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Representations of (Degenerate) Affine and Double Affine Hecke Algebras of Type C

Abstract

We compute the images of polynomial GLy-modules and the coordinate algebra under the
Etingof-Freund-Ma functor [5]. These yield Y-semisimple representations of degenerate affine and
double affine Hecke algebra of type C. We give a combinatorial description of the image in terms
of standard tableaux on a collection of skew shapes and analyze weights of the image in terms of
contents. For the nondegenerate case, we consider Jordan-Ma functor [8]. We compute the images
of finite dimensional irreducible U,(gly)-modules and the quantum coordinate algebra under the
Jordan-Ma functor, which are also )-semisimple representations of affine and double affine Hecke

algebras respectively.
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CHAPTER 1

Introduction

Schur-Weyl duality connects polynomial representations of GLy = G'Ly(C) and representations
of the symmetric group S,. Let V = CV denote the vector representation of GLy. Then V®" has
a GLy-action. Let S,, be the symmetric group on n indices. The tensor V®" also has a natural
right Sp-action which commutes with the left GLx action. By Schur-Weyl duality, we have the

decomposition

ver= @ VRS,
[A=n,0(N)<N

where n < N, A is a partition of n with at most N rows, Sy runs through all irreducible represen-
tations S,, and V? is the irreducible GL y-module with highest weight X\. Moreover, the actions of
Jucys-Murphy elements are diagonalizable. In [1], Arakawa and Suzuki constructed a functor from
the category of U(gly)-modules to the category of representations of the degenerate affine Hecke
algebra of type A,_1. In [2], Calaque, Enriquez and Etingof generalized this functor to the category
of representations of degenerate double affine Hecke algebra of type A,_1. Etingof, Freund and
Ma [5] extended the construction to the category of representations of degenerate affine and double
affine Hecke algebra of type BC), by considering the classical symmetric pair (gly, gl, X gly_,). As
a quantization of the functors by Etingof-Freund-Ma, Jordan and Ma in [8] constructed functors
from the category of U,(gly)-modules to the category of representations of affine Hecke algebra of
type Cp, and from the category of quantum D-modules to the category of representations of the
double affine Hecke algebra of type CVC,. The construction in [8] used the theory of quantum
symmetric pair (Uy(gly), By) where B, is a coideal subalgebra. This is a quantum analogue of the
classical symmetric pair.

On the other hand, in [18], Reeder did the classification of irreducible representations of affine
Hecke algebra of type Cy with equal parameters. In [9], Kato indexed and analyzed the weights

of representations of affine Hecke algebra of type Cy,. In [12], Ma analyzed the image of principal



series modules under the Etingof-Freund-Ma functor. Moreover, the combinatorial description of
Young diagrams is used to describe irreducible representations of the symmetric group and Hecke
algebra of type A with standard tableaux on the Young diagram indexing the bases. Similarly,
the skew shape and standard tableaux on it describes certain irreducible representations of the
affine Hecke algebra of type A. Moreover, in [19], Suzuki and Vazirani introduced a description
of some irreducible representations of the double affine Hecke algebra of type A by periodic skew
Young diagrams and periodic standard tableaux on it. In [16], Ram introduced the chambers and
local regions and described some representations of the affine Hecke algebra. In [3], Daugherty
introduced the combinatorial description of representations of degenerate extended two-boundary
Hecke algebra. In [4], Daugherty and Ram gave a Schur-Weyl type duality approach to the affine
Hecke algebra of type C,,.

This paper focuses on the representations of (degenerate) affine and double affine Hecke algebras
of type C,, under the Schur-Weyl type duality and explores the combinatorial descriptions. In the
second chapter, we talk about representations of degenerate affine Hecke algebras of type C), and
give a combinatorial description which is similar to the combinatorial description in [3] and [4] but
is via a different structure, the Etingof-Freund-Ma functor. In the third chapter, we consider the
image of coordinate algebra and its combinatorial description under Etingof-Freund-Ma functor,
which is a representation of degenerate double affine Hecke algebra of type C),. In the fourth chap-
ter, we consider the quantum case: images under Jordan-Ma functor, which are representations of

affine and double affine Hecke algebras of type C,.



CHAPTER 2

Degenerate affine Hecke algebras of type C' and

Etingof-Freund-Ma functor

2.1. Definitions and notations

2.1.1. Root system of type C,. Let h* be a finite-dimensional real vector space with basis
{&li =1,--- ,n} and a positive definite symmetric bilinear form (-, -) such that (e;,€;) = d;;. Let

R, be an irreducible root system of type C,, with
R,={e+¢li,j=1,--- ,n}U{e —¢5li,j=1,--- ,nand i # j},
and the positive roots are
Ryt ={ei+eili,j=1,--- ,n}U{e —¢€)l <i<j<n}

V= . Let Q be the root lattice and @V be the coroot

For any root o € Ry, the coroot is «
(a, )

lattice. Let oy = ¢; — €541, for i =1,--- ,n — 1 and «a, = 2¢,. Then the collection of simple roots
are

I, ={ali=1,--- ,n}.

For each simple root «;, define the reflection s; := sq,,
Sai()\> =A- (/\a O‘;/)aiy
where A € h*. Then the finite Weyl group W of type C, is generated by the generators

S1,° " ySn—1,5n



with the relations

(2.1) s?=1, fori=1,---,n,

(2.2) 8iSi+18i = Si+18iSi+1, fori=1,--+ . n—1,
(2.3) Sn—15nSn—15n = SnSn—15nSn—1,

(2.4) sis; = s;j8i, for [i — j| > 1,

where the generator s, is also denoted by -, in some cases.

2.1.2. Affine Weyl group of type C,. For any ¢ € h*, where « = 1161+ - -+ 1p6, and 1 € Z,
let y* = ¢'' -y and the action of w € Wy by w.y* = y*®). Let W, = W x QV and the affine
Weyl group of type C), is generated by s1, -+, Sn—1, S, and Yii, fori=1,--- ,n with the following
additional relations to (2.1)-(2.4),

(2.5) 5;Y; =Yjs;, for j #i,i+ 1,

(2.6) YiY; =YY,

(2.7) 8;Yisi =Yy, fori=1,--- n—1,
(2.8) 80 Ynsn = Y, L.

2.1.3. Definition of degenerate affine Hecke algebra of type C,. Let k1 and ko be two
parameters. The trigonometric degenerate affine Hecke algebra H,,(k1, k2), which we denote also by
dAHA, is an algebra generated over C by s1,-- , Sn_1,Yn, where we take v, = sy, and y1, - , yn

with relations (2.1)-(2.6) and the following relations

(2.9) SiYi — Yit15; = K1, fori =1,--- ,n—1,

(2'10) YnYn + YnIn = K2.

2.1.4. Y-semisimple degenerate affine Hecke algebra representations. Now let define
what we mean by )-semisimple. Let } = Clyi, -+ ,yn] be the commutative subalgebra of the
degenerate affine Hecke algebra H,,(k1,k2). Let L be a representation of Hy(k1, k2). For a function

¢:{l,---,n} — C, let ¢; denote ((i) and ¢ = [(1,---,(y]. Define the simultaneous generalized
4



eigenspace as
L¥" ={v e L|(yi — () = 0 for some k> 0 and for all i = 1,--- ,n}.

Since the polynomial algebra ) is commutative, the restriction of L on ) decomposes to a sum of

simultaneous generalized eigenspace, i.e. L = @¢L{™". Similarly, define the simultaneous eigenspace
LC = {U -~ L|y21j = Civ for all 7 = 17. .. 7n}'

DEFINITION 2.1.1. If the restriction of L on Y decomposes to a sum of simultaneous eigenspaces,
i.e. L =®¢L¢, then call L is Y-semisimple. The function ¢ is called a weight and L¢ is the weight

space of weight (.

2.2. Etingof-Freund-Ma Functor

We recall the definition of the Etingof-Freund-Ma functor Fj,,, in [5]. Let N be a positive
number and V' be the vector representation of gly. Let p, g be positive integers such that N = p+gq.
Let t = gl, X gl, and ty be the subalgebra in t consisting of all the traceless elements in t. Let x is

a character defined on t as

S 0
(2.11) X =q-tr(S) —p-tr(T),
0 T
where S € gl, and T' € gl,. For a given p € C, define a functor F,; ,, from the category of gly-

modules to the category of representations of degenerate affine Hecke algebra H,(1,p — q — uN)
Fn,p,u(M) — (M ® V®n)t0,/‘7

where the (tg, p)-invariant corresponds A.v = px(A)v, for all A € t,.

Let M be the 0-th tensor factor. Let V; be the i-th tensor factor with V; = V being the vector
representation for ¢ = 1,--- ,n. In [8], the action of the degenerate affine Hecke algebra H,,(1,p—q—
1N is the quasi classical limit of the action of the affine Hecke algebra H,(q, ¢, q(p*q*T)) generated
by 11, ,Typ—1,T,, and Yli, e ,Yni. In the following figures, V; is the vector representation for

i=1,---,n. In [8], the action of T} for i = 1,--- ,n — 1 was defined by 7y v;,, o R;;y1, where the
5



flip operator 7y, v;,, : V; ® Viy1 — Vig1 @ V; is defined by v; ® vip1 = vi41 ® v; and R; ;41 is the

R matrix acting on V; ® Vi4; as in Figure 2.1. Let T; = s;¢"$#/2. Proposition 39 in [7] and section

M Vi Vi Viqa Va
M V1 V; Vq‘,+ 1 Vn

FiGURE 2.1. Actionof T;, ¢ =1,--- ;n— 1.

10.7 of [8] computed the action of s;, i.e. s; acts on F}, ;, (M) by exchanging the i-th and (i 4+ 1)-th
tensor factors.

The action of T,, was defined as the diagram in Figure 2.2, where the matrix Jy is a right-handed

M Vi Vs Vi
T, =
M Vi Vs Vi

FIGURE 2.2. Action of T;,

numerical solution of the reflection equation Ra;(Jy )1 Ri2(Jv)2 = (Jv)2Re1(Jy)1Ri2 in section 7
of [8]. Section 10.7 of [8] compute the quasi classical limit of 7},. Then ~, acts on F, (M) by
multiplying the n-th tensor factor by J = diag(l,, —1).
The action of Y; was define by Let Y; = e¥". By Proposition 10.13 in [8],

_ t n wg—p) N
(2.12) Y1 __Z(Es)()@(Ets)l"i_ﬁ"i_T_??

s,t

where E! is the N x N matrix with the (s,t) entry being 1 and other entries being 0 and (E?);
means E! acting on the i-th tensor factor. Let sj; denote the transposition (k,l) € S, and y, € W
denote the action multiplying the k-th factor by J. In [5], the action of y; is given by

¢ s p—q—puN 1 1
(2.13) =) (EDo® (B + —5——mn+ 3 > s+ 3 > sum,

2
s|t >1 1#1



where »° ., = >0 1 300 i1 2001 2 s—p1- In Section 2.5.3, we show that the computation via
(2.13) agrees with (2.12). By the relation yx = Sg_1yk—15k—1 — Sk—1, we compute the action of y

fork=1,---,n.
2.3. GLy-module

We consider images of polynomial GL y-modules under Etingof-Freund-Ma functor. Recall the
facts about polynomial G Ly-modules. Let M be a polynomial GLy-module and H C GLy be the

collection of invertible diagonal matrices. Let v € M satisfy

_ A AN
zov =z Vv,

for any x = diag(xy1, -+ ,xn) € H. Then v is a weight vector of H-weight A = (A1, -+, An). The
subspace

M(A):{UEM|x.v:xi‘1---x?‘VN1},x€H}

is called the weight space of weight A. Then the polynomial GLy-module M is a direct sum of

weight spaces
M= MWN).
A

Let B C G Ly be the collection of all invertible upper triangular matrices. Let v € M be a generator
of M. If v satisfies z.v = ¢(x)v for some function ¢(z) and any = € B, then v is called a highest
weight vector. If M has the unique highest weight vector up to a scalar of the highest weight
€, then M is a highest weight module with the highest weight ¢ and let us denote M by V&, A
GLy-module M is irreducible if and only if M is a highest weight GL x-module. Furthermore, two
highest weight G Lxn-modules are isomorphic if and only if they have the same highest weight. Let
£ = Zf\il &e; satisfying & > & > - > €&y and § € Z for i = 1,--- , N. Then £ is an integral
dominant weight of GLy. Let PT denote the collection of all integral dominant weights and P;O
denote the collection of all integral dominant weights £ = Zf\i 1 &6 with § €N, fori =1,--- | N.
Then the highest weight modules with highest weights £ € Pgo are all the irreducible polynomial
G Ly-modules. Let M be a rational GLy-module. Then M = det™ @ N for some m € Z and
a polynomial GLy-module N. Then the highest weight modules with integral dominant highest

weights are all the irreducible rational G L y-modules.
7



The collection P;O has a one-to-one correspondence with the collection of partitions with at most
N parts and thus the one-to-one correspondence with Young diagrams with at most N rows. For
the ease of writing, for each irreducible polynomial GL y-module V¢ with highest weight & € P§07
let us denote the corresponding partition (£1,---,&y) and Young diagram also by £. Moreover,
define |¢] = 32N | ¢ for € € PT.

For a highest weight GLx-module V¢, ¢ € P;O, with weight space decomposition V¢ = @ V&()\),

the character of V¢

Xve = Y dim(VE))ay" - ayy
A

is the Schur polynomial s¢(x1,--- ,2n) of shape &.

By Pieri’s rule,
8561 = Z Sy,
12

where v € P;O runs through all the shapes obtained by adding a cell to some row of £&. Observe
that e; = s¢, where £ = (1), is the character of the vector representation V' of GLy. This fact indi-
cates how the tensor product of an irreducible polynomial GLy-module and vector representation

decomposes into a sum of irreducible polynomial G L y-modules.

2.4. Invariant space

In this section, we compute the underlying vector space F, ,, ,(V¢) = (M @ V") by finding

a special basis of it and then index the basis elements by a collection of standard tableaux.

2.4.1. Definition of the invariant space.

Let M be a GLy-module, then M has a gly-module structure. For any X € gly and v € M,

d
X = o7 (e v)—0.

Recall the notations, K = GL, x GLg, Lie(K) =t and ty C t which is the collection of traceless

matrices in t.

PROPOSITION 2.4.1. The underlying vector space is invariant under tensoring powers of the

determinant representation, i.e. (det™ @ M @ VE)or = (M @ VOt for any m € C.
8



ProOF. Take any element from (det™ @ M ® V") we can denote it by 1 ® w, where
w e M ® Ve, According to the definition of invariant space
(det™ @ M @ V&™)to:#

={l®w|A.(1 ®w)=pux(A)(1®w), for any A € t}.

Compute the action of A € tg

= —(det™(e!))1—o.1

_ %(em-tr(tA))tZO'l =0,

since tr(A) = 0. Then it follows

Alow)=(Al)ow+1® (Aw)

=1® (Aw).
Hence

(det™ @ M @ V&™)to#
={1®w|l® (Aw) = pux(A)(L®@w), for any A € t5}
=2{w|Aw = px(A)w, for any A € to}

=(M @ VEm)or,

REMARK 2.4.2. For an irreducible rational GLy-module M, we write M = det™ ® V¢ for some
integer m and some highest weight module V& with the highest weight & € P;O such that £y = 0.
Then (M @ VEM)loh = (V& @ Vel So it is enough to consider highest weight module V& with

highest weight & € Pgo such that En = 0, which is associated to partitions & of length at most N — 1.
9



2.4.2. Computation of the (ty, ) invariant space.

PROPOSITION 2.4.3. The (to, 1) invariant space Fy,p,(VS) = (V& @ VE) o for € C and
¢ e P,
(Ve @ VEmMyor = Homy (1, Resf;Nvg ® Ve

~Homy(1y, Resf“NV5 ® Ve,

where 1g is a one-dimensional t-module and

&l +n €l +n

Jtrgy, + (—pp + N )trgl,-

1p = (ng +
PROOF. The (to, ) invariant space F,, ,(V¢) = (V¢ @ V&) s defined to be the subspace
{v e VER V" Av = ux(A)v for any A € to}.

To compute this subspace, we lift it to a t-invariant space. Let 1, the one-dimensional t-module

such that
(V€ ® V®n)to,u
:(Resf‘[”(‘/E @ VE) @ 1)t

Let t = t9 @ C{In}. For any P € t, there is a unique decomposition P = A + B such that A € t

and B = bl for some b € C. So the t-invariant corresponds to
{v e VE@ VO Py + 1,(P)v = 0}

. Then Pv + 14(P)v = Av+ Bv + 14(P)v = 0. And B = bly acts by the scalar

tr(B)

b(lg] +n) = (Il +n)—

10




. Also, we have x(P) = x(A) + x(B) = x(A4), since x(B) = ¢bp — pbg = 0. So
{v € VER VE"| Py + 1,(P)v = 0}

={v e VEQ V" Av = px(A)v}.

For any P € t with

S 0
0o T
where S € gl,, and T' € gl , we have
1,(P) = —x(4) - S (B)
€] +n
— P)——>——tr(P
px(P) N r(P)
& +n & +n
= (g~ L (9) 4 up — Ly ()
Hence it follows that the one dimensional t-module
€] +n €l +n

1o = (g + Jtrg, + (—up + N )trgr,-

0

REMARK 2.4.4. The (t,1p) invariant space above is equivalent to the following K invariant
space.
(VE @ VO or 2 Homy (1, Rest¥ VE @ V)
=Hom(1y, Resf[NVE ® Ve

>~ Hom (det® X det®, V¢ R VE),

where a = pq + K'% and b= —up + K‘%
2.4.3. A basis of invariant space and standard tableaux.
The characters of irreducible polynomial GLy-modules are Schur functions. So we could consider

the restriction of VE®@V®” by exploring Schur functions. Recall the following fact of Schur functions.
11



PROPOSITION 2.4.5. Let s, (x1,- -+ ,Zp, 2p+1,- - ,2N) be the character of V¥, then

SI/('rl’ oy Tpy Bptly 7ZN) = Eczl,wstl (xly e axp)swg(zp+1a e 7ZN)7

where w1 s a highest weight of GL, and w2 is a highest weight of GLg, ¢ is the Littlewood-

v
w1,w2

Richardson coefficient.

The Littlewood-Richardson coefficient ¢,

w1 ,w2

is the multiplicity of the K-module V¥ X V*2 in
the restriction of GLx-module V¥. Let V& @ V& = @, m, V" as GLy-modules, where v € Pgo

and m,, € N is the multiplicity of V¥ in V¢. Then the (to, ) invariant space

(2.14) Frpu(VE) = Homp(det® ® det®, ResS N VE @ VE™)

(2.15) = @ my, Homp (det® X det®, ResIG<LNV”).

Since v € P;O, to guarantee Hom (det® X det?, Res?(LNV”) # 0 for each v in (13), it suffices to
consider a,b € N, otherwise F}, , ,(V¢) = (V¢ @ VE™)lo# = 0. Our goal is to compute the v such
that the multiplicity of det® X det’ in the K restriction of the GLy-module V" is nonzero. To do

this, we need Okada’s theorem [15].

THEOREM 2.4.6. For any two rectangular shapes (aP) and (b%), where a and b are nonnegative

integers and p < q, then
Sap " St = ) Clam) )51

where c(”ap)(bq) =1 when v satisfies the condition

(216) v; + Uptq—itl = @ -+ b, 7 = 1, N
(2.17) vp > max(a,b)

and cz’ap)(bq) = 0 otherwise.

12



COROLLARY 2.4.7. Now we have the following fact, the (to, 1) invariant space

(2.19) Fppu(VE) = (VE@ VEn)ton

14
where v € Pgo runs through all partitions satisfying (2.16)-(2.18).

Moreover, by Pieri’s rule, the vector space H on"LGLN(V”,V£ ® V@) has a basis indexed by

standard tableaux 7" such that the shape of T"is /¢ and the dimension of this vector space
my = dimHomgr, (VY, VS @ V")

equals the number of standard tableaux T with the shape of T being v/£. If m,, # 0, then £ C v
and |v| = [¢] + n.

THEOREM 2.4.8. The (to,n) invariant space F,p,(V®) = (V& @ VE) 0L has a one to one
correspondence to the set of standard tableaux T such that the shape of T is v/§ for v € Pgo with
lv| = |&] + n, v runs through all the partitions satisfying (2.16)-(2.18) and £ C v.

Let us consider the following example of (to, 1) invariant space.

EXAMPLE 2.4.9. Let M = V¢ be a GLz-module, € =21 + €, n=3,p=1 and = 0.

Then (aP) = (2') and (b9) = (2%).

By Okada’s theorem in [15], we could compute the shapes v such that the invariant space is

nonzero.

Then a basis of the invariant space is indexed by standard tableauzr on skew shapes obtained by the

(2 | ]
(1] x = = T

FIGURE 2.3. Shapes v such that Homy (det® X det®, VV # 0)
13



shapes above skewed by &.

1 2
23 13
3] 9] 3] 1] 2] 1]
P 3 1 3 1 2
1] 1] 2] 2] 3] 3]
2[3] 1]3] 1]2]
1 2 3

FIGURE 2.4. The collection of standard tableaux indexing a basis of F310(V*)

In this example, we obtain an invariant space Fg,Lo(VEj) of 11 dimensions.

2.4.4. One skew shape. In this subsection, we associate a skew shape gogp,u to the image
Fop(VE) under Etingof-Freund-Ma functor and we call ©% p, the minimal shape of Frpu(VE).
Let € = Zf\il &ie; € P§0’ The corresponding Young diagram & = (£, --- ,&n). The first ¢ rows of
¢ forms a Young diagram denoted by € and the last p rows of & forms a Young diagram denoted
by £€3). Fix a parameter p, we have a pair of rectangles (a?) and (b9) denoting the K-module
det® X det’, where a = g + ‘fl% and b= —up + ‘fl%

Suppose p < g. Placing the northwestern corner the rectangle (a”) next to the northeastern corner
of the rectangle (b9) forms a Young diagram 3. Delete the Young diagram ¢() from northwestern
corner of 3. Let (z)? denote the skew shape obtained by rotating £ by m. Delete the rotated &2

from the southeastern corner of 3, i.e. the skew shape gp%yp# is defined by cp%,p’,i = v/¢W), where

vi=a+b—E&n_jypfori=1--- pandy;=bfori=p+1,--- ,q.

Let ¢ = @%,p#. If a cell (i,7) of the skew shape ¢ satisfy (i +1,7) ¢ ¢ and (i,5 + 1) € ¢,
then call (7,7) a corner of ¢. Define y-move on a skew shape ¢: delete a corner (7,j) € ¢ such
that j > maxz(a,b) and 1 < i < p, and add the cell (p+¢—i+1,a+b— 7+ 1). The condition
j > max(a,b) guarantees the new shape after y-move is still a skew shape. Denote the y-move by

o — ¢ where ¢’ = o\ (4,j)U(p+q—i+1,a+b—j+1). Note that for a given ¢, the y-move
14



—<—

(a?) (b7) — ql l ..............

T 5(1) ‘ b }—>

’ .

J Pr,p,n

5(7)

E=3N ¢e € Pgo

FIGURE 2.5. One skew shape

stops when there is no cell (i, j) such that j > maz(a,b). Given the skew shape 4,0%7,,7“, a collection
D(gp,%,p,u) of skew shapes consists of go%yp,# and all the skew shapes obtained by applying y-moves
on gpg,n u for finitely many times. The shape go%,p,u is called the minimal shape of the representation
Frpu(VE).

Continue Example 2.4.9, the representation Fj 1 o(V3) is index by the following skew shape ¢.

The collection D(¢p) of skew shapes is obtained as follows:

2.4.5. Skew shapes and standard tableaux. For the ease of description, let us use the
following definition of skew shapes and standard tableaux. Given a partition £ = (§1,---,&), the
corresponding Young diagram ¢ is a subset of Z2, consisting of (4, ;) such that 1 < i < [ and
1<j<&. Letv= (v, ,y) and £ = (&, -+ ,&) such that v; > & for 1 < i < [, then for
the corresponding Young diagrams ¢ C v holds. A skew shape v/¢ is the subset v \ & of Z2. For
example, let v = (7,6,5,3,2,1) and £ = (5,5,2,2,2,1), then Young diagrams v and £ and the skew

shape v/¢ are the following subsets of Z2.

E={(,7)1 <i<6,1<j <&}
15
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FIGURE 2.6. All skew shapes obtained by y-move
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FIGURE 2.7. The minimal skew shape of Fj1o(V*)

1] -
[] |

FIGURE 2.8. All skew shapes of Fj 1 o(V*)

and

v/€={(1,6),(1,7),(2,6),(3,3),(3,4),(3,5), (4,3)}.
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Define a tableau T on n-indices {1,--- ,n} to be an injective map T'

T:{1,---,n} =22
k= (i(k),)(k))
where i and j being two maps from {1,--- ,n} to Z and the image Im(T") of T being a skew
shape. The image I'm(T') is also called the shape of the tableaux T'. Let conty be a map
conty: {1,---,n} - Z
k= i(k) —i(k),
call contp(k) is the content of k in the tableau T'. If
T7i+1,5) > T7'(,5)
and
T1(i,5+1) > T7'(,5)
hold for each cell (i,5) € Im(T), then call T is a standard tableau.

