
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Convergence Analysis of Randomized Block Lanczos Algorithms for Low-Rank Matrix
Approximations

Permalink
https://escholarship.org/uc/item/8zn1d6hv

Author
Yuan, Qiaochu

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zn1d6hv
https://escholarship.org
http://www.cdlib.org/

Convergence Analysis of Randomized Block Lanczos Algorithms for Low-Rank
Matrix Approximations

by

Qiaochu Yuan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ming Gu, Chair
Professor James Demmel

Professor Katherine Yelick

Summer 2018

Convergence Analysis of Randomized Block Lanczos Algorithms for Low-Rank
Matrix Approximations

Copyright 2018
by

Qiaochu Yuan

1

Abstract

Convergence Analysis of Randomized Block Lanczos Algorithms for Low-Rank Matrix
Approximations

by

Qiaochu Yuan

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

The low rank approximation of matrices is a crucial component in many data mining
applications today. A competitive algorithm for this class of problems is the randomized
block Lanczos algorithm - an amalgamation of the traditional block Lanczos algorithm with
a randomized component appearing in the form of a randomized starting matrix. While
empirically this algorithm performs quite well, there has been scant new theoretical results on
its convergence behavior and approximation accuracy, and past results have been restricted
to certain parameter settings. In this thesis, we present a unified convergence analysis for
this algorithm, for all valid choices of the block size parameter. We give an overview of
how the Lanczos algorithm has developed historically and how past and adjacent results
in the convergence analysis of these algorithms tie in with the current work. We present
novel results on the rate of singular value convergence and show that under certain spectrum
regimes, the convergence is superlinear. Additionally, we provide results from numerical
experiments that validate our analysis.

i

To my parents and grandparents,
with all my love.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction and Background 1
1.1 Lanczos Iteration Algorithms . 2
1.2 Convergence Theory for Lanczos Iteration Algorithms 9
1.3 Randomized Low-Rank Approximation Algorithms 12
1.4 Convergence Theory for Randomized Low-Rank Approximation Algorithms . 16

2 Randomized Block Lanczos (RBL) Algorithm 19
2.1 Algorithm . 19
2.2 Problem Statement . 20
2.3 Discussion of Contributions . 21

3 Theoretical Analysis of RBL 24
3.1 Numerical Linear Algebra Preliminaries . 24
3.2 Setup and Intuition . 28
3.3 Convergence Theory . 28
3.4 Special Case: b = 1 . 36
3.5 Special Case: b ≥ k + r . 41
3.6 Superlinear Convergence . 47
3.7 Summary . 48

4 Numerical Experiments 49
4.1 Computational Complexity . 50
4.2 Constructed Matrices . 50
4.3 Activities and Sports Dataset . 53
4.4 Eigenfaces Dataset . 55

A Proofs of Lemmas 58

iii

A.1 Proof of Vandermonde matrix reduction Lemma 58

B Code reference 64

Bibliography 66

iv

List of Figures

1.1 Parameter space consisting of block size b and number of iterations q. Depicted
are applicable parameter regimes for Thm. 1.2.2 (red), Thm. 1.2.4 (green), and
results from the current work (grey). 13

2.1 Timeline of relevant historical developments . 22

3.1 Comparison of the growth of the Chebyshev polynomial Tn(x) (red), its approx-
imation given by Eqn. (3.16) (orange), and the monomial of the same degree
Mn(x) = xn (blue). 27

3.2 Illustration of parameters r, s. 30

4.1 The singular value spectrums of Alin, A1/j and A1/j2 51
4.2 First k = 10 singular values convergence behavior, for the matrix Alin. 52
4.3 First k = 10 singular values convergence behavior, for the matrix A1/j. 52
4.4 First k = 10 singular values convergence behavior, for the matrix Alin. 53
4.5 First 500 singular values of the Daily Activities and Sports Matrix. 54
4.6 k = 200 approximation of the Daily Activities Dataset, convergence of σ200. . . 54
4.7 k = 200 approximation of the Daily Activities Dataset, convergence of σ100. . . 55
4.8 k = 200 approximation of the Daily Activities Dataset, convergence of σ1. Smaller

values of b are omitted as, for the first singular value σ1, all have converged to
machine epsilon by the iteration at which the last singular value at the target
rank, σ200, is first computed. 56

4.9 Spectrum of the Eigenfaces Matrix. 57
4.10 k = 100 approximation of the Eigenfaces Dataset, convergence of σ100. 57

v

List of Tables

1.1 Outline of classical Lanczos Iteration . 3
1.2 Outline of classical Lanczos Iteration for the SVD problem 6
1.3 Outline of Subspace Iteration for the SVD problem 15

3.1 Summary of convergence results . 48

vi

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Ming Gu. who has shared with
me his knowledge of mathematics and his wisdom on how to approach the mathematical
process. I am grateful for the many whiteboard discussions we had, and equally grateful for
our other conversations regarding career and life. Without his guidance this work would not
have been possible.

I would like to thank Prof. James Demmel, Prof. Per-Olof Persson, Prof. John Strain,
Prof. Craig Evans, Prof. Katherine Yelick, and Prof. Jon Wilkening for their superb
teaching, which helped deepen my understanding of several interesting areas of applied and
computational mathematics.

I would like to thank the staff of the Berkeley math department - in particular Barb,
Marsha, and Vicky - for helping to take care of the graduate students and for making navi-
gating the department a little bit easier. I would like to thank Chris, Dave, Danny, Jianwei,
Ruochen, Bo, Frank, Albert, Minseon, Catherine, Dominique, Yael, and other colleagues in
the department. I am glad to have had insightful mathematical and personal discussions with
them and they have made the last five years memorable. I would also like to thank Christine,
Ania, Thomas, Tegan, Armeen, Bia, and Hijung - physical distance has not diminished the
importance of their support or my affection for them.

Finally I would like to thank my parents, who raised me with love and showed me by
example the importance of curiosity and hard work. They taught me that learning is a life-
long pursuit. My dad instilled in me a love of mathematics and all things precise, and my
mom taught me not only to seek solutions, but also to ask questions. This work is dedicated
to them.

1

Chapter 1

Introduction and Background

Applications of the singular value decomposition abound in traditional areas of scientific
computing [3, 22, 1]. More recently, the SVD, and its truncated and approximate variants,
have increasingly found uses in big-data applications as well [28, 47, 7, 20]. In this area, the
truncated SVD, in particular, plays a role as both a stand-alone matrix processing technique
(PCA [9]), and as a computational kernel incorporated into more complex algorithms, such
as proximal gradient algorithms applied to objective functions involving the nuclear norm
[45]. In recent years, there has been increasing need for, research in, and adoption of fast
and accurate approximate k-truncated SVD algorithms in particular [25, 27], and low-rank
matrix approximation algorithms in general [15, 2].

While techniques for computing the exact k-truncated SVD have existed and been im-
plemented since the 1960s [24], it has been observed that the recent applications to big-data
problems differ in both the computation efficiency requirement and the accuracy requirement
of the algorithms. Firstly, whereas traditional scientific computing problems involving the
truncated SVD are often applied to moderately sized matrices, big-data problems have much
higher computational efficiency demands - the matrices in question are often extraordinarily
large, on the order of 109 in both dimensions as they may semantically represent quantities
such as the number of users or webpages in large, web-scale data sets [44, 12]. Secondly,
while the truncated SVD may be the final desired object for scientific computing questions,
for big-data applications, it is usually an intermediate representation for the overall classifi-
cation or regression task. Empirically, the final accuracy of the task only weakly depends on
the accuracy of the matrix approximation. Thus, while previous variants of truncated SVD
algorithms focused on computing up to full double precision, newer iterations of the algo-
rithm aimed at big-data applications can comfortably get by with only 2-3 digits of accuracy
[25].

Both of these observations have driven the development and incorporation of randomiza-
tion components into traditional SVD algorithms such as power iteration, subspace iteration,
and Lanczos and other Krylov subspace family methods [27, 25, 33]. These methods, in-
corporating either a randomized sketching or projecting operation on the original matrix,
have in practice been shown to effectively balance reducing the number of operations needed

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

to produce the approximation with the probability of producing an acceptably accurate
approximation.

In this chapter, we review the historical algorithmic developments and ideas that led
to the Randomized Block Lanczos algorithm, which is the subject of this thesis. In the
subsequent chapters, we first provide the numerical linear algebraic tools required to derive
our main result, then we state and prove a novel convergence result for the algorithm in
question. Finally, we use our result as a jumping off point for a practical discussion of the
various parameter choices for the algorithm, with accompanying numerical experiments.

Notational Conventions

We establish some notational conventions used in the exposition of this thesis.
We denote matrices by bold-faced uppercase letters, e.g. A, entries of matrices by the

plain-faced lowercase letter that the entry belongs to, e.g. a11, and block submatrices by
the bold-faced or script-faced uppercase letter that the submatrix belongs to, subscripted
by position e.g. A11, A11 or Aa×b. Double numerical subscripts denote the position of the
element or the submatrix, i.e. A11 and a11 are the topmost leftmost subblock or entry of A
respectively. m×n subscripts denote the dimensions of a submatrix, when such information
is relevant, i.e. Aa×b denote a subblock of A that has dimensions a× b.

Constants are denoted by script-faced uppercase or lowercase letters, e.g. C or α, when
it is asymptotically insignificant, i.e. constant with respect to the convergence parameter.

The tilde (∼) accent is generally used to denote approximation to the quantity it deco-
rates, and the parenthetical superscript is generally used to denote an iteration number for
intermediary values of an iterative algorithm, e.g. σ̃

(q)
j denotes the value of σ̃j at the qth

iteration of some algorithm, which itself denotes that it is meant to be an approximation to
the value of σj.

1.1 Lanczos Iteration Algorithms

The Lanczos algorithm is a classical numerical linear algebra algorithm with a long and
illustrious history. In its original formulation by Lanczos in 1960, it was conceived as an
iterative algorithm to compute the extremal eigenvalue-eigenvector pairs of symmetric ma-
trices [30]. Since then, numerous variants of the original algorithm - blocked, randomized,
nonsymmetric, parallelized, etc - have been developed [38, 13, 10], and many aspects of
the algorithm - convergence of eigenvalues, vector, and spaces, numerical stability, etc - has
been analyzed [40, 34, 35, 31]. Its popularity stems in part from the ever-growing sizes of
matrix problems - generally, the only operations required in Lanczos iteration algorithms are
multiplications by the target matrix, and in particular, explicit representation of the matrix
is not necessary. This characteristic makes these algorithms ideal for use on large, sparse
matrices arising from problems ranging from scientific computing to data science, especially
if only the extremal eigenpairs are of interest. Today, variants of the Lanczos algorithm

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

Table 1.1: Outline of classical Lanczos Iteration

(1). Select an initial vector v.
(2). Construct the Krylov subspace K(A,v, k) = span{v,Av, · · · ,Akv}.
(3). Restrict and project A to the Krylov subspace to form T = projKA

∣∣
K.

(4). Compute the eigenvalues λ̃1, · · · , λ̃k and eigenvectors ũ1, · · · , ũk of T as the desired
approximations for the first k eigenvalues λ1, · · · , λk and eigenvectors u1, · · · ,uk of A.

are widely used in diverse application domains, and their optimized and numerically stable
implementations are available in many software packages [5, 19, 4].

Formally, given a symmetric matrix A ∈ Rn×n with eigenvalues λ1 > λ2 > · · · > λn
and associated eigenvectors u1,u2, · · · ,un, the classical Lanczos algorithm provides a way of
constructing approximations λ̃1, · · · , λ̃k and ũ1, · · · , ũk to the first k eigenpairs. In typical
applications, the number of sought eigenpairs k is much smaller than the dimension of the
matrix n.

Mathematically, this class of algorithms work by successively approximating the action
of the linear operator represented by A on a series of specially constructed lower dimensional
spaces. The mathematical outline of the steps are listed in Table 1.1

As computations with respect to matrices, the third (3) step above requires the construc-
tion of an orthonormal basis Qk =

[
q1 · · · qk+1

]
for the Krylov subspace K, derived from

orthonormalizing the columns of the Krylov subspace matrix Kk =
[
v Av · · · Akv

]
.

Then, the restriction and projection operation can be expressed as

Tk = QT
kAQk (1.1)

where it can be shown that Tk takes a tridiagonal form

Tk =


α1 β1

β1
.
. βk

βk αk+1

 (1.2)

At every iteration, a new basis vector qj, and entries αj, βj are computed using the
relation

A
[
q1 · · · qj

]
=
[

q1 · · · qj qj+1

]

α1 β1

β1
.
. βj−1

βj−1 αj
βj

 (1.3)

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

and the three-term recurrence equation

Aqj = βj−1qj−1 + αjqj + βjqj+1 (1.4)

The classical Lanczos iteration algorithm is given in Alg. 1, corresponding to steps (1)-(3)
in Table 1.1. The output of this algorithm are the values α1, · · · , αk+1 and β1, · · · βk, which
together describe the matrix Tk as represented in Eqn. (1.2). In terms of computational
complexity, the bulk of the floating-point operations occur in the matrix-vector multiplication
in step (6).

Step (4) is usually carried out via an eigenvalue algorithm such as QR iteration - because
k � n, this post-processing step is performed on a matrix much smaller than the original
and its computational cost is considered to be asymptotically insignificant when compared
with that of running Alg. 1.

Algorithm 1 Classical Lanczos iteration algorithm for tridiagonalization

Input: symmetric A ∈ Rn×n, initial vector v ∈ Rn×1, target rank k.
Output: αj, βj, diagonal and subdiagonal elements of the approximation Tk ∈ R(k+1)×(k+1)

1: Initialize j ← 0, β0 ← 1, q0 ← 0, r0 ← v.
2: while j ≤ k and βj 6= 0 do
3: qj+1 ← rj

βj
4: j ← j + 1
5: αj ← qTj Aqj
6: rj ← (A− αjI) qj − βj−1qj−1

7: βj = ‖rj‖2

8: end while

We pause here to note that Alg. 1 is best seen as a description of the algorithm in exact
arithmetic, and that a successful implementation of the Lanczos iteration algorithm involve
numerous additional considerations, such as numerical stability and roundoff properties.

Block Lanczos Iteration Algorithm

While the classical Lanczos Iteration Algorithm already exhibits, both theoretically and
empirically, desirable convergence properties, it is known that this algorithm is unable to
capture eigenvalues with multiplicity strictly greater than one - the algorithm acts as if
all eigenvalues are simple [40]. In addition, it has been well-established that on modern
computing hardware, computational speed improve greatly from reorganizing computations
as BLAS level-3 operations due to cache efficiency and data reuse. These considerations
motivated the development and analysis of the blocked version of the Lanczos Iteration
algorithm [13].

The block generalization of the Lanczos Iteration algorithm uses, instead of a single
initial vector v, a block of b vectors V =

[
v1 · · · vb

]
and builds the Krylov subspace in q

iterations as K(A,V, q) = span{V,AV, · · · ,AqV}.

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

The matrix representing the operator T = projKA
∣∣
K is a (q + 1)b × (q + 1)b matrix Tq

of block tridiagonal form

Tq =


A1 BT1
B1

.

. BTq
Bq Aq+1

 (1.5)

Similarly to the classical Lanczos Iteration algorithm, at each iteration, a new block of b
basis vectors Qj, and b× b blocks Aj, Bj are computed using the relation

A
[
Q1 · · · Qj

]
=
[

Q1 · · · Qj Qj+1

]

A1 BT1
B1

.

. BTj−1

Bj−1 Aj
Bj

 (1.6)

and the three-term recurrence equation

AQj = Qj−1BTj−1 + QjAj + Qj+1Bj (1.7)

The Block Lanczos Iteration Algorithm appears in Alg. 2. We draw attention to the
different algorithm parameters between Alg. 1 and Alg. 2. In the non-blocked version of
the algorithm, the target rank k is required as a way to implicitly determine the number of
iterations (= the dimension of the Krylov subspace) to run. In the original formulation of the
algorithm, this is fixed at k (i.e. search for approximate eigenpairs in a Krylov subspace of
dimension exactly k); however, the algorithm can be run for any number of iterations q ≥ k.
The accuracy of the approximate eigenpairs may improve by running a larger number of
iterations, as this allows the original A to be approximated in a larger subspace. In the
blocked version of the algorithm, a choice of the number of iterations q results in general in
the construction of a Krylov subspace of dimension qb, and, although the original formulation
of the algorithm suggests a choice of b = k and “a few” iterations, we note that the algorithm
is valid for any choices of b and q such that bq ≥ k. For both of these algorithms, selecting
the “right” number of iterations q is tightly connected with the convergence theory of these
algorithms, which we will discuss shortly.

The blocks Qj ∈ Rn×b and Bj ∈ Rb×b are produced as a result of performing QR factor-
ization on the residual matrices Rj ∈ Rn×b. This implies that the Bjs are upper triangular
matrices in and of themselves, and so Tq in Eqn. (1.5) is in fact a banded matrix with band-
width 2b − 1. The bulk computation cost of this algorithm comes from the matrix-matrix
multiplication performed in step 6. To carry out step (4) in Table 1.1, this matrix Tq is
then further band-reduced to tridiagonal before its eigenvalues and eigenvectors are found
by running an eigenvalue algorithm such as QR iteration.

