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ABSTRACT OF THE DISSERTATION

Causes and consequences of competition in spatially variable environments

for plant coexistence and distributions: a study with California annual plants

by

Kenji Thomas Hayashi

Doctor of Philosophy in Biology

University of California, Los Angeles, 2025

Professor Nathan Kraft, Chair

Spatial variation in the environment and associated changes in species composition are ubiquitous

features of ecological communities. Ecologists have long sought to understand how such joint vari-

ation in the abiotic and biotic environment shapes species populations and communities. This en-

deavor has taken on renewed importance as environmental change increasingly threatens to disrupt

species interactions. However, characterizing the causes and consequences of species interactions

across disparate environments remains a major empirical challenge. Here, I leverage an experimen-

tally tractable California annual grassland system to study how spatial variation in the environment
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and competition shapes plant coexistence and distributions.

In Chapter 1, I ask how spatially variable competition drives mismatches between plant

fitness and occurrence along environmental gradients. By experimentally quantifying the demog-

raphy of eight annual plant species along edaphic gradients in a serpentine grassland, either with or

without competitors, I demonstrate that competitors can modify species’ demographic responses

to environmental gradients. Crucially, observed occurrence patterns were often poorly related to

these demographic responses. These findings caution against assuming that variation in occurrence

implies variation in fitness, or vice versa.

In Chapter 2, I turn my attention to how spatial heterogeneity promotes species coexistence

via the spatial storage effect. I studied 24 annual plant species in the grassland from Chapter 1 and

found that they exhibit variable responses to spatial variation in the environment and competition

that depend on their functional traits. Additionally, these trait-based demographic responses con-

tributed to elevated competition at otherwise favorable sites. These results are consistent with the

storage effect and demonstrate how functional traits can modulate coexistence in spatially variable

environments.

In Chapter 3, I conducted a greenhouse experiment to characterize competition between an

annual grass and forb under watering treatments emulating range-wide rainfall variation. I found

that although per capita competition was strongest in arid conditions, community-wide competition

was stronger in moister environments where fitness asymmetries were large. These contrasting

results emphasize the importance of distinguishing between competition at the individual and com-

munity level. Together, this dissertation combines experiments with modern coexistence theory to

offer an integrative account of plant coexistence and distributions in a spatially variable world.
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1.1 Abstract

1. Species distributions have long been understood to depend on the complex interplay between

the abiotic environment and biotic interactions. Empirical work in ecological communities

has increasingly revealed how competition can mediate species’ demographic responses to

environmental variation, but understanding how the demographic consequences of spatially

variable competition manifest in observed distribution patterns remains an important chal-

lenge.

2. Here, we describe a conceptual framework for characterizing competition-drivenmismatches

between responses of fitness and occurrence to environmental gradients. We then explore

these mismatches for eight annual plant species in an edaphically variable California grass-

land landscape.

3. We experimentally quantified how species’ demographic rates (germination rate, fecundity)

and fitness respond to spatial variation in the soil environment, either in the presence or ab-

sence of naturally occurring neighbors. We also surveyed species’ occurrence to characterize

their distributions across the study landscape. Combining these demographic and occurrence

data, we asked whether observed occurrence patterns are congruent with responses of intrin-

sic fitness (i.e., fitness in the absence of competitors) to soil gradients.

4. We found that competition altered responses of fitness to the primary soil gradient (soil tex-

ture) for many (4/8) species. In turn, occurrence patterns were often poorly or even inversely

related to responses of intrinsic fitness to this environmental axis. In contrast, we found that

competition had relatively little effect on responses of fitness and occurrence to a secondary
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soil gradient (soil Ca:Mg).

5. Synthesis. We demonstrate that spatially variable competition can contribute to mismatched

responses of fitness and occurrence to environmental variation. Importantly, these quantita-

tive mismatches depend on the species and environmental gradient in question. Our results

caution against assuming that variation in occurrence implies variation in intrinsic fitness (or

vice versa) without first disentangling how the abiotic environment and competition impact

the demographic processes that underlie species distributions.

Keywords: competition, demography, neighbor removal experiment, plant population and com-

munity dynamics, serpentine grassland, species distributions, spatial heterogeneity, stress gradient

1.2 Introduction

Understanding how the abiotic environment and biotic interactions jointly shape species distribu-

tions is a long-standing challenge in ecology and biogeography (Dobzhansky 1950, MacArthur

1972, Louthan et al. 2015). In particular, establishing the extent to which species’ current distri-

butions reflect their direct demographic responses to the environment, or rather are modified by

complex biotic interactions, is a critical step in predicting species’ future distributions (Davis et al.

1998, Pearson and Dawson 2003). Although there is widespread theoretical (e.g., Price and Kirk-

patrick 2009, Svenning et al. 2014, Godsoe et al. 2017, Usinowicz and Levine 2018) and empirical

(e.g., Wisz et al. 2013, Armitage and Jones 2020, Legault et al. 2020, Usinowicz and Levine 2021)

evidence that biotic interactions such as competition can limit where species are found, quantifying

the effects of competition on demography and distributions along real-world environmental gradi-
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ents is often logistically challenging (but see e.g., Stanton-Geddes et al. 2012, Lyu and Alexander

2022, Craig et al. 2023). Thus, as environmental change drives shifts in the abundance and distri-

butions of species both within and across ecological communities (e.g., Parmesan and Yohe 2003,

Kelly and Goulden 2008, Chen et al. 2011, Bowler et al. 2017, Feeley et al. 2020, Rosenblad et al.

2023), competition remains a critical source of uncertainty in forecasting the future of biodiversity

(Gilman et al. 2010, HilleRisLambers et al. 2013, Alexander et al. 2016).

The first principles of population dynamics dictate that species persist in environments

where they have a positive population growth rate (fitness) when rare (Hutchinson 1978, Grainger

et al. 2019b). Environmentally driven variation in fitness in the absence of biotic interactions (in-

trinsic fitness) is the foundation for species distributions (Holt 2009, Schurr et al. 2012, Ehrlén and

Morris 2015), but other processes can create mismatches between intrinsic fitness and observed

distributions (Pulliam 2000). For example, competition can prevent species from establishing or

persisting in certain environments by reducing fitness in the presence of competitors (realized fit-

ness) to below self-replacement levels (MacArthur and Levins 1967, Chesson 2000b). More subtly,

competition can create discrepancies between how intrinsic and realized fitness vary in response

to environmental gradients if the identity, density, or per capita effects of competitors depend on

the environment (Louthan et al. 2015). Notably, recent experimental work has demonstrated not

only that the outcomes of competition depend on environmental context (e.g., Germain et al. 2018,

Wainwright et al. 2019, Van Dyke et al. 2022, Cervantes-Loreto et al. 2023), but also that competi-

tion can mediate species’ responses to environmental change (e.g., Liancourt et al. 2013, Esch et al.

2018). These findings imply that species’ current or future distributions may be incongruent with

their intrinsic demographic responses to the environment (Figure 1.1), which limits our ability to
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predict species’ responses to environmental change (e.g., Davis et al. 1998, Alexander et al. 2015).

Progress on this topic requires a better understanding of how spatially variable competition shapes

species distributions along real-world environmental gradients.

A common prediction is that species experience more intense competition in environments

where they exhibit higher intrinsic fitness. This idea is foundational for the study of plant strate-

gies (e.g., CSR model, Grime 1977) and species coexistence (Chesson 2000a) in spatially variable

environments. Similarly, the stress-gradient hypothesis posits that competition increases in fre-

quency or strength in more benign abiotic environments (Bertness and Callaway 1994, Maestre

et al. 2009). Such co-variation between intrinsic fitness and competition can emerge if species

share functional traits or evolutionary histories that promote similar responses to environmental

variation (Mayfield and Levine 2010, Adler et al. 2013). While the importance of competition for

species distributions has long been hypothesized to depend on environmental context (Dobzhansky

1950, MacArthur 1972, Louthan et al. 2015), the consequences of co-variation between intrinsic

fitness and competition are rarely studied in the context of species distributions (but see e.g., Ar-

mitage and Jones 2020, Usinowicz and Levine 2021). Perhaps counterintuitively, species might

be more likely to occur in more competitive environments if competition only weakly dampens

demographic responses to the environment, such that occurrence approximately tracks intrinsic fit-

ness (Figure 1.1b). However, with stronger competition in intrinsically favorable environments,

competition can reverse demographic responses to the environment (Figure 1.1c). Even in the ab-

sence of intrinsic responses, variation in competition can drive realized demographic responses

to the environment (Figure 1.1d). Importantly, these last two scenarios (Figure 1.1c, d) both cre-

ate incongruence between trends in observed occurrence and intrinsic fitness along environmental
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Figure 1.1: Conceptual framework for identifying competition-driven mismatches between responses of oc-
currence and fitness to environmental gradients. Observed occurrence patterns (leftmost panel) may be
expected to reflect species’ realized demographic responses to the environment (i.e., demographic responses
in the presence of competitors; solid orange lines, identical in panels a–d). However, the extent to which
observed occurrence patterns track species’ intrinsic demographic responses to the environment (i.e., demo-
graphic responses in the absence of biotic interactions; dashed green lines) is often unclear. If competitors
(a) uniformly reduce fitness or (b) merely dampen demographic responses, occurrence can be approximately
congruent with species’ intrinsic responses to the environment. However, if demographic responses are (c)
reversed or (d) even driven by spatially variable competition, occurrence patterns will be incongruent with
species’ intrinsic responses to the environment. Note that positive effects of neighbors (i.e., facilitation) are
allowed here for graphical simplicity, but are not necessary for these scenarios to play out within a given
range of environmental conditions.
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gradients. Beyond the well-established understanding that the absence of a species from an area

does not necessarily reflect the suitability of the abiotic environment (Davis et al. 1998, Pearson

and Dawson 2003), the complexities of these scenarios highlight the need to critically evaluate the

practical assumption that species’ distributions approximate their intrinsic demographic responses

to environmental variation.

Here, we build up an understanding of how the abiotic environment and competition in-

teract to shape the demography and distributions of species in an experimentally tractable natural

landscape. Specifically, we conducted a spatially distributed demographic experiment to evalu-

ate the consequences of spatially variable competition for plant demography and distributions in

an edaphically heterogeneous California annual grassland. We experimentally quantified how the

demography and fitness of eight annual plant species respond to variation in the abiotic environ-

ment, either in the presence or absence of naturally occurring competitors. We asked: (1) What

are species’ intrinsic demographic responses to the abiotic environment? (2) How does competi-

tion modify these intrinsic responses? Then, combining these demographic results with occurrence

surveys, we asked: (3) Are observed occurrence patterns congruent with intrinsic or realized de-

mographic responses to the environment? Our results reveal complex and variable relationships

between fitness, competition, and occurrence depending on the species and environmental gradient

under consideration. Critically, we find that occurrence patterns are often poorly related to—or

even in opposition to—species’ intrinsic demographic responses to environmental gradients, high-

lighting the complex role of spatially variable competition in shaping species distributions.
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Figure 1.2: Locations and soil environments of study sites. Colored points represent experimental sites.
Gray points represent survey sites. (a) Map of study sites. High resolution orthoimagery courtesy of the
U.S. Geological Survey. (b) Principal component analysis (PCA) of soil variables at study sites. Arrows
represent the loadings of individual soil variables with respect to PC1 and PC2. The percentage of variance
explained by each axis is given in parentheses.

1.3 Materials and methods

1.3.1 Study system

We conducted our study at the University of California Natural Reserve System Sedgwick Reserve

in Santa Barbara County, California, USA. This region experiences a Mediterranean climate with

hot, dry summers and cool, wet winters. We focused on a ~4-ha area of the reserve characterized

by serpentine-derived hummocks interspersed among a grassland matrix (Figure 1.2a, Figure A.1).

The hummocks host many native annual forbs, whereas the matrix is dominated by invasive annual

grasses (e.g., Avena spp., Bromus spp.) (Gram et al. 2004). The abiotic and biotic heterogeneity of

this landscape, coupled with the dominance of experimentally tractable annual plants, makes this

system well-suited for addressing our research questions.
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1.3.2 Demographic experiment

To quantify the demographic responses of annual plant species to spatial variation in the environ-

ment and competition, we grew eight native annual plant species (Table 1.1) at seven sites dis-

tributed across the study area (Figure 1.2a). These experimental sites represent a subset of sites

previously selected to capture environmental variation across this area (Kandlikar et al. 2022).

Each site (~4 m × ~4 m) was comprised of twenty 0.5 m × 0.5 m plots, evenly divided among

two neighborhood treatments in which the resident community was either removed or left intact

prior to planting. Each plot contained eight 15 cm × 15 cm subplots, each of which was seeded

at its center with a fixed number of seeds (24 to 40 depending on the species) of one of the eight

focal species in November 2019. Seeds were collected and aggregated from across the study area

in 2016–2018.

Table 1.1: Plant species used in this study.

Code Species Family
ACWR Acmispon wrangelianus Fabaceae
CHGL Chaenactis glabriuscula Asteraceae
FEMI Festuca microstachys Poaceae
HECO Hemizonia congesta Asteraceae
LACA Lasthenia californica Asteraceae
PLER Plantago erecta Plantaginaceae
SACO Salvia columbariae Lamiaceae
URLI Uropappus lindleyi Asteraceae
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In January–February 2020, we recorded germination rate (𝑔) in each subplot by counting the

number of germinants found in the seeded locations, then thinned these germinants down to a single

focal individual. We marked focal individuals with toothpicks and tracked them for the duration

of the growing season (January–July). Due to below-average early-season rainfall in January–

February (2020 = 0.67 in, mean = 8.62 in, County of Santa Barbara 2025b), we added ~0.6 in

of water to all plots following germination, equivalent to a typical storm at this time of year. In

April–July 2020, as focal individuals started to show signs of senescence, we estimated the lifetime

fecundity (𝐹 ) of each individual. See Appendix S2 for detailed methods for estimating fecundity.

In total, we recorded germination rate in 1,078 subplots and estimated fecundity for 708 focal

individuals. We maintained the neighborhood removal treatment by weeding out any background

germinants throughout the experiment.

1.3.3 Occurrence surveys

To characterize our focal species’ distributions across the study landscape, we revisited all experi-

mental sites (colored points in Figure 1.2) in April–May 2021 and surveyed the occurrence of each

focal species in each of 68 uncleared experimental plot. We also surveyed occurrence at 61 addi-

tional sites distributed across the study area (gray points in Figure 1.2). We selected these survey

sites by overlaying on the study area a 7 × 9 grid of 25 m × 25 m cells and randomly generating

a point within each grid cell using QGIS (QGIS Development Team 2020). Each survey site was

comprised of a single 0.5 m × 0.5 m plot, equivalent to one experimental plot.
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1.3.4 Soil sampling

To characterize the soil environment at our study sites, we collected soil samples at all sites (seven

experimental sites + 61 survey sites) alongside occurrence surveys. We collected soil from ~5–10

cm below the soil surface at three locations within each site (one near the center and two along

the edges of the site). We aggregated soil samples for each site and submitted them to A&L West-

ern Laboratories in Modesto, California, USA for chemical and physical analysis. We similarly

collected soil samples following a rainfall event and estimated soil moisture as gravimetric water

content. See Table A.1 for descriptions of all soil variables used in this study.

1.3.5 Statistical analyses

To describe the soil environment at our study sites, we performed a principal component analysis

(PCA) of the 20 soil variables in Table A.1 (Figure 1.2b, Figure A.2, Figure A.3). All soil variables

were centered and scaled to unit variance prior to performing the PCA. Based on results of parallel

analysis (Horn 1965, Dinno 2024), we retained the first four axes (adjusted eigenvalues > 1) for

all subsequent analyses. These axes correspond to 77% of cumulative variance explained (PC1 =

32.6%, PC2 = 18.2%, PC3 = 16.9%, PC4 = 9.3%).

We used Bayesian hierarchical models to estimate the demographic responses of our focal

species to the soil environment in the presence or absence of naturally occurring neighbors. For

germination rate, we modeled the number of germinants as following a beta-binomial distribution

with an expected probability of germination, 𝜇, and precision, 𝜙. We specified a linear model for

𝜇 with a logit link function as:
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logit (𝜇) = 𝛼sp,trt +
4

∑
𝑗=1

𝛽𝑗,sp,trt × PC𝑗 + 𝛾sp,trt,site (1.1)

where 𝛼 is an intercept and 𝛽𝑗 is a slope for soil principal component axis 𝑗 = 1, … , 4 for each

species (sp = 1, … , 8) and neighborhood treatment (trt = 1 is with neighbors present; trt = 2

is with neighbors absent). For clarity, we hereafter refer to the slope coefficients in the presence

or absence of neighbors as 𝛽present and 𝛽absent, respectively. We also apply this convention to other

quantities estimated in the presence or absence of neighbors. 𝛾 is a random intercept for each

species and treatment at each site = 1, … , 7. 𝛾 was hierarchically modeled as:

𝛾sp,trt,site ∼ Normal (0, 𝜎) (1.2)

where 𝜎 is the standard deviation that describes variation in 𝛾. Next, we modeled fecundity as

following a zero-inflated negative binomial distribution, which combines (i) a negative binomial

distribution with an expected fecundity, 𝜇, and shape, 𝜙, with (ii) an expected probability of zero-

inflation, 𝜃. We specified linear models for 𝜇 and 𝜃 in the same form as the right-hand side of

Equation 1.1, using a log link function for 𝜇 and a logit link function for 𝜃. For both models, we

allowed 𝜙 to differ by species. See Appendix S3 for a full account of these models.

To estimate the response of fitness to the soil environment and competition, we implemented

a joint model of the germination and fecundity models described above. We then used the joint

posterior distribution for the germination and fecundity sub-models to compute fitness as the finite

rate of increase (𝑟) in the functional form of a model of seed banking annual plants (MacDonald

and Watkinson 1981, Chesson 1990):
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𝑁𝑡+1
𝑁𝑡

= (1 − 𝑔)𝑠 + 𝑔𝐹 (1.3)

𝑟 = ln(𝑁𝑡+1
𝑁𝑡

) (1.4)

where 𝑁𝑡 is the number of seeds in year 𝑡 and 𝑠 is the annual rate of seed survival in the seed bank.

We used species-specific estimates of 𝑠 compiled from previous work in this study area (Levine

and HilleRisLambers 2009, Godoy et al. 2014, 2017), assuming 𝑠 to be constant across sites. We

employed this joint modeling approach, rather than directly modeling fitness, because excess zeros

in our fecundity data contributed to biomdalities in fitness estimates computed from our experi-

mental data. We used this joint fitness model for all demographic analyses. In the context of our

demographic experiment, we refer to fitness estimated in the presence or absence of neighbors as

realized fitness (𝑟present) and intrinsic fitness (𝑟absent), respectively.

We used a Bayesian generalized linear model to quantify the occurrence patterns of our focal

species along soil gradients. To align the scope of this analysis with our demographic experiment,

we focused on occurrence data for sites within the range of soil PC1–PC4 captured by experimental

sites, corresponding to 92 plots at 31 sites. We modeled occurrence as following a beta-binomial

distribution with an expected probability of occurrence, 𝜇, and precision, 𝜙. We specified a linear

model for 𝜇 following Equation 1.1, but excluding the random intercept term (𝛾) and without in-

dexing other terms by neighborhood treatment (trt) as these components were not applicable here.

We allowed 𝜙 to differ by species. See Appendix S4 for a full account of this model. Then, to evalu-

ate the congruence between occurrence and fitness along soil gradients, we computed the posterior

probability that the slopes (𝛽𝑗) for occurrence and fitness in response to each of soil PC1–PC4 have
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the same sign. That is, for each posterior sample, we asked whether the slopes for occurrence and

fitness (in the presence or absence of neighbors) along a given soil axis were both positive or both

negative, then calculated the proportion of posterior samples that satisfied this criterion. Note that

the expected response of fitness to soil PC1–PC4was nonlinear, so we computed an axis-wide slope

(𝛽∗
𝑗) by taking the difference in expected fitness at maximum (max(PC𝑗)) and minimum values of

the axis (min(PC𝑗)) and dividing this difference by ΔPC𝑗 = |max(PC𝑗) − min(PC𝑗)|.

We implemented Bayesian statistical models using Stan (Stan Development Team 2024) via

cmdstanr (Gabry et al. 2024). For all models, we used weakly informative priors (see Appendices

S3 and S4) that were intended to keep parameters within plausible ranges given nonlinear link

functions (Wesner and Pomeranz 2021) and prior work in our study system (Godoy et al. 2014,

Kraft et al. 2015b, Kandlikar et al. 2022, Van Dyke et al. 2022). We confirmed model convergence

by inspecting diagnostic quantities (�̂� < 1.01, 𝑁eff/𝑁 > 0.1) and trace plots. We report posterior

support for statistical effects as the probability of direction (i.e., the probability of a positive or

negative effect, [0.5, 1]) where applicable. We also report credible intervals as 95% highest-density

continuous intervals (HDCIs) unless stated otherwise. See Appendices S3 and S4 for details of our

statistical modeling approach. We conducted analyses using R version 4.4.1 (R Core Team 2024).

1.4 Results

1.4.1 Soil environment

Soil PC1 was characterized by a gradient in soil texture, with clay content loading positively and

sand content loading negatively along the axis (Figure 1.2b). Cation exchange capacity (CEC),
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cation content, and soil moisture positively co-varied with clay content along soil PC1. As such,

this axis also captures important differences in soil fertility. Soil PC2 was characterized by a gra-

dient in cation composition, with Mg saturation loading positively and Ca saturation loading nega-

tively along the axis (Figure 1.2b). All sites exhibited an excess of Mg relative to Ca (Ca:Mg < 1)

characteristic of serpentine soils (Brady et al. 2005, Fernandez-Going et al. 2012). Taken together,

our study sites capture continuous variation in the canonical physical and chemical properties of

serpentine soils (Walker 1954, Gram et al. 2004). Therefore, we focus on results for soil PC1

and PC2 below. Soil PC3 and PC4 appeared to reflect variation in pH and organic matter content,

respectively (Figure A.2).

1.4.2 Demographic responses to environment and competition

Our focal species tended to exhibit higher intrinsic demographic performance (i.e., demographic

performance in the absence of neighbors) in more fine-textured soils with higher Mg saturation.

In the absence of neighbors, germination rate increased with soil PC1 or PC2 for 3/8 species

(Pr(𝛽absent > 0) ≥ 0.975; Figure A.8, Figure A.9, Table A.4). Responses of fecundity to soil

PC1 and PC2 were less clear (two species with Pr(direction) ≥ 0.95; Figure A.10, Figure A.11,

Table A.7). Combining these demographic rates, fitness increased with soil PC1 or PC2 for 5/8

species (Pr(𝛽∗
absent > 0) ≥ 0.975; Figure 1.3, Figure A.12, Table A.10).

