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Stability of operational taxonomic units: an
important but neglected property for analyzing
microbial diversity
Yan He1, J Gregory Caporaso2,3, Xiao-Tao Jiang1, Hua-Fang Sheng1, Susan M Huse4, Jai Ram Rideout3,
Robert C Edgar5, Evguenia Kopylova6, William A Walters7, Rob Knight6,8 and Hong-Wei Zhou1*
Abstract

Background: The operational taxonomic unit (OTU) is widely used in microbial ecology. Reproducibility in
microbial ecology research depends on the reliability of OTU-based 16S ribosomal subunit RNA (rRNA) analyses.

Results: Here, we report that many hierarchical and greedy clustering methods produce unstable OTUs, with
membership that depends on the number of sequences clustered. If OTUs are regenerated with additional
sequences or samples, sequences originally assigned to a given OTU can be split into different OTUs. Alternatively,
sequences assigned to different OTUs can be merged into a single OTU. This OTU instability affects alpha-diversity
analyses such as rarefaction curves, beta-diversity analyses such as distance-based ordination (for example, Principal
Coordinate Analysis (PCoA)), and the identification of differentially represented OTUs. Our results show that the
proportion of unstable OTUs varies for different clustering methods. We found that the closed-reference method is
the only one that produces completely stable OTUs, with the caveat that sequences that do not match a
pre-existing reference sequence collection are discarded.

Conclusions: As a compromise to the factors listed above, we propose using an open-reference method to enhance
OTU stability. This type of method clusters sequences against a database and includes unmatched sequences by
clustering them via a relatively stable de novo clustering method. OTU stability is an important consideration when
analyzing microbial diversity and is a feature that should be taken into account during the development of novel OTU
clustering methods.
Background
Rapid advances in DNA sequencing technologies over
the past decade have allowed us to study communities
of microorganisms in far greater depth than was previ-
ously possible. Many of these studies involve PCR ampli-
fication and sequencing of marker genes (often the 16S
small ribosomal subunit RNA (rRNA)) from complex
communities of organisms, which can then be compared
to databases of known sequences to identify the taxa
present in the microbial community. These methods
have led to the discovery of new organisms at a much
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faster rate than taxonomists can describe and name. To
facilitate taxonomy-independent analyses and to reduce
the computational resources necessary for such, marker
gene sequence reads are typically clustered based on se-
quence similarity, under the assumption that sequences
with greater similarity represent more phylogenetically
similar organisms. These clusters, or operational taxo-
nomic units (OTUs), are widely used as an analytical
unit in microbial ecology studies [1].
Due to the lack of a gold standard of ‘correct’ OTUs,

several measurements have been used to evaluate the
performance of clustering methods, for example, ration-
ality of OTU structure [2,3], computational efficiency
(that is, runtime and memory requirements) [4], and the
ability to cope with OTU inflation [5]. However, OTU
stability has rarely been studied to date, despite the
importance of this property. Here, we define the stability
is an Open Access article distributed under the terms of the Creative Commons
rg/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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of an OTU by whether it contains the same clustered se-
quence(s) regardless of the number of sequences that are
clustered. If OTUs are found to be unstable when cluster-
ing different numbers of sequences in different clustering
runs, the sequences in a given OTU may be assigned to
different OTUs. Alternatively, sequences assigned to
different OTUs can be assigned to a single OTU.
Roesch et al. [6] reported the above detailed clustering

artifact soon after next-generation sequencing was ap-
plied to 16S rRNA. Using six different sequence subset
sizes (ranging from 10,000 to 53,632 sequences) from a
single Canadian soil dataset, they showed that larger in-
put sequence counts produced steeper rarefaction curves
(Figure 1a). Rarefaction curves plot the alpha-diversity
(for example, the number of species or OTUs) found
within a given number of observations (DNA sequences).
Rarefaction curves are widely used to test whether an en-
vironment has been sufficiently sequenced to observe all
taxa and to extrapolate the total diversity of the sampled
community [1,3]. A rarefaction curve where the slope
changes when calculated from a different number of initial
sequences directly conflicts with the expected behavior of
such a curve and challenges the fundamental principle
that the diversity of a whole community can be estimated
from a sequenced sample.
In this study, we reveal that unstable OTUs lead to

non-overlapping rarefaction curves. We further show
that these unstable OTUs can also affect beta-diversity
analyses. We also evaluated existing de novo and
reference-based clustering methods to show that all de
novo clustering methods are unstable to some extent,
while closed-reference clustering generates stable OTUs.
Closed-reference clustering has the considerable limita-
tion of excluding any OTUs that are not defined in a pre-
existing reference set, which in turn excludes novel OTUs
from analysis. As a compromise between generating OTU
Figure 1 Rarefaction curves, principles underlying unstable complete linka
(a) Rarefaction curves generated with CL clustering at five different depths
dataset, and point B is the number of OTUs at 30,000 sequences from the
sampling depths. White circles indicate individual sequences that were incl
indicate sequences that were added only in the large subsample. Lines ind
threshold, which could therefore be linked into a single OTU. Large circles
respectively. (c) PCoA based on the Bray-Curtis distance, comparing 60% su
rarefied to 30,000 sequences per sample to be included in this analysis.
instability and the potential elimination of novel taxa, we
recommend using open-reference OTU clustering [7],
which we show to result in more stable OTUs than fully
de novo clustering methods.