Previous comments regarding the numerical stability of Alg. 1 apply also to Alg. 2. In
particular, modifications made to the classical Lanczos iteration are typically also applied to
the block Lanczos algorithm [39].

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

Algorithm 2 Blocked Lanczos iteration algorithm for block tridiagonalization

Input: symmetric A ∈ Rn×n, initial block matrix V ∈ Rn×b, number of iterations q such
that (q + 1)b ≥ k.

Output: Aj,Bj, diagonal and subdiagonal b× b block matrices of the approximation Tq ∈
R(q+1)b×(q+1)b

1: Initialize j ← 0, B0 ← I, Q0 ← 0, R0 ← V.
2: while j ≤ q do
3: Qj+1Bj ← qr (Rj)
4: j ← j + 1
5: Aj ← QT

j AQj

6: Rj ← AQj −QjAj −Qj−1BTj−1

7: end while

Table 1.2: Outline of classical Lanczos Iteration for the SVD problem

(1). Select an initial vector v.
(2). Construct the Krylov subspaces KV (ATA,v, k) = span{v,ATAv, · · · , (ATA)kv}
and KU(AAT ,Av, k) = span{Av,

(
AAT

)
Av, · · · , (AAT)kAv}.

(3). Restrict and project A to the Krylov subspaces to form B = projKUA
∣∣
KV

.

(4). Compute the singular values σ̃1, · · · , σ̃k and left and right singular vectors
ũ1, · · · , ũk and ṽ1, · · · , ṽk of B as the desired approximations for the first k singular
values σ1, · · · , σk and left and right singular vectors u1, · · · ,uk and v1, · · · ,vk of A.

Lanczos Iteration Algorithm for the Singular Value Problem

Parallel to the development of various Lanczos tridiagonalization algorithms for the sym-
metric eigenvalue problem, an analogous class of bidiagonalization algorithms was developed
for the SVD problem for arbitrary matrices [24, 36, 21].

The connection between the singular value decomposition of a matrix A ∈ Rm×n and
the eigen decomposition of the symmetric matrices AAT ∈ Rm×m and ATA ∈ Rn×n is well
known. In particular, the eigenspaces of AAT and ATA are the left and right singular
spaces, respectively, of the original matrix A. The analogous SVD algorithm to the classical
Lanczos iteration algorithm constructs Krylov subspaces to approximate the left and right
singular spaces of A. The mathematical steps are given in Table 1.2.

Note that while the mathematical description of the algorithm makes use of the subspaces
associated with AAT and ATA, the preferred matrix to work with is

C =

[
0 A

AT 0

]
(1.8)

Let A ∈ Rm×n be a “tall-skinny” matrix, with m ≥ n - in the situation of m < n, the

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

following exposition applies to its transpose, AT . Let A = UΣVT be the SVD of A, where
U ∈ Rm×n, V ∈ Rn×n are column orthogonal matrices and Σ ∈ Rn×n is a diagonal matrix.
(See Subsection 3.1, Thm 3.1.2 for more details on the SVD). Then, it can be shown that
C = QΛQT is the eigen decomposition of C, for

Q =
1√
2

[
V V 0

U −U
√

2U⊥

]
(1.9)

Λ =



σ1

. . .

σn
−σ1

. . .

−σn
0

. . .

0


(1.10)

As computations with respect to matrices, the third (3) step in Table 1.2 requires the
construction of orthonormal basis Uk =

[
u1 · · · uk+1

]
and Vk =

[
v1 · · · vk+1

]
for the

KU and KV Krylov subspaces. These bases are derived from orthonormalizing the columns of
the Krylov subspace matrices KU =

[
Av · · · (AAT)kAv

]
and KV =

[
v · · · (ATA)kv

]
respectively.

Writing the restriction and projection operation as

Bk = UT
kAVk (1.11)

we can show that the matrix representing the operator B = projKUA
∣∣
KV

is bidiagonal of the
form

Bk =


α1

β1 α1

.

βk αk+1

 (1.12)

At every iteration, new basis vectors uj, vj, and entries αj, βj are computed using the

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

relations

A
[
v1 · · · vj

]
=
[
u1 · · · uj

]

α1 β1

.
. . . βj−1

αj

 (1.13)

AT
[
u1 · · · uj

]
=
[

v1 · · · vj vj+1

]

α1

β1
. . .
.

βj−1 αj
βj

 (1.14)

and the recurrences

Avj = αjuj + βj−1uj−1 (1.15)

ATuj = αjvj + βjvj+1 (1.16)

The algorithms for classical Lanczos iteration for SVD, also known as the Golub-Kahan
bidiagonalization algorithm, and its blocked variant appear in Alg. 3 and Alg. 4 respectively.

Algorithm 3 Lanczos tridiagonalization algorithm for SVD (Golub-Kahan bidiagonaliza-
tion)

Input: A ∈ Rm×n, initial vector v ∈ Rn×1, target rank k.
Output: αj, βj, diagonal and subdiagonal entries of the approximation Bk ∈ R(k+1)×(k+1)

1: Initialize j ← 0, β0 ← 1, u0 ← 0, p0 ← v.
2: while j ≤ k and βj 6= 0 do
3: vj+1 =

pj
βj

4: j ← j + 1
5: rj ← Avj − βj−1uj−1

6: αj ← ‖rj‖2

7: uj ← rj
αj

8: pj ← ATuj − αjvj
9: βj ← ‖pj‖2

10: end while

The dominating computation costs are, again, the matrix-vector multiplications per-
formed in steps 5 and 8 of Alg. 3 and the matrix-matrix multiplications performed in steps
5 and 7 of Alg. 4.

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

Algorithm 4 Blocked Lanczos tridiagonalization algorithm for SVD

Input: A ∈ Rm×n, initial block matrix V ∈ Rn×b, number of iterations q, such that (q +
1)b ≥ k.

Output: Aj,Bj, diagonal and subdiagonal b× b block matrices of the approximation Bq ∈
R(q+1)b×(q+1)b

1: Initialize j ← 0, B0 ← I, U0 ← 0, P0 ← V.
2: while j ≤ q do
3: Vj+1Bj ← qr (Pj)
4: j ← j + 1
5: Rj ← AVj −Uj−1BTj−1

6: UjAj ← qr (Rj)
7: Pj ← ATUj −VjAj
8: end while

1.2 Convergence Theory for Lanczos Iteration

Algorithms

All variants of the Lanczos iteration algorithms are iterative procedures. Characteristic of
such algorithms, they may be run for a user-specified number of steps q, and the results are
computed in a successive iteration-by-iteration manner. In particular, for the algorithms we
discussed in the previous section, the Krylov subspaces are successively expanded by 1 (resp.
b) dimension(s) in each step of the classical (resp. blocked) Lanczos procedure. Furthermore
both the accuracy of the approximate eigenvalues and eigenvectors and the computational
cost scale with the number of iterations. Therefore, it is vitally important to analyze the
convergence behaviors of these algorithms, and the convergence results give answers - at least
theoretically - to a variety of questions ranging from the suitability of these algorithms for
matrices with different spectrum behaviors, to guidelines on selecting values for the q and b
parameters.

In general, convergence theory seeks to answer the following question: how well do the
approximate eigenvalues λ̃

(q)
i approximate the actual eigenvalues λi, for i = 1, · · · , k? His-

torically, answers to this question took the form of an inequality bound on the error of the
ith approximate singular value:

0 ≤ λi − λ̃(q)
i ≤ (λi − λn){some convergence factor} (1.17)

where {some convergence factor} dictates the asymptotic convergence behavior of the par-
ticular variant of the Lanczos iteration algorithm, and is functionally composed of two mul-
tiplicative terms

• one involving q, the number of iterations - typically appearing in the degree of a
Chebyshev polynomial term, and

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

• one involving v or V, the initial starting space - quantifying the alignment between
this space and the relevant eigenspace.

Below we highlight and briefly discuss some representative theoretical convergence results
for Algs. 1 and 2. Analogous results for Algs. 3 and 4 hold as well.

We begin with a result by Kaniel and Page.

Theorem 1.2.1 ([37]). Let λ̃
(k)
j be the jth eigenvalue of the matrix Tk that results from

running Alg. 1, and let Pj be the projection operator associated with the subspace of the jth
eigenvector uj. Then, if P1v 6= 0,

0 ≤ λ1 − λ̃(k)
1 ≤ (λ1 − λn)

tan2 θ(u1,v)

T 2
k−1(γ1)

(1.18)

and for j = 2, · · · , k, if Pjv 6= 0,

0 ≤ λj − λ̃(k)
j ≤

(
K

Tk−j(γj)

)2

+

j−1∑
i=1

(λi − λn)
∥∥∥(I − Pi)ũ(k)

i

∥∥∥2

(1.19)

where Ti(x) is the Chebyshev polynomial of degree i,

γj = 1 + 2 · λj − λj+1

λj+1 − λn
(1.20)

and K is a constant depending on the eigen-spectrum of A and v.

Eqn. (1.18) is the convergence bound for the 1st eigenvalue. The factor that determines

the convergence is tan2 θ(u1,v)

T 2
n−1(γ1)

- it is composed of a Chebyshev polynomial factor, of which the

number of iterations k appear in the degree,

Tk−1(γ1) ' 1

2

(
γ1 +

√
γ2

1 − 1

)−k+1

(1.21)

and an alignment term, which measures the magnitude of the component of the initial vector
v in the direction of the first eigenvector u1,

tan θ(u1,v) =
‖(I − P1)v‖
‖P1v‖

(1.22)

Eqn. (1.19) gives the convergence inequality for the remaining eigenvalues j = 2, · · · , k.
However, notice that the right-hand side does not directly reference λj, and so the quality
of this bound depends on the decay of the spectrum. Moreover, the summation term on the
right-hand side is hard to estimate and may be non-negligible.

The above theorem was generalized to a bound for all k eigenvalues by Saad, and appears
below.

CHAPTER 1. INTRODUCTION AND BACKGROUND 11

Theorem 1.2.2 ([40]). Let λ̃
(k)
j be the jth eigenvalue of the matrix Tk that results from

running Alg. 1, and let Pj be the projection operator associated with the subspace of the jth
eigenvector uj. Then, for j = 1, · · · , k, if Pjv 6= 0,

0 ≤ λj − λ̃(k)
j ≤ (λj − λn)

(
L

(k)
i tan θ(uj,v)

Tk−j(γj)

)2

(1.23)

where Ti(x) is the Chebyshev polynomial of degree i, θ(·, ·) is the angle between two vectors,
and

γj = 1 + 2 · λj − λj+1

λj+1 − λn
(1.24)

L
(k)
j =

{ ∏j−1
i=1

λ̃
(k)
i −λn
λ̃
(k)
i −λj

if j 6= 1

1 if j = 1
(1.25)

Now, we briefly review some representative convergence bounds for the blocked Lanczos
algorithm, Alg. 2.

We begin with a result by Underwood.

Theorem 1.2.3 ([48]). Let λ̃
(q)
j be the jth eigenvalue of the block matrix Tq that results

from running Alg. 2. Let U =
[
u1 · · · ub

]
be a block matrix whose columns are the b

eigenvectors associated with λ1 ≥ · · · ≥ λb. If UTV is of full rank b, then for j = 1, · · · , b

0 ≤ λj − λ̃(q)
j ≤ (λ1 − λn)

tan2 Θ(U,V)

T 2
q−1(ρj)

(1.26)

where Ti(x) is the Chebyshev polynomial of degree i, cos Θ(U,V) = σmin(UTV), and

ρj = 1 + 2 · λj − λb+1

λb+1 − λn
(1.27)

There are several points to notice. First and foremost, notice that the bound holds only
for j = 1, · · · , b. In other words, if we want to use this bound to guarantee a certain rate
of convergence for the k largest eigenvalues, in Alg. 2, we must take the block size b to be
greater than k.

For simplicity, in Eqn. (1.26), take j = 1. The convergence factor can be decomposed into
the two familiar factors, similar to the bound for the non-blocked algorithm - the Chebyshev
term Tq−1(ρj), and the alignment term tan Θ(U,V). In the former, we see that the number
of iterations q appear in the degree of the polynomial, while the block-size b appears in ρ1

to create a relative “gap” λ1−λb+1

λb+1−λn
. It is clear that the convergence rate scales positively with

both q and b.
The above theorem was also generalized to a bound for all j = 1, · · · , b eigenvalues by

Saad, and appears below.

CHAPTER 1. INTRODUCTION AND BACKGROUND 12

Theorem 1.2.4 ([40]). Let λ̃j
(q)

be the jth eigenvalue of the block matrix Tq that results
from running Alg. 2. Let Ui =

[
ui · · · ui+b−1

]
be a block matrix whose columns are the

b eigenvectors associated with λi ≥ · · · ≥ λi+b−1. For j = 1, · · · b, if UT
j V is of full rank b,

then

0 ≤ λj − λ̃(q)
j ≤ (λj − λn)

(
L

(q)
j tan Θ(Uj,V)

Tq−j(γ̂j)

)2

(1.28)

where Ti(x) is the Chebyshev polynomial of degree i, cos Θ(Uj,V) = σmin(UT
j V), and

γ̂j = 1 + 2 · λj − λj+b
λj+b − λn

(1.29)

L
(q)
j =

{ ∏j−1
i=1

λ̃
(q)
i −λn
λ̃
(q)
i −λj

if j 6= 1

1 if j = 1
(1.30)

We end this overview by emphasizing again that while Eqn. (1.28) is generalized to be a

bound on λ̃
(q)
j with relative gap

λj−λj+b
λj+b−λn

of size b, it is still applicable only to the eigenvalues

j = 1, · · · , b up to the block size. To our knowledge, in the classical Lanczos convergence
theory literature, there are no results that give inequality bounds for eigenvalues j > b. In
order to achieve guarantees for k eigenvalues, the existing theorems would suggest that one
must either run Alg. 1 with some number of iterations q ≥ k, or run Alg. 2 with a large
enough block size b ≥ k. The former guarantee is driven by the growth of the Chebyshev
polynomial, while the latter guarantee comes from the increased “spectrum gap” of size b.
Noticeably lacking, however, is an interpolated result, where the combination of these effects
are examined (Fig. 1.1).

1.3 Randomized Low-Rank Approximation

Algorithms

The low rank approximation of matrices, in addition to being a data compression technique
in its own right, is an important computational procedure used in various other algorithms.

Given a matrix A ∈ Rm×n, we say that another matrix B ∈ Rm×n is a rank-k approxima-
tion to A if rank(B) ≤ k and ‖A−B‖ is small for some norm. In the former requirement,
k < rank(A) is typically chosen so that B is strictly an approximation of A based on com-
putational and storage requirements. In the latter requirement, the specific choice of norm
quantifies the aspect of “small”ness that is domain dependent and applicable to the spe-
cific problem. More precisely, the low rank approximation problem can be mathematically
formulated as the following minimization problem.

min
B
‖A−B‖ s.t. rank(B) ≤ k (1.31)

The matrix approximation problem is closely tied to the singular value decomposition,
due to the following celebrated optimality result.

CHAPTER 1. INTRODUCTION AND BACKGROUND 13

Figure 1.1: Parameter space consisting of block size b and number of iterations q. Depicted
are applicable parameter regimes for Thm. 1.2.2 (red), Thm. 1.2.4 (green), and results from
the current work (grey).

b

q

k

k

Theorem 1.3.1 (Eckart - Young [17]).

min
rank(B)≤k

‖A−B‖2 = ‖A− svdk(A)‖2 = σk+1 (1.32)

min
rank(B)≤k

‖A−B‖F = ‖A− svdk(A)‖F =

√√√√rank(A)∑
j=k+1

σ2
j (1.33)

where svdk(A) denotes the k-truncated SVD of A.

From this result, we see that the minimization problem in Eqn. (1.31) is exactly solved
for the spectral 2-norm and the Frobenius F -norm by first computing the SVD of A, then
truncating it to rank-k. Incidentally, this procedure also gives the exact answer to the
following measurement of “approximation accuracy”:

min
B
|σj (A)− σj (B) | s.t. rank(B) ≤ k for j = 1, · · · , k (1.34)

By construction, σj(A) = σj (svdk(A)) for j = 1, · · · , k, and so by this measure, the approx-
imation error is 0.

While singular value decomposition algorithms provide an exact answer to the rank-
k matrix approximation problem, traditional SVD algorithms, such as the Golub-Kahan
bidiagonalization procedure followed by QR iterations as outlined in the previous section,
are increasingly unable to meet the needs of various data applications. These algorithms have
complexity O(mn2) in the dimensions of the problem, and for modern datasets, n and m may
routinely be on the order of 109. Moreover, while traditional scientific computing applications
have high accuracy requirements (full double precision or more), this many digits of accuracy

CHAPTER 1. INTRODUCTION AND BACKGROUND 14

is overkill for some more recent uses of SVD computations in big data computations. Because
the low rank approximation functions as a computational subroutine in these algorithms, its
accuracy only loosely affects the accuracy of the larger overall procedure, and in some cases
merely 2-3 digits of accuracy in the SVD computation is sufficient.

