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Selectively Providing Reliance Calibration Cues With Reliance Prediction
Yosuke Fukuchi1 (fukuchi@nii.ac.jp)

Seiji Yamada1,2 (seiji@nii.ac.jp)

1 National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
2 The Graduate University for Advanced Studies (SOKENDAI), Shonan Vellage, Hayama, Kanagawa, 240-0115, Japan

Abstract
For effective collaboration between humans and intelligent
agents that employ machine learning for decision-making, hu-
mans must understand what agents can and cannot do to avoid
over/under-reliance. A solution to this problem is adjusting
human reliance through communication using reliance cali-
bration cues (RCCs) to help humans assess agents’ capabili-
ties. Previous studies typically attempted to calibrate reliance
by continuously presenting RCCs, and when an agent should
provide RCCs remains an open question. To answer this, we
propose Pred-RC, a method for selectively providing RCCs.
Pred-RC uses a cognitive reliance model to predict whether a
human will assign a task to an agent. By comparing the predic-
tion results for both cases with and without an RCC, Pred-RC
evaluates the influence of the RCC on human reliance. We
tested Pred-RC in a human-AI collaboration task and found
that it can successfully calibrate human reliance with a reduced
number of RCCs.
Keywords: reliance calibration; reliance prediction; human-
AI collaboration

Introduction
Machine learning (ML) is a powerful tool for robots and
agents that collaborate with humans. There have been many
trials of introducing ML, and such AI agents have shown
great performance in various fields (Ren & Bao, 2020; Gul,
Rahiman, & Alhady, 2019; Kalashnikov et al., 2018). How-
ever, as ML models get more complex, it becomes more dif-
ficult for end users to understand how to adequately use AI
agents (Adadi & Berrada, 2018; Rai, 2020), a consequence
of which is that users over-rely or under-rely on them (Hoff
& Bashir, 2015; Parasuraman & Riley, 1997). Over-reliance,
in which a human overestimates the capability of an AI
agent, can cause misuse and task failure (Robinette, Li, Allen,
Howard, & Wagner, 2016). It even leads to even serious ac-
cidents, particularly for embodied agents such as robots and
autonomous vehicles. Under-reliance is also problematic be-
cause it results in disuse, increases human workload, and de-
grades the total collaboration performance.

Previous studies attempted to adjust human reliance by
providing signals or information elements used by humans to
assess an AI’s capability (de Visser, Cohen, Freedy, & Para-
suraman, 2014). In this paper, we call them reliance calibra-
tion cues (RCCs). For example, presenting an AI model’s
confidence rate is shown to be effective for an RCC (McGuirl
& Sarter, 2006; Zhang, Liao, & Bellamy, 2020).

This work was supported in part by JST, CREST, Japan, under
Grant JPMJCR21D4.
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Figure 1: Predictive Reliance Calibrator (Pred-RC) enables
AI system to selectively provide trust calibration cues. In
Pred-RC, cognitive reliance model predicts probability that
human will assign current task to AI. By considering both
cases with and without cue provision, Pred-RC evaluates
how much cue will contribute to trust calibration and decides
whether to provide it.

A challenge facing reliance calibration with RCCs lies in
the timing at which to provide them. In typical previous stud-
ies, RCCs are provided continuously, but this is not always
realistic, for example when a robot verbally provides them.
There is a trade-off between successful calibration and re-
ducing the communication cost, but computational methods
for deciding when to provide them are quite limited. Oka-
mura & Yamada proposed a method for selectively provid-
ing RCCs by detecting over/under-reliance (Okamura & Ya-
mada, 2020a, 2020b). However, their method simply checks
a human’s false assignment of past tasks to him/herself or an
AI and does not capture a human’s cognitive aspects such as
his/her past experiences collaborating with AI and beliefs of
what kind of tasks the AI can do.