Results and discussion
Changing membership of OTUs at different sequencing
depths (OTU instability) - a neglected but important
property for analyses of microbial diversity
To illustrate the problem created by unstable OTUs, we
reproduced the non-overlapping rarefaction curves using
the same dataset (Canada soil dataset) and the same
clustering method (complete linkage clustering, referred
to as CL clustering) employed by Roesch et al. (Figure 1a).
We randomly subsampled the raw sequences at four
sequencing depths (20%, 40%, 60%, and 80% of the input
sequences) using 30 replicates of each. We then used
complete linkage (CL) clustering to cluster each of the
subsamples (definitions of all clustering methods can be
found in Additional file 1) and generated rarefaction
curves for each sampling depth. In the case of CL cluster-
ing, the rarefaction curve produced by a larger subsample
is steeper than that produced by a smaller subsample.
One goal when generating rarefaction curves is to sup-

port interpolation, meaning that if we create a rarefaction
curve from a full dataset, we would like to use that curve
to determine how many species would be observed for
some number of sequences that amounts to less than the
total. For example, when we interpolate from the rarefac-
tion curve created from a full dataset, we estimate that we
have approximately 4,500 species if we randomly select
30,000 sequences from the full dataset (point A in
Figure 1a). The problem that non-overlapping rarefaction
curves pose for interpolation, however, is that if we instead
randomly subsampled 30,000 sequences from an 80%
subsample of the full dataset, we would estimate that only
ge (CL) clustering, and PCoA based on the Bray-Curtis distance.
. Point A is the number of OTUs at 30,000 sequences from the 100%
60% dataset. (b) Principles underlying unstable CL clustering at two
uded in both the small and the large subsamples, and dark circles
icate pairs of sequences with distances equal to or smaller than the
in red or blue indicate OTUs in the small and the large subsamples,
bsamples with the full datasets using CL. All of the subsamples were
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4,200 species are represented by these 30,000 sequences
(point B in Figure 1a). This scenario would essentially be
true in cases where only a few sequences were collected
per sample, a phenomenon that conflicts with the
expected behavior of rarefaction curves.
We have observed that the non-overlapping of rarefac-

tion curves, as illustrated in Figure 1a, is actually caused
by the instability of OTU clustering methods. In other
words, the cluster that a sequence is assigned to can be
affected by the number of sequences being clustered. An
illustration of this hypothesis is shown in Figure 1b. If we
observe only two sequences, S1 and S2, within the similar-
ity threshold (indicated by linking with a bar), they are
clustered into a single OTU (OTU1). We then add three
more sequences, S3, S4, and S5, which could be linked to
S1 or to S2, but several pairwise distances exceed the
threshold (these pairs are not linked by bars). By definition
of CL, pairwise distances for all sequences assigned to a
single OTU must fit within the distance threshold [8,9],
which could allow S1 and S2 to be separated into OTU2
and OTU3. OTU1 disappears at this sequencing depth,
and its sequences are reassigned to two different OTUs,
illustrating the problem of OTU instability. Theoretically,
adding more sequences tends to split existing OTUs when
using the CL algorithm. As a result, when being clustered
with a larger dataset versus a smaller dataset, the same
sequences will be grouped into more OTUs. This will re-
sult in a steepening of the rarefaction curve that is derived
from the larger sample and the conclusion that it has a
higher alpha-diversity. Rarefaction curves that arise from
CL are therefore more sensitive to sequencing depth.
Though this effect is weak, it still partially illustrates why,
in some cases, the collecting of a number of sequences
that is based on a smaller sample size would be expected
to produce a rarefaction curve that reaches a plateau, and
instead a continually increasing rarefaction curve is
produced. This phenomenon of an individual being
assigned to different OTUs simply because of increased or
decreased sampling depth is obviously problematic. An
analogous situation based on traditional (macro-scale)
ecology would be if counting different numbers of birds
within a fixed area led to the redefinition of which indi-
vidual birds group together as a species. However, the
above-described instability is not due to the occasional
identification of novel species, as might be the case in
traditional ecology. In contrast, these changes to OTU
membership occur systematically within a large propor-
tion of the sequences being reassigned between OTUs.
To further investigate the effect of unstable OTUs on

