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Development and Validation of a Deep Neural Network Model for 
Prediction of Postoperative In-Hospital Mortality
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[Assistant Professor], Pierre Baldi, PhD2 [Professor], and Maxime Cannesson1,3,4 [MD PhD] 
[Professor and Vice Chair]
1Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, CA

2Department of Computer Sciences, University of California Irvine, Irvine, CA

3Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, 
Los Angeles, CA

4Department of Bioengineering, University of California Irvine, Irvine

Abstract

Background—We tested the hypothesis that deep neural networks trained on intraoperative 

features can predict postoperative in-hospital mortality.

Methods—The data used to train and validate the algorithm consists of 59,985 patients with 87 

features extracted at the end of surgery. Feed-forward networks with a logistic output were trained 

using stochastic gradient descent with momentum. The deep neural networks were trained on 80% 

of the data, with 20% reserved for testing. We assessed improvement of the deep neural network 

by adding American Society of Anesthesiologists Physical Status Classification and robustness of 

the deep neural network to a reduced feature set. The networks were then compared to Physical 

Status, logistic regression, and other published clinical scores including the Surgical Apgar, 

PreOperative Score to Predict PostOperative Mortality, Risk Quantification Index, and the Risk 

Stratification Index.

Results—In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep 

neural network with a reduced feature set and Physical Status classification had the highest area 

under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 – 0.93). The highest logistic 

regression area under the curve was found with a reduced feature set and ASA status (0.90, 95% 
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CI. 0.87 – 0.93). The Risk Stratification Index had the highest area under the receiver operating 

characteristics curve, at 0.97 (95% CI, 0.94 – 0.99).

Conclusion—Deep neural networks can predict in-hospital mortality based on automatically 

extractable intraoperative data, but are not (yet) superior to existing methods.

Introduction

About 230 million surgeries are performed annually worldwide.1 While the postoperative 

mortality is low, less than 2%, about 12% of all patients -the high-risk surgery group- 

account for 80% of postoperative deaths.2,3 To assist in guiding clinical decisions and 

prioritization of care, several perioperative clinical and administrative risk scores have been 

proposed.

The goal of perioperative clinical risk scores is to help guide care in individual patients by 

planning clinical management and allocating resources. The goal of perioperative 

administrative risk scores (based on diagnoses and procedures) is to help compare hospitals. 

In the perioperative setting, frequently used risk scores include the American Society of 

Anesthesiologists Physical Status Classification (ASA, a preoperative score) and the 

Surgical Apgar score.4,5 The ASA score was developed in 1963 and remains widely used.4 

Its main limitation is that it is subjective, it presents with high inter- and intra-rater 

variability, it cannot be automated, and it relies on clinicians’ experience. The Surgical 

Apgar score (an intraoperative score) uses three variables: estimated blood loss, lowest mean 

arterial pressure, and lowest heart rate during surgery to predict major postoperative 

complications.5 Favored for its simplicity, the Surgical Apgar score presents with area under 

the receiver operating characteristics curve (AUC) ranging from 0.6 to 0.8 for major 

complications or death with a correlation varying with subspecialty.6–9 In addition, the 

Surgical Apgar score has been shown to not substantially improve mortality risk 

stratification when combined with preoperative scores.9 In response to these limitations, 

there has been work to create more objective and accurate scores. The most popular method 

used to develop new scoring systems is based on logistic regression, such as the 

PreOperative Score to Predict Postoperative Mortality (POSPOM).10 In order to make these 

scores accessible in clinical practice, the logistic regression coefficients are normalized to 

easily summed values to be interpreted as a score rather than the direct logistic regression 

output. Besides the above mentioned clinical risk scores, other recent perioperative 

administrative risk scores are the Risk Stratification Index (RSI) (published initially in 

201011 and validated in 2017 on nearly 40 Million patients12) and the Risk Quantification 

Index (RQI)13.

In recent years, and although they are not new11, neural networks and deep neural networks, 

known as “deep learning”, have been used to tackle a variety of problems, ranging from 

computer vision12–17, gaming18–20, high-energy physics21,22, chemistry23–25, and 

biology26–28. While there have been studies using other machine learning methods for 

clinical applications such as predicting cardiorespiratory instability29,30 and 30-day 

readmission31,32, the use of deep neural networks (DNN) in medicine is relatively limited.
33–36
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In this manuscript, we present the development and validation of a deep neural network 

(DNN) model based upon intraoperative clinical features, to predict postoperative in-hospital 

mortality in patients undergoing surgery under general anesthesia. Its performance is 

presented together with other published clinical risk scores and administrative risk scores, as 

well as a logistic regression model using the same intraoperative features as the DNN. The 

DNNs were also assessed for leveraging preoperative information by the addition of ASA 

and POSPOM as features.

Materials and Methods

This manuscript follows the “Guidelines for Developing and Reporting Machine Learning 

Predictive Models in Biomedical Research: A Multidisciplinary View”37.

Electronic Medical Record (EMR) Data Extraction

All data for this study were extracted from the Perioperative Data Warehouse (PDW), a 

custom built robust data warehouse containing all patients who have undergone surgery at 

UCLA since the implementation of the electronic medical record (EMR) (EPIC Systems, 

Madison WI) on March 17th, 2013. The construction of the PDW has been previously 

described38. Briefly the PDW has a two-stage design. In the first stage data are extracted 

from EPIC’s Clarity database into 26 tables organized around three distinct concepts: 

patients, surgical procedures and health system encounters. These data are then used to 

populate a series of 800 distinct measures and metrics such as procedure duration, 

readmissions, admission International Statistical Classification of Diseases (ICD) codes, and 

others. All data used for this study were obtained from this data warehouse and IRB 

approval (IRB#15-000518) has been obtained for this retrospective review.