This paper proposes Predictive Reliance Calibrator (Pred-
RC), a method for selectively providing RCCs (Fig. 1). The
main idea of Pred-RC is that it selects whether to provide an
RCC to avoid a wide gap between the human reliance rate
and the AI’s success probability. Here, the reliance rate is
the probability that a human will assign a current task to the
AI system. In Pred-RC, a cognitive reliance model predicts
human reliance rates in both cases where an RCC is provided
or not. By comparing the predicted rates with the success
probability (actual reliability), Pred-RC evaluates the impact
of an RCC for reliance calibration.

This paper reports an experiment on reliance calibration by
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Pred-RC using crowdsourcing. We focused on crowdwork-
ers’ decision accuracy, or how many times the workers as-
signed tasks that an AI could solve to the AI and did ones
that the AI could not by themselves. The results show that the
workers’ accuracy did not decline with Pred-RC’s selective
RCCs, whereas that of workers whose RCCs were randomly
provided got worse as fewer RCCs were provided, suggesting
that Pred-RC enables an AI to selectively provide RCCs at the
proper timing by predicting and comparing reliance with and
without an RCC.

Background
Trust/reliance calibration
Reliance is a concept relevant to trust, and it is sometimes
studied inclusively in the field of engineering. Trust is atti-
tudinal and a psychological construct, while reliance focuses
on the behaviors of humans, which is directly observable and
thus an objective measure (Scharowski, Perrig, von Felten, &
Brühlmann, 2022). Although the main focus of this paper is
reliance, this section reviews both trust and reliance calibra-
tion to highlight our research because of their close relevance.

There are various approaches to achieving trust/reliance
calibration, one of which is to change an agent’s ac-
tions (Dubois & Ny, 2020; Sheng et al., 2021). For example,
Chen et al. proposed trust-POMDP, a computational model
that allows an AI to decide an action with awareness of hu-
man trust (Chen, Nikolaidis, Soh, Hsu, & Srinivasa, 2020).
They demonstrated that with trust-POMDP, a robot automat-
ically generates behavior that involves tackling an easier task
first and successfully earns human trust.

Another approach is to explicitly provide information or
communicative signals that help humans assess an AI’s ca-
pability. Commonly used RCCs are the confidence rate or
uncertainty of an AI’s decision-making (McGuirl & Sarter,
2006; Zhang et al., 2020; Helldin, Falkman, Riveiro, &
Davidsson, 2013). In this paper, Pred-RC provides confi-
dence information as an RCC.

Some studies focused on continuously providing RCCs
and demonstrated its effectiveness (Helldin et al., 2013;
Häuslschmid, von Bülow, Pfleging, & Butz, 2017). McGuirl
& Sarter compared providing dynamic system confidence
with overall reliability only and found that the former can
improve trust calibration (McGuirl & Sarter, 2006).

However, there are at least two potential concerns with the
continuous provision of RCCs. One is that too many RCCs
can be annoying for humans. This depends mainly on how
the RCC are provided, and a typical negative case is that in
which a robot verbally provides them. The other concern is
that humans sometimes pay less attention to continuously dis-
played information. Okamura & Yamada found that, in their
experiment, participants did not change their over-reliance in
spite of a reliability indicator being continuously displayed to
them. They also found that giving additional trigger signals
was effective in resolving this problem (Okamura & Yamada,
2020a). Therefore, we aim to achieve successful reliance cal-

ibration by not continuously but selectively providing RCCs.
Very few studies have focused on a computational method

for adaptively providing RCCs. A method proposed by
Okamura & Yamada judges whether an AI should pro-
vide an RCC or not with “trust equations,” logical for-
mulae that mathematically express a human’s over/under-
reliance (Okamura & Yamada, 2020a, 2020b). A prob-
lem with this method is that its judgment depends only on
how many times a human falsely assigns a task to an AI or
him/herself, and it cannot capture the details of collabora-
tion experiences such as in what task a human observed an
AI’s failure, when an AI provided RCCs, and what the tasks
were. These experiences can affect human beliefs about an
AI’s capability. For example, an experience with an AI’s suc-
cess/failure on a task is more likely to influence human re-
liance in a similar task than a different task. In Pred-RC, a
reliance model is trained to predict human reliance, taking
into account the collaboration history between a human and
an AI, and it is expected to capture these aspects.

