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ABSTRACT OF THE DISSERTATION

Expectation Maximization Algorithm for Optimization of

Piecewise-constant Models and Their Applications

by

Pooya Tavallali

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2021

Professor Mukesh Singhal, Chair

The Expectation-Maximization (EM) Algorithm is well-known in the literature of

machine learning and has been widely used for training of probabilistic and some

non-probabilistic models, such as mixture of Gaussians and K-means, respectively.

Despite the vast volume of research on application of the EM algorithm for train-

ing probabilistic models, there has been little attempt toward usage of the EM

algorithm for non-probabilistic models. In this dissertation, various piecewise con-

stant models, and their learning procedures in the literature are reviewed. For

each model, the EM-based optimization of reviewed model is proposed. The EM

algorithms proposed in this dissertation have the same spirit as the original EM al-

gorithm. For each model, the proposed EM algorithm is properly modified to fit the

non-probabilistic nature of the model. The EM algorithm was originally designed

to fit the modular structure of any intelligent model, such as neural networks or

mixture models. In this dissertation, it is shown how with the EM algorithm it is

possible to approach a piecewise constant model as a modular structure and opti-

mize the model based on each module of the structure. The optimization procedure

consists of two steps, Expectation/assignment step and Maximization/update step.

More specifically, in the EM algorithm, for each module of the structure, a maxi-

mization/minimization problem has to be solved. The parameters of optimization

problem for each module are provided by the expectation step for that module.

xvi



In this dissertation, it is shown that such optimization problems are NP-hard and

can often be approximated through a proper surrogate objective function. We

proposed novel surrogate functions. The proposed EM-based approach is applied

to several piecewise constant models, such as prototype nearest neighbor. Further,

the convergence guarantee and computational complexity of the developed EM al-

gorithms are presented for each model. Finally, through extensive experiments we

show that the proposed EM-based algorithms have superior or similar performance

when compared with several other similar state-of-the-art models and algorithms.

Additionally, the proposed approach for optimizing the piecewise constant mod-

els provides an in-depth interpretability for training procedures. We specifically

applied the proposed optimization algorithm to synthetic reduced nearest neigh-

bor for classification, adversarial label-poisoning, robust synthetic reduced nearest

neighbor and synthetic reduced nearest neighbor for regression.
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Chapter 1

Introduction

1.1 Problem Statement

Piecewise constant models are a well-known part of the machine learning lit-

erature. Here we formally define piecewise constant model as any model that

partitions the input space into various disjoint sections and assigns a constant pre-

dictor to each section. This definition is similar to definition of piecewise constant

function. A piecewise constant model usually represents each partition with a sin-

gle module or a hierarchy of decision functions such as K-means, prototype nearest

neighbor and decision trees [55]. The general optimization problem of a piecewise

constant model is represented as [55]:

min
F

Lossα(F ) =
∑

j

Loss(Rj) + αCost(Rj) (1.1)

Where F represents the model’s function, and Lossα represents the cost function.

j is the index number of jth region Rj . Loss, α, and Cost(.) are the loss function,

complexity cost coefficient and complexity cost, respectively. A 2-d visualization

of problem (1.1) is presented in figure 1.1 for example of synthetic reduced nearest

neighbor. Each region is presented with a centroid. The samples of each class

is presented with the color of the class. The problem consists of modifying the

regions by changing the centroids such that problem (1.1) is minimized.

The optimization problem presented in (1.1) can be NP-hard [81] or NP-

complete [74] depending on the model. As a result, most training procedures

1
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Figure 1.1: 2-D visualization of Synthetic Reduced Nearest Neighbor.

in the literature tend to construct the model either using some greedy approach

[21, 96, 81] or by replacing the objective function in (1.1) with a smooth surrogate

loss function and ’softening’ the rigidness of regions [11, 45]. However, these ap-

proaches are either sub-optimal or lack convergence guarantee to a local optimum

of problem in (1.1).

A third approach is application of EM algorithm to such models and exploit

the modular structure of the model. A well-known example of such approach is

the algorithm used for K-means [81]. In K-means, the algorithm consist of assign-

ment step (expectation step) where samples assigned to each centroid is found and

minimization step (maximization step) where each centroid is optimized based on

the centroid’s samples. Although that the third approach is very simple and effi-

cient, it has barely been used for piecewise constant models. In this dissertation,

we will expand this approach to several piecewise constant models. An important
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aspect of the proposed EM-based algorithms is the guarantee to achieve some local

optimum of the original problem. Additionally, it is easy to show that almost all

such EM algorithms are efficient algorithms and their computational complexity

is linear over trainset.

Expectation Maximization (EM) algorithm is among the oldest meta algo-

rithms of the literature [63] and has widely been used for optimization of various

probabilistic models [17, 72] and signal processing tasks [85]. The EM algorithm is

a very general method designed to solve maximum likelihood estimation. In an EM

algorithm, the aim is to maximize a maximum likelihood function L(θ) ≡ P (y|θ)

with respect to the parameters of the model θ. It is often the case that maximizing

P (y|θ) is not easy. Therefore, the idea in EM algorithm consist of introducing a

latent variable Z whose pdf depends on θ (P (Z|θ)). An observation with EM al-

gorithm is that the optimization of L(θ) would be easier if only a set of additional

variables Z were known. As a result, if Z were known then all that is needed to

maximize P (Z|θ). For example, in case of a K-means algorithm, if the assignment

of the samples were known then the optimal place of the centroids could be found

by only finding the mean of samples for each cluster. In case of a decision tree,

if the rout for each sample was known then the parameters of samples could be

calculated easily by only solving the node problems [62]. However, in realty the Z

variables are not known and are approximated through an expectation step and

then the parameters are updated based on the estimated Z variables. Finally, the

algorithm iterates over the expectation step (approximation of Z) and maximiza-

tion step until no further improvement is possible over the loss of the structure. It

is worth mentioning that Z is usually defined such that the optimization procedure

fits the modular structure of the model [62, 81, 72]).

1.2 Motivation

As per our extensive search in the literature, most piecewise constant models

are optimized indirectly or through some greedy algorithm. The indirect approach

consists of smoothening the structure of the model and optimizing a differentiable
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surrogate objective function instead of the original objective function. However,

such approach lacks any guarantee for the original loss function. The greedy ap-

proach consists of greedily setting the modules of the model (e.g., K-means++

[4]) through some criterion. Such approaches might have some guarantee over the

global optimum of the problem (1.1) depending on the task. However, they are

sub-optimal and can be improved further. As a result, a proper approach that

have properties of achieving an optimum in efficient time is needed. In this disser-

tation we tackle the mentioned issue by introducing EM algorithm for piecewise

constant models. This approach provides both guarantee of achieving a local op-

timum and its time complexity is efficient. For each problem other properties are

also extracted.

1.3 Proposed EM-based approach

In this dissertation, the EM algorithm is properly modified to directly optimize

the loss function of several piecewise constant models. The modifications depend

on the structure of the model and its loss function. The general algorithm consists

of applying the following two steps to each module of the structure:

• introducing and approximating latent variables at the module (expectation

step)

• optimizing the parameters of the module (maximization step)

The algorithm iterates over the mentioned steps for all the modules until con-

vergence. The latent variables are loss of assigning a sample to a property in the

module. The latent variables essentially provide a weighted target label for each

sample at every module. The problem at each module is defined based on the

latent variables at the module. It is often the case that finding the global optimum

of the maximization problem is a NP-hard problem. Therefore, we approximate

solution for the maximization problem through either a known surrogate objective

function or we propose a novel surrogate objective function. The general pseudo

code of the proposed algorithm is presented in figure 1.2.
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iterate until convergence:

for each module j:

1-apply expectation:

Approximate latent variables

-At the module, calculate the loss of assigning each of the training

samples to the module or a property of the module using the current

parameters of the model

2-apply maximization step:

Approximate the maximization problem

-Approximate the module parameters through a surrogate objective

function

Figure 1.2: The general pseudo of EM algorithm for a piecewise constant model.

1.4 Summary of Results

The next chapters consist of the applying the proposed algorithm to various

synthetic reduced nearest neighbor. Each chapter consists of four parts. The first

part is the introduction and related works of the chapter and the second part is

the proposed EM algorithm for the chapter’s corresponding model. The third part

consists of the experiments. The fourth part is the summary of the chapter.

In the following chapters, the present applications of proposed EM algorithm

for piecewise constant models are presented.

In the second chapter, the optimization of synthetic reduced nearest neigh-

bor (SRNN also known as prototype nearest neighbor) based on EM algorithm

is presented. The properties of SRNN are explored and it is shown that the EM

algorithm proposed at the second chapter is the first that minimizes the original

loss function of the model.

In the third chapter, the proposed algorithm is used in the context of robustness

and adversarial attacks. The first multi-class adversarial label-poisoning attack is

proposed. It is shown that the attack is computationally efficient. Further, a

robust defense technique based on EM algorithm is proposed and presented in the
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third chapter.

In the fourth chapter, the optimization of regression synthetic reduced nearest

neighbor is studied and its properties such as consistency are explored. To the

best of our knowledge, the proposed model in the fourth chapter is the first of its

kind in the literature.

In each chapter the related work of the problem and its application are pre-

sented.



Chapter 2

Interpretable Synthetic Reduced

Nearest Neighbor: An

Expectation Maximization

Approach (EM-SRNN)

A convenient, accurate and well-known way toward any supervised task is using

Nearest Neighbor approach or its variants. However, there has been little attempt

toward improving interpretability by human and providing a classical optimiza-

tion of Synthetic Reduced Nearest Neighbor. To tackle these issues, this chapter

provides a novel optimization of Synthetic Reduced Nearest Neighbor based on Ex-

pectation Maximization (EM-SRNN). Reduced Nearest Neighbor model consists

of a subset of the samples from the trainset that has similar accuracy to Near-

est Neighbor. Synthetic Reduced Nearest Neighbor relaxes the model to learn K

synthetic samples (or prototypes/centroids) in the space of dataset. Therefore,

inspired by EM algorithm for K-means, we propose a novel optimization based

on EM algorithm to learn EM-SRNN by iterating over the centroids of the model

and assignment of training samples to the centroids. The first step consists of

optimizing the position of each centroid based on the assignment of the samples to

the centroid and the second step consists finding optimal assignments and labels

7
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of the centroids. The EM-SRNN is interpretable since the centroids exist inside

the space of training samples. Additionally, the centroids represent the multiple

modalities (or sub-clusters) of the classes that are interpretable by human. These

properties make this type of interpretability unique, hence, making this model

suitable for various studies that are related to interpretability by human, such as

image processing and epidemiological studies. In this chapter, analytical aspects of

problem are explored and it is shown that computational complexity of proposed

optimization is linear over size of the trainset. Finally, EM-SRNN shows superior

or similar performance when compared with several other interpretable and similar

state-of-the-art models, such as trees and kernel SVMs.

2.1 Introduction and Related Works

One of the fundamental questions in Machine Learning (and various statistical

studies such as epidemiological data analysis) is: does there exist any interpretable

model that shows the relation of features to each sub-cluster of each class of data?

Motivated by this question, this chapter proposes a novel EM-based optimization

for SRNN (EM-SRNN) that monotonically decreases the 0-1 loss function until

convergence. The optimization is inspired by K-means algorithm [81].

The proposed model, EM-SRNN, is designed such that it can learn multiple

modalities of the input data. The learned modalities are represented by centroids

that are interpretable by human. The SRNN model is similar to other machine

learning models (ensemble and decision tree models [77, 7, 12, 117, 116]) in the

sense that it partitions the space to several regions. However, EM-SRNN is capable

of learning an accurate model that can properly understand underlying relation

between modalities of the data for each region and true classes; hence, making

EM-SRNN unique for human interpretability of an accurate multi-classification

model.

Nearest Neighbor and Reduced Nearest Neighbor are among the oldest models

of Machine Learning [28, 47]. Two of the reasons for popularity of Nearest Neighbor

are its simplicity and competitiveness in many machine learning tasks [119] when
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combined with the distance metrics [50] [31, 128] or domain knowledge [9, 110].

Recently, machine learning algorithms have become dominant in applications such

as recommender systems [105]. Among different machine learning models, kNN

has been more attractive because of its interpretable predictions.

However, the main drawback of nearest neighbor methods is its inefficiency

at inference time. It is mainly because every input sample has to be compared

with all samples from the trainset. Inference particularly takes O(ND) operations

for an input where N and D are number of samples and input dimensionality,

respectively. Similarly, the memory complexity of the nearest neighbor is O(ND).

This makes kNN methods very expensive in terms of memory and inference time,

making them impractical for time critical applications and large-scale datasets.

Design of kNN methods which overcome these deficiencies is currently one of the

hot research topics in the area of nearest neighbor models.

One general approach in the literature to reduce inference complexity of Nearest

Neighbor is through some data structure such as tree or cover/ball trees [32, 13, 83]

or hashing functions [49, 2] which yield high speed ups. However, they are neither

interpretable nor storage efficient because they need to store the whole trainset

and they also suffer from curse of dimensionality.

The tree methods consist of partitioning the input space into non-overlapping

subsets. It is done by traversing through the tree structure. The root node consists

of the whole space and each leaf node corresponds to one of the subsets. Split nodes

cut the space and samples into two disjoint subsets (left and right children of the

split node). Once a sample is entered, the sample is routed through the tree from

root node to a leaf node. Trees are different in how they perform split in the

space. In [121, 92] samples are partitioned based on their projections over the line

between two pivot points. In KD-trees, axis-aligned partitions are used. In spill

trees [80, 30] children of a node can spill over into one another and share common

data points.

