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ABSTRACT
Pancreatic cancer is a recalcitrant disease. Gemcitabine (GEM) is the most widely-used first-line therapy for
pancreatic cancer, but most patients eventually fail. Transformative therapy is necessary to significantly
improve the outcome of pancreatic cancer patients. Tumors have an elevated requirement for methionine
and are susceptible to methionine restriction. The present study used a patient-derived orthotopic
xenograft (PDOX) nude mouse model of pancreatic cancer to determine the efficacy of recombinant
methioninase (rMETase) to effect methionine restriction and thereby overcome GEM-resistance. A
pancreatic cancer obtained from a patient was grown orthotopically in the pancreatic tail of nude mice to
establish the PDOX model. Five weeks after implantation, 40 pancreatic cancer PDOX mouse models were
randomized into four groups of 10 mice each: untreated control (n = 10); GEM (100 mg/kg, i.p., once a
week for 5 weeks, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); GEM+rMETase (GEM:
100 mg/kg, i.p., once a week for 5 weeks, rMETase: 100 units, i.p., 14 consecutive days, n = 10). Although
GEM partially inhibited PDOX tumor growth, combination therapy (GEM+rMETase) was significantly more
effective than mono therapy (GEM: p = 0.0025, rMETase: p = 0.0010). The present study is the first
demonstrating the efficacy of rMETase combination therapy in a pancreatic cancer PDOX model to
overcome first-line therapy resistance in this recalcitrant disease.
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Introduction

Pancreatic cancer is a recalcitrant disease. Gemcitabine (GEM)
is the most widely-used first-line therapy, but most patients
eventually fail. Transformative therapy is necessary to signifi-
cantly improve the outcome of pancreatic cancer patients.

Altered cancer metabolism is currently being investigated
for targets for effective novel therapeutics [1]. A very promising
candidate target is the elevated methionine (MET) requirement
of cancer cells, termed MET dependence. MET dependence
may be the only known general metabolic defect in cancer [2–
4]. MET dependence is observed when cancer cells selectively
arrest upon MET restriction [2–5]. Tumor MET levels correlate
with tumor size [6], further demonstrating the dependence of
tumors on MET. MET dependence is due to MET overuse by
cancer cells [2,5,7,8]. MET overuse can be observed in the clinic
by the efficacy of [11C]MET-PET imaging which gives a very
strong signal, since the cancer tissue is taking up much more
MET than the surrounding normal tissues [9]. MET restriction
selectively arrests cancer cells in late S/G2 of the cell cycle where
the cancer cells become highly-sensitive to cytotoxic chemo-
therapy [10–15].

MET is sourced mainly from food. However, MET restric-
tion through diets with low protein content does not allow the
maintenance of good nutritional status. In addition, reduction
of MET levels by dietary intervention is limited since MET is
also sourced from the protein breakdown [2]. In order to more
effectively target MET-dependence, we previously cloned Psue-
domonas putida L-methionine a-deamino-g-mercaptomethane
lyase (recombinant methioniniase [rMETase] [EC 4.4.1.11]) in
E. coli for large scale industrial production [16–21].

Targeting MET by rMETase arrested growth of cancer cells in
vitro and in vivo [21–30]. We previously reported that rMETase,
could inhibit tumor growth in patient-derived orthotopic xeno-
graft (PDOX) nude mouse models of melanoma and sarcoma
[24–30]. rMETase alone and in combination with a first-line
therapy was very effective in the PDOX models [24–30]. For
example, rMETase in combination with doxorubicin (DOX)
overcame undifferentiated spindle-cell sarcoma (USCS)-resis-
tance to DOX [27,28], which is first line therapy for this disease.

rMETase combined with temozolomide (TEM) [25] was
significantly more efficacious than either mono-therapy in a
PDOX model of BRAF-V600E mutant melanoma [31–34].
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rMETase combined with both tumor-targeting Salmonella
typhimurium A1-R (S. typhimurium A1-R) and cisplatinum
(CDDP) eradicated a osteosarcoma PDOX model [29].
Cell-cycle decoy by S. typhimurium A1-R, cell-cycle trap
by rMETase and cell kill by cisplatinum CDDP was able to
eradicate the metastatic osteosarcoma PDOX [29].

