UC Irvine
ICS Technical Reports

Title
Network Border Patrol

Permalink
https://escholarship.org/uc/item/8zq0w2qg0

Authors

Albuquerque, Celio
Vickers, Brett |.
Suda, Tatsuya

Publication Date
1999-10-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8zq0w2q0
https://escholarship.org
http://www.cdlib.org/

| 699
- |1C3 =
1 no.99-44 .

TECHNICAL REPORT

Network Border Patrol

Célio Albuquerque
Brett J. Vickers
Tatsuya Suda

UCI-ICS Technical Report No. 99-44
Dept. of Information and Computer Science
University of California, Irvine, CA 92697-3425

October 01, 1999

Notice: This Material
| may be protected
) by Copyright Law
(Title 17 U.S.C.)

Information and Computer Science

University of California, Irvine
j’“_

' N

7 LIBRARY S

< University of Ca!itornla?;z

IRVINE -

.

N etwork Border Patrol

Célio Albuquerque!, Brett J. Vickers* and Tatsuya Suda'

1 Dept. of Information and Computer Science
' University of California, Irvine
{celio,suda} @ics.uci.edu

Abstract— The end-to-end nature of Internet congestion
control is an important factor in its scalability and robustness.
However, end-to-end congestion control algorithms alone are
incapable of preventing the congestion collapse and unfair
bandwidth allocations created by applications which are unre-
sponsive to network congestion. In this paper, we propose and
investigate a new congestion avoidance mechanism called Ne:-
work Border Patrol (NBP). NBP relies on the exchange of feed-
back between routers at the borders of a network in order to
detect and restrict unresponsive traffic flows before they enter
the network. The NBP mechanism is compliant with the Inter-
net philosophy of pushing complexity toward the edges of the
network whenever possible. Simulation results show that NBP
effectively eliminates congestion collapse, and that, when com-
bined with fair queneing, NBP achieves approximately max-
min fair bandwidth allocations for competing network flows.

Keywords— Internet, congestion control, congestion col-
lapse, max-min fairness, end-to-end argument

I. INTRODUCTION

HE essential philosophy behind the Internet is ex-
_pressed by the scalability argument: no protocol, al-
gorithm or service should be introduced into the Internet if
it does not scale well. A key corollary to the scalability ar-
gument is the end-to-end argument: to maintain scalability,
algorithmic complexity should be pushed to the edges of the
network whenever possible: Perhaps the best example of
the Internet philosophy is TCP congestion control, which is
achieved primarily through algorithms implemented at end
systems. Unfortunately, TCP congestion control also illus-
trates some of the shortcomings of the end-to-end argument.
As a result of its strict adherence to end-to-end con-
gestion control, the current Internet suffers from two mal-

This research is supported by the National Science Foundation through
grant NCR-9628109. It has also been supported by grants from the
University of California MICRO program, Hitachi America, Hitachi,
Standard Microsystem Corp., Canon Information Systems Inc., Nip-
pon Telegraph and Telephone Corp. (NTT), Nippon Steel Information
and Communica-tion Systems Inc. (ENICOM), Tokyo Electric Power
Co., Fujitsu, Novell, Matsushita Electric Industrial Co. and Fundaggo

CAPES/Brazil. Notlee* This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

SLBAR

Z

9%

C32

no. 99-44

I Dept. of Computer Science
Rutgers University
bvickers @cs.rutgers.edu

adies: congestion collapse from undelivered packets, and
unfair allocations of bandwidth between competing traffic
flows. The first malady—congestion collapse from undeliv-
ered packets—arises when bandwidth is continuously con-
sumed by packets that are dropped before reaching their ul-
timate destinations [1]. Unresponsive flows,! which are be-
coming increasingly prevalent in the Internet as network ap-
plications using audio and video become more popular, are
the primary cause of this type of congestion collapse, and
the Internet currently has no way of effectively regulating
them.

The second malady—unfair bandwidth allocation—arises
in the Internet for a variety of reasons, one of which is the
presence of unresponsive flows. Adaptive flows (e.g., TCP
flows) that respond to congestion by rapidly reducing their
transmission rates are likely to receive unfairly small band-
width allocations when competing with unresponsive or ma-
licious flows. The Internet protocols themselves also intro-
duce unfairness. The TCP algorithm, for instance, inher-
ently causes each TCP flow to receive a bandwidth that is
inversely proportional to its round trip time [2]. Hence, TCP
connections with short round trip times may receive unfairly
large allocations of network bandwidth when compared to
connections with longer round trip times.

These maladies—congestion collapse from undelivered
packets and unfair bandwidth allocations—have not gone
unrecognized. Some have argued that they may be miti-
gated through the use of improved packet scheduling [3]
or queue management [4] mechanisms in network routers.
For instance, per-flow packet scheduling mechanisms like
Weighted Fair Queueing (WFQ) [5], [6] attempt to offer fair
allocations of bandwidth to flows contending for the same
link. So does Core-Stateless Fair Queueing (CSFQ) [7], an
approximation of WFQ that requires only edge routers to
maintain per-flow state. Active queue management mecha-
nisms like Fair Random Early Detection (FRED) [8] achieve

! An unresponsive flow is any flow generated by an application that fails
to reduce its transmission rate in response to increased packet discarding
caused by congestion.