Neighbors had variable effects on fitness across environments. On average, neighbors de-

creased the fitness of all but one of our focal species (Pr(Δ𝑟 < 0) ≥ 0.975, where Δ𝑟 =

𝑟present − 𝑟absent; Figure A.7, Table A.3). Additionally, we found evidence that neighbors alter

the response of fitness to soil PC1 (i.e., there is an interaction effect between neighborhood treat-
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Figure 1.3: Response of fitness (𝑟) to soil PC1 in the presence or absence of neighbors. Posterior expectations
are shown for each species with soil PC2–PC4 held at average conditions across experimental sites. Solid
lines represent medians. Shaded areas represent 95% quantile intervals.
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ment and soil PC1, Δ𝛽∗ = 𝛽∗
present − 𝛽∗

absent). Specifically, neighbors reduced the slope for fitness

in response to soil PC1 for 4/8 species: ACWR and LACA (Pr(Δ𝛽∗ < 0) ≥ 0.975), as well

as FEMI and HECO with marginally less support (Pr(Δ𝛽∗ < 0) > 0.972; 95% HDCIs do not

overlap 0) (Figure 1.3, Table A.12). For ACWR, HECO, and LACA, neighbors flattened the re-

sponse of fitness to soil PC1, wherein positive intrinsic responses to this axis were largely negated

by the presence of neighbors (Table A.10; Table A.11). Notably, for FEMI, neighbors appeared to

largely drive the realized response of fitness to soil PC1 (Table A.10; Table A.11), consistent with

Figure 1.1d. In contrast, we did not find clear evidence that neighbors alter the response of fitness

to soil PC2 (Pr(direction) < 0.884 for all species; Figure A.12, Table A.12). Overall, we found

contrasting roles of competition in mediating demographic responses to the soil environment, with

competition altering responses of fitness to a soil texture gradient (PC1) while having relatively

minimal effect on responses of fitness to a soil nutrient (Ca:Mg) gradient (PC2). Results for germi-

nation rate and fecundity are shown in Appendix S3.

1.4.3 Congruence between occurrence and fitness

In accordance with our demographic results, the degree of congruence between trends in occur-

rence and fitness along soil gradients was highly variable depending on the species and soil axis

under consideration. Occurrence was negatively associated with higher clay and cation content for

5/8 species (Pr(𝛽 < 0) ≥ 0.975 for soil PC1; Figure 1.4, Table A.15) and positively associated

with lower Ca:Mg for one species (Pr(𝛽 > 0) ≥ 0.975 for soil PC2; Figure A.15, Table A.15).

Strikingly, for all but two species, the responses of occurrence and intrinsic fitness to soil PC1 were

more likely than not to be in opposite directions (Figure 1.5; mean probability of congruence = 0.27,
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Figure 1.4: Observed patterns of occurrence along soil PC1. Posterior expectations are shown for each
species with soil PC2–PC4 held at average conditions across sites. Solid lines represent medians. Shaded
areas represent 95% quantile intervals.

SE = 0.074). For instance, LACA is expected to exhibit a positive intrinsic response to soil PC1

(Figure 1.3), yet its probability of occurrence is expected to decrease along this axis (Figure 1.4),

resulting in a probability of congruence of 0.021. In contrast, the responses of occurrence and in-

trinsic fitness to soil PC2 tendedmore toward being congruent with one another (Figure A.16; mean

probability of congruence = 0.60, SE = 0.094). Accounting for the effects of neighbors on fitness

tended to improve congruence between occurrence and fitness, especially with respect to soil PC1

(Figure 1.5; mean probability of congruence = 0.64, SE = 0.075). These results provide empiri-

cal support for spatially variable competition as an important but complex driver of mismatches

between occurrence and fitness along environmental gradients.
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Figure 1.5: Congruence between responses of occurrence and fitness to soil PC1. For each species, the slope
of occurrence in response to soil PC1 (𝛽𝑗=1 for the occurrence model) is plotted against the axis-wide slope
of fitness in response to soil PC1 (𝛽∗

𝑗=1 for the fitness model), the latter of which is computed in the presence
(orange) or absence (green) of neighbors. Point clouds are posterior samples (thinned to 4,000 samples for
visualization) and center points are medians. White regions denote congruent responses (i.e., slopes are both
positive or both negative) and gray regions denote incongruent responses (i.e., one slope is positive while the
other slope is negative). The total probability of congruence (i.e., the proportion of posterior samples that
fall in the white regions) is shown in the top-right corner of each panel. Asterisks indicate that responses are
more likely to be congruent that not (i.e., Pr(congruence) > 0.5); note that these are not results of statistical
significance tests.
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1.5 Discussion

Competitive interactions have long been understood to contribute to species distributions (Wisz et

al. 2013), from the zoning of barnacles in the rocky intertidal (Connell 1961) to the migration of

plant species in response to climate change (Alexander et al. 2015). While empirical work in eco-

logical communities has increasingly revealed how competition can mediate species’ demographic

responses to environmental variation (e.g., Liancourt et al. 2013, Germain et al. 2018, Esch et al.

2018, Wainwright et al. 2019, Van Dyke et al. 2022, Cervantes-Loreto et al. 2023), understanding

how the demographic consequences of competition manifest in observed distribution patterns re-

mains challenging. Disentangling the contributions of intrinsic fitness (i.e., fitness in the absence

of biotic interactions) and competition to species distributions in natural landscapes is an impor-

tant step toward more accurately predicting species distributions (Davis et al. 1998), especially as

environmental change threatens to modify biotic interactions in ecological communities (Gilman

et al. 2010, HilleRisLambers et al. 2013, Alexander et al. 2016). Here, we combined a spatially

distributed demographic experiment with occurrence surveys to evaluate the consequences of com-

petition for plant species’ demography and distributions in a California annual grassland. We found

evidence that competition can alter the response of fitness to environmental gradients, effectively

decoupling realized fitness (i.e., fitness in the presence of neighbors) from intrinsic fitness. Fur-

thermore, we found that competition often contributes to incongruence between occurrence and

fitness, such that observed occurrence patterns can be poorly or even inversely related to species’

intrinsic responses to environmental variation. Notably, competition had contrasting effects on

fitness and occurrence depending on the species and environmental gradient under consideration.

Our findings illustrate the importance of accounting for spatially variable competition in the study
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of species distributions and caution against the practical but simplifying assumption that species’

distributions track their intrinsic demographic responses to environmental variation.

Competition is most often described as limiting species distributions by excluding species

from intrinsically suitable environments (e.g., Connell 1961, Bertness and Ellison 1987, Bullock et

al. 2000). Accordingly, much research has focused on the role of competition in setting discrete dis-

tributional limits at the edges of species’ ranges (e.g., Price and Kirkpatrick 2009, Stanton-Geddes

et al. 2012, Ettinger and HilleRisLambers 2013, Louthan et al. 2015, Anderegg and HilleRisLam-

bers 2019, Lyu and Alexander 2022). However, much of the ecological world is not well described

by discrete transitions. Species often exhibit continuous variation in demographic performance in

response to continuous variation in the abiotic and biotic environment. Therefore, understanding

how competition drives quantitative variation in occurrence (or abundance) is critical to disentan-

gling the processes shaping species’ current and future distributions. In particular, an important

way that competition can influence distribution patterns is by altering the response of fitness to the

abiotic environment (Figure 1.1).

In our experiment, we found that competitors altered several (4/8) species’ fitness responses

to a soil texture gradient (PC1; Figure 1.3). In turn, we found that observed occurrence patterns

often failed to track responses of intrinsic fitness to this axis (Figure 1.5). In fact, most (6/8) species

were more likely than not to exhibit an increased probability of occurrence in less intrinsically fa-

vorable conditions along soil PC1. Such mismatched responses of occurrence and intrinsic fitness

to soil PC1 were especially prominent for LACA and PLER (Pr(congruence) < 0.032), both of

which are forb species often associated with the transition zone between serpentine hummocks

and grassland matrix (Gram et al. 2004). In contrast, competitors had relatively little effect on
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species’ fitness responses to a soil nutrient (Ca:Mg) gradient (PC2; Figure A.12), and observed

occurrence patterns were more likely to be congruent with intrinsic responses of fitness to this axis

(Figure A.16). Our results expand on previous findings that competition can alter species’ demo-

graphic responses to environmental variation (e.g., Liancourt et al. 2013, Esch et al. 2018) by

providing empirical evidence that such altered responses can quantitatively impact species distri-

butions. Importantly, we show that competition can even contribute to trends in occurrence along

environmental gradients that are opposite to what would be expected from demographic responses

in the absence of competitors.

Our results have particularly important implications for predicting or interpreting species

distributions based on observed distribution patterns. Expanding on earlier work (Davis et al. 1998,

Pearson and Dawson 2003), we find that competition not only contributes to incongruence between

occurrence and fitness, but also has contrasting consequences depending on the species and en-

vironmental gradient in question. This complexity cautions against extrapolating from observed

distribution patterns without careful consideration of how particular species experience competi-

tion along specific environmental gradients. In the absence of detailed demographic data, widely

utilized species distribution models (SDMs) can account for competition by including proxies of

competitive effects (e.g., population density) as predictors (Elith and Leathwick 2009, Wisz et

al. 2013). The variable effects of competition on demography and distributions observed in this

study suggest that SDMs should ideally allow the effects of competition proxies to vary by species

and to interact with environmental variables. These implications also extend to demographically

or physiologically informed models of species’ niches and distributions (e.g., Kearney and Porter

2009, Schurr et al. 2012, Merow et al. 2014, Ehrlén and Morris 2015, Benito Garzón et al. 2019),
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wherein inadequately accounting for variable effects of competition might yield misleading pre-

dictions in terms of how species’ distributions are expected to track their intrinsic responses to

environmental gradients.

Our demographic results were partially consistent with long-standing predictions of co-

variation between intrinsic fitness and competition across spatial environmental gradients (Fig-

ure 1.1b, c) (Grime 1977, Bertness and Callaway 1994, Chesson 2000a). In particular, 3/8 species

(ACWR, HECO, LACA) displayed higher intrinsic fitness in finer-textured soils (high PC1), where

theywere alsomore limited by competition. Consequently, responses of fitness to soil PC1 for these

species were largely flattened by the presence of competitors (Figure 1.3). Although evaluating the

mechanisms underlying variation in competition was beyond the scope of this study, this pattern

could be driven in part by an increased dominance of invasive grasses such as Avena fatua, Bromus

diandrus, and Bromus hordeaceus in sites with finer-textured soils (Figure A.4). These invasive

species have been shown to suppress native plants in California serpentine grasslands through a

variety of mechanisms, including resource competition, recruitment limitation, and habitat modifi-

cation (e.g., Hamilton et al. 1999, Seabloom et al. 2003a, 2003b, Chen et al. 2018, LaForgia 2021).

As such, the competitive effects measured in our study may be viewed as integrating over multiple

types of negative effects imposed by neighbors. While this approach has the benefit of capturing

realistic, total effects of interactions, dissecting different sources of variation in competitive effects

is an important next step toward a more mechanistic understanding of species distributions (see

also Louthan et al. 2015).

Considering that our demographic experiment captured only a single generation of popula-

tion dynamics in a system with substantial interannual rainfall variability (Levine and Rees 2004),
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albeit in a water year with about average total rainfall (2019–2020 = 21.57 in + 0.6 in added man-

ually, mean = 21.52 in, County of Santa Barbara 2025b), it is notable that we were able to detect

imprints of competition on observed occurrence patterns across our study landscape. However, sim-

ilar to previous work that found occurrence and demographic parameters to be weakly associated

(Thuiller et al. 2014), observed occurrence patterns often could not be clearly explained by exper-

imentally estimated responses of fitness to the soil environment and competition (Figure 1.5; Fig-

ure A.16). One possibility is that interannual variation in the competitive environment introduces

complexities in the population dynamics that underlie occurrence (e.g., Pitt and Heady 1978, Hobbs

et al. 2007, Hallett et al. 2019). Additional processes such as dispersal limitation, source-sink dy-

namics, demographic stochasticity, and other biotic interactions may also contribute to observed

occurrence patterns (Pulliam 2000). For example, Craig et al. (2023) found that source-sink dynam-

ics play an integral role in decoupling annual plant occupancy from fitness in a Northern California

grassland at both the species and community level. We note that, despite an abundance of sites

where one or more of our focal species were absent (Figure 1.4, Figure A.15), we only found up

to moderate (~80%) support for environmental filtering (i.e., absence from sites due to 𝑟absent < 0,

sensu Kraft et al. 2015b) and competitive exclusion (i.e., absence from sites due to 𝑟present < 0

when 𝑟absent > 0) along soil PC1 and PC2 in our experiment (Figure A.13, Figure A.14). This

observation aligns with previous findings that the (re-)establishment of native plants in California

grasslands is often seed-limited (Seabloom et al. 2003a, 2003b, Germain et al. 2017), but more

work is needed to explore this possibility in our study landscape.
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1.6 Conclusions

The complex interplay between demography and competition across abiotic environments is a criti-

cal source of uncertainty in explaining or predicting species distributions. In particular, understand-

ing how the demographic consequences of competition translate to species distributions along real-

world environmental gradients remains an important challenge. Here, we outlined a conceptual

framework for identifying quantitative mismatches between fitness and occurrence along environ-

mental gradients. We then provided experimental evidence for mismatched responses of plant fit-

ness and occurrence to edaphic gradients in a California annual grassland. Importantly, we showed

that competition can contribute to observed trends in fitness and occurrence along environmental

gradients that are decoupled—or even reversed—from responses of intrinsic fitness (i.e., fitness in

the absence of neighbors) to environmental variation. However, the consequences of competition

for fitness and occurrence were highly dependent on the species and environmental gradient under

consideration. Our results caution against assuming that observed patterns of fitness or occurrence

track species’ intrinsic responses to environmental variation without careful consideration of spa-

tially variable competition. Targeted demographic studies such as ours can complement statistical

species distribution models by revealing when and how observed distribution patterns reflect in-

trinsic fitness vs. competitive interactions.
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2.1 Abstract

Spatial variation in the abiotic and biotic environment is a ubiquitous feature of ecological com-

munities, with theory showing that this spatial heterogeneity is important for species coexistence

and biodiversity maintenance. One such mechanism of species coexistence in spatially variable

environments is the spatial storage effect, which can promote coexistence provided that species

exhibit distinct demographic responses to the abiotic environment that covary with the strength of

competition across space. However, empirical tests of the spatial storage effect are scarce, and our

understanding of what drives variation in the strength of this mechanism remains limited. Here,

using an edaphically heterogeneous California annual grassland, we asked how plant functional

traits mediate the demographic responses of species to spatial variation in the environment and

competition that underlie the spatial storage effect. We experimentally quantified how the lifetime

fecundity of 24 annual plant species responds to variation in the environment and competition by

growing species in the presence or absence of competitors at 16 sites across two different growing

seasons. We found that species were only partially correlated in their responses to spatial varia-

tion in the environment or competition, and that several species experienced greater competition at

more favorable sites, consistent with the requirements of the spatial storage effect. We also found

that nine leaf, root, seed, and whole-plant functional traits each mediated fecundity responses to the

environment and competition in different ways. Notably, individual traits that explained fecundity

responses to environmental gradients (Ca:Mg, sand %, soil depth) were typically different from

those that explained responses to variation in competition. Additionally, we found that trait-based

demographic responses to the environment and competition differed between years. Our results

demonstrate that functional traits can contribute to the spatial storage effect by modulating spatial
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patterns of demography that underlie themechanism, but that interactions between the environment,

competition, and traits are complex and variable.

Keywords: competition, fecundity, modern coexistence theory, serpentine grassland, spatial het-

erogeneity, trait-environment interactions

2.2 Introduction

The mechanisms of species coexistence have long fascinated ecologists (Hutchinson 1961,

MacArthur and Levins 1967, Chesson 2000b, 2018, Levine et al. 2017, Simha et al. 2022).

Simultaneously, centuries of observations have shown that environmental gradients drive turnover

in the species and functional composition of ecological communities (von Humboldt and Bonpland

1805, Schimper 1903, Whittaker 1975, Wright et al. 2005, Wieczynski et al. 2019). In accordance

with these observations, theory suggests that spatial variation in the environment plays an integral

role in promoting species coexistence (Chesson 2000a, Amarasekare 2003, Leibold et al. 2004,

Snyder 2008, Hart et al. 2017). Recent empirical work has underscored that species diversity

observed in natural communities often cannot be supported in a homogeneous environment

(e.g., Kraft et al. 2015b, Hallett et al. 2019, Wainwright et al. 2019, Van Dyke et al. 2022),

further pointing to the importance of environmental fluctuations for biodiversity maintenance.

However, empirical tests of fluctuation-dependent coexistence mechanisms remain scarce relative

to theoretical developments (Amarasekare 2003, Siepielski and McPeek 2010, but see e.g., Adler

et al. 2006, Angert et al. 2009, Letten et al. 2018, Hallett et al. 2019), especially in a spatial

context (e.g., Sears and Chesson 2007, Harrison et al. 2010, Towers et al. 2020). Understanding

29



how spatial environmental variation promotes species coexistence is particularly important now

as global environmental change threatens to alter the interplay between the abiotic environment

and biotic interactions across spatial scales (Gilman et al. 2010, Blois et al. 2013, Valladares et al.

2015, Alexander et al. 2016, Godoy 2019, Hallett et al. 2023).

The spatial storage effect is a general mechanism of species coexistence in spatially vari-

able environments (Chesson 2000a). In essence, this mechanism describes how spatial variation

in both the abiotic environment and competition interact to promote species coexistence at spatial

scales that encompass said variation. Three main ingredients tend to promote species coexistence

via the storage effect (Chesson 2000a, Johnson and Hastings 2022). The first is species-specific

responses to the environment, such that species are differentially favored at different sites. The

second is covariance between responses to the environment and competition, or “EC covariance”

for short. That is, species should be more limited by competition in more favorable environments,

for example as a result of increased competitor density. In particular, a greater EC covariance when

a species is common, and conversely a weaker EC covariance when it is rare, is expected to sta-

bilize coexistence by concentrating intraspecific competition relative to interspecific competition

(Chesson 2000b, Kuang and Chesson 2009). The third is buffered population growth in which the

negative effects of competition are dampened in unfavorable environments. Such buffering effects

can arise through spatial population structure that allows poor performance in unfavorable sites to

be offset by good performance “stored” in favorable sites (Chesson 2000a, Johnson et al. 2023).

When combined, these ingredients can help rare species increase in abundance, thereby promoting

species coexistence (Turelli 1978, Grainger et al. 2019b). Despite the theoretical significance of

the spatial storage effect, pioneering field studies have found mixed evidence for it in empirical
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systems (e.g., Sears and Chesson 2007, Towers et al. 2020). Thus, examining ecological causes

of variation in the spatial storage effect will shed further light on when and how environmental

variation promotes species coexistence.

Functional traits—morphological, physiological, or phenological traits that impact fitness

(Violle et al. 2007)—can provide mechanistic insights into species’ responses to the abiotic en-

vironment and competition (McGill et al. 2006, Funk et al. 2017), with implications for species

coexistence (Adler et al. 2013, Levine 2016). Functional traits have been shown to predict plant

species’ demographic responses to environmental gradients (e.g., Kandlikar et al. 2022, Siefert and

Laughlin 2023). They have also been found to explain niche and fitness differences that determine

the outcomes of competition between species (Kraft et al. 2015b, Pérez-Ramos et al. 2019, Van

Dyke et al. 2022). One way that functional traits can contribute to species coexistence via the

storage effect is by mediating species-specific responses to the environment (Snyder 2008, Adler

et al. 2013). If species with different traits exhibit different demographic responses to environ-

mental gradients, as indicated by a statistical trait-environment interaction (Laughlin et al. 2018),

species’ responses to the environment should be at least partially uncorrelated. Notably, Angert et

al. (2009) demonstrated that a functional trade-off between growth and resource use in Sonoran

desert annual plants contributes to a temporal storage effect by decoupling species’ responses to

environmental (e.g., precipitation) fluctuations. Another way that functional traits can contribute

to the storage effect is by mediating demographic responses to spatial variation in competition.

In particular, EC covariance may be influenced by traits whose roles in competition depend on

the environment (i.e., there is a statistical interaction between the environment, competition, and

traits). However, although recent years have seen significant advances in characterizing trait-based
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demographic responses to environmental variation (Chalmandrier et al. 2021, Siefert and Laugh-

lin 2023), identifying how traits mediate responses to competition across disparate environments

remains challenging (but see Kunstler et al. 2016).

Here, we evaluate how plant functional traits contribute to species coexistence in a spatially

variable California grassland landscape by testing for ingredients of the spatial storage effect. We

experimentally quantified the fecundity responses of 24 annual plant species to spatial variation in

the abiotic environment and competition. We then asked: (1) Are species’ demographic responses

to the environment partially uncorrelated? This would correspond to species-specific responses to

the environment. (2) Are species more limited by competition in more favorable environments?

This would correspond to a positive EC covariance, which could enable a coexistence-promoting

storage effect. Next, using nine functional traits related to plant population dynamics in this sys-

tem, we asked: (3) How do functional traits mediate species’ responses to the environment and

competition? More specifically: (3.1) How do traits influence species’ responses to environmen-

tal gradients? (3.2) How do traits influence species’ responses to spatial variation in competition?

Finally, in light of substantial interannual rainfall variability in this system, we asked: (4) How do

the above spatial patterns of demography compare between different years? Our results reveal that

trait-based demographic responses to the environment and competition are complex and that func-

tional traits can play a role in species coexistence by modulating spatial patterns of demography

that underlie the spatial storage effect.
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2.3 Methods

We experimentally characterized annual plant species’ demographic responses to spatial variation

in the abiotic environment and competition at the University of California Natural Reserve System

Sedgwick Reserve. To explore interannual variation in spatial patterns of demography, we analyzed

two iterations of this experiment conducted in the 2013–2014 and 2015–2016 growing seasons.

The two experiments (hereafter “2013 experiment” and “2015 experiment”) followed the same

methodology but differed in study species due to differences in seed availability. Of 24 total species,

19 and 17 species were used in the 2013 and 2015 experiments, respectively, with 12 species shared

across the two experimental years (Table 2.1). While rainfall in this area in the 2015–2016 water

year (454 mm) was just under average (64-year mean = 547 mm), the 2013–2014 water year (230

mm) was among one of the driest years on record since 1960 (County of Santa Barbara 2025b).

Due to poor germination and establishment in the drier 2013 experiment and a resulting sparsity

of fecundity data, we primarily present methods and results for the 2015 experiment and draw

contrasts with the 2013 experiment when possible.