biological interpretation, we next explored beta-diversity
using ordination. Using Principal Coordinate Analysis
(PCoA), we compared the microbial communities against
the full dataset using subsamples comprising 60% of the
full dataset. We repeated this subsampling 30 times to
create replicates. We then used CL clustering to cluster all
of the subsamples, as well as the full dataset, and
combined the clustering results by representative OTU
sequence (defined as the most abundant sequence in each
OTU). The samples were then randomly rarefied to
include 30,000 sequences per sample, including the 30
replicate rarefactions that resulted from the clustering of
the full dataset. Following rarefaction, all samples
contained the same number of sequences so that the only
differences among them were the number of sequences
that were initially clustered. PCoA demonstrated that
these samples separated according to the number of se-
quences that were initially clustered, indicating that OTU
instability results in the same samples appearing to have
different compositions (Figure 1c). A similar result was ob-
served when comparing the 20%, 40%, and 80% subsam-
ples against the full dataset (Additional file 2: Figure S1).
Furthermore, 125 OTUs (after false discovery rate (FDR)
correction) and 26 OTUs (after Bonferroni correction)
were determined to be significantly different between these
two groups using the Mann-Whitney U test. We also
tested the effect that unstable OTUs have on calculating
taxonomic composition and found the effect to be very
limited (Additional file 3: Figure S2 and Additional file 4).
This is because these OTUs are still assigned to the same
taxa as a consequence of their phylogenetic proximity,
despite the fact that they are changing when more
sequences are added using CL (also discussed below in the
section detailing the tolerance of PCoA to using phylogen-
etic metrics with unstable OTUs).

Alternative hierarchical and greedy clustering methods
also produce unstable OTUs
All hierarchical methods that are used to determine
OTU membership are based on pairwise distances be-
tween the sequences in OTUs. CL clustering requires
the pairwise distance between all sequences in one OTU
to fit within the distance threshold. Single linkage (SL)
clustering requires the pairwise distance between any
pair of sequences in one OTU to fit within the distance
threshold. Average linkage (AL) clustering requires the
average pairwise distances between all sequences in one
OTU to fit within the distance threshold. As would be
expected when using SL clustering (Figure 2a), OTUs
tend to be merged when more sequences are added,
which is the opposite of the splitting problem that is
observed with CL. Accordingly, rarefaction curves
created using SL become less steep as subsample size
increases (Figure 2b). Beta-diversity is also affected by
unstable SL clustering of OTUs (Figure 2c). For ex-
ample, 167 OTUs (after FDR correction) and 36 OTUs
(after Bonferroni correction) were determined to be dif-
ferentially represented across both the 60% subsample
and the full dataset.



Figure 2 Principles underlying unstable single linkage (SL) clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance. (a) Principles
underlying unstable SL clustering at two sampling depths. White circles indicate individual sequences that were included in both the small and the
large subsamples, and dark circles indicate sequences that are added only in the large subsample. Lines indicate pairs of sequences with distances
equal to or smaller than the threshold, which could therefore be linked into a single OTU. Large circles in red or blue indicate OTUs in the small and
the large subsamples, respectively. (b, d) Rarefaction curves generated with SL (b) and average linkage (AL) (d) clustering at five different depths.
(c, e) PCoA based on the Bray-Curtis distance, comparing 60% subsamples with the full datasets using SL (c) and AL (e). All of the subsamples were
rarefied to 30,000 sequences per sample to be included in this analysis.
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The instability produced by average linkage is more
complicated because both OTU splitting and OTU
merging can occur. These conflicting effects lead to
more subtle differences in OTU counts, and the resultant
rarefaction curves that are created with AL overlap at dif-
ferent depths (Figure 2d). Furthermore, the AL OTUs
themselves are unstable (Additional file 5: Figure S3) due
to the large number of OTU splitting and merging events
that occur. Additionally, even though these unstable
OTUs affect beta-diversity (Adonis, R = 0.16, P = 0.001),
the major separation in PCoA appears to be caused by
factors other than sample size; for example, the possible
inclusion of differences that result from the input order of
the sequences or the presence or absence of certain key
sequences within different subsamples (Figure 2e). This
observation may result from the sensitivity of AL to the
order of input sequences, which would result in different
clustering patterns. When using AL, 804 OTUs (after FDR
correction) and 5 OTUs (after Bonferroni correction) were
differentially represented across the two sampling depths.
Greedy clustering, such as that which is implemented