To reduce storage consumption, several studies have aimed at reducing the

dimensionality [127]. These methods often use tree structures to improve speed

of the model. [26] shrink the trainset to a few cluster centers that are optimized
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through multi-phase initialization procedures [34].

Another approach is to reduce the trainset [28, 47, 3] which subsamples the

trainset by removing redundant data or through some heuristic methods. Several

other studies consist of shrinking the dataset to a few cluster centers [26, 71]. These

methods can be optimized with multi-phase initialization procedures [34, 79].

Another approach is based on learning prototypes by ’softening’ the Nearest

Neighbor rule at inference [11, 45]. The authors in [73] propose a stochastic ap-

proach. The work in [54] provides a smoothened objective function as a surrogate

for optimizing KNN prediction function; hence, it does not use tree data struc-

tures. However, none of these methods has a guarantee of both convergence and

monotonically decreasing of the original loss function.

The method in [73] learns synthetic centroids such that the likelihood of a

specific class probability model is maximized. [73] uses a surrogate soft objective

function, instead of original 0-1 loss function.

Authors in [126] extend the work of [73] to learning a low-dimensional trans-

formation of input dataset, jointly with learning centroids/prototypes. Its main

drawback is that it uses a feedforward network to reduce the dimensionality of

samples; hence, the model size is larger than that of [73].

In [133], authors propose a binary embedding technique that jointly learns a

binary embedding and a set of binary synthetic centroids. However, it does not

significantly compresses the size of the model. Additionally, the optimization in

[133] is difficult because of the discrete nature of its problem.

As per our extensive search, no EM algorithm is ever applied to learn a SRNN

model. EM algorithm and similar iterative approaches have previously been used to

optimize several useful models in the literature [81, 62, 35, 23, 85]. These methods

are basically based on first introducing a latent variable for assignment of samples

to a distribution that generates the data and then iterating over centroids/gating

networks/tree nodes/distributions/leaf nodes in the model and updating the latent

variables.

This chapter provides the first optimization algorithm for directly optimizing

0-1 loss of SRNN that has provable convergence and monotonically decreasing
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the 0-1 loss. It is while other existing methods in the literature use surrogate

objective functions instead of 0-1 loss. Therefore, they do not have guarantee on

minimizing the original 0-1 loss. Proposed optimization in this chapter is based on

EM algorithm and is inspired by K-means algorithm [81]. In this chapter, for the

first time, the interpretability of SRNN is explored and visual merits of the model

are shown. SRNN is capable of learning the sub-clusters (or modes) of each class of

the data in the original space of dataset and it represents them as centroids. This

can be interpreted visually and gives an understandable importance of features for

each mode of the class. It is shown that the algorithm is efficient because of its

linear computational complexity. Through the rest of the chapter, we will first

introduce the proposed method and then the experimental results are presented in

section 2.3. The discussion will be in section 2.4 and conclusion in section 2.5.

2.2 The Proposed Method

Assume dataset X contains {x1, x2, ..., xN} data points and corresponding tar-

get points set, say Y , that contains {y1, y2, ..., yN}. Here, xi ∈ R
D and yi ∈

{1, 2, ...,M}. The SRNN model consists of a set of points C = {c1, c2, ..., cK} with

their corresponding labels Ŷ = {ŷ1, ŷ2, ..., ŷK}, where K is the number of centroids.

At the test time, prediction of an input is the label of closest centroid to that input.

The problem of learning a SRNN is

min
{(cj ,ŷj)}K1

N
∑

i=1

K
∑

j=1

L(yi, ŷj)IC(xi, cj) (2.1)

where IC represents an indicator function that operates over the elements of set C

and is defined as,

IC(xi, cj) =















1 if j = argmin
{k}K

1

rik

0 otherwise

(2.2)

In (2.1) j, c and ŷj represent centroid number, centroid coordinate and label of

the jth centroid, respectively. L is a 0-1 loss function that outputs 0 if both of
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its arguments are the same, otherwise, L outputs 1. rik is ||xi − ck||2 which is the

squared Euclidean distance between kth centroid and ith sample. IC(xi, cj) is an

indicator function that outputs 1 if jth centroid is the closest centroid from set of

{ck}
K
1 . {ck}

K
1 represents set of centroids. Note that in other papers, centroids are

also called prototypes. Problem (2.1) resembles K-means [81] problem except that

in K-means, the loss function is ||xi − ck||2. The problem in (2.1) is NP-complete

[135]. Inspired by K-means [81], we provide the following iterative approach for

optimizing problem (2.1) which includes assignment and update/centroid steps.

Assignment step: The assignment step consists of two parts. First part

is assigning the data points to their nearest centroid. This part is essentially

calculating values of IC for all data points. Second part of this step is assigning

optimal values to {ŷk}
K
1 . The problem for this step can be written as

min
{ŷj}K1

∑

xi∈Sj

L(yi, ŷj) (2.3)

in (2.3), Sj = {xi|I(xi, cj) = 1 ∀i = 1, 2, ..., N}. Problem (2.3) is in fact a

constant predictor for set of Sj ; hence, the optimal solution to this problem is

majority of labels of samples assigned to the jth cluster. Mathematically, solution

is ŷj
∗ = mode({yi|I(xi, cj) = 1 ∀i = 1, 2, ..., N}). This step takes at most O(N).

Update/Centroid step: In K-means algorithm, the centroid step is simply

finding the average over the assigned samples to each cluster. However, here the

centroid problem is not that simple because the centroid problem is affected by

all the samples in the trainset, not just by the assigned samples to the centroid.

First, we will describe the centroid problem and then show the centroid problem

is affected by all the data points. After that, we show that the centroid problem is

a NP-hard binary classification problem and then we propose a novel surrogate to

approximate the solution. Approximation of an upper bound is not possible due

to NP-hardness of the node problem. We show that the computational complexity

of optimization method for the node problem is linear over the trainset; hence, the

algorithm is efficient.

Each centroid has to be optimized individually. The optimization of the kth
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centroid can be defined as follows:

min
ck

N
∑

i=1

K
∑

j=1,j 6=k

(L(yi, ŷj)IC(xi, cj) + L(yi, ŷk)IC(xi, ck)) (2.4)

Problem (2.4) is defined over the kth centroid and the rest of centroids are kept

constant. The problem is not defined over the samples of kth centroid since the

kth centroid can effectively change any of the sample assignments (IC(.)); hence,

affecting the loss over the whole model. To further simplify (2.4), we rewrite

problem of (2.4) using a step function U(.) and set of C ′
k = C − {ck}.

min
ck

N
∑

i=1

K
∑

j=1,j 6=k

(L(yi, ŷk)IC′

k
(xi, cj)(1− U(rik − rij))...

+L(yi, ŷj)IC′

k
(xi, cj)U(rik − rij))

(2.5)

Note that ck is hidden inside rik. Analyzing problem (2.5) gives us the intuition

that by increasing and decreasing rik, the i
th sample can be assigned to C ′

k and ck,

respectively. The ith sample gets assigned to C ′
k if rik > rij∗, where j∗ represents

the index of closest centroid in C ′
k to ith sample. On the other hand, the ith sample

gets to ck if rik ≤ rij∗. As a result of this change of assignment for ith sample, the

sample might get classified correctly or wrongly. Some samples will get classified

correctly only if they are assigned to ck (we call the set of such samples as S1)

and some samples will only get classified correctly if they are assigned to C ′
k (we

call the set of such samples as S−1). The rest of the samples will not affect the

outcome of solving problem (2.5) since they will anyway get classified correctly or

wrongly regardless of their assignments. Problem (2.5) is in fact a 0-1 loss binary

classification problem; hence, it is NP-hard [89]. Further, due to the nature of the

problem, its search space is exponentially large over the number of data points

since any combination of samples assigned to kth centroid or rest of the model, can

be a solution. Additionally, to verify that a combination is feasible, a feasibility

problem that satisfies the following constraints must be solved:

rik − rij∗ < 0 ∀i assigned to ck

rik − rij∗ > 0 ∀i assigned to C ′
k

(2.6)
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Condition (2.6) is quadratically constrained feasibility problem whose constraints

are concave; hence, verifying feasibility of a solution for (2.5) is NP-hard [94].

Therefore, an exhaustive search is not feasible and we introduce an algorithm that

can approximate a solution for problem (2.5) using a novel surrogate objective

function. Note that many 0-1 loss classification problems are NP-hard but in

machine learning, their solutions are approximated using a surrogate objective

function [89].

Relation to EM algorithm: The first step represents a part of the expec-

tation step. Although, the latent variables are not explicitly used in this chapter,

they are expressing the correctness of assigning a sample to a centroid based on

their labels (similar to [62]). Finding the proper assignment of samples to S1 or

S−1 in update step is equivalent to calculating the posterior probabilities. Posterior

probability is the probability of assigning a sample to a centroid (or set of centroids)

while being classified correctly (for kth centroid, it is (1−L(yi, ŷk))(1−U(rik−rij∗))).

Problem 2.5 represents the maximization step in which the posterior probabilities

are maximized.

Approximating a solution: To approximate problem (2.5), a proper surro-

gate objective function is needed. Intuitively, problem (2.5) encourages ck to be

close to samples of S1 and to be away from samples of S−1 at least by a distance of

rij . Therefore, we propose solving of the following surrogate problem for µ = 0 → 1

c∗k(µ) = argmin
ck

∑

xi∈S1

rik +
∑

xi∈S−1

relu(µrij∗ − rik) (2.7)

where relu(.) is a rectified linear unit and µ is a hyperparameter that must be

increased from 0 to 1. The intuition behind µ is that the optimum of problem

(2.5) does not necessarily classify all the samples correctly and some of them might

still get classified wrongly. When value of µ is small, then samples of class S−1

are allowed to be classified wrongly and as µ increases, then correct classification

of samples in S−1 becomes crucial (µ is similar to coefficient of slack variables

in objective function of SVM that controls misclassification of samples). The

proposed surrogate function is continuous and it is easy to calculate its gradient.

However, it is not convex and may have several minima for a constant µ > 0.
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Therefore, for each constant value of µ, we find a local optimum (c∗k(µ)) using

Stochastic Gradient Decent (SGD). For µ = 0, problem (2.7) has a global minimum

which is average of samples in S1. For each value of µ, we initialize the SGD

algorithm from the optimum found for previous value of µ. The error of problem

(2.7) is evaluated for each value of c∗k(µ) along the path of µ = 0 → 1 and c∗k(µ),

and a result with the smallest error is picked as the new value for ck. At µ = 0, the

optimization starts with average of S1 if it has smaller error than previous value

of ck. This guarantees monotonic decrease of objective function in (2.4).

The approximation of solution for a centroid with α gradient steps will take at

most O(αND). Therefore, solving all K centroids will take O(αNDK).

To avoid extra calculation of distances between samples and centroids, it is

possible to store all the distances between samples and centroids in a sorted manner

and just updating it after each time a centroid is updated. This will take at most

O(NK). Therefore, centroid step will take at most O(αNDK).

Initialization: For initialization of EM-SRNN, we used several methods and

final accuracy of all methods were found to be similar. We used random initial-

ization from trainset, K-means and K-means over each class. However, K-means

over each class had far better initial error than the rest.

Theorem 1 (Convergence of EM-SRNN). For any dataset consisting of X as set

of inputs, Y as corresponding set of target labels and K as number of centroids,

the EM-SRNN decreases the loss function monotonically and converges in a finite

number of iterations.

Proof. By iterating over the assignment and the centroid steps, the loss function

decreases or at least remains the same. The total number of different assignments

of samples to the centroids is finite. The objective function in (2.1) is bounded

from below by 0. Together, the loss function will not decrease over more than a

finite number of iterations in both steps. Thus, at some point none of EM-SRNN

steps can decrease the error and the algorithm terminates. This proof is similar to

proof of convergence for K-means.

The EM-SRNN guarantees monotonic decrease of the error in every iteration
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and converges in a finite number of iterations (in the experiments in next section,

it took around 20 iterations over both steps).

Based on the computational complexity analysis provided in the previous sec-

tions, we can state the complexity as the following theorem.

Theorem 2 (Linear complexity of EM-SRNN). The computational complexity of

EM-SRNN is O(αNDK).

2.3 Experiments

In this section, experimental results are presented to demonstrate the merits of

the proposed algorithm in terms of accuracy and interpretability by human vision.

EM-SRNN is compared with several state of the art models that are similar to

EM-SRNN. Intuitively, SRNN partitions the space into K disjoint parts. Where

K is the number of centroids/prototypes. For centroid i, the partition that be-

longs to ith centroid consists of a partition where all points in that partition have

smaller distance to ith centroid than their distance to any other centroid. Thus,

there are K different partitions. These partitions are disjoint since all the points

inside each partition is only assigned to its closest centroid. Therefore, one of the

closest models to compare with it is decision trees since they partition the space

into their leafs and each leaf presents one partition. The decision tree partitions

space through its split nodes. Each split node cuts the space into two disjoint

partitions. The space of each child node of a split node consist of space inside

the cuts created by its ancestors. As a result each leaf node consists of one par-

tition. Another similar model to SRNN is using Radial Basis Functions (RBFs)

as transformation to a SVM classifier (RBF-SVM). First K radial basis functions

are learned using K-means and then SVM is learned on these basis functions [124].