Let
Tab* = {T|T is a standard tableau and Im(T) € D(goiyp’#)}.

The invariant space F, (V) = (V& @ V&) has a basis indexed by a collection of standard
tableaux on the skew shapes in D(goip,#), i.e. all the tableaux in Tab)*. Let vy denote the basis
vector indexed by T' € T abé’“ . Then as a vector space

Fpu(VE) = (VE @ vEmlor

= spanc{vr|T € Tab}"}.

2.5. Y- semisimplicity

2.5.1. Action of Y. In this subsection let us computer the Y-actions on the invariant space
Enpu(VE) = (VE@ VEor In [7], Jordan computed the action of y; and used the fact that

Etingof-Freund-Ma functor is a trigonometric degeneration of the quantum case. Now let us review

17



the computation and conduct it in the degenerate case. Let us use the following notations in [5]

for sums

(2.21) Z:-ﬁéﬁ}
(2.22) 22:532§:+§3
(2.23) :§3§i+§§

st s=1 t=1 s=p+1t=

It is easy to observe that the sum of (2.22) and (2.23) equals (2.21).

Review the definition of y; on the (to, u)-invariant space F,,, ,(V¢) = (V& ®@ VO in [5],

_ t sy, P—a—pN 1 1
h=— Z(ES)O ® (B + Yy  ntg Z st 5 Z SLIMN-

s|t I>1 1#1

Compute the last two terms of y;, we have

% Z 510+ % Z SLIMIM
I>1 1#1
f§:§:£# (Ef)i+ = }:E:Et1@>@ J);
I>1 s,t l>1 s,t
=Y S E e (B
[>1 st
—Ejﬁ# O -1 (E))

>1

=> (ED(AM(E]) - (Ef)o — (Ef))

The last step follows the fact that Y, ; 1 ® (Ef), = AM(Ef) — (Ef)o — (E§)1, where A denotes
the comultiplication of Lie algebra gly and A™(Ef) = 31" (Ef);.

Applying the fact that y; preserves on the (to,p)-invariant space F,p (V) = (V& @ VEn)lor,

18



the computation of the last two terms of y; above continues as follows.

D (BOWAM(ED) — (ED)o — (B])h)

’ 3 €l +n
ZM +! DEN+ Y (—up+ N (&)
s=1 s=p+1
p N
=Y pED = Y alED) =Y (B @ (E)
s=1 s=p+1 st
& +n u s §l+n s
—(ug—p+ L S )+ g B S s
s=1 s=p+1
— Y (Ef)o® (Ein
st
Combining other terms in the definition of ¥,
—q—puN
ylz—Z;(Eﬁ)o®(Ef)1+W’n
P N
n S |§‘+n S
T (ug—p+ BT N )D B+ (mpp =g+ =) Y (B
s=1 s=p+1
+n  p—q—puN,
— _ Et |§‘ ES
Z R R )SZI( D
N
f+n p—q—pN s
+(—up—q+HN - ) > (B
s=p+1
N
+n  pug—pp N
— _ Et ’€| 0 Es
+n  pg—pp N
Z N + 2 27

REMARK 2.5.1. Since the action in [8] was define on F, (M) for M is a D-module, there is
a difference between equation (2.12) and the above result. If we input a D-module instead of V¢,

the above result will be the same with equation (2.12).

Moreover, the action of y; for k£ > 1 is computed by induction.
19



PROPOSITION 2.5.2. The action of yy, for k=1,--- ,n, on the invariant space (V& @ VE)lo:H

18 computed by

k-1 s €l +n  pg—pp N
Y — — Z(A( )Eé)((),k) & (Et )k —+ N + 5 . 57

s,t

where (E%) o k) denotes the tensor product (VE@VEEDY) and hence A~V EL acting on (EL) 0,1)-

PRrROOF. We verified the action of y; above. Suppose the statement is true for y;, i < k. Let
compute the action of yi. By the relation sx_1yr_1 —yrSk—1 = k1 = 1 and the inductive hypothesis,

it follows

Yk = Sk—1Yk—15k—1 — Sk—1

==Y (AYVEY g p-1) @ (BB B @ (E{ES)s

st
_ZEt L ® (B + |§];n MQ;W’_g
:_Z AF=2) gt Ok_1)®(E§)k—1®(Ef)k
s,t,9
_ZEt o (B + |§!]\Jfrn MQ;MP_g

Take the fact 3 (Eg)k_l = (IN)g—1- The above computation continues

= —Z AF2ED) 0 k-1) © (In)k—1 ® (Ef)k

¢ §l+n , pg—pp N
=D B B+ =+ —

+n - N

The Lie algebra gl has a basis {E|1 < s,t < N} with the dual basis { £} with respect to the

Killing form. Let C' denote the Casimir element of U(gly), then C' =", EYE$. The following
20



computation follows
A(C) =) A(E)A(E)
s,t

:Z(E§®1+1®E§)(Ef®1+1®Ef)

st
=) _EE))®1+1& () _ELE)+2) E.0E;.
st syt st
Thus
A(C)-C®1-1®C
I e
st

2.5.2. Weights and contents. In [17], Ram talked about the standard tableaux and repre-
sentations of affine Hecke algebra of type C and analyzed the weights in terms of boxes. Now let
us analyze the weights of F}, , (V) in terms of contents. In section 5, we obtain a basis of the
(to, p)-invariant space F,p . (VE) = (V€ @ VE)0r indexed by Tab(hpp), ie. standard tableaux
on a family of skew shapes v/¢ where v are obtained by Okada’s theorem. The action of yj on the
basis element indexed by standard tableau T is by a scalar. Moreover, this scalar is computed in

terms of the content of the box fixed by k.

THEOREM 2.5.3. Let vy denote the basis element of the invariant space indexed by standard

tableau T'. Then vy is an eigenvector of yr and the eigenvalue is computed as

—contr(k) + 6,

— N
where © = |§’;n+ﬂqzﬂp_2.
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PrOOF. Let us T € Tab(gogp,ﬂ). Since T' is a standard tableau, then 7' corresponds to a

sequence (V(k))izg of Young diagrams, where

V0 =¢,
v =guT({1}),

V(Q) =¢U T({L 2})7

v =¢UT({1,2, - ,n}),

where T'({1,--- ,k}) is the collection of cells filled by numbers 1,--- , k, i.e. the Young diagram
v%) is formed by adding the cells filled by numbers 1, - - - , k to the Young diagram &. So it follows,
fork=1,---,n,

vp € (VE@ VO[] g vk

where (V¢ @ VER) [V (k)] denotes the V“*-isotopic component of the tensor product V¢ @ V&,
By the previous subsection 2.5.1, it follows that the term Y ,(A®=V(E%)) o 1y ® (Ef), acts on

vT by
Coxs1) — Cop @ 1k — Lo x) @ Ck
5 .

Moreover, the Casimir element acts on the highest weight module V¥ by the scalar (v,v + 2p),
where the weight 2p = Z,N

1(N —2i+1)¢;. So for each k such that 1 <k < N, C(g 1) acts on
v by the scalar (v®), (k) 1 2p), C(o,k) acts on yry by the scalar (v~ =1 4 9) and Cy

acts on V by the scalar (¢, e + 2p) = N, namely

Cox+1) — Cop) @ 1k — Ligr) @ Ck
2

acts by
(™, 0™ 4 2p) — (FD YED 4 2p) — (e €+ 2p)).
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Let T(k) be the cell (i(k),j(k)), then v} = j(k) = vi ™ + 1 and v = oY for i # i(k).

1

§<<V(k)7 V(k) + 2P> - <V(k_1)7 V(k_l) + 2p> - <€7 €+ 2P>)

Z%((i(k) + N =2i(k) + D(i(K)) — ((k) + N = 2i(k))(i(k) = 1) = N)

—i(k) — i(k).

Then the statement follows. ]

THEOREM 2.5.4. Let Fmp,M(Vg) denote the image of the irreducible GLy-module V¢, for some
& € PT, under Etingof-Freund-Ma functor. Then Fmp,u(Vf) has a basis indexed tableauz in Tabé’“,
i.e. {vp|T € Tabé’“}. This basis is a weight basis with each basis vector vy is a weight vector of
weight {p = —contp + &. So Fn7p7M(V5) is a Y-semisimple representation of H,(1,p —q — pN).
Moreover, it is obvious different standard tableaux give different weights. Hence each weight space

1s one dimensional.

2.6. Intertwining operators

2.6.1. Definition of intertwining operators.

DEFINITION 2.6.1. Fori=1,---,n — 1, define the intertwining operators

bi = [si, 94l

and for 7y, define

bn = [Yns Yn)-

PROPOSITION 2.6.2. The intertwining operators ¢; satisfy the braid relations

Gibit10i = Git10iPiv1,0 =1,--- ,n—1,
¢n—1¢n¢n—1¢n = ¢n¢n—1¢n¢n—l'
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Since the operators ¢;’s satisfy the same braid relations with s;’s and +,, it makes sense to

define the following.

DEFINITION 2.6.3. Let W denote the finite Weyl group of type Cy, for each w € W, it has a

reduced expression w = $;, S;, - - - Si,,, L(w) = m, here we take the convention s, = 7,. Define

Pw = 01 Diy - - - iy
2.6.2. Properties of intertwining operators.

Some computations on intertwining operators:

(1) ¢i = si(yi — yit1) — 1,

On = 2VnYn — k2.

(2) ¢ = (1 =y + yir1) L+ yi — yig1),

¢3L = (k2 = 2yn) (K2 + 2Yn).

DEFINITION 2.6.4. Define the actions of W on weight ¢ = [(1,- - ,(n): for an arbitrary w € W,

the action of w s

w.{=Cow™,

where we take (_p = — (.

THEOREM 2.6.5. Let L be a Y-semisimple module and L¢ denote the weight space of weight ¢,

then

¢wLC - Lw.g-

PRrROOF. It suffices to show the statement is true for each operator ¢;.

Case 1. When 1 < ¢ <n — 1. We have the following facts that
Yidi = QilYit1,

Yir19i = QiYi,
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and
Yibi = ¢iyj,Jj Fiori+ L
Case 2. Consider ¢,,. We have facts that

YnPn = —OnYn,

yj¢n = ¢nyj7j 7é n.

0

REMARK 2.6.6. Since each weight space of anpyp,(Vg) is one dimensional, so the action of ¢; is

either 0 or an isomorphism.

LEMMA 2.6.7. If (; — Giy1 # £1 for some i € {1,2,--- ,n — 1}, then ¢;vc # 0, where v¢ is the

weight vector of the weight (.
PROOF. Suppose that ¢;v; = 0. Then qb?vc = 0. By the computation above
¢ = (1 =i+ yir) L+ yi — yir1)-
Then ¢?ve = (1 — ¢ + Gi+1) (1 + G — Giv1)ve = 0. Then we have that ¢; — (41 = £1. O
Similarly, we have the following fact.
LEMMA 2.6.8. If ¢, # &%, then ¢pvc # 0, where v is the weight vector of the weight .
PRrROOF. Suppose that ¢,v; = 0. Then ¢721v< = 0. By the computation above
bp = (K2 = 2yn) (K2 + 2yn).
Then ¢2v; = ¢2 = (kg — 2(n) (K2 + 2¢,)ve = 0. Then we have that ((n) = +%2. O

2.6.3. Properties of irreducible Y-semisimple representations. Let L be an irreducible

Y-semisimple representation of H,(k1,k2). Let ¢ = [(1,--+, (] is a weight L.

THEOREM 2.6.9. If (; = (41 for some 1 <i<n—1, then L; = 0.
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PRrOOF. Let ¢ be a weight such that ¢; = (;+1. Suppose there exists a nonzero element v € L.

Consider the vector s;v. Since ¢; = s;(y; — yit+1) — 1 = (Yi+1 — vi)si + 1, we have ¢;v = —v.

(Yi — Yir1)siv =(1 — ¢i)v

=2v # 0.
And act again by y; — yit1,
(yi — yi—i—l)Qsiv
=2(yi — Yi+1)v = 0.

This means s;v belongs to the generalized eigenspace of y; — y;41 and does not belong to the

eigenspace of y; — y;+1, which contradicts )-semisimplicity. O
THEOREM 2.6.10. Let kg # 0. If ¢, =0, then L¢ = 0.

PROOF. Let ¢ be a weight such that ¢, = 0. Suppose there exists a nonzero element v € L.

Consider the vector v,v. Since ¢, = 2YpYn — K2 = —2YnYn + K2, We have ¢ppv = —Kov.

2YnYnv :(KQ - ¢n)v

=2rov # 0.
Act again by y,, we have
2yn27nv
=2roynv = 0.

his means s;v belongs to the generalized eigenspace of y, and does not belong to the eigenspace of

Yn, Which contradicts Y-semisimplicity. O

REMARK 2.6.11. When ko = 0, it is possible for an irreducible Y-semisimple module L to
contain a nonzero weight space L¢ with ¢, = 0. In this case, v,v € Cv. Otherwise, the vector

v+ Yuv generalizes a monzero proper submodule of L, which contradicts the irreducibility.
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LEMMA 2.6.12. For any arbitrary w € W, the intertwining operator
¢'LU = wHaijER(w) (yZ - y]) =+ Z wQ(:l/)?
r<w

where Q(y) is a polynomial of y1,- -+ ,Yn.

THEOREM 2.6.13. Let ¢ be a weight of L such that Ly # 0. Let v be a nonzero weight vector in

L¢. Then the set {¢,v|w € W} spans the irreducible representation L.

PROOF. We need to show w.v lies in the span of {¢,v|w € W} for any arbitrary w € W. We
prove by induction on the length of w. When the length of w is zero, the statement is trivial. Now
assume for w with [(w) < k, the statement holds, i.e. w.v can be expressed by a linear combination
of elements in {¢,v|w € W}. Set w is of length k and w = s;, ---s;,. Then by Lemma 2.6.12,
we have ¢y, - v = Il cr(w) (G — () - w - v + Xycwcyr - v. Since I(z) < k, the terms z - v can be
express by {¢,v|w € W}. As long as the coefficient 11, e pw) (G — (j) # 0, w - v can be express by
{dwv|w € W}. So it is reduced to consider only the case when HaijeR(w)(Cz‘ —¢j) =0.

In this case, there exists p € [1, k] such that

o eRs,, o) (G = Gj) # 0
and
HaijER(SiP'"sik)(Ci - CJ) =0.
Set u = s;,,, -+~ 55, When i, € [1,n — 1], this implies (y;, — ¥i,,,)¢uv = 0 and hence ¢,v = 0 by

Theorem 2.6.9. And when 7, = n, this implies 2y, ¢,v = 0 and hence ¢,v = 0 by Theorem 2.6.10.
It follows I, cr(u) (G — Guv =3, -, 2Q(y)v and hence
Mo en@W-v =Y iy -+ 5, 7Q(Y).
x<u

Since (s, - - - si,x) < k, then (s;, - - - 5;,x).v and hence w.v can be expressed by a linear combination

of elements in {¢,v|w € W}. O

THEOREM 2.6.14. Let ¢ be a weight such that L # 0. Let w # 1 € W such that w.¢ = (. Then

¢ = 0.
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PROOF. Let w = s;, - - 8;,. since w.¢ = ¢, thereis 1 < p < k such that s;, ---s;, = (hm) where
Ch = Cm Consider ¢ip—1 cee gf)ilqbwv = ngjgp(l - Cij + Cij+1)(1 + Cij - Cij+]_)¢uv. It follows gi)uv =0
and hence ¢, v = 0. ]

COROLLARY 2.6.15. Let ¢ be a weight such that L¢ # 0. Then it follows dim(L¢) = 1.

PRrROPOSITION 2.6.16. (1) Let v be a nonzero weight vector of weight ( such that

G — Giv1] = 1.

Then ¢;v = 0.

(2) Let v be a nonzero weight vector of weight ¢ such that ¢, = £%. Then ¢,v = 0.

REMARK 2.6.17. Some similar results also happen in degenerate affine Hecke algebra of type
Ap—1. Let H,(1) be the degenerate affine Hecke algebra generated by s;(i = 1,---n — 1) and

yi(i = 1---n) with the following relations:

8iSj = S;5i, |Z —j| > 1,

8i8i4+18; = Si4+18iSiy1,4 =1,--- ., n—1,

8iYi — Yir15i = 1,

8iY; = Y;Si,J # 4,1+ 1.
There is the same definition of J-semisimple representation. And for any Y-semisimple represen-
tation M, if a weight ¢ with ¢; = (i1, then M¢ = 0.
Furthermore, we still define the intertwining operator ¢ = S;y; — v;S;, then we will also have
7 = (1 —yi + yir1)(1 + i — yiy1). This also implies the fact that if ¢;vc = 0 then we have

Gi — Ci+1 = 1. For the double affine Hecke algebra of type A, [19] explored similar properties in

details.
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2.7. Combinatorial moves
2.7.1. Moves among standard tableaux.
Let Tab)* denote the collection of standard tableaux indexing the basis of Fopu(VE) in Section
2.4. We define a set of moves my,--- , m, on Tabg\’ul_l{o} as follows. The move m; fori—1,--- ,n—1

is defined as

T', T’ is a standard tableau
m; (T) =

0, otherwise,
where T'(k) = T(s;(k)). The move m,, is defined to be

o, i(n) <mazx(p,q) and j(n) < mazx(a,b)
m, 1T =

T”, otherwise,
where T"(j) = T(j) for each j #n and T"(n) = (N —i(n) + 1,a+b—j(n) + 1).

REMARK 2.7.1. There is a straightforward observation. For any shape ¢’ € D(gp%,p,#) and any
i < min(p,q), the sum of the column number of the last cell of the i-th row and the column number
of the last cell of the (N — i + 1)-th row equal a +b. So T"(n) = (N —i(n) +1,a+b—j(n)+1)
means that the my,-move takes the cell filled by n to the end of the (N —i(n) + 1)-th row.

here m be the column number of the last cell of the (N —i(n) + 1)-th row of Im(T).
2.7.2. Correspondence between algebraic actions and combinatorial moves.
Let v denote the basis vector indexed by T € Tabé\’“ and (7 denote the weight of vy, namely

{r = —contp + 6.

PROPOSITION 2.7.2. (1) Fori =1,--- ,n—1, if my(T) # o holds, then m;(T) € Tabp*
and the common eigenbasis vector vy, (1) s of weight (1) = Si-Cr-
(2) If m,(T) # o, then m,,(T) € Taby™ and the common eigenbasis vector Vm,, (1) 15 of weight

Cmy(T) = Tn-CT

PrOOF. First, for ¢ = 1,--- ,n — 1, if my(T) # o, then by the definition of the move m;,
T € Tab)" and we want to show Cony (1) = 5i-CT-
Then let us consider the case when w = . In this case w moves the box filled by n in the

i-th row of tableau T' to the end of the (N — i+ 1)-th row. So the only box in the new tableau
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~.T with a different position comparing with the tableau T is the box filled by n. Thus the only
difference in the new weight associated to 7.7 comparing with {7 is the eigenvalue of y,. Let (i,j)
denote the coordinates of the box filled by n in the tableau T. Then the coordinates of the box
filled by n in the new tableau v.T'is (N —i+ 1, u(q — p) + 2'“% —j+1). Then the eigenvalue of

Yn in the new weight ¢, 7 associated to .1 is j—i— M'%—F%ﬂL@. So the new weight equals v.(p.

O
ProPOSITION 2.7.3. If w.T # 0 for some w € W, then ¢,vr # 0.
PROOF. It is enough to verify the statement when w is the transposition s; or .
First, consider the case when w = s;, ¢ = 1,--- ,n — 1. Suppose ¢;vr = 0 for some 1 <i<n—1

implies that ¢?vpr = 0 and ¢? = (1 — y; + yi+1)(1 + ¥ — Yi+1). Then (r(i) — (r(i + 1) = £1. In
this case the contents of boxes filled by 7 and ¢ + 1 differ by 1 and hence the two boxes are adjacent
and in the same row or in the same column. We have s;.T" = 0 in this case. This contradicts the
condition. So we have ¢;vp # 0.

Second, consider the case when w = ~,. Suppose ¢,vr = 0 which implies the eigenvalue of y, is
+%2. Since ¢Zvp = 0 in this case and ¢2 = (k2 — 2yn) (k2 + 2yn). Then the box filled by n is either

(p, g + Ifl%) or (q,—up + Iﬂ%) But by the definition of action of v, on the tableau T, we have

in both cases that 7,.7" = 0. This contradicts the condition. Hence we have that ¢,vr # 0. ]
REMARK 2.7.4. (1) If my(T) # o, then ¢ivr = cvm,(1y up to a nonzero scalar c € C for
i=1,---,n.

(2) Ifmz(T) =0, then ¢Z"UT =0 fori = 17 cee LM

EXAMPLE 2.7.5. In Example 2.4.9, the action of intertwining operators are as follows. The

diagonals give the eigenvalue of v;’s.

Let k be the filling of the cell (¢, b),we could compute that the eigenvalue of y;, is —%2. Similarly,

let k be the filling of the cell (p, a), it follows the eigenvalue of y, is %2. Furthermore, ko = p—g—a-+b.

2.8. Irreducible representations

2.8.1. The image F,,,(V*) is irreducible.
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FIGURE 2.9. Moves among weight basis vectors of F3 1 (V¢)

LEMMA 2.8.1. Let @1 and @y be two skew shapes in D(p) with ¢1 — 2. Then there exist
standard tableauz Ty and Ty with Im(T1) = @1 and Im(Te) = o such that v, (T1) = Ts.

PROOF. The ¢ — ¢y implies that ¢9 is obtained by moving a corner (i, ;) of 1 to the end
of the (N — i + 1)-th row of ¢1. Since (i,¢1) is a corner of ¢, there exists a standard tableau T}
such that (i, 1) is filled by n. Applying the v, move to 17, let T5 = v, (77). Then T5 is a standard
tableau with Im(7Ts) = 2. O

We show in the following the representation of degenerate affine Hecke algebra obtained through

Etingof-Freund-Ma functor is irreducible.

THEOREM 2.8.2. The image Fn,p#(Vg) of a finite dimensional irreducible gly-module V& under

the Etingof-Freund-Ma functor is irreducible.

PROOF. A basis of F,,,(V¢) is indexed by

7;317 = {T|T is a standard tableau and Im(T) € D(gpf;’p’“)}.
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It’s obvious to see that the underlying vector space of FWW(V€ ) is isomorphic to the vector space
spanc{vr|T € 7751,}. Let N be a submodule of F},,, ,(V¢). Then N contains at least one weight
vector of F, ;, ,(V®). Let vr be a weight vector associated to the tableau T € ’Eﬁp and the submod-
ule N contains vr.

We show in the following we get every other weight vector from an arbitrary weight vector vrp.
Consider the actions of signed permutations on standard tableaux since the actions of signed per-
mutations on standard tableaux are compatible with the actions of intertwining operators on weight
vectors.

Case 1. For any the standard tableau 7’ with the same shape of the tableau T', there exists w € S,
such that 7" = w.T. Equivalently vy = c¢,vr where ¢ € C is nonzero.

Case 2. For standard 77 and T3 with Im(T7) — Im(73), combining Proposition 2.7.2 and Case 1,
it follows T5 = w(T1) for some w € W (BC),) and hence vy, = c¢,vr, where ¢ € C is nonzero.
Furthermore, consider two arbitrary standard tableaux 77 and 7% in ’Eﬁp. Let T be a standard

tableaux of shape ¢. There is a path ¢ — ¢1 — --- — Im(717) and hence vy, = c1¢,v7,.

2.8.2. Irreducible representation associated to a skew shape gpgp,“. Define a represen-

tation L#h»u of H,(1,p — q— puN) as follows. Let the underlying vector space be
spanc{wr|T € 7;54,}.

The action of H,(1,p — g — puN) is defined by

(2.24) yrwr = (—contr(k) + &)wr,
(1 = contr (i) + contr (i + 1))wg, (1) 1
(2.25) sywp = . . . . wr,
contp(i) — contp(i + 1) contp(i) — contp(i + 1)
(p —q — pN — 2contr(n))w., (1) 1
2.2 n = n —qg— uN)——wr.
(2.26) TntT 2contp(n) to—a—n )200ntT(n) T

THEOREM 2.8.3. The representation F,,, ,(V?®) is isomorphic to L.
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PROOF. Fixa T € 7;57,,. Define a map f : F,p (V) — L¥pn by
flor) = wy

and f(¢ivr) = (1 — contr (i) + contr(i + 1))ws, (7). O

2.9. Combinatorial description

In this section, we first discuss some properties of a representation of the degenerate affine
Hecke algebra H, (1, k2) obtained via the Etingof-Freund-Ma functor, where ko = p — ¢ — pIN, and
then we show that any representation satisfying these properties is the image of some irreducible

polynomial representation of GLy via the Etingof-Freund-Ma functor.