Flow A

1.5 Mbps

Fig. 1. Example of a network which experiences congestion col-
lapse

an effect similar to fair queueing by discarding packets from
flows that are using more than their fair share of a link’s
bandwidth. All of these mechanisms are more complex
and expensive to implement than simple FIFO queueing, but
they reduce the causes of unfairness and congestion collapse
in the Internet. Nevertheless, they do not eradicate them.
For illustration of this fact, consider the example shown in
Figure 1. In this example, two unresponsive flows compete
for bandwidth in a network containing two bottleneck links
arbitrated by a fair queueing mechanism. At the first bottle-
neck link (R;1-Ry), fair queueing ensures that each flow re-
ceives half of the link’s available bandwidth (750 kbps). On
the second bottleneck link (R2-S4), much of the traffic from
flow B is discarded due to the link’s limited capacity (128
kbps). Hence, flow A achieves a throughput of 750 kbps and
flow B achieves a throughput of 128 kbps. Clearly, conges-
tion collapse has occurred, because flow B packets, which
are ultimately discarded on the second bottleneck link, un-
necessarily limit the throughput of flow A across the first
bottleneck link. Furthermore, while both flows receive equal
bandwidth allocations on the first bottleneck link, their allo-
cations are not globally max-min fair.? A globally max-min
fair allocation of bandwidth would have been 1.372 Mbps
for flow A and 128 kbps for flow B.

This example, which is a variant of an example presented
in [1], illustrates the inability of local scheduling mecha-
nisms, such as WFQ, to eliminate congestion collapse and
achieve global max-min fairness without the assistance of
additional network mechanisms.

Jain et al. have proposed several rate control algorithms
that are able to prevent congestion collapse and provide
global max-min fairness to competing flows [10]. These al-
gorithms (e.g., ERICA, ERICA+) are designed for the ATM
Available Bit Rate (ABR) service and require all network
switches to compute fair allocations of bandwidth among
competing connections. However, these algorithms are not
easily tailorable to the current Internet, because they violate
the Internet design philosophy of keeping router implemen-

2 An allocation of bandwidth is said to be globally max-min fair if, at
every link, all active flows not bottlenecked at another link are allocated
a maximum, equal share of the link’s remaining bandwidth [9].

tations simple and pushing complexity to the edges of the
network.

Floyd and Fall have approached the problem of conges-
tion collapse by proposing low-complexity router mecha-
nisms that promote the use of adaptive or “TCP-friendly”
end- to end congestion control [1]. Their suggested ap-
proach requires selected gateway routers to monitor high-
bandwidth flows in order to determine whether they are re-
sponsive to congestion. Flows that are determined to be un-
responsive are penalized by a higher packet discarding rate
at the gateway router. A limitation of this approach is that
the procedures currently available to identify unresponsive
flows are somewhat arbitrary and not always successful [7].

In this paper, we introduce and investigate a new Inter-
net traffic control mechanism called Network Border Patrol
(NBP). The basic principle of NBP is to compare, at the bor-
ders of the network, the rates at which each flow’s packets
are entering and leaving the network. If packets are enter-
ing the network faster than they are leaving it, then the net-
work is very likely to be buffering or, worse yet, discarding
the flow’s packets. In other words, the network is receiving
more packets than it can handle. NBP prevents this scenario
by “patrolling” the network’s borders, ensuring that pack-
ets do not enter the network at a rate greater than they are
able to leave it. This has the beneficial effect of preventing
congestion collapse from undelivered packets, because an
unresponsive flow’s otherwise undeliverable packets never
enter the network in the first place.

NBP’s prevention of congestion collapse comes at the ex-
pense of some additional network complexity, since routers
at the borders of the network (i.e., edge routers) are expected
to monitor and control the rates of individual flows. NBP
also introduces an added communication overhead, since
in order for an edge router to know the rate at which its
packets are leaving the network, it must exchange feedback
with other edge routers. However, unlike other existing
approaches to the problem of congestion collapse, NBP’s
added complexity is isolated to edge routers; routers within
the core of the network remain unchanged. Moreover, end
systems operate in total ignorance of the fact that NBP is
implemented in the network, so no changes to transport pro-
tocols are necessary.

Note that the primary goal of NBP is to prevent conges-
tion collapse from undelivered packets. On its own, NBP
cannot provide global max-min fairness to competing net-
work flows. Nevertheless, when combined with fair queue-
ing at core routers, NBP can achieve approximate global
max-min fairness, as we will show later in this paper.

The remainder of this paper is organized as follows. In

® End systems Edge router T core router

= Fig.2. The core-sfateless Internet architecture assumed by NBP

section II, we describe the architectural components of the
Network Border Patrol mechanism in further detail and
present the feedback and rate control algorithms used by
NBP edge routers to prevent congestion collapse. In sec-
tion III, we present the results of several simulations, which
illustrate the ability of NBP to avoid congestion collapse
and, when combined with a fair queueing algorithm in core
routers, to provide global max-min faimess to competing
network flows. In section IV, we discuss several implemen-
tation and scalability issues that must be addressed in order
to make deployment of NBP feasible in the Internet. Finally,
in section V we provide some concluding remarks.

II. NETWORK BORDER PATROL

Network Border Patrol is a core-stateless congestion
avoidance mechanism. That is, it is aligned with the core-
stateless approach [7], which allows routers on the borders
(or edges) of a network to perform flow classification and
maintain per-flow state but does not allow routers at the core
of the network to do so. Figure 2 illustrates this architec-
ture. In this paper, we draw a further distinction between
two types of edge routers. Depending on which flow it is
operating on, an edge router may be viewed as an ingress or
an egress router. An edge router operating on a flow pass-
ing into a network is called an ingress router, whereas an
edge router operating on a flow passing out of a network is
called an egress router. Note that a flow may pass through
more than one egress (or ingress) router if the end-to-end
path crosses multiple networks.

NBP prevents congestion collapse through a combination
of per-flow rate monitoring at egress routers and per-flow
rate control at ingress routers. Rate monitoring allows an
egress router to determine how rapidly each flow’s pack-
ets are leaving the network, whereas rate control allows an
ingress router to police the rate at which each flow’s packets
enter the network. Linking these two functions together are

To forwarding
function and
output parts

—

Fig. 3.” An input port of an NBP egress router

the feedback packets exchanged between ingress and egress
routers; ingress routers send egress routers forward feedback
packets to inform them about the flows that are being rate
controlled, and egress routers send ingress routers backward
feedback packets to inform them about the rates at which
each flow’s packets are leaving the network.

