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Abstract representation, which then maps onto a phonemic level,

Representational choices are crucial to the success of
connectionist modelling. Most previous models of
auditory word perception in continuous speech have
relied upon a raditional Chomsky-Halle style inventory
of features; many have also postulated a localist
phonemic level of representation mediating a featural
and a lexical level. A different immediate representation
of the speech input is proposed, motivated by current
developments in phonological theory, namely
Government Phonology. The proposed input
representation consists of nine elements with physical
correlates. A model of speech perception employing
this input representation is described. Successive
bundles of elements arrive across time at the input.
Each is mapped, by means of recurrent connections,
onto a window representing the current bundle and a
context consisting of three such bundles either side of
the current bundle. Simulations demonstrate the
viability of the proposed input representation. A
simulation of the compensation for coarticulation effect
(Elman and McClelland, 1989) demonstrates an
interpretation which does not involve top-down
interaction between lexical and lower levels. The model
described is envisaged as part of a wider model of
language processing incorporating semantic and
orthographic levels of representation, with no local
lexical entries. !

Introduction

Psychologists wishing to model spoken language
perception have typically assumed that the physical
speech signal may be translated into a featural level of

1 This research was carried out under E.S.R.C. grant
number RO0O 23 3649.
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which, in turn, supplies activation to a lexical level. In
the TRACE model (McClelland & Elman 1986) these
three levels of representation are instantiated in an
interactive-activation architecture, in which patterns of
activation percolate up and down between adjacent
levels. In models of speech production, similar
assumptions are made. In the Plaut and Shallice (in
press) model of pronunciation in deep dyslexics,
patterns of activity at the semantic level are mapped
onto position-specific phonemic representations. There
have been some departures, however, from explicit,
local phonemic representations. In the Seidenberg and
McClelland (1989) model of word naming,
orthographic pattens are mapped onto Wickelphones
consisting of triples of consecutive features. In the
model of word recognition proposed by Norris (1990),
bundles of distinctive features arrive across time at the
11 input nodes and activation is mapped onto an output
layer consisting of local representations of words.

In some of these models, the phonological
representations employed, although internally
consistent, are simplifications of what might be thought
adequate by phonologists. In others, while the input
representations are relatively sophisticated, they do not
reflect phonologists’ more recent disenchantment with
the phoneme and with bundles of features organized
strictly linearly. From a different perspective, many
researchers in automatic speech recognition (ASR) have
become disillusioned with the notion that ASR is best
attempied by recognizing SPE-style features (Chomsky
& Halle, 1968) in the physical signal and subsequently
parsing them into phonemes and words.

Although the models cited above have achieved
considerable success in capturing many of the
qualitative aspects of language processing, the
enterprise should be substantially improved by the use
of a speech input representation which, first, is
consonant with current phonological theory and,
second, has a consistent relationship with the physical
speech signal. Such an input representation will more
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adequately reflect the structure of the real-world
problem of speech recognition. Below we present such
an input representation - an alternative to the orthodox
SPE-style framewaork — and describe its instantiation in
a recurrent network. We then review its success as a

psychological model.

Phonological motivation

The input representation described in Table 1 is based
on recent work in Government Phonology (Kaye,
Lowenstamm & Vergnaud, 1985, 1990). The speech
signal is decomposed into nine elements, defined briefly
as follows.

A: oral cavity openness; alone, the vowel quality

of paim.

I: palatality; alone, the vowel quality of see.

U: labiality; alone, the vowel quality of boot.

?: occlusion; abruptness; alone, gloual stop.

h: aperiodic energy; alone, [(h).

N: nasality.

R: apicality/coronality/coronal formant locus.

@: velarity/centrality.

H: voicelessness.