2.9.1. Some facts of F,,,(V¢). Let £ € PT and F = F,,,(V¢) be a representation
H,(1,p — ¢ — puN) obtained through Etingof-Freund-Ma functor and ¢ = ({1, - ,(,) be weight of
F such that Fy # 0. For i = 1,--- ,n, if there is an increasing sequence i = ig < i1 < -+ < iy, <N
such that |¢;, — Cgq1| = 1 for K =0,--- ,m — 1 and (;,, = £, then we call the coordinate ¢; is

fixed. It is easy to observe the following two properties.

PROPERTY 2.9.1. Fori = 1,---,n, if [§;| < |%|, then (; is fived, i.e. there is an increasing
sequence i = ig < i1 < --+ <y, < n such that |G, — (1| =1 fork=0,--- ,m—1 and ¢;,, = £3.

PROPERTY 2.9.2. The parameter ko is an integer. If ko is even, then all (;’s, fori=1,--- ,n,
are integers. If ko is odd, then all (;’s, fori=1,--- ,n are half integers.

Recall that the the cell (p,a) in cp%,,w gives the eigenvalue %2 and that the cell (¢,b) gives the

eigenvalue —“2. Then Property 2.9.2 follows.

In [17], Ram explored the facts of weights of a semisimple affine Hecke algebra representation.
Now let us explore facts of weights in the degenerate case. Let L be an irreducible and )-semisimple
representation of Hy,(1, ko) satisfying Property 2.9.1 and Property 2.9.2 above and { be a weight

such that L # 0. Then ( satisfies the following proposition.
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PROPOSITION 2.9.3. If there exist 1 <1 < j < n such that (; = (;, then there exist i < ki < j

such that (i, = G+ 1 and i < ko < j such that (, = ¢; — 1.

PRroOF. Let ¢ be a weight such that L; # 0. Suppose there exist 1 < ¢ < j < n such that
Gi = ¢; and there is no 7 < k < j such that (; = ¢;. We proof by induction on j — i.
First, if j — i = 1, then (; = ;41 which contradicts Theorem 2.6.9.
Second, if j — i = 2, by Theorem 2.6.9 and Lemma 2.6.7, it follows (;4+1 = (; £1 = (42 £ 1. Let
v be a nonzero weight vector of weight (. Proposition 2.6.16 implies ¢;v = ¢;11v = 0. Combining

the definition of the intertwining operators, it follows s;v = Fv and s;4+1v = +v and hence
U = 818418V = 8;4+15;Si+1V = F,

which is a contradiction.

So the base case of the induction is j —i = 3. If (; # (41 +1 or (j_1 # (;+1. Lemma 2.6.7 implies
the existence of a weight satisfying the condition in the case j — ¢ = 2, which is a contradiction.
So it hold [(; — 1| =1 and |1 — (| =1. If (= (41 +1and (j—1 = ¢+ 1, then by =5 — 1
and ko = ¢+ 1. Similarly, if (; = ;41 — 1 and (j—1 = ( — 1, then k1 =i+ 1 and ky = 5 — 1. If
Gi = Gy1 £ 1 and (1 = ¢; F 1, then (;41 = (42 which contradicts Theorem 2.6.9.

Suppose the statement is true for all j — i < m, consider the case j — i = m.

Casel. If |(; — Gi+1] # 1 or |(j—1 — (| # 1 and v is a nonzero weight vector of weight ¢, then ¢;v
(or ¢;_1v respectively) is a nonzero weight vector of weight s;{ (or s;—_1¢ respectively) with s;¢
(or s;_1( respectively) has (11 = ¢ (or {; = (j—1 respectively). Then the k; and ko exist by the
inductive hypothesis.

Case 2. If (; = (j+1 £ 1 and (j—1 = ¢; F 1, this implies ;41 = (j—1, the statement still holds by
inductive hypothesis.

Case 3. If (; = (41 +1and (j_1 =(j +1,then ky = j — 1 and ks =i + 1.

Case 4. If (; = (41 —1and (j—1 =(j — 1, then ky =i+ 1 and ko = j — 1.

Next let us explore another fact of L.
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LEMMA 2.9.4. Let ¢ = [(1,--- ,Cn] be a weight of L such that Le # 0 and ¢ satisfies ¢; > I%'

fori=k,--- ,n. Then there is weight

CI = [Cla T 7<k*17 _C’nv _C’n—lv R _Ck+17 _Ck]
such that L¢r # 0.

PROOF. Let v be a nonzero weight vector of . Consider the element

h = ¢n(¢n—1¢n) te (¢k¢k+1 e ¢n)7

then hv € L and hv # 0 by Lemma 2.6.7 and Lemma 2.6.8. O

DEFINITION 2.9.5. Let ¢ = [(1,--- ,Cn] be a weight of L such that Le # 0 and ¢ satisfies
the condition: if a coordinate (; > 0, then (; is fixed, i.e. there exists an increasing sequence
i =g < i1 < <y <nosuch that |G, — G, | =1 and §;,, = £%. Then we call ¢ is a minimal

weight of L.

PROPOSITION 2.9.6. There ezists at least one minimal weight ¢ = [C1,- - ,Cn] of L such that

L¢ #0.

PRrOOF. Let ¢ be any weight such that Ly # 0. If 0 < §; < @, then (; is fixed since L satisfies
Property 2.9.1. So it suffices to consider the coordinate (; > % We want to show that starting
with any weight ¢ such that L¢ # 0, there is an algorithm to obtain a weight ¢’ such that L¢ # 0
and ¢’ satisfies the condition: if a coordinate ¢ > 0, then (! is fixed.

Suppose {Cry, Gy -+ 5 G, } is the collection of all the coordinates such that ¢, > @ and ¢, is not
fixed, for 1 <ry <7y < --- <71 <n. Let v be a nonzero weight vector of weight (. We start with
the rightmost coordinate (,, in this collection. If r; # n, there are only the following two cases.
Case 1. There exists an increasing sequence r;+1 = jo < j1 < --- < ji < nsuch that |(j,,, (| =1
and (j, = £%. Then |(,, — (41| # 1, otherwise there is an increasing sequence r; = j_1 < j1 <
J1 < --- < ji <nsuchthat ¢, — (| =1 and ¢ = £%. So ¢p,v is a nonzero vector of weight
(W =s5,C.

Case 2. If (41 < —@, then |, — G+1] > 1 and hence ¢,,v is a nonzero weight vector of weight
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C(l) = SnC .
Then we consider Cr(llJ)rl and we are in the same situation. Hence we repeat this process for (n — 1)

times and obtain a nonzero weight vector (¢n—1 - ¢y, +1¢r,)v of weight

C(n_rl) = (Snfl T 5T1+157“L)C-

Next, we deal with the second rightmost coordinate (,, , = T(ln;lm in the collection above and

repeat the process above for (n — 1 —r;_1) times. We obtain a nonzero weight vector

(¢n72 T ¢T171+1¢T171)(¢n*1 o ¢Tz+1¢7’z)v

of weight

C(Qn_l_”_l_rl) = (Sn*Q e 37’171+187"171)(57L*1 to ’STerlSTz)C-
Next, we continue to deal with other coordinates in the collection in the order of ¢, ,, G, 4, -, Gy
and repeat the process for (n — k — ry) times for the coordinate ¢,, for k =1,---,l. We obtain a

nonzero weight vector

(anfl o ¢r1+1¢r1)(¢n71+1 T ¢r2+1¢r2) T (¢n—1 to ¢rl+1¢m)v
of weight

—1(1=1)/2—11—1ro-—
Q(ln 1(1-1)/2—r1—r2 rl):(sn—l"'5T1+15r1)(3n—l+1"'57‘2+13T2)"'(5n71"'SrlJrlSrl)C-

The weight ¢(n—=1)/2=r1=r2=71) gatisfies the condition that

Ci(ln—l(l—l)/Q—rl—rgm—rl) - |/~€22|

fori=n—1+1,---,n. Moreover, for i =1,--- ,n — [, it follows either

C(ln—l(l—l)/Q—m —Tro-—1y) <0

2
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In—=l(1-1)/2—r1—r2--—7)

or the coordinate gf is fixed. Applying Lemma 2.9.4, there is a weight

C/ = /Yn(sn—lfyn) T (Sn—l+1 e Sn—lf}’n)g(lnil(lil)ﬂirl77”2“.77"1)
such that Lo # 0 and satisfying the condition: if
G >0,

then (] is fixed for any i =1,--- ,n. O

REMARK 2.9.7. Lemma 2.9.4 and Proposition 2.9.6 indicate that for any weight ( such that
L¢ # 0 and a nonzero v € L¢, there is a nonzero weight vector ¢,v € L¢r such that ¢ satisfies the

condition in Proposition 2.9.6.

EXAMPLE 2.9.8. Let ( =[-2,2,4,5,6,—3,1] and v € L is a nonzero weight vector of weight (.
Locate the collection of all the coordinates which are positive and not fixed: {(3 = 4,(4 = 5,5 = 6},
i.e. there are three coordinates with r1 = 3,79 = 4 and r3 = 5. We deal with these coordinates from
right to left. First, we deal with the rightmost coordinate (5 = 6 in this collection and apply the

step for (n —r3) = 2 times. We obtain a nonzero weight vector

(@1~ Pry)v = (P6¢5)v

of weight
C(n—TS) = C(2) = (SGSS)C = [_25 25 47 2, _3’ L, 6]

Then we work on with the coordinate {4 = Cf) = 5 and apply the step for (n — 1 —ry) times.

We obtain a nonzero weight vector

(¢n—2 T ¢7‘2)(¢n71 T ¢r3)U = (¢5¢4)(¢6¢5)v

of weight

¢On=1mmimre) — () = (5554)¢P = (s554)(5655)C = [2,2,4,—3,1,5,6].
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(4)
3

Finally, we deal with the coordinate (3 = = 4 and apply the step for n — 2 — rg times. We

obtain a nonzero weight vector

(¢n—3 T ¢r1)(¢n72 T ¢r2)(¢n71 to ¢r3)1} = (¢4¢3)(¢5¢6)(¢6¢5)’U

of weight

¢En=smnmrer) = (O = (s455)(W = [+2,2,-3,1,4,5,6].
Now the weight ¢©) satisfies the condition in Lemma 2.9.4 with Ci(6) > @ fori=>5,6,7. Moreover,
foreachi=1,--- 4, either Ci(ﬁ) < 0 or that Cz@ 18 fized.

Applying Lemma 2.9.4, we obtain a nonzero weight vector

b7(P6d7)(P50607) (Pa3)(P506) (P6Ps)v

of weight

¢ = y7(s677) (s55677)¢ " = [-2,2,-3,1, -6, 5, —4].

EXAMPLE 2.9.9. Let ( =[0,4,—1,6,—2,5,1] and v € L is a nonzero weight vector of weight (.
There are three coordinates (o =4, (4 = 6 and (g = 5 satisfying the condition that i = 2,4,6, there
is no increasing sequence i < iy < --- <1 <n such that [(;,_, — G| =1 and |G| = £%. Starting
with the coordinate with maximal index i = 6 and applying the intertwining operators, it follows

S6 S554 548382
[0,4,-1,6,-2,5,1] —— [0,4,-1,6,-2,1,5] ——— [0,4,-1,-2,1,6,5] ——— [0,—1,-2,1,4,6,5]

and by Lemma 2.9.4, it follows

S55677 5677 ) y7 )
[0,-1,-2,1,4,6,5] ——— [0,-1,-2,1,-5,4,6] —— [0,—-1,-2,1,-5,-6,4] ———[0,—1,-2,1, -5, -6, —4]

Let ¢’ =10,—1,-2,1,—5,—6,—4]. Then there is a nonzero weight vector

d7(P6d7)(P50607)(P4P302)(P504)P6v € L.

REMARK 2.9.10. For any minimal weight ( of F = Fy,, ,(V®) such that Fy # 0, let T, be the

corresponding standard tableau. Then Im(Ty) is the minimal shape Gopu Of Fop (V).

Before introducing the third property of Fmp,#(Vf), we need the following definition and lemma.
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DEFINITION 2.9.11. Let ¢ = [(1,- -+, (n) be a weight. If a coordinate (;, i = 1,2,--- ,n, satisfies

the condition that there is no © < k < n such that (;, = (; = 1, then the coordinate (; is a corner of

C.

REMARK 2.9.12. Let ( = [(1, -+ ,(n] and T¢ is the corresponding standard tableau. For i =

L,---,n, G is a corner of ¢ if and only if T(i) is a southeastern corner of Im(T¢).

EXAMPLE 2.9.13. Let ¢ = [0,—1,-2,1,—5,—6,~4]. Then (3 = =2, {4 = 1, (¢ = —6 and
(7 = —4 are corners of (. The corresponding standard tableau T has southeastern corners 3,4,6
and 7.

LEMMA 2.9.14. Let L be an irreducible and Y-semisimple representation of Hy (1, k) satisfying
Property 2.9.1. Let ¢ be a minimal weight of L such that Ly # 0. Fori=1,--- ,n, if the coordinate

2]

Gi s a corner of ¢, then (; = £ or ¢ < —5-.

2]

PROOF. First, since L satisfies Property 2.9.1, if [(;| < 5, then (; is fixed, i.e. there is an
increasing sequence i = ig < iy < -+ < iy < nsuch that |(;, — (1| =1for k=0,--- ,m —1 and
Gi,, = £%. This contradicts the fact that (; is a corner of (.

|2 ]

Second, suppose ¢; > 5. Since ¢ is a minimal weight, ¢; if fixed, which again contradicts the fact

that (; is a corner. O

Now we introduce the third property of F}, , ,,(V*).

PROPERTY 2.9.15. Let ¢ be a minimal weight such that Fr # 0. If , is the rightmost coordinate
equal to % and (. is the rightmost coordinate equal to f%, then at least one of these two

coordinates is not a corner.

PRroOOF. Let T; be the corresponding standard tableau of weight . Since ( is a minimal weight,
the shape I'm(T¢) is the minimal shape ¢ = ‘P%p,u- So it suffices to show that it is impossible for

T¢ to have T¢(k) and T¢(r) at southeastern corners simultaneously, equivalently, it is impossible
39



for ¢ to have a southeast corner at eigenvalue %2 and a southeastern corner at eigenvalue —%

simultaneously. Let p < ¢,
El+n
N

a=pq+

and
€] tn

h=—
Bp + — N

Suppose ¢ simultaneously has a southeastern corner at eigenvalue % and a southeastern corner at

|12

5 and

eigenvalue —%2, then p < ¢ and a > b follow. In this case, ¢ has cell (p,a) at eigenvalue —

|2\

cell (q,b) at elgenvalue . Furthermore, the fact that cell (p,a) is a southeastern corner indicates

&2) = &;4+1 = b. The fact that cell (¢,b) € ¢ indicates §q = &, < b. This contradicts & € P;O. O

2.9.2. Combinatorial description of irreducible representations in M. In the follow-
ing sections, let M(H,(1,k2)) be collection of )-semisimple representations of H,(1,ks) satis-
fying Properties 2.9.1-2.9.15. In this subsection, we show that any irreducible representation in
M(H, (1, k2)) is isomorphic to the image F,,,,(V*) for a tuple of n,p, u and some & € Pgo.

Let L € M(H,(1,k2)) be irreducible and ¢ be a minimal weight such that L¢ # 0. Recall, if
Gi > 0, then there is an increasing sequence k1 < --- < ky, such that ¢, , = ¢y, £1 and (,, = £%2.
The weight ¢ gives a standard tableau T; such that (j, = —contr, (k) + s for some fixed number s
where s — kg is an integer. Let Im(T¢) = v/ such that $; < vy and B,y < vg,). Let us explore
in different cases depending on corners. According to Lemma 2.9.14, if {; is a corner of (, for some
i=1,---,n,then ¢; = £% or (; < |”2| . For any minimal (, there is at least one corner of {. Let
the coordinate ¢, be the corner of ¢ such that i(r;) is the maximal of {i(7)|¢; is corner of (} and the
coordinate (., is the corner of ¢ such that i(r2) is the second largest number in {i(7)|(; is corner of (}
if ¢, exists. It is obvious (,, < (,. There are the following cases. If (,, = ‘%', then ¢, < — |”22| or
(r, doesn’t exist. By Lemma 2.9.14, if (;, = T| and ¢, = |52‘ , then ( violates Property 2.9.15.
When (., = —M, Cry < ”—2| or there is no ¢,,. When (., < —M, Cry < @ or ¢, doesn’t
exist. So let us discuss in five cases.

L7 ||

Case 1. The corner (., = 5" and the corner (., < —5-.

Denote T¢(r1) = (i1, j1) and T¢(r2) = (i2, i, ). Let jo = ig+s+ ‘Z—ﬂ In this case, set two rectangles

(a”) = ((v1 = j1)")
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and
(b7) = ((11 — j2)™).
CrLAIM 2.9.16. Following the setting above, the number v;, — j1 — ja2 > 0.

PROOF. Since (., is a corner, there exists a weight ¢ such that Lg # 0, Im(T;) = Im(T¢) and

T g(n) = (i2,Vi,), where T ¢ denotes the standard tableau given by the weight ¢. Let v be a nonzero

weight vector of weight f . Since g:n # £%2, it follows that ¢,v is a nonzero weight vector of weight

AnC. Moreover, the standard tableau T% ¢ given by 7,y satisfies that

Im(T, ¢)) = Im(Te) \ {(iz, vi,)} U {(i1 + 1, j1 + j2 — vi, + 1)}

since (’ynC~ In = —CNn. It follows that T% ¢ is a standard tableau and hence I m(T% 5) is a skew shape.

This fact forces j1 4+ j2 — vi, +1 < 1 and thus

Vie —J1 — J2 > 0.

Set €1 = (¢, - &) with
&0 = B+ v — 1 — o,
fork=1,---,i; and €3 = (552), ‘e ,51(22)) with
f/(f) = V1 — Vig—k+1,
for k =1,--- ,ip. Furthermore, set & = (&1, , &y +iy) With
& =€,

fork=1,---,4; and
2
é.k:é.]i_)i17
fork=d1+1,---,i1 + is.

REMARK 2.9.17. Claim 2.9.16 implies the following two facts.
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(1) It follows vy — j1 — j2 > 0.

(2) The inequality v1 — v;, = gz) < fz(ll) = Bi, +v1 — j1 — j2 holds and hence £ € PT.

EXAMPLE 2.9.18. Continue Example 2.9.13. An irreducible representation L in M(H7(1,—2)),

we start with a minimal weight ( = [0,—1, 2,1, =5, 0, 4] and the standard tableau of (. The

corners of ¢ are (3 = —2, (4 = 1,(¢ = —6 and {; = —4. Furthermore, (;, = ¢4 = 1 and
C’I"Q = C3 = -2
J1 J2 s= -2
5 6 v=(5431)
----- B=(3,3)
. 7FJ
X : v =35
2 i1=4, 51 =1

1:2 3
i1 | 4 N ig =3, ja=2
1

Place the southeastern corner of ((v1—j2)™) at the cell (i1, j1) and northeastern corner of (vy — j1)%

at the cell (1,v1). The gray part on the left forms €D and the gray part on the right forms (z)3.

J1 Vi

T 6 (a?) = (4%)
--------- (%) = (3%)

: 7 l» e = (5,5,2,2)
£® =(2,1,0)

1

2

-1 =2

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N =p4+q=7,p=3

_a=b _ 1
and p = =z
£=1(55,2,2,2,1,0)
k—050 a
“““ g(l) . T 5(1)
p
q ................................ sl o e
®3 l
5(2)
Case 2. The corner ¢, = —% and the corner (., < —@.

Denote T¢(r1) = (i1, j1) and T¢(r2) = (i2,v4,). Let jo = io+s— |2—2| In this case, set two rectangles

(a”) = ((v1 = j1)")
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and
(09) = ((v1 = j2)™).
We have a similar claim to Claim 2.9.16.

CrAM 2.9.19. Following the setting above, the number v;, — j1 — jo2 > 0.

The proof is the same with the proof of Claim 2.9.16.
Similarly, let &) = (fil), e ,51(11)) with

5;5;1) = B +v1 — j1 — jo,
for k=1, i and €@ = (¢?,...  ¢2)) with

@ _
N Vig—k+1;

for k=1,--- ,iy. Furthermore, set & = (&1, , &y +i,) With
& = 5,2”,

fork=1,---,i1 and
gszj(f_)ilv

for k=141 +1,---,i1 + do.

EXAMPLE 2.9.20. Let L be an irreducible representation in M(Hz(1,—2)) with a minimal weight

¢=1[-1,1,0,—-2,1,-5,-3] and the standard tableau of . The corners of ¢ are (4 = —6,(g = —4
and (7 = —2. Furthermore, ¢, = (5 = —1 and (py = (7 = =3
1 J2 j s=—1
v=(54,3)
B=(4,1,0)

12

i1

i1=3,j1=3
i2=2,j2=0
Place the southeastern corner of (b) at the cell (i1,71) and northeastern corner of (aP) at the cell

(1,21). The gray part on the left forms D) and the gray part on the right forms (z)3.
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T 6 (a?) = (2%)

<<<<< a0 a0 of oo - 4y — (53

§ 1 47 (b9) = (5%)
e el - eM = (6,3,2)
11 : 2 3 3 _3 5(2) = (1,0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N =q+p=5,q¢q=3

_b=a _ 3
and p = > = %.
b a— £=(6,3,2,1,0)
T ““““ g(l)é ....................... I)
‘j 4444444444444444 @3]
Case 3. The corner (,, = % and the corner (,, doesn’t exist. Let j = s+ @ Then the cell
0, ) on the diagonal of weight —lral e explore the following in two subcases.
2

Case 3a. j > 1. Set two rectangles
(a”) = (")
and

(v = 01,

Moreover, § = (§1,° -+, &) With & =11 +j and & = B—1.

EXAMPLE 2.9.21. Let L be an irreducible representation in M(Hz7(1, —2)) with a minimal weight

¢=1[-1,2,1,0,3,2, 1] such that L # 0. There is only one corner (; =1. So

|2
G =Gr=1="2
The standard tableau of ¢ is as follows.
-1
‘ J
0 s=1
: v=(3,3,3)
_J 1 B =(2,0,0)
2:3:4
L l(v) =3
5:6:7 j=2

44



The two rectangles are (aP) = (2') and (b9) = (3%). Place the southeastern corner of (b?) at

Te(r1) = Te(7) and the northwestern corner of (a?) at the cell (0,11 +1). The gray area forms &.

J vy ‘+1
0 HEERN ] (@?) = (21
i1 (") = (3
2 34 €= (5,2,0,0,0)
5:6:7

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N =p+q=5,p=1

and p = L;,b = —%.

§=(5,2,0,0,0)

Case 3b. j < 0. Set two rectangles
(a?) = (11)

and
(7)) = (1 — 5 + 1)),

Moreover, § = (&1, , &) With & =v1 —j+2and § = Br1 —j + 1.

EXAMPLE 2.9.22. Let L be an irreducible representation in M(Hz7(1, —2)) with a minimal weight
¢=1[0,-2,-1,1,2,0, 1] such that Ls # 0. There is only one corner ¢z = 1. So
|2

The standard tableau of ¢ is as follows.
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0 s=—1

5 v=(2,222)
B =(1,0,0,0)
1:3
l(v) =4
4:6 i=0
5 7

The two rectangles are (a?) = (1') and (b9) = (3%). Place the southeastern corner of (b?) at

Te(r1) = Te(7) and the northwestern corner of (a?) at the cell (0,11 + 1). The gray area forms &.

o NI | (") = (1)
(v7) = (3%)
£ = (4,2, 1,1, 1,0)

G
O IWIN

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = p+ q¢ = 6,

pzlandu:%:—%.

—b— a | £=1(4,2,1,1,1,0)
- B

Case 4. The corner ¢,, = —@ and there is no corner (.,. Set j = s— @ Then the cell (0, j)
is on the diagonal of weight @ Let us discuss in two subcases.

Case 4a. When j > 1. Set two rectangles
(a”) = (")

and
(b7) = (1,1,
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Moreover, § = (§1, -+, &) With & =11 +j and & = B—1.

EXAMPLE 2.9.23. Let L be an irreducible representation in M(Hz7(1,—2)) with a minimal weight

¢=104,3,2,-2,1,0, — 1] such that L; # 0. There is only one corner ¢z = —1. So

|2
Gy =Cr=-1= Ty
The standard tableau of  is as follows.
1
J s=3
0 v = (6,6)
B =(5,0)
4
- L(v) =2
1:2:3:5:6:7 j=2

The two rectangles are (a) = (2') and (b9) = (63). Place the southeastern corner of (b%) at

Te(r1) = T¢(7) and the northwestern corner of (a?) at cell (0,1 +1) = (0,7). The gray area forms
£.