in USEARCH, is another commonly used de novo clus-
tering method that is more computationally efficient
than CL, SL, and AL. When using greedy clustering, a se-
quence must be within the distance threshold of a single
OTU centroid to be clustered in that OTU. Furthermore,
sequences are processed in a defined order, and each
query sequence will either be assigned to an existing OTU
or as the centroid of a new OTU. If one query sequence is
within the distance threshold of multiple existing OTU
centroids, it can be assigned to either the closest centroid
(here referred to as distance-based greedy clustering
(DGC)) or the most abundant centroid (here referred to
as abundance-based greedy clustering (AGC)) (Additional
file 1). Alternative approaches exist for breaking such ties;
however, we chose to limit our focus to those that are the
most commonly employed. In the present study, we evalu-
ate USEARCH as a method for greedy clustering (we did
not evaluate UPARSE because its clustering algorithm is
the same as that used in USEARCH).
OTU instability is also a problem in greedy clustering

methods and arises from several sources. First, the
choosing of centroids is highly dependent on the order
in which sequences are processed. Therefore, when the
size of a sample is changed, the order of sequences may
also be changed. Second, when using DGC, even if the
choice of centroids remains stable when the size of the
sample is increased, the added sequences can become
new centroids and attract members from existing OTUs
(this generally will not happen in AGC). For example,
imagine that S10, S11, and S12 form OTU7 with S10 as
the centroid (Figure 3a,b). If in a subsequent sequencing
run another sequence, S13, is added, the processing
order of the larger sample may become S10, S13, S11,
and S12. In this case, S10 will still be a centroid, but S13
will also become a centroid. S13 then recruits S11, as
the distance between the two is smaller than the
distance between S11 and S10. In DGC, S11 will end up
clustering with S13 rather than S10, and the original
OTU7 will be split into OTU8 and OTU9 (Figure 3a). In



Figure 3 Principles underlying unstable distance-based greedy clustering (DGC) and abundance-based greedy clustering (AGC), rarefaction curves,
and PCoA based on the Bray-Curtis distance. (a, b) Principles underlying unstable DGC (a) and AGC (b) at two sampling depths. White circles
indicate individual sequences that were included in both the small and the large subsamples, and dark circles indicate sequences that were
added only in the large subsample. Yellow dots indicate OTU centroids. Lines indicate pairs of sequences with distances equal to or smaller than
the threshold, which could therefore be linked into a single OTU. Large circles in red or blue indicate OTUs in the small and the large subsamples,
respectively. (c, d) Rarefaction curves generated with DGC (c) and AGC (d) at five different depths. (e, f) PCoA based on the Bray-Curtis distance,
comparing 60% subsamples with the full datasets using AGC (e) and DGC (f). All of the subsamples were rarefied to 30,000 sequences per sample
to be included in this analysis.
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AGC, S11 will still cluster with S10 and the original
OTU7 will retain its original structure (Figure 3b).
We used greedy clustering on alpha rarefaction curves

and beta-diversity PCoA to analyze the effects generated
by unstable OTUs. As stated above, DGC and AGC both
suffer from centroid changeability (this effect is not
biased towards OTU splitting or merging), and DGC
additionally suffers from the splitting of existing OTUs.
As a result, DGC and CL clustering produced similar
curves, which became steeper as subsample size increased
(Figure 3c). In contrast, AGC produced overlapped curves
that were unaffected by depth (Figure 3d). However, as
with AL clustering, this does not mean that the OTUs
were stable, but only that similar numbers of (possibly dif-
ferent) OTUs were obtained at the different subsampling
depths. The unstable OTUs produced in DGC and AGC
effect estimations of beta-diversity (Figure 3e,f). In the
case of AGC, 392 OTUs (after FDR correction) and 14
OTUs (after Bonferroni correction) were determined to
be differentially represented across the two depths, and in
the case of DGC, these numbers were 370 and 15,
respectively.
To quantify the differences between these unstable

methods, we compared the proportion of unstable se-
quences and unstable OTUs (Figure 4a,b; Additional file 6:
Table S1). CL produced the highest proportion of unstable
sequences (approximately 22%), while AL (13%) and AGC
(12%) performed slightly better than SL (15%) and DGC
(14%). These results were not always consistent when com-
paring the use of alternative datasets (Additional file 7:
Figure S6); however, AGC generally demonstrated the best
performance versus the other de novo methods. For
unstable OTUs, CL and DGC produced the highest
proportion of unstable OTUs: approximately 60% of OTUs
with centroids with frequencies greater than or equal to 10
were observed to be unstable in each of the methods
(>90% were found to be unstable when analyzing certain
datasets, as shown in Additional file 7: Figure S6). AL and
SL are more stable than either CL or DGC but still
resulted in greater than 30% OTU instability for centroids
being observed at least 10 times. AGC was found to be the
most stable de novo method, especially for OTUs with
highly abundant centroids.
One de novo clustering method that does produce

stable OTUs is dereplication or the clustering of
sequences that are identical and of equal length
(Additional file 8: Figure S4a). As with closed-reference
OTU clustering, all OTUs remain absolutely stable
across different sequencing depths because clustering is
not affected by the composition of the sequence collec-
tion being clustered. As a result, rarefaction curves
produced using dereplication are overlapping across
different depths (Additional file 8: Figure S4b), and beta-
diversity is not affected by the size of the subsamples
(Additional file 8: Figure S4c). Moreover, not a single
OTU is determined to be significantly different between
the two groups. It is important to note that dereplication
is highly vulnerable to identifying spurious OTUs that
result from sequencing error. Due to its stability in
binning OTUs, it also produces overlapping rarefaction