The sense of similarity between RBF-SVM and SRNN is that they both operate

over K centroids/prototypes. We also showed the performance of K-means over

each dataset. For this model, a K-means is learned and then label of each centroid

is assigned using the assignment step explained earlier in the proposed method.

We also have shown the performance of running K-means only over samples of
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Figure 2.1: Comparison of various models over several datasets of MNIST and
satimage. Vertical axis presents the train errors. Horizontal axis presents the
number of components in each model.
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Figure 2.2: Comparison of various models over datasets of MNIST and satim-
age. Vertical axis presents the test errors. Horizontal axis presents the number of
components in each model.
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Figure 2.3: Comparison of various models over datasets of FMNIST and pendigits.
Vertical axis presents the train errors. Horizontal axis presents the number of
components in each model.
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Figure 2.4: Comparison of various models over datasets of FMNIST and pendig-
its. Vertical axis presents the test errors. Horizontal axis presents the number of
components in each model.
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each class which is one of the initializations. The setup of this model is that K
M

centroids are learned for each class using K-means algorithm and each centroids

label is the same as its training sample’s label. AdaBoost.M2 [44] is also included

and the sense of similarity is that each term in AdaBoost can have a similar effect

as a centroid in SRNN. The trees in this model are constrained to have same num-

ber of leaf nodes as K. In the Random Nearest Neighbor (RanNN), K random

samples are selected to be used as a Nearest Neighbor model. The model is also

compared with Boundary Tree (BT) that has similar number of children at the

decision nodes of the tree.

In figures 2.1, 2.2, 2.3 and 2.4, EM-SRNN is compared with other models for

train and test errors. The horizontal axis presents the number of centroids, trees,

leaf nodes, RBFs and number of children for EM-SRNN, GBT, tree, RBF-SVM

and BT, respectively. The vertical axis shows the classification error over train sets

(curves (a),(c)) and test set (curves (b),(d)). Overall, we observed that EM-SRNN

outperforms other models in test with a large margin in most datasets. All the

datasets are downloaded from [25]. From the train error curves in figure 2.1, it is

clear that EM-SRNN is effective in decreasing the error. On average, EM-SRNN

decreased train error by 25%. As number of components increase all the train error

decreases in all models. However, overfitting happens in some of the models and

test error increases as number of components increase. An interesting observation

for EM-SRNN is that it seems the test error does not increase by adding new

components to the model. In other words, by adding new components to the EM-

SRNN the test error only decreases or remains the same. This observation has

been consistent in all the datasets used in the experiments. However, note that

by increasing the number of components the model’s accuracy becomes similar to

nearest neighbor model. The reason BT has very low train error is because the

algorithm tends to save almost the whole trainset in its structure. However, BT

had low accuracy and for higher accuracy, it is better to use them in an ensemble

fashion [83].

The computational complexity of EM-SRNN is O(αNDK). This compu-

tational complexity is faster than some of other models such as decision trees
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Figure 2.5: Centroids of EM-SRNN shown for MNIST. Each column presents
centroids of the same class.
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Figure 2.6: Centroids of EM-SRNN shown for FMNIST. Each column presents
centroids of the same class.
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Figure 2.7: Comparison of EM-SRNN, EM-SRNN-SVM and RBF-SVM. RBF was
trained over the centroids of EM-SRNN to observe how much improvement can
occur. The vertical axis shows the train errors.
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O(NlogNDlogK), AdaBoost O(KNlogND∆) (∆ is tree’s depth) is faster. How-

ever, the inference of decision tree models can be faster since the computational

complexity of the inference is broken down in a tree structure. Other models such

as K-means and RBF-SVM seem to be faster than EM-SRNN. However, K-means

perform poorly at the test time and RBF-SVM requires many restarts to find

proper parameters for the hyper-parameters of the RBFs.

Interpretability: EM-SRNN model classifies the input data based on a mea-

sure of similarity between the input sample and its centroids. This potentially

means that EM-SRNN should have learned important features of each class and

of sub-clusters of the classes so that it can find the most similar centroid to an

input. In other words, such features are recognizable by human eye. Such features

even have values/intensity similar to its assigned samples in the trainset, essen-

tially making them a representative of those samples. This type of interpretability

is different from type of interpretability in decision trees since decision trees focus

mostly on only dissimilarities of trainset samples. Therefore, for a decision tree,

this might not be easy by a human eye to understand the contributing features

of trainset to a specific class or sub-cluster of a class and further computation is

needed. On the other hand, EM-SRNN can perfectly present features and their

intensities that contribute to a sub-cluster; hence, making it possible to understand

by human vision how a cluster of that sub-class will look like.

In figures 2.5 and 2.6, the centroids of EM-SRNN are visualized for MNIST and

FMNIST datasets for K = 100 (for each class, 10 centroids are used). The used

color map is heatmap; where, blue pixels represents 0 and red pixels represents 1.

In each column of images in figures 2.5 and 2.6, centroids of one class are shown.

Based on mentioned type of interpretability for EM-SRNN, what we should see in

images of figures 2.5 and 2.6 is various shapes for a same class. For examples, in

figure 2.6, at 6th column from left in FMNIST dataset, we can see various Sandals

with different shapes that are clearly recognizable by human eye. Some of them

contain high heels while some of them are flat at the bottom. It is even interesting

to see that pixels in some of the centroids have low values which is also true about

the dataset itself. The first column present various types of T-shirts. As can
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be observed some of the T-shirts have wider bottom while others have tighter

bottoms. Some of the T-shirts have no sleeves or shorter sleeves than the others.

Second column shows various types of pants. An important observation here is the

tightness of pants legs. The third column seems to be jackets. Another example is

column nine that contains various types of bags that may or may not have handles.

There can be seen other examples in FMNIST, we see variations of the samples

are learned through EM-SRNN.

Also in MNIST, we can observe various ways of writing different numbers that

are learned by the EM-SRNN. For example, various shapes of writing 1 can be

observed. Some write it obliquely while others write it vertically and some other

would add a tiny line at the bottom and an oblique line to the top of character of

1. Zero is also written in various shapes and orientations. For example some of

the zeros are written almost horizontally, some are written vertically and some are

identical to a circle. Similar variations can be observed for other numbers such as

8, 9 or 6. Number 3 is almost written with the same pattern for everybody.

In general, EM-SRNN has made it possible to observe various sub-clusters and

modes of the data for each class separately while at the same time it can classify

the samples with a proper accuracy.

Using EM-SRNN as basis for RBF: One of the well-known models for

classification is kernel SVMs. One popular method is to learn some radial basis

functions (RBF) and then train SVM on top of these functions. The hyperpa-

rameter of RBF must be tuned properly and then the best setup is selected by

cross-validation. The best hyperparameter is found by a grid search over various

values for the hyperparameter. Conventionally, the centers for RBFs are found

through K-means algorithm. However, the whole procedure is a filter approach

and there is no guarantee for finding the best centers (given that K-means is an

unsupervised algorithm). Here, we are interested to how the model would per-

form if centers are gathered from EM-SRNN. In figures 2.7, 2.8, 2.9 and 2.10 such

experiment is done and the accuracies are presented. The models presented in fig-

ures 2.7, 2.8, 2.9 and 2.10 consist of EM-SRNN, initialization of EM-SRNN (Init.),

RBF-SVM and applying SVM to EM-SRNN (EM-SRNN-SVM). By observing the
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Figure 2.9: Comparison of EM-SRNN, EM-SRNN-SVM and RBF-SVM. RBF was
trained over the centroids of EM-SRNN to observe how much improvement can
occur. The vertical axis shows the train errors.
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Figure 2.10: Comparison of EM-SRNN, EM-SRNN-SVM and RBF-SVM. RBF
was trained over the centroids of EM-SRNN to observe how much improvement
can occur. The vertical axis shows test errors.
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performance of EM-SRNN-SVM, we have noticed that in most cases, applying

SVM to EM-SRNN would decrease train error marginally and it might even in-

crease the test accuracy. Note that EM-SRNN itself has high accuracy compared

to other similar models. This actually indicates that EM-SRNN has learned such

good centroids for classification that training SVM on top of can not improve it.

A proper approach to improve further in this direction would be to learn both

centroids and SVM jointly (a wrapper approach).

2.4 Discussion

The objective function in (2.7) is a surrogate objective function of (2.5). Math-

ematically speaking, various options can exist for this surrogate function. In our

study we tried several options including using other distance metrics, a probabilis-

tic approach, log of distances or using relu(.) over the first term and restricting

it to the penalize objective function for outside of rik. However, all used methods

were either hard to handle numerically or were not able to follow the desired path

of µ. Additionally, we also tried using the coefficient of µ in various ways such

as multiplying it to other terms. However, out of all tried variants, only the one

in (2.7) was both numerically easy to handle and was achieving lower errors for

(2.5). Note that the problem (2.5) is very similar to the objective function of SVM

but in SVM the objective function is quadratic and constraints are linear while in

(2.5) by reformulating the problem it is trivial to notice that (2.5) is in fact an

optimization problem with piecewise constant objective function (a 0-1 loss) and

quadratic constraints (constraint over distance of centroid from samples). It must

be mentioned that the constraints are concave; hence, even replacing the objective

function with a quadratic objective function (as a surrogate) does not help solving

(2.5) since it is an NP-hard problem [94].
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2.5 Summary

This chapter presented the first algorithm for direct optimization of 0-1 loss

for the SRNN model that has provable convergence guarantee and monotonic de-

crease of objective function. The algorithm consists of two steps. First step is

the assignment step in which the assignment of samples are calculated and based

on that the label of each centroid is determined. Second step consists centroid

step and optimization each centroid individually. This consists of changing posi-

tion of one centroid at a time while guaranteeing the decrease in 0-1 loss function.

Since the centroid problem is NP-hard, we approximated it with a novel surro-

gate objective function. This step consists of finding local optimum of surrogate

objective function along a path as a function of µ. Among all solutions, the one

with lowest error is selected. It was shown that EM-SRNN is a linear-time algo-

rithm, thus, making it possible to be applied to large high-dimensional datasets.

EM-SRNN is specifically designed to be interpretable by humans. Therefore, for

the first time we investigated interpretability of the model and it was shown how

each centroid represents a modality of each class that is recognizable by humans.

It was shown that EM-SRNN has superior or similar performance when compared

to other state-of-the-art methods.



Chapter 3

Adversarial Label-Poisoning

Attacks and Defense for General

Multi-Class Models Based On

Synthetic Reduced Nearest

Neighbor

State-of-the-art machine learning models are vulnerable to data poisoning at-

tacks whose purpose is to undermine the integrity of the model. However, the cur-

rent literature on data poisoning attacks is mainly focused on ad hoc techniques

that are only applicable to specific machine learning models. Additionally, the

existing data poisoning attacks in the literature are limited to either binary clas-

sifiers or to gradient-based algorithms. To address these limitations, this chapter

first proposes a novel model-free label-flipping attack based on the multi-modality

of the data, in which the adversary targets the clusters of classes while constrained

by a label-flipping budget. The complexity of our proposed attack algorithm is

linear in time over the size of the dataset. Also, the proposed attack can increase

the error up to two times for the same attack budget. Second, a novel defense

technique based on the Synthetic Reduced Nearest Neighbor (SRNN) model is

32
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proposed. The defense technique can detect and exclude flipped samples on the

fly during the training procedure. Through extensive experimental analysis, we

demonstrate that (i) the proposed attack technique can deteriorate the accuracy

of several models drastically, and (ii) under the proposed attack, the proposed

defense technique significantly outperforms other conventional machine learning

models in recovering the accuracy of the targeted model.

3.1 Introduction

Machine learning models are known to be vulnerable to data poisoning attacks

[93] at training-time. In such attacks, the adversary intentionally manipulates the

training data by perturbing, adding, or removing training samples with the goal

of deteriorating the integrity of the model, thus, resulting in under-performing

models with low accuracy [5].

Alternatively, this scenario can be seen as learning under noisy data [82]. Such

attacks have the intention of altering the decision boundaries of targeted model,

thus, threatening the integrity of the model [66]. The modification to data is done

by manipulating samples’ information such as features and labels, or by inserting

and removing samples. Generally, it is assumed that attacks are constrained by

an attack budget to account for realistic consitions of such attacks [93, 88]. Alter-

ing the training samples can be seen as modifying the modalities of the data that

generated the training samples, thus, deteriorating the consistency of the trainset

and the trained model. Much of the literature in this field is focused on the poi-

soning attacks against specific models and their robustness against ad hoc attacks

[93, 108]. Authors of [66] theoretically investigated the accuracy of classifiers under

an adversarial attack that can modify a specific portion of the trainset.

Label manipulation is a common attack surface for adversaries[93]. The adver-

sarial label manipulation attack tends to perturb the minimum number of labels

(constrained by an attack budget), such that the resulting error is maximized.

Finding the optimum of such attack is shown to be at least NP-hard [14, 86]. A

baseline strategy is to perturb the labels at random. The study in [14] established
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that random perturbation of labels can degrade the accuracy of SVM classifiers

by flipping about 40% of the labels. However, this conclusion is limited to only

binary classification problems in SVM models. Authors of [14] further showed that

heuristics can improve the success of adversary in degrading the performance of

the SVM. [86] proposed a similar approach, in which the attack consists of train-

ing a new ML model after poisoning each new sample to measure that sample’s

effect on the trained model’s accuracy. However, this approach is computationally

expensive. This is mainly due to the lack of knowledge about the relationship

between the training set and test set [93]. In case this relationship is known, then

it is feasible to find near optimal samples for label manipulation [129].