Reliance estimation
A basic idea of Pred-RC is that inferring human reliance on
an AI agent helps with the selective provision of RCCs. For
example, an RCC that increases human reliance may be less
effective if a human already has high reliance on an agent
than if s/he has low reliance.

Self-report trust scales are commonly used to measure
trust (Jian, Bisantz, & Drury, 2000; Madsen & Gregor, 2000;
Yagoda & Gillan, 2012). Some studies focus on neural met-
rics to infer human trust using fMRI or EEG (Fett, Gromann,
Giampietro, Shergill, & Krabbendam, 2012; Choo & Nam,
2022). A weak point of these methods is that they can be
intrusive during a task execution. A more relevant approach
to this study focuses on human behavior. Walker et al. pro-
posed a method for inferring human trust on the basis of their
gaze movements (Walker, Verwey, & Martens, 2018). Human
interventions or takeovers of a robot’s action is an indicator
of poor trust, and Muir incorporated them into human trust
models (Krber, Baseler, & Bengler, 2018). Another factor is
a human’s decision-making regarding whether to assign a task
to themselves or an AI (Okamura & Yamada, 2020a, 2020b),
and we follow this approach.

Many methods have been proposed to estimate re-
liance/trust, but none of them can take into account the effects
of RCCs on human reliance, or the effects of what RCCs have
been provided so far and how the reliance changes if or un-
less an RCC is provided for a current task, which the reliance
model aims to achieve.

Selectively providing trust calibration cues
Formalization
This paper formalizes human-AI collaboration with selec-
tively provided RCCs as a tuple (x, ĉ,c,d,y∗,y, p). Let us
consider a situation in which a human sequentially performs
a set of tasks {xi}N

i=1 with an AI agent, where i is the index of
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a task and N is the number of tasks. ĉi is a potential RCC for
the AI system when xi is given, and Pred-RC decides whether
to provide it. ci is the RCC actually provided to the human:

ci =

{
ĉi (if RCC is provided)
[MASK] (elsewise).

(1)

ci = [MASK] means that no RCC is provided.
The human observes (xi,ci,y∗i ) and determines whether to

assign xi to him/herself or the AI agent. Let di ∈ {AI,human}
be the agent responsible for xi. y∗i is the desired result for
xi, and yi is the actual result for xi performed by di. y∗i =
yi indicates the success of xi. The human can observe the
result produced by the AI when di =AI, which is feedback for
him/her to assess its reliability, but cannot when di = human.

pi is the success probability of the AI for xi. i is incre-
mented when xi is completed.

Pred-RC
Pred-RC adaptively selects whether to provide an RCC (Fig.
1). The main idea of Pred-RC is that it aims to avoid a dis-
crepancy between the human reliance rate ri and the AI’s suc-
cess probability pi. Here, ri is the probability that the human
will assign xi to the AI. Pred-RC considers two types of ri:

rw/
i = P(di = AI|x:i,c:i−1,ci = ĉi,d:i−1,y∗:i,y:i−1),

rw/o
i = P(di = AI|x:i,c:i−1,ci = [MASK],d:i−1,y∗:i,y:i−1).

(2)

The difference between rw/ and rw/o is whether ĉi is provided
to the human or not. Variables with the subscript ∗:i represent
the vector of the sequence (∗1,∗2, ..,∗i).