Figure 4 Proportion of unstable sequences, proportion of unstable OTUs, and MCC value of each method. (a) Proportion of unstable sequences
as created by method. Unstable sequences are defined as sequences that are clustered to one centroid in the 60% subsample but clustered to a
different centroid in the 100% (full) dataset. (b) Proportion of unstable OTUs as created by method and by frequency of cluster centroids (the
values for closed-reference and dereplication are zero and are thus not included in this figure). If an OTU was identical in the 60% and 100%
datasets (not including sequences that are not present in the 60% subsample), it is defined as stable. (c) MCC value of each method. Higher
values correspond to greater stability.
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curves across different depths, indicating that unstable
OTUs (rather than sequencing errors) are the main cause
of non-overlapping rarefaction curves. Furthermore, the
stability of the dereplication method suggests that a higher
similarity threshold for clustering may reduce the occur-
rence of unstable OTUs, as de novo clustering methods
become more similar to dereplication as the similarity
threshold increases. In practice, dereplication clustering
yields high numbers of OTUs, which is computationally
expensive to employ downstream. Thus, modern dataset
sizes prevent us from working with sequences that have
only been dereplicated. It is possible that future methods
may use approaches based on dereplication to manage the
problem of OTU instability. Another extreme example
would be the clustering of all sequences into one OTU
while that OTU remains absolutely stable. Nevertheless,
unlike dereplication, OTUs can be utilized in further
analyses, such as alpha-diversity, beta-diversity, and taxo-
nomic composition. Furthermore, clustering all sequences
into one OTU can hardly be called ‘clustering’ and is
completely useless for downstream analysis.

Reference-based methods minimize the problem of
unstable OTUs
One feature that all unstable clustering methods have in
common is that cluster definitions are dependent upon
the input sequences. Closed-reference OTU clustering
avoids this dependence with one major practical limita-
tion: during closed-reference OTU clustering, reads are
clustered against a reference dataset (for example, the
Greengenes database [9]) of pre-calculated centroids and
no new centroids are created during clustering, which
results in perfectly stable OTUs (Figure 5a). As a result,
alpha- and beta-diversity estimations based on closed-
reference clustering are not affected by the size of samples
(Figure 5b,c), and no OTUs are determined to be signifi-
cantly different between the two depths. In addition to
producing stable OTUs, closed-reference clustering pro-
vides several other convenient features. First, the names of
the reference sequences can be used as universal OTU
identifiers rather than using arbitrarily assigned names,
thus facilitating the direct comparison of OTUs across
studies. Second, sequence reads from different marker
gene regions can be clustered together if the reference
dataset consists of full-length marker genes. Finally,
closed-reference clustering can parallelize OTU clustering
for large datasets. The major limitation of closed-reference
OTU clustering is that reads that are outside the similarity
threshold to any reference centroids are discarded, such
that only the OTUs that are already represented in the
database can be ‘observed.’ In processing the Canada soil
dataset, approximately 14% of the sequences could not be
matched to the reference sequences and were therefore
discarded after clustering. This limitation of closed-
reference OTU clustering may become trivial as projected
improvements are made to reference datasets, leading the
corresponding references needed for specific research pro-
jects (for example, the gut microbiome) to become more
highly developed.
To overcome the limitations of closed-reference OTU

clustering, open-reference OTU clustering can be used.
Open-reference clustering begins in the same way as
closed-reference clustering but continues to cluster the
sequences that do not match the reference collection in
a de novo manner. Although existing de novo clustering
methods produce unstable OTUs, open-reference clus-
tering can be much more stable than such methods
because many sequences are initially clustered by the
closed-reference approach. We evaluated OTU stability
in open-reference clustering using AGC for the de novo
clustering step (Figure 4a,b,c) and found it to be a much
more effective method than using de novo methods alone.
The majority of the unstable OTUs were low abundance
sequences with no reference match (a category of



