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MODULAR FUNCTIONS AND RESOLVENT PROBLEMS

BENSON FARB, MARK KISIN AND JESSE WOLFSON

WITH AN APPENDIX BY NATE HARMAN

ABSTRACT. The link between modular functions and algebraic functions was
a driving force behind the 19th century study of both. Examples include the
solutions by Hermite and Klein of the quintic via elliptic modular functions and
the general sextic via level 2 hyperelliptic functions. This paper aims to apply
modern arithmetic techniques to the circle of “resolvent problems” formulated
and pursued by Klein, Hilbert and others. As one example, we prove that
the essential dimension at p = 2 for the symmetric groups Sy is equal to the
essential dimension at 2 of certain Sj,-coverings defined using moduli spaces of
principally polarized abelian varieties. Our proofs use the deformation theory
of abelian varieties in characteristic p, specifically Serre-Tate theory, as well
as a family of remarkable mod 2 symplectic Sy-representations constructed by
Jordan. As shown in an appendix by Nate Harman, the properties we need
for such representations exist only in the p = 2 case.

In the second half of this paper we introduce the notion of £-versality as a
kind of generalization of Kummer theory, and we prove that many congruence
covers are E-versal. We use these E-versality result to deduce the equivalence
of Hilbert’s 13th Problem (and related conjectures) with problems about con-
gruence covers.
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1. INTRODUCTION

The link between modular functions and algebraic functions was a driving force
behind the 19th century development of both. Examples include the solutions by
Hermite and Klein of the quintic via elliptic modular functions, degree 7 and 8
equations with Galois group PSLy(F7) via the level the level 7 modular curve, the
general sextic via level 2 hyperelliptic functions, the 27 lines on smooth cubic sur-
faces via level 3, dimension 2 abelian functions, and the 28 bitangents on a smooth
quartic via level 2, dimension 3 abelian functions[] With the Nazi destruction of
the Gottingen research community this connection was largely abandoned, and the
study of algebraic functions and resolvent problems, as pioneered by Klein, Hilbert
and others, fell into relative obscurity. The purpose of this paper to reconsider the
link between modular functions and classical resolvent problems. We do this from
a modern viewpoint, using arithmetic techniques.

Essential dimension at p of modular functions. To fix ideas we work over
C. Recall that an algebraic function is a finite correspondence X 1% P!; that is, a
rational function f : X --» P! on some (finite, possibly branched) cover X - x.A
A fundamental example is the general degree n polynomial, equivalently the cover

MO,n — MO,n/Sn;

where M, denotes the moduli space of n distinct marked points in P*. When X
is a locally symmetric variety f is called a modular function. A basic example is
the cover Ay n — Ay where A, is the (coarse) moduli space of principally polarized
g-dimensional abelian varieties and A, n is the moduli of pairs (A, B) with A € A,
and B a symplectic basis for Hy(A;Z/N7Z).

The relationship between modular functions and the solutions of the general de-
gree n polynomial motivated Klein [KI1884|[K11888], Kronecker [Kr1861] and others
to ask about the intrinsic complexity of these algebraic functions, as measured by
the number of variables to which they can be reduced after a rational change of
variables. In modern terms (as defined by Buhler-Reichstein, see e.g. [Reil(]), the
essential dimension ed(X/X) < dim(X) of an algebraic function is the smallest
d > 1 so that X — X is the birational pullback of a cover Y — Y of d-dimensional
varieties.