The discrepancy ∆i is the difference between ri and pi:{
∆

w/
i = |rw/

i − pi|,
∆

w/o
i = |rw/o

i − pi|.
(3)

Pred-RC compares ∆
w/
i and ∆

w/o
i and decides whether to

provide ĉi. Equation 1 is rewritten as follows:

ci =

{
ĉi (∆

w/o
i −∆

w/
i < threshold)

[MASK] (elsewise).
(4)

threshold represents the allowable range of ∆
w/o
i compared

with ∆
w/
i and controls how much Pred-RC omits RCCs.

threshold = 0 means that Pred-RC omits ci only when no
RCC is predicted to be better rather than providing ĉi, and
increasing threshold results in more omitted RCCs.

Reliance model
The reliance model is a cognitive model that predicts both
rw/

i and rw/o
i . Figure 2 illustrates the structure of the

model. It is based on the Transformer encoder (Vaswani
et al., 2017), a deep-learning model that has shown great
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Figure 2: Structure of reliance model

performance originally in natural language processing and
is being applied to various domains (Han et al., 2022;
Mousavi, Ellsworth, Weiqiang, Chuang, & Beroza, 2020) in-
cluding human-computer interaction (Matsumori et al., 2021;
Fukuchi, Osawa, Yamakawa, & Imai, 2022). By taking into
account the collaboration history between a human and the
target AI system, the reliance model can effectively capture
human beliefs regarding an AI’s capability.

The reliance model receives a history of collaboration be-
tween a human and AI (x:i−1,c:i−1,d:i−1, f:i−1) and the current
state (xi,ci). The history includes information such as when
and to which task an RCC was provided and which decision
the human made regarding the task, so the reliance model can
capture a human’s beliefs regarding what task they think the
AI can execute to predict human decisions better.

Each feature in the collaboration history is first embedded
with perceptrons. The embedded vectors are summed up with
position embeddings, which give index information (Vaswani
et al., 2017). Then, the vectors are transformed by the Trans-
former encoder model, and a multi-layer perceptron predicts
ri from the transformed vector of the index i.

Unlike equation 2, the reliance model cannot access y∗ be-
cause we assume that the AI is not perfect, although it is an
important information for the human to assess the AI’s relia-
bility by comparing it with the AI’s result. Instead of this, we
included f , feedback from the human’s task result:

fi =


0 (di = AI)
1 (di = human and yi matches the AI′s result)
2 (di = human and yi does not match the AI′s result).

(5)
We masked di and fi because they are not obtained when pre-
dicting ri.

The reliance model is trained in a supervised manner. We
adopted a binary cross-entropy loss function for the training:

L =−δ(di,AI) · log(ri)−δ(di,human) · log(1− ri), (6)

where δ(a,b) = 1 when a = b and 0 when a 6= b.
When inferring ri, we run the reliance model with both

cases in which ct = ĉt and ct = [MASK], the results of which
are the predicted values of rw/ and rw/o, respectively.
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Figure 3: Screenshot of user interface for CC task

(a) 90.0% (b) 59.8%

(c) 0.0% (d) 0.0%

Figure 4: Examples from CAPTCHA datasets. We used up-
per two datasets for training of task AI. Sub-caption shows
accuracy of task AI for each dataset.

Training reliance model
Task
We developed a collaborative CAPTCHA (CC) task for train-
ing the reliance model and evaluating Pred-RC. Figure 3
shows a screenshot of the user interface. CAPTCHA is orig-
inally a task in which a human enters characters written in a
noised and distorted image (von Ahn, Blum, Hopper, & Lang-
ford, 2003). In the CC task, a worker can get assistance from
a task AI that is trained to recognize characters in images.
Here, xi is an image, and y∗i is a ground-truth label for xi. ĉi
is the confidence rate of the task AI for xi.

A worker first chooses di (Fig. 3). If s/he chooses “AI,”
the task AI automatically enters its answer in a text box. The
worker can observe the AI’s answer before sending it to the
host server but cannot edit it. If s/he chooses “Yourself,” an
empty text box appears, and s/he is asked to enter the charac-
ters. The worker repeats this 60 times.