In part driven by these considerations, the approximate low-rank approximation problem
have received increased attention. Instead of seeking the exact answer to Eqn. (1.31), we
seek an approximate answer, in the following sense: given A ∈ Rm×n, target rank k, and
approximation tolerance ε > 0, compute an approximate rank-k approximation B such that
rank(B) ≤ k and

‖A−B‖2 ≤ (1 + ε) ‖A− svdk(A)‖2 (1.35)

or
‖A−B‖F ≤ (1 + ε) ‖A− svdk(A)‖F (1.36)

Additionally, instead of seeking an exact answer to Eqn. (1.34), seek an approximate rank-k
approximation B such that for j = 1, · · · , k

σj(A) ≥ σj(B) ≥ σj(A)√
1 + ε

(1.37)

In recent years, numerous low-rank matrix approximation algorithms have been pro-
posed to meet the dual requirement of high computational efficiency and low approximation
accuracy. In these algorithms, randomization play a large role, variously

• as a way to randomly sample rows or columns from a given matrix, e.g. CUR decom-
position, leverage score sampling [15, 32]

• as a way to randomly project the action of the matrix to a lower dimensional space, e.g.
randomized subspace iteration, randomized QRCP, spectrum-revealing LU decompo-
sition [25, 16, 49]

A more complete introduction to randomized low-rank approximation algorithms can
be found in the excellent and comprehensive survey paper [27]. Below, we limit our brief
overview to the randomized subspace iteration algorithm, which can be seen as a logical
precursor to the randomized Lanczos iteration algorithm that is the main topic of this thesis.

Randomized Subspace Iteration

The randomized subspace iteration algorithm is derived from a straightforward extension of
the subspace iteration algorithm - also known as the simultaneous iteration or orthogonal
iteration algorithm. The subspace iteration algorithm itself is an extension of the power
method, and relies on using a monomial pq(x) = xq applied to A to amplify the desired part
of the spectrum σ1, · · · , σk while suppressing the undesired part of the spectrum σk+1, · · · , σn.

The mathematical steps are given in Table 1.3 and the algorithmic steps are given in
Alg. 5. While the subspace iteration algorithm is simpler, its intermediary matrices do not

CHAPTER 1. INTRODUCTION AND BACKGROUND 15

Table 1.3: Outline of Subspace Iteration for the SVD problem

(1). Select an initial matrix V.
(2). Construct the subspace S(A,V, q) = span{(AAT)qV}.
(3). Restrict and project A to the Krylov subspace to form O = projSA

∣∣
S .

(4). Compute the singular values σ̃1, · · · , σ̃k and left and right singular vectors
ũ1, · · · , ũk and ṽ1, · · · , ṽk of O as the desired approximations for the first k singular
values σ1, · · · , σk and left and right singular vectors u1, · · · ,uk and v1, · · · ,vk of A.

admit any special form, as the Lanczos method does (tridiagonal or bidiagonal), and the
computational complexity for the two class of algorithms are comparable.

Algorithm 5 Pseudocode for subspace iteration for the SVD problem

Input: A ∈ Rm×n, initial block matrix V ∈ Rn×b with b ≥ k orthogonal columns, number
of iterations q.

Output: Bk, a rank-k approximation of A
1: Initialize Q0 ← V.
2: for j = 1, · · · , q do
3: Zj ← AATQj−1

4: QjRj ← qr(Zj)
5: end for
6: B← QqQ

T
q A

7: Bk ← svdk(B)

Note the similarity between the steps outlined in Table 1.2 and those outlined in Table 1.3.
The difference of substance between these two classes of algorithms is the projection space -
for a fixed q iterations, subspace iteration algorithms work with space constructed from the
qth degree monomial applied to A, while Lanczos algorithms work with the space constructed
from the optimal qth degree polynomial applied to A. These differences make evident why,
intuitively, Lanczos methods converge faster than subspace iteration methods.

The randomized subspace iteration algorithm applies the idea of randomization to the
starting matrix of the subspace iteration algorithm. From the convergence results of the
previous section, and what we will describe in the next section, it is clear that choosing
a starting matrix whose column space more closely aligns with the relevant eigenspace or
singular space aids in the convergence of the algorithm. Instead of taking an arbitrary initial
set of vectors V in Table 1.3, an unfortunate choice of which could result in poor convergence,
the idea is to choose V = AΩ, where Ω is a matrix with entries drawn from the Gaussian
distributionN (0, 1). This amounts to taking the starting matrix V as a random projection of
the columns of A, and in theory better capture its range space in almost all cases. (Actually,
it is better to say that the randomization guards against especially poor choices of the initial

CHAPTER 1. INTRODUCTION AND BACKGROUND 16

starting matrix, and results in a “non-fatal” choice of V in almost all cases. This statement
will be made more precise in the next section.)

The pseudocode for the random subspace iteration algorithm appears in Alg. 6.

Algorithm 6 Basic subspace iteration algorithm pseudocode

Input:

A ∈ Rm×n

Ω ∈ Rn×b , initial starting matrix, typically a random Gaussian matrix
k , target rank , such that b ≥ k
b , block size
q , number of Lanczos iterations

Output: Bk ∈ Rm×n , a rank-k approximation to A
1: Form the power matrix matrix M = (AAT)qAΩ.
2: Compute an orthonormal basis Q for the column span of M, using e.g. QR← qr(M).
3: Project A onto the Krylov subspace by computing B = QQTA.
4: Compute k-truncated SVD Bk = svdk (B) = svdk

(
QQTA

)
= Q · svdk

(
QTA

)
.

5: Return Bk.

1.4 Convergence Theory for Randomized Low-Rank

Approximation Algorithms

In Eqns. (1.35), (1.36), and (1.37), instead of viewing ε as an approximation error tolerance
parameter, we might view it as a convergence factor determining the rate of convergence. In
other words, an inequality of the form

σj ≥ σj(Bk) ≥
σj√

1 + {some convergence factor}2
(1.38)

for j = 1, · · · , k, about Alg. 6, provides an quantitative answer to the question: how well do
σj(Bk) of the computed rank-k approximation capture the true singular values σj?

The theorem below provide one representative bound of such form. Among the various
(asymptotically equivalent) convergence theory results, we chose to present the following
result because the main theoretical result of this thesis is similar in form, and the proof
techniques thereof draws substantially upon those used to derive the following bound.

Theorem 1.4.1 ([25]). Let Bk be the approximation returned by Alg. 6, and let A = UΣVT

be the SVD of A ∈ Rm×n. Assume that the matrix Ω̂1 ∈ Rk×b has full row rank in the

partition VTΩ =
[
Ω̂T

1 Ω̂T
2

]T
, then Alg. 6 must satisfy for j = 1, · · · , k

σj ≥ σj(Bk) ≥
σj√

1 +
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

(
σb+1

σj

)4q+2
(1.39)

CHAPTER 1. INTRODUCTION AND BACKGROUND 17

As expected, two terms contribute to the rate of convergence factor. The first,
(
σb+1

σj

)2q+1

,

involve q, the number of iterations. Notice that this term is the monomial pq(x) = x2q+1

applied to the spectral “gap” at the jth singular value, and q appears in the degree of this

polynomial. The second term,
∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2
, is dependent on the initial starting matrix Ω,

and quantifies the alignment between this space and the right singular space spanned by the
columns of V.

The affect of randomization ensures against an unfortunate choice of Ω. (In the extreme, a

Ω might be chosen such that Ω̂1 = 0, which entirely invalidates the inequality in Eqn.(1.39).)
Using statistical arguments and machinery from random matrix theory, it can be shown that
choosing Ω randomly as a Gaussian random matrix, the alignment term, in expectation, is
constant. This is stated in the theorem below.

Theorem 1.4.2 ([25]). Let Bk be the approximation returned by Alg. 6, and let A = UΣVT

be the SVD of A. If Ω is a random Gaussian matrix, then for j = 1, · · · , k

E(σj(Bk)) ≥



σj√
1+C2

(
σb−p+1
σj

)4q+2
for p ≥ 2

σj

1+C2
(
σb−p+1
σj

)4q+2

log

√
C2+

(
σb−p+1
σj

)−(4q+2)
for p = 1

σj

1+C
(
σb−p+1
σj

)2q+1 for p = 0

(1.40)

for

C =
(√

n− b+ p+
√
b+ 7

)(4e
√
b

p+ 1

)
(1.41)

a constant independent of q, where p = b − k is the oversampling parameter, indirectly
determined by the choice of b.

We end by briefly discussing a theoretical convergence result for Alg. 6 of a different
flavor.

Theorem 1.4.3 ([33], Thm. 12). There exists a choice of q = Θ
(

logn
ε

)
in Alg. 6 such that,

with probability 99/100, the algorithm returns Bk satisfying∣∣σ2
j − σ2

j (Bk)
∣∣ ≤ εσ2

b+1 (1.42)

In other words, for an appropriately chosen constant, the above convergence rate can be
guaranteed with high probability for a choice of q with polynomial dependence on ε. Since
Alg. 6 requires b ≥ k, this theorem applies to that particular parameter regime.

The inequality bound of this theorem is unique in the sense that it is spectrum indepen-
dent - to achieve an error of ε, it is enough to iteration for q = Θ

(
logn
ε

)
iterations, where the

CHAPTER 1. INTRODUCTION AND BACKGROUND 18

number of iterations do not depend on spectrum “gaps”. While this is certainly advanta-
geous, especially in applications where spectrum decay of the matrix cannot be guaranteed,
notice that written in a comparable form

σj ≥ σj(Bk) ≥
σj√

1 + Cq−1 log n
σ2
b+1

σ2
j

(1.43)

it becomes apparent that, without being able to rely on information about the spectrum,
the convergence rate is asymptotically worse than the one stated in Eqn. (1.39).

19

Chapter 2

Randomized Block Lanczos (RBL)
Algorithm

2.1 Algorithm

We present the Randomized Block Lanczos (RBL) algorithm. This algorithm is a straightfor-
ward combination of the classical block Lanczos algorithm (Table 1.2) with the element of a
randomized starting matrix (see discussion accompanying Randomized Subspace Iteration).
To our knowledge, while this algorithm has appeared numerous times in the literature, there
has been no general and unified convergence analysis of this algorithm, for all parameter
settings.

The pseudocode for the basic block Lanczos algorithm is outlined in Algorithm 7. We
require the choices of k, b, q to satisfy (q + 1)b ≥ k, to ensure that the Krylov subspace be
at least k dimensional.

Algorithm 7 Randomized Block Lanczos (RBL)

Input:

A ∈ Rm×n

Ω ∈ Rn×b , initial starting matrix, typically a random Gaussian matrix
k , target rank , such that (q + 1)b ≥ k
b , block size
q , number of Lanczos iterations

Output: Bk ∈ Rm×n , a rank-k approximation to A
1: Form block column Krylov subspace matrix K =

[
AΩ (AAT)AΩ · · · (AAT)qAΩ

]
.

2: Compute an orthonormal basis Q for the column span of K, using e.g. QR← qr(K).
3: Project A onto the Krylov subspace by computing B = QQTA.
4: Compute k-truncated SVD Bk = svdk (B) = svdk

(
QQTA

)
= Q · svdk

(
QTA

)
.

5: Return Bk.

We present the algorithm pseudocode in this form in order to highlight the mathematical

CHAPTER 2. RANDOMIZED BLOCK LANCZOS (RBL) ALGORITHM 20

ideas that are at the core of this algorithm. It is well known that a naive implementation
of the Lanczos iteration is plagued by loss of orthogonality of the Lanczos vectors due to
roundoff errors, and a realistic implementation of Algorithm 7 should involve at least 1)
reorganization of the computation to use the three-term recurrence and bidiagonalization
(see previous chapter), and 2) reorthogonalization during steps 1 and 2 [43, 29, 8].

2.2 Problem Statement

We are concerned with the approximation accuracy of the singular values of the Random
Block Lanczos algorithm, and with how the accuracy scales with the number of iterations q,
the block size b, and various spectrum behaviors.

More precisely, we seek a bound of the form

σj ≥ σj(Bk) ≥
σj√

1 + {some convergence factor}2
(2.1)

and we hope that such a bound, along with supporting numerical experiments, will help to
answer such theoretical and practical questions as

• What is the asymptotic convergence of RBL in q?

• What is the effect of choosing different block sizes b?

• For the typical data matrix, what parameter settings encourage the optimal perfor-
mance of RBL?

A partial answer to our core question was given by the following result.

Theorem 2.2.1 ([33], Thm. 13). For b ≥ k, there exists a choice of q = Θ
(

logn√
ε

)
in Alg. 7

such that, with probability 99/100, the algorithm returns Bk satisfying∣∣σ2
j − σ2

j (Bk)
∣∣ ≤ εσ2

b+1 (2.2)

In the event that σb+1 ≤ cσk with c < 1, taking q = Θ

(
log(n/ε)√

min{1,σk/σb+1−1}

)
suffices.

As with Theorem 1.4.3 for randomized subspace iteration, this Theorem gives a spectrum
independent bound for the convergence of the singular values for the Randomized Block
Lanczos algorithm. While the algorithm itself does not require b ≥ k, the authors of [33]
have only stated stated and proven the theorem for this parameter regime. Converted to a
familiar form, the spectrum independent version of Eqn. (2.2) reads

σj ≥ σj(Bk) ≥
σj√

1 + C2q−2 log(n)
(
σ2
b+1

σ2
j

) (2.3)

CHAPTER 2. RANDOMIZED BLOCK LANCZOS (RBL) ALGORITHM 21

for some constant C. Theorem 2.2.1 also provides a spectrum dependent version of the
bound, which is equivalent to

σj ≥ σj(Bk) ≥
σj√

1 + C2n exp
{
−q
√

min{1, σk/σb+1 − 1}
}(

σ2
b+1

σ2
j

) (2.4)

for some other constant C.
A comparison of Eqns. (2.3) and (2.4) reveals that there is an asymptotic loss associated

with disregarding the information from the spectrum if the spectrum exhibits sufficient de-
caying behavior - the spectrum independent bound only guarantees polynomial convergence
in q, while the spectrum dependent bound gives the familiar exponential convergence in q.

As a final note, as with all previous bounds for variants of the Block Lanczos algorithm,
Theorem 2.2.1 is applicable only for choices of block sizes b ≥ k.

2.3 Discussion of Contributions

In this thesis, we present novel theoretical convergence results concerning the rate of singu-
lar value convergence for Algorithm 7, along with numerical experiments supporting these
results. Our analysis presents a unified convergence theory for the Block Lanczos and Ran-
domized Block Lanczos algorithms, for all valid parameter choices of block size b. To our
knowledge, all previous results in the literature are applicable only with the choice of b ≥ k,
the target rank. We present a generalized theorem, applicable to all block sizes b, which
coincide asymptotically with previous results for the case b ≥ k, while providing equally
strong rates of convergence for the case b < k. A timeline appears in Figure 2.3 and helps
to situate the current work in the context of previous related literature.

Our current work is related primarily to the results laid out in two previous works. First,
our analysis derives from the work of Gu ([25]). This work established aggressive multi-
plicative convergence bounds for the randomized subspace iteration algorithm (Alg. 6), for
both singular values and normed (Frobenius, spectral) matrix convergence. As with tradi-
tional analysis of SVD algorithms, the bounds depend on both the singular value gap and
the number of iterations taken by the algorithm, the former a property of the matrix in
question, and the latter being proportional to the number of matrix multiplications and thus
the complexity of the algorithm. The analysis presented in Gu’s work is linear algebraic in
nature, drawing on deterministic matrix analysis, as well as expectation bounds on random-
ized Gaussian matrices and their concentration of measure characteristics. The current work
employs similar methods, and analysis is carried out on the general blocked Lanczos itera-
tion algorithm. While this is more complicated in the details, core ideas, such as blocking,
creating an artificial “gap” in the spectrum, and the choice of an opportune orthonormal
basis for the analysis, remain the same.

Secondly, this thesis is based in part on the theoretical results presented by Musco and
Musco ([33]). To our knowledge, this is the first work that gives “gap”-independent theo-
retical bounds for the block Lanczos algorithm. We emphasize that while the algorithm we

CHAPTER 2. RANDOMIZED BLOCK LANCZOS (RBL) ALGORITHM 22

Figure 2.1: Timeline of relevant historical developments

1950 1960 1970 1980 1990 2000 2010

(1950)
Lanczos iteration

algorithm

(1974, 1977)
Block Lanczos

algorithm

(1965)
Lanczos algorithm

for SVD
(2009, 2010, 2015)

Randomized
Block Lanczos

(1966, 1971, 1980)
Convergence
bounds for

Lanczos

(1975, 1980)
Convergence
bounds for

Block Lanczos

(2015)
Convergence
bounds for

Randomized
Block Lanczos

Our work:
Convergence
bounds for

Randomized
Block Lanczos,

arbitrary b

analyze is identical in exact arithmetic to the one presented in Musco, the analysis found in
[33] is restricted to the case for the Lanczos block size, b, chosen at least the size of k, the
desired target rank. Our theoretical analysis will give a more generally applicable conver-
gence bound, encompassing the case for both 1 ≤ b < k and b ≥ k. In the latter case, our
theoretical results coincide with those in [33]. In the former case, we show, in particular, that
the rapid convergence of the algorithm for any block size b larger than the largest singular
value cluster size is assured. We draw attention to this distinction in choosing the block size
parameter b, as, in our numerical results, we observe that it is advantageous to chose smaller
block sizes b < k. (For the same amount of floating-point computations, choices of smaller
block sizes appears to offer better accuracy across a variety of application matrices; see Ch.
4 for details). This is precisely the case for which this work guarantees the convergence rate
theoretically and where previous works are lacking.