The elements are represented principally in a binary
way. In four cases a value of 0.5 is used; this is a
representational compromise which reflects the notion
of “government” within the phonological theory. The
lefthand column gives Machine-Readable Phonetic
Alphabet (MRPA) equivalents for short vowels and
syllable-initial consonants; elements may be subtracted
from the definitions in Table 1 to represent segments in
other environments (e.g. /k/ would lack the element h
when unreleased as in act). In Table 1, the initial glides
in yet and wet have the same element representations as

The input representation

elements

segment

p (pat)

t (tap)

k (cat)

b (bat)

d (dot)

(2 (2o

m (mill)

n (nil)

ng (sing)

f (fit)

th (thin)

s (sin)

sh (shin)

zh (measure)

h (hat)

v (vat)

dh (that)

z (zen)

1 (lip)

r (rip)

¥ (yell)

w (well)

i (bin)

e (den)

a (ban)

o (don)

uh (bud)

u (wood)

@ (abour)
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Table 1. Definition of short vowels and syllable-initial consonants of standard Southern British
English in terms of elements. The special element A does not appear singly in isolation (see Table 2,

overpage).



segment expansion
ch (chair) t sh
ih (journey) | d zh
@@ (hid) |l@@
ou(bode) |@u
oi (boy) oi
00 (bored) 00
ii (bee) ii
uu (boot) uu
ei (bade) ei
ai (bide) Ai
au (loud) Au
u@ (poor) lu@
i@ (beer) i@
e@ (pair) le@
aa (bard) AA

Table 2. Expansions of the 2 affricates and the 13
diphthongs and long monopthongs of standard
Southern British English.

the vowels of pir and put, respectively; the differences
are attributed to location in syllable structure and are
not exp citly encoded in the model described below.
Affricates, diphthongs and long monopthongs are
decomposed into two consecutive segments, as shown
in Table 2.

The model

The goal is a comprehensive model of speech
processing which will allow the det- >d modelling of
psycholinguistic data, going beyc- the essentially
qualitative results achievable with models such as
TRACE. The earliest point at which to begin the
psychological modelling of speech processing is with
the transduction of the physical signal into some
common currency of activation. A noisy acoustic
signal is converted into a representation which has
psychological significance. Sensitivity to a window of
context is essential if this conversion is to be reliable.
Some parts of the signal will be captured more
securely than others, either because they are inherently
more distinctive or because of context. The input
representation detailed above is seen as the most
appropriate description of the input at this point.

The approach taken below is defined, first, by the
fact that, although the elements have a relationship
with the physical speech signal, there is no discrete set
of acoustic entities which might be employed in a
mapping from an element level of representation. Stll
less is there available a corpus of natural speech
transcribed in acoustic terms. The second constraint on
the modelling is the principle of eschewing
intermediate levels of linguistic representation,
phonemes in particular, In this approach, the aim is to
develop a single, psychologically realistic level of
representation of the speech stream and to map this
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directly 10 a level at which the semantics of individual
words is expressed. (This approach postpones
segmentation and binding issues.)

In accordance with these constraints, the model
described below captures the context-dependence of
the initial transduction of the speech signal by auto-
associating the patierns of elerients as they arrive at
successive time-slices. We envisage a subsequent
mapping onto semantic representations; only the initial
auto-association is described here, however. It is
predicted that certain processing, typically ascribed to
higher (lexical, morphological) levels of description,
will be more or less weakly foreshadowed at this low
level. (Norris (in press) demonstrates that, in principle,
connectionist models which learn are likely to encode
aspects of higher-level generalizations at lower levels
of representation, giving rise to behaviour which looks
like traditional “top-down” interaction.) The model we
describe, once trained, accepts transcribed stimulus
materials from experiments on spoken word
recognition and outputs quantitative data on the facility
with which each segment may be identified and
represented.

Previously some of the present authors have
suggested that some aspects of auditory word
perception can be captured in a mapping between a
featural level of representation and a phonemic level,
in a recurrent network (Shillcock, Levy and Chater,
1991; Levy, Shillcock and Chater, 1991). This was an
attempt to model speech processing in a
comprehensive, full-scale way which postponed
incorporating any local representations of lexical
entries. The model was motivated by the Seidenberg
and McClelland (1989) model of word naming, in
which psychologically interesting behaviour falls out
of a simple mapping between orthography and
phonology, and in which a “lexical entry” is a
distributed entity. Our goal was to remain within the
auditory modality and to assess the extent o which
behaviour previously attributed to higher-level
(morphological and lexical) representations could be
captured at the lower, featural and phonemic levels.
This model illustrated Norris’s observation about
lower levels of representation embodying aspects of
higher-level generalizations. Thus, for instance, the
model correctly predicted five out of the six phoneme
restorations reported by Elman and McClelland (1989)
in their demonstration of compensation for
coarticulation being triggered by a restored phoneme.
The model was able to achieve the same sort of
restoration on the basis of a learned features-to-
phonemes mapping, with no explicit representations of
words,