~ : (a?) = (2"
NNE (b7) = (6%)
1:2:3:5:6:7 £=(8,5,0,0)

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N = q+ p = 4,

q=3 (md,u:b*Tazl.

b—————k—a— £=(8,5,0,0)

k—— @ —

Case 4b. When j < 0. Set two rectangles

(a”) = (11)
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and

(b9) = ((n —j + 1)),

Moreover, § = (§1, -+, &) With & =v1 —j+2and § = Br—1 —j + 1.

EXAMPLE 2.9.24. Let L be an irreducible representation in M(Hz7(1, —2)) with a minimal weight

¢=1[0,-1,2,1,-2,0, — 1] such that L¢ # 0. There is only one corner (7 = —1. So

|2
Crl =(¢=-1= *7-
The standard tableau of  is as follows.
J
0 s=1
125 v =44
B = (170)
3:4:6 7
l(v) =2
j=0

The two rectangles are (aP) = (1') and (b?) = (5%). Place the southeastern corner of (b9) at

Te(r1) = T¢(7) and the northwestern corner of (a?) at the cell (0,11 +1). The gray area forms .

J vy +1

ol s 5 & | (a?) = (1Y)
(b9) = (5°)

§£=1(6,2,1,0)

N IN
=3 Ot

Furthermore, we obtain other parameters of Etingof-Freund-Ma functor as N =q+p=4,q¢q=3

andu:b_Tazl.

b—— a | §€=(6,2,1,0)

@. Let j1 = v +M+Cr1 and jo = v, . sy + (ry. Set two
2 2

Case 5. The corner ¢, < — ") )

rectangles

(@) = ((n = 1))
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and

(b) = (1 = j2)'™)).
CrLAM 2.9.25. According to the setting above, the number vy, — j1 — jo > 0

PROOF. There exist a weight ¢ such that Lg # 0, Im(T) = Im(T¢) and Tx(n) = (((v), ve())-

_ Ik2|

Let v be a nonzero weight vector of weight ¢. Since G < —55

, we obtain a nonzero weight vector

¢nv of weight 'yn(f . Moreover,

Im(T,, £) = Im(To) \ {(E0). vi)} U L(E0) +1,2600) — vy + 25+ 1)},

Since Im(T%E) is a skew shape, it follows 2£(v) — vy, +2s+1 < 1. Applying j1 = vy + |';—2| +¢ry

and ja = vy(,) — @ + Gry» the statement vy, — j1 — ja2 > 0 follows. g

W= B+ v — i —
fork=1,--- 7£(V)a 5(2) = (59)? T ’52(212)) with

51532) = V1 = Vov)—k+1

for k=1, l(v) and £ = (&1, -+, §orr)) With

& =€)
for k=1,---,¢(v) and
_ 2
& = Eku(u)

for k=4(v)+1,---,2((v).

REMARK 2.9.26. Claim 2.9.25 implies the following two facts.

(1) It follows vy — j1 — j2 > 0.
2) The inequality v1 — vy, = 2) < f(l) =11 — j1 — jo holds and hence £ € PT.
) 1 2(v)
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EXAMPLE 2.9.27. Let L be an irreducible representation in M(Hz(1,—2)) with a minimal weight
¢ =1[-2,-1,-5,-6,-3, -4, 2] such that L¢ # 0. The corners of ( are (4 = —6, (¢ = —4 and
(7 =—2. So (, = (7 = —2. The standard tableau of ¢ is as follows.

3 4 s= -3
15 6 v=(4,3,2)
3 B =(2,0,0)
2.7 vy =3
-1 -2

The two rectangles (aP) = (33) and (b?) = (53) follow. Place the northeastern corner of (aP) = (33)
at the cell (1,v1) and the southeastern corner of (b9) = (5%) at the cell (L(v),l(v) + @ +s. The

gray area on the left forms €Y and the gray area on the right forms (z)3.

(a?) = (3%)

(") = (5%)
M = (6,4,4)
£® =(2,1,0)

So the three shapes (a?), (b%) and & are set as follows. The other parameters of Etingof-Freund-Ma

functor are set as N =6, p=3 and p=1/3.

§=1(6,4,4,2,1,0)

oy [ |

—— = —f

REMARK 2.9.28. When we fix the number n, for different input (£, N,p, u), we get isomorphic

H,,-modules. Consider the following example of representations of Hs(1,—1).
Let £ =(3,3,2), N=4,p=1 andu:—%.
In this case,a = pq + \él% =2andb=—up+ lﬂ% = 3. Then the image F = F371,_i(V5) is an

Hs(1, —1)-module with the following minimal shape gog L1 =1(5,3,3)/(3,3,2).
Ty
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[N

Then the basis is indexed by the standard tableaux on the skew shapes: (5,3,3)/¢, (4,3,3,1)/¢ and

(3,3,3,2)/¢. There is a minimal weight ¢ = [% f%, f%] such that Fr # 0. Now let us recover a func-

tor Fy v such that Fmpfyuf(Vg/) is an Hs(1,—1)-module with a minimal weight ¢ = [}, -5, —1].

According to Case 1, (a’') = (31), (t'7) = (32), & = (4,2,0) and i/ = 0.

%)Q\
Y
<}
|
[N

N

2.9.3. Other Y-semisimple representations. The image of the Etingof-Freund-Ma functor

does not exhaust all the Y-semisimple representations. The following are two examples of Y-

semisimple H,, (1, k2) representation which are not in M(H, (1, k2)).

EXAMPLE 2.9.29. Obviously, the representation obtained under the Etingof-Freund-Ma does not

contain a weight vector of weight ¢ with —% <(p < %

Consider the representation of Hs(1,—6) generated by the weight vector of weight [1,2,—3].

This representation has the following characters:

o1



[-3,-2,-1]

[—3,-2,1]
mo J
[-3,1, 2]
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CHAPTER 3

Degenerate double affine Hecke algebras of type C

3.1. Generators and relations of dDAHA

The degenerate double affine Hecke algebra H,,(u, k1, k2, k3), which we also denote by dDAH A,

is an algebra over C with parameters u, k1, ko, k3 € C, generated by
S1, 7Sn7177n7Xit7"' 7X7:Ltay17"' y Yn

with the following relations in addition to relations (2.1)-(2.4).

(3.1) (X3, X5 = [yi, 9] =0,

(3.2) [si, X;] = [si,y;] =0, for j #4,i+1,

(3.3) [Yn: X1 = [, y5] = 0, for j #n,

(3.4) 8;X; = Xjy184, fori=1,--- n—1,

(3.5) Y Xn = X ',

(3.6) SiVi — Yir18; = k1, fori=1,--- n—1,

(3.7) Vn¥n + Ynn = k2 + ks,

(3.8) [y, Xi] = k1Xjsij — lej_lsijfywj, for i < j,

(3.9) i, Xi] = uXi — k1 Y Xpsir — k1 > X sawviye — (ka2 + ks) X; i — by,
k> k>

where s;; denotes the element in Weyl group W which flips ¢; and €;41 and +; denotes the element

in W sending ¢; to —e;.

3.1.1. Y-semisimple representation of degenerate DAHA. We define the definition of
Y-semisimple representations of a degenerate double affine Hecke algebra H,(u, k1, k2, k3) as fol-

lows: Let Y = Cly1,- -, yn] be the commutative subalgebra of the degenerate affine Hecke algebra
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H, (u, ki, ko, ks). Let L be a representation of Hy(u, k1, ks, ks). For an n-tuple ¢ = ((1,---,(n),

define the simultaneous generalized eigenspace as
LI ={v e L|(yi - ¢i)*v = 0 for some k> 0 and for all i = 1,--- ,n}.

Since the polynomial algebra ) is commutative, its representation L decomposes to a sum of

simultaneous generalized eigenspace, i.e. L = @ L‘Ze”' Similarly, define the simultaneous eigenspace
LC = {U € L|yZ'U = C’ZU for all 7 = 1,. .. 7n}.

DEFINITION 3.1.1. If a degenerate double affine Hecke algebra representation L decomposes to
a sum of simultaneous eigenspaces as a Y-module, i.e. L = @®¢L¢, then L is Y-semisimple. If the
subspace L¢ # 0, then call ( weight of the representation L, L the corresponding weight space and

any nonzero element v € L¢ weight vector of weight .

3.1.2. Another set of generators of dADAHA. Let v; = 5;Si4+1 "+ Sn—1YnSn—1 - Si+15; for

1=1,---,n.
LEMMA 3.1.2. It follows that X171 = 71X1_1.

PRrROOF. Applying X;s; = $;Xi11, Xijrllsi = sZ-Xi_1 and X, v, = 'ynX,jl, then it holds that

Xy =Xu81 Y-+ 81
:S:[XQSQ""}/”"‘S:[
=581 Sp1XnYn - 51

-1
:Sl...r)/an Sp—1-""81

LEMMA 3.1.3. It holds sjy1 = v185, j > 2.
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Proor. Apply the relation sjs;j_15; = sj_15j5;_1, it follows

i1 = 8i(51 Yn -+ 51)
= 51 8j_9(815j_18])841" Yo" 81
:Sl"’Sj—Z(Sj—lstj—l)Sj—‘rl"'f}/n"'sl
81 8j_98j 181841 A Sj41(8j-1878j-1)Sj_2 - 81
=51 Y Sj+1(858j-185)Sj-2 - 51
= Sy n e 8j41515i-18j—2 - 518

= 71S;-

LEMMA 3.1.4. yy; = yjm — kimisi; + kisi 7, j > 2.

Proor. First, applying the relation y;_15;_1 — sj—1y; = k1, it follows

V1Y = S1° Yoo (8j-1Y5)8j—2 81
:Sl..."yn...(yj_lsj_l)sj_2...sl_klsl..."Yn...s‘]sj/\_ls‘]_2...81
=81 Sj—Q(Sj—lyj—l)Sj o Ynes1— kiyisyg,

Where 31 “ . PYTL © e stjA—lsj—Q o e 31 = ’71(81 o e Sj—l “ e 81) = ”}/1817‘7.
Applying the relation s;_1y;—1 — y;js;—1 = k1, it follows
81+ 8j-2(8j-1Yj—1)8j -+ Yn -+ 51 — k17151
:Sl-..sj_2(y]8]_1)sj-.."}/n...sl—"—klsl..-SJ_QS]A_lS]..-"yn.--sl—klfylsl"j

=y;n + kis1,;m — kivisy;-

LEMMA 3.1.5. my1 = —y1mim + k1 D27 _g 81,57 + k1 D _j_g 71515 + (k2 + k3).
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Proor. Applying s;jy; — yjy15; = ki for j=1,--- ,n—1,
VIYL = 81 Yn - S2y251 + k171512

n
=81 VYnYnSn—1--" 81+ E k1v181,5-
i=2

Applying the relation v, y, + ynyn = k2 + k3, the above computation continues as

n
= =S S 1YnTn- ST+ (ko k) + ) kimisy.
j=2

Applying the relation s;_1y; — yj—15j—1 = —ki1 for j = 2,--- ,n, it follows that

n
— 81 e STL—lyTL’YTL oo 31 —|— (]{2 + kg) + Z kl'}/lsl,j
j=2

n n
=—ym+ Z kis1jv1 + (k2 + k3) + Z kiyisi,;-
j=2 3=2

Let sg := X171 = X181+ -7, ---s1. Then we have the following relations.

LEMMA 3.1.6. The element sqg satisfies

(3.10) st =1,
(311) [SO?Sj] = [307yj] = 07 fOT’j = 27 N
(3.12) soy1 — (u—y1)so = —ka.

Proor. By Lemma 3.1.2, 3(2) =XimXim = ’Yle_le’h =1.
By Lemma 3.1.3, sos; = X1715; = X15;71. Moreover, by (7), X1sjv1 = s; X171 = s;50, for j > 2.
By Lemma 3.1.4,

soyj = X17mY;
= Xiyjm + k1X1s171 — ki X171815.
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Applying the relation y; X1 — X1y; = k1 X151,; — k1X151,717;, the above computation continues
Xiy;m + k1 X117 — ki Xins1;
=y; X1m — k1 Xasiym + ki Xa Xasiymyn + kiXasim — kiXavsy

=Yjso,

applying v17v; = ;71 and y181,; = s1,;7; in the last step.
By Lemma 3.1.5,

soy1 = X171y

n
= —Xiyim + k1 Xy Z 51,571 + k1X1 Z’Ylsl,j-
=2 j=2

Applying the relation

n n
X1 — Xy = uXy — ki X0 Y sy — kX1 Y sy — (ke + k) Xam — ko,

=2 j=2
the computation above continues
n n
= — X +uXam — kX (D sigm —kiXa Y s — (ke + ka) X1 — ke
j=2 J=2

n n
+h1 > Xisigy + (ke + k) X1+ k1 Y Xiyisy
i= i=

= — Y150 + usg — ka.

Then (3.12) follows. U

PROPOSITION 3.1.7. Degenerate double affine Hecke algebra Hy(u, ki, ko, k) is generated by

80581, »Sn—1,Vn, Y1, * ,Yn with relations.
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PROOF. Define a homomorphism of algebras f from degenerate double affine Hecke algebra

Hn (’LL, k‘l, kg, kig) to itself.

f : Hn(ua k17k27k3) — H’I’L(u7 k17k27 k3)
Si = S;
Yi = Yi

Xi b Sim1+ 818081 Yn " Si

O

3.1.3. Etingof-Freund-Ma Functor. Let A\ € C and L, denote the vector field on GLy
generated by the left action of z € gly. Let D*(G/K) be the sheaf of differential operators on

G/K twisted by the character A\x of t = gl, x gl,. The Etingof-Freund-Ma functor F;L\% . sends a

DMNG/K)- module M to a representation of degenerate double affine Hecke algebra H,, (u, k1, ko, k3),

where 41 is a parameter in C. The underlying space F,, (M) of the representation of Hy, (u, k1, k2, k3)

is constructed as

FTi:pa,U(M) = (M ® V®n)t0hu‘

Then for k =1,--- ,n, define the actions of X} and y; as follows:

Xi =Y (AJAT')i; @ (Eij)k,

]

where (AJA™1J);; is a function of A for A € G/K, taking the ij-th entry of AJA™LJ, instead of

ko + k3 k1 k1

k1

Yk, define the action of y, = yr — 2

gk =Y Li, ® (Eji)k.
ilj

THEOREM 3.1.8. [5/The actions of W, Xy and i defined above makes the invariant space

Fg‘,p#(M) a representation of degenerate double affine Hecke algebra Hy(u, k1, ko, ks) with param-

eters

2n
=5 TO+pla—p), k=1 k=p-—qg=AN, k=QA-pN

We will compute the image of A*(G/K) under the functor in the following sections.
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3.2. Invariant space

Before computing the invariant space Fﬁ\,pM(A/\(G /K)), we introduce the combinatorial tools

we use, skew shapes and standard tableaux.
3.2.1. Integral dominant weights and skew shape. Now let us identity a pair of integral

dominate weights v/ with a skew shape. Let v = (v1,--- ,vy) and 8 = (B4, , Bn) with

Vi 2 2 UN;

Br > > Bn;

VlZ/BM/L:]-u )N°
Let 7 be the skew shape with 7 C Z x Z and
T={I,m)1<I<N,5+1<m<y}.

Furthermore, define the content of a cell (I, m) to be m—1[. For instance, a pair of integral dominant
weights v/ denotes a basis element with v = (2,2, —2) and 8 = (1,1, —3), then define the skew 7
be the collection of cells (1,2), (2,2), (3,2) and (4, —2). Let |v| = SN v; and |8] = 3N, 8;. Let

(1,2)

2.2)

(3,2)

(4,-2)

FIGURE 3.1. Skew shape 7 = (2,2 —2)/(1,1,-3).

7| denote the cardinality of 7, then |7| = |v| — |8] = 32N, (vi — Bi).

Let 7 be a skew shape defined above with |7| =n. Let T': {1,--- ,n} — 7 be a bijective map

T:{1,---,n} =71
k= T(k) = (i(k),j(k)),
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4

FIGURE 3.2. A standard tableaux on the skew shape 7 = (2,2 —2)/(1,1, —-3)

wherei: {1,--- ,n} — Zis a function denoting the row number and j : {1,--- ,n} — Z is a function
denoting the column number. Then T is called a tableau on 7, namely Im(T') = 7. If both i and j

are increasing, then T is called a standard tableau on 7.

3.2.2. Computation of A G/K). Let A(G) be the collection of all the analytic functions
f on a small open set U C G. Then A(G) has a G x G-module structure and it follows
AG) = P viev?,
BepP+
where §* is the dual of 3, i.e. ff = —fn_iy1. Let [B] = Zfil Bi. Then |B*| = —|B|. Let
AMG/K) be the collection of all the analytic functions f on a small open set U C G such that

%hzo f(Aet?) = Ax(2) f(A) for any z € ty, where ty denotes the space of traceless matrices in t and

A€ G/K. Then as a left G-module, we have the following decomposition for A*(G/K),

A)\(G/K) _ @ Vﬁ ® (Vﬁ*)’to,)\X’
pepP+t
where the G acts only on V# and (V8")%*X only gives multiplicities.
Moreover, by Proposition 2.4.3, it follows that (VA")toM =~ Homt(lw,Vﬁ*), where 1, is a one-
dimensional character of Lie(K) = t and 1, = (Ag + |’B—J\;')trp + (=Ap + |ﬁTﬂ)trq. According to
Okada’s theorem [15], the dimension of the space (V7")0AX is either 1 or 0 and the dimension is
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nonzero only when the dominant integral weight 5* satisfies the following conditions:

Bz* Zma.’B(S,t), t=1,2,--,p;
Bf=t, i=p+1l,--,q

By_iz1 =s+t— B <min(s,t), i=1,---,p.

where s = A\q — %‘ and t = —Ap — % Then [ satisfies the conditions accordingly:
(3.13) Bi > —min(s,t), i=1,2,--- p;
(3.14) Bi=—t, i=p+l-,q
(3.15) BN—it1 = —s—t— i < —max(s,t), i=1,---,p.
REMARK 3.2.1. (1) It suffices to consider the case when both s and t are integers, other-

wise (V" )oAX =0,

(2) The character 1y of t depends on |5*| = —|B|. For each given number |B| such that both s

and t are integers, we compute B satisfying (3.13)-(3.15).

Let B, denote the collection of dominant integral weights 5 such that |3| = ¢ and j satisfies
(3.13)-(3.15). Let B = Uccc Be, where C denotes the collection of numbers ¢ such that both Ag —

c

and —Ap — & are integers. Then we conclude that AMG/K) decomposes as follows

ANG/K) = DD V).

ceC BEB.

We will show in the following sections that for each ¢ € C, ((Dsep, VA @ Vel forms a
representation of H,,(u, ki, ko, k3).

Let us see the following example of computation of g € B, for some ¢ € C.

EXAMPLE 3.2.2. Let G be GLy and p =1, i.e. K = GLy x GL3 and t = gly x gly. Consider
DYG/K) be the sheaf of differential operators on G/K, twisted by the character x, i.e. local

sections of D*(G/K) act on x-twisted functions on G /K which are analytic functions f on a small

open set U C G such that %hzof(AetZ) = x(2)f(A), for z € t. Now compute 3* such that (V5" )tox
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1S monzero.

Fiz c = |p*| = Z?:l B =0, then

|5*| |5*|
B B VS (e R
s=AME Ty =3 PN

Thus we obtain B* satisfying the following conditions:

Then the corresponding B satisfies:

(3.16) B> 1;
(3.17) B2=pP3=1
(3.18) foa=-2-p1 <=3

So By = {B € PT|B satisfies (3.16) — (3.18)}.

3.2.3. Computation of the invariant space F7i‘7p7M(A>‘(G/K )). From last subsection we
obtain AMNG/K) = D.cc(Dses, V#). In this subsection, we compute for each ¢ € C' the (to, 1)
invariant space

(VP @ Ve,
then the image Fg‘,p,M(A)‘(G/K)) = @cec(@ﬁeBc(V’B ® Ven)ton),
According to Proposition 2.4.3, for each 3 € B., the (tp,p) invariant space (VZ @ V&)t ig

computed by

(VP @ VOmor = Homy (1, Resf;N Ve vem)

~Homy(1g, Res?™ VP @ VE),
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where 1y is a one-dimensional t-module related to the character uy of ty and

c+n c+n
192((uq+T)trp+(—up+ ~ )tr.

Then the integral dominant weight v such that the irreducible summand V of V? @ V®" with
Hom(1y, V") # 0 satisfies the following conditions:

(3.19) v; > max(a,b), 1=1,2,--+,p;

(3.20) vi=b, i=p+1l--,q

(3.21) UN—i+1 = a+b—v; <min(a,b), i=1,---,p,

where a = pgq + C‘FT” and b= —up+ ‘J‘FT” Then there exists a basis of the invariant space
P (v vem)or
BEB.

which is indexed by the collection of standard tableaux on skew shapes v/8 such that 8 C v,
satisfies (3.13)-(3.15) and v satisfies (3.19)-(3.21).

Continue with Example 3.2.2, where p =1, u = —1 for each [ satisfying

B1 > 1;
P2 = B3 = 1;

54:_2_51 < _37
we compute the (fo, 1) invariant space

(V’B ® V®n)’to,u

=Hom(atr, + btr, Resf[N Vi ® Ve,

where a = pg + § = —2 and b = —pup + § = 2. Then by Okada’s theorem [15], the dominant
weight v such that the irreducible summand V¥ of V# @ V& with Homy (det® X det®, V¥) # 0
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satisfies the following conditions:

(3.22) v 22,
(3.23) Vo = v =2,
(3.24) vy < =2,

and thus there exists a basis of the invariant space BB, (VP@V®n)ot indexed by the collection of

standard tableaux on skew shapes v/ such that 3 satisfies (3.16)-(3.18) and v satisfies (3.22)-(3.24).

REMARK 3.2.3. We have the following facts for the vector space @BeBC(Vﬁ @ Ven)ton,

(1) The number of cells in row i such that p+1 < i < q equals b+t and the sum of the
numbers of cells in row i and row N —i+ 1 equals a +b+ s+t for 1 <i <p. Moreover,

the numbers b+t and a4+ b+ s+t do not depend on || = c.

(2) We only consider the image when b+t >0, i.e. —p(p—+\)+ § > 0. Otherwise § ¢ v for
all B satisfying (3.13)-(3.15) and v satisfying (3.19)-(3.21) and hence the invariant space
A A —
Fpp (ANG/K)) = 0.

(3) Similarly, we consider the image when a +b+ s+t >0, i.e. (g—p)(p+ )+ 3¢ > 0.
Otherwise 8 ¢ v for all B satisfying (3.13)-(3.15) and v satisfying (3.19)-(3.21) and hence

the invariant space F,, ,(AMG/K)) = 0.

3.2.4. A skew shape. For the functor F,f‘,pw and a number ¢ € C, we associate a skew shape
T. to the vector space @BGBC(Vﬁ ® V®n)t0,u.

Let us define 7. in different cases.
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Case 1. If t < s and b < a, then —t < a and —s < b. Set v. and (. as follows.

(Vc)i:a'a Z:1727 » D5
(Vc)i:by l:p—i_laaqv

(VC)N—i-i-l = b; 1= 17' P

and

Let 7. = v./fe.
Case 2. If s < t and a < b, then we have three subcases.

Case 2a. If b+s>0and a+1t > 0, set v. and S, as follows.

(Vc)i:b7 121727 , D3
(VC)i:b) /L:p+1)7Q7

(VC)Nfl?Fl:au Zzlvap

and
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Let 7. = v./fe.
Case 2b. If b+ s <0 and a+t > 0, set v, and (. as follows.

(Vc)i:_s7 1= 1727”' » P;
(VC)i:b) Z:p+1)7Q7

(VC)N7i+1:a+b+Sa Z:]-vap

and

Let 7. = v./fe.
Case 2c. If b+s>0and a4+t <0, set v, and B, as follows.

(ve)i=b, i=1,2,--p;
(ve)i=b, i=p+1,--,q;
(Ve)N—it1 =a, 1=1,---,p
and
Be)i=—a—s—t, i=1,2,--- p;
(Bc)i:—t, i=p+1,--,q;
(Be)N—it1=a, i=1,---,p.

Let 7. = v./fe.

Case 3. If s < t and b < a, then we have the following two subcases since b + ¢t > 0 and

a+b+s+t>0.
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Case 3a. If a+ s > 0, set v, and . as follows.

(Vc)i:a'a Z:1727ap7

(Vc)i_by l:p—i_laaqv

(VC)N—i-i-l = b; 1= 17' P

and

» D-
Let 7. = v./Be.
Case 3b. If a + s < 0, set v, and 5. as follows.
(Vc)i:_s> Z:LQa’pa
(Vc)i:b7 Z:p+177Q7
(VC)N—i+1:a+b+37 Z:177p
and
(/Bc)z = —S, 1= 1727 y D3
(60)2 _tv Z:p—i_la)(L
(5C)N—i+1 =—t, 1= 17 ,D-

Let 7. = v./fe.

case 4. Ift < sand b < a, then we have the following two subcases since b+t > 0 and a+b+s+t > 0.
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Case 4a. If a+ s > 0, set v, and . as follows.