In the present study, we utilized a PDOX nude mouse model
of pancreatic cancer to demonstrate that rMETase can over-
come GEM-resistance.

Results and discussion

GEM alone could inhibit (P = 0.001), but not arrest the pancre-
atic cancer PDOX. rMETase alone could also inhibit tumor
growth (P = 0.020), but not arrest the pancreatic cancer PDOX.
In contrast, the combination of GEM+rMETase could regress
the pancreatic cancer PDOX (p < 0.0001) compared to the
untreated control. The combination of GEM+rMETase signifi-
cantly inhibited tumor growth compared to other treatments.
On day-14, GEM: p = 0.0006; rMETase: p = 0.0031. On day-21:
GEM: p = 0.0215; rMETase: p = 0.0001. On day-28, GEM: p =
0.0004; rMETase: p< 0.0001). The combination of GEM+rME-
Tase was also significantly more effective than other therapies
(GEM: p = 0.0025, rMETase: p = 0.0010) on day 35 (Figure 1),
demonstrating the durability of the response.

Intra-tumor MET levels decreased after rMETase treatment
(p = 0.0060) (Figure 2). This result showed that the pancreatic
cancer PDOX is MET dependent and rMETase has potential to
deplete tumor MET.

The body weight on each day, compared with day-0, did not
significantly differ between any treatment group (Figure 3).

There were no animal deaths in any group or untreated
control. These results suggest the safety of rMETase and
rMETase combination therapy with GEM. Toxicities not indi-
cated by body weight changes may have occurred in the
treated groups.

Histologically, the untreated control tumor was mainly com-
prised of viable cells. In contrast, tumors treated with the com-
bination therapy (GEM+rMETase) showed a great reduction of
cancer cells as well as necrosis (Figure 4). It was not possible to
determine if all cancer cells were eliminated. GEM-rMETase
treatment resulted in the strongest histological effect on the
tumors.

Figure 1. Drug efficacy on the pancreatic cancer PDOX. Line graphs show tumor volume at each point relative to the initial tumor volume for each condition. ��p < 0.01.
Error bars: § SD.

Figure 2. Intra-tumor MET levels. Bar graphs show intra-tumor MET levels in
control (CTR) and rMETase-treated tumors. Error bars: § SD.
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The present report demonstrates that rMETase combination
therapy could inhibit pancreatic cancer PDOX growth at least
35 days without overt toxicity. In the GEM+rMETase group, the
tumor volume at day-0 was 181 § 54 mm3 and at day-35 the
tumor volume was 176 § 80 mm3. In addition, tumor histology
indicated the tumor treated with GEM + rMETase was highly
necrotic has much fewer, if any, cancer cells compared with the
tumor at day-0. These results suggest that GEM + rMETase at
day-35 has regressed and potentially cured the tumor. These
results indicate that GEM combined with rMETase has future
clinical potential. The present study demonstrates the power of
the PDOX models to identify highly effective therapy for pancre-
atic cancer, one of the most recalcitrant cancers. The present
study indicates that possibly in the near future more effective
therapy will be clinically available for pancreatic cancer, which
can be identifiable for individual patients using PDOX models.

Using the technique of surgical orthotopic implantation
(SOI), PDOX models have been developed for pancreatic
[6,35–38], breast [39], ovarian [40], lung [41], cervical [42],

colon [43–45], stomach cancers [46], sarcoma [47–61] and
melanoma [25,27,31–33,62], suggesting that improved therapy
using rMETase will be developed for all major cancers.

Previously-developed concepts and strategies of highly-
selective tumor targeting can take advantage of molecular tar-
geting of tumors, including tissue-selective therapy which
focuses on unique differences between normal and tumor tis-
sues [63–68].