A list of all surgical cases performed between March 17, 2013 and July 16, 2016 were 

extracted from the PDW. The UCLA Health System includes two inpatient medical centers 

as well as three ambulatory surgical centers, however only cases performed in one of the 

two-inpatient hospitals (including operating room and “off-site” locations) under general 

anesthesia were included in this analysis. Cases on patients younger than 18 years of age or 

older than 89 years of age were excluded. In the event that more than one procedure was 

performed during a given health system encounter only the first case was included.

Model Endpoint Definition

The occurrence of an in-hospital mortality was extracted as a binary event [0, 1] based upon 

either the presence of a “mortality date” in the EMR between surgery time and discharge or 

a discharge disposition of expired combined with a note associated with the death (i.e. death 

summary, death note). The definition of in-hospital mortality was independent of length of 

stay in the hospital.

Model Input Features

Each surgical record corresponded to a unique hospital admission and contained 87 features 

calculated or extracted at the end of surgery (Table 1). These features were considered to be 

potentially predictive of in-hospital mortality by clinicians’ consensus (I.H., M.C., E.G.) and 
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included descriptive intraoperative vital signs, such as minimum and maximum blood 

pressure values; summary of drugs and fluids interventions such as total blood infused and 

total vasopressin administered; as well as patient anesthesia descriptions such as presence of 

an arterial line and type of anesthesia (all features are detailed in Table 1).

Data Preprocessing

Prior to model development, missing values were filled with the mean value for the 

respective feature. In addition, to account for observations where the value is clinically out 

of range, values greater than a clinically normal maximum were set to a maximum possible 

value (Table 1). These out of range values were due to the data artifact in the raw EMR data. 

For example, a systolic blood pressure of 400 mmHg is not clinically possible, however, it 

may be recognized as the maximum systolic blood pressure for the case during EMR 

extraction. The data was then randomly divided into training (80%) and test (20%) data sets, 

with equal % occurrence of in-hospital mortality. Training data was rescaled to have a mean 

of 0 and standard deviation of 1 per feature. Test data was rescaled with the training data 

mean and standard deviation.

Development of the Model

In this work, we were interested in classifying patients at risk of in-hospital mortality using 

deep neural networks (DNNs), also referred to as deep learning. During development of 

DNNs, there are many unknown model parameters that need to be optimized by the DNN 

during training. These model parameters are first initialized and then optimized to decrease 

the error of the model’s output to correctly classify in-hospital mortality. This error is 

referred to as a loss function. The type of DNN used in this study is a feedforward network 

with fully connected layers and a logistic output. “Fully connected” refers to the fact that all 

neurons between two adjacent layers are fully pairwise connected. A logistic output was 

chosen so that the output of the model could be interpreted as probability of in-hospital 

mortality [0-1]. To develop a DNN, it is important to fine-tune the hyperparameters as well 

as the architecture. We utilized stochastic gradient descent (SGD) with momentums [0.8, 

0.85, 0.9, 0.95, 0.99] and initial learning rates [0.01, 0.1, 0.5], and a batch size of 200. We 

also assessed DNN architectures of 1 to 5 hidden layers with 10 – 300 neurons per layer, and 

rectified linear unit (ReLU) and hyperbolic tangent (tanh) activation functions. The loss 

function was cross entropy. We utilized five-fold cross validation with the training set (80%) 

to select the best hyperparameters and architecture based on mean cross validation 

performance. These best hyperparameters and architecture were then used to train a model 

on the entire training set (80%) prior to testing final model performance on the separate test 

set (20%).

i Overfitting—In addition, overfitting was a major concern in the development of our 

model. While ~50,000 patients is large for clinical data, it is small relative to datasets 

typically found in deep learning tasks such as vision and speech recognition where millions 

of samples are available. Thus, regularization was critical. To address this, we utilized three 

methods: 1) early stopping, 2) L2 weight decay, and 3) dropout. Early stopping is the halting 

of model training when the loss of a separate early stopping validation set starts to increase 

compared to the training loss, indicating overfitting. This early stopping validation set was 
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taken as a random 20% of the training set, and a patience of 10 epochs was utilized. L2 

weight decay is a method of limiting the size of the weight of every parameter. The standard 

L2 weight penalty involves adding an extra term to the loss function that penalizes the 

squared weights, keeping the weights small unless the error derivative is big. We utilized an 

L2 weight penalty of 0.0001. Dropout is a method where neurons are removed from the 

network with a specified probability, to prevent co-adapting of the neurons.39–41 Dropout 

was applied to all layers with a probability of 0.5.

ii Data Augmentation—The goal of training was to optimize model parameters to 

decrease classification error of in-hospital mortality. However, the actual percent of 

occurrence of in-hospital mortality in the data was low and thus the data was skewed. The % 

occurrence of mortality in the training dataset was < 1%. To help with this skewed 

distribution, training data was augmented by taking only the observations positive for in-

hospital mortality and adding Gaussian noise. This was performed by adding a random 

number taken from a Gaussian distribution with a standard deviation of 0.0001 to each 

feature’s value. This essentially duplicated the in-hospital mortality observations with a 

slight perturbation. The in-hospital mortality observations in the training data set were 

augmented using this method to approximately 45% occurrence prior to training. During 

cross validation, this meant that only training folds were augmented. The validation fold was 

not augmented.