This section describes three important aspects of the NBP
mechanism: (1) the architectural components, namely the
modified edge routers, which must be present in the net-
work, (2) the feedback control algorithm, which determines
how and when information is exchanged between edge
routers, and (3) the rate control algorithm, which uses the in-
formation carried in feedback packets to regulate flow trans-
mission rates and thereby prevent congestion collapse in the
network.

A. Architectural Components

The only components of the network that require modifi-
cation by NBP are edge routers. The input ports of egress
routers must be modified to perform per-flow monitoring of
bit rates, and the output ports of ingress routers must be
modified to perform per-flow rate control. In addition, both
the ingress and the egress routers must be modified to ex-
change and handle feedback. ,

Figure 3 illustrates the architecture of an NBP egress
router’s input port. Packets sent by ingress routers arrive
at the input port of the egress router and are first classi-
fied by flow. In the case of IPv6, this is done by examin-
ing the packet header’s flow label, whereas in the case of
IPv4, it'is done by examining the packet’s source and des-
tination addresses and port numbers. Each flow’s bit rate is
then rate monitored using a rate estimation algorithm such
as the Time Sliding Window (TSW) [11]. These rates are
collected by a feedback controller, which returns them in
backward feedback packets to an ingress router whenever a
forward feedback packet arrives from that ingress router. In
some cases, to be described later in this section, backward

Ouigoing
packets Flow
Classifier

To outpul
buffer and
network

Controller

Fig. 4. An output port of an NBP ingress router

feedback packets are also generated asynchronously; that is,
an egress router sends them to an ingress router without first
waiting for a forward feedback packet.

The output ports of NBP ingress routers are also en-
hanced. Each contains a flow classifier, per-flow traffic
shapers (e.g., leaky buckets), a feedback controller, and a
rate controller. See Figure 4. The flow classifier classifies
packets into flows, and the traffic shapers limit the rates at
which packets from individual flows enter the network. The
feedback controller receives backward feedback packets re-
turning from egress routers and passes their contents to the
rate controller. It also generates forward feedback pack-
ets, which it periodically transmits to the network’s egress
routers. The rate controller adjusts traffic shaper parame-
ters according to a TCP-like rate control control algorithm,
which is described later in this section.

B. The Feedback Control Algorithm

The NBP feedback control algorithm determines how
and when feedback packets are exchanged between edge
routers. Feedback packets take the form of ICMP packets
and are necessary in NBP for three reasons. First, they allow
egress routers to discover which ingress routers are acting as
sources for each of the flows they are monitoring. Second,
they allow egress routers to communicate per-flow bit rates
to ingress routers. Third, they allow ingress routers to detect
network congestion and control their feedback generation
intervals by estimating edge-to-edge round trip times.

The contents of NBP feedback packets are shown in Fig-
ure 5. Contained within the forward feedback packet is a
time stamp and a list of flow specifications? for flows origi-
nating at the ingress router. The time stamp is used to calcu-

8 A flow specification is a value uniquely identifying a flow. In IPv6 it
is the flow’s flow label. In IPv4, it is the combination of source address,
destination address, source port number, and destination port number.

Forward Feedback (FF) Packet
Flow

IPICMP Ti Flow
Headers imestamp spect| *** | Specn

T

Ingress Egress
Router Router

V__/

_— \

IPACMP Flow | Egress Flow
Headers Specl| Ratel| """ | Specn

Backward Feedback (BF) Packet

Hop
Count

Egress

T
imestamp Rate n

Fig. 5. Forward and backward feedback packets exchanged by
edge routers

late the round trip time between two edge routers, and the list
of flow specifications indicates to an egress router the iden-
tities of active flows originating at the ingress router. (An
edge router adds a flow to its list of active flows whenever
a packet from a new flow arrives; it removes a flow when
the flow becomes inactive.) In the event that the network’s
maximum transmission unit size is not sufficient to hold an
entire list of flow specifications, multiple forward feedback
packets are used.

When an egress router receives a forward feedback
packet, it immediately generates a backward feedback
packet and returns it to the ingress router. Contained within
the backward feedback packet are the forward feedback
packet’s original time stamp, a router hop count, and a list
of observed bit rates, called egress rates, collected by the
egress router for each flow listed in the forward feedback
packet. The router hop count, which is used by the ingress
router’s rate control algorithm, indicates how many routers
are in the path between the ingress and the egress router.
The egress router determines the hop count by examining
the time to live (TTL) field of arriving forward feedback
packets. When the backward feedback packet arrives at the
ingress router, its contents are passed to the ingress router’s
rate controller, which uses them to adjust the parameters of
each flow’s traffic shaper.

In order to determine how often to generate forward feed-
back packets, an ingress router keeps, for each egress router,
a timer which determines the frequency of forward feedback
packet generation. To maintain an adequate and consistent
feedback update interval, the timer repeatedly expires after
an interval of time known as the base round trip time. The

base round trip time for egress router e, denoted e.baseRTT,
is defined as the shortest observed round trip time between
the ingress router and egress router e, and it generally re-
flects the round trip time between the two edge routers when

the network is not congested. The value e.baseRTT is cal- _

culated by estimating the current round trip time from each
arriving backward feedback packet and updating e.baseRTT
whenever the current round trip time is less.

Egress routers may also generate backward feedback
packets asynchronously. If an egress router does not receive
a forward feedback packet from an ingress router within a
fixed interval of time (denoted Asynchinterval), it gener-
ates and transmits a backward feedback packet to the ingress
router. Asynchronously generated backward feedback pack-
ets are specially marked by the egress router and are not
. used by the ingress router to update the round trip time mea-
surement. The reason for asynchronous backward feedback
packet generation is to prevent the squelching of conges-
tion feedback when forward feedback packets are delayed or
dropped by the network. It also ensures that ingress routers
receive frequent rate feedback and are able to respond to
congestion even when the distance between edge routers is
very large.