Figure 5 Principles underlying stable closed-reference clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance. (a) Principles
underlying stable closed-reference clustering at two sampling depths. White circles indicate individual sequences that were included in both the
small and the large subsamples, and dark circles indicate sequences that were added only in the large subsample. Diamonds indicate reference
sequences. Lines indicate pairs of sequences with distances equal to or smaller than the threshold, which could therefore be linked into a single
OTU. Large circles in red or blue indicate OTUs in the small and the large subsamples, respectively. (b) Rarefaction curves generated with
closed-reference clustering at five different depths. (c) PCoA based on the Bray-Curtis distance, comparing 60% subsamples with the full
datasets using closed reference clustering. All of the subsamples were rarefied to 30,000 sequences per sample to be included in this analysis.
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sequences that is commonly considered to be error-prone).
Open-reference OTU clustering produces overlapping rar-
efaction curves (Additional file 9: Figure S5a), and even
though the instability of open-reference OTU clustering
still affects PCoA analysis (Additional file 9: Figure S5b),
the PC and R value (by ADONIS, R = 0.03) is lower than
with any other de novo method alone, as is the number of
OTUs that are differentially represented across the two
groups (104 OTUs after FDR correction and 2 OTUs after
Bonferroni correction). We compared open-reference clus-
tering methods with other de novo methods on additional
datasets, focusing on the proportion of unstable sequences
and unstable OTUs and found that these results are gener-
ally consistent across environment types and sequencing
technologies (Additional file 7: Figure S6).
In addition to quantifying the instability of OTUs, we

used the MCC index to investigate how the clustering of
sequence pairs changed based on clustering of the full
dataset versus the 60% subset (Figure 4b, Additional file 6:
Table S2). It is clear that the two reference-based methods
and dereplication clustering have the highest stability by
this metric and that AGC is the most stable of the de novo
clustering methods (Kruskal-Wallis test, P < 0.05). AL had
the lowest MCC value, indicating that the clustering of
many sequences pairs changed when using this method.
Alternatively, SL produced a higher MCC value than most
of the de novo methods, including AL and CL. Neverthe-
less, part of the reason for the high MCC value of SL is that
its FP value equals 0 (sequences that are separated in a
smaller subsample will be merged into a single OTU in a
larger subsample, but the reverse situation does not happen
at all). Thus, due to its severe problems with OTU merging,
SL should not be considered a much more stable method.

Phylogenetic beta-diversity metrics minimize the effect of
OTU instability
Unlike non-phylogenetic metrics, where all OTUs are con-
sidered equally dissimilar from each other, phylogenetic
metrics such as UniFrac take into account the phylogenetic
relationship between OTUs when calculating distances
between samples. Unstable OTU clustering methods will
move sequences between OTUs that would usually be
closely related evolutionarily so that the calculated distance
between samples should generally remain more similar
than it would when using non-phylogenetic diversity
metrics. We re-analyzed the effect of unstable OTUs on
beta-diversity using CL, SL, AL, AGC, and DGC based on
UniFrac distance (Additional file 10: Figure S7). The results
show that unstable OTUs of CL, AGC, and DGC minim-
ally affect beta-diversity using UniFrac distance, confirming
the hypothesis that when sequences are changing between
closely related OTUs with these unstable methods,
phylogenetic metrics are more tolerant to that instabil-
ity. Nevertheless, in SL clustering, distantly related
OTUs can ultimately be joined into a single OTU, so
that beta-diversity can be affected even when using
UniFrac distance. In AL, the major separation is still
caused by different clustering patterns, as with the non-
phylogenetic metrics.

Conclusions
Assigning an organism to a different species based on
the number of individuals included in a given census is
obviously problematic in traditional macro-ecology. Un-
fortunately, due to an artifact of many OTU clustering
methods, the equivalent situation is common in micro-
bial ecology studies that use taxonomic-independent
methods. This study demonstrated for the first time that
the problem of depth-dependent rarefaction curves that
is inherent in most of the de novo clustering algorithms
arises from unstable OTUs and not from sequencing
errors. Furthermore, unstable OTUs may also contribute
to depth-dependent beta-diversity estimates and OTU
membership. Our results demonstrate that the closed-
reference OTU clustering method provides stable OTUs,
while all other de novo clustering methods (except



He et al. Microbiome  (2015) 3:20 Page 8 of 10
dereplication) produce unstable OTUs. Unfortunately, the
closed-reference OTU method is limited by the availability
of databases of known marker gene sequences, which ex-
cludes novel OTUs from analysis. To balance this caveat
of closed-reference OTU clustering against the problem of
OTU instability, we recommend using open-reference
OTU clustering employing AGC (for example, as imple-
mented using uclust [4] in QIIME [7]), a relatively stable
de novo method, to cluster sequences that did not map to
the reference database. This allows for clustering of all
sequences and introduces minimal OTU instability
compared to de novo OTU clustering methods (which
also cluster all sequences). As new OTU clustering al-
gorithms continue to be rapidly developed, we suggest
that OTU stability should be an important consider-
ation in future endeavors. However, we do not argue
that OTU stability is the most important quality of
clustering methods. Other attributes of clustering
methods, such as diminishing sequencing errors,
rational OTU structure, niche consistency, and time
efficiency, should also be considered when choosing a
method for a specific type of analysis or evaluating a
novel approach to clustering. Furthermore, as the 16S
rRNA gene database is expanding, closed-reference
OTU clustering and new algorithms that bypass OTU
clustering altogether during microbiome analysis may
render problems concerning OTU instability obsolete.