(VC)i:b7 ’L:17277pa

(VC)i:b7 Z:p+177q

?

and

Let 7. = v./fe.

Case 4b. If a + s < 0, set v, and . as follows.

and

Let 7. = v./fe.

3.2.5. Moves on 7.. Our goal is to recover from 7. all the skew shapes v/ such that 5 C v,

B satisfies (3.13)-(3.15) and v satisfies (3.19)-(3.21). Now let us define two moves on a skew shape
T =v/p with N rows:
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B-move Let 8/ € PT and 8/ = 8+ €¢; — ex—_i+1. The B-move on 7 = v/f3 gives a new skew shape
7' =v/3. We denote 3-move by
T B /

T

v-move Let v/ € PT and v/ = v + ¢; — ey_;+1. The v-move on 7 = v/ gives a new skew shape

7" =v'/B. We denote the v-move by

ExaMPLE 3.2.4. Continue with Example 3.2.2 N =4, p=1, A=1 and p = —1.

70 =(2,2,2,-2)/(1,1,1,-3)

an
= N
4 -

[ 1] | o N

F1GURE 3.3. [-move and v-move

Let D" denote the set of skew shapes obtained by applying S-moves and v-moves on 7. for finitely
many times. Then D" consists of all the skew shapes v/ such that 8 C v, A satisfies (3.13)-(3.15)
and v satisfies (3.19)-(3.21).

THEOREM 3.2.5. Let Tabi"“ denote the collection of standard tableaux T such that the shape

Im(T) € D2*. There is a basis of the invariant space

@ (V’B ® V®n)t°’“
BEB.

which is indexed by Tabp*.
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3.3. Y-actions

In [5], the linear operator g, on the invariant space is defined by g = >_; ; Li; ® (Eji). Consider
AMG/K) as a left G-module, then we have g- f(A) = f(g ' A) for each g € G and A € G/K. The

action of L;; is defined as

Lij : f(A) = LEij ) f(A)
- %’tzof(etEijA)

d 4R
- %’tzoe P f(A)

= —Eij - f(A).

Then the linear operator g acts on F,;\7P7M(A>‘(G/K)) by —E;; ® (Ej;)k, which is the same of the
action of g in the degenerate affine Hecke algebra case. Thus we apply Theorem 2.5.3 to compute
the YV-action. Let T € T ab?’” and v is a basis element indexed by the standard tableau T. It

follows that ¥, acts on vy by the scalar

T c+n N pulp—q)
— —contp(k N Mr—9)
G = —eontr (k) + == =5 2
So wr is weight vector of weight ¢*' = [¢],---,(}] and we conclude that @, 5, (VP @ vemlonjs

a Y-semisimple representation of H,(u, k1, k2, k3).

ExaMPLE 3.3.1. Let us consider FExample 3.2.2 and T € Tabi:(l)ﬁl. Then the action of yi is

computed by the content of k.

2 2

3 3
oo

1 4

4

FIGURE 3.4. A standard tableau T' of shape 79 = (2,2,2,-2)/(1,1,1,—3)
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3.3.1. Degenerate double affine Hecke algebra ﬁn(u, k1, ko, ks). For the ease of combi-
natorial description, we take a different presentation of the degenerate double affine Hecke algebra.

Let W, be the affine Weyl group of type C,, generated by ~i,s1,--- ,Sp—1,Sn With the following

relations:

(3.25) s?=1, fori=0,1,---,n,

(3.26) 8i8i+18; = 8;+18iSi+1, fori=1,--- n—1,
(3.27) 50515081 = 51505150,

(3.28) SnSn—15nSn—1 = Sn—15nSn—15n,

(3.29) sisj = s;8;, for |i — j| > 1,

where we take the notation v; = sg.

Let I:In(u, k1, k2, k3) be the degenerate double affine Hecke algebra of type C, generated by

50,51, ySn—1,5n,Y1," ", Yn

with the relations (3.25)-(3.29) and additional relations:

(3.30) soy1 + Y150 = ko + k3,

(3.31) Sili — Yir18i = —k1,i=1,--- ., n—1
(3.32) Sn¥n — (U — Yn)sn = —ka,

(3.33) YilYi = Yj¥Yis

(3.34) SiYj = YjSi,J # 4,1+ 1,

(3.35) s0Y; = ¥js0,J # 1,

(3.36) SpYj = YjSn,J # n.
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There is an isomorphism between H,,(u, k1, ko, k3) and ﬁn(u, k1, ko, k3)
0 :Hy(u, ki, ko, ky) = Hy(u, by, ko, k)
S Sp—g,t =1, n—1
S0 > Sn,
Sp > S0

Yi = 3/n—z‘+17i = 17' RN
Moreover, we take the following notations:
(3.37) Y—i = —Yi
(3.38) Yk(2n+1)+i = k- u £y,

where i = 1,--- ,n. Let 2, = Z\ {k-(2n+ 1)|k € Z}. In this way we define y; for i € z,. In
particular, u — yn = Y2nt1)—n = Ynt1. We also take the convention yy.(2,41) = Yr.(2n+1)-1- Then

the relations (3.30)-(3.32) are written by

(3.39) 8iYi — Yi+18i = —Uq,
where
ko+ ks, =0
(3.40) ui = 1§ ki, i=1,---,n—1
ko, i=n.

3.3.2. Representations of f[n(u, k1, ko, ks). A representation p of Hy(u,k1,ks, k3) on M

induces a representation p of H, (u, k1, ko, k3) on M by

ﬁ(sl) = P(Sn—i)7i = 07 17 e, N

~

p(yz) = p(yn_i+1)77; = ]_7 cee M.
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Moreover, if M is a Y-semisimple representation of H,(u, k1, ke, k3), then M is also Y-semisimple

as a representation of fIn(u, k1, ko, ks). Let v € M be a weight vector of weight ¢ = [(1, 2, , (p]
as a representation of Hy,(u, k1, k2, k3), then v € M is also a weight vector of weight (= [61, e ,Q:n]

as a representation of H, where é, = Cn—it1-

Hence the Y-semisimple representation €Pgc BC(VB ®@ VOl of H,(u, ki, ks, ks) is also a Y-
semisimple representation of f[n(u, k1, ko, ks). Let 7 = v/8 be the shape Im(T) of the standard
tableau T with v = (v1,--- ,vy) and 8 = (B1, -+ ,0n). Now we associate a standard tableau T
to T as follows. Let # € Pt such that #; = —vy_;41 and 3 € P* such that 3; = —Bn_s41. Then

v C B and set a new skew shape 7 = B/ﬁ Define a tableau 7 by

N

T: {1,2,--- ,n} =71

k= (N—-in—k+1)+1,-j(n—k+1)+1).

It is not hard to see that T is also a standard tableau. Let f)? " be the collection of skew shapes
{#|7 € D2} and f&;j’“ be the collection of standard tableaux {T|T € Taby™} which consists of
standard tableau T such that Im(T) € D2*. Then @ e 5. (VP @ VEM)0l as a representation of
ﬁn(u, k1, koks) has a weight basis indexed by @j’“. Similarly, we define B-move and P-moves:
B-move Let B’ € P* and B’ = B + € — en—it1. The B—move on 7= 19/3 gives a new skew shape
# =0/B. We denote -move by

A B

T .

v-move Let 7/ € PT and ¥/ = 0 + €¢; — ey _;+1. The v-move on 7 = /3 gives a new skew shape

# = '/B. We denote the P-move by

R % .
7T — 7

Then D" is the collection of shapes obtained by applying B-move and D-move for finitely many
== . P ~ ~

times on 7.. And T'ab, " consists of all the standard tableaux 7' with I m(T) € DX,

Let v € @ e BC(VB ® Vel he a weight vector corresponding to the standard tableau T. Then

vz is a weight vector of weight CT = [le, e ,C}:], where

ctn pg-—p+N
N 2 '
73

g,f = contz(k) +




A : -1
4 -3

FIiGURE 3.5. A standard tableau T and the corresponding standard tableau T

EXAMPLE 3.3.2. Consider Ezample 3.2.2. The invariant space D sep, (VB @ vehto—l js rep-
resentation of Hy(2,1,—6,8) which has a weight basis indexed by Tabi:(l)v_l. The invariant space
Dses, (VP @ VYol has an Hy(2,1,—6,8)-representation structure which has a weight basis
indexed by mi:i_l. Figure 3.5 is a standard tableau T € Tab}lztl)ﬁl and T € mi:?’_l is the
corresponding standard tableau. Let (T and CT be weights corresponding to T and T respectively.

Then (T = [-3,-2,—1,4] and ¢ = [4,-1,-2,-3)].

3.4. Intertwining operators

We define the intertwining operators in ﬁn(u, ki, ko, ks) fori=0,1,--- n:

(3.41) o = —2s0y1 + k2 + ka3,
(3.42) i = si(yi — Yir1) + ki =1,--- ,n—1,
(3.43) n = 50 (2yn — u) + ko.

With notations (3.37), (3.38) and (3.40), we write (3.41)-(3.43) by

(3.44) &i = 5i(Yi — Yit1) + i
(3.45) = —(Yi — Yit1)Si — ;-
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By straightforward computation, we have

(3.46) 03 = (ko + ks — 2y1) (k2 + k3 + 2u1),
(347) ¢12 - (kl — Y + yi-‘rl)(kl + Yi — yi-ﬁ-l)?i - 17 e, N — 17
(3.48) 2 = (ky — 2y + u) (k2 + 2y, — u).

Hence we write (3.46)-(3.48) by

(3.49) ¢? = (ui + ¥ — Yir1) (Wi — Yi + Yis1).

PropoSITION 3.4.1. The intertwining operators defined above satisfy the same braid relations

as relations (3.26)-(3.29), namely

GiGir10i = Giv10ipit1, fori=1,---,n—1,
Pod1dod1 = P1Pod1do,

Pn-1PnPn—19n = Pndn-1PnPn-1,

¢idj = ¢, for i —j| > 1.

So for each w € W, let w = s;, ---s;, be a reduced expression. We define the intertwining

operator
¢0J = ¢i1 o ¢Z@

The affine Weyl group W, has an action on z,. For k € Z, and m € Z,

“k, k=+1+m(2n+1)
so(k) =

k, otherwise,

fore=1,--- ,n—1,

k+1, k==xi+m@2n+1)
sik) =CkF1, k==x(Gi+1)+m@2n+1)

k, otherwise
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and

E+1, k=xn+m(2n+1)

k, otherwise.

We verify the following fact.

PROPOSITION 3.4.2. For each w € W, let w = s;, ---3;, be a reduced expression. Then

1
P =w H(y‘%(iﬁ) o ywp(ip'f‘l)) + Z zP(y),
p=1 r<w
where wp = 8;,8;,_, * " Sipi1 and P(y) is some polynomial on y1, -, Yn.

Now let us explore properties of these intertwining operators.

PROPOSITION 3.4.3. The intertwining operators satisfy the following:

(1) y1¢0 = —doy1,

(2) yiti = diyiy1 and yi11¢; = diy;, fori=1,--- ,n—1,

(3) YnPn = ¢n(u - yn):

(4) yivj = djyi, for i # j,j+ 1.

Proor. We write (1) — (4) by vi¢; = ¢;ys,(i) for i € Z, and j =0,1,--- ,n

and then (3.39), we have for each i = 0,1,--- ,n,

Yidi = yisi(Yi — Yir1) + w1y
= 8iYi+1(Yi — Yi+1) — ur(Yi — Yit1) + w1y
= 5i(¥i — Yi+1)¥Vi41 + uryip1
= Qilit1-
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Similarly we show

Yii—1 = YiSi—1(Yi—1 — ¥i) + w1y;
= 8i—1Yi-1(Yi—1 — ¥i) + w1 (Yi—1 — vi) + w1 ys
= 5i—1(Yim1 — ¥i)Yi—1 + u1¥i—1

= Qi—1Yi—1-

By (3.34)-(3.36), we verify (4). O

COROLLARY 3.4.4. For w € W, it follows that yi¢w = Qulu—1(;)-

For a weight ¢ = [C1,- - ,(n], we define for ¢ = 1,--- | n with

(—i=—G

Ceent1)4+i = k- u+ G-

Then we extend ¢ for i € Z, which is signed periodic, namely (i g(2n4+1) = G + k- u —G = (-; for

i € Z,. Then the action of w € W, on a weight { = [(1,- - , (] is written by

(3.50) (WC)i = Cu-1()-

COROLLARY 3.4.5. Let L be a representation of the degenerate double affine Hecke algebra
ﬁn(u, ki, ko, k3) and v € L¢ is a weight vector of weight ¢, then ¢y.v € Ly is 0 or a weight vector

of weight w( for any w € W,.

3.4.1. Properties of representations of f[n(u, k1, k2, k3). In [19], several properties of Y-
semisimple representations of a double affine Hecke algebra of type A, are explored. Now let us

review these properties in the case of degenerate double affine Hecke algebra of type C,,.

LEMMA 3.4.6. Let M be a YV-semisimple representation of ﬁn(u, k1, ko, ks) with ki, ko, ks # 0.

Let M, denote the weight space of weight ¢. If (1 = 0 or ¢; = (i1 for i € Zy, then M = 0.
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PRrROOF. Suppose v € M¢ and v # 0. Consider the vector s;v. Applying (44), we have

(Yi — Yir1)siv = (=si(Yi — Yir1) — 2u;)v

= —2u;v
# 0.

Acting (y; — yi+1) again, we have

Sove M Cge” \ M, which contradicts the fact that M is Y-semisimple. Hence we conclude M = 0

if §; = (i41 for some ¢ € Z,. Similarly, we show M = 0 if (; = 0. 0

PROPOSITION 3.4.7. Let M be a Y-semisimple representation of f[n(u, k1, ko, ks) and v € M
is monzero weight vector of weight (. Let w € W, be an element such that w # id and w( = (. It
follows that ¢,v = 0.

PROOF. The fact w¢ = ¢ implies (,-1(y) = (¢ for all k = 1,--- ,n. Since w # id, there is a
number k such that w™!(k) # k. Let w = s;, -+ s;, be a reduced expression of w. Then there is a
number p such that wys;,w, !is a transposition (k,w~!(k)). Consider ¢ w105 which is weight vector
of weight w, ¢, Then (w, ()i, — (wy ' Oipr1 = Cu,y (i) — Cwp(ip+1) = £(Ck — Co-1()) = 0. By Lemma
3.4.6, the vector qﬁw;w = 0. Hence

(bw’u = ¢3i1"'3ip¢w;1v =0.

0

PROPOSITION 3.4.8. Let L be an irreducible Y-semisimple representation of ]:In(u, k1, ko, k3)

and v € L is a nonzero weight vector of weight (. Then L = spanc{¢,v|w € Wy }.

PROOF. We use the same idea in [19] to verify this fact. It suffices to show that each wv €

spanc{p,v|w € W, }. Let us show by induction on the length ¢(w) of w.
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In the case {(w) =1, w = s; for some i = 0,1,--- ,n. Then
PV = v = 5i(Yi — Yit1)v + uv = (G — Giv1)8iv + ugv.

By Lemma 3.4.6 (; # (jv1, siv = (Cl — Ci+1)_1¢iv - ul(g - Cj+1)_1v.

Suppose wv € spanc{pyvjw € Wy} for all w € W, such that ¢(w) < ¢. Let w € W, with ¢(w) = ¢
and w = s;, ---s;,. By Proposition 3.4.2, ¢, = wa)zl(ywp(ip) = Yuplip+1)) T Dz TP(y). If
Hﬁzl(gwp(ip) = Cuplip+1)) # 0, then wv € spanc{p,v|lw € W,}. Now let us consider the case
Hi:l(gwp(ip) — Cup(ip+1)) = 0. Let k be the maximal number such that (Cu, i) = Cup(in+1)) = 0
and thus Hf,:kﬂ(gwp(ip) — Cup(ip+1)) # 0. Consider the vector @, -1v, which is a weight vector of
weight wy, ~1¢. Since (wk_lC)ik - (Wk_1C)ik+1 = Cup(in) — Swp(ip+1)=0, it follows that (;ka_w =0 by

Lemma 3.4.6. Namely

¢
(3.51) IT (Contiy) = Coptipt1))Sinar === 85,0+ ( D P (y))v =0
p=k+1 x<w;1

Multiplying s;, - - - s;, on both sides of (3.51), we have

14
H (Coplin) = Swp(ip+1))w0 + iy -+ 84, ( Z zQ(y)).v =0,
p=k+l z<w;1
which implies wv € spanc{p,v|w € W,}. 0

PROPOSITION 3.4.9. Let L be an irreducible Y-semisimple representation of ﬁn(u,k‘l, ko, k3).

Let v € L is a nonzero weight vector of weight (. Then qﬁ%fu = 0 implies p;v =0 fori=0,1,--- ,n.

PROOF. By (3.49), the fact that ¢7v = 0 implies (u; + ¢ — Gi1)(u; — ¢ + Gi+1) = 0, namely
G — Cir1 = Tu;. We want to show ¢;v = 0 in this case. Suppose the opposite, i.e. ¢;v # 0. Then
¢;v is a nonzero weight vector of weight s;¢. According to Proposition 3.4.8, L = spanc{¢,¢iv|w €
Wg}. Then v = ZweWa Cw®u®;v for some numbers ¢, € C. The vector is a weight vector of weight
ws;¢. Hence ¢, # 0 implies ws;( = (. Let us explore in two cases. First, in the case f(w) < f(ws;),
Dwi = ¢us,. The fact ws;¢ = ¢ implies that ¢, v = ¢,¢;v = 0 by Proposition 3.4.7. Second, in
the case f(w) > l(ws;), ¢udiv = qusigZ)?v = Pus,; (Ui — G + Giy1)(ui + ¢ — Giy1)v = 0. So we have

v = 0, which contradicts the fact v # 0. U
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REMARK 3.4.10. The following three conditions are equivalent: ¢?v =0, ¢ — G41 = Tu; and
gbl"U =0.

o ¢;v =0 if and only if (; — G41 ==F1 fori=1,--- ,;n—1.
e ¢ov =0 if and only if (4 :i%.

o ¢,v =0 if and only if , = %

Proposition 3.4.7 and 3.4.8 imply the following fact about irreducible }-semisimple representa-

tions.

COROLLARY 3.4.11. Let L be an irreducible Y-semisimple representation of ﬁn(u,kl,kg,kg).

For each weight ¢, we have dimL¢ =1 or 0.
3.5. Combinatorial moves and irreducibility

3.5.1. Moves on standard tableaux. From last two sections, we obtain a basis of the

invariant P ,c BC(VB ® Vet and this basis is a common Y-eigenbasis which is indexed by

FT A . T
Tab, . Now we define a series of moves mg, my,--- ,m, on Tab, U {o}.
The move m; for i — 1,--- ,n — 1 is defined as

T', T'is a standard tableau
m;(T) =

0, otherwise,

where T” is defined via T'(k) = T'(s;(k)). The move m,, is defined to be

T", p+1<i(l) <qand T”" is a standard tableau
my(T) =

0, otherwise,
where T is defined via T"(j) = T'(j) for each j #n and T"(n) = (N —i(n)+1,—a—b—j(n) 4+ 1).
The move mg is defined to be

", p+1<i(n) <qgand T" is a standard tableau
mo(T) =

0, otherwise,
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where T" is defined via T"(j) = T(j) for each j # 1 and T"(1) = (N —i(1) + 1,s + ¢t —j(1) + 1).

REMARK 3.5.1. The move m; preserves the shape of T, i.e. Im(T) = Im(m;(T)) for i =

1,---,n—1. The moves my and m, do change the shape of T.

3.5.2. Correspondence between the algebraic action and moves. Recall that the pa-

rameters in H, (u, k1, ko, k3) in Etingof-Freund-Ma functor [5] are computed by

2n

u = ﬁ+(>\+u)(q—p), k1=1, ke=p—q—AN, ky=(A—p)N.
/\A7 . . .
Let T € Tab, " and ¢T denote the corresponding weight with ¢ = [¢I,---,¢T] where for k =
1, .,n,
— N
¢F = contp(k) + c;n + g g) + .

Let vr denote a weight vector of weight (7. Next we verify the correspondence between the algebraic

)\,
action and moves on T'ab, "u {o}.
)\,
PROPOSITION 3.5.2. Fori=0,1,--- ,n and T € Tab, “, m;(T) = o if and only if p;upr = 0.

PROOF. We verify this proposition in three cases depending on 1.
Case 1. 1 =1,--- ,n — 1. The positions of ¢ and i 4+ 1 in a standard tableau 1" might be: ¢ + 1 is
adjacent to ¢ and is on the right of ¢; 7 + 1 is adjacent to ¢ and is below 7; 7 + 1 is not adjacent to

7. So it lies to the northeast or southwest of 1.

i+ 1 i

i |t+1 t+1 i t+1

According to the move m;, m;(7") = 0 if and only if 7 and i+ 1 are adjacent. The fact that ¢ and i+1
are adjacent is equivalent to the fact that contp(i) — contp(i + 1) = +1 and thus ¢ — ¢}, = +1
which, by Remark 3.4.10, is equivalent to ¢;vr = 0.

We use the similar idea to verify the other two cases.

Case 2. i = 0. The tableau 7" is not a standard tableau if and only if (i) p+1 < i(1) < gor (i) 7" is

not a skew Young diagram. The row number p+1 <i(1) < ¢ if and only if (i(1),j(1)) = (p+1, —b+1)
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which corresponds to

+ D) +N  kytk
gf:—b+1—(p+1)+an+“<q é)) ==

and thus implies ¢pvr = 0 by Remark 5.10. The subset 7" is not a Young diagram if and only if
(i(1),i(1)) = (¢ + 1,—a + 1) which corresponds to

c+n —p)+ N ky+k
(=—at1-(g+1)+~— M 5) =25

and thus implies ¢gvr = 0 by Remark 5.10.
Case 3. i = n. The tableau 7" is not a standard tableau if and only if (i) p+ 1 <i(1) < ¢ or (ii)
T" is not a skew Young diagram. The row number p+1 < i(1) < ¢ if and only if (i(n),j(n)) = (¢, t)

which corresponds to
ctn g—p)+ N u+ky

T
=t—
Cn 1+ 5 5

and thus implies ¢, v = 0 by Remark 5.10. The subset 7" is not a Young diagram if and only if

(i(n),i(n)) = (p,s) which corresponds to

c+n+u(q—p)—i—N_u—k2
N 2 2

Gh=s-p+

and thus implies ¢, v = 0 by Remark 5.10. O

Moreover, we have the following proposition.

PROPOSITION 3.5.3. Under the condition ¢;vr # 0, the nonzero weight vector ¢;vr is of weight

siCr. We have s;(r = Cmi(T).

ProOOF. We still verify this fact in three cases.
Case 1. i =1, ,n— 1. By the definition of m;(T) =T, (' = ¢{ for k #iori+1, (' = i
and ZH = CZT/ Namely s;¢T = ¢mi(T),
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Case 2. i = 0. By the definition of mo(T) = T", ¢} = (} " for k # 1 and

C%—‘_f_cg—'//

. . . . c+n
:](1)—1(1)—a—b—](l)—|—1—(N—t(l)—i—l)—i-QT—i-,u(q—p)%—N
=—a—-b—N+a+b—N+2N
=0.

Namely so¢? = ¢mo(T),

Case 3. i = n. By the definition of m,(T) =T", ¢ = ng”’ for k # n and

C’ZL—‘_’_CTLN
. . . . c+n
:)(n)—1(n)+s+t—](n)+1—(N—l(n)+1)+QT+,u(qu)+N
=s+t—N+a+b—N+2N
=u.
Namely s,¢T = ¢mn (D), O

ExaMPLE 3.5.4. Continue with Example 3.2.2, when G be GLy, p=1, A=1 and p = —1, we
denote the image by just the skew shape T = v/ with f = (1,1,1,-3) and v = (2,2,2,—2). From

a standard tableau on it we obtain other standard tableauz in Tabi:(l)v_l.
3.5.3. Irreducibility of @BEBC(V’B ®@ Vet as a representation of ﬁn(u, k1, ko, ks).

LEMMA 3.5.5. Let 71 and 72 be two skew shapes in Eé“ with

7_1*,3_>7_2

Then there exist standard tableaur Ty and Ty with Im(Ty) = 7' and Im(Ty) = 72 such that
mo(T1) = To. Similarly, let 73 and ™ be two skew shapes in ﬁé\’“ with

v
3 T4

T

Then there exist standard tableaur Ty and Ty with Im(T3) = 73 and Im(Ty) = 7 such that

my (Tg) = T4.
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FiGURE 3.6. Moves on tableaux

Proor. The fact that

7_1*,3_>7_2

implies that 72 is obtained by moving a northwestern corner (i, j) of 7! to (N —i+1,—a—b—j+1).
AA? .