C. The Rate Control Algorithm

The NBP rate control algorithm regulates the rate at
which each flow enters the network. Its primary goal is to
converge on a set of per-flow transmission rates (hereinafter
called ingress rates) that prevents congestion collapse from
undelivered packets. It also attempts to lead the network to
a state of maximum link utilization and low router buffer
occupancies, and it does this in a manner that is similar to
TCP. '

In the NBP rate control algorithm, shown in Figure 6, a
flow may be in one of two phases, slow start or congestion
avoidance, which are similar to the phases of TCP conges-
tion control. New flows enter the network in the slow start
phase and proceed to the congestion avoidance phase only
after the flow has experienced congestion. The rate control
algorithm is invoked whenever a backward feedback (BF)
packet arrives at an ingress router. Recall that egress routers
send two types of BE packets to ingress routers: normal BF
packets, which are generated when an egress router receives
a forward feedback (FF) packet, and asynchronous BF pack-
ets, which egress routers generate without any prompting
from an ingress router. Both types of BF packets contain
a list of flows arriving at the egress router from the ingress
router as well as the monitored egress rate for each flow.
However, only normal BF packets contain meaningful time

on arrival of BF packet p from egress router e
if (p.asynchronous == FALSE)
e.currentRTT = cur_time - p.timestamp;
if (e.currentRTT < e.baseRTT)
e.baseRTT = e.currentRTT,
deltaRTT = e.currentRTT - e.baseRTT;
for each flow flisted in p
Sfomrc = min (MSS / e.currentRTT, f.egress_rate | MF);
if (fphase == SLOW_START)
if (deltaRTT x f.ingress_rate < MSS X e.hopcount)
fingress_rate = f.ingress_rate X 2;
else
f-phase = CONG_AVOID;
if (fphase == CONG_AVOID)
_ if (deltaRTT x f.ingress_rate < MSS X e.hopcount)
Jingress_rate = f.ingress_rate + f.mrc;
else)
fingress_rate = f.egress_rate - fmrc;
else /* p.asynchronous == TRUE */
for each flow flisted in p
if (fphase == SLOW_START)
if (fingress_rate > f.egress_rate x 8)
fingress_rate = f.egress_rate - fmrc;
J.phase = CONG_AVOID;
else /* f.phase == CONG_AVOID */
if (fingress_rate > fegress_rate + 3 X f.mrc)
fingress_rate = f.egress_rate - fmrc;

- Fig. 6. Pseudocode for ingress router rate control algorithm

stamps which are copied from arriving FF packets.

If the arriving BF packet is a normal BF packet, then
the algorithm calculates the current round trip time and up-
dates the base round trip time, if necessary. It then calcu-
lates deltaRTT, which is the difference between the current
round trip time (e.currentRTT) and the base round trip time
(e.baseRTT). A deltaRTT value greater than zero indicates
that packets are requiring a longer time to traverse the net-
work than they once did, and this can only be due to the
buffering of packets within the network.

NBP’s rate control algorithm decides that a flow is ex-
periencing congestion whenever it estimates that the net-
work has buffered the equivalent of more than one of the
flow’s_packets at each router hop. To do this, the algorithm
first computes the product of the flow’s ingress rate and
deltaRTT. This value provides an estimate of the amount of
flow data that is buffered somewhere in the network. If it is
greater than the number of router hops between the ingress
and the egress router multiplied by the size of the largest
possible packet, then the flow is considered to be experienc-
ing congestion. The rationale for determining congestion in
this way is to maintain both high link utilization and low
queueing delay. Ensuring there is always at least one packet
buffered for transmission on a network link is the simplest

way to achieve full utilization of the link, and deciding that
congestion exists when more than one packet is buffered at
the link keeps queueing delays low.

When the rate control algorithm determines that a flow is
not experiencing congestion, it increases the flow’s ingress
rate. If the flow is in the slow start phase, its ingress rate
is doubled. Doubling the ingress rate allows a new flow to
rapidly capture available bandwidth if the network is under-
utilized. If the flow is in the congestion avoidance phase,
its ingress rate is conservatively incremented by a minimum
rate change (MRC) value in order to avoid the creation of
congestion. MRC is computed as the maximum segment
size divided by the current round trip time between the edge
routers. This results in rate growth behavior that is similar to
TCP in its congestion avoidance phase. Furthermore, MRC
is not allowed to exceed the flow’s current egress rate di-
vided by a constant factor (MF). This guarantees that rate in-
crements are not excessively large when the round trip time
is small.

When the rate control algorithm determines that a flow is
experiencing congestion, it reduces the flow’s ingress rate.
If a flow is in the slow start phase, it enters the congestion
avoidance phase. If a flow is already in the congestion avoid-
ance phase, its ingress rate is reduced to the flow’s egress
rate decremented by MRC. In other words, an observation of
congestion forces the ingress router to send the flow’s pack-
ets into the network at ‘a rate slightly lower than the rate at
which they are leaving the network.

The actions described above are taken only when a normal
BF packet arrives at an ingress router. A different set of ac-
tions is taken when an asynchronous BF packet arrives. This
is because, unlike normal BF packets, asynchronous BF
packets are not generated in response to FF packets and thus
do not carry meaningful time stamps. Therefore, the con-
gestion status of the network cannot be determined through
the use of round trip time measurements. Instead, it is de-
termined by comparing a flow’s ingress and egress rates. In
the slow start phase, a flow is considered to be experiencing
congestion when its current ingress rate exceeds its reported
egress rate by a factor of eight. The reason for the choice of
the value eight is that we found a delay of three round trip
times is typically required for a change in the ingress rate to
be fully reflected in the egress rate of a backward feedback
packet. During this time, the flow may double its ingress
rate three times, increasing it by at most a factor of eight.
Similarly, in the congestion avoidance phase, a flow is con-
sidered to be experiencing congestion whenever its current
ingress rate exceeds its reported egress rate by three MRC
increments. The reasoning in this case is similar to the rea-

Simulation parameter |

| Value |
Packet size 1000 bytes
Router queue size 100 packets
Maximum segment size (MSS) 1500 bytes
TCP implementation Reno [12]
TCP window size 100 kbytes
MRC factor (MF) 10
Asynchinterval 10 msec
TSW window size 10 msec
End-system-to-edge propagation delay 100 usec
End-system-to-edge link bandwidth 10 Mbps

Table 1. Default simulation parameters

soning used in the slow start case, except that a flow in the
congestion avoidance phase may only increase its ingress
rate by at most three MRC increments during three round
trip times. ‘

Clearly, the steps taken to determine congestion when an
asynchronous BF packet arrives are more tolerant of tran-
sient congestion than the steps taken to determine conges-
tion when a normal BF packet arrives. This is because asyn-
chronous BF packets are only meant to be used as a stopgap
measure to prevent serious congestion from developing dur-
ing the interval between normal BF packet arrivals.