Task implementation
CAPTCHA dataset and task AI Figure 4 shows examples
of CAPTCHA images used in our experiments. We acquired
four datasets from Kaggle, a web platform for data scientists
and machine learning practitioners1. We split each dataset for
training and testing. We excluded two datasets for training the
task AI to replicate a bias in AI capability. For workers, un-
derstanding bias can help improve task assignment and result
in fewer RCC requirements. Figure 4 also shows the accuracy
of the task AI. The accuracy is actually biased by the dataset
used for the training.

1https://www.kaggle.com/.

Each CAPTCHA image has five characters, and the task
AI outputs the probability distribution that the j-th charac-
ter xi, j is ι ∈ I, where I is a set of alphabetic and numerical
characters.

TaskAI(xi, j, ι) = P(xi, j = ι). (7)

When di = AI, yi is a sequence of the most probable ι ∈ I for
each xi, j.

yAI
i = {argmaxι(TaskAI(xi, j, ι))}5

j=1. (8)

The task AI was implemented using ResNet-18, a deep-
learning model commonly used for image processing.

RCC and success probability The confidence rate was cal-
culated on the basis of the probability distribution output from
the task AI (Guo, Pleiss, Sun, & Weinberger, 2017).

ĉi ∝ Π
5
j=1(maxι∈I(TaskAI(xi, j, ι))). (9)

ĉi becomes higher the more probability there is that the task
AI assigns to the most probable character. pi was calculated
on the basis of ĉi using logistic regression. The logistic re-
gression model was trained to predict whether yAI

i matches y∗i
from training datasets.

We adopted the confidence rate, ĉi, rather than the suc-
cess probability because, in our pilot experiment, we found
that the confidence rate calibrates worker reliance better than
the success probability. This is presumably because the suc-
cess probability, which was calculated with logistic regres-
sion, was distributed steeply around 0% and 100%, whereas
the distribution of the confidence rate was flatter.

Reliance dataset acquisition and model training
We made a reliance dataset to train the reliance model and
evaluate Pred-RC. The dataset was composed of sequences
of the tuple (x, ĉ,c,d,y∗,y, p).

250 participants were recruited with compensation of 100
JPY through Yahoo! Japan crowdsourcing2. The data ac-
quisition was conducted on a website. The participants were
first provided pertinent information, and all participants con-
sented to the participation. We instructed them on the flow
of the CC task and asked five questions to check their com-
prehension of the task. 99 participants, who failed to an-
swer the questions correctly, were excluded from the CC task,
and 151 participants remained (60 female and 91 male; aged
20− 78,M = 47.5,SD = 12.2). The protocol of the reliance
dataset acquisition and the evaluation of Pred-RC was ap-
proved by the ethics committee of the National Institute of
Informatics.

xi was randomly chosen for each participant from the test
sub-datasets. We manipulated how many images to use from
each CAPTCHA dataset so that the task AI’s overall accuracy
became 50% while keeping the task AI’s accuracy for each
dataset the same to avoid extreme over/under-reliance.

2https://crowdsourcing.yahoo.co.jp/

1582



Whether to provide an RCC was randomly decided for
each participant. The percentage of times that RCCs were
provided was controlled to be 0, 20, 40, 60, 80, or 100%.

We trained the reliance model and investigated its accu-
racy with the reliance dataset. We performed k-fold cross
validation with stratification of the data to align the percent-
age of the number of provided RCCs. We set k = 10. After
50 epochs of training, the reliance model predicted di with a
maximum accuracy of 81.6% (95% CI3: 80.0%, 83.2%) on
average at the 25th epoch.

Evaluation
Aim
We evaluated whether Pred-RC can selectively provide RCCs
at an effective timing. More specifically, we investigated
whether Pred-RC can reduce the number of RCCs while
avoiding over/under-reliance.

Procedure
The CC task was used to evaluate Pred-RC. The participants
performed the task in a similar same way as the reliance
dataset acquisition. The difference is that it was Pred-RC that
determined whether to provide RCCs with each participant’s
decision-making history, whereas this was randomly deter-
mined in the reliance dataset acquisition. Pred-RC predicted
the user reliance rate with the reliance model.