2.3.1 Field experiment

We conducted our field experiment in a ~4-ha grassland landscape comprised of serpentine hum-

mocks interspersed among a grassland matrix in the northeastern corner of Sedgwick Reserve. Ser-

pentine soils, typically shallow with low Ca:Mg and high sand content (Walker 1954, Fernandez-

Going et al. 2012), present strong edaphic gradients over relatively small spatial scales (e.g., several

meters, Gram et al. 2004), making this an experimentally tractable system for addressing our re-
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search questions. Additionally, California grasslands are characterized by a Mediterranean climate

with hot, dry summers, and cool, wet winters that experience substantial interannual variation in

rainfall (Pitt and Heady 1978, Hobbs et al. 2007).

To estimate plant responses to the environment, 17 functionally variable annual plant

species were grown in the absence of competitors at 16 sites distributed across the study landscape

in 2015–2016 (Table 2.1). Methods for this experiment are detailed in Kandlikar et al. (2022).

Briefly, seeds of each species were planted in five replicate plots at each site in November

2015. Germinated seeds were thinned down to a single focal individual per species per plot in

February 2016. All neighbors within a 15 cm radius of focal individuals were weeded out, thereby

minimizing plant-plant interactions. The lifetime fecundity of focal individuals was estimated in

April–June 2016 as a metric of species’ demographic responses to the environment at each site.

Additionally, soil samples were collected at each site and analyzed for physical and chemical

properties. We retrieved a publicly archived version of these demographic and environmental data

for use in the present study (Kandlikar 2021).

Concurrent with the above experiment, we also grew species in the presence of competitors

in order to estimate their responses to competition. At each site, we established a 2.4 m × 3 m plot

that was cleared of natural vegetation and seeded homogeneously with a mixture of the 17 study

species. This seed mixture had a similar number of seeds per species and was added to plots at a

total seed density of ~16 g m-2 (approximately double the average seed density of annual plants in

this area, Levine and HilleRisLambers 2009). Each plot was divided into twenty 0.6 m × 0.6 m

subplots, each of which was assigned to one of the study species (three subplots were unused in

the 2015 experiment). Within each subplot, we identified about five focal individuals with at least
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7.5 cm between one another and estimated their fecundity as described in Kandlikar et al. (2022).

Collectively, 2,815 focal individuals (including those that failed to reproduce) were tracked for

fecundity either in the presence or absence of competitors.

Table 2.1: Plant species used in this study. Species are marked with plus signs (+) for the year(s) in which
they were used in the field experiment. Taxonomy follows Baldwin et al. (2012).

Code Species Family 2013 2015
ACAM Acmispon americanus Fabaceae +
ACWR Acmispon wrangelianus Fabaceae + +
AMME Amsinckia menziesii Boraginaceae + +
BRMA Bromus madritensis Poaceae +
CEME Centaurea melitensis Asteraceae + +
CHGL Chaenactis glabriuscula Asteraceae +
CLBO Clarkia bottae Onagraceae + +
CLPU Clarkia purpurea Onagraceae + +
ERBO Erodium botrys Geraniaceae +
ERCI Erodium cicutarium Geraniaceae +
EUSP Euphorbia spathulata Euphorbiaceae + +
FEMI Festuca microstachys Poaceae +
GECA Geranium carolinianum Geraniaceae +
HECO Hemizonia congesta Asteraceae + +
HOMU Hordeum murinum Poaceae +
LACA Lasthenia californica Asteraceae + +
MEPO Medicago polymorpha Fabaceae + +
MICA Micropus californicus Asteraceae +
MIDO Microseris douglasii Asteraceae +
NAAT Navarretia atractyloides Polemoniaceae +
PLER Plantago erecta Plantaginaceae + +
SACO Salvia columbariae Lamiaceae + +
SIGA Silene gallica Caryophyllaceae +
URLI Uropappus lindleyi Asteraceae + +
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2.3.2 Functional traits

With the aim of evaluating how functional traits mediate species’ demographic responses to the

environment and competition, we examined nine leaf, root, seed, and whole-plant functional traits

(Table B.1) that were previously measured and linked to plant population dynamics in our study sys-

tem (Kraft et al. 2015b, Kandlikar et al. 2022, Van Dyke et al. 2022). An overview of these traits

is provided here: Leaf nitrogen content (foliar N), leaf dry matter content (LDMC), and specific

leaf area (SLA) represent the leaf economics spectrum that spans resource-acquisitive to conser-

vative strategies (Wilson et al. 1999, Wright et al. 2004). LDMC also has consequences for leaf

longevity and palatability (Ryser 1996, Blumenthal et al. 2020). Leaf size plays a key role in plant

energy and water balance (Parkhurst and Loucks 1972, Wright et al. 2017). Specific root length

(SRL) relates to belowground resource strategies (i.e., a root or whole-plant economics spectrum,

Freschet et al. 2010, Kramer-Walter et al. 2016). Maximum height and seed mass represent in-

vestment in growth and resource provisioning to offspring, respectively, with direct implications

for competition (Westoby 1998, Díaz et al. 2016). Phenology controls the timing of competition

in annual plant communities (Levine et al. 2022). Carbon isotope discrimination (𝛿13C) is a mea-

sure of integrated water use efficiency (Seibt et al. 2008). Trait data were obtained from Kraft et

al. (2015b) and Kandlikar et al. (2022), with detailed methods for trait measurements provided

therein. Additionally, we conducted a principal component analysis (PCA) to summarize variation

in functional traits across all 24 study species (Figure B.1, Figure B.2). All traits were centered and

scaled to unit variance prior to performing the PCA. We retained the first two axes (PC1, PC2) for

subsequent analyses in accordance with results of parallel analysis (adjusted eigenvalues > 1, Horn

1965, Dinno 2024).
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2.3.3 Statistical analyses

We used a series of Bayesian hierarchical models to analyze variation in fecundity in the context

of each of our research questions (1–3). We implemented all Bayesian statistical models using

Stan (Stan Development Team 2024) via cmdstanr (Gabry et al. 2024) in R version 4.4.1 (R Core

Team 2024). We analyzed the two experimental years (2013, 2015) separately given their different

species lists (Table 2.1). Below, we describe our procedure for analyzing the 2015 experiment,

which generally applied to the 2013 experiment as well.

(1) Are species’ demographic responses to the environment partially uncorrelated?

To estimate the correlation between species in responses to the environment or competition, we first

modeled fecundity for species 𝑖 at site 𝑘 as following a zero-inflated negative binomial distribution

with a species-specific probability of zero-inflation, 𝜃𝑖. We specified a linear model for the negative

binomial mean, 𝜇, as:

log (𝜇) = 𝛾𝐸,𝑖,𝑘 − 𝛾𝐶,𝑖,𝑘𝐶 (2.1)

where 𝐶 denotes the presence (𝐶 = 1) or absence (𝐶 = 0) of competitors. Here, 𝛾𝐸 is the

log-transformed fecundity expected in the absence of competitors, representing a species’ response

to the environment at a given site. 𝛾𝐶 then describes the species’ response to competition at this

site. Following Chesson (2000a), the competition term is explicitly written as negative so that a

larger value of 𝛾𝐶 corresponds to a greater (more negative) impact of competition on fecundity.

We allowed the negative binomial shape, 𝜙, to differ by species.
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We hierarchically modeled the response to environment, 𝛾𝐸, as a species-level correlated

varying effect:

𝛾𝐸,𝑖,𝑘 = 𝛾𝐸 + 𝛿𝐸,𝑖,𝑘 (2.2)
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(2.3)

where 𝛾𝐸 is the mean response to the environment and 𝛿𝐸,𝑖,𝑘 is the deviation from this mean

for species 𝑖 = 1, … , 𝑛 at site 𝑘. We modeled 𝛿𝐸 as drawn from a zero-centered multivariate

normal distribution with an 𝑛 × 𝑛 covariance matrix, SE. This covariance matrix was further

decomposed into an 𝑛 × 𝑛 correlation matrix, RE, and a vector of 𝑛 standard deviations, 𝜎𝐸. Each

element of this correlation matrix is a model-based estimate of the correlation between species in

their fecundity responses to the environment across sites (with the mean response factored out)

and is analogous to Pearson’s correlation coefficient. We also employed an analogous hierarchical

structure for the response to competition, 𝛾𝐶 , with a corresponding correlation matrix, RC, that

describes the correlation between species in their fecundity responses to competition across sites.

For this analysis, we excluded four species (AMME, CLBO, CLPU,MICA) that mademodel fitting

difficult due to a severe lack of fecundity data across sites (e.g., the species only reproduced at 3/16

sites), leaving 𝑛 = 13 species or 78 species pairs. For the 2013 experiment, we similarly excluded

seven species (AMME, CLBO, CLPU, ERBO, ERCI, GECA, SIGA).

38



(2) Are species more limited by competition in more favorable environments?

Next, to estimate the within-species correlation between responses to the environment and compe-

tition, we modeled fecundity for each species separately by simplifying Equation 2.1 as:

log (𝜇) = 𝛾𝐸,𝑘 − 𝛾𝐶,𝑘𝐶 (2.4)

We hierarchically modeled the response to environment, 𝛾𝐸, and the response to competition, 𝛾𝐶 ,

as site-level correlated varying effects:

𝛾𝐸 = 𝛾𝐸 + 𝛿𝐸,𝑘 (2.5)

𝛾𝐶 = 𝛾𝐶 + 𝛿𝐶,𝑘 (2.6)
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Here, we modeled the pair of deviations from the species’ mean responses to the environment

and competition, [𝛿𝐸, 𝛿𝐶], as drawn from a zero-centered multivariate normal distribution with a

2 × 2 covariance matrix, S. From this covariance matrix, we obtained the correlation matrix, R,

which describes the correlation in fecundity responses to the environment and competition across

sites (with the mean response factored out). Although covariance is of direct interest to the storage

effect, we focus on correlation here to facilitate interpretation and comparison between species. We

fit this model for each of the study species using only sites at which at least one focal individual

reproduced. For this analysis, we excluded four species (AMME, CLBO, CLPU,MICA) that failed
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to reproduce at more than 8/16 sites, as responses to the environment and competition could not

be readily identified at these sites. Additionally, we dropped one species (FEMI) for which the

fitted model failed to satisfy the diagnostic criteria described below. For the 2013 experiment,

we similarly excluded seven species (AMME, CLBO, CLPU, ERBO, ERCI, GECA, SIGA) and

dropped three more species (CEME, LACA, MEPO) with unsatisfactory model diagnostics.

(3) How do functional traits mediate species’ responses to the environment and competition?

Finally, we modeled responses of fecundity to environmental gradients (Ca:Mg, sand%, soil depth)

asmediated by functional traits. To this end, we expanded the linearmodel for the negative binomial

mean fecundity (Equation 2.1) as:

log (𝜇) = 𝛾𝐼 + 𝛾𝐸𝐸 − 𝛾𝐶𝐶 + 𝛾𝐸𝐶𝐸𝐶 + 𝛾species + 𝛾site (2.8)

where 𝛾𝐼 is the intercept, 𝛾𝐸 is the slope for an environmental variable, 𝐸, 𝛾𝐶 is the response

to competition as described above, and 𝛾𝐸𝐶 is the statistical interaction between responses to the

environment and competition. 𝛾species and 𝛾site are random intercepts for species and site, respec-

tively, each modeled as drawn from a zero-centered normal distribution with a standard deviation

of 𝜎species or 𝜎site. We then allowed each main effect to vary as a function of a trait, 𝑥:

𝛾𝐼 = 𝛼𝐼 + 𝛽𝐼𝑥 (2.9)

𝛾𝐸 = 𝛼𝐸 + 𝛽𝐸𝑥 (2.10)

𝛾𝐶 = 𝛼𝐶 + 𝛽𝐶𝑥 (2.11)
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𝛾𝐸𝐶 = 𝛼𝐸𝐶 + 𝛽𝐸𝐶𝑥 (2.12)

where 𝛼 is the intercept and 𝛽 is the slope for the trait in each linear model. Note that Equations

2.9–2.12 effectively introduce interactions between the trait and the predictor terms in Equation 2.8.

The environmental variable and trait values were both centered and scaled to unit variance formodel

fitting. Thus, 𝛼𝐼 can be interpreted as the log-transformed fecundity expected in the absence of

competitors under an average environmental condition with an average trait value. We fit this

model separately for each combination of one of three environmental variables and one of 11 traits

(9 traits + 2 PCA axes). We retained all species and sites for this analysis.

We fit all models by running four chains of Stan’smainMarkov chainMonte Carlo (MCMC)

algorithm with default initial values and the control parameter adapt_delta = 0.99. For analyses

(1) and (2), we ran 1,000 warmup and 5,000 sampling iterations per chain, resulting in 𝑁 = 20,000

posterior samples. For analysis (3), we ran 1,000 warmup and 1,000 sampling iterations per chain,

resulting in 𝑁 = 4,000 posterior samples. We evaluated model convergence by confirming that

there were no divergent transitions, the �̂� convergence diagnostic < 1.01, the effective sample size

(𝑁eff) > 400, and the ratio 𝑁eff/𝑁 > 0.1 for all parameters (Vehtari et al. 2021, Stan Development

Team 2022). Models that failed to satisfy any of these diagnostic criteria were excluded from

results, including the model for analysis (1) for the 2013 experiment. Note that hierarchical models

were coded using a non-centered parameterization to facilitate MCMC sampling. We used weakly

regularizing priors (Lemoine 2019, Banner et al. 2020, Wesner and Pomeranz 2021) that were

informed in part by prior work in this study system (Kraft et al. 2015b, Van Dyke et al. 2022):

e.g., 𝛾𝐸 ∼ Normal(5, 2.5), 𝛾𝐶 ∼ Normal(0, 5), 𝛽 ∼ Normal(0, 1), R ∼ LKJcorr(2), 𝜎 ∼

Exponential(1). We present results based on ≥ 97.5% posterior support (Makowski et al. 2019),
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unless explicitly stated otherwise.

2.4 Results

We found mixed evidence for correlated responses of species to environmental variation across

sites (Figure 2.1a). Median correlation between species in responses of fecundity to the environ-

ment ranged from -0.45 to 0.58 with a mean of 0.14. Thirteen of 78 species pairs (16.7%) exhibited

positive correlations in responses to the environment. These positive correlations were observed

both within and between grasses and forbs. Overall, while some species had similar site prefer-

ences, responses of fecundity to site-level environmental variation were variable across species

and far from perfectly correlated. In fact, two species pairs (2.6%) exhibited negative correlations

in responses to the environment.

In contrast to responses to the environment, we found limited evidence for correlated re-

sponses of species to variation in competition across sites (Figure 2.1b). Median correlation be-

tween species in responses of fecundity to competition ranged from -0.45 to 0.35 with a mean of

0.00. Only one species pair (BRMA-CEME) exhibited a moderate, negative correlation between

responses to competition. That is, BRMA was less impacted by competition at sites where CEME

wasmore impacted by competition, and vice versa, despite these species being positively correlated

in their responses to spatial environmental variation (Figure 2.1a).

Within species, responses of fecundity to the environment often positively covaried with

responses of fecundity to competition (Figure 2.2). We found a positive correlation between re-

sponses of fecundity to the environment and competition for seven of 12 species (58.3%). Only
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Figure 2.1: Correlation between responses of fecundity to (a) environment or (b) competition for each species
pair in the 2015 experiment. Cells are colored by median correlation. Species pairs with Pr(correlation >
0) ≥ 0.975 are indicated with plus signs (+), whereas species pairs with Pr(correlation < 0) ≥ 0.975 are
indicated with minus signs (−).
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Figure 2.2: Correlation (𝜌) between responses of fecundity to environment and competition for each species
in the 2015 experiment. Median correlations are given in panel labels. Species with Pr(𝜌 > 0) ≥ 0.975 are
indicated with blue points, whereas species with Pr(𝜌 < 0) ≥ 0.975 are indicated with red points. Points
represent posterior medians. Gray lines represent 95% credible intervals.
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one species (CEME) displayed a negative correlation between responses of fecundity to the envi-

ronment and competition. Taken together, several species were more limited by competition at

sites where they achieved higher fecundity in the absence of competitors.

Several functional traits explained variation in both fecundity without competitors and the

response of fecundity to competition. Under mean environmental conditions, species with low

LDMC, large leaves, or tall maximum height had increased fecundity (Figure 2.3c). The primary

trait PCA axis (PC1), which corresponded strongly to variation in these three traits and foliar N

(Figure B.1, Figure B.2), also explained variation in fecundity. Competition reduced fecundity on

average by over a factor of 1.5 (Figure 2.3b). Notably, the same traits that conferred increased

fecundity also resulted in elevated impacts of competition on fecundity (Figure 2.3d). Species with

high foliar N, late phenology, or large seed mass were also more limited by competition.

We found evidence for trait-environment interactions in which functional traits mediated

responses of fecundity to environmental gradients. Fecundity was on average higher in soils with

greater Ca:Mg or depth (Figure 2.4a). LDMC, SLA, or the secondary trait PCA axis (PC2, largely

representing variation in SLA, 𝛿13C, phenology, and seed mass; Figure B.1, Figure B.2) mediated

responses of fecundity to variation in Ca:Mg (Figure 2.4c). Additionally, many of the same traits

that explained variation in mean fecundity (LDMC, leaf size, maximum height) also mediated re-

sponses to variation in soil depth (Figure 2.4c), signifying the importance of these traits (or their

correlates) in shaping spatial patterns of fecundity across the study landscape.

Responses of fecundity to competition also varied along environmental gradients, with el-

evated impacts of competition observed in soils with less sand % or greater depth (Figure 2.4b).

While several traits mediated the strength of this interaction between the environment and compe-
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Figure 2.3: Effects of functional traits on fecundity under mean environmental conditions in the 2015 exper-
iment. (a) Fecundity without competitors given mean environment and traits. (b) Response to competition
given mean environment and traits. (c) Effects of traits on fecundity without competitors. (d) Effects of traits
on response to competition. Parameter estimates with Pr(>0) ≥ 0.975 are shown in blue, whereas parameter
estimates with Pr(<0) ≥ 0.975 are shown in red. Points represent posterior medians. Solid lines represent
95% credible intervals. Note that models were fit separately for each trait. Parameter estimates shown in (a,
b) are summarized over all posterior samples from these separate models. Results shown here are for soil
depth as the environmental variable (results are comparable with different environmental variables).

46



Figure 2.4: Effects of functional traits on responses to environment and competition in the 2015 experiment.
(a) Response of fecundity to environment givenmean traits. (b) Interaction between responses of fecundity to
environment and competition given mean traits. (c) Effects of traits on response of fecundity to environment.
(d) Effects of traits on interaction between responses of fecundity to environment and competition. Parameter
estimateswith Pr(>0)≥ 0.975 are shown in blue, whereas parameter estimateswith Pr(<0)≥ 0.975 are shown
in red. Points represent posterior medians. Solid lines represent 95% credible intervals. Note that models
were fit separately for each combination of environmental variable and trait. Parameter estimates shown in
(a, b) are summarized over all posterior samples from these separate models.
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tition (Figure 2.4d), these traits were typically different from those that mediated direct responses

to the environment (Figure 2.4b). For example, although trait PC1 had little clear relation to how

fecundity responded to variation in soil depth in the absence of competitors (Figure 2.5a), species

represented by larger values of trait PC1 (higher LDMC, lower leaf size, foliar N, and maximum

height; Figure B.1) were more limited by competition in deeper soils (Figure 2.5b). That is, the

response of fecundity to variation in soil depth depended on trait PC1, but only in the presence of

competitors. In all, many functional traits explained responses of fecundity to spatial variation in

the environment and competition. However, interactions between traits, environment, and compe-

tition were complex, with different traits explaining different dimensions of species’ responses to

the environment and competition.

We have focused on results of the 2015 experiment thus far, but the drier 2013 experiment

provided a number of contrasting results. First, we did not find strong support for within-species

correlation between responses of fecundity to the environment and competition (Figure B.3), al-

though this may be due in part to data deficiency. Similarly, we did not find clear evidence for

trait-mediated differences between species in mean fecundity (Figure B.4c), which suggests that

fitness differences between species may have been smaller in this drier year. Second, competi-

tion reduced fecundity less on average than in the 2015 experiment (Figure B.4b), and functional

traits had different effects on responses of fecundity to competition (Figure B.4d). In particular, at

least three traits (foliar N, leaf size, trait PC1) had opposing effects on responses to competition

between the two years. Third, functional traits also had different effects on responses of fecundity

to spatial variation in the environment and competition (Figure B.5). Importantly, evidence for an

interaction between the environment and competition was limited (Figure B.5b), consistent with
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Figure 2.5: Effects of soil depth on fecundity conditional on trait PC1 and the (a) absence or (b) presence
of competitors in the 2015 experiment. Predictions are computed under minimum (purple) and maximum
(green) trait values in the data. Data points are colored according to whether species’ trait values are below
(purple) or above (green) average and are jittered horizontally for visual clarity. Solid lines represent posterior
medians. Shaded areas represent 95% quantile credible intervals. Note that the y-axis is shown on the
log(𝑦 + 1) scale, where 𝑦 is fecundity.

the aforementioned lack of correlation between responses of fecundity to the environment and com-

petition (Figure B.3). However, there was evidence that a number of traits (e.g., foliar N, 𝛿13C, trait

PC2) can mediate this interaction (Figure B.5d), albeit with opposing effects between the two years.

This suggests that species may still experience covariation between responses to the environment

and competition depending on their traits. Taken together, annual environmental context appeared

to have a strong influence on how functional traits explain species’ responses to spatial variation

in the soil environment and competition.
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2.5 Discussion

Spatial variation in the abiotic environment underlies many fundamental mechanisms of species

coexistence in ecological communities (Chesson 2000a, Amarasekare 2003, Leibold et al. 2004).

The spatial storage effect is one such mechanism, but the few empirical tests of it to date have

found mixed evidence for its operation in natural communities (Sears and Chesson 2007, Towers

et al. 2020). In this study, we explored how functional traits can mediate species’ demographic re-

sponses to the abiotic environment and competition, and thereby modulate the spatial storage effect,

in an edaphically variable California grassland landscape. We found that key ingredients of the spa-

tial storage effect (species-specific responses to the environment, covariance between responses to

the environment and competition) emerged among spatially distributed experimental plant commu-

nities, with evidence that a wide array of functional traits can explain corresponding demographic

responses to the environment and competition. Our results demonstrate how functional traits can

contribute to species coexistence in spatially variable environments (Adler et al. 2013), while also

revealing the complexity in how different traits explain different aspects of species’ responses to

the environment and competition.

We found two lines of evidence in support of species-specific responses to the environment.