Methods
The ‘Canada soil’ dataset [GenBank:EF308591-EF361836]
was originally used to describe that rarefaction curves
generated from the same dataset but at different depths
often do not overlap [6] and is used here to demonstrate
unstable OTUs. This dataset was one of the earliest
reported 454 datasets, and quality information was not
available for the sequences contained therein. Although
we demonstrated in the results section (via the dereplica-
tion method) that OTU instability is introduced by
clustering algorithms and not by sequencing errors, we
nevertheless removed sequences that contained ambigu-
ous bases (N), potential chimeras identified by UCHIME
using the de novo mode (using –minchunk 20 –xn 7 –
noskipgaps 2) [10], and sequences that were of a length
that ranged outside of two standard deviations from the
mean. Such sequences were removed for quality control
purposes (in the absence of quality scores). The original
dataset contained a total of 53,246 sequences, and 13,469
unique sequences remained after dereplication. Following
our quality control measures, a total of 50,542 sequences
with 13,293 unique tags remained, ranging in length from
86 to 120 bp.
The hierarchical clustering algorithms, CL, AL, and SL,

were run using MOTHUR 1.27 [11]. The same pairwise
Needleman-Wunsch distance matrix (with default
parameters) was calculated for each pair of unique se-
quences and used in the three clustering algorithms at a
97% identity threshold. We used the QIIME 1.7.0 [12]
USEARCH 6.1 wrapper [4] for the AGC and DGC greedy
clustering algorithms. We used QIIME 1.7.0 [12] with the
Greengenes 13_8 database for closed- and open-reference
clustering. These clustering methods are further defined
in Additional file 1, along with commands used the
execute them.
To investigate the effect of sequencing depths on

rarefaction curves, we subsampled our input data (prior
to OTU clustering) at 5 depths (20%, 40%, 60%, 80%,
and 100% of the total data), with 30 replicates at each
depth. We then clustered each of these datasets with
each of the clustering methods and created rarefaction
curves. The presented data included the average rarefac-
tion curve across all replicates for each clustering
method at each depth.
To demonstrate the effect of sequencing depth on

beta-diversity, we subsampled our input data to include
60% of sequences prior to OTU clustering and compared
it with the full dataset (the first round of subsampling was
to create a 60% subsample to compare with the full data-
set). Because de novo clustering methods do not provide
universal OTU identifiers, after clustering each of these
datasets, we combined the clustering results according to a
representative sequence of each OTU (which we chose to
be the most abundant sequence in each OTU). In this way,
OTUs with the same representative sequences were
merged into a single OTU. We then created a BIOM file
[13] from the merged OTUs for further analyses. We com-
puted beta-diversity using QIIME 1.7.0 with all samples
rarefied to 30,000 sequences per sample (60% of the total
dataset, the second round of subsampling; to diminish the
effect of depth on PCoA, we only tested the effect of un-
stable OTUs on PCoA). To accomplish this, we employed
the Bray-Curtis distance (a non-phylogenetic metric) and
weighted UniFrac (a phylogenetic metric). Adonis was
used to test whether the samples from the full dataset and
the 60% subset clustered independently of each other and
to quantify the size of that effect (this was performed
by running compare_categories.py –method adonis -i
dm.txt -m Map.txt -c Treatment -o adonis_out -n 999).
We used a proportion of unstable sequences, a pro-

portion of unstable OTUs, and Matthews’s correlation
coefficient (MCC) to quantify OTU stability. Unstable
sequences were defined to include unique sequences
that were represented by different OTU centroids at
the different sequencing depths. Unstable OTUs were
defined to include OTUs whose membership changed
at different sequencing depths (in other words, if an
OTU is composed of the same sequences at different
sequencing depths, excluding sequences that were not
included in the smaller subsample, then that OTU is
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defined as being stable). To compute the percent of un-
stable sequences and unstable OTUs, we compared the
clustering result of the full dataset with that of the 60%
subsample using different clustering methods to analyze
30 replicates for each method. If a unique sequence was
represented by the same representative sequence in both
the 60% and the full dataset (excluding sequences not
present in the 60% dataset), we considered the sequence
to be stable. Otherwise, the sequence was considered to
be unstable. If an OTU in the 60% subsample contained
all of the same sequences as the full dataset (not including
any sequences not present in the 60% subsample), we con-
sidered the OTU to be stable. Otherwise, we considered
the OTU to be unstable. We additionally grouped all of
the OTUs according to the frequency of their centroid at
counts of 1, 2, 3 to 5, 6 to 10 and higher than 10, for the
purpose of evaluating the stability of each of these groups.
To compute MCC, we recorded how each pair of

sequences was clustered in the 60% subsample and the
full dataset. The MCC value is calculated as follows:

MCC ¼ TP� TN−FP� FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp

If two sequences were clustered together in the full
dataset and also in the 60% subsample, we recorded it as a
true positive (TP). If two sequences were clustered separ-
ately in the full dataset and also in the 60% subsample, we
recorded it as a true negative (TN). If two sequences were
clustered together in the full dataset but not in the 60%
subsample, we recorded it as a false negative (FN). Finally,
if two sequences were clustered separately in the full data-
set but together in the 60% subsample, we recorded it as a
false positive (FP). Higher MCC values indicate enhanced
stability of the clustering method.

Additional files

Additional file 1: Box 1. Definitions of OTU clustering algorithms and
executing commands, as used in this paper.

Additional file 2: Figure S1. PCoA based on the Bray-Curtis distance,
comparing 20%, 40%, 60%, and 80% subsamples with the full datasets
using CL. All of the subsamples were rarefied to 10,000 sequences per
sample (20% of the full dataset) to be included in this analysis.

Additional file 3: Figure S2. Phylum level composition, comparing
60% and full datasets using CL. All of the subsamples were rarefied to
30,000 sequences per sample (60% of the full dataset) to be included in
this analysis.

Additional file 4: Taxonomic composition from phylum to genus
level, comparing 60% and full datasets using CL. All of the subsamples
were rarefied to 30,000 sequences per sample (60% of the full dataset) to
be included in this analysis.

Additional file 5: Figure S3. Cytoscape network diagram showing the
changes in OTUs at 60% and 100% subsamples of datasets using the AL
method. Red dots represent OTUs in the 60% dataset, and blue dots
represent OTUs in the full dataset. The size of the OTU is in proportion to
the frequency of the centroid or representative sequence in each OTU.
OTUs that changed between datasets but that share the same sequences
are linked, and the line width is in proportion to the number of shared
sequences between the two OTUs. OTUs that are exactly the same in the
two datasets are not shown in the picture, such that each dot in this
figure represents an unstable OTU.

Additional file 6: Tables S1 and S2 Table 1. Multiple comparisons of
unstable sequences between different clustering methods after the
Kruskal-Wallis test. Table 2. Multiple comparisons of MCC values between
different clustering methods after the Kruskal-Wallis test.

Additional file 7: Figure S6. Rarefaction curve analyses and percentage
of changed OTUs with seven additional datasets (a1-f1) AGC; (a2-f2)
closed-reference; (a3-f3) open-reference; (a4-f4) proportion of unstable
sequences by method; (a5-f5) percentage of unstable OTUs for different
centroid frequencies. (a1-a5) Illumina sequencing of V6 regions from
Azorean shallow marine vents (SRX011425); (b1-b5) 454 sequencing of V3
V5 regions of HMP project data male stool (SRS011410); (c1-c5) 454
sequencing of V5 V6 regions from Little Sippewissett Marsh (SRX210127);
(d1-d5) 454 sequencing of V3 region of a stool sample (SRP005150);
(e1-e5) 454 sequencing of V3 region of a stool sample (SRS052471);
(f1-f5) Illumina sequencing of V6 region (overlapped sequence) of a
mangrove sediment sample (MG-RAST 4490068.3).

Additional file 8: Figure S4. Principles underlying stable dereplication
clustering, rarefaction curves, and PCoA based on the Bray-Curtis distance.
(a) Principles underlying stable dereplication clustering at two sampling
depths. White circles indicate individual sequences that were included in
both the small and the large subsamples, and dark circles indicate
sequences that were added only in the large subsample. Large circles in
red or blue indicate OTUs in the small and the large subsamples, respectively.
(b) Rarefaction curves generated with dereplication clustering at five different
depths. (c) PCoA based on the Bray-Curtis distance, comparing 60%
subsamples with the full datasets using de-replication clustering. All of the
subsamples were rarefied to 30,000 sequences per sample to be included in
this analysis.

Additional file 9: Figure S5. Rarefaction curves and PCoA based on
the Bray-Curtis distance. (a) Rarefaction curves generated with open-
reference OTU clustering at five different depths. (b) PCoA based on the
Bray-Curtis distance, comparing 60% subsamples with the full datasets
using open-reference OTU clustering. All of the subsamples were rarefied
to 30,000 sequences per sample to be included in this analysis.

Additional file 10: Figure S7. PCoA with weighted UniFrac, comparing
60% subsamples with the full datasets using de novo clustering methods.
All of the subsamples were rarefied to 30,000 sequences per sample to
be included in this analysis.
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