The current work is largely theoretical in nature, and there continues to be need for
quality implementations of the Randomized Block Lanczos algorithm to aid its wider adopt-
ability. To this end, continuations of the current work might include such an (possibly
parallelized) implementation, along with further investigations of practical choices for the
block size parameter b which balances the evident preference for a smaller b for convergence

CHAPTER 2. RANDOMIZED BLOCK LANCZOS (RBL) ALGORITHM 23

with the advantages of a larger b for computational efficiency and numerical stability.

24

Chapter 3

Theoretical Analysis of RBL

3.1 Numerical Linear Algebra Preliminaries

In this section, we briefly review some definitions and results from Numerical Linear Algebra
that are relevant to the discussions at hand and required for the forthcoming derivations. For
more in-depth discussions of these topics, consult any standard Numerical Linear Algebra
text, e.g. [46, 14, 23].

Throughout this section and the rest of this work, we assume exact arithmetic operations.
For convenience, some definitions and results are given for A ∈ Rm×n, m ≥ n. For the case
m < n, the same definitions and results can be applied to AT .

QR decomposition

Theorem 3.1.1. Let A ∈ Rm×n with m ≥ n. If A has full column rank, then there exist a
unique orthogonal matrix Q ∈ Rm×n and a unique upper triangular matrix R ∈ Rn×n with
positive diagonals rii ≥ 0 such that

A = QR (3.1)

The standard stable procedure for computing the QR factorization of a matrix is by
Householder transformation, and the computational complexity of this algorithm is O(n2m).

In the event that A is rank deficient, say of rank(A) = r < n, and its first r columns
were independent, then its QR factorization would become

A =
[
Q1 Q2

] [R11 R12

0 0

]
(3.2)

where
[
Q1 Q2

]
is an orthogonal matrix, R11 ∈ Rr×r is upper triangular and R12 ∈ Rr×(n−r).

In general, algorithms such as QR with column pivoting, or any rank-revealing QR fac-
torization algorithms [26] may be used for the stable computation of the above.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 25

Singular value decomposition

Theorem 3.1.2. Let A ∈ Rm×n, m ≥ n be an arbitrary matrix. Then, there exists orthog-
onal matrix U ∈ Rm×n (i.e. UTU = I), orthogonal matrix V ∈ Rn×n (i.e. VTV = I), and
diagonal matrix Σ ∈ Rn×n with entries σ1 ≥ · · · ≥ σn ≥ 0, such that

A = UΣVT (3.3)

The columns of U =
[
u1 · · · un

]
are called the left singular vectors, the columns of V =[

v1 · · · vn
]

are called the right singular vectors, and σ1, · · · , σn are called the singular
values. If m < n, the SVD is defined by considering AT .

A related entity to the SVD of A is the rank-k truncated SVD of A.

Definition 3.1.1. For k ≤ rank(A), given the SVD of A as defined above, the rank-k
truncated SVD of A ∈ Rm×n is

svdk(A) ≡ UkΣkV
T
k (3.4)

where Uk ≡
[
u1 · · · uk

]
∈ Rm×k, Vk ≡

[
v1 · · · vk

]
∈ Rn×k, and Σk = diag(σ1, · · · , σk) ∈

Rk×k.

The rank-k truncated SVD is optimal in the following sense.

Theorem 3.1.3 (Eckart - Young [17]).

min
rank(B)≤k

‖A−B‖2 = ‖A− svdk(A)‖2 = σk+1 (3.5)

min
rank(B)≤k

‖A−B‖F = ‖A− svdk(A)‖F =

√√√√rank(A)∑
j=k+1

σ2
j (3.6)

Another related entity which can be defined in terms of the SVD is the pseudoinverse of
A.

Definition 3.1.2. Let r = rank(A), given the SVD of A as defined above, the Moore-Penrose
pseudoinverse of A ∈ Rm×n is

A† ≡ UrΣ
−1
r VT

r (3.7)

where Σ−1
r ≡ diag(σ−1

1 , · · · , σ−1
r).

Due to the implicit relationship between the eigen decomposition and the SVD, in general
eigen decomposition algorithms may be used to compute the SVD. Algorithms that stably
compute the SVD of a matrix include bidiagonalization followed by QR iteration (especially
suited to large, sparse matrices, see last chapter for an overview), divide-and-conquer, and
Jacobi’s method. These algorithms are generally O(mn2) in computational complexity.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 26

Interlacing results

The following interlacing results derive from the min-max formulation of of singular values,
and relate the singular values of a matrix with those of the matrix projected to a subspace.

Theorem 3.1.4 (Cauchy Interlacing Property). Let A =
[
a1 · · · an

]
∈ Rm×n be a column

partitioning with m ≥ n. If Ar =
[
a1 · · · ar

]
, then for r = 1, · · ·n− 1,

σ1(Ar+1) ≥ σ1(Ar) ≥ σ2(Ar+1) ≥ · · · ≥ σr(Ar+1) ≥ σr(Ar) ≥ σr+1(Ar+1) (3.8)

More generally:

Theorem 3.1.5. Let A ∈ Rm×n and let Q ∈ Rm×s be an orthonormal matrix. Then, for
1 ≤ j ≤ min(m,n)

σj(A) ≥ σj
(
QTA

)
(3.9)

Chebyshev polynomials

Definition 3.1.3. The pth degree Chebyshev polynomial is defined by the recurrence

T0(x) ≡ 1 (3.10)

T1(x) ≡ x (3.11)

Tp(x) ≡ 2pTp−1(x)− Tp−2(x) (3.12)

Alternatively, they may be expressed as

Theorem 3.1.6. For |x| > 1,

Tp(x) =
1

2

((
x+
√
x2 − 1

)p
+
(
x+
√
x2 − 1

)−p)
(3.13)

The property that we will make use of, for Chebyshev polynomials, is that they are
bounded between −1 ≤ x ≤ 1 and grow rapidly outside this interval. See Figure 3.1 for
illustrative comparison between the growth of a Chebyshev polynomial, and the growth of
a monomial of the same degree.

Theorem 3.1.7. For any p > 0,

|Tp(x)| ≤ 1 for |x| ≤ 1 (3.14)

and
Tp(1 + ε) ≥ 2p

√
ε−2 for ε > 0 (3.15)

Moreover, the following informal estimate is enlightening. For p large and ε small,

Tp(1 + ε) ≈ 1

2

(
1 + ε+

√
2ε
)p

(3.16)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 27

Figure 3.1: Comparison of the growth of the Chebyshev polynomial Tn(x) (red), its approx-
imation given by Eqn. (3.16) (orange), and the monomial of the same degree Mn(x) = xn

(blue).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

20

40

60

80

100

120

140

Chebyshev, Lanczos

Monomial, power method

Statistical tools

We cite two lemmas needed to make arguments about the expectations of certain expressions
involving Gaussian random matrices. Their proofs are given in [25].

Lemma 3.1.8. Let α > 0 and G ∈ Rm×n be a Gaussian random matrix. Then,

E

 1√
1 + α2 ‖G‖2

2

 ≥ 1√
1 + α2C2

(3.17)

where C =
√
m+

√
n+ 7.

Lemma 3.1.9. Let α > 0 and G ∈ R(l−p)×l be a Gaussian random matrix, then with
probability 1, rank(G) = l − p and

E

 1√
1 + α2 ‖G†‖2

2

 ≥


1√
1+α2C2 for p ≥ 2

1

1+α2C2 log 2
√

1+α2C2
αC

for p = 1

1
1+αC for p = 0

(3.18)

where C = 4e
√
l

p+1
.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 28

3.2 Setup and Intuition

We briefly overview the core pieces of our analysis. Our convergence analysis will show that
if the Lanczos iteration in Algorithm 7 converges, then the k desired singular values of the
approximation Bk converges to the corresponding true singular values of A exponentially in
the number of iteration q. Moreover, convergence occurs as long as the block size b is chosen
to be larger than the maximum cluster size for the k relevant singular values. Our analysis
makes use of the following three ideas:

• the growth behavior of Chebyshev polynomials, a traditional ingredient in the analysis
of Lanczos iteration methods,

• the choice of a clever orthonormal basis for the Krylov subspace, an idea adapted from
[25]

• the creation of a spectrum “gap”, by separating the spectrum of A into those singular
values that are “close” to σk, and those that are sufficiently smaller in magnitude.

3.3 Convergence Theory

We begin with an analysis of the deterministic basic block Lanczos algorithm (Alg. 7). This
analysis assumes a deterministic initial starting matrix Ω with certain characteristics; in
subsequently sections, we will use these results as a basis for proving probabilistic convergence
results for special cases of the algorithm when it is run with random Gaussian initial starting
matrices.

We are interested in the column span of the Krylov subspace matrix K. Let the singular
value decomposition of A be denoted as A = UΣVT . Then, we may write

K =
[
AΩ (AAT)AΩ · · · (AAT)qAΩ

]
(3.19)

=
[
UΣVTΩ UΣ2+1VTΩ · · · UΣ2q+1VTΩ

]
(3.20)

= UΣ
[
Ω̂ Σ̂Ω̂ · · · Σ̂qΩ̂

]
(3.21)

where for notational convenience we have defined the quantities Ω̂ ≡ VTΩ and Σ̂ ≡ Σ2.
As previously discussed, we want to separate the component of the Krylov subspace

that drives convergence as the number of iterations q increases, from the component that is
related to the initial starting subspace but independent of q. With this in mind, we define
the following matrix.

Definition 3.3.1. For 0 ≤ p ≤ q, let

Kp ≡ UT2p+1(Σ)
[
Ω̂ Σ̂Ω̂ · · · Σ̂q−pΩ̂

]
(3.22)

where T2p+1(x) is a shifted and scaled Chebyshev polynomial of degree 2p+ 1.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 29

The matrices K and Kp are related as follows.

Lemma 3.3.1. For all 0 ≤ p ≤ q, for any matrices M, N and polynomial p(x) of degree p,

span
{
p(M)

[
N MN · · · Mq−pN

]}
⊆ span

{[
N MN · · ·MqN

]}
(3.23)

In particular,
span {Kp} ⊆ span {K} (3.24)

Proof. The first statement follows from the definition of the column span of matrices. For
the second statement, take M = AAT , N = AΩ. Then, we have, firstly,

span {K} ⊇ span
{

(AAT)p
[
AΩ (AAT)AΩ · · · (AAT)q−pAΩ

]}
(3.25)

for any 0 ≤ p ≤ q by the first statement, and,

span
{

(AAT)p
[
AΩ (AAT)AΩ · · · (AAT)q−pAΩ

]}
(3.26)

= span
{

UΣPp(Σ̂)
[
Ω̂ Σ̂Ω̂ · · · Σ̂q−pΩ̂

]}
(3.27)

⊇ span
{

UT2p+1(Σ)
[
Ω̂ Σ̂Ω̂ · · · Σ̂q−pΩ̂

]}
(3.28)

where in the second equation, Pp is the set of polynomials of degree at most p. While as
sets of polynomials xPp(x2) 6= P2p+1(x), it is well known that the odd degree Chebyshev
polynomials T2p+1(x) belong to the set xPp(x2), a fact that was used from the second to the
third equation.

Using the variational characterization of singular values (Thm. 3.1.4), it is not hard to
show that

Lemma 3.3.2. In step 1 of algorithm 7, if instead of K we formed the factored matrix Kp,
then the singular values of the approximation returned by the modified algorithm bounds the
singular values of the approximation returned by the original algorithm from below.

For the rest of the analysis, Lemma 3.3.2 allows us to work with Kp instead of the more
complicated K. To proceed further in seeing the manner of convergence, we must choose a
helpful orthonormal basis Q for the column span of Kp.

Lemma 3.3.3 ([25]). For any non-singular matrix X of the correct dimensions, assume Ω

is chosen such that the Kp matrix as we have defined it is full rank. Let Q̂R̂ be the QR
factorization of KpX, and let QR be the QR factorization of Kp, then

QQT = Q̂Q̂T (3.29)

Below we choose an obliging X, which as much as possible orients the first k columns of
Kp in the directions of the leading k singular vectors.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 30

Figure 3.2: Illustration of parameters r, s.

0 σn σk+s+r+1

σk+s

σk σ1

“gap”

Definition 3.3.2. For all 0 ≤ p ≤ q, define the generalized Vandermonde matrix

Vp ≡
[
Ω̂ Σ̂Ω̂ · · · Σ̂q−pΩ̂

]
(3.30)

and partition this matrix as follows:

Vp =


V11 V12

V21 V22

V31 V32

V41 V42

 (3.31)

where the blocks in the first dimension are sized k, s, r, t = n−(k+s+r) and the blocks in the
second dimension are sized k, r. We partition the generalized Vandermonde matrix in such
a way to create a “gap” in the analysis that allows us to examine the convergence behavior
viewed as an accentuation of the “gap” by the appropriate polynomial. An overview of the
purpose of these parameters is as follows:

k = target rank, algorithm parameter

s = used to handle duplicate / clustered singular values, analysis parameter

r = used to create the “gap” that drives convergence, analysis parameter

t = n− (k + s+ r), the “rest” of the spectrum

See Figure 3.2 for an illustration.
We show the existence of (at least one) special non-singular X ∈ R(k+r)×(k+r) which

reveals a “gap” of size r. More precisely, with the notation as previously given, we claim
that there exists non-singular X such that

KpX = UT2p+1(Σ)VpX (3.32)

= U


Q11 V̂12

Q21 V̂22

0 V̂32

H V̂42

 (3.33)

with

[
Q11

Q21

]
a column orthogonal matrix. Notice the “gap” in the (3, 1) block of size r is

created by using X to align the columns of Kp.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 31

Below, we explicitly construct such an X. Partition

X =

[
X11 X12

X21 X22

]
(3.34)

Σ =


Σ1

Σ2

Σ3

Σ4

 (3.35)

where each dimension of X is sized k, r, and each dimension of Σ is sized k, s, r, t = n− (k+
s+ r). Then,

T2p+1(Σ)VpX =


T2p+1(Σ1)

T2p+1(Σ2)
T2p+1(Σ3)

T2p+1(Σ4)




V11 V12

V21 V22

V31 V32

V41 V42

[X11 X12

X21 X22

]

(3.36)

=


(
T2p+1(Σ1)

T2p+1(Σ2)

)(
V11 V12

V21 V22

)(
X11

X21

)
· · ·

T2p+1(Σ3)(V31X11 + V32X21) · · ·
T2p+1(Σ4)(V41X11 + V42X21) · · ·

 (3.37)

≡


(

V̂11

V̂21

)
· · ·

V̂31 · · ·
V̂41 · · ·

 (3.38)

Setting
X21 = −V−1

32 V31X11 (3.39)

ensures that the (2, 1) block of dimensions r×k in Eqn. (3.37) is the zero block (i.e. ensures

V̂31 = 0), and causes the (1, 1) block of dimensions (k + s)× k to become(
V̂11

V̂21

)
=

(
T2p+1(Σ1)

T2p+1(Σ2)

)(
V11 V12

V21 V22

)(
I

−V−1
32 V31

)
X11 (3.40)

=

[
T2p+1(Σ1)

T2p+1(Σ2)

] [
V11 −V12V

−1
32 V31

V21 −V22V
−1
32 V31

]
X11 (3.41)

We then take the QR factorization

Q̃R̃ =

[
T2p+1(Σ1)

T2p+1(Σ2)

] [
V11 −V12V

−1
32 V31

V21 −V22V
−1
32 V31

]
(3.42)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 32

and set
X11 = R̃−1 (3.43)

which ensures that (
V̂11

V̂21

)T (
V̂11

V̂21

)
=
(
Q̃R̃R̃−1

)T (
Q̃R̃R̃−1

)
= I (3.44)

Let Eqn. (3.43) and Eqn. (3.39) define X11 and X21 respectively.[
X11

X21

]
=

[
I

−V−1
32 V31

]
R̃−1 (3.45)

In order to completely specify the existence of the desired X in Eqn. (3.34), we must specify

the remaining columns

[
X12

X22

]
such that X is non-singular. To this end, we can simply specify[

X12

X22

]
≡
[
X11

X21

]⊥
(3.46)

and this completes the description of X.

Remark 3.3.1. In order for the above derivation and thus Eqn. (3.46) and Eqn. (3.45) to
be valid, the following conditions must hold: that Ω is chosen to allow

• V32 to be non-singular and thus invertible,

• V11 − V12V
−1
32 V31 to be non-singular and thus R̃ to be invertible. Note that this

expression is the Schur complement of the (k + r) × (k + r) matrix

[
V11 V12

V31 V32

]
with

respect to the V32 block.