One can also allow, in addition to rational changes of coordinates, the adjunction
of radicals or other algebraic functions. This is done by specifying a class £ of covers
under which X — X can be pulled back before taking ed of the resulting cover.
This gives the essential dimension ed(X/X; &) relative to the class £ of “accesory
irrationalities”. For example, if one fixes a prime p and pulls back by covers of
degree prime to p, one obtains the notion of essential dimension at p, denoted
ed(X /X;p) (see e.g. [RYQ0]). The idea of accessory irrationality was central to the
approaches of Klein and Hilbert to solving equations. We axiomatize this notion in
Definition below and explore its consequences in Section [

The general degree n polynomial is universal for covers with Galois group S,
even allowing prime-to-p accessory irrationalities; that is, for all p > 2 and for

1See e.g. [K11879}K11884! [K11888|[Bul890, Bui891lBul893| [KEF1892 [FK12 [Fri26], as well as
[Kle22al[KIe22b).
B 2When the functions are understood, we denote an algebraic function simply by the cover
X - X.
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ed(Sp;p) defined as the maximum of ed(X/X;p) for all S,-covers X — X, we
have:
ed(Mon/Mon;p) = ed(Sn;p).

With the many examples relating the general degree n polynomial to modular
functions, it is natural to ask if the same “maximal complexity property” holds for
modular functions. Our first result states that for p = 2 this is indeed the case. To
explain this, for a subgroup G C Sp,,(Z/NZ) set Ay = Ay n/G.

Theorem 1. Let n > 2, g = [4] — 1, and let N > 3 be odd. There exists an
embedding Sy C Spy,(F2) C Spy,(Z/2NZ) such that

ed(Ag,gN/A%sn; 2) = |n/2] = ed(Sy;2).

We remark that what we actually prove is the first equality. The second equality
then follows from a result of Meyer-Reichstein [MR09 Corollary 4.2]. In particular,
one sees from their result that ed(S,,;p) takes its maximal value for p = 2, so this
case is, in some sense, the most interesting.

One ingredient in the proof of Theorem [Il comes from the link between binary
forms and hyperelliptic functions; specifically, Jordan proved that the monodromy
of the 2-torsion points on the universal hyperelliptic Jacobian gives a mod 2 sym-
plectic S),-representation. These remarkable representations were rediscovered and
studied by Dickson [Dic0§] in 1908. We deduce Theorem[by applying the following
general result to these representations.

Theorem 2. Let G be a finite group, and G — SpQQ(IFp) a representation. If
U C Spy,, is the unipotent of a Siegel parabolic then

ed(Aypn/Agc;p) > dimp, GNU(F,)

Theorem [2lis of most interest for those G which admit a symplectic representation
with dimp, G N U(F,) = ed(G;p), where ed(G;p) is the essential dimension at p of
a versal branched cover with group G (see Definition below). For G = S, a
result of Harman (Theorems [A] and [A.2)) says that this is possible only for p = 2,
and only using the particular mod 2 symplectic representation of Jordan/Dickson!
We also show that for G the F,-points of a split semisimple group of classical type,
there is a symplectic representation of G for which the lower bound in Theorem [2]is
either equal or nearly equal to the maximal rank of an elementary abelian p-group
in G. The only near-misses occur for odd orthogonal groups. Note however, that
this rank is in general less than ed(G;p).

E-versal modular functions. Kummer theory gives that for each d > 2 the cover
P! — P'/(Z/dZ) has the following universal property: any Z/dZ cover X — X
is pulled back from it. It follows that ed(X/X;p) = 1 for any such X — X.
Klein’s Normalformsatz states that, while the icosahedral cover P — P! /A5 is not
universal in the above sense (indeed ed(Mos — My 5/A5) = 2), there exists a
Z/2Z accessory irrationality

%

+— =i
<—:><z

Y —» X

such that Y — Y is a pullback of P! — P'/As. This nonabelian version of Kum-
mer’s theorem is a kind of classification of actions of As on all varieties. We say
in this case that P! — P!/A5 is £-versal with respect to any collection £ of covers
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containing Z/27Z covers. Note that this cover is modular; indeed it is equivariantly
birational to the cover H?/T'y(5) — H?/SLa(Z), where H? is the hyperbolic plane
and T'2(5) is the level 5 congruence subgroup of SLa(Z); here we are using the
natural isomorphism PSLy(F5) = As.