Feature Reduction and Preoperative Feature Experiments

Experiments to assess the impact of 1) reducing the number of features from the clinician 

chosen 87 to 45 features, and 2) adding ASA and POSPOM as a feature were also 

conducted. The reduced 45 feature set was created by excluding all “derived” features, 

specifically average, median, standard deviation, and last 10 minutes of the surgical case 

features (Table 1).

After choosing the best performing DNN architecture and hyperparameters with the 

complete 87 features data set, five additional DNNs were each trained with the following:

1. the addition of ASA as a model feature (88 features)

2. the addition of POSPOM as a model feature (88 features)

3. a reduced model feature set (45 features)

4. the addition of ASA to the reduced feature set (46 features).

5. the addition of POSPOM to the reduced feature set (46 features).

Model Performance

All model performances were assessed on 20% of the data held out from training as a test 

set. Model performance was compared to ASA, Surgical Apgar, RQI, RSI, POSPOM, and a 

standard logistic regression model using the same combination of features as in the DNN. 

ASA was extracted from the UCLA preoperative assessment record. Surgical Apgar was 

calculated using Gawande et al.5 RQI could not be calculated using the downloadable R 

package from Cleveland Clinic’s website <http://my.clevelandclinic.org/departments/
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anesthesiology/depts/outcomes-research> due to technical issues with the R version, and so 

RQI log probability and score were calculated from equations provided in Sigakis et al.42 

Uncalibrated RSI was calculated using coefficients provided by the original authors 

(Appendix 1).43 To calculate RSI, all International Statistical Classification of Diseases, 9th 

revision (ICD-9) diagnosis codes for each patient were matched with an RSI coefficient and 

the coefficients were then summed. POSPOM scores were extracted from the PDW, where 

they were calculated as described by Le Manach et al.10 Each of the diseases described by 

Le Manach et al.10 were extracted as a binary endpoint from the admission ICD codes for 

the relevant hospital admission. In addition to assigning points based on patient co-

morbidities the POSPOM also assigns points for the type of surgery performed. These points 

were assigned based on the primary surgical service for the given procedure.

i Area Under the Receiver Operating Characteristics (ROC) Curves—Model 

performance was assessed using Area Under the ROC Curve (AUC) and 95% confidence 

intervals for AUC were calculated using bootstrapping with 1,000 samples.

ii Choosing a Threshold—The F1 score, sensitivity, and specificity were calculated for 

different thresholds for the DNN models, logistic regression model, ASA, and POSPOM. 

The F1 score is a measure of precision and recall, ranging from 0 to 1. It is calculated as 

F1 = 2 ∗   precision ∗ recall
precision + recall  , where precision is (true positives/predicted true) and recall is 

equivalent to sensitivity. Two different threshold methods were assessed: 1) a threshold that 

optimized the observed in-hospital mortality rate and 2) a threshold based on the highest F1 

score. The number of true positives, true negatives, false positives, and false negatives were 

then assessed for each threshold to assess differences in the number of patients correctly 

predicted by each model.

iii Calibration—Calibration was performed to account for the use of data augmentation on 

the training data set to be used during training of the DNN. This data augmentation served to 

balance classes in the training data set to approximately 45% mortality vs the true 

distribution of mortality (<1%). This extreme augmentation of the training data set classes 

skewed predicted probabilities to be higher than the expected probability based on the true 

distribution of mortality (<1%). Therefore, we performed calibration after finalizing the 

model. Calibration was performed only on the test data set. Calibration of the DNN 

predicted probability output was performed using the following equation:

Calibrated Predicted Probability =   1
1 +   1

Predicted Probability − 1 P 0
P 1

, where P 1 =   #   Observed   Mortality   in   Test  
#   Test   Patients = 87

11997  and P 0 =   1 − P 1 . This calibration 

formula was used to maintain the rank of predicted probabilities, and thus not changing any 

model performance metrics (AUC, sensitivity, specificity, or F1 score).

In addition, calibration plots and Brier scores were used to assess calibration of predictions.
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iv Feature Importance—To assess which features are the most predictive in the DNN, we 

performed a feature ablation analysis. This analysis consisted of removing model features 

grouped by type of clinical feature, and then re-training a DNN with the same final 

architecture as well as hyperparameters on the remaining features. The change in AUC with 

the removal of each feature was then assessed to evaluate the importance of each group of 

features. To assess which features are the most predictive in the logistic regression model, 

we assessed which features corresponded to the largest weights.

All DNN models were developed and applied using Keras.44 Logistic regression models and 

performance metrics were calculated with scikit-learn.45

Results

Patient characteristics

The data consisted of 59,985 surgical records total. Patient demographics and characteristics 

of the training and test data sets are summarized in Table 2. The in-hospital mortality rate of 

both the training and test set is less than 1%. The presence of invasive lines is also similar 

for both sets (26.5% in training; 26.7% in test). The most prevalent ASA is 3 at 49.9% for 

both sets.

Development of the Model

The final DNN architecture consists of four hidden layers of 300 neurons per layer with 

rectified linear unit (ReLu) activations and a logistic output (Figure 1). The DNN was 

trained with dropout probability of 0.5 between all layers, L2 weight decay of 0.0001, and a 

learning rate of 0.01 and momentum of 0.9.

