). 

 Compared to the “percentage of significant windows per gene region” (to be hereafter 

refered to as “percentage”) metric, the “minimum adjusted p-value” metric offers significantly 

less specificity. 6267 genes were detected to have a minimum adjusted p-value < 0.05. This 

can be interpreted to mean that 6267 genes have at least one 1000-nucleotide genomic 

window within its genomic region that is differentially acetylated. It is unclear if either metric 

has a clear advantage in pinpointing biologically meaningful results. Although a gene scoring 

highly with the percentage metric would intuitively have a higher likelihood of being a true 

positive result due to the higher frequency of statistically significant windows, the percentage 

metric is also biased against longer genes, whose genomic regions feature a larger number of 

windows. Furthermore, there are some mechanosensitive genes that are known to be 

epigenetically regulated are not detected with the percentage metric but are detected by the p-

value metric. For example, HDAC3, induced by OS, has been reported to repress eNOS 

expression through deacetylation [Dunn et al, 2015]. This is accurately reflected in the 

acetylation data analysis, with NOS3’s minimum adjusted p-value being 0.014 with an OS vs 

PS log fold change of -1.15, indicating that NOS3 is differentially acetylated and down-

acetylated in OS vs PS. However, NOS3 only has a percentage metric of 8.82%, being the 

1381st-highest percentage in the list. This implies that NOS3, a mechanosensitive gene of 

established physiological importance, would have likely been overlooked, had the percentage 

metric been used exclusively. 

 One effective strategy is to find the intersection of statistically significant features 

across data sets, thereby incorporating data integration while also producing a result whose 
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size is a compromise between the two metrics of feature selection available via D-ChIP. There 

are 3216 differentially expressed genes in the OS vs PS comparison in RNA-seq (hour 24). 

There are approximately 1148 genes that compose the intersection between these DE genes 

and the 6267 differentially acetylated genes from the D-ChIP output. This comparison can 

easily be done thanks to D-ChIP’s gene summary output, which allows for a 1:1 comparison 

for other analyses based around genes, such as RNA-seq data. Pathway enrichment analysis 

of this gene set via CPDB reveals enrichment of VEGF signaling pathways, extracellular 

matrix organization, and focal adhesion.  

Discussion 

 The D-ChIP web suite offers an approach to the analysis of count data that is 

standardized to the genome. The web suite’s user-friendly interface allows for accessibility 

across many academic disciplines, particularly those that do not involve heavy computational 

or programming training. D-ChIP differentiates itself from other online analysis tools by 

introducing its window-based analysis and being designed with simplicity in mind. 

Implementing the genomic window-based analysis on multiple types of count data for the 

purpose of downstream data integration is a simple and novel approach, and D-ChIP 

excellently handles this analysis. This suite therefore offers a substantially useful resource to 

biologists of all disciplines. 
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Figure 4.1: Visual representation of the D-ChIP analysis method. (A) Screenshot of 
standard visualization of histone ChIP-seq data over the KLF2 gene in UCSC genome 
browser, with different ChIP-seq conditions outlined in shades of blue and red. (B) Visual 
mockup of the D-ChIP windowing process, which will associate height values for steps along 
the histone same histone ChIP-seq data set and sum the area values for windows of a user-
specified length. (C) Screenshot of the D-ChIP suite’s visualization of the same histone ChIP-
seq data over the KLF2 gene, showcasing lengths of windows and associated statistical 
significance within windows across different conditions. One asterisk (*) indicates a raw p-
value < 0.05, while two asterisks (**) indicates an FDR-corrected p-value < 0.05. 
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Figure 4.2: Summary of analysis pipeline and location of the website where each 
analysis step occurs. Standard D-ChIP pipeline is delineated with black arrows. D-ChIP 
pipeline when using RNA-seq data (which uses DESeq2 analysis using the standard gene 
features) bypasses the window-generating step, which is indicated with the red arrows. 
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Figure 4.3: D-ChIP systems architecture. 
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Figure 4.4: Screenshots of D-ChIP’s analysis pages. These screenshots highlight the 
organization of submitted data sets, the ability to toggle between different experimental and 
control conditions, the visualization capabilities, and the ability to download any and all 
analyzed files. 
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Chapter 5: Challenges, Conclusions, and Future Directions 
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 I have presented a systems biology approach to modeling the regulation of endothelial 

cells under shear stress using multiple types of “omics” data. We have demonstrated how the 

integration of “omics” data sets and literature curation can lead to the development of novel 

and complex hypotheses relevant to endothelial response to shear. As atherosclerosis 

research continues to advance, it is highly likely that it will significantly utilize multi-“omics” 

data in order to better understand the pathogenesis of the disease. As we were able to show 

with LINC00520, it is similarly likely that future studies will be able to identify novel 

mechanosensitive genes and biomolecules, offering novel potential targets for drugs that can 

improve vascular health. However, this approach is still relatively nascent compared to the 

more traditional approaches to biology, and the field will have to address several challenges 

over the course of its development. 