In 4 we axiomatize the idea of £-versality and we give a number of examples
(most classically known) of congruence covers that are £-versal for various groups
G. One sample result on E-versality is the following (see §4.2] for terminology). For
I' < SL(R) x SLy(R) a lattice, let M : (H? x H?)/T; these are complex-algebraic
varieties called Hilbert modular surfaces.

Proposition 3. For & any class of accessory irrationalities containing all quadratic
and cubic covers and composites thereof, the Hilbert modular surface

SLg(Z[LQ/g]ﬁ) - MSLz(Z[ilJrz\/g])

is E-versal for Ag, where SLQ(Z[1+2\/5], 3) denotes the kernel of the map

1+

“ls

In particular, Hilbert’s Sextic Conjecture is equivalent to the statement that the
resolvent degree of this cover equals 2.

The connection between these £-versality results with the first part of this paper
is that E-versal G-covers always maximize ed(X/X;&) over all G-covers X — X.
In §4 we apply such E-versality results to exhibit further the close relationship
between modular functions and roots of polynomials. Specifically, Hilbert’s 13th
Problem, and his Sextic and Octic Conjectures (see §l for their exact statements)
are phrased in terms of the resolvent degree of the degree 6,7 and 8 polynomials.
The resolvent degree RD(X' /X) is the smallest d such that X — X is covered by a
composite of covers, each of essential dimension < d (see e.g. [AST76/[Bra75[FW1S]).
Applying various E-versality results, we deduce in §4] the equivalence of each of
Hilbert’s conjectures with a conjecture about the resolvent degree of a specific
modular cover. Similarly, we show that such a modular reformulation is possible
not only for general polynomials of low degree, but also for each of the algebraic
functions considered by Klein and his school [KI18711[KI1888Kle26,Fri26].

Methods. The proof of Theorem 2] uses a refinement of the results of [FKW19],
which is explained in §1. In loc. cit, we used Serre-Tate theory to give lower bounds
on the essential at p for the coverings Ay ,n — Ay n, when restricted to (some)
subvarieties Z C A4 n. Here we drop the assumption that Z is a subvariety and
allow certain maps Z — Ay n (cf. Proposition [Z31). In particular, we can apply
the resulting estimate to Z = A, ¢ for G' a subgroup of Spy,(F,), which yields the
lower bound for ed(Ag ,n/Ag.c;p) in Theorem

One may compare the bounds given by Theorem 2lto those obtained in [FKW19,
§4] for certain finite simple groups of Lie type. The bound in the case of odd
orthogonal groups in loc. cit is weaker than the one given here because of the
restriction on the signature of Hermitian symmetric domains associated to odd
orthogonal groups. On the other hand the coverings we consider here correspond
to rather more exotic congruence subgroups than those of loc. cit.
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2. MODULI OF ABELIAN VARIETIES

2.1. Extension classes.

2.1.1. Fix a prime p, and let V' be a complete discrete valuation ring of charac-
teristic 0, with perfect residue field k of characteristic p, and a uniformizer = € V.
Let A = V[z1,...,2,] be a power series ring over V. We denote by my C A the
maximal ideal, and M4 = m4/mA. and set X = Spec A, and X = Spec A[1/p]. We
will denote by k[e] = k[X]/X? the dual numbers over k.

Recall [FKWT9| 3.1.2] that there is a commutative diagram

AX (AP —— = Bxt L (Z/pZ, i)

| |

A[L/p]*/(A[1/p)* )P —— Extx (Z/pZ, up)

where the terms on the right are extensions as Z/pZ-sheaves. The vertical maps
are injective, and the extensions in the image of the map on the right are called
syntomic. There is also a map [FKW19| 3.1.5]

04 : ExtL(Z/pZ, pp) — A J(A™)P — ma/m%.
which sends a class represented by a function f € 14+ my4 to f — 1.