For Ω drawn from the distribution of standard random Gaussian matrices with dimension
n× b, these conditions are satisfied with probability 1 ([18, 11]).

With this X, we have shown (as desired in Eqn. (3.33)) that the first block column of
KpX of size k is

KpX = U


Q11 · · ·
Q21 · · ·
0 · · ·
H · · ·

 (3.47)

where

[
Q11

Q21

]
is column orthonormal and

H = T2p+1(Σ4)(V41X11 + V42X21) (3.48)

= T2p+1(Σ4)(V41 −V42V
−1
32 V31)R̃−1 (3.49)

We present the first lower bound on the singular value of Bk.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 33

Lemma 3.3.4. Let Bk be the matrix returned by Alg. 7, let H be as defined in Eqn. (3.49),
and assume that the two conditions in Remark 3.3.1 hold. Then,

σk(Bk) ≥
σk+s√

1 + ‖H‖2
2

(3.50)

Proof. The matrix returned by Alg. 7 is the k-truncated SVD of QQTA, where the columns
of Q are an orthonormal basis for the column span of K. By Lemmas 3.3.2 and 3.3.3, it
follows that

σk(Bk) ≥ σk

(
Q̂pQ̂

T
p A
)

(3.51)

where Q̂p contains columns that form an orthonormal basis for the column span of KpX.

In particular, let Q̂pR̂p be the QR factorization of KpX, partitioned as follows:

KpX = Q̂pR̂p =
[
Q̂1 Q̂2

] [R̂11 R̂12

R̂22

]
(3.52)

where the block dimensions are sized k, s, as appropriate.
We can then write

Q̂pQ̂
T
p A = Q̂p

[
Q̂T

1

Q̂T
2

]
U




Σ1

Σ2

0 0
0 0




0 0
0 0

Σ3

Σ4


VT (3.53)

= Q̂p



Q̂T
1 U


Σ1

Σ2

0 0
0 0

 Q̂T
1 U


0 0
0 0

Σ3

Σ4


Q̂T

2 U


Σ1

Σ2

0 0
0 0

 Q̂T
2 U


0 0
0 0

Σ3

Σ4




VT (3.54)

We are specifically interested in the (1, 1) block of the center matrix. By the Cauchy
interlacing theorem for singular values (Thm. 3.1.5), it follows that

σk

(
Q̂pQ̂

T
p A
)
≥ σk

Q̂T
1 U


Σ1

Σ2

0 0
0 0


 (3.55)

We can compare the first k columns of Eqn. (3.52) with the expression in Eqn. (3.47) to
see that

Q̂1R̂11 = U


Q11

Q21

0
H

 (3.56)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 34

which helps us to write

Q̂T
1 U


Σ1

Σ2

0 0
0 0

 =

U


Q11

Q21

0
H

 R̂−1
11


T

U


Σ1

Σ2

0 0
0 0

 (3.57)

= R̂−T11


Q11

Q21

0
H


T 

Σ1

Σ2

0 0
0 0

 (3.58)

= R̂−T11

[
QT

11Σ1 QT
21Σ2

]
(3.59)

On the other hand, we have

σk+s = σk
(
σk+s

[
QT

11 QT
21

])
(3.60)

≤ σk
([

QT
11Σ1 QT

21Σ2

])
(3.61)

= σk

(
R̂T

11R̂
−T
11

[
QT

11Σ1 QT
21Σ2

])
(3.62)

≤ ‖R̂T
11‖2 σk

(
R̂−T11

[
QT

11Σ1 QT
21Σ2

])
(3.63)

Combining Eqns. (3.51), (3.55), (3.59), and (3.63), we obtain

σk(Bk) ≥
σk+s

‖R̂T
11‖2

(3.64)

and, with the help of Eqn. (3.56), and noting that

R̂T
11R̂11 = R̂T

11

(
UT Q̂1

)T (
UT Q̂1

)
R̂11 (3.65)

=

[
Q11

Q21

]T [
Q11

Q21

]
+ HTH (3.66)

= I + HTH (3.67)

completes the proof.

From here, we can obtain the following general deterministic singular value convergence
result.

Theorem 3.3.5. Let Bk be the matrix returned by Alg. 7. Assume that Ω is chosen such that
the two conditions in Remark 3.3.1 hold. For any parameter choices r, s, and any parameter
choice b satisfying k + r = (q − p+ 1)b ≥ k, with notation as before, for j = 1, · · · , k,

σj ≥ σj(Bk) ≥
σj+s√

1 + C2T−2
2p+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (3.68)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 35

where
C2 ≡ ‖(V41 −V42V

−1
32 V31)(V11 −V12V

−1
32 V31)−1‖2

2 (3.69)

is a constant that is independent of q.

Proof. With an eye toward Lemma 3.3.4, we proceed by providing a bound for ‖H‖2
2.

‖H‖2
2 (3.70)

=σ2
1

(
HHT

)
(3.71)

=σ2
1

(
T2p+1(Σ4)(V41−V42V

−1
32 V31)

(
R̃T R̃

)−1

(V41−V42V
−1
32 V31)TT2p+1(Σ4)

)
(3.72)

=σ2
1

(
T2p+1(Σ4)(V41−V42V

−1
32 V31)([

V11 −V12V
−1
32 V31

V21 −V22V
−1
32 V31

]T [
T 2

2p+1(Σ1)
T 2

2p+1(Σ2)

] [
V11 −V12V

−1
32 V31

V21 −V22V
−1
32 V31

])−1

(V41−V42V
−1
32 V31)TT2p+1(Σ4)

)
(3.73)

≤σ2
1

(
T2p+1(Σ4)(V41−V42V

−1
32 V31)(

(V11 −V12V
−1
32 V31)TT 2

2p+1(Σ1)(V11 −V12V
−1
32 V31)

)−1

(V41−V42V
−1
32 V31)TT2p+1(Σ4)

)
(3.74)

= ‖T2p+1(Σ4)(V41 −V42V
−1
32 V31)(V11 −V12V

−1
32 V31)−1T−1

2p+1(Σ1)‖2
2 (3.75)

≤T−2
2p+1

(
1 + 2 · σk − σk+s+r+1

σk+s+r+1

)
‖(V41 −V42V

−1
32 V31)(V11 −V12V

−1
32 V31)−1‖2

2 (3.76)

In the last equation, we have used the fact that Σ1 is a diagonal matrix whose elements are
σ1, · · · , σk, and Σ4 is a diagonal matrix whose elements are σk+s+r+1, · · · , σn. The 1 + 2 ·
σk−σk+s+r+1

σk+s+r+1
factor is best seen as shifting the Chebyshev polynomial T2p+1 onto the interval

[0, σk+s+r+1], so that the tail of the singular spectrum is bounded by 1 and convergence is
driven by the growth of the Chebyshev polynomial on the σ1, · · · , σk part of the spectrum
that we are interested in.

Repeating the previous argument for 1 ≤ j ≤ k completes the proof for the bound on
σj(Bk).

Remark 3.3.2. Recall that the intuition for choosing s is that it be chosen as large as possible
so that σj+s ≈ σj. Typically, when σj is not a multiple singular value, we may choose s = 0,

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 36

so that the bound Eqn. (3.68) takes the more familiar form where there is an oversampling
parameter r and the bound is a relative inequality between σj and σj(Bk).

Remark 3.3.3. In the statement of Theorem 3.3.5, we specified the condition k + r =
(q − p + 1)b ≥ k. Note that these are constraints of the analysis, and not of the algorithm.
The algorithm requires only that the block Krylov subspace matrix spans a space large enough,
which translates to the condition (q + 1)b ≥ k. The condition (q − p+ 1)b ≥ k derives from
the fact that we use Kp in our analysis instead of the original block Krylov matrix.

Remark 3.3.4. An easy way to see that the constant C is independent of the iteration
parameter q is to note that C is defined in terms of blocks of the generalized Vandermonde
matrix Vp ∈ Rn×(k+r), which depends only on Ω, and Σ, · · · ,Σk+r.

3.4 Special Case: b = 1

Previously, in Theorem 3.3.5, we assumed a general choice for the algorithm parameter block
size b. Now, we will examine some specific cases for the choice of b, under which it will be
possible to express the entries of H, and so the constant C explicitly.

When the block size parameter b is taken to be 1, the initial random starting block matrix
is in fact a random vector.

Ω =


ω1

ω2
...
ωn

 ∈ Rn×1, Ω̂ = VTΩ =


ω̂1

ω̂2
...
ω̂n

 ∈ Rn×1 (3.77)

Then, the Kp as defined in Def. 3.3.1 can be expressed as

Kp = UT2p+1(Σ)


ω̂1 σ̂1ω̂1 · · · σ̂q−p1 ω̂1

ω̂2 σ̂2ω̂2 · · · σ̂q−p2 ω̂2
...

...
...

...
...

...
ω̂n σ̂nω̂n · · · ω̂q−pn ω̂n

 (3.78)

= UT2p+1(Σ) diag(Ω̂)


1 σ̂1 σ̂2

1 · · · σ̂q−p1

1 σ̂2 σ̂2
2 · · · σ̂q−p2

...
...

...
...

...
...

...
...

1 σ̂n σ̂2
n · · · σ̂q−pn

 (3.79)

where diag(Ω̂) is the n × n diagonal matrix with entries ω̂1, · · · , ω̂n on the diagonal. Now,
with the ω̂i entries factored out, the remaining matrix is exactly the classical Vandermonde
matrix.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 37

As previously, we require k + r = (q − p + 1)b = q − p + 1, where r is an oversampling
parameter. (See comments after Def. 3.3.2.) Analogous to Def. 3.3.2, we define the following

Ṽp.

Definition 3.4.1. For 0 ≤ p ≤ q, let

Ṽp ≡


1 σ̂1 σ̂2

1 · · · σ̂q−p1

1 σ̂2 σ̂2
2 · · · σ̂q−p2

...
...

...
...

...
...

...
...

1 σ̂n σ̂2
n · · · σ̂q−pn

 (3.80)

≡



1 σ̂1 · · · σ̂k−1
1 σ̂k1 · · · σ̂k+r−1

1
...

...
...

...
...

1 σ̂k · · · σ̂k−1
k σ̂kk · · · σ̂k+r−1

k

1 σ̂k+1 · · · σ̂k−1
k+1 σ̂kk+1 · · · σ̂k+r−1

k+1
...

...
...

...
...

1 σ̂k+r · · · σ̂k−1
k+r σ̂kk+r · · · σ̂k+r−1

k+r

1 σ̂k+r+1 · · · σ̂k−1
k+r+1 σ̂kk+r+1 · · · σ̂k+r−1

k+r+1
...

...
...

...
...

...
...

...
...

...
1 σ̂n · · · σ̂k−1

n σ̂kn · · · σ̂k+r−1
n



(3.81)

≡

Ṽ11 Ṽ12

Ṽ21 Ṽ22

Ṽ41 Ṽ42

 (3.82)

Note that the three equations express three representations for the same matrix: 1) as orig-
inally expressed in the definition of Kp, 2) re-indexed in terms of k, r, and 3) expressed in
block form with dimensions (k + r + (n − (k + r))) × (k + r). In the block representation,
it is not a typo that the block indices are 1, 2, 4 respectively - this representation is intended
to correspond to Def. 3.3.2 and Eqn. 3.31, where in the current definition we have made
the simplifying assumption that the spectrum of A contains no multiple singular values. In
turn, the parameter s can be taken to be 0, rendering the third block unnecessary. For the
exposition that follows, the case for s 6= 0 can be reduced to the default case.

Now, once again, we seek a non-singular X ∈ R(k+r)×(k+r) to reveal a “gap” of size r.
Below, we show, explicitly, the construction of a non-singular X such that

KpX = UT2p+1(Σ) diag(Ω̂)ṼpX (3.83)

= U

Ik×k 0k×r
0r×k Ir×r
H G

 (3.84)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 38

We will make use of the following lemma.

Lemma 3.4.1. Let V be the n× (l + 1) Vandermonde matrix

V =


1 v1 v2

1 · · · vl1
1 v2 v2

2 · · · vl2
...

...
...

...
...

...
...

...
1 vn v2

n · · · vln

 (3.85)

If the constants vj are distinct, and n > l + 1, then there exist non-singular matrix X ∈
R(l+1)×(l+1) such that

VX =

[
I
H

]
(3.86)

where the entries of H ∈ R(n−(l+1))×(l+1) are given by

Hij =
(vi − v1) · · · (vi − vj−1)(vi − vj+1) · · · (vi − vl+1)

(vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vl+1)
=

l+1∏
t=1
t6=j

vi − vt
vj − vt

(3.87)

for

l + 2 ≤ i ≤ n

1 ≤ j ≤ l + 1

(For notational convenience, the indices of H run as the absolute position of the entry in the
VX matrix.)

Proof. See appendix.

Now, let us construct the X required in Eqn. (3.84). Applying the previous Lemma to

Ṽp gives some X̃ such that

ṼpX̃ =

Ik×k
Ir×r

H̃1 H̃2

 (3.88)

Building upon this X̃, let

X ≡ X̃

ω̂
−1
1

. . .

ω̂−1
k+r

T2p+1


σ
−1
1

. . .

σ−1
k+r


 (3.89)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 39

Then

KpX (3.90)

= UT2p+1(Σ) diag(Ω̂)ṼpX (3.91)

= UT



σ1

. . .
. . .

σn




ω̂1

. . .
. . .

ω̂n

 ṼpX̃

ω̂
−1
1

. . .

ω̂−1
k+r

T

σ
−1
1

. . .

σ−1
k+r




(3.92)

= U



(
Ik×k

Ir×r

)
T2p+1(σ1)ω̂1

. . .

T2p+1(σn)ω̂n

(H̃1 H̃2

)T
−1
2p+1(σ1)ω̂−1

1
. . .

T−1
2p+1(σk+r)ω̂

−1
k+r




(3.93)

= U

Ik×k
Ir×r

H G

 (3.94)

where the entries of H ∈ R(n−(k+r))×(k+r) can be expressed as

Hi,j =
k+r∏
t=1
t6=j

σ2
k+r+i − σ2

t

σ2
j − σ2

t

· T2p+1(σk+r+i)

T2p+1(σj)
· ω̂k+r+i

ω̂j
(3.95)

for

1 ≤ i ≤ n− (k + r)

1 ≤ j ≤ k

We now state and prove the singular value convergence bound for the special case block
size b = 1.

Corollary 3.4.2 (of Thm. 3.3.5). Let Bk be the matrix returned by Alg. 7. Assume Ω =[
ω1 ω2 · · · ωn

]T
is chosen such that ω̂1, · · · ω̂k are non-zero in Eqn. (3.77). For any pa-

rameter choices r, s satisfying k+r = (q−p+1) ≥ k, with notation as before, for j = 1, · · · , k,

σj ≥ σj (Bk) ≥
σj+s√

1 + Cb=1T
−2
2p+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (3.96)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 40

where

Cb=1 =

 max
1≤s≤k

j+r+1≤r≤n

ω̂r
ω̂s

2

·

 j∑
s=1

n∑
r=j+r+1

j+r∏
t=1
t6=s

(
σ2
r − σ2

t

σ2
s − σ2

t

)2

 (3.97)

is a constant independent of q.

Proof. Recalling the expression for, and derivation leading up to, Hi,j in Eqn. (3.95), we see
that there exists a non-singular X such that

KpX = U

 I
I

H G

 (3.98)

In this form, Lemma 3.3.4 applies, and it only remains to make an estimate of the size
of ‖H‖2

2.

‖H‖2
2 ≤ ‖H‖2

F (3.99)

=

n−(k+r)∑
i=1

k∑
j=1

H2
i,j (3.100)

=

n−(k+r)∑
i=1

k∑
j=1

k+r∏
t=1
t6=j

σ2
k+r+i − σ2

t

σ2
j − σ2

t

· T2p+1(σk+r+1)

T2p+1(σj)
· ω̂k+r+i

ω̂j


2

(3.101)

=
k∑
s=1

n∑
r=k+r+1

k+r∏
t=1
t6=s

σ2
r − σ2

t

σ2
s − σ2

t

· T2p+1(σr)

T2p+1(σs)
· ω̂r
ω̂s


2

(3.102)

≤ T−2
2p+1

(
1 + 2 · σk − σk+r+1

σk+r+1

) max
1≤s≤k

k+r+1≤r≤n

ω̂r
ω̂s

2
 k∑

s=1

n∑
r=k+r+1

k+r∏
t=1
t6=s

(
σ2
r − σ2

t

σ2
s − σ2

t

)2


(3.103)

and this completes the proof for σk. We can repeat the same argument for the j-truncated
matrix Bj, for the bound on σj, j = 1, · · · k.