First, fecundity responses to environmental variation across sites were only partially correlated

between species (Figure 2.1a). Responses to the environment were positively correlated for 13 of 78

species pairs (16.7%), but there was overall limited evidence that species exhibit highly correlated

responses to the environment. Interestingly, responses to variation in competition appeared to be

even more idiosyncratic (Figure 2.1b), underscoring the difficulty of predicting species’ responses

to competition in variable environments.
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Second, functional traits mediated species’ responses to environmental gradients

(Figure 2.4c). Therefore, species with different traits are expected to respond differently to

environmental variation, resulting in species-specific responses to the environment. Of particular

note is a positive effect of Ca:Mg on fecundity (Figure 2.4a) that is further enhanced for species

with high SLA (Figure 2.4c). This pattern, also demonstrated by Kandlikar et al. (2022), is

consistent with a shift toward more resource-acquisitive strategies in less abiotically stressful

environments (Wright et al. 2004, Fernandez-Going et al. 2012, Hulshof et al. 2013). Notably,

we extend previous work to show that this interaction between SLA and Ca:Mg was found

despite no clear effect of SLA on mean fecundity (Figure 2.3c) or responses to competition

(Figure 2.3d, Figure 2.4d). This exemplifies how a trait might be involved in only certain aspects

of species’ demographic responses to the environment and competition. In contrast, many of

the same traits associated with increased fecundity without competitors and elevated impacts

of competition (LDMC, leaf size, maximum height; Figure 2.3c) also mediated responses to

soil depth (Figure 2.4c). Interestingly, these trait-based responses to soil depth were seemingly

masked when combined in trait PC1 due to these traits loading in opposite directions along this

PCA axis (Figure B.1). This suggests that alternative functional strategies can give rise to similar

demographic responses to spatial environmental variation (Marks and Lechowicz 2006), possibly

complicating the role of traits in mediating species-specific responses to the environment.

We found that positive correlation between fecundity responses to the environment and com-

petition, corresponding to an EC covariance in which species are more limited by competition in

more favorable environments, was common (Figure 2.2). This was reflected in species’ responses

to environmental gradients, especially with a positive effect of soil depth on fecundity (Figure 2.4a)
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that is countered by an associated increase in competition (Figure 2.4b). However, at least one

functional trait was related to species’ responses to each of the three focal environmental gradients

(Figure 2.4c, d), indicating that the strength of EC covariance experienced by a species can depend

on its traits (e.g., as illustrated in Figure 2.5). Several traits involved in resource acquisition and

use (foliar N, phenology, SRL, 𝛿13C) explained responses to variation in competition across soil

depths (Figure 2.4d). Importantly, such trait-mediated responses to the environment and compe-

tition can allow EC covariance to emerge even when mean responses alone do not support such

patterns. For example, we can deduce from our results that a species with low SRL can be more

limited by competition in favorable environments with high Ca:Mg (Figure 2.4). Such complex

interactions between the abiotic environment, competition, and functional traits can contribute to

variation in the strength of the spatial storage effect by creating diverse spatial patterns in species’

demography.

Our results differ from those of previous work that found limited evidence for covariance

between species’ responses to the environment and competition (Towers et al. 2020), a key ingredi-

ent of the spatial storage effect. One possible explanation for this difference is that our experimental

approach allowed us to quantify species’ demographic responses at sites where they do not naturally

occur at present. These sites may often be where the environment is most unfavorable or competi-

tive pressure is highest (Kraft et al. 2015a). Processes such as priority effects or disturbances may

also mask coexistence mechanisms in natural settings (Seabloom et al. 2003b, HilleRisLambers et

al. 2010, Uricchio et al. 2019). Another possibility is that strong edaphic gradients characteristic of

serpentine grasslands are especially conducive to satisfying ingredients of the spatial storage effect

(Whittaker 1954, Gram et al. 2004, Moore and Elmendorf 2011, Hayashi and Kraft 2024b, but see
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Harrison et al. 2010).

It must also be noted that a positive EC covariance alone is insufficient to promote species

coexistence via the storage effect. Rather, EC covariance must be greater when a species is com-

mon in order to stabilize coexistence by concentrating intraspecific competition relative to inter-

specific competition (Chesson 2000b, Kuang and Chesson 2009). More work is needed to expand

our experimental approach to enable comparisons between when species are common versus rare

(see also Towers et al. 2020). Additionally, we found contrasting patterns of EC covariance (Fig-

ure 2.2, Figure B.3) and trait-mediated responses to the environment and competition (Figure 2.3,

Figure 2.4, Figure B.4, Figure B.5) between the two experimental years. These differences were

surprisingly stark, with some traits (e.g., foliar N, phenology, 𝛿13C) having entirely opposite effects

on fecundity responses to the soil environment and competition in different years. These results are

consistent with theoretical and empirical results that temporal variation in the abiotic environment

(e.g., seasonal rainfall) is important for species coexistence, including in California grasslands (e.g.,

Chesson 1994, Adler et al. 2006, Angert et al. 2009, Letten et al. 2018, Hallett et al. 2019, Van

Dyke et al. 2022, but see Stump and Vasseur 2023). Overall, our findings suggest that spatiotem-

poral variation in the environment and competition can produce complex coexistence dynamics in

natural communities. Understanding how trait plasticity in spatiotemporally varying environments

influences species coexistence remains an important challenge (e.g., Stomp et al. 2008, Turcotte

and Levine 2016, Pérez-Ramos et al. 2019, Muthukrishnan et al. 2020).

In conclusion, we have demonstrated how functional traits that summarize species’ ecolog-

ical strategies can have important yet variable consequences for species coexistence in spatially

variable environments. In particular, functional traits can mediate species’ demographic responses
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to spatial variation in the environment and competition, thus modulating key ingredients of the

spatial storage effect. Importantly, our results reveal a diversity of pathways by which functional

traits can be linked to demography and coexistence. In light of this complexity, future trait-based

studies of coexistence mechanisms should prioritize disentangling the effects of functional traits

on species’ responses to the environment and competition.
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Chapter 3

Water supply shapes fitness asymmetries
and competitive coexistence of California
annual plants
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shapes fitness asymmetries and competitive coexistence of California annual plants. KTH and

NJBK conceptualized the study and designed the experiment. KTH led data collection, validation,

analysis, and visualization with input from NJBK. KTH wrote the original draft of the manuscript

with input from NJBK. KTH and NJBK contributed to review and editing of the manuscript.

55



3.1 Abstract

Variation in competitive interactions along environmental gradients is important for shaping pat-

terns of species fitness, coexistence, and distributions. However, it is often unclear how the strength

of competition between individuals (per capita competition) interacts with asymmetries in species-

specific demographic performance to determine the community-level impacts of competition on

population persistence (total competition). Here, we disentangle how competition varies with rain-

fall, an especially important abiotic factor in western North America. We experimentally parameter-

ized population dynamics models of competition between an annual grass (Festuca microstachys)

and forb (Plantago erecta) under water supply treatments emulating variation in rainfall across the

geographic ranges of both species. We found that per capita competition was generally strongest

when water supply was limited. In contrast, the total effect of competition on population growth

was greatest at intermediate to high water supply, reflecting variation in fitness differences between

species. Consequently, coexistence was most likely in arid environments, despite strong per capita

interspecific competition. Our results highlight that asymmetric demographic performance can de-

couple per capita competition from total competition exerted by a community. We emphasize the

importance of distinguishing between how species interact at the individual level and impact one

another at the community level in order to accurately predict the consequences of competition in

variable environments.

Keywords: competition, fecundity, low-density population growth rate, modern coexistence the-

ory, precipitation, stress gradient
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3.2 Introduction

Biotic interactions such as competition are important determinants of species distributions across

spatial scales (Sexton et al. 2009, Wisz et al. 2013). In particular, experimental work in ecological

communities has revealed an interactive role of the abiotic environment and competition in shaping

species distributions (e.g., Taniguchi and Nakano 2000, Armitage and Jones 2020, Usinowicz and

Levine 2021, Hayashi andKraft 2024b), wherein environmental context modulates competitive out-

comes and population persistence (e.g., Germain et al. 2018, Matías et al. 2018, Wainwright et al.

2019, Van Dyke et al. 2022, Cervantes-Loreto et al. 2023). However, characterizing how compe-

tition varies across geographic-scale environmental gradients remains a major empirical challenge.

This challenge is compounded as global environmental change modifies species composition and

competitive interactions in communities (Parmesan and Yohe 2003, Bowler et al. 2017, Feeley et

al. 2020). Thus, understanding the mechanisms underlying variation in competition across environ-

ments is essential for predicting future population and community dynamics, species distributions,

and resulting patterns of biodiversity (Gilman et al. 2010, HilleRisLambers et al. 2013, Blois et al.

2013, Alexander et al. 2016, Aschehoug et al. 2016, Boult and Evans 2021).

A long-standing hypothesis in community ecology and biogeography is that competition

more strongly limits species’ performance and distributions in less abiotically stressful environ-

ments (Dobzhansky 1950, MacArthur 1972, Bertness and Callaway 1994, Maestre et al. 2009).

Such variation in competition can arise from variation in per capita competitive effects, competitor

density, and competitor identity, among other potential mechanisms (Louthan et al. 2015). Mod-

ern coexistence theory offers a unifying framework for these various mechanisms of competition

and their consequences for the coexistence, and hence distributions, of species in variable environ-
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ments (Chesson 2000a, 2000b, Godsoe et al. 2017). Within this framework, a species’ response

to competition is a function of both the per capita effects and densities of intra- and interspecific

competitors. In particular, strong intraspecific competition relative to interspecific competition is

expected to stabilize coexistence by conferring a demographic advantage to species when at low

densities (MacArthur and Levins 1967, Chesson 2000b). Conversely, if stabilization is weak, com-

petition can limit species’ distributions by excluding them from otherwise suitable environments

(Godsoe et al. 2017, Alexander et al. 2018).

Modern coexistence theory additionally emphasizes that asymmetries in species’ demo-

graphic performance can contribute to fitness differences between species that drive competitive

exclusion (Chesson 2000b). An important advantage of this perspective is that it allows the notion

of abiotic stress (critiqued byKörner 2003, see also Lortie et al. 2004) to be operationalized in terms

of species-specific demographic responses to environmental conditions. Generally, two species are

expected to coexist if each species’ response to both the environment and competition allows it to

increase in abundance from low density in the presence of the resident community, expressed math-

ematically as mutually positive low-density population growth rates (Turelli 1978, Grainger et al.

2019b). In environments where fitness differences are large (e.g., due to different reproductive out-

puts or equilibrium population densities), the resident community might exert a particularly strong

effect on low-density population growth rates. Importantly, this total, community-level effect of

competition can be large even if per capita competitive effects are not especially strong. Thus,

distinguishing between how species interact at the individual level (per capita competition) and

impact one another at the community level (total competition) is crucial for developing a robust

understanding of how competition varies across environments.
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Despite the distinct consequences of per capita versus total competitive effects, their relative

contributions to species coexistence and distributions along large-scale environmental gradients is

rarely quantified (Louthan et al. 2015). For example, a latitudinal gradient in the strength of con-

specific negative density dependence (including intraspecific competition) is hypothesized to play

an important role in maintaining global patterns of tree species diversity (Schemske et al. 2009,

LaManna et al. 2017, Hülsmann et al. 2021). Such large-scale variation in competition is also

reflected in the characteristics of species distributions (e.g., range size, Morin and Chuine 2006).

However, few studies have empirically quantified how species-specific demography and per capita

competitive effects jointly vary in response to continuous environmental variation. Among these

studies, the predominant focus has been on how temperature regulates population dynamics (e.g.,

Armitage and Jones 2019, McGuire 2023, Sunday et al. 2024). From a practical standpoint, per

capita competitive effects may need to be estimated via long-term observation (e.g., Adler et al.

2010, Zepeda and Martorell 2019) or intensive density gradient experiments (Hart et al. 2018,

Grainger et al. 2019b), whereas aggregate competitive effects may be estimated through the likes

of neighbor removal experiments (Goldberg and Barton 1992) or proxies of competitive pressure

(e.g., population density, Treurnicht et al. 2016). Therefore, elucidating the causes and conse-

quences of per capita versus total competition has important theoretical and practical implications

for our understanding of how competition shapes species coexistence and distributions along abi-

otic gradients.

One of the most important abiotic factors determining the performance and distributions

of plant species globally is water, and by extension, rainfall (Whittaker 1975, Engelbrecht et al.

2007, Choat et al. 2012, Midolo and Wellstein 2020). Rainfall is particularly important for plant
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population, community, and range dynamics in California and the broader western United States

(e.g., Levine and Rees 2004, Harsch and HilleRisLambers 2016, Hallett et al. 2019, Harrison et al.

2020, Pearse et al. 2020, Van Dyke et al. 2022). Much of this region is characterized by dry sum-

mers and wet winters with substantial geographic and interannual variation in rainfall (Haston and

Michaelsen 1997, Singh et al. 2018, Beck et al. 2018). Moreover, climate change is projected to

increase rainfall volatility and drought over the course of this century (Dai 2013, Yoon et al. 2015,

Swain et al. 2018), which could amplify the effects of rainfall on plant communities. Water supply

via rainfall approximates a resource-based abiotic gradient (sensu Maestre et al. 2009) and is com-

monly employed as a measure of water availability in species distribution models (Austin and Van

Niel 2011, Mod et al. 2016). This opens the door to mechanistic predictions of how competition

varies along this abiotic gradient (Craine and Dybzinski 2013), even if rainfall may not directly

represent plant-available water (Piedallu et al. 2013, but see Sehler et al. 2019). For instance, per

capita competition may be strong in arid environments where water is a severely limited resource

(e.g., Ludwig et al. 2004). Alternatively, total competition may be strong in moister environments

that support more biomass or higher population densities (e.g., Rees 2013). Here, we leverage ex-

perimentally tractable California annual plants that experience strong rainfall gradients across their

geographic ranges to empirically explore such predictions about the mechanisms of competition in

variable environments.

In this study, we evaluate how the abiotic environment influences competition and species

coexistence by disentangling the individual- and community-level competitive dynamics of an an-

nual grass (Festuca microstachys) and forb (Plantago erecta) along an experimental water sup-

ply gradient emulating geographically relevant variation in rainfall. We grew these species in a
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greenhouse at six levels of water supply, crossed with varying intra- and interspecific competitor

densities, and estimated both per capita (individual-level) and total (community-level) effects of

competition on population growth. Specifically, we tested the hypothesis that (1) per capita com-

petition is stronger when water supply is more limited. Additionally, we tested the hypotheses that

total competition is stronger when (2.1) per capita competition is stronger or (2.2) higher water sup-

ply allows for greater intrinsic demographic performance. Finally, following the hypothesis that

variation in conspecific negative density dependence drives geographic patterns of biodiversity, we

asked whether (3) intraspecific competition displays a greater response to water supply than does

interspecific competition.

3.3 Methods

3.3.1 Study system

Our focal species, Festuca microstachys (small fescue, Poaceae) and Plantago erecta (California

plantain, Plantaginaceae), are winter annual plants native to western North America. These species

co-occur in serpentine grasslands of the California Floristic Province (Gram et al. 2004), a bio-

diversity hotspot (Baldwin 2014). This region experiences a Mediterranean climate with hot, dry

summers and mild, wet winters. Accordingly, both species germinate following rainfall in early

winter and achieve their lifetime reproductive output by mid- to late spring. The geographic range

of P. erecta is largely nested within that of F. microstachys, with both species experiencing a simi-

lar range of rainfall conditions throughout the growing season (December–May) (Figure 3.1). The

geographic range of F. microstachys extends farther eastward, such that a larger portion of its range
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experiences limited (e.g., < 300 mm) growing season rainfall. We obtained range maps from the

Botanical Information and Ecology Network (BIEN) database version 4.2.8 (Enquist et al. 2016,

Maitner et al. 2018) and regional rainfall data from WorldClim 2 (Fick and Hijmans 2017). We

collected seeds of the focal species for this study from a serpentine grassland in University of

California Natural Reserve System Sedgwick Reserve in Santa Barbara County, California, USA

(34.74°N, 120.03°W, mean December–May rainfall = 456 mm, County of Santa Barbara 2025a) in

2019. While local adaptation to regional climate is important for range dynamics (Valladares et al.

2014, DeMarche et al. 2019, Bontrager et al. 2021), logistic constraints did not allow us to work

with different geographic populations in this study.

3.3.2 Greenhouse experiment

To estimate how the demographic performance and competitive interactions of our focal species

vary in response to a large-scale rainfall gradient, we grew each species at varying levels of water

supply and competitor density in a greenhouse at the University of California, Los Angeles Plant

Growth Center. We grew plants in 4.26 L (15 cm diameter, 30 cm height) tree pots (Stuewe & Sons,

Inc.) filled with Plant Growth Center Soil Mix (18.75% washed plaster sand, 18.75% sandy loam,

37.5% grower grade peat moss, 12.5% horticultural grade perlite, 12.5% #2 coarse vermiculite).

Each pot was seeded with a background of one of the two species at one of five seed densities

(0, 2, 4, 8, or 16 g/m2), where 16 g/m2 is considered to be around the maximum seed density of

annual plants at Sedgwick Reserve (Levine and HilleRisLambers 2009). Each pot was additionally

seeded at its center with 20 seeds of one of the two species. All planted seeds were random samples

of seeds aggregated from numerous parent plants. Finally, each pot was subjected to one of six
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Figure 3.1: Precipitation conditions observed across the focal species’ geographic ranges. Left: Range maps
retrieved from BIEN (Enquist et al. 2016, Maitner et al. 2018). Black points indicate the location of Sedg-
wick Reserve, where seeds were collected for this study. Center: Histograms summarizing the total growing
season (December–May) precipitation observed across all locations (10-arc-minute raster cells) in range
maps. Solid and dashed vertical lines respectively denote the mean and 95% quantile interval of growing
season precipitation observed at Sedgwick Reserve since 1960 (County of Santa Barbara 2025a). Note that
x-axes are shown on the log10 scale. Right: Monthly precipitation during the growing season. Gray regions
denote the 95% quantile intervals for monthly precipitation observed across all locations. Precipitation data
were retrieved from WorldClim 2 (Fick and Hijmans 2017). Watering treatments are overlaid in terms of
their respective total and monthly water supply levels (Table C.1).
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watering treatments. This experimental design yielded 120 combinations of planted competitive

neighborhoods and watering treatments (2 focal species × 2 background species × 5 background

densities × 6 watering treatments), which were randomly assigned to the same number of pots.

This design was replicated in four experimental blocks distributed across two benches, resulting in

a total of 480 pots.

We designed our six watering treatments to emulate the monthly and total growing season

rainfall that our focal species receive across their ranges (Figure 3.1). Each treatment was com-

prised of an initial two-week establishment phase (phase 0) followed by three, eight-week phases

with progressively reduced water supply (phases 1–3). During phase 0, all pots received 17 mm

of water per week to facilitate seed germination and seedling establishment. During phase 1, wa-

ter supply per pot was 11, 22, 66, 110, 219, or 439 mm/month (divided evenly over four weeks).

To minimize water loss due to over-saturating the soil, no more than 28 mm of water was added

to any given pot in one day. Thus, treatments that required large water quantities were watered

multiple times per week. In each subsequent phase, watering frequency was halved in all treat-

ments to reflect the Mediterranean schedule of decreasing rainfall over the growing season. With

these treatments, total water supply per pot over all phases of the experiment amounts to 71, 110,

263, 417, 800, or 1,568 mm (Table C.1), with each four-week period in phases 1–3 corresponding

roughly to each month from December to May (Figure 3.1). Three of these treatments were within

the 95% quantile interval of growing season rainfall observed at Sedgwick Reserve since 1960, and

the other three treatments were outside this interval (Figure 3.1). This experimental design allowed

us to quantify demography and competition under a wider range of water supply levels than would

be possible under field conditions at Sedgwick Reserve. Note that our watering treatments are con-
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centrated toward the arid end of the rainfall gradient, where we expected species to respond most

strongly to variation in water supply, and are approximately evenly spaced on a logarithmic scale.

We used EC5 Soil Moisture Smart Sensors (Onset Computer Corporation) to measure volumetric

water content at 10-minute intervals in a set of soil-only pots subjected to these treatments; we con-

firmed that our watering treatments created a gradient in mean soil moisture over the duration of the

experiment (Figure C.1). We measured out and supplied all water manually. Water was measured

in milliliters and converted to millimeters supplied per unit area for reporting and analyses.

We initiated the experiment by planting seeds on November 8, 2022 and adding 28 mm

of water to all pots the following day. We started phase 0 of the experiment one week later on

November 16. During the first week of phase 1, we thinned down focal germinants in the center

of each pot to a maximum of three individuals. We subsequently thinned these individuals down

to a single focal individual per pot during the third week of phase 1. Upon the start of phase 2

on January 22, 2023, we estimated the density (number of individuals per pot, 𝑁 ) of species in

all pots. Throughout the remaining duration of the experiment, we estimated the fecundity (𝐹 )

of focal individuals as they started to show signs of senescence. When possible, we estimated

fecundity for up to two additional individuals per pot; these extra individuals were located at 5 cm

from the pot center in opposite directions along a randomly selected angle. To estimate fecundity,

we counted the number of observed and emerging reproductive structures, then multiplied these

counts by the number of seeds per structure (one seed per floret for F. microstachys, two seeds per

flower for P. erecta). Note that F. microstachys and P. erecta are both capable of self-pollination

(Kannenberg and Allard 1967, Bassett and Crompton 1968, Adams and Allard 1982, Espeland and

Rice 2007). The pots in which no background seeds were planted were used to estimate fecundity
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in the absence of neighbors. After estimating fecundity in a pot, we harvested the aboveground

biomass of the focal individual(s) and background neighborhood. Greenhouse conditions were

maintained throughout the experiment withmeans ± one standard deviation as follows: temperature

= 22 ± 1.7 °C, relative humidity = 41 ± 12 %, daily peak (10 am–2 pm) photosynthetically active

radiation = 174 ± 145 µmol/m2/s (Figure C.2, Figure C.3). Previous work has demonstrated that

our focal species grow well under these greenhouse conditions with the same soil mix (Kandlikar

et al. 2020).