III. SIMULATION EXPERIMENTS

In this section, we present the results of several simulation
experiments, each of which is designed to test a different as-
pect of Network Border Patrol. The first set of experiments
examines the ability of NBP to prevent congestion collapse,
and the second set of experiments examines its ability to
provide fair bandwidth allocations to competing network
flows. All simulations were run for 100 seconds using the
UC Berkeley/LBNL/VINT ns-2 simulator [13]. The ns-2
code implementing NBP and the scripts to run these sim-

- ulations are available at the UCI Network Research Group

web site [14]. Default simulation parameters are shown in
Table 1 and are used in all simulation experiments unless
otherwise noted.

A. Preventing Congestion Collapse

The first set of simulation experiments explores NBP’s
ability to prevent congestion collapse from undelivered
packets. In the first experiment, we study the scenario de-
picted in Figure 7. One flow is a TCP flow generated by
an application which always has data to send, and the other -
flow is an unresponsive constant bit rate UDP flow. Both
flows compete for access to a shared 1.5 Mbps bottleneck
link (R;-R3), and only the UDP flow traverses a second bot-

TCP Flow

Unresponsive UDP Flow

1 =Ingress Router
E = Egress Router
R = Core Router
S =End System

Fig. 7. A network with a single shared link

tleneck link (R2-E;), which has a limited capacity of 128
kbps. :

Figure 8 shows the throughput achieved by the two flows
as the UDP source’s transmission rate is increased from 32
kbps to 2 Mbps. The combined throughput delivered by
the network (i.e., the sum of both flow throughputs) is also
shown. Three different cases are examined under this sce-
nario. The first is the benchmark case used for comparison:
NBP is'not used between edge routers, and all routers sched-
ule the delivery of packets on a FIFO basis. As Figure 8(a)
shows, the network experiences severe congestion collapse
as the UDP flow’s transmission rate increases, because the
UDP flow fails to respond adaptively to the discarding of
its packets on the second bottleneck link. When the UDP
load increases to 1.5 Mbps, the TCP flow’s throughput drops
nearly to zero. In the second case, weighted fair queueing
replaces FIFO queueing in each of the routers, and the re-
sult, shown in Figure 8(b), is better throughput for the TCP
flow. However, as indicated by the combined throughput
of both flows, congestion collapse still occurs as the UDP
load increases. Although WFQ allocates 750 kbps to both
flows at the first bottleneck link, only 128 kbps of this band-
width is successfully exploited by the UDP flow, which is
even more seriously bottlenecked by a second link. The re-
maining 622 kbps is wasted on undelivered packets. In the
third case, FIFO queues are reintroduced, and NBP is in-
stalled in the edge routers. As Figure 8(c) shows, NBP effec-
tively eliminates congestion collapse; the TCP flow achieves
anearly optimal throughput of 1.37 Mbps, and the combined
throughput remains very close to 1.5 Mbps. ‘

In the second experiment, we examine whether these pos-
itive results continue to be demonstrated when a TCP flow
traverses several bottleneck links carrying traffic from unre-
sponsive UDP flows. The simulation model for this experi-
ment is shown in Figure 9. In this configuration, a TCP flow
shares several 1.5 Mbps bottleneck links with unresponsive
UDP flows, each of which is further bottlenecked by another
link with a capacity of 128 kbps. All links have propagation

Throughput (Mbps)

16 F j ' Combined—— -

e P TCP ——%m
_— Ny UDP - -
% 2l % i
: a1t T .
g
£ os} e i
g osf TN x 4
€ oaf TS 4

02 | oy 4

o S M e Horonenees F R Pl Meetra N i

0 500 1000 1500 2000

UDP input traffic load (Kbps)

(a) Severe congestion collapse using FIFO only

UDP input traffic load (Kbps)

(b) Moderate congestion collapse using WFQ only

! Combined—— -]
TCP —=--]
g UDP ---m--
2 g
g 4
ES
=
5 o]
g -
......... BT I X T
L L
1000 1500 2000

L6 -

—

1.4 %

12 +

i
08 -
06
04 |-
02

Combined—+—
TCP

VN
UDP ---x--

I B B T |

0 f - 1 1 I
1000 1500
UDP input traffic load (Kbps)

2000

(c) No congestion collapse using NBP with FIFQ

Fig. 8. Congestion collapse observed as unresponsive traffic load
increases. The solid line shows the combined throughput de-
livered by the network.

delays of 10 msec, and the UDP sources each transmit pack-
ets at a constant rate of 1 Mbps. »

Figure 10 shows the throughput of the TCP flow as the
number of congested router hops increases from 1 to 10.
When only FIFO scheduling is used, the TCP flow achieves
a throughput of approximately 0.5 Mbps regardless of the
number of hops, whereas NBP allows the network to avoid
congestion collapse, allocating nearly 1.31 Mbps to the TCP
flow when the number of hops is small. As the number
of hops increases, the throughput of the TCP flow dimin-
ishes somewhat due to increased feedback delays between
the TCP flow’s edge routers.