Lemma 2.1.2. Let % C Ext%(Z/pZ,up) be an Fp-subspace of dimension < n.
Suppose that for every map h : A — kle] the image of % under the induced map

(2121) EXt}( (Z/pZ, /L;D) — EXtépcc k[e] (Z/pZ, /LZD)
is nontrivial. Then the map
(2.1.2.2) 0a: U ®p, k — my/m%

is an isomorphism; in particular dimg, % = n.
Proof. Since the image of % under 2.T.2.1]is nontrivial, the composite
0a: % @5, k —my/m% — ek
is nontrivial for every h. This implies that Z.T.2.2is surjective, and since dimp, % <

n it is injective, and dimg, % = n. O

2.1.3. We call a subspace % C Extk(Z/pZ,up) satisfying the conditions of
Lemma [2.1.2] nondegenerate, and we fix such a subspace. Now assume that V'
contains a primitive p** root of unity, and fix a geometric point Z of X. Then

Extx (Z/pZ, pp) — H (X, pip) = Hg (X, pp) = Hom(my (X, 2), 1)
If %’ C % is a subspace, denote by X (%') — X the finite étale cover corresponding
to %'. That is, X(%') is the cover corresponding to the intersection of all the

elements of Hom(m (X, ), u,) that are images of elements of %'. We let X' =
Spec A(%") denote the normalization of X in X (%").
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Lemma 2.1.4. For any %' C % the ring A(%') is a power series ring over V.
Further,

(2.1.4.1) dimy, Im(lﬁA/ﬁli — ﬁlA(%/)/mi‘(@/)) = dim]pp (%/%I)

Proof. Let f1,...,fr € A* be elements with 1 — f; € m4, and such that the
images of f1,..., fr in Extk (Z/pZ, pp) form an F,-basis for %’. By definition,
X(%'") = Spec A[1/p|(¥f1,..., ¥/ fr). To prove the first claim, it suffices to show

that
A(VE,..., (/ﬁ) = Az, 2/ (ZP = fi)

is a power series ring over V. Since % is nondegenerate, the images of f1,..., f
are k-linearly independent in m4/m?%. Hence, after a change of coordinates, we can
assume that A — V[z1,...,2,] with 2; = fi — 1 for i = 1,...r. Then we have

Alzryeoyz) /(G =) == Ve — 1,00 20 — L @pg1, .. 2]
This also shows 2.1.4.7] as both sides are equal to n — 7. O

2.2. Monodromy on the ordinary locus.

2.2.1. Fix an integer g > 1, a prime p > 2, and a positive integer N > 2 coprime
to p. Consider the ring Z[(x][1/N], where (y is a primitive N*! root of 1. Denote
by Ay n the Z[(n][1/N]-scheme which is the coarse moduli space of principally
polarized abelian schemes A of dimension g equipped with a basis of A[N] that is
symplectic with respect to the Weil pairing defined by (. When N > 3, this is a
fine moduli space which is smooth over Z[(x][1/N]. For a Z[{n][1/N]-algebra B,
denote by A, n/p the base change of Ay v to B. If no confusion is likely to result,
we sometimes denote this base change simply by A4 n

From now on, unless stated otherwise, we assume that N > 3 and we let A —
Ay n be the universal abelian scheme. The p-torsion subgroup A[p] C A is a finite
flat group scheme over A, y which is étale over Z[(n][1/Np]. Let x € A, N be a
point with residue field () of characteristic p, and A, the corresponding abelian
variety over k(z).

The set of points x such that A, is ordinary is an open subscheme AorN -

Ay N ® F,. We denote by Aor the formal completion of A, y along Agfﬁ,. We

denote by Aord % the “generic fibre” of A‘"N as a p-adic analytic spaceE

Denote by k: an algebraically closed perfect field of characteristic p, and let
K /W[1/p] be a finite extension with ring of integers Ok and uniformizer 7. Assume
that K is equipped with a choice of primitive N** root of 1, (; € K, so that we
may consider all the objects introduced above over Ok. Let K/K be an algebraic
closure.

Proposition 2.2.2. Fiz a geometric point x € Aord N (K) and denote by T € Aord
its reduction. The covering Ag oy — Ag N corresponds to a surjective representatwn

(2.2.2.1) m1(Ag,N, ) = Spay(Fp).