3.3.3 Competition model

To characterize the competitive population dynamics of our focal species, we used the experimental

data to parameterize a model of annual plant competition. We started with the following model

(Cohen 1966, MacDonald and Watkinson 1981, Chesson 1990):

𝑁𝑖,𝑡+1
𝑁𝑖,𝑡

= (1 − 𝑔𝑖) 𝑠𝑖 + 𝑔𝑖𝐹𝑖 (3.1)

𝐹𝑖 = 𝜆𝑖
1 + 𝛼𝑖𝑖𝑔𝑖𝑁𝑖,𝑡 + 𝛼𝑖𝑗𝑔𝑗𝑁𝑗,𝑡

(3.2)

where 𝑁𝑖,𝑡 is population density in year 𝑡, 𝑔𝑖 is germination rate, 𝑠𝑖 is annual seed survival rate,

and 𝐹𝑖 is lifetime fecundity, all for species 𝑖. Equation 3.2 follows the functional form described

by Beverton and Holt (1957), where 𝜆𝑖 is intrinsic fecundity (i.e., fecundity in the absence of

density-dependence), 𝛼𝑖𝑖 is the per capita effect of species 𝑖 on itself, and 𝛼𝑖𝑗 is the per capita ef-

fect of species 𝑗 on species 𝑖. That is, fecundity (𝐹𝑖) is reduced from 𝜆𝑖 according to the per capita

competitive effects (𝛼𝑖𝑖, 𝛼𝑖𝑗) and germinated densities (𝑔𝑖𝑁𝑖,𝑡, 𝑔𝑗𝑁𝑗,𝑡) of intra- and interspecific
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competitors. This model has been shown to describe population dynamics in annual plant com-

munities well, both phenomenologically (Levine and HilleRisLambers 2009) and mechanistically

(Stouffer 2022, Van Dyke et al. 2024). As germination occurred during phase 0 of our experiment

prior to initiating treatment-specific watering regimes, we focused on analyzing fecundity and its

role in population dynamics using a simplified version of this model (cf. Germain et al. 2016):

𝑁𝑖,𝑡+1
𝑁𝑖,𝑡

= 𝐹𝑖 (3.3)

𝐹𝑖 = 𝜆𝑖
1 + 𝛼𝑖𝑖𝑁𝑖,𝑡 + 𝛼𝑖𝑗𝑁𝑗,𝑡

(3.4)

which amounts to assuming that 𝑔𝑖 = 1 (i.e., all seeds germinate each year) in Equations 3.1 and

3.2. In the right-hand side of Equation 3.4, the numerator (𝜆𝑖) is the demographic response to the

environment and the denominator (1 + 𝛼𝑖𝑖𝑁𝑖,𝑡 + 𝛼𝑖𝑗𝑁𝑗,𝑡) is the effect of competition, both in

terms of fecundity.

We used Bayesian statistical models to estimate the parameters of Equation 3.4 (𝜆𝑖, 𝛼𝑖𝑖,

𝛼𝑖𝑗) as functions of water supply in our experiment (Figure C.4). We modeled fecundity, 𝐹 , as

following a negative binomial distribution:

𝐹 ∼ NegBinomial (𝜇, 𝜙) (3.5)

where 𝜇 is the mean parameter that represents expected fecundity and 𝜙 is the shape parameter that

controls overdispersion. Following Equation 3.4, we defined 𝜇 as:
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𝜇 = 𝜆𝑘
1 + 𝛼𝑘1𝑁1 + 𝛼𝑘2𝑁2

(3.6)

where 𝑁1 and 𝑁2 are the densities of each species (𝑘 = 1, 2). In light of evidence that plants

exhibit nonlinear (e.g., unimodal) demographic (e.g., Esch et al. 2018, Tittes et al. 2019, Pearse

et al. 2020) and physiological (e.g., Galmés et al. 2007, Monroe et al. 2021) responses to water

availability, we modeled intrinsic fecundity, 𝜆, for each species as a quadratic function of total

water supply, 𝑤:

log (𝜆) = 𝛾𝜆 + 𝛽𝜆,1𝑤 + 𝛽𝜆,2𝑤2 + 𝛾block + 𝛾pot (3.7)

where 𝛾𝜆 is an intercept and 𝛽𝜆,1, 𝛽𝜆,2 are slope coefficients. 𝛾block and 𝛾pot are block- and pot-

level random intercepts, respectively. We included random intercepts here because 𝜆 is effectively

the intercept term of the nonlinear model for fecundity (Equations 3.4 and 3.6). Each random inter-

cept was hierarchically modeled as following a zero-centered normal distribution with a standard

deviation of 𝜎block or 𝜎pot:

𝛾block ∼ Normal(0, 𝜎block) (3.8)

𝛾pot ∼ Normal(0, 𝜎pot) (3.9)

For the purpose of model fitting,𝑤 and𝑤2 were the first- and second-degree terms of an orthogonal

polynomial returned by the function poly(x = W, degree = 2) in R (RCore Team 2024), scaled

by a factor of 10 so that both terms were approximately [−0.5, 0.5], where W is a vector of log-
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transformed total water supply. Total water supply was derived for each treatment, regardless of

when fecundity was estimated in each pot, in order to most closely align this predictor variable with

regional rainfall data that the treatments were based on.

Next, we modeled competition coefficients, 𝛼, for each species pair as a linear function of

total water supply, 𝑤:

log (𝛼) = 𝛾𝛼 + 𝛽𝛼𝑤 (3.10)

where 𝛾𝛼 is an intercept and 𝛽𝛼 is a slope coefficient. Finally, we allowed 𝜙 to vary for each species

as a linear function of 𝑤:

log (𝜙) = 𝛾𝜙 + 𝛽𝜙𝑤 (3.11)

where 𝛾𝜙 is an intercept and 𝛽𝜙 is a slope coefficient. Equation 3.11 allows observed fecundity

to be more or less variable depending on water supply. The log link functions in Equations 3.7,

3.10, and 3.11 constrain 𝜇 and 𝜙 to be positive as required by the negative binomial distribution.

They also constrain 𝜆 and 𝛼 to be positive, where 𝛼 > 0 represents a competitive (as opposed

to facilitative) effect of neighbors. The assumption of competition between F. microstachys and P.

erecta is supported by previous work with these species (e.g., Van Dyke et al. 2022). We also fit

models with alternative functional forms for fecundity (Equations 3.4 and 3.6) (Table C.2). These

alternative models were at best equivalent to our main model in terms of predictive performance,

evaluated via approximate leave-one-out cross-validation (Vehtari et al. 2017, Vehtari et al. 2024a),

and did not significantly alter our results.
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We implemented all Bayesian statistical models using Stan (Stan Development Team 2024)

via cmdstanr (Gabry et al. 2024). For each model, we ran four chains of Stan’s main Markov

chain Monte Carlo algorithm with 10,000 iterations (5,000 warmup, 5,000 sampling) per chain,

resulting in 20,000 posterior samples. We used weakly informed priors (see Appendix S1) based

on previous work with our focal species (Godoy et al. 2014, Kraft et al. 2015b, Van Dyke et al.

2022) to keep parameters within plausible ranges. Additional details of our statistical models are

provided in Appendix S1.

3.3.4 Invasion analysis

To evaluate the persistence and coexistence of our focal species under different levels of water

supply, we used the experimentally parameterized population dynamics model to conduct invasion

analyses (Chesson 2000b, Grainger et al. 2019b). We first asked whether each species is able

to increase from low density in the absence of neighbors. To this end, we simulated one year

of population growth starting with a single individual (𝑁𝑡 = 1), then computed the low-density

population growth rate (LDGR) as 𝑟0 = log(𝑁𝑡+1/𝑁𝑡). Here, the subscript 0 denotes that 𝑟

is computed in the absence of neighbors. The invading population is expected to successfully

establish and persist in the absence of neighbors if 𝑟0 > 0. Next, we asked whether each species

is able to invade a resident community of the other species. For example, we simulated P. erecta

to equilibrium population density, then invaded a single individual of F. microstachys into this

resident community and computed the LDGR (𝑟1, where the subscript 1 denotes the presence of

neighbors). Stable coexistence is expected if 𝑟1 > 0 for both species. Finally, we computed

the effect of neighbors on LDGR as Δ𝑟 = 𝑟0 − 𝑟1; this quantity represents the magnitude by
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which the resident community reduces LDGR (note that 𝑟 is defined on the natural logarithmic

scale, so this is a multiplicative effect). Thus, we take Δ𝑟 to be a theoretically justified measure

of the total effect of competition on population persistence. We repeated the above simulations for

each species under a range of total water supply conditions. Following previous studies of plant

species coexistence grounded in modern coexistence theory (e.g., Godoy and Levine 2014, Kraft

et al. 2015b, Germain et al. 2018, Matías et al. 2018, Wainwright et al. 2019, Van Dyke et al.

2022), we also decomposed LDGRs into niche differences that stabilize coexistence and fitness

differences that drive competitive exclusion (see Appendix S2 for details). We fully propagated

uncertainty in model parameter estimates by repeating these analyses for every sample from the

posterior distribution. We conducted analyses using R version 4.4.1 (R Core Team 2024).

3.4 Results

3.4.1 Fecundity without neighbors

The focal species exhibited distinct responses to water supply treatments that emulated the growing

season rainfall across their geographic ranges (Figure 3.2, Table 3.1). In the absence of neighbors,

fecundity of Festuca microstachys peaked at a total water supply of ~650 mm and decreased toward

either end of the water supply gradient. In contrast, Plantago erecta displayed elevated fecundity

under conditions of limited water supply, but exhibited little variation in fecundity across the ma-

jority of this gradient. F. microstachys had a higher fecundity than P. erecta in all but the driest

conditions (< ~150 mm), with over a 10-fold difference in fecundity between species across much

of the water supply gradient (> ~300 mm).
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Figure 3.2: Responses of fecundity to total water supply in the absence of neighbors. Solid lines represent
posterior medians of expected fecundity. Shaded areas represent 95% quantile credible intervals. Data points
are jittered horizontally for visualization. Note that x-axes are shown on the log10 scale.
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Table 3.1: Estimated predictor terms for the parameters of our main competition model as defined in Equa-
tions 3.7 and 3.10. 𝜆𝑖 is intrinsic fecundity, 𝛼𝑖𝑖 is the intraspecific competition coefficient, and 𝛼𝑖𝑗 is the
interspecific competition coefficient for species 𝑖. Credible intervals are reported as 95% highest-density
continuous intervals alongside the probability of direction (Pr, the posterior probability in [0.5, 1] that the
estimated value is in a given direction above or below 0), computed using ggdist (Kay 2024a, 2024b) and
bayestestR (Makowski et al. 2019).

Species (i) Parameter Term Median 95% CI Pr
𝛾𝜆 6.35 [5.58, 7.33] 1.000

𝛽𝜆,1 2.00 [-0.22, 3.81] 0.953𝜆𝑖
𝛽𝜆,2 -1.78 [-2.31, -1.22] 1.000
𝛾𝛼 -0.07 [-0.98, 0.95] 0.559𝛼𝑖𝑖 𝛽𝛼 -2.26 [-4.49, -0.31] 0.993
𝛾𝛼 -3.29 [-5.18, -1.68] 1.000

Festuca

microstachys

𝛼𝑖𝑗 𝛽𝛼 -1.02 [-4.93, 3.10] 0.702
𝛾𝜆 4.15 [3.67, 4.78] 1.000

𝛽𝜆,1 -1.36 [-3.24, 0.15] 0.980𝜆𝑖
𝛽𝜆,2 0.61 [-0.10, 1.44] 0.959
𝛾𝛼 -3.52 [-4.70, -2.45] 1.000𝛼𝑖𝑖 𝛽𝛼 -5.98 [-9.63, -2.58] 1.000
𝛾𝛼 -1.19 [-1.87, -0.46] 0.996

Plantago

erecta

𝛼𝑖𝑗 𝛽𝛼 -3.88 [-6.30, -1.84] 1.000
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3.4.2 Per capita effects of competition

Per capita competitive effects (𝛼) tended to be strongest when water supply was more limited, al-

though this relationship varied by species and intra- versus interspecific competition (Figure 3.3, Ta-

ble 3.1). We found that the per capita effect of competition decreased with increasing water supply

for three of four competition coefficients: intraspecific effects for both species and the interspecific

effect of F. microstachys on P. erecta (Pr(𝛽𝛼 < 0) > 0.99; however, note that Pr(𝛽𝛼 < 0) = 0.954

for the per capita effect of F. microstachys on itself with alternative model 2, Table C.3). These

competition coefficients varied by over 2–3 orders of magnitude across the entire water supply

gradient. This relationship was uncertain for the per capita effect of P. erecta on F. microstachys

(median 𝛽𝛼 = −1.02, Pr(𝛽𝛼 < 0) = 0.702, Table 3.1).

Intraspecific competition was generally stronger than interspecific competition for F. mi-

crostachys, whereas the opposite was true for P. erecta (Figure 3.3). We found evidence that

intraspecific competition decreased more sharply than interspecific competition in response to in-

creasing water supply for P. erecta (medianΔ𝛽𝛼 = −2.00, Pr(Δ𝛽𝛼 < 0) = 0.953, whereΔ𝛽𝛼 is the

slope for the intraspecific competition coefficient minus the slope for the interspecific competition

coefficient; note that Pr(Δ𝛽𝛼 < 0) > 0.98 with alternative models 2–3). Such an interaction be-

tween water supply and type of competition was not clearly supported for F. microstachys (median

Δ𝛽𝛼 = −1.27, Pr(Δ𝛽𝛼 < 0) = 0.811).

3.4.3 Low-density population growth rates and total effects of competition

The distinct responses of species to water supply in terms of both intrinsic fecundity and per capita

competitive effects resulted in variable low-density population growth rates (LDGRs) and coex-

74



Figure 3.3: Variation in per capita competitive effects (𝛼𝑖𝑗) in response to total water supply. For each species
(𝑖), estimated relationships for both interspecific (𝑖 ≠ 𝑗, solid lines) and intraspecific (𝑖 = 𝑗, dashed lines)
competition coefficients are shown in the same panel. Solid lines represent posterior medians. Shaded areas
represent 95% quantile credible intervals. Note that both x- and y-axes are shown on the log10 scale.
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istence outcomes across the water supply gradient (Figure 3.4). As described for fecundity (Fig-

ure 3.2), LDGR peaked at intermediate water supply for F. microstachys and at low water supply

for P. erecta in the absence of competitors. Both species were expected to persist under all water

supply levels (in greenhouse conditions) as isolated populations (Figure 3.4a). However, com-

petitors significantly altered these LDGRs, thereby impacting population persistence and species

coexistence (Figure 3.4b). F. microstachyswas able to increase from low density in the presence of

a resident community of P. erecta. In contrast, P. erecta was unable to increase from low density

with F. microstachys at resident state in all but the driest conditions (Pr(𝑟1 < 0) > 0.975 from >

~125 mm). Taken together, invasion analyses showed that these species can coexist when water

supply is limited, but that F. microstachys is expected to competitively exclude P. erecta as wa-

ter supply increases. Interestingly, we also found that priority effects were plausible (up to nearly

equally as likely as competitive exclusion) at the wettest end of the gradient, as signified by mu-

tual noninvasibility of each species into a resident community of the other species (Mordecai 2011,

Fukami 2015, Ke and Letten 2018, Grainger et al. 2019a).

Our invasion analyses allowed us to quantify the total effect of competition on population

persistence as the reduction in LDGR due to the presence of competitors (Δ𝑟). This total effect

of competition varied in response to water supply differently for each species (Figure 3.4c). The

total effect of competition on LDGR of F. microstachys increased with increasing water supply.

In contrast, the total effect of competition on LDGR of P. erecta peaked at ~350 mm, closely mir-

roring differences in density-independent fecundity (Figure C.5c) and resulting fitness differences

between the focal species (Figure C.5b). The total effect of competition on P. erecta was similar

at the driest and wettest ends of the water supply gradient.
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Figure 3.4: Variation in low-density population growth rates (LDGRs) in response to total water supply.
LDGR was computed for each species (yellow = F. microstachys, blue = P. erecta) either in the absence of
neighbors (𝑟0, a) or in the presence of a resident community of the other species (𝑟1, b). The total effect
of competition on population persistence was computed as the difference between LDGRs in the absence
versus presence of neighbors (Δ𝑟 = 𝑟0 − 𝑟1, c). Solid lines represent posterior medians. Shaded areas
represent 95% quantile credible intervals. Note that x-axes are shown on the log10 scale.

77



3.5 Discussion

Variation in the strength of competitive interactions along environmental gradients is a key ingre-

dient of many fundamental theories in ecology and biogeography (Dobzhansky 1950, MacArthur

1972, Chesson 1994, 2000a, Bertness and Callaway 1994, Schemske et al. 2009). While the en-

vironmental context-dependence of competitive population dynamics has received much attention

in recent years (e.g., Germain et al. 2018, Matías et al. 2018, Wainwright et al. 2019, Van Dyke

et al. 2022, Cervantes-Loreto et al. 2023), motivated in large part by the ever-increasing risk of

climate change (Gilman et al. 2010, HilleRisLambers et al. 2013, Alexander et al. 2016), a de-

tailed understanding of when and how competition impacts population persistence and coexistence

along geographic-scale abiotic gradients remains elusive (but see e.g., Armitage and Jones 2019,

McGuire 2023, Sunday et al. 2024). In particular, dissecting how different sources of variation

in competition contribute to population and range dynamics is crucial for forecasting the future of

biodiversity (Louthan et al. 2015, Jones and Gilbert 2016). Here, we addressed this knowledge

gap by experimentally quantifying the demography and competition of an annual grass and forb

across a geographically relevant water supply gradient. Notably, we show that asymmetric demo-

graphic responses of species to water supply decouple the per capita effects of competition from

the total effects of competition exerted by a resident community. This distinction between how

species interact at the individual level and impact one another at the community level has impor-

tant implications for our understanding of how competition shapes ecological communities, species

distributions, and resulting patterns of biodiversity along abiotic gradients.
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3.5.1 Contrasting per capita versus total effects of competition

We found strong support for the hypothesis that the per capita effect of competition is stronger

when water supply is more limited, meaning that individual plants compete more strongly for this

limiting resource in drier conditions. With the exception of the effect of Plantago erecta on Fes-

tuca microstachys, we observed a decrease in the per capita strength of intra- and interspecific

competition with increasing water supply (Figure 3.3, Table 3.1). We also found that, at least for

P. erecta as the focal species, the strength of intraspecific competition decreased more rapidly than

interspecific competition in response to increasing water supply. In accordance with elevated self-

limitation under low water supply, these species were most likely to coexist at the driest end of the

water supply gradient (Figure 3.4b, Figure C.6), despite this being where the per capita competitive

effect of F. microstachys on P. erecta was at its highest.

This work represents a novel empirical analysis of continuous variation in species-specific

competition coefficients along a large-scale water supply gradient. Our finding that intraspecific

competition is more sensitive to this abiotic gradient than interspecific competition supports the

pursuit of variation in conspecific negative density dependence as a primary driver of biodiversity

patterns (Schemske et al. 2009, LaManna et al. 2017, Hülsmann et al. 2021). However, given evi-

dence that intra- and interspecific competition can respond differently to the same abiotic gradient,

quantifying just one component of competition cannot fully reveal how competition shapes patterns

of species coexistence and biodiversity. Emerging methods for estimating competition coefficients

in species-rich communities may enable more widespread characterization of the differential re-

sponses of per capita competition to abiotic gradients (Weiss-Lehman et al. 2022). Note that in our

model, slopes that describe the response of competition coefficients to water supply, 𝛽𝛼, are defined
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on a logarithmic scale (Equation 3.10). Therefore, the intraspecific competition coefficient for F.

microstachys and the interspecific competition coefficient for P. erecta (top lines in Figure 3.3)

exhibited larger absolute differences between the dry and wet ends of the water supply gradient

than their respective counterparts for inter- and intraspecific competition. More work is needed to

resolve potential functional forms of the relationship between competition coefficients and abiotic

gradients and to explore their consequences for species coexistence in variable environments.

Asymmetries between species in density-independent demographic performance also play

an important role in shaping coexistence outcomes (Chesson 2000b). These demographic asym-

metries, coupled with per capita competitive effects, determine the total competitive effect of the

resident community on population growth. Here, we found that the total effect of competition on

low-density population growth rates (LDGRs; Figure 3.4c) did not simply mirror variation in the

strength of per capita competition (Figure 3.3). Rather, the total effect of competition experienced

by P. erecta was more closely aligned with interspecific differences in fecundity in the absence

of neighbors (Figure 3.2, Figure C.5c). Strikingly, the total effect of competition exerted by a

resident community of P. erecta on F. microstachys increased with increasing water supply, even

in the absence of a corresponding increase in the per capita strength of interspecific competition.

This relationship may be driven in part by priority effects at the wettest end of the water supply

gradient, where a high density of resident P. erecta possibly preempts resources or modifies local

abiotic conditions in ways that prevent the invasion of F. microstachys (Fukami 2015). Taken to-

gether, we found partial support for the hypothesis that the total effect of competition is stronger in

environments that support higher intrinsic demographic performance of competitors. Our results

exemplify how different mechanisms of competition (e.g., effect per interactor, effect of density,
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see also Louthan et al. 2015) interact to create complex patterns of total competition along abiotic

gradients.

The stress-gradient hypothesis predicts that the frequency or intensity of competition de-

creases with increasing abiotic stress, in turn giving way to more facilitative interactions (Bertness

and Callaway 1994, Louthan et al. 2015). Although this hypothesis has received mixed support

over the years (Maestre et al. 2005, 2009, Lortie and Callaway 2006, Adams et al. 2022), it is

nonetheless an important framework for studying variation in species interactions along abiotic

gradients. The results of our study provide theoretically grounded insights into how an important

abiotic gradient mediates such variation in competition. For example, we can identify aridity, and

to a lesser extent an excess of water, as “stressful” conditions for F. microstachys on the basis that

fecundity in the absence of neighbors is reduced toward either end of the water supply gradient

(Figure 3.2). Water limitation in particular is often identified as a major source of abiotic stress in

plant communities (e.g., Callaway et al. 2002, Maestre et al. 2005, Armas et al. 2011, Louthan et al.

2018). On one hand, that F. microstachys experiences stronger per capita intraspecific competition

when water supply is more limited appears to be inconsistent with the stress-gradient hypothesis

(Figure 3.3). On the other hand, this conclusion is reversed when considering that the total effect of

competition experienced by F. microstachys is greater under increased water supply (Figure 3.4c).

Thus, the stress-gradient hypothesis is simultaneously supported and contradicted by our results

depending on how competition is quantified. This shows that distinguishing between the per capita

versus total effects of competition is essential when considering how competition varies along abi-

otic gradients.
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3.5.2 An alternative perspective: niche and fitness differences

Modern coexistence theory allows the determinants of species coexistence to be decomposed into

niche differences that stabilize coexistence and fitness differences that drive competitive exclusion

(Chesson 2000b). These quantities have been used to analyze how the abiotic environment alters

plant species coexistence (e.g., Germain et al. 2018, Matías et al. 2018, Wainwright et al. 2019,

Van Dyke et al. 2022) and can offer insights into the role of competition in shaping species dis-

tributions (Alexander et al. 2018). Computing niche and fitness differences for our focal species

complemented our invasion analyses, most notably by revealing that fitness differences are greatest

at intermediate water supply (~350 mm; Figure C.5b, Figure C.6) where the total effect of compe-

tition on P. erecta is largest. While fitness differences are the product of species’ differences in

demography and sensitivity to competition (see Appendix S2 for details), asymmetric fecundity

of F. microstachys and P. erecta was especially strongly reflected in their fitness differences and

total competitive effects along the water supply gradient (Figure C.5c). We also observed a trend

toward reduced niche differences with increasing water supply (Figure C.5a; Figure C.6); this is

qualitatively consistent with results of a previous field experiment that quantified niche and fitness

differences for our focal species under ambient and reduced rainfall treatments (Van Dyke et al.

2022). Overall, these results highlight how fitness asymmetries can play a critical role in shaping

competition and coexistence along environmental gradients.