Remark 3.4.1. While the above argument was made with the assumption that s = 0, i.e.
that no singular value in the spectrum of A is a multiple singular value, the corollary as stated
is valid for the general choice of s. To see this is the case, note that in the definition for Ṽp,
had there been multiple singular values, we could have reindexed the spectrum such that the
first σ1, · · · , σk singular values are unique, and the subsequent σk+r+1, · · · , σk+r+s singular

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 41

values contain multiples of those from the first k singular values. With this reordering, Ṽp

would become

Ṽp =


Ṽ11 Ṽ12

Ṽ21 Ṽ22

Ṽ31 Ṽ32

Ṽ41 Ṽ42

 (3.104)

with blocking dimensions k, r, s, n−(k+r+s) and k, r respectively. The subsequent reduction
in Lemma 3.4.1 would have reduced this matrix to

KpX = U


Ik×k 0k×r
0r×k Ir×r
0s×k 0s×r
H G

 (3.105)

and the remaining details of the derivation would be unchanged.

Remark 3.4.2. Looking at the form of the constant Cb=1, we see that it has two components,
which are familiar from the traditional Lanczos bounds. The first, involving the ratios ω̂r/ω̂s,
quantifies the alignment of the initial starting vector with the relevant singular subspace. If,

as intended, the
[
ω1 · · · ωn

]T
initial starting vector is taken to have random Gaussian

entries, then with probabilistic arguments we can guarantee that the non-zero condition in
the statement of the corollary is satisfied with high probability. The second component is a
“Lagrange multiples” factor.

3.5 Special Case: b ≥ k + r

When the block size parameter b is taken to be greater than the sum of the target rank k and
the oversampling parameter r, it becomes possible to disentangle the effects of the spectrum
decay and the random initial starting matrix Ω in the convergence bounds. From this, we
will also derive a spectrum independent convergence bound.

By taking b ≥ k + r, we may choose p = q in Definition 3.3.2 to satisfy the condition

(q− p+ 1)b ≥ k+ r. In this case Vp =
[
Ω̂ Σ̂Ω̂ · · · Σ̂q−pΩ̂

]
will in fact consist of a single

block.

Vp = Ω̂ =


Ω̂11 Ω̂12

Ω̂21 Ω̂22

Ω̂31 Ω̂32

Ω̂41 Ω̂42

 (3.106)

where the block dimensions are again k, s, r, n− (k + s+ r) and k, r respectively.
Here, the key is that Vp no longer depends on the spectrum Σ.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 42

In addition, it follows that

Kp = UT2p+1(Σ)Ω̂ (3.107)

As before, for our analysis we seek a non-singular X ∈ R(k+r)×(k+r) to reveal a “gap” of
size r.

We begin by rotating Ω̂ into alignment as follows. Take the RQ-factorization of the third
block row [

Ω̂31 Ω̂32

]
= RTQT =

[
RT

Ω̂
0
] [VT

Ω̂

WT
Ω̂

]
(3.108)

Then, form the rotation matrix

Q̂ =
[
WΩ̂ VΩ̂

]
(3.109)

Note that Ω̂ thus rotated becomes

Ω̂Q̂ =



(
Ω̂11 Ω̂12

)
WΩ̂

(
Ω̂11 Ω̂12

)
VΩ̂(

Ω̂21 Ω̂22

)
WΩ̂

(
Ω̂21 Ω̂22

)
VΩ̂(

Ω̂31 Ω̂32

)
WΩ̂

(
Ω̂31 Ω̂32

)
VΩ̂(

Ω̂41 Ω̂42

)
WΩ̂

(
Ω̂41 Ω̂42

)
VΩ̂

 =


Ω̃11 Ω̃12

Ω̃21 Ω̃22

0 RT
Ω̂

Ω̃41 Ω̃42

 (3.110)

Plugging back into Eqn. (3.107), we have

KpQ̂ = UT2p+1




Σ1

Σ2

Σ3

Σ4





Ω̃11 Ω̃12

Ω̃21 Ω̃22

0 RT
Ω̂

Ω̃41 Ω̃42

 (3.111)

=

 U


T2p+1(Σ1)Ω̃11

T2p+1(Σ2)Ω̃21

0

T2p+1(Σ4)Ω̃41

 · · ·

 (3.112)

where in the last expression, we have isolated the first k columns of Kp.
We further push the “mass” of the top k + s rows into the top k rows. Consider the

QR-factorization of the (k + s)× k block[
T2p+1(Σ1)Ω̃11

T2p+1(Σ2)Ω̃21

]
= Q̃R̃ =

[
Q̃1 Q̃2

] [
R̃1

0

]
(3.113)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 43

We have 
T2p+1(Σ1)Ω̃11

T2p+1(Σ2)Ω̃21

0

T2p+1(Σ4)Ω̃41

 R̃−1
1 =


(

Q̃1

)
0

T2p+1(Σ4)Ω̃41R̃
−1
1

 (3.114)

where by construction Q̃1 is column orthogonal.
Finally, we take as a non-singular X ∈ R(k+s)×(k+s)

X = Q̂R̃−1
1 (3.115)

With this choice, combining Eqn. (3.112) and Eqn. (3.114), we have

KpX =

 U


(

Q̃1

)
0
H

 · · ·

 (3.116)

where
H ≡ T2p+1(Σ4)Ω̃41R̃

−1
1 (3.117)

Note the similarity between Eqn. (3.116) and Eqn. (3.47). Lemma 3.3.4 holds as well
with H as defined in Eqn. (3.117).

We are now ready to state and prove the singular value convergence bound for the special
case of block size b ≥ k + r.

Corollary 3.5.1 (of Thm. 3.3.5). Let Bk be the matrix returned by Alg. 7. Assume Ω is

chosen such that Ω̃11 is nonsingular in Eqn. (3.110). For any parameter choices r, s, with
notation as before, for j = 1, · · · , k

σj ≥ σj (Bk) ≥
σj+s√

1 + C2
b≥k+rT

−2
2q+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (3.118)

where
Cb≥k+r =

∥∥∥Ω̃41

∥∥∥
2

∥∥∥Ω̃−1
11

∥∥∥
2

(3.119)

is a constant independent of both q, the iteration parameter, and Σ, the spectrum of A.

Proof. We estimate ‖H‖2 as

‖H‖2 =
∥∥∥T2p+1(Σ4)Ω̃41R̃

−1
1

∥∥∥
2
≤ T2p+1(σk+s+r+1)

∥∥∥Ω̃41

∥∥∥
2

∥∥∥R̃−1
1

∥∥∥
2

(3.120)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 44

and we estimate
∥∥∥R̃−1

1

∥∥∥
2

as

∥∥∥R̃−1
1

∥∥∥
2

=

∥∥∥∥(R̃T
1 R̃1

)−1
∥∥∥∥1/2

2

=
(
σmin

(
R̃T

1 R̃1

))−1/2

(3.121)

Since

R̃T
1 R̃1 =

(
Q̃R̃

)T (
Q̃R̃

)
(3.122)

=
[
Ω̃T

11 Ω̃T
21

] [T2p+1(Σ1)
T2p+1(Σ2)

] [
T2p+1(Σ1)

T2p+1(Σ2)

][
Ω̃11

Ω̃21

]
(3.123)

= Ω̃T
11T

2
2p+1(Σ1)Ω̃11 + Ω̃T

21T
2
2p+1(Σ2)Ω̃21 (3.124)

it follows that

σmin

(
R̃T

1 R̃1

)
= σk

(
Ω̃T

11T
2
2p+1(Σ1)Ω̃11 + Ω̃T

21T
2
2p+1(Σ2)Ω̃21

)
(3.125)

≥ σk

(
Ω̃T

11T
2
2p+1(Σ1)Ω̃11

)
(3.126)

≥
σk
(
T 2

2p+1(Σ1)
)∥∥∥Ω̃−1

11

∥∥∥2

2

(3.127)

=
T 2

2p+1(σk)∥∥∥Ω̃−1
11

∥∥∥2

2

(3.128)

Combining the above, we have

‖H‖2 ≤
T2p+1(σk+s+r+1)

T2p+1(σk)

∥∥∥Ω̃41

∥∥∥
2

∥∥∥Ω̃−1
11

∥∥∥
2

(3.129)

≤ T−1
2p+1

(
1 + 2 · σk − σk+s+r+1

σk+s+r+1

)∥∥∥Ω̃41

∥∥∥
2

∥∥∥Ω̃−1
11

∥∥∥
2

(3.130)

Finally, recalling our choice of p = q gives the desired bound for σk. Making the same
argument for σj (Bj) = σj (Bk) gives the bound for 1 ≤ j ≤ k.

While in general we cannot say much about Ω̃41 and Ω̃11 in relation to the initial start-
ing matrix Ω, when Ω is a Gaussian random matrix, it is distributionally invariant under
rotations, and so Ω̃ is also a Gaussian random matrix. Under these assumptions, Ω̃11 is
non-singular with high probability. In fact, the following result holds.

Theorem 3.5.2. Let Bk be the matrix returned by Alg. 7. Assume that Ω is a random
Gaussian matrix. Then, for any parameter choices r, s, with notation as before, for j =

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 45

1, · · · , k,

E(σj(Bk)) ≥



σj√
1+C2T−2

2q+1

(
1+2·

σj−σj+s+r+1
σj+s+r+1

) for r ≥ 2

σj

1+C2T−2
2q+1

(
1+2·

σj−σj+s+r+1
σj+s+r+1

)
log

√
C2+T 2

2q+1

(
1+2·

σj−σj+s+r+1
σj+s+r+1

) for r = 1

σj

1+CT−1
2q+1

(
1+2·

σj−σj+s+r+1
σj+s+r+1

) for r = 0

(3.131)

for

C =
(√

n− b+ r +
√
r + 7

)(4e
√
b

r + 1

)
(3.132)

Note the similarity between the randomized block Lanczos results Cor. 3.5.1 and Thm. 3.5.2
with the randomized subspace iteration results Thms. 1.4.1 and 1.4.2.

Since Corollary 3.5.1 is valid for all parameter choices of s, we may optimize over it to
achieve a spectrum independent singular value convergence bound. We state and prove this
result in the next Theorem.

Theorem 3.5.3. Let Bk be the matrix returned by running Alg. 7 with the block size b = k.
Assume Ω is chosen such that Ω̃11 is nonsingular. Then, for j = 1, · · · , k

σj ≥ σj (Bk) ≥ σje
O
(
− log(A(4q+2))2

(4q+2)2

)
(3.133)

where
A = 2

∥∥∥Ω̃41

∥∥∥
2

∥∥∥Ω̃−1
11

∥∥∥
2

(3.134)

is a constant independent of q.

Proof. For every f > 0, choose s in Corollary 3.5.1 to be the largest index such that

σj+s ≥
σj

1 + f
(3.135)

Since s is the largest such index, it follows that

σj+s+r+1 ≤
σj

1 + f
(3.136)

Then
σj − σj+s+r+1

σj+s+r+1

≥
σj − σj

1+f
σj

1+f

= f (3.137)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 46

Using the Chebyshev polynomial estimation in Theorem 3.1.7, we have

T2q+1

(
1 + 2 · σj − σj+s+r+1

σj+s+r+1

)
≥ 2−1 · 2(2q+1)

√
2f (3.138)

=⇒T−2
2q+1

(
1 + 2 · σj − σj+s+r+1

σj+s+r+1

)
≤ 22 · 2−(4q+2)

√
2f (3.139)

With the definition A = 2
∥∥∥Ω̃41

∥∥∥
2

∥∥∥Ω̃−1
11

∥∥∥
2
, the singular value inequality bound in Corol-

lary 3.5.1 becomes

σj ≥ σj(Bk) ≥
σj+s√

1 + C2
b≥k+rT

−2
2q+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (3.140)

≥
σj

1+f√
1 + 2−2A2 · 22 · 2−(4q+2)

√
2f

(3.141)

=
σj√

(1 + f)2(1 +A2 · 2−(4q+2)
√

2f)
(3.142)

, valid for any choice of f > 0. In particular, take

f =
1

2

(
log(A2(4q + 2)2)

log 2

)2
1

(4q + 2)2
(3.143)

Then, we can estimate the right-hand side of Eqn. (3.142) as follows.

(1 + f)2 ≤ e

(
log(A2(4q+2)2)

log 2

)2
1

(4q+2)2 (3.144)

and (
1 +A2 · 2−(4q+2)

√
2f
)
≤ e

1
(4q+2)2 (3.145)

imply

(
(1 + f)2

(
1 +A2 · 2−(4q+2)

√
2f
))−1/2

≥

e− 1
(4q+2)2

−
(

log(A2(4q+2)2)
log 2

)2

1
(4q+2)2


1/2

(3.146)

≥ e
−
(

log(A2(4q+2)2)
log 2

)2

1
(4q+2)2

(3.147)

Asymptotically in q, this bound states

σj ≥ σj (Bk) ≥ σje
O
(
− log(A(4q+2))2

(4q+2)2

)
(3.148)

as desired.

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 47

Remark 3.5.1. Expressed another way, this asymptotic lower bound implies that to attain a
1 + ε multiplicative error, i.e. σj (Bk) ≥ (1 + ε)σj, the algorithm should be allowed to iterate

for q = O
(
n√
ε

)
iterations. This is in line with the result stated and proved in [33].

3.6 Superlinear Convergence

We show that under certain assumptions about the singular value spectrum of A, our result
in Theorem 3.3.5 implies that the block Lanczos algorithm converges superlinearly.

Recall that a sequence {an} converges superlinearly to a if

lim
n→∞

|an+1 − a|
|an − a|

= 0 (3.149)

Theorem 3.6.1. Assume the singular value spectrum of A decays such that σj → 0. Let Bk

be the rank k approximation of A returned by Alg. 7. Assume additionally that the hypothesis
and notation of Theorem 3.3.5 hold. Then

σj(Bk)→ σj (3.150)

superlinearly in q, the number of iterations.

Proof. The statement of the lemma is equivalent to the statement that

C T−1
2p+1

(
1 + 2 · σj − σj+r+1

σj+r+1

)
→ 0 (3.151)

superlinearly. For notational convenience we assume σj is not a multiple singular value and
we have chosen s = 0. (See Remark 3.3.2; otherwise, our following argument can be made
for the largest choice of s such that σj+s = σj.)

For any fixed j = 1, · · · , k, define

aq ≡ C(r)T−1
2p+1

(
1 + 2 · σj − σj+r+1

σj+r+1

)
(3.152)

= C(r)T−1

2(q+1− k+r
b)+1

(
1 + 2 ·

((
j + r + 1

j

)τ
− 1

))
(3.153)

where we have explicitly specified the dependence of the constant C on the analysis parameter
r, and made use of the assumption that σj ∼ 1/jτ . Using Theorem 3.1.7 we can approximate

aq ≈ C(r) ·
1

2

(
1 + g +

√
2g
)−(2(q+1− k+r

b)+1)
(3.154)

≈ 1

2
· C(r) ·

(
1 + g +

√
2g
)−2(1− k+r

b)+1

·
(

1 + g +
√

2g
)−2q

(3.155)

where g = 2 · σj − σj+r+1

σj+r+1

= 2 ·
(

σj
σj+r+1

− 1

)
(3.156)

CHAPTER 3. THEORETICAL ANALYSIS OF RBL 48

Table 3.1: Summary of convergence results

citation bound req. on b

Saad λ
(q)
j ≥

λj

1+L
(q)
j

2
tan2 Θ(U,V)T−2

q−j

(
1+2

λj−λj+b
λj+b

) b ≥ k

Musco - spec. indep. σ
(q)
j ≥

σj√
1+C2 log2(n) q−2

σ2
b+1

σ2
j

b ≥ k

Musco - spec. dep. σ
(q)
j ≥

σj√
1+Cne

−q
√

min(1,σk/σb+1−1) σ
2
b+1

σ2
j

b ≥ k

Current Work σ
(q)
j ≥

σj√
1+C2T−2

2q+1−2(k+r)/b

(
1+2

σj−σj+r+1
σj+r+1

) b ≥ 1, bq ≥ k + r

Then we argue that aq+1/aq → 0 as follows.

aq+1

aq
=

1(
1 + g +

√
2g
)2 ≤

1

(1 + g)2
(3.157)

Since we assumed a spectrum such that σj → 0 eventually, it is possible to choose r suffi-
ciently large such that 1/(1 + g)2 is arbitrarily small.

It may seem strange that here in order to make our argument we chose the oversampling
parameter r instead of the parameter q, on which the sequence is indexed by. Recall that r
and q are related by k + r = (q − p + 1)b. Therefore, choosing r to be sufficiently large is
in effect choosing q to be so. Furthermore, since the inequality in Theorem 3.3.5 holds for
all choices of r and r itself is only a parameter in the analysis and not the algorithm, the
conclusion holds.

Remark 3.6.1. Rigorously, the above argument applies only to infinite dimensional oper-
ators, as in the finite dimensional case, r ≤ n cannot be chosen to be arbitrarily large.
However, numerous previous works have noted that in practice, the convergence does tend to
exhibit superlinear behavior [41].

Remark 3.6.2. See the next chapter for an illustration of some spectrums of matrices from
real data applications - by and large, they do exhibit the kind of characteristics that are
assumed in this theorem.

3.7 Summary

A summary of all applicable results for the Randomized Subspace Iteration algorithm 7 along
with their restrictions, translated to comparable form, appears in Table 3.1.

49

Chapter 4

Numerical Experiments

In the previous chapter, one of our main results was the following generalized bound, proved
in Thm. 3.3.5, and reproduced below for convenience.