91 crowdworkers, none of whom participated in the data
acquisition for the reliance dataset, were recruited for this ex-
periment with compensation of 100 JPY. Using the compre-
hension checking questions, 39 participants were excluded
from the CC task, and 52 participants remained (14 female
and 38 male; aged 21-65, M=43.3, SD=10.2). After the CC
task, we also asked the participants to freely comment about
their experience with the task.

We prepared a threshold set to control the number of RCCs
to provide. This was determined by referring to the distribu-
tion of ∆

w/o
i −∆

w/
i calculated with the reliance dataset.

We compared the F-score for the humans’ decisions be-
tween the Pred-RC condition and random condition, which
was provided from the reliance dataset. Here, the F-score
was calculated with the number of times human decisions
matched the AI’s success.

Hypothesis
We hypothesized that by properly selecting the timing for
providing RCCs, Pred-RC can soften the decrease in the F-
score in spite of the RCCs omitted, whereas that of the ran-
dom condition was larger.

Results
Figure 5 illustrates the F-score for the humans’ decisions.
We conducted an ANCOVA4 to statistically analyze the re-
sults. There were significant effects for the number of cues

3Confidence interval
4Analysis of covariance

0 20 40 60 80 100
Number of cues [%]

0.4

0.5

0.6

0.7

0.8

0.9

F-
sc

or
e

Pred-RC
random

Figure 5: F-score of humans’ decisions. Error bands shows
95% CI for linear regressions.
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𝑑 AI AI AI AI human human
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correct? ✔ ✔ ✔ ✔ ✔ ✔

Figure 6: Successful example of Pred-RC

(F(1,199) = 30.1; p < .0001;η2
p = .132), the RCC selection

method (F(1,199) = 4.54; p = .034;η2
p = .022), and the in-

teraction effect (F(1,199) = 7.31; p = .007;η2
p = .035).

In the random condition, the F1-score decreased as the
number of RCCs decreased. On the other hand, as far as
the range of the data, the number of RCCs had little effect
on the F-score in the Pred-RC condition, so the difference in
F1-score between the Pred-RC and random conditions broad-
ened as RCCs were reduced. This suggests that Pred-RC soft-
ened the decrease in the F-score in spite of the omitted RCCs,
which supports our hypothesis. Therefore, we conclude that
Pred-RC can reduce the number of times RCCs are provided
while avoiding over/under-reliance by evaluating the effect of
each RCC on the basis of human reliance prediction.

Discussion
Examples of Pred-RC’s behavior
Figure 6 shows a successful example of Pred-RC. We need
to mention that it is difficult to follow the actual dynamics of
the interaction among Pred-RC, participants, and tasks, so our
explanations here are post-hoc. First, four images from the
dataset on which the task AI achieved the best accuracy were
provided, and actually, all the answers for them by the AI
were correct. Pred-RC decided to show a high confidence rate
at the first image, and the participant could correctly assign it
to the AI. Pred-RC did not provide an RCC for the next three
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Figure 7: Unsuccessful example of Pred-RC

images, which we can consider a valid decision because they
were similar to the first one, so the participant was likely to
expect the AI to be continuously successful. As a result, the
participant could properly assign them to the AI. The fifth and
sixth images were not in the datasets with which the task AI
was trained, so the participant needed to do it by him/herself.
Here, Pred-RC provided RCCs to avoid over-reliance on the
AI, and the participant could avoid assigning them to the AI.