Model Performance

All performance metrics reported below refer to the test data set (n = 11,997).

i. Area Under the ROC Curves—ROC curves and AUC results are shown in Figure 2 

and Table 3. All logistic regression models (LR) and all DNNs had higher AUCs than 

POSPOM (0.74 (95% CI, 0.68 – 0.79)) and Surgical Apgar (0.58 (95% CI, 0.52 – 0.64)) for 

predicting in-hospital mortality (Figure 2, Table 3). All DNNs had higher AUCs than LRs 

for each combination of features except for the reduced feature set with POSPOM (LR 0.90 

(95% CI, 0.86 – 0.93) vs DNN 0.90 (95% CI, 0.87 – 0.93)). In addition, reducing the feature 

set from 87 to 45 features did not reduce the DNN model AUC performance and the addition 

of ASA and POSPOM as features modestly improved the AUCs of both the full and reduced 

feature set DNN models. The highest DNN AUC result was the DNN with reduced feature 

set and ASA (0.91 (95% CI, 0.88 – 0.93)). The highest risk score AUC was RSI (0.97 (95% 

CI, 0.94 – 0.99)) and the highest LR AUCs were the LR with reduced feature set and ASA 

(0.90 (95% CI, 0.87 – 0.93)) and the LR with reduced feature set and POSPOM (0.90 (95% 

CI, 0.86 – 0.93)).

ii. Choosing a Threshold—For comparison of F1 scores, sensitivity and specificity at 

different thresholds, DNN with original 87 features (DNN), DNN with a reduced feature set 
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and POSPOM (DNNrfsPOSPOM), and DNN with a reduced feature set and ASA (DNNrfsASA) 

are compared to ASA, POSPOM, logistic regression with original 87 features (LR), logistic 

regression with a reduced feature set and POSPOM (LRrfsPOSPOM), and logistic regression 

with a reduced feature set and ASA (LRrfsASA) (Table 4). To compare the number of 

correctly predicted patients by the DNNs at different thresholds, a table of the number of 

correctly and incorrectly classified patients is shown for all the above models at different 

thresholds for all test patients (n=11,997) (Table 5).

If we choose a threshold that optimizes the observed in-hospital mortality rate, the 

thresholds (% observed mortality) for POSPOM, ASA, and LR, LRrfsPOSPOM, LRrfsASA are 

10 (93.1%), 3 (97.7%), 0.00015 (98.9%), 0.002 (97.7%), and 0.0034 (96.66%), respectively 

(Table 4). The thresholds for DNN, DNNrfsPOSPOM and DNNrfsASA are 0.05 (98.9%), 0.2 

(96.6%) and 0.22 (96.6%), respectively. At these thresholds, POSPOM, ASA, LR, 

LRrfsPOSPOM, LRrfsASA, DNN, DNNrfsPOSPOM and DNNrfsASA, all have high and 

comparable sensitivities. The DNN with the highest AUC DNNrfsASA had a sensitivity of 

0.97 (95% CI, 0.92 – 1) and specificity of 0.64 (95% CI, 0.64 – 0.65) and the LR with the 

highest AUC LRrfsASA had a sensitivity of 0.97 (95% CI, 0.92 – 1) and specificity of 0.64 

(95% CI, 0.63 – 0.65). However, all DNNs reduced false positives while maintaining the 

same or similar number of false negatives (Table 5). DNN with all 87 original features 

decreased the number of false positives compared to LR from 11,873 to 9,169 patients. 

DNNrfsASA decreased the number of false positives compared to LRrfsASA from 4,332 

patients to 4,241 patients; and compared to POSPOM and ASA from 9,169 patients and 

6,666 patients, respectively.

If we choose a threshold that optimizes precision and recall via the F1 score, the thresholds 

for POSPOM, ASA, LR, LRrfsPOSPOM, and LRrfsASA are higher at 20, 5, 0,1, 0.1, and 0.1, 

respectively (Table 4). All the thresholds for DNN, DNNrfsPOSPOM, and DNNrfsASA also 

increased to 0.3, 0.4, and 0.3, respectively. The highest F1 scores were comparable for ASA, 

LRrfsASA, and DNNrfsASA at 0.24 (95% CI, 0.14 – 0.35), 0.26 (95% CI, 0.18 – 0.33) and 

0.22 (95% CI, 0.12 – 0.30). However, DNNrfsASA had a lower number of false positives at 

35 patients compared to LRrfsASA 115 patients (Table 5).

iii. Calibration—For comparison of calibration, Brier scores and calibration plots were 

assessed for LR, DNNrfsASA, and calibrated DNNrfsASA. DNNrfsASA had the worst Brier 

score of 0.0352, and LR had the best score of 0.0065 (Figure 3). However, the calibrated 

DNNrfsASA had a comparable Brier score of 0.0071. Calibration of DNNrfsASA shifted the 

best thresholds for observed mortality optimization and F1 optimization from 0.2 and 0.4 to 

0.0018 and 0.0048, respectively.

iv. Feature Importance—To assess feature importance in the DNN, we assessed the 

decrease in AUC for the removal of groups of features from the best DNN (DNNrfsasa) 

(Table 6, Figure 4). For the analysis, 13 groups were used (Age, Anesthesia, ASA, Input, 

Blood Pressure, Output, Vasopressor, Vasodilator, Labs, Heart Rate, Invasive Line, Inotrope, 

and Pulse Oximetry). To assess feature importance, we assessed the weights for the logistic 

regression model (LRrfsASA) (Figure 5). The top 5 DNN features groups were: labs, ASA, 

anesthesia, blood pressure, and vasopressor administration. The top LR feature was ASA. In 
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addition, similar to the DNN, vasopressin administration, hemoglobin, presence of arterial or 

pulmonary arterial line, and sevoflurane administration are found in the top 10 weights.

We have developed a website application that performs predictions for DNNrfsASA and 

DNNrfs on a given data set. The application as well as downloadable model package are 

available at <risknet.ics.uci.edu>.