The new input representation described above
allows us to continue with the investigation of a
mapping between observable and necessary levels of
representation (orthography, phonology, semantics)
while avoiding local representations, at intermediate
levels, of less defensible categories (phonemes, local
lexical entries). Accordingly, the earlier model of



output
past current predicted
- (2) (t1) (t+1)

. 001000001 101100000 000001000

recurrent connections
(see text)
101100000 (t1) input
001000001  (t2) arriving
110010000  (t3) across
000001000 (t4) time

Figure 1. Input across time is mapped onto a
more stable representation,

speech processing is superseded by that shown in Fig.

Thc mapping currently implemented between the
two representations is a “cut-down” version of “back-
propagation through time”, unfolding the network once
rather than many times (Servans-Schreiber,
Cleeremans & McClelland 1989; Chater 1989; Chater
& Conkey, submitted) and thus sacrificing some of the
ability reliably to pick up long distance dependencies,
in exchange for speed of training. This “copyback”
structure was introduced by Elman (1988, 1990) and
Norris (1988). It will be superseded, in the present
model, by a full “back-propagation through time”
algorithm (Rumelhart, Hinton & Williams, 1986), in
which a recurrent network is unfolded into many
copies arranged in a feed-forward architecture, with
standard back-propagation being applied to the result.

There are nine input nodes corresponding to the nine
elements described above. There are thirty hidden
units. The output nodes are grouped into seven sets of
nine representing the bundles of elements at parucular
time-steps. The exact choice of the number of time-
steps represented in the output is arbitrary, to an
extent, and at this stage is motivated by the desire o
study the effects of phonotactic constraints. (In
practice, most of the observation of the behaviour of
the model has involved recording the activation pattern
for the current time-step.) A window which stretches
over several segments allows right-context effects to
be studied. In reality, the effects due to coarticulation
with the immediately adjacent time-step are the most
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important, although vowel-to-vowel effects require a
window of several Lime-sieps. Note that including the
surrounding feature-bundles in the output layer forces
the network to learn the context in which any current
feature-bundle occurs.

Although current simulations have used the
idealization of one segment, or bundle of elements, o
each time-step, it is possible (o relax this aspect of the
model by, for instance, centring each bundle of
elements around three consecutive lime-steps.
Elements may then be allowed to spread into adjacent
time-slices occupied predominantly by the adjacent
bundle of elements. Thus, the nasalization of the vowel
in don may be represented by the element N being
present in one or all of the time-slices occupied by the
elements corresponding to the vowel. This move
would also facilitate the vexed issue of the
representation of diphthongs and long monopthongs.

Training the network

The current version of the model employs the
“copyback™ structure described above, In the
simulations reported below, a learning rate of 0.1 was
employed; momentum was not used. The network was
trained until it began to show signs of overfitting —
training that resulted in a decrease of error for the
training set but led to increasing error for a separate
test set was disregarded. This required between 500
and 600 epochs. To encourage the network to employ
context, noise was added to the input; there was an
11% probability that any element in the input would
have its value changed to or from 0. The noise was
generated on-line and was different for every epoch of
training. The leaming phase of the simulations was
quite computationally intensive, using 3040 CPU
hours on a variety of SUN SPARC-based machines,
using a customized version of the Rumelhart and
McClelland (1988) simulation package.

The initial, limited training data was derived from
some 3490 words worth of spoken discourse, taken
largely from the LUND Corpus (Svartik & Quirk
1980). This corpus consists of a word level
transcription and includes filled pauses, false starts and
corrections. This was converted automatically to an
idealized segment-level transcription which was, in
turn, converted to the nine elements described above.
The training set was made up of 9097 segments and a
test set of 3285 segments was used to test for
overfitting. No attempt was made to impose
phonological reduction or coarticulation.

Modelling psycholinguistic data

The success of the model in representing a particular
bundle of elements in the output level was measured
by calculating the sum of squares of the error
associated with that bundle when compared with each



of the possible input patterns. This allowed us to
determine, for instance, whether a particular output
resembled the expected pattern for /s/ or /sh/. Initial
simulations illustrate the potental of the model and of
the wider approach.