 

Challenges And Future Directions – Biological 

 All experimental designs have their limitations, and the design used in this thesis is no 

exception. Although we were able to provide substantial insights to the onset of 

atherosclerosis through the work presented in this thesis, future studies could incorporate 

modified experimental designs that could reveal further novel insights. 

It is well known that biological phenomena manifest at different time scales between in 

vitro and in vivo studies. The formation of atherosclerosis takes decades to manifest, typically 

beginning in patients at a young age and causing vascular complications in middle age. Our in 

vitro studies examine the effects of shear stress over the course of 24 hours.  It remains 

unclear if there are more complex molecular mechanisms occurring in endothelial cells when 

exposed to shear at a time period that is beyond the scope of our data sets. A future study 

may incorporate longer time scales in order to examine the continued development of 

endothelial phenotypes under OS and PS. 
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 There is substantial evidence that OS and PS can be used to represent disturbed flow 

and laminar flow in vitro. However, in human physiology, disturbed flow can be more complex 

than what is simulated in the flow chamber. Disturbed flow does not simply include the 

reciprocating flow that causes oscillatory shear stress, but also encompasses the phenomena 

of flow separation, flow reattachment, recirculation eddies, and other complex flow patterns. In 

the future, endothelial phenotypes under more complex flow conditions need to be explored in 

a controlled manner. With the advent of 3D printing technology, it will likely be possible in the 

future to devise custom flow chambers that more closely emulate physiological geometries 

and flow dynamics. 

The experimental design in this thesis explored the response to shear stress by 

endothelial cells and its pertinence to atherosclerosis. Understanding the endothelium’s 

importance in atherosclerosis as a cellular monolayer exposed to hemodynamic forces is 

essential to understanding the disease. However, atherosclerosis is a complex disease that 

also involves leukocytes, smooth muscle cells, macrophages, platelets, and other cellular 

factors. Their mechanisms of pathophysiological responses can depend on endothelial 

response in some cases – for example, endothelial cells can secrete factors such as nitric 

oxide and prostacyclin, which are then received by smooth muscle cells and promote a 

quiescent phenotype within smooth muscle cells [Zhou et al, 2014]. It is possible that some of 

the devised mechanistic hypotheses about endothelial response to shear is simply a page in 

an incomplete story – the hypothesized mechanism, upon activation, may have consequences 

that span beyond endothelial cells alone. Future studies may glean novel insights into the 

pathogenesis of atherosclerosis through using an experimental design that used multiple 

relevant cell types. Such a future “omics” study could simultaneously interrogate the 

transcriptomic profiles of multiple cell types during shear exposure.  
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 There are several types of endothelial cells. Our study uses human umbilical vascular 

endothelial cells, which are derived from umbilical cords and are a well-established model 

system for studying the general endothelium [Jiménez et al, 2013]. However, endothelial cells 

from different anatomical locations are known to vary considerably in structure and in function. 

Venous endothelial cells, for example, show different patterns in gene expression compared to 

arterial endothelial cells. Human aortic endothelial cells, human dermal microvascular 

endothelial cells, and lymphatic endothelial cells are examples of the diversity of endothelial 

cells, and it cannot be expected that each of these endothelial cells respond identically to the 

same stimuli. Our study, while using a cell type with substantial precedence of use in the 

laboratory to study the endothelium, cannot perfectly describe all endothelial behavior under 

shear stress. A future study could examine the effects of shear stress of an endothelial cell 

type other than HUVEC. 

Challenges – Technical and Systemic 

 Although “omics” data are very potent sources of biological information, proper analysis 

of this data can require finesse. Public data sets from disparate experiments may have 

unintended variation due to differences in experimental protocol and handling of samples (so-

called “batch effects”), making it difficult to directly compare data sets from different sources 

[Conesa et al, 2016]. Before any meaningful information can be extracted from an “omics” data 

set, the data set also must be checked for quality control, including quality of sequencing 

reads and reproducibility among replicates.  

 Two crucial factors in any “omics” data set are the sequencing depth of the data set 

and the number of replicates performed for each condition. Sequencing depth in RNA-seq is 

especially important for detecting genes with low expression (which includes lncRNAs), and 

replicates are crucial for increasing the confidence of any observation of differential 

expression, particularly when the difference in gene expression is not dramatic. A truly 
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comprehensive RNA-seq analysis – one that generates data capable of providing useful 

information on low-expressing genes, ensuring a thorough interrogation of the transcriptome – 

requires approximately 80 million reads as its sequencing depth [Sims et al, 2014]. For ChIP-

seq and Hi-C datasets, the estimation is even higher – saturation for ChIP-seq data sets are 

estimated to begin at approximately 110 million reads, and Hi-C data easily requires hundreds 

of millions of reads [Sims et al, 2014]. Furthermore, a 2016 study by Schurch et al on 48-

replicate RNA-seq data found that at least six to twelve biological replicates are necessary for 

a comprehensive identification of significantly differentially expressed genes [Schurch et al, 

2016]. With only three biological replicates, Schurch et al found that a majority of their tested 

RNA-seq analysis tools found only 20-40% of known DE genes in the data set. 