While the body of work on label noise is vast, to the extent of our knowledge,

no study has yet focused on the label noise that exists in an underlying manifold

of the data such as clusters. It also has never been explored how such noise or

intentional adversarial attack can be dealt with. This is a very significant type of

attack since the adversary can focus on attacking minority groups/clusters hidden

inside the dataset, thus, deteriorating the integrity and diversity of the model,

while remaining undetected.

Much of the current research is focused on ad hoc data poisoning attacks that

are designed for specific machine learning models. Furthermore, the majority of

existing attacks in the literature are limited only to binary class problems and

gradient-based algorithms.

Therefore, to tackle the aforementioned issues, this chapter proposes the first

novel adversarial label-flipping algorithm that is not restricted to a specific machine

learning model. The proposed attack technique is the first that is based on the

multi-modality of the data.

Afterwards, we propose a regularized SRNN model that can effectively find up

to 80% of malicious samples through novel regularization and pruning techniques.

The optimization algorithm used here is based on the EM algorithm of [115]

and is composed of three steps. The first step is the assignment step and consists of

optimizing the regularization term and assigning the optimal label to each centroid.

The update step consists of optimizing the centroids. We will show that in the
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update step by using a proper surrogate objective function, the malicious samples

are automatically excluded. The contributions of this chapter are as follows:

1. We propose a novel label poisoning attack mechanism based on SRNN which

is not limited to specific machine learning models and classification tasks.

2. We propose a defense technique comprised of a novel regularization method

and pruning strategy for eliminating maliciously perturbed training samples.

3. We experimentally demonstrate that the performance of the proposed attack

mechanism is superior to similar attack/noisy techniques against a variety of

well-known machine learning models and classification tasks.

4. We experimentally establish the feasibility of our proposed defense technique,

and demonstrate that it can detect up to 80% of the malicious samples in a

variety of known resilient machine learning models and classification tasks.

3.2 Related Work

Many papers have focused on manipulations in the feature space as the mode

of the attack. In such settings, the adversary can corrupt both the labels and input

features of the trainset. The literature in this area is generally focused on online

learning setups and clustering as the model, where the adversarial strategy is to

slowly displace the center of the cluster to induce misclassifications. Authors in [68]

used such an approach in a trainset used for anomaly detection and demonstrated

how the approach can gradually shift the decision boundaries of a centroid model.

Another similar approach is introduced in [16].

Various other studies in the literature focus on gradient-based methods for

selecting samples to poison in the context of SVM models [15, 84, 129, 130]. Ma-

nipulations of features in samples selected in this manner have been shown to

incurr a devastating effect on reinforcement learning agents [8].

A data poisoning attack that uses labels as surface of attack can be modeled as

noise in labels. Authors in [42] present a comprehensive survey of the label noise.

In [43], inspired by [106], authors distinguish three types of label noises. First
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type is label Noise Completely at Random (NCAR). This type of noise happens

at random regardless of the features or the true class. The second type is Noise at

Random (NAR). This type of noise happen when some classes are more likely to

be noisy. However, this type of noise is easy to detect by a human since a specific

class is being constantly targeted. The third type of noise is Noise Not at Random

(NNAR). In such settings, mislabeling of the samples is related to the features of

the samples and the mislabeling can happen at the decision boundaries.

In general, there are three approaches to tackle the noisy label issue. First

approach is to use label noise-robust machine learning models. It has been shown

that most models are intrinsically robust to noise [82]. However, some of the mod-

els are more robust than the others. For example, ensemble models are more robust

than other machine learning models [39, 100, 67, 101, 99]. Also, in decision trees,

the split criterion can improve robustness of the tree [1]. The second approach is

to remove noisy samples using methods such as outlier detection [6, 58] or anomaly

detection [24]. Some studies in the literature use heuristics to remove noisy sam-

ples. Examples of such heuristics can be found in reduced nearest neighbor [47].

The work in[47] proposes to remove samples whose removal does not affect mis-

classification of other samples. AdaBoost-based methods can also be used such as

[123, 65]. The third approach consists of learning a model that is noise-tolerant

such as [46, 64, 112]. However, these methods are based on assumptions made for

the probability distribution of the noise. Other practical examples of the third

approach consist of applying clustering algorithms for detecting mislabled samples

through a nearest neighbor approach [132, 18] or confidence of the model prediction

[37, 36]. Further, cross-validation itself can improve the robustness of the model

against label noise [55].

As explored in this section, the state of the art in poisoning attacks is mostly

comprised of attacks that focus either on specific machine learning models or are

at most gradient based approaches. Therefore, they might not be applicable to

general machine learning models, such as decision trees and forest models.
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3.3 Proposed Method

3.3.1 Preliminaries

In this subsection we change the notation for SRNN for better compatibility

with contents of this chapter.

Synthetic Reduced Nearest Neighbor(SRNN):A synthetic reduced near-

est neighbor (also known as prototype nearest neighbor(PNN)) is a set of synthetic

samples (centroids) that infer an input similar to a nearest neighbor model [115].

Assume a dataset of samples consisting of N tuples of observation, {(xi, yi)}
N
i=1.

xi ∈ R
D is the ith sample’s features and its target response is yi ∈ {1, 2, 3, ...,M}.

The SRNN model consists of a set of centroids/prototypes C = {(cj, ŷj)}
K
j=1. At

the test time, prediction of an input is the label of closest centroid to that input.

The problem of learning a SRNN model is similar to that of a k-means problem

except that each centroid is associated with a label that represents the prediction

of the centroid. Mathematically speaking, the optimization of the SRNN model

using 0-1 loss is:

min
{(cj ,ŷj)}K1

N
∑

i=1

L(yi, NN(xi))

s.t. NN(xi) = ŷj∗i

j∗i = argmin
{j}K

1

d(xi − cj)

(3.1)

where, NN(.) represents the nearest neighbor function. d(.) is a distance metric

(chosen to be the Euclidean distance in this study). For simplicity, in the rest of

this chapter, we use rij for d(xi− cj). j
∗
i represents the index of closest centroid to

ith sample. L is a 0-1 loss function that outputs 0 if both of its input arguments

are equal, otherwise, it outputs 1. The problem of (3.1) is in fact the problem

of finding a set of K synthetic samples that achieve minimum error as a nearest

neighbor model with K samples. Intuitively, each centroid represents a modality

of the data that the samples are generated from.
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3.3.2 Modality-based adversarial label flipping

One common objective of adversarial data poisoning is to undermine the in-

tegrity of the trained model. This can be cast as weakening the performance of

the trained model at the test time [93]. In other words, the goal of the attacker is

to increase the error of the trained model. In this chapter, based on SRNN model,

we propose the modality-based (or cluster-based) perturbation of the training la-

bels. The problem of selecting optimal samples for proposed attack technique is

as follows:

max
{Ii,y

p
i }

N
1

∑

(xi,yi)∈Strain

L(yi, NN∗(xi))

s.t NN∗ = argmin
{(cj ,ŷj)}K1

∑

xi∈Sp

L(yi, NN(xi))

Sp = {(xi, (yi(Ii − 1) + y
p
i (Ii)))}

N
∑

i=1

Ii ≤ Cost

(3.2)

Where, NN∗(.) represents the optimal model trained over the poisoned dataset

Sp. The goal is to increase the error over the trainset with true labels Strain. y
p
i

represents the perturbed label and Ii is an indicator variable that is either 0 or 1.

Ii is used for representing selected samples. The second constraint represents the

poisoned dataset with perturbed labels. The third constraint shows the maximum

allowed number of perturbations, given an attack budget (Cost).

The problem in (3.2) is a selection problem. The problem consists of selecting

samples and changing their labels to another class such that the error of NN∗

is maximized over Strain. Intuitively, the trained model should perform poorly

on the trainset with true labels in the hope that it performs poorly at the test

time. Finding optimal solution of (3.2) is NP-hard [14, 86]. As a consequence,

finding global optimum of (3.2) is computationally intractable and not practical.

Therefore, we propose an efficient greedy algorithm that approximates the solution

for problem (3.2) and also satisfies the constraints. Initially, there are no samples

selected for poisoning. Therefore, the adversary has to train NN∗ over the trainset.

Next step consists of selecting samples. This is done by fixing centroids of NN∗
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while continuing optimization only over {Ii, y
p
i , ŷj}. At this step, the assignment of

the train set samples are fixed and cannot be changed since the centroids are fixed.

Therefore, the problem consists of changing labels of samples in Sp such that the

prediction labels of some of the centroids in NN∗ are changed, thus, increasing the

error over Strain. This problem can be stated as follows:

max
{Ii,y

p
i }

N
1
,{yj}Kj=1

K
∑

j=1

∑

(xi,yi)∈Strain
j

L(yi, ŷj)

s.t ŷj = mode({yi}Sp
j
)∀j = 1...K

Sp = {(xi, (yi(Ii − 1) + y
p
i (Ii)))}

N
∑

i=1

Ii ≤ Cost

(3.3)

In (3.3), Sp
j and Strain

j represent the trainset samples assigned to jth centroid with

perturbed and true labels, respectively. Note that the difference between (3.3)

and (3.2) is that the centroids of clusters are fixed, thus, assignments are fixed.

ŷj represents the jth centroid’s optimal label. Therefore, in order to increase the

objective function, ŷj has to be changed through selecting samples for poisoning.

ŷj can only get changed if the majority label in S
p
j gets changed. Many heuristics

can be applied here such as changing some of the labels to the second most frequent

label in the S
p
j . One intuitive approach is to randomly change the labels of half

plus one of the samples in Strain
j to the minority (i.e, least frequent) labels. This

causes the information of the cluster (modality of the data) to become obscure and

misleading. In other words, the attacker has to spend a specific cost to turn the ŷj

into a false label (minority label of the cluster). However, the attack has a limited

budget and has to select clusters based on its budget. From a practical point of

view, it can be seen as recognizing vulnerable groups in a data. All that remains

is selecting clusters to attack. Assuming the cost of changing jth label is Costj ,
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then the problem can be simplified as follows:

max
{Ij}Kj=1

K
∑

j=1

CostjIj

s.t

K
∑

j=1

CostjIj < Cost

Ij = {0, 1} ∀j = 1...K

(3.4)

Problem (3.4) can be solved greedily by selecting from clusters with lower cost until

the first constraint is violated. Other algorithms such as dynamic programming or

other greedy approaches can also solve the problem in (3.4).

The proposed attack technique can have the capacity to increase the error over

the trainset by two times the attack budget.

Theorem 3 (Fixed SRNN upper bound). Assuming that the centroids are fixed,

and known to both user and adversary, the modality-based attack can increase the

error of NN∗ by at most O(2× Cost) over the trainset with unperturbed labels.

Proof. The centroids are fixed. Therefore, the loss incurred by each centroid is

independent of the other centroids, thus, it is possible to break down the total loss

by each centroids loss.

N
∑

i=1

L(yi, NN∗(xi)) =

K
∑

j=1

Lj (3.5)

Where, Lj =
∑

xi∈Strain
j

L(yi, NN∗(xi)). Changing ŷj to label of minority class will

increase the error in the jth cluster by at most |Sj|. The cost of such action is

Costj =
|Sj |

2
. Therefore, the change in loss of jth centroid is ∆Lj ≤ 2×Costj . The

second constraint of problem (3.4) is satisfied by the adversary. Therefore, using

(3.5) and the second constraint of (3.4), we have

∆

K
∑

j=1

Lj =

K
∑

j=1

∆LjIj ≤

K
∑

j=1

2× CostjIj < 2× Cost. (3.6)
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Computational complexity: The proposed attack technique first trains a

SRNN that takes O(NDK) [115]. Then the attack technique perturbs labels. The

perturbation step takes O(N) which is embarrassingly fast. Compared to other

label flipping attacks [84], this attack is computationally very cheap and feasible.

Intuitively, the proposed attack targets the minority groups (smaller clusters).

In our experiments, the proposed attack technique achieved significantly higher

test error for various machine learning models compared to other label-flipping

attacks and no attack. In other words, for an adversary, it would be more efficient

in terms of budget to target vulnerable smaller clusters of a dataset and undermine

the integrity of any machine learning model significantly.

3.3.3 Defense via Regularized Synthetic Reduced Nearest

Neighbor (RSRNN)

We introduce a new parameter named confidence range rj
K
j=1, as well as two new

regularization terms for SRNN as the defense technique. Any sample beyond the

confidence range, rij∗ > rj∗i , is considered to be malicious. Note that j∗i represents

the index of closest centroid to sample i. First term consists of regularizing the

confidence range for each centroid. Second regularization term consists of adding

cost complexity function over the SRNN structure. The cost function facilitates

the pruning of centroids and further recognizes the attacked modalities of the data.

The optimization problem of training RSRNN is given in (3.7):

min
{(cj ,ŷj ,rj)}K1

N
∑

i=1

L(yi, NN(xi)) + λ

K
∑

j=1

rj + α

K
∑

j=1

cost(Sj)

s.t. NN(xi) =







ŷj∗i rij∗ < rj∗

Malicious otherwise

(3.7)

where, λ is the penalty coefficient of rj , α is the cost complexity coefficient,

and cost(.) represents the cost function of jth centroid. Sj consists of the samples

whose closest centroid from C is jth centroid (Sj = {xi|j = j∗i ∀i = 1, 2, ..., N}).

To solve the optimization problem in (3.7), we follow the same EM algorithm as in

[115] which was inspired by K-means algorithm [81]. The optimization approach
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consists of three steps: the assignment step, the update/centroid step, and the

pruning step based on a validation set.