Discussion

The results in this study demonstrate that deep neural networks (DNN) can be utilized to 

predict in-hospital mortality based on automatically extractable and objective intraoperative 

data. In addition, these predictions are further improved via the addition of preoperative 

information, as summarized in a patient’s ASA score or POSPOM. The AUC of the “best” 

DNN model with a reduced feature set and ASA (DNNrfsASA) also outperformed Surgical 

Apgar, POSPOM, and ASA. Optimizing thresholds to capture the most observed mortality 

patients, in other words optimizing for sensitivity, DNNrfsASA has higher sensitivity than 

POSPOM, but comparable to ASA, LRrfsASA, and LRrfsPOSPOM. This may make sense as 

ASA is a feature in this DNN model. Most notably, however, is that DNNrfsASA reduces the 

number of false positives compared to POSPOM and ASA by 54% and 36%, respectively. 

DNNrfsASA also reduced the number of false positives to the most comparably performing 

logistic regression model LRrfsASA by 2%. In addition, it should be noted that for each 

feature set combination (all 87 features, 87 features with ASA, 87 features with POSPOM, 

reduced features, reduced features with ASA, and reduced features with POSPOM), the 

DNN slightly outperformed logistic regression, with the exception of the reduced feature set 

with POSPOM. However, the addition of POSPOM is adding a logistic regression model 

output as a feature to another logistic regression model, which can be thought of as adding 1 

hidden layer to a neural network with a logistic output. While the AUC of logistic regression 

with the same reduced feature set and ASA (LRrfsASA) was not significantly lower than 

DNNrfsASA, the DNN with all 87 original features outperformed logistic regression with the 

same 87 features in AUC and significantly decreased the number of false positives by 2,377 

patients (20%). This suggests that without careful feature selection to reduce the number of 

features as well adding preoperative information, logistic regression did not perform 

comparably to a DNN. Logistic regression can be thought of as a neural network with no 

hidden layers. When preserving complexity, such as not performing careful feature selection 

or more rigorous preprocessing, neural networks with many hidden layers are able to 

perform well and in some cases better than logistic regression.

Due to such a low incidence of true positives (n=87), the numbers for false negatives are 

hard to compare in this very small mortality population. This small number of mortality 

patients also affects the interpretation of the calibration results. Extensive data augmentation 

was used in training the DNN on balanced classes, resulting in predicted probabilities that 

were shifted up. The DNN’s predicted probability was calibrated to the expected probability 

of mortality (<1%), and all predicted probabilities were then shifted down well below 0.01 

to reflect the % occurrence of in-hospital mortality, while maintaining all performance 

metrics. After calibration, the calibrated DNNrfsASA resulted in a better Brier score that was 

also closer to that of logistic regression, and the optimal mortality threshold for DNNrfsASA 
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was shifted down from 0.2 to 0.0018, a more reasonable threshold considering the low % 

occurrence of mortality. For direct comparison in the calibration plot, the same probability 

bins at intervals of 0.1 were chosen for the DNNrfsASA calibrated and uncalibrated as well as 

LR. A limitation of the calibration plot is that it is highly dependent on the choice of bins. 

This limitation is reflected in the resulting calibration plot for the calibrated DNNrfsASA, 

where 86 mortality patients were predicted in the bin [0 to 0.1) and 1 patient was predicted 

in the bin [0.9 to 1). Thus, the interpretation of these results is limited to the number of true 

positives that exist.

While the Risk Quantification Index (RQI) had a high and comparable AUC to the 

DNNrfsASA, it could only be calculated on 47% of the test patients due to a feature of RQI, 

specifically the Procedural Severity Score (PSS), which was available for only a limited 

number of CPT codes. The Risk Stratification Index (RSI) had the highest AUC at 0.97 and 

unlike RQI, could be calculated on a vast majority of the patients. RSI requires ICD 9 

procedural and diagnosis codes. There is are important distinctions to be made between a 

risk score based on clinical data (ASA, Surgical Apgar, POSPOM, and the logistic 

regression and DNN models reported here) versus administrative data (RSI, RQI). The first 

is that present-on-admission diagnoses and planned procedures, i.e. ICD 9 and 10 codes, are 

theoretically available preoperatively. But in practice, the coding is done after discharge and 

therefore is not actually available preoperatively to guide clinical care. This makes scores 

such as RSI appropriate for its intended purpose, comparing hospitals, but not for individual 

patient care. Finally, point-of-care clinical data contains more information about specific 

patients than models based only on diagnoses and procedure codes, and therefore should be 

more specific and useful for guiding the care of individual patients. These distinctions 

should not be seen as “one is better than another” so much as a matter of selecting the right 

model for particular purposes.

Perhaps the most attractive feature of this mortality model, is that it provides a fully 

automated and highly accurate way to estimate the mortality risk of the patient at the end of 

surgery. All of the data contained in the risk score are easily obtained from the EMR and 

could be automatically loaded into a model. While the ASA score is subjective, presents 

with high inter- and intra-rater variability, and does require input from the anesthesiologist 

into the EMR, this input is common practice as a part of pre-operative assessment. In 

addition, we have also trained a DNN model using the POSPOM score with comparable 

performance metrics. Thus, if the clinical need is to be completely objective, the 

DNNrfsPOSPOM model would be the most automatic and objective, as POSPOM is based on 

the presence of key patient co-morbidities and could be automatically obtained from the 

EMR.