In our own RNA-seq study, each condition per time point averaged approximately 30 

million reads and only had two replicates. There are practical reasons for the chosen 

experimental design and its deviation from the previously described “ideal” number of 

replicates and read counts. First and most significantly, the cost of producing “omics” data sets 

is still prohibitive. Our experimental design involved the generation of RNA-seq data for two 

conditions across ten time points, plus one “static” condition at one time point. With two 

replicates, this amounts to 42 individual RNA-seq samples. It would cost approximately $5000 

in order to run 40 RNA-seq samples with current technology and available infrastructure. A 

third replicate for all conditions and for all time points would have led to a 1.5-fold increase in 

this cost.  

Secondly, the questions being explicitly posed in the experiment arguably do not 

necessitate a greater sequencing depth or number of replicates. Indeed, a study that explicitly 

kept its scope focused on mechanisms, particularly in a time series experiment where 

neighboring time points can offer information on the quality of the signal in the data, will not 

need as much resolution as a study that explicitly aims to detect low-expressing genes. 
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Furthermore, even if the data set with more sequencing depth/replicates would offer greater 

potential to answer other biological questions in the long term, it may not be necessary to 

answer a particular question of interest in the short term. Although generating fewer replicates 

lowers the statistical power in data analysis, it also allows for the reservation of funds for 

potential validation experiments. Such experiments typically begin with established protocol 

such as quantitative polymerase chain reaction (qPCR) experiments, which can very cheaply 

validate the expression for a particular gene in RNA-seq data. In such a scenario, 2-replicate 

RNA-seq data may only be able to identify genes of interest with middling statistical power, but 

such genes can be further screened with literature review and then cheaply screened and 

validated with qPCR before moving on to validating more complex mechanisms pertaining to 

those genes. This 2-replicate scenario would still be cheaper and more potentially impactful 

than merely identifying genes of interest from triplicate (or more) RNA-seq data alone with very 

high statistical confidence. This poses a crucial cost-benefit question that weighs statistical 

power of “omics” data – and the potential novelty that its conclusions can offer – against the 

ability to efficiently answer present biological questions for which there is already some prior 

knowledge. 

These decisions are representative of systems biology’s growing pains, where “omics” 

data sets are getting cheaper to generate, but are not yet cheap enough to be trivially 

generated at ideal quality. There are many significant recent publications in high profile 

journals that utilized 2-replicate (and in some cases single replicate) “omics” data sets 

[Velasco et al, 2017; Pillai et al, 2017; Dierickx et al, 2017; Madak-Erdogan et al, 2016; Liu et 

al, 2017]. Costs are still prohibitive enough where researchers must carefully consider whether 

their differential expression studies should emphasize greater sequencing depth or greater 

replication [Liu et al, 2014]. All of this amounts to limiting the potential of “omics” data sets for 

the sake of answering specific short-term questions, with little to no explicit consideration for 
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how the data could be useful many years in the future to hitherto unimagined questions in 

biology. This may ultimately be a systemic issue, where the current incentives for scientists do 

not exclusively encourage maximizing the scientific value of their research [Higginson et al, 

2016].  

Although these incentive structures are unlikely to change, it is highly likely that 

sequencing costs will continue to decrease as sequencing technologies improve. These lower 

costs may encourage future researchers to generate higher quality data sets – not because 

they are necessary to answer their immediate scientific question, but because they can do so 

without significant consequences for their budgets. For a field so dependent on finding 

patterns in large sets of data, the accumulation of high-quality public “omics” data sets in 

accessible, scalable, well-maintained databases is essential to the growth of systems biology 

as a discipline. 

Conclusions 

 High-throughput technologies can provide novel insights on the onset of 

atherosclerosis. Due to the diversity of omics data sets, these insights span the transcriptional, 

epigenetic, and proteomic modulations in cellular systems relevant to shear stress response 

and to atherosclerosis. Bioinformaticians, experimental biologists, and medical doctors must 

work in unison in order to effectively characterize new and effective interventions for 

atherosclerosis. 

In this thesis, I utilized multiple types of data sets from high-throughput technologies in 

order to construct a systems level model of endothelial response to shear stress as it pertains 

to the onset of atherosclerosis, as well as to define novel mechanisms by which identified 

mechanosensitive genes may contribute to endothelial response to shear stress. The data set 

most central to my work was a ten time point RNA-seq data set, which was used to provide 

information on the development of physiological and pathophysiological phenomena over time, 
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as well as the interdependence of these phenomena. I have also devised a platform with 

which future studies utilizing multiple “omics” data sets will be facilitated, permitting a more 

rapid generation of systems analyses. Taken together, this systems approach has the 

potential to greatly contribute to our understanding of the onset of atherosclerosis and the 

underlying molecular and cellular mechanisms. 
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