σj ≥ σj (Bk) ≥
σj+s√

1 + C2T−2
2p+1

(
1 + 2 · σj−σj+s+r+1

σj+s+r+1

) (4.1)

where p is given by the expression k + r = (q − p+ 1)b.
While this bound exhibits attractive asymptotic convergence behavior, it remains to be

seen that the desirable convergence behavior manifests itself in the regime of practical data
problems. For one, it is possible that the constant C is large enough to totally overwhelm
the Chebyshev convergence term in all practical settings. The purpose of our numerical
experiments is in part to show that this does not occur. Additionally, the above bound holds
for all valid choices of the oversampling parameter r, whose effect enters the bound in both
the spectral “gap” term and in the degree of the Chebyshev polynomial. In our experiments,
we show that it is generally beneficial to select an oversampling of r > 0. Finally, we show
that for practical data matrices, the assumptions we have made about the decay of their
spectra in Section 3.6 is true in most cases, and the Randomized Block Lanczos does exhibit
superlinear convergence when applied to these matrices.

For our numerical experiments, we implemented the RSI and RBL Algorithms (Alg. 6
and 7 respectively) as MATLAB routines. As outlined, Algorithm 7 consists of the pseu-
docode steps, whereas the actual implementation reorganizes the computations into a block
bidiagonalization step followed by an SVD step on the bidiagonal matrix. Both algorithms
were implemented with full orthogonalization at every iteration for simplicity, although nu-
merous other orthogonalization schemes exist. In both the computational complexity dis-
cussion and the numerical experiments below, we refer to the actual implementation and not
the pseudocode. See Appendix B for the relevant code snippets.

CHAPTER 4. NUMERICAL EXPERIMENTS 50

4.1 Computational Complexity

We give an arithmetic complexity accounting of the Randomized Block Lanczos algorithm.
The initialization of the random starting matrix Ω takes O(nb) floating-point operations
(flops). The formation of the Krylov matrix K consists of 1 matrix multiplications of AΩ
along with 2q accumulated applications of either A or AT for a total dominating cost of
O(mnbq) flops. (There are also 2q matrix-multiplications involving the A and B blocks of
the bidiagonal matrix, but because of the smaller matrix dimensions, this cost is insignifi-
cant.) The orthonormal basis Q of K is computed implicitly at each iteration using a QR
factorization, the standard Householder implementation of which has complexity O(m(b)2),
for a total cost of O(mb2q). Finally, the truncated SVD factorization is performed on the
bidiagonal matrix. Because the dimension of this matrix is ((q + 1)b) × ((q + 1)b) and we
expect (q + 1)b ≈ k to be small, we assume its SVD computation is performed with a
non-specialized dense matrix algorithm, using O((bq)3) flops. The final step of forming the
approximation matrix Bk is an additional O(m(bq)2) flops.

Overall, the computational complexity of Algorithm 7 is O(mnbq + m(bq)2). The first
dominating term is the result of performing the matrix multiplications for the computation
of the Lanczos block vectors. Fortunately, matrix multiplication is a highly optimized and
highly tuned part of many matrix computation libraries, especially for suitably chosen block
sizes.

We draw attention to the fact that that the parameters b and q only appear together as the
quantity bq in our computational complexity accounting. This suggests that we may freely
vary b, q and as long as they vary inversely and the quantity bq remains constant, the time
for running Algorithm 7 remains comparable. (In practice, the story is more complicated.
For dense matrices, due to the efficiency of BLAS3 operations compared with BLAS1/2
operations, choices for b larger than the CPU cache block size, and input matrices that are
more “square”, will generally be more performant. For sparse matrices, the time complexity
will instead be determined by the number of nonzeros entries of the matrix, in addition to
the memory layout of the storage of these entries.) Given the comparable computational
complexity, and assuming the conditions for the convergence of Algorithm 7 is met, we need
not privilege the block size choice b = k. In fact, the next section, we show empirically that
in many cases, it is beneficial in terms of approximation accuracy to choose block sizes b
strictly smaller than k.

4.2 Constructed Matrices

We perform two sets of numerical experiments to empirically profile the convergence behavior
of Algorithm 7. Firstly, we observe the convergence properties of the algorithm on a set of
constructed matrices. We aim to show the effect of varying the block size b on matrices with
different spectrum decay behaviors.

CHAPTER 4. NUMERICAL EXPERIMENTS 51

20 40 60 80 100 120 140

j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j

Spectrums

lin

1/j

1/j
2

Figure 4.1: The singular value spectrums of Alin, A1/j and A1/j2 .

To construct matrices with specific singular spectrums, we form them as

A(·) = UΣ(·)V
T (4.2)

with random orthonormal matrices U and V. All matrices that we test are of dimensions
A(·) ∈ R10000×150.

Our test matrices Alin, A1/j, and A1/j2 have singular spectrums decaying linearly, and
as σj = 1

j
and σj = 1

j2
respectively. See Figure 4.1 for plots of Σlin, Σ1/j and Σ1/j2 .

For this set of experiments, we target a rank of k = 10. To compare runs of the algorithm
with comparable number of flops, we fix bq = 20. To that end, we vary the block size
parameter as b = 20, 10, 5, 4, 2, 1, and the Lanczos iteration parameter as q = 1, 2, 4, 5, 10, 20
respectively. This means, for example, for a block size of b = 5, q = 4 iterations of the
RBL algorithm were run. For each (b, q) parameter setting, 500 runs of the algorithm were
performed and the results averaged. The results appear in Figures 4.2, 4.3, 4.4 respectively.

Each line on this set of plots represents the result of running RBL with a single set of
parameters - block size b, and q = 20/b iterations. Each marker on the line represents the
relative error of a single singular value, σ̃1, · · · , σ̃10. The y-axis is in log scale, and so further
down (less relative error) is good. As expected, the faster the spectrum decays, the more
converged the singular values. We observe that for all parameter settings and all spectrums,
σ̃1 converges the most, followed by σ̃2, etc. Comparing across block sizes, we see that smaller
block sizes generally perform better, and this is especially pronounced for the faster decaying
spectrums Σ1/j and Σ1/j2 .

CHAPTER 4. NUMERICAL EXPERIMENTS 52

1 2 3 4 5 6 7 8 9 10

i

10 -4

10 -3

10 -2

10 -1

10 0

re
l.
 e

rr
.
=

 (
(A

)-
(B

k
))

/
(A

)

Convergence behavior of first 10 singular values

b=20

b=10

b=5

b=4

b=2

b=1

Figure 4.2: First k = 10 singular values convergence behavior, for the matrix Alin.

1 2 3 4 5 6 7 8 9 10

i

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

re
l.
 e

rr
.
=

 (
(A

)-
(B

k
))

/
(A

)

Convergence behavior of first 10 singular values

b=20

b=10

b=5

b=4

b=2

b=1

Figure 4.3: First k = 10 singular values convergence behavior, for the matrix A1/j.

CHAPTER 4. NUMERICAL EXPERIMENTS 53

1 2 3 4 5 6 7 8 9 10

i

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

re
l.
 e

rr
.
=

 (
(A

)-
(B

k
))

/
(A

)

Convergence behavior of first 10 singular values

b=20

b=10

b=5

b=4

b=2

b=1

Figure 4.4: First k = 10 singular values convergence behavior, for the matrix Alin.

4.3 Activities and Sports Dataset

The Activities and Sports Dataset is a dataset consisting of motion sensor data for 8 subjects
performing 19 daily/sports activities, for 5 minutes, sampled at 25Hz frequency. This dataset
can be found at [6].

The matrix associated with this dataset is dense and of dimension A ∈ R9120×5625, where
each row is a sample and each entry is a double precision float. Figure 4.5 shows a plot
of the first 500 singular values of A. As is typically for data matrices, this matrix exhibits
spectrum decay on the order of σj = 1

jτ
, for constant τ > 1, and our theory suggests that in

this case, we should observe superlinear convergence for RBL.
In this set of experiments, we investigate the convergence of a single singular value with

respect to the number of iterations, in addition to the affect of the block size on convergence.
We run the RSI and RBL algorithms on the Activities and Sports Dataset matrix with a
target rank of k = 200, and examine the convergence of σ1, σ100, and σ200. The results of
these experiments are in Figures 4.6, 4.7, and 4.8.

Each of these plots represent the convergence of a particular singular value. In each plot,
each line represents a single parameter setting for the block size b, for either the RSI or the
RBL algorithm. The y-axis is in log scale, and denotes the relative error of the particular
singular value we are examining. The x-axis is in linear scale, and denotes the value of bq
(a proxy measure for computational complexity). Markers on each line represent successive
iterations of the algorithm. In this plot, down and to the left is good - we seek parameter

CHAPTER 4. NUMERICAL EXPERIMENTS 54

0 100 200 300 400 500

j

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

j

10 4 Spectrum of Daily Activities Matrix

Figure 4.5: First 500 singular values of the Daily Activities and Sports Matrix.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of MATVECs = b*(1+2*q)

10 -15

10 -10

10 -5

10 0

re
l.
 e

rr
.
=

 (
j-

j(B
k
))

/
j

Daily Activities Dataset, target k = 200, j = 200

RSI b=200

RSI b=200+2

RSI b=200+5

RBL b=200

RBL b=100

RBL b=50

RBL b=20

RBL b=10

RBL b=2

RBL b=1

Figure 4.6: k = 200 approximation of the Daily Activities Dataset, convergence of σ200.

CHAPTER 4. NUMERICAL EXPERIMENTS 55

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of MATVECs = b*(1+2*q)

10 -15

10 -10

10 -5

10 0

re
l.
 e

rr
.
=

 (
j-

j(B
k
))

/
j

Daily Activities Dataset, target k = 200, j = 100

RSI b=200

RSI b=200+2

RSI b=200+5

RBL b=200

RBL b=100

RBL b=50

RBL b=20

RBL b=10

RBL b=2

RBL b=1

Figure 4.7: k = 200 approximation of the Daily Activities Dataset, convergence of σ100.

settings that give good convergence for less computational complexity. We observe that, as
expected, RSI converges linearly and RBL converges superlinearly. These trends are most
clearly seen in Figure 4.6 and is also present in Figure 4.7. The convergence of σ1 is extremely
rapid in Figure 4.8, and reaches double precision in 2-5 iterations for all block sizes. In fact,
the convergence is so rapid for the first singular value that, by the time the last singular
value, σ200, becomes available, the relative error for σ1 has dropped to machine epsilon for
block sizes b = 20, 10, 2, 1. In all cases, for both RBL and RSI, it appears that, at the same
computational complexity, choosing a smaller block size b, leads to more rapid convergence.
For example, in Figure 4.6, we observe that in order for σj to converge to a relative error of
∼ 10−5, taking b = 1 uses 1/2 the number of flops as taking b = k = 200.

4.4 Eigenfaces Dataset

The Eigenfaces dataset is available from the AT&T Laboratories Cambridge’s Database of
Faces [42], and consists of 10 different face images of 40 different subjects at 92× 112 pixels
resolution, varying in light, facial expressions, and other details. The widely cited technique
for processing this data is via PCA [47], where it was observed that each face can composed
in large part from a few prominent “Eigenfaces”.

The associated matrix is a dense matrix, which is formed by vectorizing each different

CHAPTER 4. NUMERICAL EXPERIMENTS 56

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of MATVECs = b*(1+2*q)

10 -15

10 -10

10 -5

10 0

re
l.
 e

rr
.
=

 (
j-

j(B
k
))

/
j

Daily Activities Dataset, target k = 200, j = 1

RSI b=200

RSI b=200+2

RSI b=200+5

RBL b=200

RBL b=100

RBL b=50

Figure 4.8: k = 200 approximation of the Daily Activities Dataset, convergence of σ1.
Smaller values of b are omitted as, for the first singular value σ1, all have converged to
machine epsilon by the iteration at which the last singular value at the target rank, σ200, is
first computed.

face image as a column vector, and has dimensions A ∈ R10304×400 and it is of full numerical
rank. The spectrum of this matrix spans 5 orders of magnitude but decays extremely rapidly,
typical of data matrices. In fact, as seen in Figure 4.9, the noise level appears to begin around
the 50th singular value.

We repeat the experiments performed for the Activities and Sports Dataset. For this set of
experiments, we use the RSI and RBL algorithms to compute rank-k = 100 approximations
for the Eigenfaces matrix, and examine the convergence of σ100. The result appears in
Figure 4.10.

We observe similar behavior as those observed for the Daily Activities and Sports Matrix:
the RSI algorithm exhibits linear convergence while the RBL algorithm exhibits superlinear
convergence; smaller block sizes b appear to converge more quickly for a fixed number of
flops.

CHAPTER 4. NUMERICAL EXPERIMENTS 57

0 50 100 150 200 250 300 350 400

j

10 2

10 3

10 4

10 5

10 6
Spectrum of Eigenfaces Matrix

Figure 4.9: Spectrum of the Eigenfaces Matrix.

0 500 1000 1500 2000 2500

Number of MATVECs = b*(1+2*q)

10 -15

10 -10

10 -5

10 0

re
l.
 e

rr
.
=

 (
j-

j(B
k
))

/
j

Eigenfaces Dataset, target k = 100, j = 100

RSI b=100

RSI b=100+2

RSI b=100+5

RBL b=100

RBL b=50

RBL b=20

RBL b=10

RBL b=2

RBL b=1

Figure 4.10: k = 100 approximation of the Eigenfaces Dataset, convergence of σ100.

58

Appendix A

Proofs of Lemmas

For completeness, here we include the proofs of some lemmas that were used in the course
of this thesis, but whose proofs are rather computational and not illuminative of the main
ideas.

A.1 Proof of Vandermonde matrix reduction Lemma

Lemma (3.4.1). Let V be the n× (l + 1) Vandermonde matrix

V =


1 v1 v2

1 · · · vl1
1 v2 v2

2 · · · vl2
...

...
...

...
...

...
...

...
1 vn v2

n · · · vln

 (A.1)

If the constants vj are distinct, and n > l + 1, then there exist non-singular matrix X ∈
R(l+1)×(l+1) such that

VX =

[
I
H

]
(A.2)

where the entries of H ∈ R(n−(l+1))×(l+1) are given by

Hij =
(vi − v1) · · · (vi − vj−1)(vi − vj+1) · · · (vi − vl+1)

(vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vl+1)
=

l+1∏
t=1
t6=j

vi − vt
vj − vt

(A.3)

for

l + 2 ≤ i ≤ n

1 ≤ j ≤ l + 1

APPENDIX A. PROOFS OF LEMMAS 59

Proof. We use a series of elimination steps to introduce successive zeros and reduce the
Vandermonde matrix to the desired form. To begin, define

Xk
ij = I− vkeieTj =


1

1 −vk
. . .

. . .

1

 (A.4)

i.e. Xk
ij ∈ R(l+1)×(l+1) is a matrix with 1s down the diagonal, and −vk in the (i, j)th entry.

Now, we introduce successive zeros. First, in the (1, l + 1) entry:

VX1
l,l+1 =


1 v1 · · · vl−1

1 0
1 v2 · · · vl−1

2 vl−1
2 (v2 − v1)

...
...

...
...

...
...

...
...

1 vn · · · vl−1
n vl−1

n (vn − v1)

 (A.5)

Next, in the (1, l) entry:

VX1
l,l+1X

1
l−1,l =


1 v1 · · · vl−2

1 0 0
1 v2 · · · vl−2

2 vl−2
2 (v2 − v1) vl−1

2 (v2 − v1)
...

...
...

...
...

...
...

...
...

...
1 vn · · · vl−2

n vl−2
n (vn − v1) vl−1

n (vn − v1)

 (A.6)

Proceeding like this, we can successively multiplying by Xs to introduce zeros in the
(1, l − 1) to (1, 2) entries, completing the first row:

VX1
l,l+1X

1
l−1,l · · ·X1

1,2 =



1 0 0 · · · 0 0
1 (v2 − v1) v2(v2 − v1) · · · vl−2

2 (v2 − v1) vl−1
2 (v2 − v1)

1 (v3 − v1) v3(v3 − v1) · · · vl−2
3 (v3 − v1) vl−1

3 (v3 − v1)
...

...
...

...
...

...
...

...
...

...
1 (vn − v1) vn(vn − v1) · · · vl−2

n (vn − v1) vl−1
n (vn − v1)


(A.7)

Next, we use the same procedure to complete the second row, by successively introducing

APPENDIX A. PROOFS OF LEMMAS 60

zeros in the (2, l + 1) to (2, 3) entries, in that order.

V
(
X1
l,l+1 · · ·X1

1,2

) (
X2
l,l+1 · · ·X2

2,3

)
(A.8)

=



1 0 0 0 · · · 0
1 (v2 − v1) 0 0 · · · 0
1 (v3 − v1) (v3 − v1)(v3 − v2) v3(v3 − v1)(v3 − v2) · · · vl−2

3 (v3 − v1)(v3 − v2)
...

...
...

...
...

...
...

...
...