Since (i, §) is a northwestern corner of 7!, there exists a standard tableau T} € Tab, " with T m(Ty) =

71 such that (i, 5) is filled by 1. Applying the move mg on 11, let T5 = mg(7}). Then T is a standard

tableau with I'm(7Ty) = 72. Similarly we verify the 7-move: if

then there exist standard tableaux T3 and Ty with Im(T3) = 72 and Im(Ty) = 7* such that
mp(T3) = T O
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We show in the following P4 BC(Vﬂ ® VE)lolt a5 a representation of Hy,(u, ki, ko, k) is irre-
ducible.

THEOREM 3.5.6. The space

@ (VB ® V®")to’“
BEB.

is irreducible as a representation of I:In(u, k1, ko, k3).
~7 )\,/L — 6 ®’I’L t07“ 1 1
PROOF. A basis of L™ = @ gep, (VF ® VE)O! is indexed by
), ) R
Tab, g {T|T is a standard tableau and Im(T) € DM},

It’s obvious to see that the underlying vector space of @Be BC(VB ® V®Mlor ig isomorphic to
spanc{vr|T € mi’“}. Let N be a submodule of @gep (VP @ V)04, Consider the intersection
NN (Lé’” )¢y for each T € mj’#, where (p is the weight associated to T. The intersection
NN (L )¢r is of dimension 0 or 1 since (L )¢r is of dimension 1 and it is not possible that
N O (L"), = 0 for any T € mj’“ since N = 0 otherwise. Then N contains at least one weight
vector of €Psc BC(VB ® Vet Let vy be a weight vector associated to the standard tableau
T e mj’“ and assume the submodule N contains v7.

We show in the following we get every other weight vector from an arbitrary weight vector v
with T € mi\’#. Consider the moves m; since the moves m; are compatible with the actions of
intertwining operators.

Case 1. For any the standard tableau 7" with the same shape of the tableau T', there exists

weWandw=s;, ---s;, such that 7" = m;, (- --m;,(T)). Equivalently vy = cd,vr where ¢ € C is

14
nonzero.

Case 2. For standard tableaux 77 and T with

7_1*,3_>7_2

By Lemma 3.5.5 and Case 1, it follows T3 = w(T}) for some w € W, and hence vy, = c¢,,vr, where

c € C is nonzero. Similarly, for standard tableaux T3 and T with

1%
3 T4

T
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By Lemma 3.5.5 and Case 1, it follows Ty = w(T3) for some w € W, and hence vy, = c¢,,vr, where
¢ € C is nonzero.

Furthermore, consider two arbitrary standard tableaux T' and 7" in mj’“. Let T, be a standard
tableau of shape 7.. Thereis a path 7o = 71 — -+ = T m(T") and hence vy = c¢,vr,. There is also

apath 7. » 74 — ... — Im(T’) and hence vy = ¢ vr,. Then v = ' Py, —1v7. O

3.6. Another combinatorial description

The H,(u, ki, ko, k3) representation Ly = @BGBCA(VB ® V®")lo:l has a weight basis indexed
/\)‘7 . . . a ~ .
by Tab,” which consists of standard tableaux T' with Im(T) € D" and D" consists of skew
shapes obtained by applying B—moves and P-moves on the skew shape #M Now we introduce valid

pictures on 7%’\ # such that the collection of all the valid pictures on %c)‘ # indexes the weight basis.

3.6.1. The skew shape %C)"“ and a collection of pictures on ?C)"”. Let R; C %3’“ be the
first p rows of the skew shape 7%’\’”, Ry C i'c’\’“ be the (p + 1)-th row through g¢-th row of the skew
shape 72" and R3 C 72°" be the last p rows of the skew shape htau. So the skew shape 72 is the
union of Ry, Re and R3. For any integer x € Z,, there is a unique ¢, € Z and a unique 7, such
that

Ty € {_n7 7_]-7]-5"' 7”}
and x = (2n + 1)g, + ;. Now we define a valid picture P on the skew shape FH
DEFINITION 3.6.1. A wvalid picture P on %\’“ 18 an injective map P : A Zy, satisfying the

following condition:

(1) The picture P is row increasing and column increasing;
(2) The collection {|r;| | x € Im(P)} is exactly the set {1,2,--- ,n};

(3) The image of Re, {x | P~1(x) € Ry} C {1,2,--- ,n};
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(4) It holds that 0 < x1 + x2 < 2n + 1, for x1 and x5 such that P~'(z1) lies in row k of FOH

and P~Y(x9) lies in row N —k + 1 off'cA’“, where k=1,--- ,p;

(5) If P~1(x) € Ry, then x < n;

(6) If P~1(z) € R3, then x > 0.
And we denote the collection of all the valid pictures on 72" by 2", Moreover, let (ip(z),ip(x))

denote the cell P~Y(z) filled with x, namely ip(z) and jp(z) are the row number and the column

number respectively of the cell P~'(x).

ExXAMPLE 3.6.2. For instance, let A = =1, u = =1, n = 10, p = 2 and N = 5. We
consider the Hio(2,1,4,0)-representation Lal’_l = GBBEBO’I(VB ® VO =L " Thep %0_1’_1 =
(2,2,2,-3,-3)/(1,1,—4, —4,—4).

Figure 3.7 is a valid picture P on %(;1’_1, where —11 = =21+ 10, -6 =0—-6, 13 =21 — 8 and

col —4 -3 -2 -1 0 1 2

1
Ry
—6
2131415719 Ry
13
Rs
22

FIGURE 3.7. A valid picture on 75 "' = (2,2,2, -3, -3)/(1,1, —4, —4, —4)
22 =21+ 1.

3.6.2. The basis indexed by the collection of valid pictures on 7. We will verify that
there is a one-to-one correspondence between ﬂyj’“ and 2" and hence the weight basis indexed
by :Fcﬁ)j’“ is indexed by 2" correspondingly.

3.6.2.1. From a valid picture P to a standard tableau T'. Now define a map f from the collection
fl’cA * to the collection mi’“. Before the definition of the map, we introduce the periodic picture

associated to a valid picture P.
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DEFINITION 3.6.3. Given a valid picture P on %c)"“, we define a periodic picture P associated

toP. Let I, ={1,--- ,p,q+1,--- ,N} and Ré\’“ be the subset of Z x Z
RM = {(i,5)|i € I, and j € Z} U Ry.
The periodic picture P is a bijective map
P:RM = z,\{@2n+ Dk + x|k € Z,k # 0,2 € Im(P) and P~(x) € Ry}

such that

(1) P((i,)) = P((i,5)) for (i,5) € 72";
(2) PN —i+1,—a—b—j+1)) = —P((i,5)) for (i,7) € 7o*;
(3) P((1,j+k-uw)=P((i,4) +k-(2n+1) forie I, and j, k € Z.

Moreover, let (ip(x),ip(x)) denote the cell P~Y(z) filled with x in the periodic picture P. Namely

ip(z) and jp(x) are the row number and the column number respectively of the cell P~1(x).

REMARK 3.6.4. From the definition of an periodic picture, it is easy to see the following facts:

(1) Equivalently to Definition 3.6.3, given a valid picture P, we get the periodic picture P by
adding numbers in the following way.

(1) Fill the cell (N —ip(z)+1,—a—b—jp(x)+ 1) by —z, for each x such that

PY(@) = (ip(2),ip(2)) € Ry U Ry:

(13) Fill the cell (ip(z),jp(x) £ u) by x £ (2n + 1), for each x such that

P~Yx) = (ip(x),ip(x)) € Ry U Rs.

(2) Definition 3.6.3 is well-defined since for each i = 1,-,p, the sum of the number of cells in

the i-th row and the number of cells in the N — i+ 1-th row equals w and thus there are u
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cells filled in i-th row for each i € Ip after Step (7).

(3) The periodic picture P is row increasing and column increasing.

ExXAMPLE 3.6.5. For instance, take a valid picture P above in Example 3.6.2, we have the pe-
riodic picture P as follows in Figure 3.8. Applying the steps in Remark 3.6.4, in Step (i) we add
—13,—-22,6 and 11. In Step (i1), let each color represent a period. We get —15,—10,—8,1 by sub-
tracting 2n+1 = 21 from 6,11,13,22 and —1,8,10,15 by adding 2n+1 = 21 to —22,—13,—11, —6.
Continue Step (ii), we get —43,—34, —32, —27 by subtracting 2n + 1 = 21 from —22,-13,—11,—6
and 27,32,34,43 by adding 2n + 1 = 21 to 6,11,13,22. We get —64, —55, —53, —48 by subtracting
2-(2n+1) =42 from —22,—13,—11, —6 and 48,53,55,64 by adding 2- (2n+1) = 42 to 6,11,13,22.
Continue Step (ii) for infinitely many times, then we get the periodic picture P.

col —4 -3 -2 -1 0 1 2

—64:-53:-43:-32: -22|-11

—55:-48:-34:-27:—13| —6
21314151719

6 |13 27 3448 :55

11 122132 : 43 : 53 : 64

FiGUrE 3.8. The periodic picture P of P.

Given a valid picture P, we extended it to a periodic picture P. Then we take the set consisting
of cells of P filled by {1,---,n}. Let us denote the shape by 7 and let T' be a tableau on 7 such
that k — (ip(k),jp(k)) for each k =1,--- ,n.

EXAMPLE 3.6.6. Continue Example 3.6.5, we take the collection of cells filled by {1,2,--- ,10}

and then obtain T
PROPOSITION 3.6.7. The subset T is a skew shape and T is a standard tableau on T.

PROOF. Let 7! C 7 be the first p rows of 7, 72 C 7 be the (p + 1)-th row to ¢-th row of 7 and

73 C 7 be the last p rows of 7. So 72 is a rectangle Ry {(i, j)|p+1 < i < g and —a—b+1 < j < s+t}.
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2[3[4[5[7[9]

[T T : : i3

[1]

FIGURE 3.9. The tableau T obtained from a valid picture P

First, we verify 7! and 73 are skew shapes. We use the approach in [16] to show 7'

is a skew shape.
Let the cell (i,5) € 7! be filled with x; such that 1 < 21 < n and the cell (i +1,7 + 1) € 7! be
filled with z9 such that 1 < x5 < m. Since the periodic picture P is row increasing and column
increasing, the cell (7,7 + 1) is filled with x3 and z; < x3 < x9. Similarly, the cell (i + 1, j) is filled
by x4 and 1 < x4 < x9. It follow that z1,29 € {1,--- ,n} and hence (3,5 + 1), (i + 1,5) € 7%
Namely, 7! is a skew shape. We verify that 73 is also a skew shape in a similar way.

Next we want to show 7! U 72 U 73 is a skew shape. Let {(p,5)|j1 < j < j2} be the last row of 7!
and {(q + 1,7)|j3 < j < ja} be the first row of 73. It suffices to show that j; > —b+ 1, jo > ¢,
j3 < —b+1 and ju < t.

Suppose jo < t. Then (p+ 1,j2 + 1) € Ry. Let (p,j2) be filled with z; such that 1 < 21 < n
and the cell (p + 1,72 4+ 1) be filled with 25 such that 1 < z9 < n. Since the periodic picture P is
row increasing and column increasing, the cell (p, jo + 1) is filled with z3 and 1 < x3 < z2. This
contradict the fact that {(p,5)|j1 < j < j2} be the last row of 7'. So we have j, > t. We show
similarly that j3 < —a — b+ 1.

Let j" be the first column of the rectangle Ry, then the first column of the rectangle R3 is —a—b—j"+
2. Let the cell (p, j'—1) be filled with z5. By part (2) of Definition 7.3, the cell (¢+1,—a—b—j"+2)
is filled with —x5 in the periodic picture P. Since (¢ +1,—a — b+ j' + 2) € R3, we have —x5 > 0
and thus x5 < 0. So we have j; > j’ and thus j; > —a — b+ 1.

Let 7" be the last column of the rectangle Rg3, then the last column of the rectangle Ry is s+t — j”.
Let the cell (¢ + 1,5” 4+ 1) be filled by 2. Then the cell (p,s +t —j") = (p,—a —b+u — j") is
filled with 2n + 1 — z¢. The fact that (p, s+t — j”) € Ry implies that 2n+1— 2 — 6 < n and thus
6 > n + 1. Hence we have j; < j” < s+ 1t.

So we have 7 is a skew shape since j1 > —a—b+1, jo > s+, js< —a—b+1and js < s+ t.
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Moreover, T is row increasing and column increasing by the fact that P is row increasing and

column increasing. O

),

3.6.2.2. From a standard tableaw T to a valid picture P. We define a map ¢ from T'ab, "to PH,
A, . . .

Let T' € Tab, ", We associate each standard tableau T a periodic tableau 7 by adding numbers to

T as follows.

DEFINITION 3.6.8. Let the shape Im(T) of T be 7 = 3/
(1) For a cell (i,j) € + withi =1,--- ,p orq+1,---,N, let x = T7Y((3,5)). Fill the cell
(N—i+1l,—a—b—j+1) by —=x.

(2) For i = 1,---,p orq+1,--- ,N and a cell (i,7) filled by x, fill the cells (i,j + u) by
r+£(2n+1).

REMARK 3.6.9. After the step (1), for each row i such thati=1,---,p orq+1,---, N, there
are exactly u cells filled by numbers. So the periodic T is well-defined and all the cells in the row i
are filled.

ExaMPLE 3.6.10. Let A = =1, u = =1, n =10, p = 2 and N = 5. With these parameters,
we will have a representation of Hio(2,1,4,0) which is indexed by the following region 72071’71. We

have a standard tableau T in Figure 10 which represents a weight vector. From standard tableau T

1

— 1,1
FIGURE 3.10. A standard tableau T' € Tab,

in Figure 3.10, we get the periodic tableau T. First fill in —6, —8, —1 and —10 and then the whole

i-th row for i € Iy. The periodic tableau T is as Figure 3.11.

LEMMA 3.6.11. The periodic tableau T is row increasing and column increasing.
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—43:-32:-22'—-11: —1110

—50:-48:-29:-27: —8: —6

213145719

618 |27:20 4850

—10] 1 |11 :22:32:43

FIGURE 3.11. The periodic tableau 7 associated to T

Next we need to find out the skew shape FH by the parameters A, i, n and p. And the filling

on the skew shape %C)‘ # is a picture denoted by P.

(3:2) Ry

--Rs-- _&47:&:_2 r;j&z::;

FI1GURE 3.12. The skew shape %&1’71

EXAMPLE 3.6.12. Continue Example 3.6.5. We figure out the skew shape 72071’71 in Figure 3.12.
/\_17_1 . .
Take a standard tableau T € T'ab . Eztend the standard tableaw T to T. The red region is the

skew shape %0_1’_1. Then the filling on the skew shape 7%’\’“ 1s the picture P as in Figure 3.15.

PRrOPOSITION 3.6.13. The picture P we obtained from the standard tableau T is a valid picture

5y
on 7M.

PROOF. Let us show the picture we obtained from T satisfies the conditions in Definition 3.6.1.
(i) Let 21 be a filling in the i-th row of Ry and 3 be a filling in the (p — ¢ + 1)-th row of R3 for
1 < < p, suppose x1 + x2 > 2n + 1. We need the following notation. For a subset 7 € Z x Z, let

—7 be the subset of Z x Z
—7={(N-i+1,—a—b—j+1)|(i,j) €7}

and

™ = {(,j + k- u)|(i,§) € }.
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—43:-32:-22)—-111 —11 10

—50:-48:-29:-27: —8| —6

618 127:20 4850

—10{ 1 |11} 22|32 :43

—11

22

FIGURE 3.13. From an extended tableau to a valid picture

Since T is periodic, there is a cell in the (p — i + 1)-th row of —Rj filled by —z; and thus a cell in
the (p — i + 1)-th row of (—R;)M filled by —x1 + 2n 4 1. Let the first column of R3 be j; and the
last column of R3 be js. Then the last column of —R; is j; — 1 and the first column of (—Rl)(l) is
jo + 1. On the other hand, x1 + x2 > 2n + 1 implies z9 > —x1 + 2n + 1, which contradicts the row
increasing fact. So we have the fact that =1 + xo < 2n + 1.

Suppose x1 + 22 < 0. Then we have —x1 > x5, which contradicts the row increasing condition.
(ii) Let z be a filling in the i-th row of Ry for 1 <i <p.

First, consider the case s < t, then Ry is above Ry, namely the last column of Ry is less or equal
to t. Since the fillings in Ry are from {1,--- ,n} and the column increasing fact of T, x is forced
to be strictly less than n.

Second, consider the case s > t and suppose z > n. In this case, the last column of R3 is t. There
is a cell in (p — i+ 1)-th row of —R; filled by —z and a cell (N —i+1,53) in (p — i + 1)-th row
of (—=R))W filled by —z + 2n + 1. It follows that j3 > t. On the other hand, = > n implies
—x+2n+1 < n-+1. This fact contradicts the fact that the last column of R3 is t. So we conclude
x <n.

(iii) Let = be a filling in the i-th row of R3. First, consider the case a < b. In this case, R3 is below

Ry, namely j; > —b+ 1, thus we have z > 0 by the column increasing property of 7. Second,
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consider the case a > b and suppose < 0. Then there is a cell in the (p—i+1)-th row of —Ry3 filled
by —z. We have the fact —z < n since any filling y satisfies y < n for y lying in the (p — i 4+ 1)-th
row of Ry and T is row increasing. This forces z to be —n < x < 0 and hence 0 < —x < n, which

contradicts the shape 7 is a skew shape. So we still have > 0 in the a > b case. ]

),
3.6.2.3. One to one correspondence between LPC)"“ and Tab,, M.

THEOREM 3.6.14. The weight basis of Ly* s indezed by P the collection of all the valid

pictures P on a fized shape FOH

Proor. We prove the theorem by constructing a one-to-one correspondence between the col-
lection mj’“ of standard tableaux T indexing the basis of invariant space and the collection poH
of pictures P on a fixed region #MIn Section 3.6.2.1, we define a map f : PO mi\# and in
Section 3.6.2.2, we define a map g : mi’“ — 2. Let us consider go f. For any valid picture
P € 22" extend P to the periodic picture P by Definition 3.6.1 and get f(P) = T € mi\’“.
By Definition 3.6.8, the periodic tableau T associated to T is exactly P, namely 7 = P. Hence
gof(P)=P. Sogo f= idTCA,;L. Similarly, we show fog = idmj’“‘ Now we have a one-to-one
correspondence between fPé\ * and ﬂyj’“.

Thus the weight basis is indexed by the following picture P on region %c’\ (a

3.6.3. Moves on 2. In Section 3.5 we defined moves on mj# L {o} which has a corre-
spondence to the actions of intertwining operators on weight vectors. Now we extend the definition
of moves m; for i =0,1,--- ,n to P L {0} as follows. Let T € mj’“ be a standard tableau and
P be the corresponding valid picture in 2", Let = denote the image P((i,)) of the cell (i,j) and
2= (2n+1)qe+7y with ¢z € Zand 7 € {—n,---—1,1,--- ,n}. Then we have moves on 2,"*11{o}

defined as follows:
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(1) Fori=1,---,n—1,if P’ € 22", set m;(P) = P’ and
(2n+1)qy + rs ry #tior £ (i+1)
P'((i,j)) = Cn+1)gg+ry+1 ry=ior —(i+1)
Cn+1Dgp+ry—1 ry=i+1lor —i;

Otherwise, m;(P) = o.

(2) If P" € 2" set mo(P) = P” and

(2n+1)qy + 4 ry # +1
P"((i,j)) =
2n+1)ge — 12 +1 1y = +£1;

Otherwise, my(P) = o.

(3) If P" € 2", set m,,(P) = P" and

@Cn+1)(ge£1)—1ry rp==En.

Otherwise, m,,(P) = o.

/\A7 .
Let 736A * denote the collection of periodic picture P associated to P € Tab, ¥ Since the one-to-one

correspondence between PIH and PMH , the collection PM indexes the weight basis of L. Check

the moves on P U {o}.

(1) The move mg exchanges fillings —1 + k(2n + 1) and 1 + k(2n+ 1) in P for k € Z, if the

new picture lies in P2 U {0} and mo(P) = o if otherwise;

(2) The move m; exchanges fillings +i+k(2n+1) and £(i4+1)+k(2n+1) in P fori =1,--- ,n—1

and k € Z, if the new picture lies in P2 U {0} and mg(P) = o if otherwise;

(3) The move m,, exchanges fillings n + k(2n + 1) and n + 1+ k(2n + 1) in P for k € Z if the

new picture lies in P2 U {o} and m,(P) = o if otherwise.
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EXAMPLE 3.6.15. Now let us look at several moves on standard tableaux and valid pictures.

start with the following standard tableau T' on 7

Applying mamomymoms, then we get

Applying mg, then we get

1,-1

—8: -5

5:—1
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—-17:-13: -8 —4

1

1

13

—14:-10

10

—17

4

13

13

22

19

22

22

We



—17:—13: =8| —4|—1

1|4 v 10 1141 s/|13 2

—14:—10] =5 71
2

3
:2 :74 5 |10 19

/\A’ . .
The combinatorial description by T'ab, * consists of standard tableaux on a collection of skew
), . .
shapes and the moves mg and m,, on T'ab,. " move the cells filled with 1 and n respectively, whereas
the combinatorial description by TC/\ # consists of valid pictures on a fixed region %C)‘ # and moves on

pH only changes the fillings. So we associate MM t0 the representation LM,
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CHAPTER 4

Affine and double affine Hecke algebras of type C and Jordan-Ma

functor

In this chapter, we consider the quantum cases, i.e. affine Hecke algebras and double affine
Hecke algebra of type C. We consider the representations of affine Hecke algebras which are images
of Uy(gly) under the Jordan-Ma functor [8] and representations of double affine Hecke algebras

which are images of the quantum coordinate algebra A,(GLx) under the Jordan-Ma functor.

4.1. Affine and Double Affine Hecke Algebras

In [8], Jordan and Ma mentioned the following definitions of affine and double affine Hecke

algebras of type C.

DEFINITION 4.1.1. The affine Hecke algebra 3, (t, to,t,) of type C is a unital associative algebra

over C with three parameters t,tg,t, generated by Ty, T1, - ,Th—1, T, with the relations:
(4.1) Ty =115, i — ] > 1,

(4.2) T.T1 T, = Toa TiTiga,

(4.3) Th 1T Tn 1 Tn =TT 1ThTh 1,

(4.4) ToThTo' Ty = ThIoThTo,

(4.5) (T, —t)(T; +t 1) =0, i=1,---,n—1,

(4.6) (T, — t,) (T, + ;1) =0,

(4.7) (To — to)(To +t5 ') = 0.

The double affine Hecke algebra U:Cn(t,to,tn,uo,un,w) of type C' 1is a unital associative algebra

over C with six parameters generated by To, Ty, -+ ,Tp—1, T, and Ky with relations (4.1)-(4.7) and
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additional relations:

(4.8) KoT; = T;Ko, i=2,---,n,

(4.9) T KoT1 Ky = KoT1 KT,

(4.10) ToTy ' KoTh = Ty ' KoTh To,

(4.11) (Ko — un) (Ko +uy, ') =0,

(4.12) (wKoP Tp — uy ") (wKoP Ty + ug) = 0,

where Py =T T;y1--- Ty -Ti1T;, fori=1,---  n.

Set X;, fori=1,--- ,n.
XiZTfl~~-Tg1~--Tf1K51T1-~Z},1.
Set Y;, fort=1,---  n.

Y;:E"'Tn"‘TlTOTfl"'ﬂ__ll-

Now we explore the relations involving Ky and Y;’s.

LEMMA 4.1.2. It follows
KoY; =YKo,

forj =2, n.

Proor. For j =2,--- ,n, we have K¢T; = T; Ky and K()Tj_l = Tj_lKo by (4.8).

KoYj = KoT; - Ty - - - Ty ToTy - Tj:11
=TT - TQKoTlTOTl_l s 'Tj_—ll
=Tj T, BT ‘Ko To) Ty b T,
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By (4.10), we deduce that

Tj- Ty ToTy(Ty P Ko T To) T, - 'Tj_fll

=T;- T .TQTI(TOTl_lKoTﬁTl_l . -Tj__ll
:Tj RN P -T2T1T0T1_1K0T2_1 T Tj_—ll

=Tj-- T BIVTT Ty - T, Ko

=Y; K.
O
Instead of Ko, Ty, T4, -+ , Ty, [8] mentioned the generators
Ty, ,Tn7y1i7... 7yni’XfE,... JXE
In this paper, let us use the generators Ky, T1,---, T, and Yljt7 e 7Yni. The following definition is

equivalent to Definition 4.1.1.