The input into this mortality model is based heavily on intraoperative data available at the 

end of surgery. There are 45 intraoperative features in the reduced feature set and 1 

preoperative feature was added accordingly to leverage preoperative information. The ability 

of the intraoperative-only mortality models (DNN and DNN with reduced feature set) to 

maintain high performance with no addition of preoperative features further supports the 

idea that intraoperative events and management may have a significant effect on post-

operative outcomes.
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By definition, any screening score will have to tradeoff between sensitivity (capturing all 

patients with the condition) and specificity (not capturing those who do not have the 

condition). As a result, clinically, we generally discuss the number needed to treat – the 

number of “false positives” that must be treated to capture one true positive. Our DNN 

model not only had the highest AUC, but also reduces the number of false positives – 

thereby reducing the number needed to treat. Given the current transitions towards value 

based care, this has some appeal. Another key advantage of a DNN model is its ability to 

account for the relationships between various clinical factors. For example, in a logistic 

regression model excess estimated blood loss might be assigned a certain weight and 

hypotension a different one, thus assigning a linear relationship between hypotension and 

blood loss. On the other hand, a DNN model could account for the differences and linear or 

nonlinear associations of hypotension in a minimal blood loss vs significant blood loss case. 

While a feature could be created to reflect this relationship of hypotension and blood loss 

and used as an input into a logistic regression model, a DNN model avoids this need for 

careful feature extraction and is able to create these features on its own. Eventually, 

integration of DNN models into electronic medical records could result in more accurate risk 

scores generated automatically per patient, thereby providing real time assistance in the 

triaging of patients.

Study limitations

There are several limitations to this study. Perhaps most significantly, this study is from a 

single center and of a somewhat limited sample size. As mentioned above, deep learning 

models in other fields have included millions of samples. In order to address this limitation 

and avoid overfitting, we chose a limited number of features and implemented regularization 

training techniques commonly used in deep learning. In addition, there were only 87 

mortality patients in the test data set. Thus, it is possible that the results generated here are 

not fully generalizable to other institutions and will need to be validated on other data sets.

Conclusion

To the best of our knowledge, this study is the first to demonstrate the ability to use deep 

learning to predict postoperative in-hospital mortality based on intraoperative EMR data. 

The deep learning model presented in this study is robust, shows improved or comparable 

discrimination to other risk scores, and is able to be calculated automatically at the end of 

surgery and does not rely on any administrative inputs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary Statement

The results of this study demonstrate that deep neural networks can be utilized to predict 

in-hospital mortality based on automatically extractable and objective intraoperative data. 

In addition, these predictions are further improved via the addition of preoperative 

information, as summarized in a patient’s ASA score or POSPOM. The AUC of the 

“best” DNN model with a reduced feature set and ASA (DNNrfsASA) also outperformed 

Surgical Apgar, POSPOM, ASA, and logistic regression.
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Figure 1. 
Summary visualization of the deep neural network. Input layer (blue) of features feed into 

the first hidden layer of 300 neurons with ReLU activations (grey). All the activations of 

neurons in the first hidden layer are fed into each of the neurons in the second, then all the of 

the second are fed into the third, and finally all of the third are fed into the fourth. All the 

activations of the neurons in the fourth hidden layer are then fed into a logistic output layer 

to produce a probability for in-hospital mortality between 0 and 1.
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Figure 2. 
Receiver Operating Characteristic (ROC) Curves to predict postoperative in-hospital 

mortality
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Figure 3. 
Calibration plot with mean predicted probability vs true positive frequency (# true 

positives/# samples) per probability value bins in the test data set (n = 11,997) for logistic 

regression, deep neural network (DNN) with reduced feature set and ASA, and calibrated 

DNN with reduced feature set and ASA. Bins of predicted probability were at intervals of 

0.1: [0 to 0.1), [0.1 to 0.2), …, [0.9 to 1.0).
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Figure 4. 
Decrease in AUC performance for each feature group removed during feature ablation 

analysis for deep neural network with reduced feature set and ASA
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Figure 5. 
Logistic regression model weight assigned to each feature in the logistic regression model 

with reduced feature set and ASA.
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Table 1

Eighty seven features used in models with description and applied maximum possible values as defined by 

domain experts. The 45 features used in the reduced feature set are indicated with an*.

Feature Name(s) Description

# Features; # 
Features in 

Reduced 
Feature Set

Maximum 
Possible 
Absolute 
Value (if 

applicable)

COLLOID_ML* Total Colloid Transfused (ml) 1; 1 -

CRYSTALLOID_ML* Total Crystalloid Transfused (ml) 1; 1 -

DBP MAX*, MIN*, AVG, MED, STD Maximum, Minimum, Average, Median, and Standard 
Deviation Diastolic Blood Pressure for the case (mmHg)

5; 2 150

DBP_10min MAX, MIN, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation Diastolic Blood Pressure for the last 10 minutes of the 

case (mmHg)

5; 0 150

EBL* Total Estimated Blood Loss (ml) 1; 1 -

EPHEDRINE BOLUS* Total bolus dose of Ephedrine (mg) during the case 1; 1 -

EPINEPHRINE BOLUS*, END 
RATE*, MAX RATE*

Total bolus dose (mcg), End of case infusion rate (mcg/kg/min), 
and Highest infusion rate (mcg/kg/min) of Epinephrine during 

the case

3; 3 -

ESMOLOL BOLUS*, END RATE*, 
MAX RATE*

Total bolus dose (mg), End of case infusion rate (mcg/kg/min), 
and Highest Infusion rate (mcg/kg/min) of Esmolol during the 

case

3; 3 -

HR MAX*, MIN*, AVG, MED, STD Maximum, Minimum, Average, Median, and Standard 
Deviation Heart Rate (bpm) for the case