3.5.3 Limitations and future directions

Our study reveals the complex interplay between intrinsic demography, per capita versus total

competition, and coexistence of annual plants by emulating a geographic-scale rainfall gradient
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in a greenhouse setting. While this approach allowed us to feasibly track an entire generation of

population dynamics across a wide range of abiotic conditions, there are important limitations to

consider. Chief among these is that we are isolating a single axis of environmental variation in a

controlled environment. In particular, water supply is expected to interact with temperature and soil

properties to shape plant demography and competition in natural landscapes, especially in shallow

serpentine soils with limited water holding capacity (Adams et al. 2009, Damschen et al. 2011,

Fernandez-Going et al. 2012, Harrison et al. 2015, Butterfield et al. 2016, Midolo and Wellstein

2020). Moreover, the grasslands where our focal species occur not only host a diversity of native

plant species but also are heavily invaded by Mediterranean grasses (e.g., Avena spp., Bromus spp.)

(D’Antonio et al. 2007, Baldwin 2014). These abiotic and biotic factors unaccounted for in our

experiment make it difficult to extrapolate from our competition model to predict species’ distri-

butions in geographic space. Future studies could look toward more mechanistic models of water

competition to help bridge this gap (e.g., Levine et al. 2022).

In characterizing variation in demography and competition along a water supply gradient,

we have focused here on understanding how competitive population dynamics differ under an array

of fixed abiotic conditions. However, spatial and temporal fluctuations in the abiotic environment

can also promote species coexistence (Chesson 1994, 2000a). Indeed, similar to how we found that

F. microstachys is expected to competitively exclude P. erecta across much of our water supply

gradient (Figure 3.4), many studies have found that any one abiotic context often fails to allow for

the coexistence of naturally co-occurring species (e.g., Kraft et al. 2015b, Wainwright et al. 2019,

Van Dyke et al. 2024). In California grasslands, annual rainfall variability has been shown to main-

tain coexistence of a dominant grass and forb (Hallett et al. 2019). Additionally, even species with
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broad-scale range overlap may occupy different habitats at finer spatial scales. Gram et al. (2004)

identified F. microstachys (formerly Vulpia microstachys) as associated with serpentine hummocks

and P. erecta as associated with transitional habitat between hummocks and grassland matrix. This

suggests that fine-scale spatial environmental variation could contribute to the coexistence of our fo-

cal species. Quantifying these fluctuation-dependent coexistence mechanisms will provide a more

complete picture of how competition shapes species coexistence and distributions in a dynamic

world.

3.5.4 Conclusions

Understanding how the abiotic environment drives variation in the strength of competitive inter-

actions is a fundamental challenge in ecology and biogeography. In this study, we leveraged an

experimentally tractable California annual plant system to reveal contrasting effects of per capita

(individual-level) and total (community-level) competition on population persistence along a large-

scale water supply gradient. Whereas the per capita strength of competition was generally highest

in arid conditions, fitness asymmetries between species contributed to a greater total effect of com-

petition at intermediate to high water supply. Consequently, coexistence was most likely in arid

conditions. This decoupling of per capita versus total competitive effects highlights the need to

clearly distinguish between different mechanisms of competition in terms of their contributions to

coexistence, species distributions, and resulting patterns of biodiversity. More broadly, our results

provide theoretically grounded insights into how shifting rainfall regimes may have complex direct

and indirect effects on plant populations and communities.
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Appendix A
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A.1 Appendix S1: Study landscape and soil environment

Figure A.1: Photographs of the study landscape taken facing (a) north, (b) south, (c) east, and (d) west in
April 2019. Note that the enclosure visible in (a, b) is not part of this study. Photo credit: Kenji Hayashi.

87



Figure A.2: Principal component analysis (PCA) of soil variables at study sites. The first four axes, corre-
sponding to 77% of cumulative variance explained, are shown here. Colored points represent experimental
sites. Gray points represent survey sites. Arrows represent the loadings of individual soil variables with
respect to each axis. The percentage of variance explained by each axis is given in parentheses.
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Figure A.3: Interpolatedmaps of soil principal component axes for the study landscape. Mapswere generated
by performing ordinary kriging with a spherical variogram model using gstat (Pebesma 2004, Gräler et al.
2016). Points represent the sites at which soil samples were collected and are colored according to their
principal component scores.
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Figure A.4: Nonmetric multidimensional scaling (NMDS) for plant species cover at experimental sites.
NMDS was performed using vegan (Oksanen et al. 2024) with Bray-Curtis dissimilarity and 𝑘 (number
of dimensions) = 2. Cover data were collected at our experimental sites in 2017 (data from Kandlikar 2021,
Kandlikar et al. 2022). Colored points correspond to replicate plots at each site. Black points correspond
to the (expanded) weighted average scores for species with over 5% cover in any plot. Species are labeled
with their symbols in the U.S. Department of Agriculture PLANTS Database.
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Table A.1: Soil variables used in principal component analysis.

Variable Description Units
OM% Organic matter content %
P Phosphorus content ppm
K Potassium content ppm
Mg Magnesium content ppm
Ca Calcium content ppm
Na Sodium content ppm
H Hydrogen content meq/100g
pH pH none
CEC Cation exchange capacity meq/100g
K% Potassium saturation %
Mg% Magnesium saturation %
Ca% Calcium saturation %
Na% Sodium saturation %
H% Hydrogen saturation %
N Nitrate-nitrogen (NO3-N) content ppm
S Sulfate-sulfer (SO4-S) content ppm
sand Sand content %
silt Silt content %
clay Clay content %
moisture Gravimetric water content %
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A.2 Appendix S2: Methods for estimating fecundity

We estimated the lifetime fecundity of focal individuals in our demographic experiment by counting

the number of seeds produced by each individual. However, direct seed counts in the field were

impractical for some species. For ACWR, CHGL, HECO, LACA, and URLI, we first counted the

number of reproductive structures on each focal individual. For ACWR, we counted the number of

seed pods. For CHGL, HECO, LACA, and URLI, we counted the number of inflorescences. Next,

we collected and dissected ~40 of these reproductive structures for each species and calculated the

mean number of seeds per reproductive structure (Figure A.5). Finally, we estimated fecundity for

each focal individual by multiplying the number of reproductive structures by the mean number of

seeds per reproductive structure.

For SACO, we measured the radius of all seed heads (approximated as circles) on each

focal individual. We collected and dissected ~40 of these seed heads and counted the number of

seeds per seed head. We then fit a negative binomial generalized linear model with the number

of seeds per seed head as the response and seed head radius as the predictor (Figure A.6). We

implemented this model using the glm.nb function in MASS (Venables and Ripley 2002) with the

formula seeds ~ radius, where seeds is the number of seeds per seed head and radius is seed

head radius. We used a negative binomial likelihood in anticipation of overdispersion that could

arise from collecting seed heads from across sites. We used this model to predict the expected

number of seeds for each seed head, then estimated fecundity for each focal individual as the sum

of the expected number of seeds for all of its seed heads.

We also considered a model in which seed head area was used as the predictor of the number

of seeds per seed head for SACO (formula: seeds ~ area, where area is seed head area). In
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both models, the predictor was centered and scaled to unit variance. We used Akaike Information

Criterion (AIC) to compare alternative models and found that the radius model was estimated to

have better predictive performance (Table A.2). Therefore, we used the radius model to estimate

fecundity for SACO as described above.

For PLER, we counted the number of flowers (or fruits), where each flower (or fruit) was

observed to produce two seeds. For FEMI, we directly counted the number of seeds. All fecundity

estimates were rounded down to integer values (where applicable). All counts of seeds and repro-

ductive structures included those that were still emerging or developing and traces of those that

were already lost at the time of fecundity estimation. Fecundity for marked focal individuals that

were confirmed or inferred to have experienced mortality prior to seed production were recorded

as zero. For subplots in which no focal individuals were marked (e.g., due to germination failure)

or focal individuals were lost (e.g., due to disturbances such as gopher damage), fecundity was

recorded as missing and excluded from analyses. Following estimation of fecundity, we removed

focal individuals from plots to minimize seed set from these individuals.
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Figure A.5: Histograms of the number of seeds per reproductive structure for ACWR, CHGL, HECO, LACA,
and URLI. Vertical dashed lines represent the mean value for each species.
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Figure A.6: Relationship between seed head radius and the number of seeds per seed head for SACO. The
relationship is shown on both identity (left) and log (right) scales. Solid lines represent expected values.
Shaded areas represent ± 1.96 SE around the expected values.
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Table A.2: Comparison of models for the number of seeds per seed head for SACO.We used Akaike Informa-
tion Criterion (AIC) to compare models with alternative predictors. The model selected for use in analyses
is indicated with bold text.

Model Predictor AIC ΔAIC
(2) Radius 285.89 0.00
(1) Area 302.60 16.71
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A.3 Appendix S3: Analysis of demographic experiment

We used Bayesian hierarchical models to estimate the demographic responses of our focal species

to the soil environment and competition. We started by fitting separate models for germination rate

(𝑔) and fecundity (𝐹 ), which we then implemented jointly as a single model. We used this joint

model, which we refer to as the fitness model, for all demographic analyses. We implemented all

Bayesian models using Stan (Stan Development Team 2024) via cmdstanr (Gabry et al. 2024).

A.3.1 Germination model

We modeled the number of germinated seeds (𝑛𝑖) for observation 𝑖 = 1, …, 1,078 as following a

beta-binomial distribution:

𝑛𝑖 ∼ Beta-Binomial (𝑁𝑖, 𝜇𝑖, 𝜙𝑖) (A.1)

where𝑁 is the number of planted seeds, 𝜇 is the mean probability parameter, and 𝜙 is the precision

parameter. This parameterization of the beta-binomial distribution follows that employed by brms

(Bürkner 2017). Using a logit link function, we defined 𝜇 as:

logit (𝜇𝑖) = 𝛼sp𝑖,trt𝑖 +
4

∑
𝑗=1

𝛽𝑗,sp𝑖,trt𝑖 × PC𝑗,𝑖 + 𝛾sp𝑖,trt𝑖,site𝑖
(A.2)

where𝛼 is an intercept and 𝛽𝑗 is a slope for soil principal component axis 𝑗 = 1,…, 4. 𝛼 and 𝛽𝑗 vary

by species (sp = 1,…, 8) and neighborhood treatment (trt = 1, 2). That is, this linear model describes

the response of expected germination rate (𝜇) to soil PC1–PC4 for each species in the presence (trt

= 1) or absence (trt = 2) of neighbors. 𝛾 is a group-level (or “random”) intercept that represents a
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site-specific deviation for each combination of species and treatment from the corresponding trend

given by 𝛼 and 𝛽𝑗. 𝛾 reflects our experimental design, wherein repeated measurements of {𝑛, 𝑁}

were taken for each species and treatment at each site = 1, …, 7. 𝛾 was hierarchically modeled as:

𝛾sp,trt,site ∼ Normal (0, 𝜎) (A.3)

where 𝜎 is the standard deviation parameter that describes variation in 𝛾. Finally, we allowed 𝜙 to

vary by species as:

𝜙𝑖 = 𝛼𝜙,sp𝑖
(A.4)

where 𝛼𝜙 is a species-specific intercept for 𝜙.

We specified prior distributions for parameters as:

𝛼 ∼ Normal(0, 2) (A.5)

𝛽𝑗 ∼ Normal(0, 1) (A.6)

𝜎 ∼ Exponential(1) (A.7)

𝛼𝜙 ∼ Exponential(1) (A.8)

Equation A.5, defined on the logit scale, translates to the probability scale as a roughly flat prior that

assigns similar density to most values in (0, 1). Equation A.6 was employed as a weakly regular-

izing prior that avoids assigning much density to strong relationships. Using (weakly) informative

98



priors can be important for generalized linear (mixed) models with nonlinear (e.g., logit, log) link

functions, where non-informative priors can imply nonsensical expectations (Wesner and Pomer-

anz 2021). Note that, for model fitting, raw values of soil PC1–PC4 (let these be 𝑥𝑗) were centered

and scaled with respect to the mean ( ̄𝑥𝑗) and standard deviation (𝜎𝑥𝑗
) of each axis across experi-

mental sites: PC𝑗 = (𝑥𝑗 − ̄𝑥𝑗)/𝜎𝑥𝑗
. For example, Equation A.6 implies that 𝛽𝑗 ≈ −2 and 𝛽𝑗 ≈ 2

correspond to around the 2.5% and 97.5% quantiles of this prior distribution, respectively. These

slopes allow for nearly the entire possible range of expected germination rate (𝜇) to be traversed in

response to four standard deviations of change along just a single axis (e.g., logit−1(−4) ≈ 0.02,

logit−1(4) ≈ 0.98). Equation A.7 is a positive-constrained prior that implies variation in 𝛾 that

is of similar magnitude as the expectations defined by Equations A.5 and A.6. Equation A.8 was

chosen as a vague, positive-constrained prior for the species-specific precision parameter (𝜙). R

code for conducting prior predictive simulations (Gabry et al. 2019, Wesner and Pomeranz 2021)

is included as part of the archived data and code for this manuscript (Hayashi and Kraft 2024a).

We also considered a model in which a binomial likelihood function was employed. We

used approximate leave-one-out cross-validation (LOO-CV) (Vehtari et al. 2017), implemented

with loo (Vehtari et al. 2024a), to compare models based on their estimated out-of-sample predic-

tive performance. We applied a moment matching correction as needed (specifically, if the Pareto

𝑘 value for Pareto-smoothed importance sampling > 0.7) to improve the reliability of LOO-CV

results (Paananen et al. 2021, Vehtari et al. 2024b). We considered models to differ in predictive

performance if |ΔELPDLOO|/SEΔELPDLOO
> 2, where ΔELPDLOO is the pairwise difference in

the LOO estimate of expected log pointwise predictive density and SEΔELPDLOO
is the standard er-

ror of this difference (see also Sivula et al. 2023). Here, we found that the beta-binomial model
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(described above) was estimated to have better predictive performance (Table A.13).

We fit all models using Stan’s main Markov chain Monte Carlo sampling algorithm. For

each model, we ran four Markov chains in parallel, each with 10,000 iterations (5,000 warmup,

5,000 sampling), yielding 20,000 posterior samples per model. This resulted in an effective sam-

ple size (ESS) of at least 10,000 for most parameters, which is the minimum ESS recommended

by Kruschke (2015) for computing credible intervals at the 95% level. We used default options

for the initial values and control parameters of the sampler. We assessed model convergence by

first checking that the sampler produced no critical runtime warnings (e.g., divergent transitions

after warmup). We then checked whether diagnostic quantities satisfied recommended criteria. In

particular, we confirmed that the �̂� convergence diagnostic < 1.01 and the ratio of effective sample

size to total sample size (𝑁eff/𝑁 ) > 0.1 for all parameters (Vehtari et al. 2021, Stan Development

Team 2022). Additionally, we inspected trace plots to confirm that Markov chains were well-mixed

and stationary after warmup. We also conducted graphical posterior predictive checks (Gabry et al.

2019) to assess model fit.

A.3.2 Fecundity model

We modeled fecundity (𝐹𝑖) for observation 𝑖 = 1, …, 708 as following a zero-inflated negative

binomial distribution:

If 𝐹𝑖 = 0:

Pr (𝐹𝑖 | 𝜃𝑖, 𝜇𝑖, 𝜙𝑖) = 𝜃𝑖 + (1 − 𝜃𝑖) × NegBinomial (0 | 𝜇𝑖, 𝜙𝑖) (A.9)
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If 𝐹𝑖 > 0:

Pr (𝐹𝑖 | 𝜃𝑖, 𝜇𝑖, 𝜙𝑖) = (1 − 𝜃𝑖) × NegBinomial (𝐹𝑖 | 𝜇𝑖, 𝜙𝑖) (A.10)

where 𝜃 is the probability of observing𝐹 = 0 from a zero-inflation process, and conversely, (1−𝜃)

is the probability of observing 𝐹 ≥ 0 from a negative binomial process. 𝜇 is the mean parameter

and 𝜙 is the shape parameter for the negative binomial distribution. Using a log link function, we

defined 𝜇 as:

log (𝜇𝑖) = 𝛼sp𝑖,trt𝑖 +
4

∑
𝑗=1

𝛽𝑗,sp𝑖,trt𝑖 × PC𝑗,𝑖 + 𝛾sp𝑖,trt𝑖,site𝑖
(A.11)

𝛾sp,trt,site ∼ Normal (0, 𝜎) (A.12)

Similarly, using a logit link function, we defined 𝜃 as:

logit (𝜃𝑖) = 𝛼𝜃,sp𝑖,trt𝑖 +
4

∑
𝑗=1

𝛽𝜃,𝑗,sp𝑖,trt𝑖 × PC𝑗,𝑖 + 𝛾𝜃,sp𝑖,trt𝑖,site𝑖
(A.13)

𝛾𝜃,sp,trt,site ∼ Normal (0, 𝜎𝜃) (A.14)

The right-hand sides of Equations A.11 and A.13 are specified identically to the right-hand side of

Equation A.2, where the subscript 𝜃 denotes parameters for the zero-inflation component. That is,

expected fecundity from the negative binomial process (𝜇) and the expected probability of zero-

inflation (𝜃) are both allowed to vary for each species and treatment in response to soil PC1–PC4.

We allowed 𝜙 to vary by species as:
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𝜙𝑖 = 𝛼𝜙,sp𝑖
(A.15)

where 𝛼𝜙 is a species-specific intercept for 𝜙.

We specified prior distributions for parameters as:

𝛼 ∼ Normal(4, 2) (A.16)

𝛼𝜃 ∼ Normal(0, 2) (A.17)

𝛽𝑗, 𝛽𝜃,𝑗 ∼ Normal(0, 1) (A.18)

𝜎, 𝜎𝜃 ∼ Exponential(1) (A.19)

𝛼𝜙 ∼ Exponential(1) (A.20)

These priors were specified following a similar rationale as described for the germination model

with the exception of Equation A.16, which is an informative prior based on previous fecundity

estimates for our focal species in our study system (Godoy et al. 2014, Kraft et al. 2015b, Kand-

likar et al. 2022, Van Dyke et al. 2022). Equation A.16 implies for example that, under average

environmental conditions across experimental sites (i.e., PC𝑗 = 0), an expected fecundity (𝜇) of

exp(8) ≈ 3,000 corresponds to around the 97.5% quantile of this prior distribution. From this

intercept, 𝜇 can be further increased (or decreased) at each site according to 𝛽𝑗 and 𝛾. We also

note that 𝜇 is the expected value of fecundity and thus observed values (i.e., draws from the prior

predictive distribution) can be much larger (or smaller), especially as 𝜙 approaches 0.
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We also considered a model in which (1) a negative binomial likelihood (without zero-

inflation) was employed. Additionally, we considered models in which Equation A.13 was sim-

plified as follows: (2) The expected probability of zero-inflation (𝜃) varies by species, including

𝛾𝜃 that varies by species and site. (3) 𝜃 varies by species and treatment, including 𝛾𝜃 that varies

by species, treatment, and site. We used LOO-CV to compare alternative models and found that

all zero-inflated models were estimated to have better predictive performance than model (1) (Ta-

ble A.14), reflecting an excess of zeros in our fecundity data. All zero-inflated models were es-

timated to have similar predictive performance, especially model (3) and the maximal model (de-

scribed above). This is unsurprising, as the former represents variation in 𝜃 across sites entirely with

𝛾𝜃, whereas the latter instead represents some of this variation with 𝛽𝜃,𝑗. Therefore, we used the

maximal model for our analyses, as it better aligns with our objective of quantifying demographic

responses to environmental gradients. We followed the same procedure for fitting, checking, and

comparing these models as described for the germination model.

A.3.3 Fitness model

We observed bimodalities in empirical estimates of fitness computed from paired measurements of

germination rate and fecundity in each subplot, likely due to the excess of zeros in our fecundity data.

Therefore, rather than modeling fitness directly, we implemented a joint model of the germination

and fecundity models described above. This joint modeling approach allowed us to compute fitness

(𝑟) using the joint posterior distribution for the germination and fecundity sub-models. We followed

the same procedure for fitting and checking this model as described for the individual models.
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Figure A.7: Estimated effects of neighbors on germination rate (Δ𝑔), fecundity (Δ𝐹 ), and fitness (Δ𝑟). For
each demographic quantity (𝑦), Δ𝑦 = 𝑦trt=1 − 𝑦trt=2 where trt = 1 is with neighbors present and trt = 2 is
with neighbors absent. Thus, negative values of Δ𝑦 correspond to negative effects of neighbors. For each
species, effects are computed on the logit scale for germination rate, log scale for fecundity, and identity
scale for fitness, with soil PC1–PC4 held at average conditions across experimental sites. Points represent
posterior medians. Lines represent 95% highest-density continuous intervals.
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Figure A.8: Response of germination rate (𝑔) to soil PC1 in the presence or absence of neighbors. Posterior
expectations are shown for each species with soil PC2–PC4 held at average conditions across experimental
sites. Solid lines represent medians. Shaded areas represent 95% quantile intervals.
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Figure A.9: Response of germination rate (𝑔) to soil PC2 in the presence or absence of neighbors. Posterior
expectations are shown for each species with soil PC1, PC3, and PC4 held at average conditions across
experimental sites. Solid lines represent medians. Shaded areas represent 95% quantile intervals.
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Figure A.10: Response of fecundity (𝐹 ) to soil PC1 in the presence or absence of neighbors. Posterior
expectations are shown for each species with soil PC2–PC4 held at average conditions across experimental
sites. Solid lines represent medians. Shaded areas represent 95% quantile intervals.

107



Figure A.11: Response of fecundity (𝐹 ) to soil PC2 in the presence or absence of neighbors. Posterior
expectations are shown for each species with soil PC1, PC3, and PC4 held at average conditions across
experimental sites. Solid lines represent medians. Shaded areas represent 95% quantile intervals.
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Figure A.12: Response of fitness (𝑟) to soil PC2 in the presence or absence of neighbors. Posterior expecta-
tions are shown for each species with soil PC1, PC3, and PC4 held at average conditions across experimental
sites. Solid lines represent medians. Shaded areas represent 95% quantile intervals.
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Figure A.13: Probability that fitness (𝑟) > 0 in the absence of neighbors with respect to soil PC1 and PC2.
Posterior probabilities are shown for each species with soil PC3 and PC4 held at average conditions across
experimental sites.
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Figure A.14: Probability of competitive exclusion (i.e., fitness (𝑟) is reduced from positive in the absence of
neighbors to negative in the presence of neighbors) with respect to soil PC1 and PC2. Posterior probabilities
are shown for each species with soil PC3 and PC4 held at average conditions across experimental sites.
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Table A.3: Estimated effects of neighbors on germination rate (Δ𝑔), fecundity (Δ𝐹 ), and fitness (Δ𝑟). For
each demographic quantity (𝑦), Δ𝑦 = 𝑦trt=1 − 𝑦trt=2 where trt = 1 is with neighbors present and trt = 2 is
with neighbors absent. Thus, negative values of Δ𝑦 correspond to negative effects of neighbors. For each
species, effects are computed on the logit scale for germination rate, log scale for fecundity, and identity
scale for fitness, with soil PC1–PC4 held at average conditions across experimental sites. Bold text indicates
Pr(direction) ≥ 0.975.