PROPOSITION 4.1.3. The affine Hecke algebra 3, (t,to,ty) is generated by

Yi

’)Tn

Ty, ,Tn,Yli,---

with relations (4.1)-(4.3), (4.5)-(4.6) and the following relations:

(4.13) YiY; =YY,

(4.14) YT, =Y, i=1,---,n—1,

(4.15) TY; =Y;T;,, i=1-n—-1andj#0,i+1,
(4.16) T.Y; = Y;T,. j#n,

(4.17) (T, 1Yo — to) (T, 'Y, +t5h) = 0.

The double affine Hecke algebra ﬂ:Cn(t,tg,tn, UQ, U, W) 18 generated by

KOaTla e 7T7’L717Tn7}/1ia e 7Yn:t
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with relations (4.1)-(4.3), (4.5)-(4.6), (4.8)-(4.9), (4.11), (4.13)-(4.17) and the additional relations:

(4.18) KoY; = Y;Ko, j>2,

(4,19) (wKoY1 - ual)(wKoYl + Uo) =0.

4.2. Intertwining Operators

In this section, we define a set of elements in double affine Hecke algebra iﬁ(n(t, to, tn, Ug, Up, W),
which we called by intertwining operators.

Set Yy = wY], define the following operators:

(4.20) O =T;(Y; —Yip1) - (t—t7NYY;, i=1,--- ,n—1,
(4.21) @, =T,(Yn =Y h) — (tn — 1, )Y — (to — 5 1),
(4.22) By = Ko(Yo — Y5 1) + (un — 1y, ')Yo + (uo — ug™).

We verify these operators satisfying the same braid relations with T;’s. This verification is
straightforward. So we omit the proof here. As a result, we define the intertwining operator ®, for

each z € W,. Let z = s;, - -- 54, be a reduced expression, then

D, =P - P

.-
The squares of intertwining operators are computed as follows.

7 = —(Y; — Vi) (Yi =t *Yip1), i=1,- ,n—1,

1
2 = (t,Y, — ;' Y b tg — tg ) (Y, — Y+t — 1),

(I>(2) = (upYo — u;lYo_1 + ug — ual)(unY({l - uleo + ug — ual).

Moreover, the following relations of Y; and ®; hold.
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PROPOSITION 4.2.1.

Y, = ;Y.
Yncbn = (I)nYnila
Yo®o = DY, "
REMARK 4.2.2. Proposition 4.2.1 implies that the intertwining operators ®, moves one Y-weight

space to another Y-weight space, i.e.

®,Lc C Ly,

where z € Wy, ¢ and z( are defined as (3.50).

4.3. Quantum General Linear Groups

4.3.1. Quantum Group U,(gly). We use the definition of quantum group U,(gly) in [13].
Let ¢ € C be a nonzero complex and ¢ is not a root of unity. Let P be the weight lattice and
PV be the dual weight lattice with a symmetric bilinear pairing (,) : P x P — Z such that
(€, €j) = 0i5. The quantized enveloping algebra U,(gly) is generated by ey, --- ,en—1, fi,- -+, [n—1

and ¢", h € PV with relations:

(423) th . qh2 — qh1+h2
(424) qhejqfh — q(h’€j7€j+1>ej’
(4.25) thjq—h — q<h»_€j+€j+1>fj’

qﬁi—5i+1 _ q_€i+€i+1
(4.26) cifi = Jiei =0 —
(4.27) eie; = ejer, |i — j| > 1,
(4.28) fifi=fifi,li—jl>1,
(4.29) ejeiz1 — (¢ +q Veieirie; + eizref =0,
(4.30) [ fisr = (q+ ¢ ") fifizr fi + fixr f7 = 0.
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The Hopf structure on Uy(gly) is as follows: comultiplication A, counit € and antipode S

(4.31) Alg" =" q",

(4.32) Ale) =e; @14 ¢+ @y,
(4.33) Afi)=fi®q T +1® f;,
(4.34) e(q") =1,

(4.35) e(ei) =e(fi) =0,

(4.36) S(¢") =q7",

(4.37) S(e;) = —q “iteitie,,

(4.38) S(fi) = =fig" .

Let V = CV be an N-dimensional vector space over C with v; being the standard basis element.
Let E;j € End(V) be the N x N matrix with (7, j)-entry being 1 and other entries 0. Define the
Uq(gly)-module structure by py : Uy(gly) = End(V)

J#i
(440) pv(ei) = Ei7i+1,i = 1, e ,N — 1,
(441) pV(fl) = EiJrlﬂ'?Z. = 17 to 7N -1

The vector space V' together with the U,(gly)-module structure is the vector representation of

Ug(aly)-

4.3.2. L-operators. Let R be the universal R-matrix. The R-matrix under the vector repre-

sentation is as follows:

(442) R:(PV®pV un Z'L®Ej]+ ZE1.7®EJ'L
1,J i>]
(4.43) R = (pv ® pv)( Z B ® Ejj — (q—q") Y By
>
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DEFINITION 4.3.1. The l-operators of Uy(gly) are elements of Uy(gly) satisfying
(444) ( ® pV Z l'L] ® El]

(4.45) (pv @ 1)( Z Ei; @1

In [13], there is a family of elements e;;, for 1 <4,j < N and i # j defined as follows.

1<,
€iit1 = €, €ij = €;pekj — qekjei;, for an arbitrary i < k < j;
€it1,i = fireji = €jreri — q_lekiejk, for an arbitrary ¢ < k < j.
The l-operators are expressed in terms of e;; as follows, for ¢ < j,
-1\ €&, ...
L= (a—a ")a"eis
— -1 —€;
Ui=—(a—q eijq*
and

(4.46) I = g*e.

We use the following notations. Let L* = (li) LF=IL*®id and L =id ® L*.

THEOREM 4.3.2. Klimyk and Schmudgen [10] proved the algebra Uy(gly) is generated by I

1,7 =1,--- N with relations:

(4.47) LELfR = RLILY

(4.48) LiLyR=RLJLy

(4.49) s =101 =1, i=1,--- N,
+ = _ . .

(4.50) l;=101,=0, 1>
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The antipode S, comultiplication A and counit € on l-operators are given by

(4.51) S(LF) = (L),

(4.52) A5 =D I el
k

(4.53) e(l) = dij.

4.3.3. Hopf * algebra structure and right modules. In [13], Noumi explained the Hopf
structure. The quantum group U, (gly) has a Hopf * algebra structure, where * : Uy (gly) — Uqy(gly)

is an involution and an algebra anti-automorphism, with
(@) =" he P, e =q frg™ ", fi=q g *THLI<E<N -1

The comultiplications of e and f; are as follows,

(4.54) Alef)=e @1+ ¢ el

(4.55) A(ff)=ffegatan 1@ £}
And the x-operation on L-operators is
E F
(lij) = S(lji)'

With the Hopf * algebra structure, there is a one-to-one correspondence between left U,(gly)-
modules and right U,(gly)-modules. Let M be left U, (gly)-module and we define a right U,(gly)-

module structure on M and denote the right module by M°,
v =z2"v, x€Uigly)andve M.
Conversely, let N be a right Uy (gly)-module, we define the left U,(gly)-module structure on N by

zw=vz", x€Uy(gly)andveN.
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LEMMA 4.3.3. The comultiplication and *-operation commute.
Aox=(x®x%)oA.

REMARK 4.3.4. Let M and K be two left U, (gly)-modules. Then M&K is a left Uy(gly)-module
and (M @ K)° = M° ® K° is the corresponding right Uy(gly)-module.

4.4. Jordan-Ma functor and representations of AHA and DAHA

4.4.1. Coideal subalgebras. The following is the definitions of coideal subalgebras in [8].

Let J? be the N x N complex matrix with ¢ € R

J? = Z (¢ —q 7 )Epy — Z q "Epp+ Z Ep N_kt1 + Z EN_pt1 k-

1<k<p p+1<k<N-p 1<k<p 1<k<p

Let D, be the p x p anti-diagonal matrix with each entry on the anti-diagonal is 1. Then we have

(@7 —q )1, 0 Dy
J? = 0 —quIN_Qp 0
D, 0 0
Define the elements ¢; and ¢, of Uy(gly), i,0 =1,--- , N as follows:

N
it = Z 1555 Uy
k=1

N
=Y SUNT)
k=1
Let B, and By, be subalgebras of U,(gly) generated by {cyli,{ =1,--- N} and {¢jj|i,l =1,--- , N}

respectively. It is easy to check that

REMARK 4.4.1. (1) It follows that B, is a left coideal subalgebra from the comultiplication
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(2) It follows that Bq’/} is a right coideal subalgebra from the comultiplication

Acy) = (}Z S(l;@jx‘]w)j_kllz_h) ® (Sl)li)

1 j,k=1

Conn @ (ST ).
1

E 3
=M= =[M]=

4.4.2. Characters and invariant spaces. Let M be a U,(gly)-module and M be a Dy-
module, where Dy is the algebra of quantum differential operators defined in [8]. The characters
of B, and By, are used to define the invariant spaces Fy,"™" (M) and F, )"/ (M) which are the

underlying vector spaces of the representations of affine Hecke algebra and double affine Hecke

algebra in [8]. Let x: be the character of the left coideal subalgebra B, such that
xq(cit) = q"Jj.
Let A% be the character of the right coideal subalgebra B;/) such that
N (eh) = a*(J)g "
The invariant spaces are defined as
F7PT (M) = Homp, (1,7, M ® Ve

and

E7PT (M) = Homp p, (L B 10, M@ (LEIV)®2"),

T, ,w,t

for o,7,m,%,t,w € R. In [8], Jordan and Ma showed that M has a U,(gly) ® Uy(gly)-module

structure.

4.4.3. Computation of the invariant space. In this subsection, let us compute the invari-
ant space Homp, (1,2, V") for any v € P in the case 0 — 7 is an even number.

By Theorem 4.3.2, we define a character of U,(gly) in terms of [-operators. Let 1, be the one
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dimensional character of U,(gly) with

0, /) ]
17)(1#) = 7

ij
¢ =]

It is straightforward to check that the definition of 1, is compatible with relations (4.47)-(4.50).

Moreover, the one dimensional character 1, is of highest weight (—7/2) Zfil €; by (4.46).

LEMMA 4.4.2. It holds that
Homp, (1,1, V") = Homp, (10,1, @ V")
PrROOF. We want to show the following two vector spaces are isomorphic to each, i.e.
Homp, (1,7, V") 2 Homp, (10,1, @ V").
Since

Hompg, (1,1, V")

={v e V¥|eygv = xNeg)v,i,j=1,--- N}
and
Homp, (10,1, ® V)
={v € VV|A(cy)-(1®@v) = xHea) 1 ®@v),i,j=1,--+ N},
It suffices to show that
{veV’epv=xNey)v,i,j=1,--- N}

={v € V"|A(ca)-(1®v) = x3(ea)(1®v), 6,5 =1,--+ N},

108



By the definition of 1,,, we have

0, L7

1,(S(l5)) =
¢ =]

We compute the action of ¢; on 1, ® V¥ and we have

Aley).(1®v) = (1,5(1) ® cmp)-(1 @ v)

1

1yl S(Ug)) ® (emn-v)
1

3 3
=M= 5=

=q "® (ciyv)
Let v € {v € V¥|cy.v = x2(cyy)v,i,5 = 1,--+ , N}, then

Alcg).(1®v) =q¢ "T® (¢;1.v)
=q " ®(¢"Jjv)
— Ji(1ew)

=x2(cq)(1 @)

and hence v € {v € V¥|A(cy).(1®v) = x%(cy)(1 ®v),i,5 =1,--- ,N}.
On the contrary, suppose v € {v € V¥|A(ey).(1®@v) = x%(ciy)(1 ®v),i,j =1,--- , N}, then

Alcy).(1®v) =x2(ca)(1 ®v)

7" ® (cyv) =J5(1 @ ).
This implies 1 ® (¢;;.v) = ¢"7J](1 ® v) and hence ¢;.v = ¢"Jjv = x2(ciy)v. So we have

Homp, (1,1, V") = Homp, (10,1, @ V).
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Now it suffices for us to compute in the case n = 0. To compute the space HomBU(lx(T), VY,
we deduce the following fact.
Hompg,(1,0,V")
={v e VV|(L*J7S(L7))ijv = Jjv,1 <i,j < N}
={v e VV|(LTJ?S(L7))i — Jf;)w=0,1<i,j <N}
={v e V*|((J7S(L7))ij — (S(LT)J)ij)v=0,1<4,j < N}
={v e (V")°[o.(J7S(L7))ij — (S(LT)J7)i3)" = 0,1 <i,j < N}

={ve (V") °w.((LYJ);; — (JTL7)ij) =0,1 < i,j < N}.

Let t7. denote the subalgebra of U,(gly) generated by

N
D TR = T,
k=1
fori,j =1,---, N. The fact above allows us to compute Homp, (10, V") by computing the vectors

in V¥ killed by the right action of t]. Next we consider the invariant space Hom Ba(lxﬂa VY.

THEOREM 4.4.3. In the case that o — T is an even number, the invariant space
Homg, (1,7, V")

is either 0 or a one-dimensional vector space. The invariant space is nonzero if and only if v € P

and
(456) Vi:n—i_a%a Z:p+177N_p7
(457) v; + UN—i+1 = 1], 1= 17 Dy

ProoF. Consider the invariant space Homp, (10,1, ® V). Since this invariant space corre-
sponds to t]-invariants, by Proposition A.2.2, the invariant space Hom Ba(lxg , 1, ® V") is either 0
or one-dimensional.

Moreover, the Ugy(gly)-module 1, ® V¥ is the irreducible highest weight module of highest weight
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v—(n/2)(Y, &). By Theorem A.1.1, the invariant space Homp, (10,1, ® V") is nonzero if and

only if v € P and

Z:p+17)N_p7

Vi_g+VN7i+l_g:O) izlu"')p)

which are equivalent to

Vi:$7 i:p+17"'7N_p7
Vi+l/N—’i+1:777 2:17 yD-

By Lemma 4.4.2, we have the invariant space Homp, (1,7, V") is nonzero if and only if v satisfies

conditions (4.56)-(4.57).

REMARK 4.4.4. By A.2.12, the condition v; = WT_T fori=p+1,--- N —p, is necessary for
Homp, (1,7, V") #0. In the case that n+ o — T is not an even number, v; is not an integer, then

Homp,(1,n,V") =0 for v e P*.

4.4.4. A basis of the invariant space.

4.4.4.1. Tensor product of Uy(gly)-modules. Let us consider the tensor product of an irreducible
highest weight U, (gl )-module V¢ and the vector representation V.
Let x () denote the character of the irreducible highest weight U, (gly)-module with highest weight
¢ € P*. Since € is a minuscule dominant weight, we apply Lemma 5A.9 in [6] in the case & = ¢;

and then

x(&)x(e1) = > x(€ + €).

1<i<N. &+ P
The vector representation is an irreducible highest weight representation V = V0 of highest weight
&0 = €1. We have
viav=gv,

()
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the direct sum runs through ") € P* and v = ¢ + €k, for some ky =1,--- ,N.

Continue tensoring the vector representation V. Let (V(O), v ,V(”)) be a sequence of integral
dominant weights such that v = ¢ and v = (-1 4 ei, for some k; =1,--- | N. We have

4.4.4.2. A combinatorial basis. Consider the invariant space

Homp, (1,2, V¢ @ V&™)

= @ Homp, (1, V”(n>).
(1/(0),]/(1>7-~~ 71/("))
By Theorem 4.4.3, dim Homgp, (1,1, V™) = 1 if and only if v(™ satisfies conditions (4.56)-(4.57).
Otherwise, HomB(,(lea VVW) = 0. So the collection of sequences (1/(0), v .. ,1/(")) such that

T(,© ,) ... y(m)y is & standard tableau and v(") satisfies (4.56)-(4.57),1.e.
{(1/(0), 1/(1), cee ,y("))]T(y(o)W(l),._,,V(n)) is a standard tableau and (") satisfies (4.56) — (4.57)}

indexes a basis of the invariant space Homp, (1,7, V& ® Ven). Equivalently we have the following

result.

THEOREM 4.4.5. The invariant space HomBU(ng,Vg ® V") has a basis indexed by the col-

lection of standard tableaux T of shape v/§ such that v satisfies (4.56)-(4.57).

4.5. Y-actions

4.5.1. Definition of Y-action on the invariant space. Jordan and Ma defined the action

of Ty in [8]. With the relation Y1 =T} ---T,, - - - T1Tp, we deduce the action of Yj is given by
¢" TRy 1 0 Tyve © Ry e 0 Tye ) (o) @ idy, ® -+~ @ idy,,

-1 —1 —1
where (RVS,V o Tyye 0 Ry e o Tye v)(o,1) means R

vey O Tvve© R\_/,lvé o Tye 1 acting on the tensor

product VE®@ V. Here Vi = Vo = --- = V,, = V. We use the following diagram in Figure 4.1 to
express Y1. By (4.14) T;Y;11T; = Y;, we deduce the action of Yj, i = 1,2,--- ,n as the following
diagram in Figure 4.2. Consider the action of Y; as diagram in Figure 4.3.

The category of finite dimensional complex representations of U,(gly) is a ribbon category.

Here we denote the universal R-matrix by R = > z; ® y;. For any finite dimensional representation
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-

Yi = & &
|

veé ViV, Vi

FIGURE 4.1. The action of Y7

vé Wi Vier Vi Viga |
"

}/i = N \
| i

ve Vi Vier Vi Vi Van

FIGURE 4.2. The action of Y;

VE@ Vet V, Vi Vi
V®‘ 1V, Vig Vo

FIGURE 4.3. The action of Y;

M of Uy(gly), let 8 denote the twist on M. The ribbon element is ¢~2Pu with u = Y S(y;)z;

Then the twist 67 : M — M is given via acting by ¢~2’u. Then we have Y; acts by

(4.58) qN—W(R‘_/(LFmVi O TV, Vigi_1) © le,\/(o . TV(O,i—l)vvi)(O,i) ®idy,,, ® - @ idy,
(4.59) :qN*"(TVi,V(o,i,l) © R, Vig.i_1) © Vi,i1),Vi © BV(g. 1) )( H©® idy,,, ® - ®idy,
(4.60) =" Oy, nevi© By @) o @ idviy, ® - @idy,
(4.61) =" (Ovi, sy ®OV) 0Oy | o) 04) @ vy, @ - @ idy,.

Here Vig;—1) = V¢ ® V¥~ and the subscript (0, 1) means action on V¢ ® V.

4.5.2. Action of Y; on 1/'(,/(0),%1)7”(2)7_“ OIE By Theorem 4.4.3, we have a basis of the invariant
space

Homp, (1,2, V¢ @ Vo™

indexed by the collection of sequences (V(O), v @) ,1/(”)) such that v(© = ¢ and v satisfies

(4.56)-(4.57). Let T, 1) ,@.... ym)y denote the standard tableau corresponding to the sequence
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(O, M p@) ..y Now let us denote by

)
Vi 1) 1@ ... 1)

i=1,---,n, the irreducible summand of V¢ @ V®* indexed by the sequence

This corresponds to a basis element of the invariant space Hom Ba(lxﬁa VE® Ven). We compute

the action of Y; on V(,/<o>7l,(1)’,j(2>7__ () to compute how Y; acts on the corresponding basis element.

Let p denote the half sum of positive roots. In [11], Leduc and Ram computed the action of
¢ 2P on an irreducible representation V¢ as multiplying by the scalar ¢~ (¢£120). So we deduce the

action of Y; on ‘/(y(o)7y(1),l,(2)7,__’l,(n)).

THEOREM 4.5.1. The action of Y; on Vi© ) @) . ) 8 multiplying by the scalar
g O H20) =D WY R20) (e +20) 0N
PROOF. Since V,0) ,) ,@) ... oy C Vi ) . ) @ Vigr @ --- @ V. By (4.61), we compute

the (9;(2,1.71)@%)(0714) action on the summand V) ,1) 4 ... ym) of the tensor product V¢ @ V&"

via computing action 9(,(2 v, on the irreducible summand

i—1)®
Vip© p . )
of the tensor product V€ ® Vi ® --- ® V;. By in [11], (9‘232.71)@%)(0714) acts by the scalar

q(V(i) v 420)

Similarly, since V(Z,(O)MU,U(Q)’_,_?l,(n)) C ‘/(V(O)Jj(l)’l/(Q)’n_’l,(i—l)) RV, ®---®V,. We compute the
(9‘/(0,1;1))(0,%1) action on the summand V(y(0>,u<1>,u(2>,.-',u<">) of the tensor product V¢ @ V& via
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computing action 0‘/(0 i1y OD the irreducible summand

1
Vi 5 .. 1)

of the tensor product V¢ ® Vi ® --- ® V;_1. By in [11], (QWo,i_l))(O,i—l) acts by the scalar

)

Moreover, 0y acts on V by the scalar g (evert2p),

Hence Y; acts on V'(V(o)’y(n’y(g)’__ () by the scalar

q(V(“ VD 42p)— (0= p (=D 420)—(e1,61+2p) —n+N

COROLLARY 4.5.2. Let V(0 (1) (@) .. () be the basis vector corresponding to
v,

Then it follows

q(V(i) 2D 42p)— (0D P =D 420)—(e1,e1+2p)—n+N

E‘U(V«)),ll(l)yV(Q) . 71/(”)) = U(V(O)7y<1)7l/(2)7"' 7V(n>)‘

)

4.5.3. Y-actions in terms of contents. Let T = T ) @) ) be the standard tableau

corresponding to the sequence (1/(0), v @) ,1/(")) which corresponds to a basis element
VT = V(00 (1) (@) ... ()
of the invariant space F,""" (V). We deduce the fact that
(0@ 4 2p) — D WD 4 2p) — (€1, €1 + 2p)
=2contp (7).
So we have the action of Y; on vr is computed by

q20cmtT (#)—n+N
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4.6. Image of the quantized coordinate ring A,(GLy)
Let A,(GLnN) be the quantized coordinate ring. We consider the image of A,(GLy) under the

Jordan-Ma functor and we use the U, (gly) ® Uy(gly)-structure of A,(GLy)

A(GLy) = P V' RV,
peP*

where 8V is the dual of 8. If B = Zfil Bi€i, then BY = Zfil —BN—it1€i-

4.6.1. The invariant space F°'"

nirw.(Ag(GLN)). First, we compute the invariant space

HomB;ﬂ(le,VBv)

for any € PT.

Let 1, be the one dimensional character of Uy(gly) with

0, i #

L,(15) =
¢*R =]

It is straightforward to check that the definition of 1, is compatible with relations (4.47)-(4.50).

LEMMA 4.6.1. It holds that
HOmBl/z)(l/\iu, VV) = HOT)’LB;}(:L)\(L), %4 X lw)

The proof of Lemma 4.6.1 is similar to Lemma 4.4.2. With Lemma 4.6.1, it suffices for us to

compute in the case w = 0. To compute the invariant space Hom B:p(]-X?’ Vﬁv), we deduce the

116



following fact.

HomB:b(l)\g,Vﬂv)
={o e VI |(S(L7)(J*) T L)y = (J) 50,1 <45 < N}
={v e VA |(S(LT)(IY) ' L)y = (1)) v = 0,1 <4, j < N}
={v e VA |(((I") L)y — (L7 () )ig)w = 0,1 <4, j < N}
={v e V(LTI — (JYL7)ij)w=0,1<1i,j < N}.

So we compute Hom qub(l A0 V'Bv) by computing the vectors in V58" killed by the left action of t}l}.

Then we have the theorem for the invariant space Homps (1yw, Vﬂv).
/d) L

THEOREM 4.6.2. In the case ¥ — ¢ is an even integer. The vector space HomBip(lAf,Vﬁv) 18

either one dimensional or zero. Moreover, it is nonzero if and only if 5 = vazl Bi€i, where 3 € PT

and

—w+Y—1 .
(4.62) /3,;:%, i—p+1,-- N—p,
(463) /Bi+BN—i+1 = —w, Z=1, , D.

Proovr. This theorem is verified Lemma 4.6.1, Proposition A.2.2 and Theorem A.1.1 in terms

of Y. Then (4.62) and (4.63) follow. O

Let By, C PT denote the collection of B € PT satisfying (4.62)-(4.63). Then the vector space

F o (Ag(GLN))

niwiwiL

=Hompwp, (L B 1. (P VO RV @y (1R V) @y -~ @9 (LK V)
BepP+

=~ P Homp, (1,0, Viei®--aV,).
BEB,,

On the other hand, according to Theorem 4.4.3, for each 3 € By, the vector space

Homp, (1,2, V' @ Vi@ @ V)
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has a basis indexed by the collection of sequences (1/(0), v ,V(”)) such that v(® = 8 and v
satisfying (4.56)-(4.57). Equivalently, a basis indexed by the collection of standard tableaux T' of
shape v/ such that v satisfying (4.56)-(4.57).