Figure 7 illustrates an unsuccessful example. The partici-
pant chose the AI for the first three tasks, observed the AI’s
failures in a row, and eventually changed his/her decision for
the fourth task. Here, Pred-RC could not provide RCCs un-
til the sixth task because the target percentage of RCCs was
20%, and threshold was high. At the fifth task, we found
that the reliance model predicted a high reliance rate for both
with and without an RCC (96.2% and 95.6%, respectively),
which we can consider a false prediction because the partic-
ipant had observed the failures and was likely to engage in
under-reliance. A possible reason for this result is that the
reliance model overfitted the visual features of the dataset of
images with a blue background color. Since the task AI’s ac-
curacy for the dataset was high, and the participants tended to
notice this, they also tended to assign images from this dataset
to the AI. The model may have overestimated human reliance
and been less sensitive to history data when images from this
dataset were given. In contrast, the model and Pred-RC made
a reasonable prediction and decision at the sixth task. The
model predicted a high reliance rate with the RCC (65.7%)
and low without it (34.9%). Because the success probabil-
ity was 85.4%, Pred-RC decided to provide the RCC, and the
participant could successfully choose the AI.

Participants’ comments
We asked the participants to freely comment about their ex-
periences during the CC task and acquired comments from 45
of them.

Twenty-one participants mentioned that they had focused
on specific visual features such as “blue background color” or
“dots” to decide to whom to assign tasks, suggesting that they
were aware of the bias of the task AI’s success probability,
and most of them successfully captured the characteristics of
the CAPTCHA datasets.

Six participants mentioned the provided RCCs. While one
negatively assessed them (“I felt the confidence rate was not
reliable”), the others provided positive comments (“I found

that the AI was likely to succeed when the confidence rate
was more than 50%, so I chose the AI then.”). This may indi-
cate that expectations toward the reliability of RCCs are differ
by the individual, which may arouse distrust in RCCs. Us-
ing meta-RCCs, which calibrate trust not in an AI but RCCs,
or multiple RCCs to make up for distrusted ones is promis-
ing as well. Pred-RC can theoretically afford multiple RCCs
for its input by changing ci, which is a future direction for
extending Pred-RC. Depending on the situation, the prob-
lem of distrusted RCCs should be handled in another way
such as apologies, excuses, or explanations and dialogues,
which are found to be effective for trust repair (Lucas et
al., 2018; Natarajan & Gombolay, 2020; Robinette, Howard,
& Wagner, 2015; Sebo, Krishnamurthi, & Scassellati, 2019;
Strohkorb Sebo, Traeger, Jung, & Scassellati, 2018).

Limitation

An important limitation of Pred-RC is that it does not con-
sider human capability for a task. Two participants com-
mented that they used the task AI when they were not confi-
dent in their answers. In the CC task, humans were not perfect
as well (84.4% accuracy when di = human). While our ex-
periments successfully demonstrated that Pred-RC can effec-
tively calibrate human reliance with a measure of how many
times humans assign a task to the AI if and only if the AI can
succeed, to improve the total collaboration performance, we
still need to take into account the capability of a human and
compare it with that of an AI.

We attempted to control the number of RCCs by changing
threshold. However, in actual use, we need to consider the
trade-off between collaboration performance and the com-
munication cost of RCCs rather than rigidly target the num-
ber of RCCs. A future direction for this work is to integrate
machine-learning methods to adjust the threshold. A possible
approach is using reinforcement learning (RL), in which an-
other reliance model learns not ri but threshold with a reward
function that balances the performance and cost.

Conclusion

This paper proposed Pred-RC, a method for selectively pro-
viding RCCs for human-AI collaboration. It decides whether
to provide an RCC to avoid a discrepancy between the task
success probability of an AI and the human reliance rate. In
Pred-RC, a cognitive reliance model is used to predict re-
liance on an AI given a specific task on the basis of the col-
laboration history with a human. It can predict whether a
human will assign a task to an AI for cases in which an RCC
is provided or not. We implemented and tested Pred-RC for a
human-AI collaboration task called the CC task. The results
demonstrated that Pred-RC can perform reliance calibration
with a reduced number of RCCs, indicating that we can selec-
tively provide RCCs by evaluating their influence on human
reliance with reliance prediction.
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