Materials and methods

Mice

Athymic nu/nu male nude mice (AntiCancer, Inc., San Diego,
CA), 4–6 weeks old, were used in this study. All mice were kept
in a barrier facility on a high efficiency particulate arrestance
(HEPA)-filtered rack under standard conditions of 12-hour
light/dark cycles. The animals were fed an autoclaved labora-
tory rodent diet [26]. All animal experiments were performed
with an AntiCancer Institutional Animal Care and Use Com-
mittee (IACUC)-protocol specifically approved for this study
and in accordance with the principles and procedures outlined
in the National Institutes of Health Guide for the Care and Use
of Animals under Assurance Number A3873-1. Anesthesia and
analgesics were used for all surgical experiments to avoid
unnecessary suffering of the mice. Subcutaneous injection of
ketamine mixture (a 0.02 ml solution of 20 mg/kg ketamine,
15.2 mg/kg xylazine, and 0.48 mg/kg acepromazine maleate)
was used for mice. The response of animals during surgery was
monitored carefully to maintain adequate depth of anesthesia.
The animals were observed daily and humanely sacrificed by
CO2 inhalation when they met the following criteria: severe
tumor burden (more than 20 mm in diameter), prostration, sig-
nificant body weight loss, difficulty breathing, rotational
motion and body temperature drop.

Patient-derived tumor

A patient diagnosed with pancreatic cancer previously had the
tumor resected, which was established in nude mice in the MD

Figure 3. Effect of treatment on mouse body weight. Bar graphs show mouse
body weight in each treatment group at pre- and post-treatment times.

Figure 4. Tumor histology. A. Untreated control. B. Combination treatment with GEM+rMETase. Scale bars: 100 mm.
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Anderson Cancer Center. Written informed consent was pro-
vided by the patient and the Institutional Review Board (IRB)
of MD Anderson Cancer Center approved this experiment
[25,26,30–33,69–71].

Surgical orthotopic implantation (SOI)

After nude mice were anesthetized with the ketamine solu-
tion described above, a 1–2 cm skin incision was made on
the left side abdomen through the skin, fascia and perito-
neum and the pancreas was exposed. Surgical sutures (8-0
nylon) were used to implant tumor fragments onto the tail
of pancreas to establish the PDOX model. The wound was
closed with a 6-0 nylon suture (Ethilon, Ethicon, Inc., NJ,
USA) [6,35–38,69–71].

Recombinant methioninase (rMETase) production

Recombinant L-metionine a-deamino-g-mercaptomethane
lyase (recombinant methioninase [rMETase]) [EC 4.4.1.11]
from Pseudomonas putida has been previously cloned and was
produced in Escherichia coli (AntiCancer, Inc., San Diego, CA).
rMETase is a homotetrameric PLP enzyme of 172-kDa molecu-
lar mass [16].

Intra-tumor MET level analysis

At the end of the treatment period, each tumor was soni-
cated for 30 seconds on ice and centrifuged at 12,000 rpm
for 10 minutes. Supernatants were collected and protein lev-
els were measured using the Coomassie Protein Assay Kit
(Thermo Scientific, Rockford, IL). Protein levels were calcu-
lated from a standard curve obtained with a protein stan-
dard, bovine serum albumin (BSA). MET levels were
determined with the HPLC procedure described previously
[72]. Standardized MET levels were calculated per mg
tumor protein [25].

Treatment study design in the PDOX model of pancreatic
cancer

PDOX mouse models were randomized into four groups of
10 mice each: untreated control; GEM (100 mg/kg, i.p., once a
week for 5 weeks); rMETase (100 units, i.p., 14 consecutive
days); GEM+rMETase (GEM: 100 mg/kg, i.p., once a week for
5 weeks, rMETase: 100 units, i.p., 14 consecutive days). Tumor
length and width were measured on day 14, 21, 28 and 35.
Tumor volume was calculated with the following formula:
Tumor volume (mm3) = length (mm) £ width (mm) £ width
(mm) £ 1/2. The data are presented as the tumor volume ratio
which is defined at the tumor volume at each point relative to
the pre-treatment tumor volume.

Histological examination

Fresh tumor samples were fixed in 10% formalin and
embedded in paraffin before sectioning and staining. Tissue
sections (5 mm) were deparaffinized in xylene and rehy-
drated in an ethanol series. Hematoxylin and eosin (H&E)

staining was performed according to standard protocols.
Histological examination was performed with a BHS System
Microscope (Olympus Corporation, Tokyo, Japan). Images
were acquired with INFINITY ANALYZE software (Lumenera
Corporation, Ottawa, Canada) [25,26,30–33].

Statistical analysis

JMP version 11.0 was used for all statistical analyses. Significant
differences for continuous variables were determined using the
Mann-Whitney U test. Line graphs express average values and
error bars show SD. A probability value of P � 0.05 was consid-
ered statistically significant.
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