...
1 (vn − v1) (vn − v1)(vn − v2) vn(vn − v1)(vn − v2) · · · vl−2

n (vn − v1)(vn − v2)


(A.9)

Proceeding in this manner, successively working on the rows from top to bottom, intro-
ducing zeros in each row from right to the diagonal, we can create a matrix whose upper
triangular part is uniformly zero. More precisely,

V
(
X1
l,l+1 · · ·X1

1,2

) (
X2
l,l+1 · · ·X2

2,3

)
· · ·
(
Xl−1
l,l+1X

l−1
l−1,l

) (
Xl
l,l+1

)
(A.10)

=



1
... (v2 − v1)
...

... (v3 − v1)(v3 − v2)
...

...
...

. . .

1 (vl+1 − v1) (vl+1 − v1)(vl+1 − v2) · · · (vl+1 − v1)(vl+1 − v2) · · · (vl+1 − vl)
1 (vl+2 − v1) (vl+2 − v1)(vl+2 − v2) · · · (vl+2 − v1)(vl+2 − v2) · · · (vl+2 − vl)
...

...
...

...
...

...
...

...
1 (vn − v1) (vn − v1)(vn − v2) · · · (vn − v1)(vn − v2) · · · (vn − vl)


(A.11)

Denote

X(l+1) ≡ 1

(vl+1 − v1)(vl+1 − v2) · · · (vl+1 − vl)
(
X1
l,l+1 · · ·X1

1,2

) (
X2
l,l+1 · · ·X2

2,3

)
· · ·
(
Xl−1
l,l+1X

l−1
l−1,l

) (
Xl
l,l+1

)
(A.12)

Then, the last (l+1st) column in the equality in Eqn. (A.11) gives the following relation:

V
[
X(l+1)

]
:,l+1

=



0
...
0
1

(vl+2−v1)(vl+2−v2)···(vl+2−vl)
(vl+1−v1)(vl+2−v2)···(vl+2−vl)

...
(vn−v1)(vn−v2)···(vn−vl)

(vl+1−v1)(vl+1−v2)···(vl+1−vl)


(A.13)

APPENDIX A. PROOFS OF LEMMAS 61

Note this is the last column of our the desired Eqn. (A.2), where the division in Eqn. (A.12)
makes use of the condition that the vjs are distinct.

Now, with the previous computation in mind, we show, in general, how to derive any
column j in the desired Eqn. (A.2). The idea is to use the same Xs as before to introduce
zeros, in all but the jth row.

We first introduce zeros to the right of the diagonal in the first j − 1 rows.

V
(
X1
l,l+1 · · ·X1

1,2

)
· · ·
(
Xj−1
l,l+1 · · ·X

j−1
j−1,j

)
(A.14)

=



1
1 (v2 − v1)
...

...
. . .

1 (vj − v1) · · · (vj − v1) · · · (vj − vj−1) · · · v
l−(j−1)
j (vj − v1) · · · (vj − vj−1)

...
...

...
...

...
...

...
...

1 (vn − v1) · · · (vn − v1) · · · (vn − vj−1) · · · v
l−(j−1)
n (vn − v1) · · · (vn − vj−1)


(A.15)

Next, instead of introducing zeros in the jth row, we skip the jth row and introduce
zeros from right to left in the j + 1st row until the (j + 1, j) entry.

V
(
X1
l,l+1 · · ·X1

1,2

)
· · ·
(
Xj−1
l,l+1 · · ·X

j−1
j−1,j

) (
Xj+1
l,l+1 · · ·X

j+1
j,j+1

)
(A.16)

=



1
1 (v2 − v1)
...

...
. . .

1 (vj − v1) · · · (vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · vl−jj (vj − v1) · · · (vj − vj−1)(vj − vj+1)

1 (vj+1 − v1) · · · 0 · · · 0
...

...
...

...
...

...
...

...

1 (vn − v1) · · · (vn − v1) · · · (vn − vj−1)(vn − vj+1) · · · vl−jn (vn − v1) · · · (vn − vj−1)(vn − vj+1)


(A.17)

Continue to introduce zeros in the subsequent rows until row l+1, in each row i reducing

APPENDIX A. PROOFS OF LEMMAS 62

from right to left until the (i, i− 1) entry.

V
(
X1
l,l+1 · · ·X1

1,2

)
· · ·
(
Xj−1
l,l+1 · · ·X

j−1
j−1,j

) (
Xj+1
l,l+1 · · ·X

j+1
j,j+1

)
· · ·
(
Xl+1
l,l+1

)
(A.18)

=



1
1 (v2 − v1)
...

...
. . .

1 (vj − v1) · · · (vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vl+1)
... 0 0
...

...
...

...
... 0

1 (vl+2 − v1) · · · (vl+2 − v1) · · · (vl+2 − vj−1)(vl+2 − vj+1) · · · (vl+2 − v1) · · · (vl+2 − vj−1)(vl+2 − vj+1) · · · (vl+2 − vl+1)
...

...
...

...
...

...
...

...
1 (vn − v1) · · · (vn − v1) · · · (vn − vj−1)(vn − vj+1) · · · (vn − v1) · · · (vn − vj−1)(vn − vj+1) · · · (vn − vl+1)


(A.19)

(See Figure TODO for the non-zero pattern of this matrix.)
Analogous to Eqn. (A.11), denote

X(j) ≡ 1

(vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vl+1)

·
(
X1
l,l+1 · · ·X1

1,2

)
· · ·
(
Xj−1
l,l+1 · · ·X

j−1
j−1,j

) (
Xj+1
l,l+1 · · ·X

j+1
j,j+1

)
· · ·
(
Xl+1
l,l+1

)
(A.20)

Then, the last (l+1st) column in the equality in Eqn. (A.19) gives the following relation:

V
[
X(j)

]
:,l+1

=



0
...
0
1
0
...
0

(vl+2−v1)···(vl+2−vj−1)(vl+2−vj+1)···(vl+2−vl+1)

(vj−v1)···(vj−vj−1)(vj−vj+1)···(vj−vl+1)
...

(vn−v1)···(vn−vj−1)(vn−vj+1)···(vn−vl+1)

(vj−v1)···(vj−vj−1)(vj−vj+1)···(vj−vl+1)



(A.21)

Finally, applying Eqn. (A.21) for each j = 1, · · · , l + 1, we can column-wise construct a

APPENDIX A. PROOFS OF LEMMAS 63

matrix X as

VX ≡ V
[[

X(1)
]

:,l+1
· · ·

[
X(j)

]
:,l+1

· · ·
[
X(l+1)

]
:,l+1

]
(A.22)

=



1
. . .

1
hl+2,1 · · · hl+2,l+1

...
...

hn,1 · · · hn,l+1


(A.23)

where

hi,j =
(vi − v1) · · · (vi − vj−1)(vi − vj+1) · · · (vi − vl+1)

(vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vl+1)
(A.24)

as desired.

64

Appendix B

Code reference

Below is the relevant MATLAB code snippet for the implementation of Algorithm 7 used
for all numerical experiments.

function [s] = RBLbidiag(A, Omega, k, q, reorthog)

[B] = lanczos_bidiag(A’, A*Omega, q, reorthog);

s = svds(B,k)’;

end

function [B] = lanczos_bidiag(A, B0, q_iter, reorthog)

[m,n] = size(A);

b = size(B0,2);

% preallocate space

U = zeros(m,b*q_iter);

V = zeros(n,b*q_iter);

B = zeros(b*q_iter,b*(q_iter+1));

u = zeros(m,b);

[v,beta] = qr(B0,0);

V(:,1:b) = v;

for i=1:q_iter+1

r = A*v-u*beta’;

if reorthog && i>1

r = r-U(:,1:(i-1)*b)*(U(:,1:(i-1)*b)’*r);

end

APPENDIX B. CODE REFERENCE 65

[u,alpha] = qr(r,0);

U(:,(i-1)*b+1:i*b) = u;

B((i-1)*b+1:i*b,(i-1)*b+1:i*b) = alpha;

p = A’*u-v*alpha;

if reorthog

p = p-V(:,1:i*b)*(V(:,1:i*b)’*p);

end

[v,beta] = qr(p,0);

V(:,i*b+1:(i+1)*b) = v;

B((i-1)*b+1:i*b,i*b+1:(i+1)*b) = beta’;

end

B = B(1:b*(q_iter+1),1:b*(q_iter+1));

end

66

Bibliography

[1] Orly Alter, Patrick O Brown, and David Botstein. “Singular value decomposition for
genome-wide expression data processing and modeling”. In: Proceedings of the National
Academy of Sciences 97.18 (2000), pp. 10101–10106.

[2] David Anderson and Ming Gu. “An Efficient, Sparsity-Preserving, Online Algorithm
for Low-Rank Approximation”. In: Proceedings of the 34th International Conference
on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings
of Machine Learning Research. International Convention Centre, Sydney, Australia:
PMLR, June 2017, pp. 156–165.

[3] Harry Andrews and C Patterson. “Singular value decompositions and digital image
processing”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 24.1
(1976), pp. 26–53.

[4] James Baglama and Lothar Reichel. “Augmented implicitly restarted Lanczos bidiag-
onalization methods”. In: SIAM Journal on Scientific Computing 27.1 (2005), pp. 19–
42.

[5] Zhaojun Bai et al. Templates for the solution of algebraic eigenvalue problems: a prac-
tical guide. SIAM, 2000.

[6] Billur Barshan and Murat Cihan Yüksek. “Recognizing daily and sports activities in
two open source machine learning environments using body-worn sensor units”. In:
The Computer Journal 57.11 (2014), pp. 1649–1667.

[7] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. “A singular value thresholding
algorithm for matrix completion”. In: SIAM Journal on Optimization 20.4 (2010),
pp. 1956–1982.

[8] Daniela Calvetti, L Reichel, and Danny Chris Sorensen. “An implicitly restarted Lanc-
zos method for large symmetric eigenvalue problems”. In: Electronic Transactions on
Numerical Analysis 2.1 (1994), p. 21.

[9] Emmanuel J Candès et al. “Robust principal component analysis?” In: Journal of the
ACM (JACM) 58.3 (2011), p. 11.

[10] Erin Carson, Nicholas Knight, and James Demmel. “Avoiding communication in non-
symmetric Lanczos-based Krylov subspace methods”. In: SIAM Journal on Scientific
Computing 35.5 (2013), S42–S61.

BIBLIOGRAPHY 67

[11] Zizhong Chen and Jack J Dongarra. “Condition numbers of Gaussian random matri-
ces”. In: SIAM Journal on Matrix Analysis and Applications 27.3 (2005), pp. 603–
620.

[12] Sara Cohen, Benny Kimelfeld, and Georgia Koutrika. “A survey on proximity measures
for social networks”. In: Search computing. Springer, 2012, pp. 191–206.

[13] Jane Cullum and William E Donath. “A block Lanczos algorithm for computing the
q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse,
real symmetric matrices”. In: Decision and Control including the 13th Symposium on
Adaptive Processes, 1974 IEEE Conference on. Vol. 13. IEEE. 1974, pp. 505–509.

[14] James W Demmel. Applied numerical linear algebra. Vol. 56. Siam, 1997.

[15] Petros Drineas, Ravi Kannan, and Michael W Mahoney. “Fast Monte Carlo algorithms
for matrices II: Computing a low-rank approximation to a matrix”. In: SIAM Journal
on computing 36.1 (2006), pp. 158–183.

[16] Jed A Duersch and Ming Gu. “Randomized QR with column pivoting”. In: SIAM
Journal on Scientific Computing 39.4 (2017), pp. C263–C291.

[17] Carl Eckart and Gale Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[18] Alan Edelman. “Eigenvalues and condition numbers of random matrices”. In: SIAM
Journal on Matrix Analysis and Applications 9.4 (1988), pp. 543–560.

[19] Fast Randomized SVD. https://research.fb.com/fast-randomized-svd/. Ac-
cessed: 2018-05-30.

[20] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1440–1448.

[21] Gene H Golub, Franklin T Luk, and Michael L Overton. “A block Lanczos method
for computing the singular values and corresponding singular vectors of a matrix”. In:
ACM Transactions on Mathematical Software (TOMS) 7.2 (1981), pp. 149–169.

[22] Gene H Golub and Christian Reinsch. “Singular value decomposition and least squares
solutions”. In: Numerische mathematik 14.5 (1970), pp. 403–420.

[23] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU Press, 2012.

[24] Gene Golub and William Kahan. “Calculating the singular values and pseudo-inverse
of a matrix”. In: Journal of the Society for Industrial and Applied Mathematics, Series
B: Numerical Analysis 2.2 (1965), pp. 205–224.

[25] Ming Gu. “Subspace iteration randomization and singular value problems”. In: SIAM
Journal on Scientific Computing 37.3 (2015), A1139–A1173.

[26] Ming Gu and Stanley C Eisenstat. “Efficient algorithms for computing a strong rank-
revealing QR factorization”. In: SIAM Journal on Scientific Computing 17.4 (1996),
pp. 848–869.

BIBLIOGRAPHY 68

[27] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions”. In: SIAM review 53.2 (2011), pp. 217–288.

[28] Peg Howland, Moongu Jeon, and Haesun Park. “Structure preserving dimension re-
duction for clustered text data based on the generalized singular value decomposition”.
In: SIAM Journal on Matrix Analysis and Applications 25.1 (2003), pp. 165–179.

[29] W Kahan and Beresford N Parlett. “How far should you go with the Lanczos process?”
In: Sparse matrix computations. Elsevier, 1976, pp. 131–144.

[30] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. United States Governm. Press Office Los
Angeles, CA, 1950.

[31] Ren-Cang Li. “Sharpness in rates of convergence for the symmetric Lanczos method”.
In: Mathematics of Computation 79.269 (2010), pp. 419–435.

[32] Michael W Mahoney and Petros Drineas. “CUR matrix decompositions for improved
data analysis”. In: Proceedings of the National Academy of Sciences (2009), pnas–
0803205106.

[33] Cameron Musco and Christopher Musco. “Randomized block Krylov methods for
stronger and faster approximate singular value decomposition”. In: Advances in Neural
Information Processing Systems. 2015, pp. 1396–1404.

[34] Chris C Paige, Beresford N Parlett, and Henk A Van der Vorst. “Approximate solu-
tions and eigenvalue bounds from Krylov subspaces”. In: Numerical linear algebra with
applications 2.2 (1995), pp. 115–133.

[35] Christopher C Paige. “Error analysis of the Lanczos algorithm for tridiagonalizing a
symmetric matrix”. In: IMA Journal of Applied Mathematics 18.3 (1976), pp. 341–349.

[36] Christopher C Paige and Michael A Saunders. “LSQR: An algorithm for sparse linear
equations and sparse least squares”. In: ACM Transactions on Mathematical Software
(TOMS) 8.1 (1982), pp. 43–71.

[37] Christopher Conway Paige. “The computation of eigenvalues and eigenvectors of very
large sparse matrices.” PhD thesis. University of London, 1971.

[38] Beresford N Parlett, Derek R Taylor, and Zhishun A Liu. “A look-ahead Lanczos
algorithm for unsymmetric matrices”. In: Mathematics of computation 44.169 (1985),
pp. 105–124.

[39] Axel Ruhe. “Implementation aspects of band Lanczos algorithms for computation
of eigenvalues of large sparse symmetric matrices”. In: Mathematics of Computation
33.146 (1979), pp. 680–687.

[40] Yousef Saad. “On the rates of convergence of the Lanczos and the block-Lanczos meth-
ods”. In: SIAM Journal on Numerical Analysis 17.5 (1980), pp. 687–706.

BIBLIOGRAPHY 69

[41] Yousef Saad. “Theoretical error bounds and general analysis of a few Lanczos-type
algorithms”. In: Proceedings of the Cornelius Lanczos International Centenary Con-
ference (JD Brown, MT Chu, DC Ellison and RJ Plemmons, eds), SIAM, Philadelphia,
PA. 1994, pp. 123–134.

[42] Ferdinando S Samaria and Andy C Harter. “Parameterisation of a stochastic model for
human face identification”. In: Applications of Computer Vision, 1994., Proceedings of
the Second IEEE Workshop on. IEEE. 1994, pp. 138–142.

[43] Horst D Simon. “Analysis of the symmetric Lanczos algorithm with reorthogonalization
methods”. In: Linear algebra and its applications 61 (1984), pp. 101–131.

[44] Ameet Talwalkar et al. “Large-scale SVD and manifold learning”. In: The Journal of
Machine Learning Research 14.1 (2013), pp. 3129–3152.

[45] Kim-Chuan Toh and Sangwoon Yun. “An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems”. In: Pacific Journal of
optimization 6.615-640 (2010), p. 15.

[46] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Vol. 50. Siam, 1997.

[47] Matthew A Turk and Alex P Pentland. “Face recognition using eigenfaces”. In: Com-
puter Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer
Society Conference on. IEEE. 1991, pp. 586–591.

[48] Richard Ray Underwood. “An Iterative Block Lanczos Method for the Solution of
Large Sparse Symmetric Eigenproblems.” AAI7525622. PhD thesis. Stanford, CA,
USA, 1975.

[49] Jianwei Xiao and Ming Gu. “Spectrum-revealing Cholesky factorization for kernel
methods”. In: Data Mining (ICDM), 2016 IEEE 16th International Conference on.
IEEE. 2016, pp. 1293–1298.