Sensitivity to context

The model is sensitive to segmental context. Auto-
associated patterns of elements in “‘current” position
are more accurate, in terms of sums of squares of the
error, when the model is given input from transcnibed
normal discourse than when the same bundles of
elements are presented in random order. The model
relies on previous context to identify the current
bundle of elements; when this context is aberrant, it
hinders correct recognition.

Human listeners employ context both before and
after the segment in question. Training with noise
forced the network to rely on both “left” and “right”
context. The scores for the bundles of elements in
“past” positions for normal and abnormal discourse
indicated that the model is sensitive to right context in
recognizing bundles of elements, and was misled by
abnormal right context.

Phoneme restoration and compensation for
coarticulation

Listeners' perception of degraded individual speech
sounds in words is often restored (Warren 1970),
particularly when the intended phoneme and the
replacing sound (e.g. white noise, a click, silence) are
similar, and when replacement occurs after the
uniqueness point of the word.

This effect is often not compelling, however, and
there are inherent difficulties in interpreting the effect.
An impornant exception to this latter problem is the
demonstration of compensation for coarticulation
reported by Elman and McClelland (1989). This
particular experiment is of crucial theoretical interest
because of the claim that it demonstrates top-down
lexical influences on lower-level phonemic
representations. It is the strongest experimental
evidence for phoneme restoration, and for top-down
influences on perception in general. Most of the six
words employed in that study (Christmas, copious,
ridiculous, foolish, English, Spanish) end with
suffixes, suggesting that the phoneme restoration
reported for the final segment might emerge from a
model which only encoded low-level statistical
generalizations about spoken English. Suffixes are
frequent sequences of segments and such a model
might simply encode the knowledge that the sequences
corresponding to -ish and -ous are more likely in some
contexts than in others, without having anything like
an adequate representation of morphological
categories.
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The model was given transcriptions of the words
listed above, in neutral left-contexts, with the final
segment replaced in each case by an identical hybrid
segment intermediate between /s/ and /sh/. (/s/ and /sh/
differ only on the palatality, I, element; this was
replaced by 0.5 to create the intermediate segment.)
The scores assigned to the critical segment in “current”
position were recorded and the sum of squares of the
error calculated for the bundles of elements
corresponding to /s/ and /sh/ respectively. The model
has an overall preference for the /s/ interpretation,
reflecting the relative preponderance of /s/ over /sh/ in
the training corpus. Crucially, however, when the
difference between the two sums of squares, for /s/ and
/sh/ for each word, is calculated the model exhibits
precisely the pattern of restoration found in human
subjects. In Fig. 2. “preference for /s/” is the difference
between the two sums of squares. It would therefore be
possible for a categorical perception criterion Lo be
placed on the /s/~/sh/ continuum so as to ensure that
appropriate phoneme restoration occurs for each word.

This simulation suggests that there is no need to posit
top-down interaction, as traditionally conceived, to
explain Elman and McClelland's demonstration of
phoneme restoration.

Conclusions

The proposed input representation, based on the
elements of Government Phonology, is a viable
alternative to ones comprising SPE-style feawres, for
the connectionist modelling of speech processing. The
input representation used gave simulation results
closer to the human data than did the previous input
based on SPE-style features. Simulation of the
compensation for coarticulation effect suggests that
this effect, which was previously interpreted as a top-
down lexical effect, may be the result of learning
simple statistical generalizations within speech input.
Apparent “higher-level” generalizations are apparent,
to differing degrees, at very low levels. A more
accurate view of what is possible at such an early stage
limits what it is necessary to explain at putative higher
levels.

Increasing the training corpus from the current 3490
word tokens (905 word types) will improve the
performance of the model. Introducing into the
training corpus plausible levels of coarticulation (by
means of element spreading) and phonological
reduction (by means of element and segment
elimination) will improve the performance by adapting
the context of any particular element or bundle of
elements in a predictable way.

Many psycholinguistic phenomena which have been
taken to involve access to specific representations of
spoken words may be explained in terms of the low-
level statistical structure of the speech input, as
encoded in connectionist models of the process. There
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appropriate words.

is a methodological imperative with:n psycholinguistic
research to allow “higher level” interpretation of data
only when low level explanations can be ruled out.
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