Assignment Step:

This step has two parts. First part consists of assigning the train samples to

their closest centroid. This is essentially calculating Sj for j = 1...K. Second part

is finding optimal values to {ŷj}
K
j=1. The problem for jth centroid can be written

as

min
ŷj

∑

xi∈Sj

L(yi, ŷj)U(rj − rij) (3.8)

Where U(.) is a step function and is used to impose the constraint in (3.7) for

Malicious samples. The problem in (3.8) is that of finding the best constant

predictor over the set of Sj . Its optimum is the most frequent label of samples in

Sj (ŷ
∗
j = mode({yi|∀xi ∈ Sj})).

Update step:

This step consists of optimizing each centroid while the centroid labels are

kept constant. In this step, first, {rj}
K
j=1 are fixed and {cj}

K
j=1 are optimized,

and then {cj}
K
j=1 are fixed and rj

K
j=1 are optimized. It is shown that the problem

for optimizing each centroid is a binary classification task. Further, the centroid

problem is NP-hard, hence, it will be approximated using a novel surrogate loss

function. The optimization problem of this step for jth centroid over cj is as follows:

min
cj

∑

xi∈Sj

(L(yi, ŷj)U(rj − rij) + U(rij − rj))+

∑

xi∈Sc
j

L(yi, NNC′(xi))
(3.9)

where Sc
j represents the complement set of Sj (rest of samples that are not assigned

to Sj). NNC′ represents nearest neighbor function over the set of centroids without

jth centroid (C ′ = C − (cj , ŷj)). Here, the assignment of samples are not fixed and

a sample might eventually get assigned to Sj or S
c
j depending on the position of cj

in the feature space. This is in fact a binary classification problem because each
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sample has to get assigned to Sj or Sc
j . However, prior to the optimization, the

optimal assignment of each sample that contributes to decreasing the objective

function in (3.9) is not known. From the perspective of EM algorithm, this is

a latent variable because it is not clear whether the sample is generated by the

distribution of jth centroid or the rest of centroids. The optimal assignment of

each sample can be extracted by evaluating the correctness of prediction if the

sample assigned to Sj or Sc
j . For example a sample might get classified correctly

only if the sample is assigned to Sj because the label of the sample matches the

label of cj. On the other hand, the same sample might be classified incorrectly,

or categorized as malicious if assigned to Sc
j . Therefore, this sample has to be

assigned to Sj during the optimization to contribute to decreasing the objective

function of (3.9) (potentially, cj has to be closer to the sample than the rest of

centroids). From the EM algorithm point of view, the calculation of outcome of

assigning a sample to Sj or S
c
j is in fact calculating the posterior probability of the

sample being generated by the distribution of P (yi|xi ∈ Sj) or P (yi|xi ∈ Sc
j ). In

general 8 scenarios can happen for each sample and the optimal assignment of a

sample can be found based on these scenarios.

All 8 scenarios are shown in table 3.1. The scenarios are based on three fac-

tors. The factors are correctness of classification if the sample is assigned to Sj ,

correctness of classification if the sample is assigned to Sc
j , and sample categorized

as malicious if assigned to Sc
j . Therefore, in total there are 8 scenarios. Note that

the case of a sample being recognized as malicious by Sj is not considered here as

a factor. This is because during the optimization, the cj can move and a sample

might fall in the rj ball or may remain outside of it. However, this factor is incor-

porated inside the surrogate objective function in the following part of this section.

In table 3.1, j′∗i represents the index of closest centroid to sample i from the set

C ′. From the table 3.1, the samples that belong to scenarios 1-3 cannot affect the

objective function of (3.9), since the samples will be classified incorrectly or are

considered as malicious regardless of any set they are assigned to. The samples

that belong to scenario 4 are the samples that have to be assigned to Sc
j because

if they are assigned to Sj then, they are classified incorrectly, hence, they increase
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Table 3.1: Update step scenarios. All scenarios for assigning a sample to Sj or S
c
j .

# L(yi, ŷj) L(yi, ˆyj′∗i ) NNC′ == Mal. assign

1 1 1 1 x

2 1 1 0 x

3 1 0 1 x

4 1 0 0 Sc∗
j

5 0 1 1 S∗
j

6 0 1 0 S∗
j

7 0 0 1 S∗
j

8 0 0 0 x

the objective function of (3.9). We call such set as Sc∗
j . Samples of scenarios 5-7

have to be assigned to Sj to decrease the objective function of (3.9). We denote

such set of samples as S∗
j . Samples of scenario 8 are always classified correctly;

thus, they are ineffective in the objective function of (3.9). Intuitively, cj has to

be replaced in the space such that cj is closest centroid to samples of S∗
j . Also,

preferably, cj should be at a distance of rj from all samples of S∗
j . At the same

time cj should remain further away from samples of Sc∗
j with at least a distance of

rij′∗i . Using sets of S∗
j and Sc∗

j and the given intuition in previous paragraph, the

problem in (3.9) can be rewritten as follows

min
cj

∑

xi∈S∗

j

(U(rij − rij′∗i ) ∨ U(rij − rj))+

∑

xi∈Sc∗
j

U(rij′∗i − rij)
(3.10)

where ∨ is logical OR operator. Finding the global optimum of (3.10) is NP-hard

and cannot be solved directly [14, 86]. Therefore, a surrogate objective function

will be used to approximate the solution to (3.10). Intuitively, the interest of

problem (3.10) is to replace the cj close to the samples of S∗
j . At the same, time

we are interested in nullifying the effect of possible Malicious samples of S∗
j that

are outside of the rj automatically. Further, cj has to stay outside the ball of rij′∗i

for the samples in Sc∗
j . Based on the given intuition, the solution to problem (3.10)
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is approximated by solving

c∗j (µ) = argmin
cj

∑

xi∈S∗

j

min(rij , rj)+

∑

xi∈Sc∗
j

relu(µrij′∗i − rij)
(3.11)

where min(.) returns the minimum of its input arguments. relu(.) is a rectified

linear unit. µ is a coefficient and acts like a slack variable [115] that is increased

from 0 to 1. For every value of µ along the path, the problem of (3.11) can be

solved using stochastic gradient descent. Along this path, the c∗j that returns the

smallest loss for (3.10) is selected. This is similar to solving an SVM for a linear

binary classifier [115] while changing the slack variable.

Finally, {rj}
K
j=1 have to be optimized while fixing the rest of parameters. The

problem of optimizing rj for a centroid is

min
rj

∑

xi∈Sj

L(yi, ŷj)U(rj − rij) + U(rij − rj) + λrj (3.12)

From problem (3.12), it can be observed that objective function is piecewise-

constant over rj and objective function has a jump at every rij . This problem

can be solved efficiently in O(|Sj|log(|Sj|)). This is done by sorting rij for ev-

ery xi ∈ Sj and evaluating the objective function of (3.12) for every rj = rij

through an incremental algorithm. In total, finding optimum rj for all centroids is

O(Nlog(N)).

Excluding malicious samples on the fly: Note that the objective function

in (3.11) has two terms that contain cj . The first term is min(rij , rj) that encour-

ages samples of set S∗
j to be close to cj but any sample that falls outside of the ball

of rj will become ineffective in optimization of (3.11) because the gradient with

respect to that sample becomes 0. This is interesting since the optimization algo-

rithm is in fact excluding samples that are suspicious to be malicious on-the-fly.

Further, other malicious samples such as scenarios 1 and 3 are automatically not

considered in the optimization.

In total, computational complexity of this step is O(NDK +NlogN) [115].

Finally, by iterating over update step and assignment step, the first two terms
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of the objective function in (3.7) decrease over the trainset until no further im-

provement can happen over the parameters.

It is noteworthy that the surrogate objective function for update step also

decreases the {cost(Sj)}
K
j=1 since it tends to create pure sets for each Sj .

Pruning step:

After optimizing the first two terms of (3.7), the third term needs further

attention. Similar to pruning for decision trees, the cost complexity function en-

courages to remove (prune) the impure centroids based on their assignment set Sj

and the coefficient of α. In this chapter, Gini-index is used as the cost function.

However, the dataset’s integrity can be under question, meaning that some of the

samples/modes are malicious. Here, the intuition and aim of this step is not only to

prune the centroids but also remove the malicious modalities of the trainset. Also

note that any malicious sample is considered as a loss, thus, only centroids and

modes are considered as malicious if removal of them decreases the error over the

validation set. Therefore, for this step, all other parameters including assignment

of samples are kept fixed. Further, a clean validation set is used to prune centroids

and samples of malicious modes. The clean validation set is a set whose integrity

is assured and in practice a tiny set for validation set such as 5− 10 percent of the

whole trainset would be sufficient.

How to prune? After optimizing (3.7) using the assignment step, pruning is

performed. The pruning step consists of removing malicious centroids and sam-

ples. To do so, other parameters are kept constant, a validation set is needed and

optimization over α must be performed since α is a hyperparameter. A direct

selection of α is not practical since α can accept any values from 0 to ∞. Thus,

we will show that Values of α that cause change to the structure of RSRNN are

quantized and correspond to a specific cut-off threshold over cost(Sj). cost(Sj) is

a real number in [0, 1]. Therefore, a range of numbers between [0, 1] are used to

remove centroids based on the trainset and evaluate their performance over the

validationset. Any cut-off that had smallest validation error was selected.
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For each centroid, the cut-off threshold is the threshold that by removing the

centroid, the objective function of (3.7) decreases. Such threshold can be calculated

as follows:

cost(Sj) =
L(yi, NNC−cj(xi)) + λrj

α
(3.13)

Where, NNC−cj (.) is the nearest neighbor function over all centroids except jth

centroid.

In practice, we used cut-off thresholds between [0.2 − 0.9] with steps of 0.05.

For each cut-off, the centroid and its sampleset (Sj) was removed. Further, for

each cut-off a retraining consisting of only initialization with K centroids over the

cleaned dataset was applied and its validation error was evaluated. Please note

that the purpose of this pruning approach is detecting malicious samples along

with removing malicious centroids. Finally, the model with smallest validation

error was selected for further optimization over the cleaned dataset.

Finally, after removing the malicious samples and centroids, it is possible to

either restart training using original SRNN over the cleaned data, or continue

training with the remaining centroids and select the final model based on the error

over the validation set.

3.4 Computational Complexity and Convergence

The attack technique consist of first training SRNN model that takes O(NDK)

[115] and then perturbing labels of samples. The second step consists of calculat-

ing cost of each cluster (takes O(|Sj|)) and sorting the costs of clusters (takes

O(KlogK)). Therefore, in total, the attack technique takes O(NDK + N +

KlogK).

Theorem 4 (Convergence of RSRNN). Iterating over the first two steps of op-

timizing RSRNN converge to a local minimum of the first two terms of objective

function in (3.7). This takes a finite number of iterations.

Proof. The objective function has a lower bound of zero. Both the assignment and

the centroid steps decrease or do not change the first two terms of (3.7). Different
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combinations of assignments of the samples to the centroids are finite. As a result,

the loss function does not decrease after a finite number of iterations over both

steps. This proof is similar to proof of convergence for K-means [81].

3.5 Experimental Results

In this section, experimental results of the proposed attack and defense tech-

niques are presented and compared with similar techniques. The attack techniques

which are applicable to various machine learning models are used for comparison

in this study. In terms of defense technique, models that are known to be resilient

against the attack techniques are used for comparison. Further, the merits of the

proposed attack and defense techniques are studied and presented. In the next

subsection, the effect of proposed attack is explored and in the second subsection,

the performance of the RSRNN is compared with several other resilient models.

3.5.1 Attack Experiments

3.5.2 Attack Experiments

In this subsection, the performance of the modality-based adversarial label fil-

liping (SRNN-att) is presented. The SRNN-att is compared with several other

label filliping attacks that are generic and can affect all machine learning models.

These label filliping techniques are gathered from the literature of label noise be-

cause they are found to be the most similar techniques that exist on the topic of

this chapter, as they are not designed for a specific machine learning model and

can potentially deteriorate the performance of any machine learning model.

Accordingly, in our experiments, SRNN-att is compared with NCAR, NNAR

and no attack. NCAR works by changing the labels at random. NNAR is a prac-

tical approach that aims at changing labels at the margins of decision boundaries.

Here, to apply this type of attack, a state of the art model is trained and then

labels of the samples that are predicted with low confidence by the model are

targeted. Labels of such samples are changed to the second most probable label,
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Figure 3.1: Different attack techniques are presented for MMNIST dataset. Ver-
tical axis presents error ratio over the testset and horizontal axis presents number
of base models.
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Figure 3.2: Different attack techniques are presented for FMNIST dataset. Vertical
axis presents error ratio over the testset and horizontal axis presents number of
base models.
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Figure 3.3: Different attack techniques are presented for pendigits dataset. Vertical
axis presents error ratio over the testset and horizontal axis presents number of
base models.
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Figure 3.4: Different attack techniques are presented for satimage dataset. Vertical
axis presents error ratio over the testset and horizontal axis presents number of
base models.
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thus, intuitively, changing the decision boundaries. In the experiments, NNAR

and NNAR-ADA represent the NNAR attack using a forest model and AdaBoost

model, respectively. The size of these models is selected such that they have the

same size as that of the SRNN model used for SRNN-att.

In order to evaluate performance of the attack techniques, several machine

learning models using the poisoned dataset are trained. In this chapter, SRNN,

RBF-SVM, OC1, CART, K-means, AdaBoost, Nearest Neighbor, Random Near-

est Neighbor are used. The details of these models are explained in the further

experiments section.