5; 2 180

HR_10min MAX, MIN, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation Heart Rate (bpm) for the last 10 minutes of the case

5; 0 180

INVASIVE_LINE_YN* Invasive Central venous, arterial, or Pulmonary Arterial Line 
used for the case (Yes/No)

1; 1 -

MAP MAX*, MIN*, AVG, MED, STD Maximum, Minimum, Average, Median, and Standard 
Deviation Mean Blood Pressure (mmHg) for the case

5; 2 300

MAP_10min MAX, MIN, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation Mean Blood Pressure (mmHg) for the last 10 minutes 

of the case

5; 0 300

DES MAX* Maximum Minimum alveolar concentration of desflurane 
during the case (note this is not age adjusted)

1; 1 12

GLUCOSE MAX*, MIN* Maximum and Minimum plasma Glucose concentration for the 
Case (mg/dl)

2; 2 400

ISO MAX* Maximum Minimum alveolar concentration of isoflurane during 
the case (note this is not age adjusted)

1; 1 12

SEVO MAX* Maximum Minimum alveolar concentration of sevoflurane 
during the case (note this is not age adjusted)

1; 1 10

MILRINONE END RATE*, MAX 
RATE*

End of case Infusion Rate and Highest Infusion rate of 
Milrinone during the case (mcg/kg/min)

2; 2 -

HGB MIN* Minimum Hemoglobin concentration (g/dl) during the case 1; 1 15

MINUTES MAP < 50 Cumulative minutes with mean arterial pressure <50 mmHg 
(min)

1; 0 -

MINUTES MAP < 60 Cumulative minutes with mean arterial pressure < 60 mmHg 
(min)

1; 0 -

NICARDIPINE END RATE*, MAX 
RATE*

End of case infusion Rate and Highest Infusion Rate of 
Nicardipine during the case (mg/hr)

2; 2 -

NITRIC_OXIDE_YN* Nitric Oxide Used for the Case (Yes/No) 1; 1 -
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Feature Name(s) Description

# Features; # 
Features in 

Reduced 
Feature Set

Maximum 
Possible 
Absolute 
Value (if 

applicable)

NITROGLYCERIN BOLUS*, END 
RATE*, MAX RATE*

Total bolus dose (mcg), End of case infusion rate (mcg/min), 
and Highest Infusion rate (mcg/min) of Nitroglycerin during the 

case

3; 3 -

NITROPRUSSIDE END RATE*, 
MAX RATE*

End of case infusion Rate and Highest Infusion Rate of 
Nitroprusside (mcg/kg/min) during the case

2; 2 -

PHENYLEPHRINE BOLUS*, END 
RATE*, MAX RATE*

Total bolus dose (mcg), End of case infusion rate (mcg/min), 
and Highest Infusion rate (mcg/min) of Phenylephrine during 

the case

3; 3 -

SBP MAX*, MIN*, AVG, MED, STD Maximum, Minimum, Average, Median, and Standard 
Deviation Systolic blood pressure (mmHg) for the case

5; 2 300

SBP_10min MAX, MIN, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation Systolic blood pressure (mmHg) for the last 10 

minutes of the case

5; 0 300

SpO2 MAX*, MIN*, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation SpO2 (%) for the case

5; 2 100

SpO2_10min MAX, MIN, AVG, MED, 
STD

Maximum, Minimum, Average, Median, and Standard 
Deviation SpO2 (%) for the last 10 minutes of the case

5; 0 100

UOP* Total Urine Output (ml) 1; 1 -

VASOPRESSIN BOLUS*, END 
RATE*, MAX RATE*

Total bolus dose (units), End of case infusion rate (units/hr), and 
Highest Infusion rate (units/hr) of Vasopressin during the case

3; 3 -

XFUSION_RBC_ML* Total Red Blood Cells Transfused (ml) 1; 1 -

Total # Features 87; 45
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Table 2

Training and test data set patient characteristics reported as number patients (%) or mean ± standard deviation. 

HCUP code description and distribution is shown only for those representing >1% of the train data set.

Train Test

# of Patients 47,988 11,997

# of Patients with In Hospital Mortality (%) 389 (0.81%) 87 (0.73%)

Age (years) 56 ± 17 56 ± 18

Estimated Blood loss (cc) 95 ± 540 94 ± 410

Presence of Arterial Line (%) 8585 (17.9%) 2135 (18.0%)

Presence of pulmonary artery Line (%) 1641 (3.4%) 430 (3.6%)

Presence of Central Line (%) 2444 (5.1%) 635 (5.3%)

ASA score (%)

1 3023 (6.3%) 762 (6.4%)

2 17930 (37.4%) 4477 (37.3%)

3 23960 (49.9%) 5986 (49.9%)

4 2911 (6.1%) 735 (6.1%)

5 144 (0.3%) 30 (0.3%)

6 4 (0.01%) 0 (0%)

HCUP Code Description (%)

UPPER GASTROINTESTINAL ENDOSCOPY, BIOPSY 3864 (8.05%) 965 (8%)

COLONOSCOPY AND BIOPSY 1693 (3.53%) 388 (3.2%)

LAMINECTOMY, EXCISION INTERVERTEBRAL DISC 1029 (2.14%) 287 (2.4%)

OTHER THERAPEUTIC PROCEDURES, HEMIC AND LYMPHATIC SYSTEM 1013 (2.11%) 247 (2.1%)

OTHER OR THERAPEUTIC PROCEDURES ON RESPIRATORY SYSTEM 985 (2.05%) 254 (2.1%)

INCISION AND EXCISION OF CNS 942 (1.96%) 255 (2.1%)