B. Achieving Fairness

The primary goal of NBP is to prevent congestion col-
lapse from occurring. However, its secondary goal is to
improve the faimess of bandwidth allocations to competing
network flows. In this second set of simulation experiments,
we examine whether NBP can achieve fair bandwidth allo-
cations on its own, and, if not, whether it can do so in con-

| —{
]

[z IE
128 128 128
kbps kbps kbps
——1.5 Mbps | 1.5 Mbps -1 10 Mbps ——
R R - 3

1.6 ' NBP + FIFO-—O—
FIFO

14 e

L

0.8
0.6
04
0.2

TCP Throughput (Mbps)

S I T N T | |

2 3 4 5 6 7 8 9 10
Number of congested hops

Fig. 10. TCP throughput in a network with multiple congested

. router hops
junction with other common network protocols and mecha-
nisms.

"fIn the first fairness experiment, we consider only one
cause of unfairness: the existence of unresponsive flows.
We return to the scenario depicted in Figure 7 but replace
4the second bottleneck link (Ry-E2) with a higher capacity
10. Mbps link. The TCP flow is generated by an application
which always has data to send, and the UDP flow is gener-
ated by an unresponsive source which transmits packets at a
constant bit rate.

Smce there is only one 1.5 Mbps bottleneck link (Ry-
R2) in this scenario, the max-min fair allocation of band-
w1c1th between the flows is 750 kbps (if the UDP source ex-
ceeds a transmission rate of 750 kbps). However, as Fig-
ure'11(a) shows, fairness is clearly not achieved when only
FIFO scheduling is used in routers. As the unresponsive
UDP traffic load increases, the TCP flow experiences con-
gestlon and reduces its transmission rate, thereby granting
an unfalrly large amount of bandwidth to the unresponsive
UDP flow. Thus, although there is no congestion collapse
from undelivered packets, there is clearly unfairness. Fig-
ure; 11(b) shows the throughput of each flow when NBP is
introduced. Notice that NBP is able to reduce the amount of
unfairness observed with FIFO scheduling only, but it does
not completely eliminate unfairness. This is due to the fact
thai NBP has no mechanism that explicitly enforces fairness.

Ip the second fairness experiment we consider another
cauge of unfairness: TCP’s dependence on the round trip
tlmq In order to study this type of unfairness, we reuse the

Y
&

4
H

14 B+ — i 3
3 S » Combined—t——
£ 12} oo TP den
s 1} e » UDP ---%--
2 “_ . -
Er .t T T
E o4l : Homee, 4

02 - TR,

0 1 1 Taey

0 500

1000 1500 . 2000
UDP input traftic load (Kbps) -

() Severe unfaimess using FIFO only

1.6 T L) T]
14 — —
z }x""\ Combined—i— |
& 12 X TCP -~]
g Ot - 4
3
& o8¢
£
g 06f
E o4 . <
02f .-® 4
0)@‘* 1 1 1
0 500 1000 1500 2000

UDP input traffic load (Kbps)
(b) Moderate unfaimess using NBP with FIFO

Fig. 11. Unfairness as the unresponsive traffic load increases

scenario from the first fairness experiment, but we return the
second bottleneck link capacity to 128 kbps and introduce a
new TCP flow (TCP2) between S; and Ss. Thus, two TCP
flows and one unresponsive UDP flow share the first bottle-
neck link (R;-R2), and only the UDP flow crosses the sec-
ond bottleneck link (Rz-Ej). In order to study the impact of
increasing round trip times on faimess, the round trip time
of the original TCP flow (TCP1) is varied by changing the
propagation delay of link I;-R;. All other link propagation
delays remain fixed as shown in Figure 7, and the transmis-
sion rate of the UDP source is set to 1.5 Mbps.

Figure 12(a) shows the resulting throughput of each flow
when FIFO scheduling is used in all routers. Congestion col-
lapse occurs to such an extent that both TCP flows achieve
throughputs of zero, regardless of the round trip time of the
TCP1 flow. Figure 12(b) depicts the throughput of each flow
when FIFO scheduling is replaced with WEQ at all routers.
WEQ allows the flows to achieve perfectly fair allocations of
the bottleneck link bandwidth, but it does not prevent con-
gestion collapse, as indicated by the fact that the combined
throughput is less than 1.5 Mbps. Figure 12(c) shows the
throughput of each flow when NBP is combined with FIFO
scheduling. Although the combined throughput s very close
to 1.5 Mbps and congestion collapse is prevented, NBP does
not completely eliminate the unfair bandwidth allocations
created by TCP1’s longer round trip time.

In the third and final fairness experiment, we study
whether NBP can be made more fair by combining it with a
fair queueing mechanism such as weighted fair queueing or
core-stateless fair queueing. We consider the network model

T T T T T]
16 Combined——
14 TCPI --3¢— |
z M TCP2 ¥
E‘ 12 UDP*3,..,..:
= 1
£ o8 4
£
2 06 -
E o .
02 L]
o -l F-A A~ Y I * 1 L v}
0.02 0.04 0.06 0.08 0.1

TCP1 round trip lime (sec)

(a) Severe congestion collapse using FIFO only

T T T " T
1.6 Combined——]
14 TCP1 —=-- |
z TCP2 ---x--
& 1.2k yop .= ey
s L i
B oos} -
%
g 06 -
é 04 -
02 a P g
1 - 1 1 1 1 ~
0.02 0.04 0.06 0.08 01

TCP! round trip time (sec)

(b) Good fairness with congestion collapse using WFQ only

16 T T T T T

14
1.2

1
08
0.6
0.4
0.2

Combined——
T 3

3

réf
°¥
X
o
*
¥
M

I’&l 1 J. 1 1

Throughput (Mbps)
T T TET T T TFT

g
[
c 1 1

L 1 1 1 1

0.02 0.04 0.06 0.08 0.1
TCP1 round trip lime (sec)

(c) Slight unfaimess but no congestion collapse using NBP with FIFQ

Fig. 12. Unfairness as the TCP round trip time increases

shown in Figure 13. This model is adapted from the second
General Faimess Configuration (GFC-2), which is specifi-
cally designed to test the max-min fairness of traffic control
algorithms [15]. It consists of 22 unresponsive UDP flows,
each generated by a source transmitting at a constant bit rate
of 100 Mbps. Flows belong to flow groups which are labeled
from A to H, and the network is designed in such a way
that members of each flow group receive the same max-min
bandwidth allocations. Links connecting core routers serve
as bottlenecks for at least one of the 22 flows, and all links
have propagation delays of 5 msec and bandwidths of 150
Mbps unless otherwise shown in the figure.