In order to obtain a fair comparison, for each dataset, the lowest error rate of

each attack model among all the trained machine learning models is presented in

figures 3.1,3.2, 3.3 and 3.4. In figures 3.1,3.2, 3.3 and 3.4, vertical axis shows error

ratio over test set and horizontal axis represents number of centroids, leaf nodes,

RBFs and trees for SRNN, tree, RBF-SVM and forest models, respectively. In

fact, all the models are presented as a kind of ensemble of smaller models, thus, it

is possible to compare them based on the number of terms they contain. Figures

3.1,3.2, 3.3 and 3.4 show that in all attack techniques, the SRNN-att consistently

achieved the highest test error with a significant margin, or performed at least

as good as the next best attack when compared with other attack techniques.

Additionally, it is noteworthy that in a few instances one of the other techniques

was able to increase the test error significantly but none of the other techniques

was able to consistently achieve a high rise in the test error.

In figure 3.5, results for best performing models are shown for the MNIST

dataset. As can be observed, SRNN-att was able to make the models underperform

more than other attacks. Complete set of experiments are presented in the section

3.6.

3.5.3 Defense Experiments

For the evaluation of the proposed defense against the proposed attack tech-

nique, the proposed RSRNN approach is compared with the other state of the art

models that are known to be resilient against label flipping issues. Other models
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Figure 3.5: Different attack techniques and models are presented for MNIST
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models.
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Figure 3.6: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models.
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Figure 3.7: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models.
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consist of trees, RBF-SVM, AdaBoost, K-means. For trees, tree with two split

criteria of Gini index and Cross-entropy were used because they are known to

be resilient against noisy or adversarial samples [1]. Another approach against

adversarial/noisy label flipping attack techniques is using validationset for model

selection [93, 42]. This validation set is used for selecting the best model that has

smallest error over the validation set[55]. The validation set is used for selecting

parameters of K-means and RBF-SVM in the experiments of this subsection, thus,

making the models more resilient against the label noise. Finally, it is also known

that ensemble models such as boosting algorithms are more robust against noise

in labels [42]. Therefore, AdaBoost is added to the experiments of this subsection.

The details of training each model is presented in the section 3.6.

Figures 3.6, 3.7, 3.8 and 3.9 present the results of experiments in this subsection.

As can be observed from figures 3.6, 3.7, 3.8 and 3.9, RSRNN was able to constantly

outperform other models with a large margin. At the same time, RSRNN was able

to improve the results of SRNN by up to 2− 3%. Additionally, RSRNN was able

to detect a large portion of malicious samples up to 70% with a true positive of

50 − 60%. Experiments regarding performance of RSRNN in detecting malicious

samples is presented in the section 3.6.

Finally, the size of validation set used in the experiments of this section is only

8% of the trainset. Further details of the experiment setup and more experimental

results on the efficiency of the model under various configurations of the attack

are presented in the 3.6.

3.6 Further Experimental Results of RSRNN

Dataset setups:We performed the experiments over two setups for each dataset.

In one setup, 20% of the dataset for selected as trainset and a validation set

with size of 8% of the trainset was selected. The validationset contains the origi-

nal(unperturbed) labels for the samples. The trainset was poisoned using SRNN-

att. The SRNN-att was trained over 80% of the dataset for all setups. The reason

for such setup is that in the proposed method the attacker was supposed to have
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Figure 3.8: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models.
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Figure 3.9: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models.
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the knowledge of the optimal centroids. Therefore, to mimic such assumption,

the attacker was trained over a larger set of samples. The second setup, 80% of

the dataset was used as trainset and a validationset with the size of 8% of the

trainset was selected. The trainset was poisoned using same SRNN-att as the

first setup. The second setup is used for all datasets. In the experiments of the

previous section, the first setup was used for datasets of MNIST, FMNIST and

pendigits. For satimage the second setup was used since using the first setup was

causing overfitting in all trained models. The experiments over MNIST, FMNIST

and pendigits using the second setup are presented in this section. Finally, we

noticed that SRNN-att can increase the error significantly even if it is trained over

the same portion of samples as the other models.

Models setups: In the experiments of the previous section, various models

were used. Each model can be represented as a kind of ensemble model that consist

of several base models. Here, the setups for each model is presented. For decision

tree models of OC1 [87] and CART [21] the number of leaf nodes represents the

number of base models. For RBF-SVM, first several K centroids using K-means

over the trainset was found and used as centers for RBFs. Each centroid represents

one base model. The hyperparameters of RBFs were found using the trainset for

the attack experiments. In the defense experiments, the RBF hyperparameters

were selected using the clean validationset. For the K-means model, a simple

unsupervised K-means was trained over the features of the trainset and then the

labels were selected using the assignment step. The labels for attack and defense

experiments were selected using the trainset and validationset, respectively. The

number of centroids represents the number of base models. For AdaBoost, each

base model was a tree of depth 4 and the model was trained such that it contained

similar number of parameters as RBF-SVM. SRNN was trained using same number

of centroids as the other models. In random Nearest Neighbors, K random samples

were selected as a the model. In the experiments, we have select models that

are similar in the sense that each model would partition the input space or uses

centroids as basis of the model. Neural Networks do not fall into any of the

categories mentioned here.
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Figure 3.10: Different attack techniques and models are presented for MNIST
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, first setup was used.

3.6.1 Attack Experiments

In this subsection, the performance of all models over each dataset is presented

in figures 3.10, 3.11, and 3.12 for the first setup.

As can be observed from figures 3.10, 3.11, and 3.12, SRNN-att was able to

increase the error of all models higher than other attack techniques.

Figures 3.13, 3.14, and 3.15, present the best of all models under each attack

for second setup.

Figures 3.16, 3.17,and 3.18 present all models for second setup.
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Figure 3.11: Different attack techniques and models are presented for FMNIST
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, first setup was used.
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Figure 3.12: Different attack techniques and models are presented for pendigits
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, first setup was used.
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Figure 3.13: Different attack techniques are presented for MNIST dataset. Vertical
axis presents error ratio over the testset and horizontal axis presents number of
base models. The second setup was used for experiments.
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Figure 3.14: Different attack techniques are presented for FMNIST dataset. Ver-
tical axis presents error ratio over the testset and horizontal axis presents number
of base models. The second setup was used for experiments.
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Figure 3.15: Different attack techniques are presented for pendigits dataset. Ver-
tical axis presents error ratio over the testset and horizontal axis presents number
of base models. The second setup was used for experiments.
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Figure 3.16: Different attack techniques and models are presented for MNIST
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, second setup was used.
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Figure 3.17: Different attack techniques and models are presented for FMNIST
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, second setup was used.
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Figure 3.18: Different attack techniques and models are presented for pendigits
dataset. Colors and curve shapes present the attack techniques and models, re-
spectively. model Vertical axis presents error ratio over the testset and horizontal
axis presents number of base models. For this figure, second setup was used.
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Figure 3.19: Different defenses against SRNN-att. SRNN-att model was trained
with 60 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. First setup for datasets was used.
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Figure 3.20: Different defenses against SRNN-att. SRNN-att model was trained
with 60 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. First setup for datasets was used.
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Figure 3.21: Different defenses against SRNN-att. SRNN-att model was trained
with 60 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. First setup for datasets was used.
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Figure 3.22: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. Second setup for datasets was used.
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Figure 3.23: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. Second setup for datasets was used.
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Figure 3.24: Different defenses against SRNN-att. SRNN-att model was trained
with 30 centroids. Vertical axis shows test error ratio and horizontal axis represents
number of basis models. Second setup for datasets was used.
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Figure 3.25: The vertical axis represents the ratio. The horizontal axis presents
the number of base models. The red line shows the TP and blue line shows the
ratio of found malicious samples. The curves correspond to the same experiments
as in figures 3.6, 3.8, 3.7, and 3.9.
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Figure 3.26: The vertical axis represents the ratio. The horizontal axis presents
the number of base models. The red line shows the TP and blue line shows the
ratio of found malicious samples. The curves correspond to the same experiments
as in figures 3.22, 3.23, and 3.24.
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Figure 3.27: The vertical axis represents the ratio. The horizontal axis presents
the number of base models. The red line shows the TP and blue line shows the
ratio of found malicious samples. The curves correspond to the same experiments
as in figure 3.19,3.20, and 3.21.
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3.6.2 Defense Experiments

In the experiments of this section, we further investigated the resilience of the

proposed defense technique against SRNN-att with 60 centroids. Figures 3.19,

3.20, and 3.21 present results of this experiments. 20% of each dataset was used

as the trainset.

Figures 3.19, 3.20, and 3.21 present that the defense technique was able to

achieve lower or as good as best of other models.

Figures 3.22, 3.23, and 3.24 present experiments with 80% of datasets used as

trainset and 30 centroids for SRNN-att.

In experiments of figures 3.22, 3.23, and 3.24, RSRNN was able to outperform

other defense techniques by having smaller test error.

3.6.3 Malicious Sample Detection

As explained in the pruning section, the algorithm is capable of detecting the

malicious samples. In this part, detection ratio and true positive (TP) ratio of

RSRNN are shown. Figure 3.25 presents the ratio of malicious found samples and

TP for figures 3.6, 3.8, 3.7, and 3.9. Figures 3.26 and 3.27 present the ratio of

found malicious samples and TP for figures 3.22, 3.23, 3.24, 3.19, 3.20, and 3.21.

It is observable that the RSRNN was able to find up to 0.7 of malicious samples

with a true positive ratio of 0.45.

3.7 Summary

In this chapter, a novel data poisoning attack was proposed that is able to

deteriorate the performance and undermine the integrity of state of the art machine

learning models. This is the first data poisoning technique that is not limited to

only binary classification, a specific model, or gradient-based approaches. At the

same time, the attack technique is very fast since it only takes a linear time over

the dataset to select samples for label flipping. The proposed attack shows the

fact that for an adversary, it would be more efficient to target minority groups

in a dataset with the goal of undermining the integrity of the learned model and
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achieving this goal. The properties of this attack does not require the knowledge

of the user model since its attack can affect any model.

In addition, a novel defense technique based on SRNN model was proposed

that is resistant against the proposed attack technique. The defense technique

intrinsically detects and excludes the adversarial samples on the fly during its

training procedure. Additionally, our experimental results showed that the RSRNN

model is capable of detecting a large portion the malicious samples, thus, making

it more robust to data poisoning. Finally, in experiments, RSRNN showed ability

to achieve significantly lower test error compared to other known resilient models

against the label flipping data poisoning.



Chapter 4

A Regression Model Synthetic

Reduced Nearest Neighbor: an

Expectation Maximization

Approach

A well-known and accurate approach to any task in machine learning is near-

est neighbor models. In this chapter, we propose the synthetic reduced nearest

neighbor for regression. To the best of our knowledge, no algorithm for optimizing

regression synthetic reduced nearest neighbor or prototype nearest neighbor has

been proposed in the literature. The existing prototype nearest neighbor models

rely on a specific initialization where a k-means model is trained over each class.

However, such initialization is only applicable to the classification tasks. There-

fore, in this chapter, a novel initialization and expectation maximization approach

are proposed for constructing the regression synthetic reduced nearest neighbor.

The initialization is based on running k-means algorithm over the output responses

of the samples to create various clusters of outputs and then learning several cen-

troids in the input space for each clusters found from the outputs. In other words,

the initialization consists of finding output clusters and running k-means in the

input space for each found output cluster. The optimization is done by apply-

81
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ing an expectation maximization algorithm similar to the k-means algorithm that

optimizes the centroids in the input space. The optimization proposed algorithm

consists of two steps. 1- The assignment step, where assignments of the samples

to each centroid is found and the optimum of output response for each centroid is

calculated. 2- The update/centroid step, where each centroid is updated such that

the loss function of the whole model is minimized. We will show that the centroid

step operates over all the samples and consists of solving a specific weighted binary

classification. However, finding the optimum of the centroid problem is NP-hard

and no surrogate objective function exists for approximating the solution. There-

fore, a new surrogate is proposed and used to approximate the solution for the

centroid step. In this chapter, the consistency of the model is studied and it will

be shown that the model is consistent under mild-assumptions. Finally, the model

is compared with several other state-of-the-art regression models.

4.1 Introduction

One of the main topics of research in Machine Learning is the relation between

the features and output responses [55, 104, 118, 29]. Synthetic reduced nearest

neighbor is able to find the relation between features of the inputs and the sub-

clusters of each class [115]. However, to the best of our knowledge, there are

no algorithms toward optimizing or even constructing regression reduced nearest

neighbor. regression reduced nearest neighbor can potentially have extensive ap-

plications toward epidemiological studies [114, 27], medical studies [29, 52, 51] and

generally the regression tasks [118]. Therefore, an important open research prob-

lem in the literature is optimization of a Regression Synthetic Reduced Nearest

Neighbor (SRNN-Reg).

The SRNN-Reg is capable of finding various modalities of the input data and

relate them to the modalities of the output responses. The SRNN-Reg is designed

to handle both single-response and multi-response regression. The multi-response

regression consists of learning the relation between input samples and several real

output responses. The SRNN-Reg partitions the input space into various piecewise
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constant regions. Each region is represented by a centroid and its output response.

From this perspective, the SRNN-Reg is similar to other piecewise constant models,

such as [77, 7, 12, 117, 116]. SRNN-Reg is capable of learning an accurate relation

between each cluster of the data and its corresponding output responses. Therefore,

SRNN-Reg can potentially be interpretable to human since the centroids essentially

represent a cluster of the data.