OTHER OR PROCEDURES ON VESSELS OTHER THAN HEAD AND NECK 932 (1.94%) 207 (1.7%)

OTHER THERAPEUTIC ENDOCRINE PROCEDURES 904 (1.88%) 258 (2.2%)

HIP REPLACEMENT, TOTAL AND PARTIAL 792 (1.65%) 186 (1.6%)

ARTHROPLASTY KNEE 768 (1.6%) 193 (1.6%)

OTHER OR THERAPEUTIC NERVOUS SYSTEM PROCEDURES 750 (1.56%) 181 (1.5%)

THYROIDECTOMY, PARTIAL OR COMPLETE 737 (1.54%) 172 (1.4%)

SPINAL FUSION 735 (1.53%) 150 (1.3%)

OTHER OR THERAPEUTIC PROCEDURES ON BONE 722 (1.5%) 195 (1.6%)

CONVERSION OF CARDIAC RHYTHM 720 (1.5%) 184 (1.5%)

HEART VALVE PROCEDURES 715 (1.49%) 186 (1.6%)

CHOLECYSTECTOMY AND COMMON DUCT EXPLORATION 700 (1.46%) 216 (1.8%)

ENDOSCOPIC RETROGRADE CANNULATION OF PANCREAS (ERCP) 663 (1.38%) 155 (1.3%)

KIDNEY TRANSPLANT 659 (1.37%) 194 (1.6%)

OTHER OR THERAPEUTIC PROCEDURES ON NOSE, MOUTH AND PHARYNX 653 (1.36%) 173 (1.4%)

OTHER HERNIA REPAIR 652 (1.36%) 178 (1.5%)

HYSTERECTOMY, ABDOMINAL AND VAGINAL 641 (1.34%) 155 (1.3%)

APPENDECTOMY 634 (1.32%) 147 (1.2%)
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Train Test

OTHER THERAPEUTIC PROCEDURES ON MUSCLES AND TENDONS 629 (1.31%) 154 (1.3%)

COLORECTAL RESECTION 609 (1.27%) 127 (1.1%)

INSERTION, REVISION, REPLACEMENT, REMOVAL OF CARDIAC PACEMAKER OR 
CARDIOVERTER/DEFIBRILLATOR

601 (1.25%) 128 (1.1%)

ABORTION (TERMINATION OF PREGNANCY) 587 (1.22%) 162 (1.4%)

TREATMENT, FRACTURE OR DISLOCATION OF HIP AND FEMUR 570 (1.19%) 155 (1.3%)

OTHER OR GASTROINTESTINAL THERAPEUTIC PROCEDURES 569 (1.19%) 124 (1%)

OPEN PROSTATECTOMY 554 (1.15%) 140 (1.2%)

DIAGNOSTIC BRONCHOSCOPY AND BIOPSY OF BRONCHUS 550 (1.15%) 131 (1.1%)

NEPHRECTOMY, PARTIAL OR COMPLETE 526 (1.1%) 124 (1%)
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Table 6

Table summarizing the features removed with each group during each step of the feature ablation analysis for 

the DNN. Feature names are defined in Table 1.

Group Type Feature Removed In Group

Age AGE

Anesthesia MAX_ISO

Anesthesia MAX_SEVO

Anesthesia MAX_DES

Anesthesia NITRIC_OXIDE_YN

ASA ASA_SCORE

Blood Pressure MAX_DBP

Blood Pressure MIN_DBP

Blood Pressure MAX_MAP

Blood Pressure MIN_MAP

Blood Pressure MAX_SBP

Blood Pressure MIN_SBP

Heart Rate MAX_HR

Heart Rate MIN_HR

Inotrope MILRINONE_CURRENT_RATE_MCG_KG_MIN

Inotrope MILRINONE_MAX_RATE_MCG_KG_MIN

Input XFUSION_RBC_ML

Input COLLOID_ML

Input CRYSTALLOID_ML

Invasive Line CVC_ANES_YN

Invasive Line PA_LINE_YN

Invasive Line ART_LINE_YN

Labs BASELINE_GFR

Labs MAX_GLUCOSE

Labs MIN_GLUCOSE

Labs MIN_HB

Labs CURRENT_HB

Labs STARTING_HB

Output EBL

Output UOP

Pulse Oximetry MAX_PULSE_OX

Pulse Oximetry MIN_PULSE_OX

Vasodilator ESMOLOL_CURRENT_RATE_MCG_KG_MIN

Vasodilator ESMOLOL_MAX_RATE_MCG_KG_MIN

Vasodilator NICARDIPINE_CURRENT_RATE_MG_HR

Vasodilator NICARDIPINE_MAX_RATE_MG_HR

Vasodilator NITROGLYCERIN_CURRENT_RATE_MCG_MIN

Vasodilator NITROGLYCERIN_MAX_RATE_MCG_MIN
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Group Type Feature Removed In Group

Vasodilator NITROPRUSSIDE_CURRENT_RATE_MCG_KG_MIN

Vasodilator NITROPRUSSIDE_MAX_RATE_MCG_KG_MIN

Vasopressor EPINEPHRINE_CURRENT_RATE_MCG_KG_MIN

Vasopressor EPINEPHRINE_MAX_RATE_MCG_KG_MIN

Vasopressor PHENYLEPHRINE_CURRENT_RATE_MCG_MIN

Vasopressor PHENYLEPHRINE_MAX_RATE_MCG_MIN

Vasopressor VASO_CURRENT_RATE_UNITS_HR

Vasopressor VASOPRESSIN_MAX_RATE_UNITS_HR
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