Response Species Median 95% HDCI Pr(direction)
ACWR -0.019 [-0.093, 0.053] 0.702
CHGL -0.020 [-0.037, -0.006] 0.998
FEMI -0.159 [-0.281, -0.036] 0.993
HECO -0.006 [-0.041, 0.026] 0.640
LACA -0.070 [-0.125, -0.016] 0.997
PLER 0.106 [ 0.003, 0.207] 0.978
SACO -0.077 [-0.166, 0.017] 0.951

Germination

rate

URLI -0.100 [-0.210, 0.026] 0.949
ACWR -0.779 [-1.499, -0.069] 0.982
CHGL -0.111 [-2.033, 1.735] 0.546
FEMI -1.598 [-2.137, -1.058] 1.000
HECO -1.724 [-2.761, -0.673] 0.999
LACA -0.777 [-1.868, 0.332] 0.920
PLER -1.974 [-2.670, -1.298] 1.000
SACO -1.880 [-2.888, -0.907] 1.000

Fecundity

URLI -1.253 [-2.065, -0.441] 0.999
ACWR -0.848 [-1.647, -0.093] 0.982
CHGL -0.451 [-1.131, 0.253] 0.910
FEMI -1.865 [-2.468, -1.319] 1.000
HECO -1.595 [-2.571, -0.589] 0.999
LACA -1.537 [-2.662, -0.357] 0.995
PLER -1.553 [-2.240, -0.826] 1.000
SACO -2.016 [-2.901, -1.085] 1.000

Fitness

URLI -1.437 [-2.258, -0.647] 1.000
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Table A.4: Estimated effects of soil PC1–PC4 on germination rate (𝑔) with neighbors absent (𝛽trt=2). Effects
are computed on the logit scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR 0.314 [-0.185, 0.840] 0.885
CHGL -0.189 [-0.871, 0.426] 0.717
FEMI 0.248 [-0.275, 0.765] 0.827
HECO 0.598 [ 0.044, 1.164] 0.982
LACA 1.172 [ 0.492, 1.871] 1.000
PLER 0.400 [-0.142, 0.894] 0.935
SACO 0.900 [ 0.369, 1.457] 0.999

PC1

URLI 0.081 [-0.414, 0.605] 0.626
ACWR 0.211 [-0.282, 0.741] 0.799
CHGL 0.574 [-0.184, 1.376] 0.936
FEMI 0.337 [-0.148, 0.858] 0.907
HECO 0.782 [ 0.128, 1.485] 0.992
LACA 1.360 [ 0.574, 2.186] 1.000
PLER 0.410 [-0.113, 0.945] 0.940
SACO 0.330 [-0.161, 0.827] 0.909

PC2

URLI 0.244 [-0.260, 0.746] 0.836
ACWR -0.056 [-0.485, 0.366] 0.606
CHGL -0.059 [-0.603, 0.478] 0.585
FEMI -0.102 [-0.540, 0.333] 0.679
HECO -0.057 [-0.513, 0.378] 0.603
LACA 0.200 [-0.241, 0.650] 0.815
PLER -0.216 [-0.657, 0.203] 0.841
SACO 0.490 [ 0.079, 0.896] 0.990

PC3

URLI -0.027 [-0.443, 0.398] 0.553
ACWR -0.123 [-0.698, 0.443] 0.673
CHGL -0.356 [-1.104, 0.382] 0.832
FEMI -0.154 [-0.714, 0.469] 0.697
HECO -0.438 [-1.055, 0.181] 0.922
LACA -0.399 [-1.064, 0.245] 0.888
PLER -0.138 [-0.714, 0.440] 0.684
SACO -0.047 [-0.609, 0.497] 0.569

PC4

URLI -0.067 [-0.626, 0.521] 0.592
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Table A.5: Estimated effects of soil PC1–PC4 on germination rate (𝑔) with neighbors present (𝛽trt=1). Effects
are computed on the logit scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR 0.553 [ 0.033, 1.082] 0.980
CHGL -0.677 [-1.536, 0.137] 0.947
FEMI -0.101 [-0.628, 0.425] 0.650
HECO 0.681 [ 0.100, 1.257] 0.989
LACA -0.027 [-0.676, 0.608] 0.535
PLER 0.162 [-0.337, 0.685] 0.740
SACO 0.580 [ 0.047, 1.125] 0.981

PC1

URLI 0.160 [-0.358, 0.676] 0.731
ACWR 0.158 [-0.404, 0.672] 0.728
CHGL 0.900 [-0.205, 2.160] 0.948
FEMI 0.062 [-0.472, 0.595] 0.591
HECO 0.714 [ 0.063, 1.390] 0.987
LACA 1.356 [ 0.443, 2.414] 0.999
PLER 0.342 [-0.160, 0.861] 0.908
SACO 0.645 [ 0.067, 1.234] 0.986

PC2

URLI 0.253 [-0.262, 0.806] 0.826
ACWR -0.120 [-0.547, 0.309] 0.717
CHGL 0.192 [-0.526, 0.872] 0.709
FEMI 0.060 [-0.378, 0.486] 0.610
HECO -0.093 [-0.545, 0.347] 0.664
LACA 0.420 [-0.058, 0.908] 0.955
PLER -0.016 [-0.419, 0.395] 0.530
SACO 0.440 [ 0.030, 0.859] 0.981

PC3

URLI 0.067 [-0.356, 0.489] 0.620
ACWR 0.184 [-0.386, 0.765] 0.738
CHGL 0.019 [-0.939, 0.966] 0.515
FEMI -0.041 [-0.648, 0.534] 0.552
HECO 0.133 [-0.496, 0.750] 0.664
LACA 0.230 [-0.510, 0.981] 0.728
PLER -0.171 [-0.730, 0.419] 0.725
SACO 0.085 [-0.493, 0.675] 0.621

PC4

URLI 0.080 [-0.519, 0.655] 0.607
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Table A.6: Estimated effects of neighbors on the response of germination rate (𝑔) to soil PC1–PC4 (Δ𝛽 =
𝛽trt=1 − 𝛽trt=2). Effects are computed on the logit scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR 0.239 [-0.497, 0.954] 0.740
CHGL -0.490 [-1.528, 0.585] 0.821
FEMI -0.344 [-1.078, 0.398] 0.825
HECO 0.088 [-0.715, 0.884] 0.584
LACA -1.207 [-2.168, -0.290] 0.994
PLER -0.236 [-0.949, 0.499] 0.743
SACO -0.321 [-1.108, 0.427] 0.802

PC1

URLI 0.077 [-0.698, 0.774] 0.583
ACWR -0.050 [-0.792, 0.687] 0.557
CHGL 0.330 [-1.094, 1.756] 0.678
FEMI -0.274 [-0.995, 0.465] 0.771
HECO -0.064 [-1.059, 0.874] 0.553
LACA 0.004 [-1.229, 1.309] 0.502
PLER -0.071 [-0.802, 0.672] 0.575
SACO 0.317 [-0.463, 1.067] 0.794

PC2

URLI 0.005 [-0.700, 0.776] 0.506
ACWR -0.065 [-0.672, 0.544] 0.586
CHGL 0.248 [-0.634, 1.118] 0.714
FEMI 0.163 [-0.474, 0.760] 0.700
HECO -0.038 [-0.674, 0.589] 0.550
LACA 0.221 [-0.423, 0.886] 0.746
PLER 0.201 [-0.407, 0.795] 0.751
SACO -0.051 [-0.623, 0.533] 0.572

PC3

URLI 0.092 [-0.505, 0.694] 0.623
ACWR 0.307 [-0.500, 1.123] 0.779
CHGL 0.375 [-0.788, 1.630] 0.728
FEMI 0.114 [-0.723, 0.937] 0.606
HECO 0.573 [-0.286, 1.470] 0.902
LACA 0.624 [-0.353, 1.640] 0.896
PLER -0.029 [-0.876, 0.751] 0.529
SACO 0.139 [-0.687, 0.919] 0.634

PC4

URLI 0.149 [-0.680, 0.979] 0.639
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Table A.7: Estimated effects of soil PC1–PC4 on fecundity (𝐹 ) with neighbors absent (𝛽∗
trt=2). Effects are

computed on the log scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR 0.604 [-0.022, 1.163] 0.972
CHGL 0.174 [-0.766, 1.106] 0.650
FEMI 0.119 [-0.414, 0.669] 0.677
HECO 0.884 [-0.179, 2.002] 0.949
LACA 0.583 [-0.809, 1.997] 0.801
PLER 0.400 [-0.201, 1.040] 0.918
SACO -0.076 [-0.934, 0.836] 0.570

PC1

URLI 0.382 [-0.242, 1.056] 0.894
ACWR 0.689 [-0.129, 1.484] 0.950
CHGL 0.599 [-0.802, 2.102] 0.800
FEMI -0.560 [-1.129, 0.056] 0.966
HECO -0.548 [-2.131, 1.004] 0.753
LACA -0.234 [-1.655, 1.197] 0.628
PLER -0.377 [-1.166, 0.350] 0.840
SACO 0.794 [-0.116, 1.801] 0.948

PC2

URLI -0.136 [-0.830, 0.545] 0.660
ACWR -0.528 [-1.036, -0.025] 0.981
CHGL -0.316 [-1.249, 0.566] 0.771
FEMI -0.068 [-0.521, 0.379] 0.628
HECO -0.264 [-0.943, 0.452] 0.770
LACA 0.120 [-0.351, 0.612] 0.708
PLER -0.512 [-0.956, -0.049] 0.983
SACO -0.398 [-0.939, 0.177] 0.913

PC3

URLI 0.087 [-0.351, 0.532] 0.666
ACWR -0.042 [-0.731, 0.633] 0.548
CHGL -0.040 [-1.049, 0.986] 0.532
FEMI 0.157 [-0.444, 0.743] 0.704
HECO -0.590 [-1.608, 0.410] 0.876
LACA -0.029 [-0.780, 0.715] 0.532
PLER 0.014 [-0.657, 0.645] 0.517
SACO -0.453 [-1.178, 0.297] 0.888

PC4

URLI -0.059 [-0.666, 0.579] 0.580
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Table A.8: Estimated effects of soil PC1–PC4 on fecundity (𝐹 ) with neighbors present (𝛽∗
trt=1). Effects are

computed on the log scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR -0.760 [-1.429, -0.090] 0.985
CHGL 0.026 [-1.057, 1.199] 0.518
FEMI -0.593 [-1.142, -0.035] 0.981
HECO -0.472 [-1.257, 0.348] 0.883
LACA -0.080 [-0.755, 0.639] 0.596
PLER 0.038 [-0.565, 0.658] 0.550
SACO -0.490 [-1.406, 0.446] 0.853

PC1

URLI -0.550 [-1.370, 0.250] 0.914
ACWR -0.042 [-1.014, 0.894] 0.534
CHGL 0.130 [-1.777, 2.104] 0.555
FEMI 0.003 [-0.585, 0.557] 0.505
HECO -0.329 [-1.761, 1.216] 0.666
LACA -0.116 [-1.319, 1.174] 0.571
PLER 0.564 [-0.439, 1.514] 0.874
SACO 0.012 [-1.206, 1.218] 0.508

PC2

URLI 0.304 [-0.504, 1.193] 0.773
ACWR -0.059 [-0.588, 0.442] 0.593
CHGL -0.108 [-1.014, 0.870] 0.596
FEMI -0.036 [-0.465, 0.430] 0.564
HECO -0.102 [-0.688, 0.474] 0.641
LACA -0.051 [-0.533, 0.442] 0.590
PLER -0.159 [-0.642, 0.314] 0.757
SACO -0.202 [-0.916, 0.495] 0.726

PC3

URLI 0.188 [-0.472, 0.846] 0.720
ACWR 0.759 [-0.119, 1.722] 0.957
CHGL 0.190 [-0.958, 1.249] 0.640
FEMI -0.154 [-0.843, 0.539] 0.670
HECO -0.155 [-1.251, 0.928] 0.615
LACA 0.124 [-0.666, 0.948] 0.626
PLER -0.248 [-1.085, 0.589] 0.725
SACO 0.211 [-0.857, 1.316] 0.651

PC4

URLI 0.056 [-0.866, 0.997] 0.547
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Table A.9: Estimated effects of neighbors on the response of fecundity (𝐹 ) to soil PC1–PC4 (Δ𝛽∗ = 𝛽∗
trt=1−

𝛽∗
trt=2). Effects are computed on the log scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR -1.362 [-2.262, -0.465] 0.997
CHGL -0.157 [-1.709, 1.234] 0.584
FEMI -0.712 [-1.494, 0.065] 0.963
HECO -1.360 [-2.725, -0.035] 0.976
LACA -0.667 [-2.245, 0.903] 0.805
PLER -0.371 [-1.238, 0.497] 0.806
SACO -0.419 [-1.649, 0.899] 0.742

PC1

URLI -0.951 [-2.009, 0.091] 0.964
ACWR -0.730 [-1.980, 0.523] 0.873
CHGL -0.485 [-2.889, 1.902] 0.652
FEMI 0.562 [-0.261, 1.386] 0.911
HECO 0.231 [-2.073, 2.270] 0.583
LACA 0.125 [-1.770, 2.032] 0.554
PLER 0.945 [-0.259, 2.204] 0.933
SACO -0.789 [-2.274, 0.789] 0.841

PC2

URLI 0.449 [-0.615, 1.530] 0.798
ACWR 0.471 [-0.254, 1.198] 0.902
CHGL 0.219 [-1.073, 1.526] 0.635
FEMI 0.030 [-0.597, 0.668] 0.540
HECO 0.158 [-0.768, 1.043] 0.635
LACA -0.173 [-0.848, 0.524] 0.713
PLER 0.353 [-0.322, 1.010] 0.852
SACO 0.183 [-0.707, 1.076] 0.657

PC3

URLI 0.096 [-0.736, 0.853] 0.602
ACWR 0.795 [-0.334, 1.953] 0.917
CHGL 0.239 [-1.217, 1.725] 0.625
FEMI -0.313 [-1.208, 0.626] 0.751
HECO 0.440 [-1.017, 1.939] 0.723
LACA 0.148 [-0.929, 1.250] 0.615
PLER -0.256 [-1.291, 0.824] 0.690
SACO 0.664 [-0.635, 1.997] 0.842

PC4

URLI 0.113 [-0.974, 1.274] 0.583
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Table A.10: Estimated effects of soil PC1–PC4 on fitness (𝑟) with neighbors absent (𝛽∗
trt=2). Effects are

computed on the identity scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR 0.817 [ 0.143, 1.430] 0.987
CHGL -0.001 [-0.598, 0.465] 0.501
FEMI 0.223 [-0.344, 0.816] 0.784
HECO 1.194 [ 0.347, 1.768] 0.991
LACA 1.346 [ 0.292, 1.960] 0.984
PLER 0.675 [ 0.031, 1.311] 0.977
SACO 0.550 [-0.266, 1.308] 0.889

PC1

URLI 0.422 [-0.230, 1.103] 0.901
ACWR 0.828 [ 0.000, 1.625] 0.968
CHGL 0.461 [-0.178, 0.986] 0.926
FEMI -0.416 [-1.034, 0.219] 0.905
HECO 0.172 [-1.289, 1.596] 0.586
LACA 0.894 [-0.432, 1.936] 0.887
PLER -0.065 [-0.899, 0.765] 0.563
SACO 0.976 [ 0.101, 1.776] 0.975

PC2

URLI -0.004 [-0.714, 0.734] 0.504
ACWR -0.554 [-1.114, 0.008] 0.972
CHGL -0.167 [-0.557, 0.342] 0.773
FEMI -0.109 [-0.596, 0.369] 0.684
HECO -0.298 [-1.002, 0.461] 0.781
LACA 0.283 [-0.299, 0.866] 0.838
PLER -0.650 [-1.149, -0.110] 0.991
SACO -0.068 [-0.643, 0.536] 0.587

PC3

URLI 0.069 [-0.416, 0.548] 0.619
ACWR -0.134 [-0.898, 0.669] 0.631
CHGL -0.177 [-0.789, 0.409] 0.725
FEMI 0.095 [-0.552, 0.709] 0.620
HECO -0.922 [-1.824, 0.105] 0.956
LACA -0.357 [-1.176, 0.492] 0.791
PLER -0.086 [-0.848, 0.648] 0.587
SACO -0.470 [-1.246, 0.332] 0.876

PC4

URLI -0.091 [-0.756, 0.583] 0.610
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Table A.11: Estimated effects of soil PC1–PC4 on fitness (𝑟) with neighbors present (𝛽∗
trt=1). Effects are

computed on the identity scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR -0.282 [-1.008, 0.438] 0.775
CHGL -0.121 [-0.669, 0.227] 0.809
FEMI -0.610 [-1.184, -0.035] 0.978
HECO 0.112 [-0.590, 0.701] 0.630
LACA -0.086 [-0.808, 0.598] 0.591
PLER 0.126 [-0.461, 0.702] 0.660
SACO -0.041 [-0.788, 0.665] 0.544

PC1

URLI -0.419 [-1.146, 0.354] 0.852
ACWR 0.087 [-0.874, 0.972] 0.570
CHGL 0.152 [-0.432, 0.681] 0.815
FEMI 0.039 [-0.569, 0.637] 0.551
HECO 0.240 [-0.914, 1.097] 0.663
LACA 0.839 [-0.144, 1.536] 0.939
PLER 0.649 [-0.166, 1.299] 0.930
SACO 0.366 [-0.563, 1.079] 0.779

PC2

URLI 0.425 [-0.333, 1.177] 0.853
ACWR -0.147 [-0.689, 0.447] 0.699
CHGL 0.009 [-0.313, 0.374] 0.545
FEMI -0.006 [-0.461, 0.475] 0.510
HECO -0.140 [-0.611, 0.376] 0.706
LACA 0.277 [-0.264, 0.797] 0.846
PLER -0.155 [-0.620, 0.308] 0.744
SACO 0.081 [-0.504, 0.654] 0.604

PC3

URLI 0.211 [-0.423, 0.836] 0.742
ACWR 0.810 [-0.016, 1.513] 0.966
CHGL 0.026 [-0.361, 0.511] 0.614
FEMI -0.166 [-0.847, 0.552] 0.673
HECO -0.026 [-0.886, 0.715] 0.524
LACA 0.273 [-0.546, 1.047] 0.738
PLER -0.306 [-1.023, 0.483] 0.778
SACO 0.197 [-0.625, 0.877] 0.682

PC4

URLI 0.096 [-0.742, 0.962] 0.583
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Table A.12: Estimated effects of neighbors on the response of fitness (𝑟) to soil PC1–PC4 (Δ𝛽∗ = 𝛽∗
trt=1 −

𝛽∗
trt=2). Effects are computed on the identity scale. Bold text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR -1.097 [-2.060, -0.106] 0.983
CHGL -0.138 [-0.805, 0.608] 0.664
FEMI -0.833 [-1.674, -0.030] 0.975
HECO -1.068 [-2.034, -0.038] 0.973
LACA -1.387 [-2.432, -0.142] 0.978
PLER -0.546 [-1.450, 0.288] 0.892
SACO -0.590 [-1.671, 0.545] 0.847

PC1

URLI -0.849 [-1.845, 0.205] 0.944
ACWR -0.738 [-1.985, 0.512] 0.877
CHGL -0.301 [-1.076, 0.537] 0.808
FEMI 0.457 [-0.421, 1.319] 0.846
HECO 0.036 [-1.789, 1.816] 0.516
LACA -0.086 [-1.598, 1.453] 0.544
PLER 0.693 [-0.425, 1.795] 0.883
SACO -0.619 [-1.861, 0.557] 0.848

PC2

URLI 0.430 [-0.616, 1.467] 0.785
ACWR 0.408 [-0.388, 1.216] 0.845
CHGL 0.175 [-0.395, 0.714] 0.750
FEMI 0.103 [-0.564, 0.772] 0.622
HECO 0.161 [-0.753, 1.021] 0.640
LACA -0.007 [-0.773, 0.789] 0.506
PLER 0.496 [-0.220, 1.189] 0.911
SACO 0.144 [-0.700, 0.963] 0.633

PC3

URLI 0.138 [-0.665, 0.928] 0.636
ACWR 0.927 [-0.194, 2.029] 0.939
CHGL 0.226 [-0.477, 0.960] 0.745
FEMI -0.266 [-1.189, 0.713] 0.703
HECO 0.875 [-0.433, 2.117] 0.903
LACA 0.622 [-0.554, 1.780] 0.847
PLER -0.216 [-1.318, 0.816] 0.656
SACO 0.645 [-0.510, 1.694] 0.867

PC4

URLI 0.184 [-0.902, 1.258] 0.630
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Table A.13: Comparison of germination models. We used approximate leave-one-out cross-validation (LOO-
CV) to compare models with alternative likelihood functions. The model selected for use in analyses is
indicated with bold text.

Model Likelihood ELPDLOO ΔELPDLOO

(2) Beta-binomial -2656.74 ± 35.91 0.00 ± 0.00
(1) Binomial -3361.97 ± 89.28 -705.23 ± 67.05
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Table A.14: Comparison of fecundity models. We used approximate leave-one-out cross-validation (LOO-
CV) to compare models with alternative likelihood functions (NB = negative binomial, ZINB = zero-inflated
negative binomial) and predictors for the zero-inflation component (sp = species, trt = neighbor treatment,
soil = soil PC1–PC4). The model selected for use in analyses is indicated with bold text.

Model Likelihood ZI predictors ELPDLOO ΔELPDLOO

(4) ZINB sp, trt, soil -2849.79 ± 57.80 0.00 ± 0.00
(3) ZINB sp, trt -2851.77 ± 57.46 -1.98 ± 3.90
(2) ZINB sp -2862.11 ± 57.11 -12.32 ± 8.59
(1) NB N/A -3048.14 ± 53.60 -198.35 ± 17.06
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A.4 Appendix S4: Analysis of occurrence surveys

We used Bayesian generalized linear models to quantify the relationship between observed occur-

rence (presence vs. absence) of our focal species and the soil environment. We modeled the num-

ber of plots in which presence was recorded (𝑛𝑖) for observation 𝑖 = 1, …, 248 as following a

beta-binomial distribution:

𝑛𝑖 ∼ Beta-Binomial (𝑁𝑖, 𝜇𝑖, 𝜙𝑖) (A.21)

where 𝑁 is the number of surveyed plots per site, 𝜇 is the mean probability parameter, and 𝜙 is

the precision parameter. To align the scope of this analysis with our demographic experiment, we

only used occurrence data for sites within the range of soil PC1–PC4 across experimental sites,

corresponding to 92 plots at 31 sites. Using a logit link function, we defined 𝜇 as:

logit (𝜇𝑖) = 𝛼sp𝑖
+

4
∑
𝑗=1

𝛽𝑗,sp𝑖
× PC𝑗,𝑖 (A.22)

where𝛼 is a species-specific intercept and𝛽𝑗 is a species-specific slope for soil principal component

axis 𝑗. Soil PC1–PC4 were centered and scaled with respect to the mean and standard deviation of

each axis across sites. We allowed 𝜙 to vary by species as:

𝜙𝑖 = 𝛼𝜙,sp𝑖
(A.23)

where 𝛼𝜙 is a species-specific intercept for 𝜙.