At the test time, the SRNN-Reg operates the same as a nearest neighbor model

except that the centroids represent the dataset [55].

Regression is one of the fundamental tasks in the literature of machine learning.

A regression task consists of learning the relation between samples of the input

space and output space. Specifically, the function that maps inputs (independent

variable X) to the output (dependent variable Y ) f : X → Y . Author in [75]

applied least squares in regression for the first time. Afterwards Gauss [48] devel-

oped and published the theory for least squares in 1821. Regression is a supervised

learning task where Y is a continuous vector (Y ∈ Rd). This is known as multi-

response regression. Regression has been the workhorse of various fields [113] and

various regression models have been improved and expanded fundamentally over

the past few decades [55]. This expansion has been so enormous such that listing

all such models and their relationships is a difficult task and is out of the scope

of this chapter. However, a brief review of the recent models is presented in this

chapter. A key objective function for regression is least squares.

||Ŷ − Y ||2 (4.1)

Where, Ŷ is the prediction. A least square error can be seen an unbiased linear

model of the minimum variance of underlying data under some assumptions. There

are six assumptions that has to be satisfied based on Gauss-Markov Theorem [48].

Ordinary least squares might fail to properly predict outcomes if it is applied

to certain areas or the assumptions are not true. Therefore, it is important to

understand the assumptions and apply the proper changes to the objective function

of (4.1) and modify the model [113]. Such changes can be imposing regularizing

terms or constraints over the objective function. In the literature, the researchers

have extensively dealt with some of the well-known concerns that might violate
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the assumptions, such as Ridge [60, 59], Lasso [118], Elastic Net [134], trees [97],

forest [20], boosting [22] and so on.

Various works have considered applying the decision trees to the multi-response

regression [21, 33]. In [21, 96], authors considered training of a decision tree for

each individual output response. However, such approach constructs a large model

specially if the number of output responses are high. Another approach [33] consists

of constructing a single decision tree for a all the output responses. In other words,

this model predicts all the output values simultaneously through a single decision

tree. However, a model for all the outputs might not be sufficient [69].

Authors in [69] have explored and compared two approaches for dealing with

multi-response regression problem by comparing learning a model for each output

separately (i.e., multiple regression trees) and learning one model for all outputs

simultaneously (i.e., a single multi-target regression tree). In order to improve

predictive performance, [70] has also considered two ensemble learning techniques,

namely, bagging [19, 78] and random forests [20] for regression trees and multi-

target regression trees.

In the context of regression trees, various approaches of inducing a tree are

presented in the literature. Most decision tree induction methods are concentrated

on the splitting criterion used at the growing phase of the tree [61, 76].

Several famous regression models are presented bellow.

The most well-known regression model is a linear regression. Linear regression

is a linear approach that defines the relationship between a multivariate input and

a scalar output response to be linear. The simplest version of linear regression

consists of one scalar variable and it is called simple linear regression. For more

than one input variable, the model is known as multiple linear regression [41].

Another version of linear regression is called multivariate linear regression, where

multiple output responses are predicted, rather than a single scalar variable [102].

In linear regression, the function that defines the relation between the inputs and

the outputs is a linear predictor functions and its parameters are estimated from

the data. Such functions are called linear models [107].

Another related regression model to the linear regression is Ridge regression.
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The Ridge regression is essentially the same as linear regression where the inde-

pendent variables are assumed to be highly correlated [57]. It has uses in the fields

including econometrics, chemistry, and engineering [53, 125]. The theory was first

introduced in [131, 118].

Other well-known regression models consist of bagging, boosting, random forest

[29], oblique trees [87, 91, 56], and regression SVM [40].

A related topic to the problem of this chapter is nearest neighbor regression.

Nearest neighbor regression and local estimators are well-established methods in

the literature of ordinary univariate location estimators ([10, 111, 120]. However,

as per our extensive search, no prototype nearest neighbor regression was found

and this chapter is the first to propose such model.

Although that there is extensive research on the regression, nearest neighbor,

and prototype nearest neighbor (for classification [73, 126, 133]) but there has

been no research on optimization and construction of regression synthetic reduced

nearest neighbor.

This chapter proposes the first regression synthetic reduced nearest neighbor.

In this chapter, a novel initialization (that by itself is competitive to other existing

regression models) is proposed. For optimization of the model, an expectation

maximization algorithm is proposed. The proposed algorithm directly minimizes

the least squares error of the model. The proposed optimization has a provable

convergence and monotonically decreases the loss function. Therefore, the algo-

rithm has a convergence guarantee on minimizing the loss function and achieving

a local optimum in the sense that no more iterations can decrease the error. It

is also worth mentioning that the algorithm does not cycle. The proposed op-

timization algorithm consists of two steps and is inspired by K-means algorithm

[81]. First step is the assignment step. The assignment step is composed of finding

samples assignments and optimum output response of the centroid. Second step

is the update step where the centroid is optimized such that the loss function is

minimized. The centroid step is affected by all the samples and we will show that

this update step is a kind of NP-hard weighted binary classification problem. The

update step is solved through a surrogate objective function that is similar to ob-
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jective function of SVM. It is shown that the algorithm is efficient because of its

linear computational complexity. Finally, the model is tested on various datasets

with various sizes and dimensionality. It is shown that SRNN-Reg is capable of

competing and performing better than other similar regression models.

4.2 Proposed Method

4.2.1 Preliminaries

Assume a dataset consisting of tuples (xi, yi) where x, y and i represent input

features, output responses and index number, respectively. Each tuple represent

a data xi and its corresponding output response yi. Here, xi ∈ R
D and yi ∈ R

d.

The Regression Synthetic Reduced Nearest Neighbor (SRNN-Reg) consists of K

tuples of synthetically produced centroids/prototypes (cj , ŷj) where c, ŷj and j

represent the centroid’s point in the input space, output prediction and index. At

the inference time, the SRNN-Reg operates like a nearest neighbor model where

the centroids are used as the samples. The problem of training SRNN-Reg is as

follows:

min
{(cj ,ŷj)}K1

N
∑

i=1

||yi − ŷj∗i ||
2

s.t j∗i = argmin
{j}K

1

d(xi − cj)

(4.2)

where d(.) is a distance metric. Through this chapter we use the l-2 norm as the

distance metric:

d(xi − cj) =
√

||xi − cj ||2 (4.3)

The prediction of the model consists of the output prediction of closest centroid

to the input sample. We define SRNN-Reg as follows:

NN(x) =

K
∑

j=1

yjI(x ∈ Rj) (4.4)

where, NN(.) represents a nearest neighbor function of the K centroids. I(.) is

an indicator function that produces 1 if the input x is in the region of Rj . Similar
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notation is used in [55]. Rj represents the region where the closest centroid to the

points in that region is cj .

4.2.2 Initialization

Every numerical optimization algorithm needs an initialization [90]. Here, we

propose a novel initialization for the regression synthetic reduced nearest neighbor.

Previously, in the literature, the initialization of SRNN models consisted of learning

a K-means model for each class of the data. For example, in case of M classes and

K centroids, K
M

centroids are learned for each class as initialization of the SRNN

[73, 126, 133, 115]. However, such approach is not applicable to the regression.

This initialization also has close ties with naive Bayes and density estimation [109].

Here, we expand this initialization to the case of SRNN-Reg.

Intuitively, the output responses can consist of several modalities. In other

words, it is possible that the output responses are generated from several distri-

butions. The clusters of such distributions can be approximated by running a

K-means over the output space (M centroids). Assume that Sm represents the set

of samples assigned to each output cluster. Next step consists of learning K|Sm|
N

centroids over the input features of the Sm for all M clusters. In other words,

we learn centroids over the input features of each output cluster relative to the

population of that cluster. The found centroids at the second step are used as

initialization for the SRNN-Reg. At this step, ŷj is found using the following

formula:

ŷj = mean(yi ∈ Sj) (4.5)

where Sj represents the set of samples that are assigned to jth centroid. Sj es-

sentially consists of samples where jth centroid is the closest centroid to them.

mean(.) represents the average of its input set. Note that Sj ∈ Rj .

4.2.3 Consistency

Here we discuss the consistency of the SRNN-Reg. We show that SRNN-Reg

is nonparametric and consistent under mild assumptions for continuous features.
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Assume an independent identically distributed (iid) dataset where it is being gener-

ated from f(x). f(x) represents the true function for relation between the inputs

and outputs. Also assume that f(x) is a piecewise constant function. Over a

set of N observations, consistency of a nonparametric estimator f̂N (x) (such as

SRNN-Reg) is shown using the following formula [95]:

Pr( lim
N→∞

∫

x

(f̂N(x)− f(x))2dx = 0) = 1 (4.6)

The proof of consistency of SRNN-Reg is similar to proof of consistency for regres-

sion trees [21] and density estimators in [98].

Theorem 5 (Consistency of SRNN-Reg). The estimator defined in (4.4) satisfies

equation (4.6).

Proof. Assume B and d1 denote the collection of all sets t ⊂ X and a fixed positive

integer, respectively. Assume that B describes the sets that are the solution to a

system of d1 inequalities bTx ≤ c where b ∈ R
d and c ∈ R. Every region in the

SRNN-Reg in formula (4.4) can be seen as a solution of a system of d1 inequalities

of the form bTx ≤ c where b is a hot-one-vector (only one element of b is 1 and the

rest are 0). Therefore, SRNN −Reg ⊂ B.

Assume a random point Xn from function f on X , (n ≥ 1). F̂N represents the

empirical function learned by SRNN-Reg over Xn For N ≥ 1, 1 ≤ n ≤ N , and

defined on a set t ⊂ X by

F̂N (t) =
1

N

N
∑

n=1

ynI(Xn ∈ t) = mean(yn ∈ Rt) =

∫

t

f̂N(x)dx (4.7)

where yn = f(xn) and f̂(x) is the estimator presented in (4.4). Using a general

version of Glivenko-Cantelli theorem [122]

Pr( lim
N→∞

sup
t∈B

|F̂N(t)−

∫

t

f(x)dx| = 0) = 1 (4.8)

By replacing equation (4.7) in (4.8), we have

Pr( lim
N→∞

sup
t∈B

|

∫

t

f̂N(x)dx−

∫

t

f(x)dx| = 0) = 1 (4.9)
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then:

Pr( lim
N→∞

sup
t∈B

∫

t

|f̂N(x)− f(x)|dx ≥ 0) = 1 (4.10)

Further, by assuming that the region of t leans toward 0 asN → ∞ (Pr( lim
N→∞

∫

t
dx =

0) = 1). Rest of the steps will follow similar to theorem 1 in [98] and we get

Pr( lim
N→∞

∫

x

(f̂N(x)− f(x))2dx = 0) = 1 (4.11)

Please note that the steps are similarly done in [98] except the step of (4.7)

which is different.

The consistency shows that as the number of samples go to infinity and as

K
|Sj |

→ 0, then the SRNN-Reg is consistent. This is provable thanks to the assump-

tion that the true function that relates the inputs to the outputs is a piecewise

constant function. This essentially means that the SRNN itself is consistent also

for classification tasks.

4.2.4 The Expectation Maximization of SRNN-Reg

The problem (4.2) represents the training problem of SRNN-Reg. SRNN gen-

erally is known as prototype nearest neighbor in other papers of literature and

centroids are also called prototypes. Problem (4.2) resembles K-means [81] prob-

lem except that the loss function is ||xi − cj ||. The expectation maximization in

this chapter follows same approach as to K-means algorithm and the approach

in [115]. The optimization consists of two steps, assignment step and the update

step.

Assignment Step

The assignment step consists of calculating the assignment of the samples to

each centroid and finding the optimum output prediction of each centroid. The
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problem of this step is as follows:

min
{ŷj}K1

N
∑

i=1

||yi − ŷj
∗||2.

s.t j∗i = argmin
{j}K

1

d(xi − cj).

(4.12)

Note that problem (4.12) only tends to optimize over ŷj for j = 1...K. Using sets

Sj , problem (4.12) can be simplified to:

min
{ŷj}K1

K
∑

j=1

N
∑

{i|(xi,yi)∈Sj}

||yi − ŷj||
2. (4.13)

The problem (4.13) can be separated over each centroid and its corresponding set.

This can be done since the regions are distinct and samples can not be shared

among the regions. The prediction for each region is the label of jth centroid ŷj

(the centroid that represents the region). As a result, the problem of optimizing

label for each region is

min
ŷj

N
∑

{i|(xi,yi)∈Sj}

||yi − ŷj||
2. (4.14)

whose minimum is presented in formula (4.5). In other words, the optimum of ŷj

is the mean of response of samples in the Rj .

As a result, in the assignment step, the Sj and ŷj have to be calculated for all

the samples.

Update Step

The update step consists of updating the position of centroids such that the

objective function in (4.2) is minimized [81]. At this step the output prediction of

the centroids are kept constant. The update step is affected by all the samples in

the dataset because by changing the position of centroid, the assignments of the

samples can get changed and as a result the prediction for each train sample gets

changed. Further it will be shown that finding optimum of the problem in this

step is NP-hard. Therefore, the centroid problem is approximated through a novel

surrogate objective function.
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Each centroid is optimized individually [115]. The optimization problem for kth

centroid consists of moving the kth centroid such that the samples’ assignment are

changed in favor of decreasing the objective function (4.2). The centroid problem

is

min
ck

N
∑

i=1

||yi − ŷj
∗||2.

s.t j∗i = argmin
{j}K

1

d(xi − cj).