The first column of Table 2 lists the global max-min fair
share allocations for all flows shown in Figure 13. These val-
ues represent the ideal bandwidth allocations for any traffic
control mechanism that attempts to provide global max-min
fairness. The remaining columns list the equilibrium-state
throughputs actually observed after 4.5 seconds of simu-
lation for several scenarios. (Only the results for a single
member of each flow group are shown.) In the first scenario,
NBP is not used and all routers perform WEQ. As indicated

AAA CCC GGGGG GGBBB

Fig. 13. The GFC-2 network

Simulation results

Ideal globat Throughput Throughput Throughput ‘Throughput

Flow max-min using using NBP using NBP using NBP

Group fair share WFQ only with FIFO with WFQ with CSFQ
A 10 832 10.96 10.00 10.40
B 5 5.04 1.84 5.04 448
C 35 27.12 31.28 3423 3152
D 35 16.64 33.84 34.95 32.88
E 35 16.64 37.76 34.87 3336
F 10 832 7.60 10.08 8.08
G 5 4.96 1.04 4.96 5.28
H 52.5 36.15 46.87 5047 41.76

Table 2. Per-flow throughput in the GFC-2 network (in Mbps)

by comparing the values in the first and second columns,
WEFQ by itself is not able to achieve global max-min fair-
ness for all flows. This is due to the fact that WEQ does not
prevent congestion collapse. In the second scenario, NBP is
introduced at edge routers and FIFO scheduling is assumed
at all routers. Results listed in the third column show that
NBP with FIFO also fails to achieve global max-min fair-
ness in the GFC-2 network, largely because NBP has no
mechanism to explicitly enforce fairness. In the third and
fourth simulation scenarios, NBP is combined with WEQ
and CSFQ, respectively, and in both cases NBP is able to
achieve bandwidth allocations that are approximately max-
min fair for all flows.

NBP with WFQ achieves slightly better fairness than
NBP with CSFQ. We suspect two reasons for this fact. First,
CSFQ is an approximation of WFQ, and its performance de-
pends on the accuracy of its estimation of a flow’s input rate
and fair share. Second, CSFQ’s fairness mechanism engages
only when congestion is detected (i.e., when a router’s buffer
occupancy becomes sufficiently large). Since NBP keeps
buffer occupancies low by continuously monitoring and re-
sponding to variations in the edge-to-edge round trip time,
CSFQ is not given many opportunities to engage.

Figures 14(a) and 14(b) show how rapidly the throughput
of each flow converges to its max-min fair bandwidth alloca-
tion for the NBP with WFQ and the NBP with CSFQ cases,
respectively. Even in a complex network like the one simu-
lated here, all flows converge to an approximately max-min

70 T T T T T

A (ideal=10)"
B(5)

60 -

S0 o

Throughput (Mbps)

1 1.5 2 25 3 35 4 4.5
Time (sec)

(a) Using NBP with WFQ
70 T T T T T T T, T
A (ideal=10) ———
B (5)
60 |- C@335)
EG)
g |7 G(5)
Z w0k H(525) oo |
g .
B ool -
= 20 | 4

0.5 1 L5 2 25 3 35 4 4.5
Time (sec)

(b) Using NBP with CSFQ
Fig. 14. Per-flow throughput in the GFC-2 network

fair bandwidth allocation within one second.

IV. IMPLEMENTATION ISSUES

As we saw in the previous section, Network Border Patrol
is a congestion avoidance mechanism that effectively pre-
vents congestion collapse and provides approximate max-
min fairness when used with a fair queueing mechanism.
However, a number of important implementation issues
must be addressed before NBP can be feasibly deployed in
the Internet. Among these issues are the following:

1. Scalable flow classification. Perhaps the biggest imped-
iment to NBP’s scalability is its reliance upon flow classi-
fication at edge routers. In a network with a large number
of flows, the overheads of maintaining per-flow state, com-
municating per-flow feedback, and performing per-flow rate
control and rate monitoring may become inordinately ex-
pensive. Fortunately, it is possible to address this concern

- by classifying flows more coarsely at edge routers. Instead

of classifying a flow using the packet’s addresses and port
numbers, the network’s edge routers may aggregate many
flows together by, for instance, classifying flows using only
the packet’s address fields. Alternatively, they might choose
to classify flows even more coarsely using only the packet’s

10

destination network address. Coarse-grained flow aggrega-
tion has the effect of significantly reducing the number of
flows seen by NBP edge routers. However, its drawback is
that adaptive flows aggregated with unresponsive flows may
be indiscriminately punished by an ingress router. Hence,
NBP flow aggregation creates a trade-off between scalabil-
ity and per-flow fairness.

2. Scalable inter-domain deployment. Another approach to
improving the scalability of NBP, inspired by a suggestion
in [7], is to develop trust relationships between domains
that deploy NBP. The inter-domain router connecting two
or more mutually trusting domains may then become a sim-
ple NBP core router with no need to perform per-flow tasks
or keep per-flow state.

3. Scalable fairness. Although simulation results show that
NBP is able to achieve the best approximation to max-min
fairness when it is combined with WFQ, WFQ requires that
core routers perform per-flow operations, making it less
scalable than CSFQ. In networks where only a moderate
number of simultaneous flows is possible (e.g., a campus
network), NBP with WFQ may be preferable for its bet-
ter faimess. However, NBP with CSFQ is preferable in
networks with a large number of flows since approximate
global max-min fairness is achieved in a more scalable core-
stateless fashion.