We specified prior distributions for parameters as:
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𝛼 ∼ Normal(0, 2) (A.24)

𝛽𝑗 ∼ Normal(0, 1) (A.25)

These priors were specified following a similar rationale as described for the germination model in

Appendix S3.

We also considered a model in which a binomial likelihood was employed. We used LOO-

CV to compare alternative models and found that both models were estimated to have similar pre-

dictive performance, although |ΔELPDLOO|/SEΔELPDLOO
was close to two in favor of the beta-

binomial model (Table A.16). We therefore used the beta-binomial model (described above) for

our analyses. We followed the same procedure for fitting, checking, and comparing these models

as described for the germination model in Appendix S3.
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Figure A.15: Observed patterns of occurrence along soil PC2. Posterior expectations are shown for each
species with soil PC1, PC3, and PC4 held at average conditions across sites. Solid lines represent medians.
Shaded areas represent 95% quantile intervals.
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Figure A.16: Congruence between responses of occurrence and fitness to soil PC2. For each species, the
slope of occurrence in response to soil PC2 (𝛽𝑗=2 for the occurrence model) is plotted against the axis-wide
slope of fitness in response to soil PC2 (𝛽∗

𝑗=2 for the fitness model), the latter of which is computed in the
presence (orange) or absence (green) of neighbors. Point clouds are posterior samples (thinned to 4,000
samples for visualization) and center points are medians. White regions denote congruent responses (i.e.,
slopes are both positive or both negative) and gray regions denote incongruent responses (i.e., one slope
is positive while the other slope is negative). The total probability of congruence (i.e., the proportion of
posterior samples that fall in the white regions) is shown in the top-right corner of each panel. Asterisks
indicate that responses are more likely to be congruent that not (i.e., Pr(congruence) > 0.5); note that these
are not results of statistical significance tests.
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Table A.15: Estimated effects of soil PC1–PC4 on occurrence. Effects are computed on the logit scale. Bold
text indicates Pr(direction) ≥ 0.975.

Variable Species Median 95% HDCI Pr(direction)
ACWR -0.042 [-0.689, 0.622] 0.551
CHGL -1.241 [-2.273, -0.250] 0.993
FEMI -0.855 [-1.697, -0.063] 0.988
HECO 0.036 [-0.673, 0.720] 0.541
LACA -1.076 [-1.977, -0.209] 0.994
PLER -0.873 [-1.684, -0.122] 0.991
SACO -0.339 [-1.225, 0.604] 0.767

PC1

URLI -1.099 [-1.970, -0.275] 0.999
ACWR 0.425 [-0.298, 1.229] 0.876
CHGL 0.254 [-0.885, 1.506] 0.667
FEMI 1.362 [ 0.449, 2.369] 0.999
HECO 0.034 [-0.772, 0.829] 0.534
LACA 0.883 [-0.191, 2.000] 0.954
PLER 0.409 [-0.370, 1.194] 0.857
SACO 0.697 [-0.427, 1.923] 0.890

PC2

URLI 0.314 [-0.470, 1.152] 0.785
ACWR 0.253 [-0.373, 0.879] 0.780
CHGL -0.313 [-1.387, 0.681] 0.727
FEMI 0.272 [-0.515, 1.017] 0.762
HECO -0.015 [-0.693, 0.629] 0.519
LACA 1.225 [ 0.376, 2.101] 0.997
PLER 0.756 [ 0.050, 1.520] 0.983
SACO 0.075 [-0.731, 0.876] 0.572

PC3

URLI 0.767 [ 0.083, 1.485] 0.989
ACWR -0.208 [-0.962, 0.522] 0.713
CHGL -0.182 [-1.409, 0.971] 0.619
FEMI -0.385 [-1.259, 0.448] 0.818
HECO 0.762 [-0.009, 1.586] 0.974
LACA 0.183 [-0.727, 1.116] 0.650
PLER 0.038 [-0.790, 0.815] 0.538
SACO -0.265 [-1.330, 0.805] 0.690

PC4

URLI -0.638 [-1.491, 0.196] 0.939
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Table A.16: Comparison of occurrence models. We used approximate leave-one-out cross-validation (LOO-
CV) to compare models with alternative likelihood functions. The model selected for use in analyses is
indicated with bold text.

Model Likelihood ELPDLOO ΔELPDLOO

(2) Beta-binomial -192.62 ± 15.73 0.00 ± 0.00
(1) Binomial -210.70 ± 20.02 -18.09 ± 10.76
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Appendix B

Supplementary materials for Chapter 2
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B.1 Supplementary figures

Figure B.1: Principal component analysis for functional traits of the species used in this study. Points rep-
resent species. Arrows represent the loadings of individual traits with respect to the primary (PC1) and
secondary (PC2) principal component axes. The percentage of variance explained by the axes are given in
axis labels.
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Figure B.2: Contributions of individual traits to the (a) primary (PC1) and (b) secondary (PC2) axes of the
principal component analysis for functional traits. Vertical dashed lines represent the expected contributions
if all traits contributed uniformly to each axis.
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Figure B.3: Correlation (𝜌) between responses of fecundity to environment and competition for each species
in the 2013 experiment. See Figure 2.2 for a full description of this figure.
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Figure B.4: Effects of functional traits on fecundity under mean environmental conditions in the 2013 exper-
iment. See Figure 2.3 for a full description of this figure. Results for models that failed to satisfy diagnostic
criteria are excluded here.
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Figure B.5: Effects of functional traits on responses to environment and competition in the 2013 experiment.
See Figure 2.4 for a full description of this figure. Results for models that failed to satisfy diagnostic criteria
are excluded here.
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B.2 Supplementary tables

Table B.1: Plant functional traits used in this study.

Trait Description Units
Foliar N Leaf nitrogen content %
LDMC Leaf dry matter content mg g−1

Leaf size Surface area of a single leaf (one side) cm2

Max height 95th percentile of typical plant height cm
Phenology First day of year (doy) with ~50% fruiting individuals doy
Seed mass Seed mass g
SLA Specific leaf area cm2 g−1

SRL Specific root length m g−1

δ13C Carbon isotope discrimination ‰
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Appendix C

Supplementary materials for Chapter 3
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C.1 Supplementary figures

Figure C.1: Volumetric water content (VWC) under each watering treatment over the duration of the green-
house experiment. VWC was measured at 10-minute intervals using EC5 Soil Moisture Smart Sensors
(Onset Computer Corporation) in pots that contained only soil. Solid horizontal lines denote the mean VWC
measured in each treatment.
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Figure C.2: Daily mean (a) temperature and (b) relative humidity in the greenhouse over the duration of the
experiment. Measurements were taken at 10-minute intervals using a HOBO Temp/RH 2.5% Data Logger
(Onset Computer Corporation). Note that measurements were terminated before the end of the experiment
because the data logger was damaged in late April.
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Figure C.3: Daily mean photosynthetically active radiation (PAR) during peak hours (10am–2pm) in the
greenhouse over the duration of the experiment. PAR was measured at 10-minute intervals using Photosyn-
thetic Light (PAR) Smart Sensors (Onset Computer Corporation) placed at the end of each bench.
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Figure C.4: Fecundity for each focal species (FEMI = Festuca microstachys, PLER = Plantago erecta) as a
function of background competitor density and total water supply, characterized by fitting the competition
model described in the main text to our experimental data. Data points are faceted by watering treatment
(columns) and species identity (rows). Solid lines represent posterior medians computed at the total water
supply level for each watering treatment. Shaded areas represent 95% quantile credible intervals.
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Figure C.5: Responses of the (a) niche difference, (b) fitness difference, (c) demographic ratio, and (d) com-
petitive response ratio of the focal species (𝑖 = Festuca microstachys, 𝑗 = Plantago erecta) to total water
supply. Niche differences (ND) stabilize coexistence when 0 < ND and destabilize coexistence when ND <
0. Fitness differences (FD) are expressed as ratios, where F. microstachys has superior fitness when FD < 1.
Fitness differences can be decomposed into the demographic ratio and competitive response ratio. See Ap-
pendix S2 for details. Solid lines represent posterior medians. Shaded areas represent 95% quantile credible
intervals. Note that axes (except for niche differences) are shown on the log10 scale.
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Figure C.6: Niche and fitness differences computed at the total water supply level for each watering treatment.
Niche differences (ND) stabilize coexistence when 0 < ND and destabilize coexistence when ND < 0. Fitness
differences (FD) are expressed as ratios, where Festuca microstachys has superior fitness when FD < 1.
Species are expected to coexist in gray regions, whereas competitive exclusion is expected in white regions.
Priority effects are expected in red regions. See Appendix S2 for details. Blue points are 4,000 posterior
samples (thinned for visualization). White points represent posterior medians. Thick and thin lines represent
50% and 95% quantile credible intervals. Note that fitness differences are shown on the log10 scale and x-
axes are truncated at -2.999 for visualization.

143



C.2 Supplementary tables

Table C.1: Total amount of water added per pot under eachwatering treatment in each phase of the experiment.
Water addition was divided evenly over the number of weeks in each phase. Phase 0 = 11/13/22–11/26/22
(two weeks), phase 1 = 11/27/22–1/21/23 (eight weeks), phase 2 = 1/22/23–3/18/23 (eight weeks), and phase
4 = 3/19/23–5/13/23 (eight weeks).

Phase (mm)
Treatment 0 1 2 3 Total (mm)

1 33 22 11 5 71
2 33 44 22 11 110
3 33 132 66 33 263
4 33 219 110 55 417
5 33 439 219 110 800
6 33 877 439 219 1,568
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Table C.2: Comparison of alternative models for fecundity (𝐹𝑖). We used approximate leave-one-out cross-
validation (LOO-CV) to compare the following models: the Beverton-Holt model described in the main text
(BH) and five models with alternative functional forms for fecundity (1–5). ELPDLOO is the LOO estimate
of expected log pointwise predictive density and ΔELPDLOO is the difference in ELPDLOO relative to the
model in the first row, both reported with ± one standard error. With the exception of alternative model
1, these models are not clearly distinguishable from one another on the basis of estimated out-of-sample
predictive performance, as one standard error of ΔELPDLOO > the mean estimate of ΔELPDLOO (Sivula et
al. 2023, McLatchie et al. 2024).

Model Fi ELPDLOO ΔELPDLOO

4 𝜆𝑖/[1 + (𝛼𝑖𝑖𝑁𝑖 + 𝛼𝑖𝑗𝑁𝑗)𝑏𝑖 ] -3431.02 ± 72.99 0.00 ± 0.00
5 𝜆𝑖/(1 + 𝛼𝑖𝑖𝑁𝑖 + 𝛼𝑖𝑗𝑁𝑗)𝑏𝑖 -3431.15 ± 72.98 -0.13 ± 0.30
2 𝜆𝑖𝑒−𝛼𝑖𝑖 log(𝑁𝑖+1)−𝛼𝑖𝑗 log(𝑁𝑗+1) -3432.54 ± 73.16 -1.51 ± 2.56
3 𝜆𝑖/(1 + 𝑁𝛼𝑖𝑖

𝑖 + 𝑁𝛼𝑖𝑗
𝑗 ) -3432.71 ± 73.25 -1.68 ± 3.23

BH 𝜆𝑖/(1 + 𝛼𝑖𝑖𝑁𝑖 + 𝛼𝑖𝑗𝑁𝑗) -3433.24 ± 73.25 -2.22 ± 2.75
1 𝜆𝑖𝑒−𝛼𝑖𝑖𝑁𝑖−𝛼𝑖𝑗𝑁𝑗 -3470.17 ± 75.07 -39.15 ± 8.83
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Table C.3: Estimated predictor terms for the parameters of alternative model 2 (Table C.2). See Table 3.1
for a full description of this table.

Species (i) Parameter Term Median 95% CI Pr
𝛾𝜆 6.22 [5.72, 6.79] 1.000

𝛽𝜆,1 2.87 [1.35, 4.26] 0.998𝜆𝑖
𝛽𝜆,2 -1.74 [-2.28, -1.19] 1.000
𝛾𝛼 -0.06 [-0.24, 0.10] 0.780𝛼𝑖𝑖 𝛽𝛼 -0.39 [-0.82, 0.07] 0.954
𝛾𝛼 -2.54 [-4.37, -1.37] 1.000

Festuca

microstachys

𝛼𝑖𝑗 𝛽𝛼 0.91 [-2.57, 4.97] 0.722
𝛾𝜆 4.14 [3.70, 4.62] 1.000

𝛽𝜆,1 -0.81 [-1.89, 0.29] 0.935𝜆𝑖
𝛽𝜆,2 0.54 [-0.10, 1.21] 0.953
𝛾𝛼 -1.60 [-2.60, -0.88] 1.000𝛼𝑖𝑖 𝛽𝛼 -2.57 [-4.69, -0.79] 0.999
𝛾𝛼 -0.52 [-0.77, -0.29] 1.000

Plantago

erecta

𝛼𝑖𝑗 𝛽𝛼 -1.05 [-1.64, -0.49] 1.000
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Table C.4: Estimated predictor terms for the parameters of alternative model 3 (Table C.2). See Table 3.1
for a full description of this table.

Species (i) Parameter Term Median 95% CI Pr
𝛾𝜆 6.42 [6.01, 6.86] 1.000

𝛽𝜆,1 2.93 [1.63, 4.06] 1.000𝜆𝑖
𝛽𝜆,2 -0.89 [-1.16, -0.61] 1.000
𝛾𝛼 -0.01 [-0.14, 0.12] 0.534𝛼𝑖𝑖 𝛽𝛼 -0.39 [-0.70, -0.06] 0.988
𝛾𝛼 -2.81 [-5.12, -1.05] 1.000

Festuca

microstachys

𝛼𝑖𝑗 𝛽𝛼 -1.17 [-7.33, 4.99] 0.654
𝛾𝜆 4.65 [4.28, 5.05] 1.000

𝛽𝜆,1 -0.47 [-1.41, 0.44] 0.848𝜆𝑖
𝛽𝜆,2 0.24 [-0.06, 0.55] 0.943
𝛾𝛼 -1.36 [-2.31, -0.69] 1.000𝛼𝑖𝑖 𝛽𝛼 -2.36 [-4.50, -0.72] 1.000
𝛾𝛼 -0.27 [-0.52, -0.06] 0.997

Plantago

erecta

𝛼𝑖𝑗 𝛽𝛼 -0.98 [-1.54, -0.43] 1.000
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C.3 Appendix S1: Details of statistical models

C.3.1 Main model

Here, we provide additional details about the statistical specification, fitting, and checking of our

main competition model described in the main text. For Equations 3.5–3.11 in the main text, we

defined prior distributions for parameters as:

𝛾𝜆 ∼ Normal(5, 2.5) (C.1)

𝛽𝜆,1, 𝛽𝜆,2 ∼ Normal(0, 10) (C.2)

𝜎block, 𝜎pot ∼ Exponential(2) (C.3)

𝛾𝛼 ∼ Normal(0, 2) (C.4)

𝛽𝛼 ∼ Normal(0, 8) (C.5)

𝛾𝜙 ∼ Normal(0, 1) (C.6)

𝛽𝜙 ∼ Normal(0, 4) (C.7)

Equations C.1–C.5 were informed by prior estimates of intrinsic fecundity (𝜆) and competition

coefficients (𝛼) for annual plants in our study system, including for our focal species (Godoy et al.

2014, Kraft et al. 2015b, Van Dyke et al. 2022). For example, the 95% quantile interval for 𝛾𝜆

defined by Equation C.1 encompasses a larger range of 𝜆 than all estimates of this quantity given

by Godoy et al. (2017). Equation C.2 allows this entire range (and more) of 𝜆 to be traversed
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across our experimental water supply gradient. Similar logic applies for Equations C.4 and C.5.

Equations C.6 and C.7 were employed as uninformed priors that allow for a range of dispersion in

observed fecundity as controlled by the precision parameter (𝜙).

For model fitting, we generally used default options for the initial values and control pa-

rameters of the CmdStan sampler via cmdstanr (Gabry et al. 2024). However, we increased the

control parameter adapt_delta to 0.99 to avoid potential divergent transitions during sampling.

We confirmed model convergence by validating that: (1) The sampler did not produce critical run-

time warnings. (2) The �̂� convergence diagnostic was < 1.01 for all parameters. (3) The ratio of

effective sample size to total sample size (𝑁eff/𝑁 ) was > 0.1 for all parameters. (4) Trace plots of

post-warmup posterior samples were well-mixed and stationary for all parameters. Details of these

model diagnostics are provided by Vehtari et al. (2021) and Stan Development Team (2022). We

also conducted graphical posterior predictive checks to visually confirm that posterior predictions

from the fitted model were able to adequately represent the distribution of our data (Gabry et al.

2019).

We note that some of the individual parameters of this model were only weakly identified.

That is, given the nonlinear structure of the competition model (Equations 3.4 and 3.6 in the main

text), some sets of parameters could take on different combinations of values with similar likeli-

hoods. For instance, we observed a positive posterior correlation between the intercepts for intrin-

sic fecundity (𝛾𝜆) and competition coefficients (𝛾𝛼) because an increase in one of these quantities

could be coupled with an increase in the other to produce similar values of expected fecundity (𝜇).

Importantly, we do not expect such identifiability issues to systematically bias our parameter esti-

mates. Rather, this can inflate uncertainty in parameter estimates by creating “ridges” in likelihood
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space. In contrast, the nonlinear combination of model parameters (e.g., as employed when simulat-

ing population growth in invasion analyses) is well identified (Figure C.4). We understand this to

be an inherent property of nonlinear models such as this one, be it for structural or practical reasons

(Polansky et al. 2009, Boyko and O’Meara 2024). However, employing weakly informed priors

(described above) allowed us to ameliorate the severity of nonidentifiability by avoiding regions of

parameter space that are biologically nonsensical (see also Wesner and Pomeranz 2021). This was

achieved without imposing hard constraints on upper bounds of parameter values, as is often done

when parameterizing competition models using maximum likelihood methods (e.g., Van Dyke et

al. 2022). We emphasize that, despite these challenges, our model converged without warnings

and satisfied all diagnostic criteria.

C.3.2 Alternative models

We also considered models with alternative functional forms for fecundity (Equations 3.4 and 3.6

in the main text). In particular, we fit and compared a collection of models previously explored by

Law and Watkinson (1987) (see also Levine and HilleRisLambers 2009) (Table C.2). Two of these

models (4–5) contained an exponent, 𝑏, that modulates the curvature of the relationship between

fecundity (𝐹 ) and population density (𝑁 ). For these models, we modeled this additional parameter

for each species as a linear function of total water supply (𝑤):

log (𝑏) = 𝛾𝑏 + 𝛽𝑏𝑤 (C.8)

𝛾𝑏 ∼ Normal(0, 1) (C.9)
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𝛽𝑏 ∼ Normal(0, 4) (C.10)

where 𝛾𝑏 is an intercept and 𝛽𝑏 is a slope coefficient.

Model fitting and checking followed the same general procedure as described for our main

model. We found that alternative model 1, the Ricker model (Ricker 1954), had by far the worst

fit to our data (Table C.2). All other models were effectively indistinguishable from one another

in terms of estimated out-of-sample predictive performance (Table C.2). While all models suf-

fered from some degree of nonidentifiability (discussed above), this was particularly severe for

alternative models 4–5. Critically, these models resulted in nonidentifiability between biologically

meaningful parameters of interest (terms for 𝜆 and 𝛼) and parameters with less clear biological

meaning (terms for 𝑏). Therefore, we did not further pursue alternative models 4–5 in this study.

For the remaining alternative models (2–3), we show that analyzing these models in place of our

main model does not significantly alter our results (Table C.3, Table C.4). Note that competition

coefficients are included as exponents in alternative models 2–3, and thus their magnitudes differ

from those in our main model.
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C.4 Appendix S2: Computing niche and fitness differences

We computed niche differences that stabilize coexistence, 1 − 𝜌, and fitness differences that drive

competitive exclusion, 𝜅𝑗/𝜅𝑖, following previous derivation of these quantities for our main com-

petition model (Godoy and Levine 2014, see also Germain et al. 2018):

1 − 𝜌 = 1 − √
𝛼𝑖𝑗𝛼𝑗𝑖
𝛼𝑗𝑗𝛼𝑖𝑖

(C.11)

𝜅𝑗
𝜅𝑖

= (𝜆𝑗 − 1
𝜆𝑖 − 1) √

𝛼𝑖𝑗𝛼𝑖𝑖
𝛼𝑗𝑗𝛼𝑗𝑖

(C.12)

where 𝜌 is niche overlap (𝜌 ≥ 0). Niche differences stabilize coexistence when 1−𝜌 > 0 (Chesson

2000b). Conversely, niche differences destabilize coexistence via positive frequency-dependent

population growth when 1 − 𝜌 < 0 (Mordecai 2011, Ke and Letten 2018, Grainger et al. 2019a).

Fitness differences are expressed as fitness ratios, where the fitness superior is species 𝑖 when

𝜅𝑗/𝜅𝑖 < 1 and species 𝑗 when 𝜅𝑗/𝜅𝑖 > 1. Fitness differences can be decomposed into the demo-

graphic ratio, (𝜆𝑗 −1)/(𝜆𝑖 −1), and competitive response ratio,√(𝛼𝑖𝑗𝛼𝑖𝑖)/(𝛼𝑗𝑗𝛼𝑗𝑖) (Godoy and

Levine 2014). The demographic ratio describes differences between species in fecundity, whereas

the competitive response ratio describes differences in sensitivity to competition. Here, we com-

puted niche and fitness differences with Festuca microstachys as species 𝑖 and Plantago erecta as

species 𝑗 (Figure C.5, Figure C.6).

Long-term coexistence is predicted when niche differences are sufficiently large (i.e., niche

overlap is sufficiently small) relative to fitness differences (Chesson and Kuang 2008):
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𝜌 < 𝜅𝑗
𝜅𝑖

< 1
𝜌 (C.13)

Note that predicting coexistence outcomes by comparing niche and fitness differences in this way

is comparable to predicting coexistence outcomes via analysis of mutual invasibility (Godoy and

Levine 2014).
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