(4.15)

Note that the optimization is only over ck. We rewrite the problem (4.15) over the

assignment of a sample to kth centroid or to the rest of centroids. For simplicity

we introduce the notation rij = d(xi − cj). The problem is

min
cj

N
∑

i=1

||yi − ŷk||
2U(rij∗i − rik) + ||yi − ŷj∗i ||

2U(rik − rij∗i ).

s.t j∗i = argmin
{j}K

1
,j 6=k

d(xi − cj).

(4.16)

In problem (4.16), U(.) is a step function where it outputs 1 if the input is larger

than 0 and otherwise it will produce 0. Note that the input arguments of the

step functions are negative of each other. This means a sample has to either get

assigned to the kth centroid or the rest of centroids. The sample can not get

assigned to both terms of (4.16). The assignment of ith sample to each term will

produce a continuous error. This essentially means that the problem (4.16) is a

weighted binary classification problem. The problem (4.16) encourages the sample

to get assigned to the side that produces lower error. For simplicity we introduce

the sets Sc and Sc′
k
. The Sck represents the set of samples that produce lower

error if assigned to the ck centroid and Sc′
k
represents the set of other samples. let

ti = abs(||yi − ŷk||
2 − ||yi − ŷj∗i ||

2) where abs(.) returns the absolute value of its

input. The problem of (4.16) is equivalent to

min
cj

∑

(xi,yi)∈Sc

tiU(rij∗i − rik) +
∑

(xi,yi)∈Sc′
k

tiU(rik − rij∗i ) (4.17)

The problem (4.17) is a NP-hard problem [89]. Therefore, inspired by the SVM, we

approximate the solution to problem (4.17) using the following surrogate objective
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function

c∗k(µ) = argmin
ck

∑

xi∈Sc

tirik +
∑

xi∈Sc′
k

tirelu(µrij∗ − rik) (4.18)

where µ is a penalty coefficient. Intuitively, the surrogate objective function en-

courages the kth centroid to stay close to samples of Sc while staying away from

samples of Sc′
k
. µ is increased from 0 to 1 and along this path, the c∗k(µ) that

produces the smallest error for (4.17) is selected. This surrogate is a modified

version of surrogate objective function in [115]. The µ acts similar to slack vari-

ables in a SVM problem. The objective function of problem (4.18) is a continuous

function; thus, a local optimum of the problem can be found using gradient-based

algorithms.

Finally, the algorithm iterates over both assignment step and update step until

no further improvement over the original objective function can be made. At this

point the algorithm stops and it does not cycle.

4.2.5 Relation to EM algorithm

The proposed algorithm is originally inspired by the EM algorithm used for K-

means. The assignment step consists of finding the samples assigned to each cen-

troid and finding the optimal output prediction of each centroid. The assignment

of samples is the same as calculating the prior probabilities in an EM algorithm.

Finding optimum output prediction of each centroid can also be considered as a

part of maximization step.

In the update step, the centroids have to be updated. At this step, the out-

come of assigning each sample to each centroid is evaluated (||yi − yj||
2K

j=1∀i =

1, 2, ..., N). This evaluation is equivalent to calculating the posterior probabilities.

Then the centroid problem is approximated using these outcomes which is the

maximization step.
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4.2.6 Relation of The Centroid Problem to SVM

The problem of finding the best centroid that is closer to samples of Sc than

any other centroid can be cast as a feasibility problem.

find ck

s.t rik < rij∗i ∀(xi, yi) ∈ Sc

rik > rij∗i ∀(xi, yi) ∈ Sc′
k

(4.19)

However, this feasibility problem is NP-hard since the the second set of constraints

are concave [103]. These constraints make the problem different from similar SVM

problems where the constraints are convex and global solution can be found in

efficient time. Therefore, we approximated the solution through a novel surrogate

objective function.

4.2.7 Properties of the Algorithm

computational complexity Optimizing the centroid problem takes O(ND)

since it uses a gradient based algorithm for solving the surrogate objective. All

the K centroids have to optimized at each iteration. Therefore, the computational

complexity of the algorithm is O(αNDK) where α is the number of iterations.

Convergence The convergence to a local optimum is similar to that of the K-

means algorithm [81, 115]. At each iteration, the error decreases and the objective

function is bounded by 0 from bellow. Further, the different combination of as-

signment of the samples to the centroids is finite. Therefore, the algorithm stops

after a finite number of iterations.

4.3 Experimental Results

In this section, the experimental results are presented to demonstrate the mer-

its of proposed proposed algorithm. Various datasets are downloaded and used

for evaluation from UCI repository [38]. We partitioned the datasets using the

following setups: 1- if the dataset contained a separate test set, the dataset was
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used as provided in the repository. In case cross-validation was needed (for specific

models) and validation set was not provided then the we partitioned the trainset

to 80% train and 20% validation sets. 2- if the test set was not provided we

partitioned the dataset to 80% train and 20% test set. For models that needed

validationset, we divided the trainset to 80% train and 20% validation set. 3- if

all sets were provided by the repository, then the sets were used as provided. The

setup for SRNN-Reg is as follows: at the initialization phase, we used K = 4 for

the output clusters for slice localization data and for the rest of datasets K = 2

was used for the output clusters. The number of input centroids used for each

output cluster were proportional to the population of each cluster. The centroid

problem was optimized using batch stochastic gradient descent. We used various

setups for each dataset to achieve the smallest possible train error.

Various models are used for comparison with SRNN-Reg. The basis of com-

parison is based on the number of base models used in each model. All the models

comparable to the SRNN-Reg can be seen as a kind of ensemble model that con-

sists of several base models. In case of forest and boosting, each tree is a base

model. For prototype models such as SRNN-Reg and K-means, each centroid is

a base model. For Radial Basis Function (RBF) models, each RBF is considered

as a base model. We also compared our model with linear regression and Ridge

regression. The two models are presented with straight lines. Figures 4.1, 4.2,

4.3, 4.4, and 4.5 present performance of each model over various datasets based

on mean squared error versus number of base models. SRNN-Reg (SRNN) and

its initialization (SRNN0) are compared with Random Forest (RF), K-means, Re-

gression Boosting (regboost), bagging, Radial Basis Function+ linear regression

(RBF+lin-reg), linear regression (lin-reg), and ridge regression (ridgeCV). For the

RF, each tree was trained using 70% of the trainset and 0.7 of features were ran-

domly selected and used at the split nodes. For the K-means, a K-means model

with desired number of centroids were trained over trainset and the assignment

step of SRNN-Reg was applied to the model. For the regboost, we used trees of

depth 3 (MAX DEPTH=3). For bagging, similar setup to RF was used except that

no feature randomization is applied. RBF+lin-reg consists of first training RBFs
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Figure 4.1: Horizontal axis represents the number of base models(e.g., centroids,
RBFs, trees and etc.). The vertical axis represents the mean squared error. SRNN-
Reg is compared with various similar models on the dataset of slice localization
data.
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Figure 4.2: Horizontal axis represents the number of base models(e.g., centroids,
RBFs, trees and etc.). The vertical axis represents the mean squared error. SRNN-
Reg is compared with various similar models on the dataset of CPU.
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Figure 4.3: Horizontal axis represents the number of base models(e.g., centroids,
RBFs, trees and etc.). The vertical axis represents the mean squared error. SRNN-
Reg is compared with various similar models on the dataset of Airfoil.
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Figure 4.4: Horizontal axis represents the number of base models(e.g., centroids,
RBFs, trees and etc.). The vertical axis represents the mean squared error. SRNN-
Reg is compared with various similar models on the dataset of mg.
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Figure 4.5: Horizontal axis represents the number of base models(e.g., centroids,
RBFs, trees and etc.). The vertical axis represents the mean squared error. SRNN-
Reg is compared with various similar models on the dataset of eunite.
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(same number of RBFs as the centroids in other models) and the training linear

regression over the outputs of RBFs. The width of RBFs were selected by cross-

validation. The penalty coefficient of ridgeCV was selected by cross-validation.

As can be observed from figures 4.1, 4.2, 4.3, 4.4, and 4.5, the SRNN-Reg was

able to achieve better or comparable train and test errors to other models.

4.4 Summary

In this chapter, as per our search, we have proposed the first regression syn-

thetic reduced nearest neighbor. We also proposed a novel EM-based algorithm for

optimizing the model. A new initialization technique was introduced in this chap-

ter. The consistency of the algorithm was proved and its properties were explored.

We showed that the algorithm is computationally efficient and can converge to

a local optimum in the sense than no move can improve the train error of the

model any further. The approach is inspired by the same type of EM algorithm

used for K-means. The update step was an NP-hard weighted binary classification

problem. The optimum of such problems are typically approximated using a sur-

rogate objective function, such as hinge loss in SVM for 0-1 binary classification

problem. Therefore, we approximated the solution to the update step through a

novel surrogate objective function. Further, we analyzed the relation of the update

step with SVM. Experimentally, we showed that the SRNN-Reg performs better

or competitive to the other similar models in the literature, such as ensembles and

centroid based models.



Chapter 5

Conclusion

In this dissertation, we proposed a novel expectation maximization algorithm

that is capable of optimizing piecewise-constant models and their applications. We

showed that the algorithm is computationally efficient in all cases studied in this

dissertation. Additionally, the proposed algorithm achieves a local optimum of

the original objective function. Compared to other algorithms that are applied to

the models studied here, the algorithm is interpretable, easy to understand, and

does not act like a black box optimizer (like optimization of neural nets through

gradient-based optimizers). The algorithm mostly acts like the EM algorithm of the

K-means that iterates over two steps: 1- the assignment where samples are assigned

to each partition and label of each partition is determined by the set of samples

in the partition. 2- the expectation step where the boundaries of the partitions

are modified through some surrogate objective function. Experimentally, all the

studied models have shown promising accuracies and performances when compared

with the other similar state-of-the-art algorithms. The models presented in this

dissertation can have direct applications in various studies, such as epidemiological

and medical studies. Finally, the studied algorithms filled several gaps in the

literature that were not studied before this dissertation, such as the regression

SRNN which never existed, adversarial attack based on SRNN which is the first

multi-class adversarial label flipping attack, and Robust SRNN which is the first

defense technique against multi-class attack.

In the second chapter, the first EM-based optimization was proposed for the

101
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SRNN. Typically, other existing algorithms for optimizing SRNN rely on smoothen-

ing the inference of the SRNN model and apply a gradient based optimization.

However, such approaches are sub-optimal, black-box and do not guarantee min-

imization of the original algorithm. The proposed algorithm in second chapter

could directly minimize the 0-1 loss of the objective function and had convergence

guarantee.

In the third chapter, the first multi-class adversarial label-poisoning attack

based on SRNN was proposed. As per our knowledge, this is the first multi-class

adversarial label-poisoning. Other existing attacks are only applicable to binary

classification tasks. Further, a novel robust SRNN model based on EM-algorithm

was proposed that was capable of finding malicious samples with a high precision.

In the fourth chapter, the first synthetic reduced nearest neighbor for task of

regression was proposed. Its properties were studied and it was shown that the

model was consistent. The relation between the update step and SVM-like problem

was explored. Finally, it was shown that the SRNN-Reg was able to achieve similar

or better than the other similar state-of-the-art regression models.
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with gaussian mixture models. In Computer Vision Winter Workshop, pages
25–32, 2008.

[73] Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal.
Stochastic neighbor compression. In International Conference on Machine
Learning, pages 622–630, 2014.



109

[74] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision
trees is np-complete. Information processing letters, 5(1):15–17, 1976.

[75] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des or-
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Jonathan Yedidia. The boundary forest algorithm for online supervised and
unsupervised learning. In Twenty-Ninth AAAI Conference on Artificial In-
telligence, 2015.

[84] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal
training-set attacks on machine learners. In AAAI, pages 2871–2877, 2015.

[85] Todd K Moon. The expectation-maximization algorithm. IEEE Signal pro-
cessing magazine, 13(6):47–60, 1996.



110

[86] Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand Raghunathan, and
Niraj K Jha. Systematic poisoning attacks on and defenses for machine
learning in healthcare. IEEE journal of biomedical and health informatics,
19(6):1893–1905, 2014.

[87] Sreerama K Murthy, Simon Kasif, and Steven Salzberg. A system for in-
duction of oblique decision trees. Journal of artificial intelligence research,
2:1–32, 1994.

[88] Blaine Nelson and Anthony D Joseph. Bounding an attacks complexity for a
simple learning model. In Proc. of the First Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques (SysML), Saint-Malo,
France, page 111, 2006.

[89] Tan Nguyen and Scott Sanner. Algorithms for direct 0–1 loss optimization
in binary classification. In International Conference on Machine Learning,
pages 1085–1093, 2013.

[90] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Sci-
ence & Business Media, 2006.

[91] Mohammad Norouzi, Maxwell D Collins, David J Fleet, and Pushmeet Kohli.
Co2 forest: Improved random forest by continuous optimization of oblique
splits. arXiv preprint arXiv:1506.06155, 2015.

[92] Stephen M Omohundro. Five balltree construction algorithms. International
Computer Science Institute Berkeley, 1989.

[93] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Well-
man. Sok: Security and privacy in machine learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 399–414. IEEE, 2018.

[94] Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadrati-
cally constrained quadratic programming. arXiv preprint arXiv:1703.07870,
2017.

[95] Emanuel Parzen. On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3):1065–1076, 1962.

[96] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[97] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[98] Parikshit Ram and Alexander G Gray. Density estimation trees. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 627–635. ACM, 2011.



111
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