4. Incremental deployment. It is crucial that NBP be im-
plemented in all edge routers of an NBP-capable network.
If one ingress router fails to police arriving traffic or one
egress router fails to monitor departing traffic, NBP will not
operate correctly and congestion collapse will be possible.
Nevertheless, it is not necessary for all networks in the In-
ternet to deploy NBP in order for it to be effective. Any
network that deploys NBP will enjoy the benefits of elimi-
nated congestion collapse within the network. Hence, it is
possible to incrementally deploy NBP into the Internet on a
network-by-network basis. :

5. Multicast. Multicast routing makes it possible for copies
of a flow’s packets to leave the network through more than
one egress router. When this occurs, an NBP ingress router
must examine backward feedback packets returning from
each of the multicast flow’s egress routers. To determine
whether the multicast flow is experiencing congestion, the
ingress router should execute its rate control algorithm us-
ing backward feedback packets from the most congested
ingress-to-egress path (i.e., the one with the lowest flow
egress rate). This has the effect of limiting the ingress rate
of a multicast flow according to the most congested link in
the flow’s multicast tree.

6. Multi-path routing. Multi-path routing makes it possible
for packets from a single flow to leave the network through
different egress routers. In order to support this possibility,
an NBP ingress router may need to examine backward feed-
back packets from more than one egress router in order to
determine the combined egress rate for a single flow. For a
flow passing through more than one egress router, its com-
bined egress rate is equal to the sum of the flow’s egress rates
reported in backward feedback packets from each egress
router.

7. Integrated or differentiated services. NBP treats all flows
identically, but integrated and differentiated services net-
works allow flows to receive different qualities of service.
In such networks, NBP should be used to regulate best ef-
fort flows only. Flows using network services other than
best effort are likely to be policed by separate traffic control
mechanisms. »

V. CONCLUSION

In this paper, we have presented a novel congestion avoid-
ance mechanism for the Internet called Network Border Pa-
trol. Unlike existing Internet congestion control approaches,
which rely solely.on end-to-end control, NBP is able to pre-
vent congestion collapse from undelivered packets. It does
this by ensuring at the border of the network that each flow’s
packets do not enter the network faster than they are able to
leave it. NBP requires no modifications to core routers nor
to end systems. Only edge routers are enhanced so that they
can perform the requisite per-flow monitoring, per-flow rate
control and feedback exchange operations.

Extensive simulation results provided in this paper show
that NBP successfully prevents congestion collapse from un-
delivered packets. They also show that, while NBP is unable
to eliminate unfairness on its own, it is able to achieve ap-
proximate global max-min fairness for competing network
flows when combined with a fair queueing mechanism such
as WFQ. Furthermore, NBP, when combined with CSFQ,
approximates global max-min fairness in a completely core-
stateless fashion.

As in any feedback-based traffic control mechanism, sta-
bility is an important performance concern in NBP. Using
techniques described in [16], we plan as part of our future
work to perform an analytical study of NBP’s stability and
convergence toward max-min fairness. Preliminary results
already suggest that NBP benefits greatly from its use of ex-
plicit rate feedback, which prevents rate over-corrections in
response to indications of network congestion.

11

REFERENCES

(1] S.Floydand K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking,
August 1999, To appear.

[2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in
Proc. of ACM SIGCOMM, September 1998, pp. 303-314.

[3] B. Suter, T.V. Lakshman, D. Stiliadis, and A. Choudhury, “Design
Considerations for Supporting TCP with Per-Flow Queueing,” in
Proc. of IEEE Infocom "98, March 1998, pp. 299-305.

[4] B. Braden ef al,, “Recommendations on Queue Management and
Congestion Avoidance in the Intenet,” RFC 2309, IETF, April
1998.

[51 A.Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of
-a Fair Queueing Algorithm,” in Proc. of ACM SIGCOMM, Septem-
ber 1989, pp. 1-12.

[6] A.Parekhand R. Gallager, “A Generalized Processor Sharing Ap-
proach to Flow Control — the Single Node Case,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 3, pp. 344-357, June 1993.

[7]1 1 Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queue-
ing: Achieving Approximately Fair Bandwidth Allocations in High
Speed Networks,” in Proc. of ACM SIGCOMM, September 1998,
pp. 118-130.

[8] D.Linand R. Moris, “Dynamics of Random Early Detection,” in
Proc. of ACM SIGCOMM, September 1997, pp. 127-137. '

[9] D. Bartsekas and R. Gallagher, Data Networks, second edition,
Prentice Hall, 1987. ,

{10] R.Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan,
“ERICA Switch Algorithm: A Complete Description,” ATM Forum
Document 96-1172, Traffic Management WG, August 1996,

{11] D. Ciark and W. Fang, “Explicit Allocation of Best-Effort Packet
Delivery Service,” IEEE/ACM Transactions on Networking, vol. 6,
no. 4, pp. 362-373, August 1998.

[12] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit, and Fast Recovery Algorithms,” RFC 2001, IETF, January
1997. '

[13] LBNL Network Research Group, UCB/LBNL/VINT Network Sim-
ulator - ns (version 2), http://'www-mash.cs.berkeley.edu/ns/,
September 1997. | '

[14] UCI Network Research Group, Network Border Patrol (NBP),
http:/netresearch.ics.uci.edu/nbp/, 1999.

[15] B. Vandalore, S. Fahmy, R. Jain, R. Goyal, and M. Goyal, “A
Definition of Generalized Fairness and its Support in Switch Al-
gorithms,” ATM Forum Document 98-0151, Traffic Management
WG, February 1998.

[16] W.XK. Tsai and Y. Kim, “Re-Examining Maxmin Protocols: A Fun-
damental Study on Convergence, Complexity, Variations, and Per-
formance,” in Proc. of IEEE Infocom, April 1999, pp. 811-818.