. . U’ 77—
THEOREM 4.6.3. The invariant space Fn7$w7b

(Aq(GLN)) has a basis indexed by the collection
of sequences (10 v ... v such that 1O satisfying (4.62)-(4.63) and v satisfying (4.56)-
(4.57). Equivalently, a basis indexed by the collection of standard tableauz T of shape V™ /B such
that v™ satisfying (4.56)-(4.57) and 8 satisfying (4.62)-(4.63). In the case w —+1 orn+o—7

is not an even integer, the invariant space F"['" (Aq(GLn)) = 0.
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APPENDIX A

Coideal subalgebras and invariants spaces

The theorem we proof here is an analogue of the theory in [14].

A.1. Main result

THEOREM A.1.1. Take o — 7 to be an even integer. There exist nonzero vectors v € V¥ such

that 5.0 = 0 or ()"0 = 0 if and only if v =N | vie;, where v € PT and

(Al) Vi:%7i:p+17"'7N_p7

(AQ) vi+un—iy1 =0,i=1,---,p.

A.2. Proof of the main theorem

A.2.1. Properties of the invariants.

LeEMMA A.2.1. Let V¥ be an irreducible highest weight U, (gly)-module with highest weight
v € Pt and v € V¥ be a nonzero to-invariant vector, i.e. to.v = 0. Let v, denote the highest

weight component of v. Then v, # 0.

PROOF. Let 1my; = ((J7)"'LYJ? — L7)y; = =l + ((J7)"'L*J?);5, which are generators of t7.
Consider the action of m;; for i < j,
77~’Lz'j.1} =0.
Let v, be the maximal weight component of v such that v, # 0. Then take the y+¢; —€; component

of both sides of the equation above, we have li_j.vu = 0 for any ¢ < j. This implies p is the highest

weight of the module V¥ and hence p = v.
O

PROPOSITION A.2.2. Let v € V¥ be a nonzero t -invariant. Then for any w € V¥ such that

t.w =0, w= kv for some k € C.
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PROOF. Let v and w be nonzero t7 invariants of the highest weight module V¥. Then we have
v, # 0 and w, # 0. Since the v-component of V' is one dimensional. we have w, = kv, for
some k € C. Consider the vector kv —w € V¥, this is also a t] invariant. But the v-component

(kv —w), = kv, —w, = 0, which forces kv — w = 0 and hence w = kv.

REMARK A.2.3. The dimension of the t -invariant subspace of V¥ is either 0 or 1.

PROPOSITION A.2.4. Let v € V¥ be a t}-invariant and w € V* be a tf]—invariant. Then the

tensor w @ v € V¥ @ V¥ is a t -invariant.
ProOF. This fact is verified by the following computation.
ALY —JL7)
=LT@LTJ - J L ®L"
=LT@LYJ - LTJIL”+LT"®J'L” —J L~ ® L~
=LT@LYJ - LTJ'L-+L "L —J L~ ®L"”

=LT® (LTI = J'L)+ (LTI J L)@ L~

REMARK A.2.5. By Proposition A.2.1, the image of w ® v under the canonical map
VEQVY = V(v+ )

is a 7 -invariant in V(v + p). It suffices to show Theorem A.1.1 in the case 0 — T = £2.

Let t7 be the subalgebra generated by the entries of the matrix L*J7 — J°L~. We have the

following fact in [14].
THEOREM A.2.6. [14] There exist a nonzero vector v € V¥ such that tS.v = 0 if and only if

inO,izp—l-l,'--,N—p,

Vi""”N—’H—l :072: 17 yD-
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COROLLARY A.2.7. Let v € V¥ be a t]-invariant and w € V* is a tJ-invariant. Then
wve Vi VY

s a t -invariant.

REMARK A.2.8. It suffices to show there is a nonzero vector in V¥ which is killed by t7 where

N—p N
oc—1=2andv=7331"€— 3 i N _pi16j-

A.2.2. Actions of e and f. Let V =V be the vector representation of U,(gly) and V*
is the dual representation of the vector representation. We take the basis {v1,---,vn} of V and

the dual basis {v},--- , v} } of V*. We have

€ Vit1 = Vi, €.vj =0,,j#i+1,

fivi =vig1, fiv; =0,5 #1,

1

€., = —q

* * . .
i Vit1, €V = 0,7 7& L,

fivi = —qui, fiv; =0,j#i+1.
We compute the actions of e; and f; on the representation (A" 2 V) ® (AP V*). Let
I:{1§i1<--'<iN_p§N}

and vy = vy, A+ -Aviy_, then {vf|I C{1,---,N,|[I| = N —p}} forms a basis of AN P V. Similarly,
let

J={1<ji<--<jp,<N,|J|=p}
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and vy = vj, A--- Avf, then {v}[J C {1,---,N}} forms a basis of A" V*. The actions of e; and
fi are computed as follows.

e;i-vr = Vi_fisnyugiy, (1 € i+ 1€ 1),  e.vr =0 otherwise,

fi.l)[ = Ur—{i}u{i+1}> (Z +1 ¢ I,i S I), fi.’l}[ =0 otherwise,

e;.vy = —q_le_{j}U{j+1}, (j+1¢ J,jelJd), ejvy=0 otherwise,

fivy=—qui_jrnugy, G ¢ J,i+1€J),  fiv) =0 otherwise.

Recall the Hopf * structure of Uy(gly). The actions of e and f* on (AN 7 V) ® (AP V*) are

as follows.

(A.3) filor= VI {i+1}u{i}> (i¢l,i+1€l), fovr=0otherwise,

(A.4) ;v = vi_iyugivy, ((F1 ¢ Li€1),  ef.wr =0 otherwise,

(A.5) [y = —q_le_{j}U{jH}, (G+1¢J,jed), [f;v)=0otherwise,
(A.6) e; vy = —qui_girnugys (G ¢ g +1€J), e v) =0 otherwise.

Similarly, we compute the actions of e; and f; on the representation (AP V) @ (AN P V*). Let
I={1<iy<---<ip,<N}andvr = v A---Avy,, then {vf|I C {1,--- ,N}} forms a basis of A" V.
Similarly, let J = {1 <j1 <--- <jn—p < N}and vj =vj A---Avj then {vj|J C{L,--- , N}}
forms a basis of AN P V*.

We compute the actions of e* and f on (A? V)@ (AY P V*) as follows.

frvr=v_gpnoy (¢ Li+1€1),  fur =0 otherwise,
ef.vr = vi_yugisy, (F1 ¢ Li € 1),  ef.wur =0 otherwise,
fivy = _q_lvj_{j}u{j_l’_l}, (J+1¢J,jeJ), [f;v)=0otherwise,

e; vy = —qui_irnugy, U € L i+ 1€ J), ejuj =0 otherwise.
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A.2.3. {’-invariant vector. With the actions of e and f on (AY P V) ® (AP V*), we com-
pute the actions of the generators m;; of t] on (AYPV)® (AP V*). And we are going to show the

following fact that.

THEOREM A.2.9. The vector v =73 ;trjur @vj € (ANPV)@ (AP V*), with I satisfies

(){p+1,--- , N—p}cI

@){i,N—i+1}nI|=1i=1,---,p
J satisfies

QNi, N—i+1}nJ|=1i=1,---,p
and try =1I_  k;, where
L, i€l andi ¢ J

(—1)Pmig?N+o+l-—p=3i i€l andiecJ

(—1)N—p=i=lgN=p=i=l40 i & [ andi¢ J

k(_l)N71q3N72p74i+20’ i ¢ Tandie J

in (NNPV)® (NP V*) is a € -invariant, where o — 7 = 2.

REMARK A.2.10. By Theorem A.2.9 above, we verify the existence of a nonzero t-invariant in

v _ _ N—p N .
VY, whereo —1=2andv =73 1" € — D ;N _pi1 6
Moreover, we have a similar fact in the case 0 — 7 = —2.

THEOREM A.2.11. The vector v =7 ; ;trjur @ vy € (A\'V) ® (AN "PV*), with I satisfies

W{p+1,--- ,N-p}nI=0
@i, N—i+1}nI=1i=1,---,p
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J satisfies

@Qi,N—i+1}nJ|=1i=1,---,p

and try = Hlek‘i, where

1, i€l andi ¢ J

By (—1)N=p=itlgN+p=m43=3i =y c [ andi € J
o (—1)pigpmititr, i¢ 1 andi¢ J
(—1)N-1gN+2p—di=2r i¢landieJ

in (NPV) @ (AN PV*) is a t]-invariant, where o — T = —2.
We will compute the coefficient ¢;; in the following subsections.
A.2.4. Proof of Theorem A.1.1. Let p be a positive integer such that p < %

LEMMA A.2.12. Let v € V¥ be a t -invariant and let vy be the weight A-component of v. If

vy # 0, then X\ satisfies

(A7) )\i:U;T7i:p+17'”7N_p7

(AS) )\i+AN—i+1 :O,i: 1, , D-

PrOOF. Consider the action of the (i,)-entry m;; of LT J7—J7 L™ on v, where p+1 < i < N—p.

We have

Mmy; = —qial;’i— + qiTli_i

- _ faqei _i_qfquei.

and mj;.v = 0. Let A = Zfil Ai€;. So each A-component (m;;.v)y of m;;.v is also zero and we have

Ai = (), which implies

(mii.v))\ = my;.vx. Then m;;.v\ = —q_”q/\i +q 7q"
o —T

A =
2




fori=p+1,---, N —p. This proves (A.7).

Then consider the (N — i+ 1,7)-entry my_;4+1,4, where 1 <1 < p with

. o7t _J— _ EN—i+1 _ o€
MN—i+1,i = Iy_ip1 o1 — b =4V q "

This proves (A.8). O

Next we show Theorem A.1.1 in the case 0 — 7 = 2. Hence we compute nonzero t}-invariant

vectors in (AV V)@ (AP V*).

REMARK A.2.13. Suppose v € (NN V)@ (AP V*) is a nonzero €] -invariant vector. Since each
weight A-component vy is a linear combination of vy ® v’, we have \; =1 fori=p+1,--- ,N —p,

Ai =21 and A\j + An—ix1 =0 fori=1,--- p, according to Lemma A.2.12.

LEMMA A.2.14. Let v be a t%-invariant vector in (NN P V)@ (AP V*) and v is a linear combi-
nation of v =7, trjur @v%. If the coefficient t;; of vi @ v’ is nonzero in the linear combination,

then we have {p+1,--- ,N—p}CIT and{p+1,--- ,N—p}tnJ=10.

PRroOOF. Let A denote the weight of the tensor v; ® v, which is the sum of the weight of v;
and the weight of v%. The weight of vy is ), ;€; and the weight of v’ is — ZjeJ €;. For each i
such that p+1 < ¢ < N — p, the fact that \; = 1 implies ¢ € I and i ¢ J. Then it follow that
{p+1,--- ,N—p}cCrlTand {p+1,--- ,N—p}nJ=0. O

LEMMA A.2.15. Lettr; denote the coefficient of vy @vY in the t] -invariant v. Let w = Zf\il Wi €;

be the weight of vi ® v and k is the largest integer less or equal to p such that wy, # 1. Iftr; # 0,

then the coefficient troipy—{N—k+1},JU{N—k+1}—{k} 7 O-

PrROOF. By Lemma A.2.13, wp, = 0 or wy = —1. If wx = 0, then there are two possibilities:
(k¢ ITand k¢ Jor (2) kel andk € J. Consider the action of the (k, N — p)-entry my, n_,, of

the matrix LTJ° — J" L™, where

Pt -
MEg,N-p = —4 Ulk,N—p - lN—k+1,N—p
=—q 7 (q—q g% en_pr+ (@ —q " )en—pN_kt14 N7
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and the condition mj, NepV = 0.
Case 1. wy =0, kel and ke J.

The left action of e*N_p O vy ® v gives a nonzero vector:

N _p-(trrvr @) = (=) VU@ fY - f).(tryvr @ 0))

- (—q)_2N+2p+2k+3t1J(

VI ® VIUEN—p}—{k})

£0.

Apart from v; ®v7, the tensor vy ®U§U{N—k+1}—{k} is the only weight component of v gives nonzero

vy ® U}U{pr}i{k} under the left action of m;;N_p.
EN—p,N—k+1- (VT ® Vgiin g1y gry) = (@77 N @ ey g enop) (U1 @ Vv k1) (k)
= q(—¢)" M (ur @ VIU{N—p}—{k})-
The condition m; Nop¥ =0 implies the coefficient

tL JO(N—k 1)k} = ETU{R}—{N—k 1} JO(N—k 1} (k) = —trs(—q) 2N TPH3EFL oL o,

Case 2. wy =0, k ¢ I and k ¢ J. The left action of e, ;. on vy ® v} gives a nonzero vector:

N pu-(tryvr @ v3) = (=@) VPR @ g N ) (0 © 0))

= (—q)_N+p+k+lt1J('Ulu{kz}—{N—p} ® vy)

£ 0.

Apart from vy ®v7, the tensor vryr)—(N—g+1} @7 is the only weight component of v gives nonzero

VIu{k}—{N—p} @ v under the left action of My N—p-

EN—p,N—kt1-(VIU{k} (N —k41} @ V) = (¢V PN @ ey en_p) - (V1u(k)—(N—k41) @ V))

= q(—)" " (0ru - (v —py ® VF).
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The condition my, NepV = 0 implies the coeflicient

_N42k—1
bory— vy ] = IOk —{N—k 41}, JU{N—k+1}—{k} = —t17(=q) " T2 1 0.

Case 3. wy = —1. Then in this case, k ¢ I and k € J.

The left action of e}‘v_p p O U1 ® v’ gives two nonzero vectors:

N —pa-(trgor @ v3) = (=q) NPIR(R e R @ g N ) (t o © o))

—Ntprhtly, o

=q(—q) VIU{k}—{N—p} ® V)

£0

and

N _p-(trrvr ®v)) = (=) VP @ fY - f).(trvr @ 0))

_ (—q)_2N+2p+2k+3t1J(U[ ® U?}U{N—p}—{k})

£ 0.

Apart from v; ® v}, the tensor vyy(r—(N—k+1) ® v} is the only weight component of v gives nonzero

VIUu{k}—{N—p} @ v} under the left action of m;;N_p.

e}(\f—nN—k—l—l'(UIU{k}—{N—k+1} ®uvy) = (¢N TN Qe ‘ejv—p)-(vlu{k}—{N—k+1} ®vy)

p—k—l—l(

=q(—q) VIU{k}—{N—p} @ VJ).

The condition mj; Nop¥ =0 implies the coefficient
LIk} —{N—k+1},0 7 0.

Apart from v; ®v7, the tensor vy ®v7 (N—k+1}—{k} is the only weight component of v gives nonzero

v ® v}U{N_p}_{k} under the left action of m,’;N_p.

EN—pN—k+1- (VI O VN g1y qry) = (@ FTNI @ ey g en_p)- (01 @ VSN — (k)

= (=g (v @ VIU{N—p}—{k})-
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The condition my, NepV = 0 implies the coeflicient

b JU{N—k+1}—{k} 7 O

Applying case 1 and case 2, we have

LIk} —{N—k+1},JU{N—k+1}—{k} 7 O

LEMMA A.2.16. Let the vector v = ZI’J trjvr @ v be a t}-invariant. Then the coefficient
try is nonzero if and only if I satisfies |[{i,N —i+ 1} NI| = 1,4 = 1,---,p and J satisfies
H{i,N—i+1}nJ|=1,i=1,---,p.

PROOF. Let us prove this lemma by contradiction. Let k be the maximal integer less or equal
to p such that [{k, N —k + 1} NI| # 1. Then consider two cases: (1) {k,N —k+1}NI| =0
or (2) {k,N —k+ 1} NI| = 2. The (k, N — p)-entry my, n_, of the matrix LT.J7 — J"L™ equals
—q_"l,j’pr — l]?fka,pr' The fact m;pr.v = 0 implies (m};,pr.v)w = 0 for every w-component.
By Lemma A.2.15, we assume {k+1,--- ,p} CTand {N —p+1,--- N —k} C J.

Case 1. {k,N —k+1}NI| =0. By (A.3)-(A.6), the action of e};_, x4 is as follows.

EN_pN—kt1-(V1 O VT) = (eN_p N _pr1€N_, @ 1).(v1 @ V])

= VI {N—p}U{N—k+1} ® Vy # 0.

Let A denote the weight of vy ® v%. Then A\, = 0 by [{k,N —k +1}NI| = 0 and Lemma
A.2.12. The fact m};N_p.v = 0 forces the existence of a term which gives vr_iy_p1un—rt1} @ V]
after the action of e}k\,fp,k. The possible vector vy ® v, is of weight A — €, + ex_g41 and hence
k¢ I'' N-k+1el, ke J and N—k+1¢ J. Then the action of e}, ; on vy ® v},
gives a linear combination of vp_(y_pugry ® v and vy @ v, (KUIN—p}’ neither of which is
VI {N—p}U{N—k+1} ® vJ. So there is no vector gives vy_(n_,yu{N—k41} ® v} alter the action of

* . : * —
EN_p k> which contradicts My N_p¥ = 0.
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Case 2. [{k, N —k+1} NI|=2. The action of e};_, ;. gives the vector

eN_pN—kt1-(V1 ® V) = (NPT NF @ ey eyy).(vr @ v])
—k *
= (=0)" " (v1 @ V)N _pr1yuv—py) 7 0-

Let X denote the weight of vy ®v%. Then Ay = 0 by [{k, N—k+1}NI| =2 and Lemma A.2.12. The
fact m;N_p.v = 0 forces the existence of a term which gives vy ®U}U{N_p}_{N_k+1} after the action
of ey, - The possible vector vy ®v7, is of weight A —ex+e€n—j41 and hence k ¢ I', N—k+1 € I',
ke J and N —k+1 ¢ J'. Then the action of e}"vfnk on vy ® vy gives a linear combination of
UV {N—p}u{k} @V and vy ®v}’—{k}U{N—p}’ neither of which is v;_(y_p1u{n—k41} ® V7. So there is
no vector gives vr_{n_p1u{N—k+1} ® U after the action of 67V—p,k:7 which contradicts mZ7N_p.v = 0.

0

REMARK A.2.17. In summary, if the v ® v with nonzero coefficient ty; in the linear combi-

nation of a t. -invariant v, then the index I satisfies

(A.10) {i,N—i+1}nI|=1,i=1,---,p
J satisfies
(A.12) {i,N—i+1}nJ|=1i=1,-,p.

So it suffices to compute the coefficients of the vectors with indices I, J satisfying (A.9)-(A.12).

Moreover, let

N—p N
VvV = E € — E 6j.
i=1 j=N-—p+1

By Proposition A.2.1, the highest weight v-component v, of v is nonzero, namely t7, ;, # 0.
Without loss of generality, take v, = vf1 ... N_p} ® Uf{FprJrl N} Let I = {1,--- ,N — p} and
Jo={N—-p+1,---,N}. And we denote v, = vy, @ v}, .
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LEMMA A.2.18. Let v € (AN PV) @ (APV*) be a t)-invariant with nonzero highest weight
component v, = vy, ® vy . Then for 1 < i < p, the v — € + eN—;p1-component of v is a lin-
ear combination of vy, ® U?@*{N*PA}U{Z’} and v, (u{N—it1} @ VY- In particular, the coefficient

of vi, ® ”§0—{N—i+1}u{z‘} is (—1)P7ig?NFot1=p=31 4nd the coefficient of Vi {i}U{N—it+1} ® U}, 1S

(_1)N—p—i—1qN—p—i—1+U .

PROOF. The (i, N — p)-entry m; y_, of the matrix LTJ7 — J7L™ is

_O—l‘Jr

MiN—p = =4 b N_p— lN—i+1,N—p

= ¢ (¢ —q g"en—pi+ (@ —q en—pN-it1g” N7
The condition m; y_,.v = 0 implies (m;‘ N_p.v)w = 0, for any weight w-component. Consider the

case when w = v — ey_p, + eny_ij+1. Let z; denote the coefficient of vy, ® v}oi{N%H}u{i} and y;

denote the coefficient of vy, iu(n—it1} @ v}, There are two terms of weight w, i.e.

(MiN—pV)w == (Iy_is1.n-p) (V1 @ V)
—q (L) " i (vr, @ 0% v iiyopy) T Y0 oy ity © v))]

=0.
To compute the first term,

(le—i-l—l,N—p)*'(vIO ®vy,)
=—(q— q_l)q_eNipeRf—p,N—i—l—l‘(UIO ® vy,)
=— (= ¢ g [((en—p--en—i)" ® 1).(vg, ®07,)
(NPT @ (en—p - en—i)")- (v, @ V], )]
=—(q— qil)[(vlof{pr}U{NfiJrl} ® vY,)

— (=q)" "2 (01, ® VY, v nyuv—py)-
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The second term is compute as follows. We have

q_U(l:N_p)*'xi(UIo ® ”307{N—i+1}u{i})
=q 7(q - qfl)e}kvfp,iqei-xi(vlo ® ,U:‘}Of{Nfﬁl»l}U{i})
=2iq (g —q¢ (= DOV P A@ (fi - frep-1)") (Vg ® UJo—{N—i+1}U{i})
2N72p72i71(

=ziq (¢ —q )(—q") VIp @ Uy _(N—i+1}U{N—p})

and

q_a(lz_N—p)*-yi(UIO—{i}U{N—i-‘rl} ® Uikfo)
=q (¢ —q "eN_pia" Yi(viy—(pun—it1y @ V5,)
=yiq "(q—q =g NPT (i )T @ @ TN ) (0 giyugv—i1} © U,)
prfifl(

=yiq (¢ —q ") (—q ") Vy—{N—p}{N—i+1} @ VJ,)-

Hence we obtain the following equations

(_q)p—i—l—Z + q—a(_q—l)QN—2p—2i—lxi — 0’

—14q (=g HV Py =0

We have

(A.13) T = (_1)p—z’q2N+a—p—3z‘+1
and

(A.14) Y = (_1)N—p—i—1qN—p—i+a—1_

LEMMA A.2.19. Let v € (ANPV) @ (NP V*) be a t-invariant with nonzero highest weight

component vy, @ v . Then for 1 < i < p, the only basis element of weight v — 2¢; + 2eN_;11 1S
0 Jo +
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Vp—{iJU{N—i+1} ® ”30—{N—z‘+1}u{z‘}’ the coefficient of which in v is

Lo —{iYU{N—i+1},Jo—{N—i+1}U{i} = (—1)N AN etz

PRrOOF. Consider the right action of (i, N — p)-entry m; n_p of the matrix L*J% — J"L™ on v.
The condition m; NopV = 0 implies (m:‘ pr-”)w = 0, for any weight w-component. Consider the
case when w = v —¢€; —ey—p +2€en—it+1. Let z; denote the coeflicient ¢, iu(n—it1}, 70— {N—i+1}0{i}

of
VLo {i}U{N—i+1} @ Vg _{N—it1}ufi}-

There are two terms of weight w, i.e.

*

(MiN_pV)w == (i1 n—p) " [@i (VI ® V] _in_iyyopy) T ¥i(Vig—(ipo(N—it1} ® v],)]
—q () 2 (Vi N =i} © VN —ipyugiy)
=0.

Computing the first term, we have

(UN—it1,nv—p) TV @ VT _n_it1yugiy)
=—(q- q_l)q_EN”’ef\/—p,N—Hl-ﬂ?i(UIo ® Uy _{N—it13ufi})
=—xi(q— q_l)((e*N—p cren_)T ®1).(viy ® Vi n_i1pugiy)
== 2i(q = ¢ ) (Vp—{N-p}+{N=i+1} D VT (v iy 1yug)
and
(Un_iv1N—p) YilVI—(ipu{N—it1} ® V],)
=—(q— q_l)q_eN’peyfv—p,N—i+1-yz‘(UIo—{z‘}u{N—iH} ® vy,)
=—4i(q— ¢ )@ PN @ (en—p - en—i))-(Vig— {ipu{N—it1} D VT,)

= —4i(q— 4 ) (=" (V1 fiy-{N=it1} © V5Nt UN )"
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The second term is computed as follows. We obtain

q_g(lZ_N_p)*'Zi(vlo—{i}u{N—i—i-l} ® U?}Of{NfiJrl}u{i})
=q %(q— qil)e*j\]fp,iqei-Zi(vlof{i}u{NfiJrl} ® V) (N—it130{i})
=2 “(q—q g (=g HN P!

[((fi- - fn—p—1)" @ ¢~ TN=r) (vg,_(iyugn—it1} @V (Nir1yufy)

+ (A (fi fv—p-1)")-(Wry—fiyu{N—it1} @ VI _(N—it110(})]
=24 (q— ¢ ) (= NPT up N—ppoN—it1} ® Vo {N—it1}Ui})
2N—2p—2i(

—ziq (g —q ") (—q) Vfo—{i}JU{N—i+1} ® U§0_{N—i+1}u{N—p})-

Then we obtain the equations

(A.15) —zi+q (=g HN P =0

(A16) (_q)p—i—l-lyi + q—a(_q—l)QN—2p—2iZi —0
and thus we obtain from (A.13)-(A.14)

25 = (—1)N-1g3N-2p—tit20
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