3The reader may think of any version of the theory of p-adic analytic spaces they prefer (Tate,
Raynaud, Berkovich, or Hiiber’s adic spaces), as this will have no bearing on our arguments.
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(1) There exists a Siegel parabolic P C Spy, /¥, with unipotent radical U, such
that [2.2.21] induces a surjective representation

(2.2.2.2) m(ASY™, x) = P(F,).

(2) Let A = @AQ,N@ be the completion of the local ring at T. Then (2.2.2.1))

induces a surjective representation
(2.2.2.3) m1(Spec A[l/p],x) — U(F,).

Proof. The first claim is well known. Indeed, the existence of the Weil pairing on
Alp] implies that A, ,n corresponds to a symplectic representation. A comparison
with the topological fundamental group shows that the image of the geometric
fundamental group 71 (Ag, v @ K, ) is Spy, (Fp), so the representation is surjective.

Now recall, that a Siegel parabolic is the stabilizer of a maximal isotropic subspace
in the underlying vector space of a symplectic representation. Equivalently it is a
parabolic with abelian unipotent radical. All such parabolics are conjugate. Over
ﬁgfﬁ, the finite flat group scheme Afp| is an extension

(2.2.2.4) 0— Alp]™ — Alp] = A[p]** =0

of an étale by a multiplicative group scheme, where étale locally A[p]|¢t — (Z/pZ)9
and Alp]™ — p. The Weil pairing induces a map of group schemes

Alp] x Alp] = pp-

which identifies A[p] with its Cartier dual, and induces an isomorphism A[p]™ with
the Cartier dual of A[p]¢*. In particular, this shows that A[p]™ C A[p]. corresponds
to a maximal isotropic subspace under the Weil pairing. This defines a Siegel
parabolic such that (Z2.2.1) maps m; (Agfi,’an, z) into P(F,). By [FC90, Prop. 7.2]
the image of the composite

(AN, ) = P(Fp) = (P/U)(Fy)
is surjective. Hence it suffices to prove (2).

For this, we adopt the notation of [Z1] applied with A as in (2). Since we are
assuming k is algebraically closed, over A, the group schemes A[p]¢* and A[p]™ are
isomorphic to (Z/pZ)? and pf respectively. In particular, the map 22.2.3) factors
through U(F,). Let % C Ext(Z/pZ, i) be the span of the g* syntomic extension
classes defining the extension (Z2:2.4). Note that U(F,) is an elementary abelian
p-group of rank n = dimg, U = dim Ay = (g;rl). Any Fy-linear map s : U(F,) — F,
induces a representation

71 (Spec A[1/p], x) — pp(K) — F,
(choosing p'" root, of unity), and hence a class in
o(s) € Exty (Z/pZ, pp) = H'(X,F,).

The subspace % is the span of all the classes ¢(s). This shows dim % < n, with
equality only if (ZZ.2.3) is surjective. However, by [FKW19, 3.2.2], one sees that
 satisfies the conditions of Lemma 2.1.2] so that dim % = n, which completes
the proof of the lemma. O

Corollary 2.2.3. With the notation above, Homg, (U(F,),[F,) is naturally identi-
fied with a nondegenerate subspace % C Ext (Z/pZ, ).
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Proof. The proof of the Proposition [2.2.2] shows that there is a natural map
Homp (U (F,),Fp) — Ext (Z/pZ, ji,)
whose image % is a nondegenerate subspace of dimension n = dimg, U. (I

2.3. Essential dimension.

2.3.1. We refer the reader to [FKW19, §2] for the definitions and facts we will need
about essential dimension and essential dimension at p. We remind the reader that
for K a field and Y — X a finite étale map of finite type K-schemes, ed(Y/X;p)
denotes the essential dimension at p of Yz — Xf, where K is an algebraic closure
of K.

2.3.2. We continue to use the notation introduced above. In particular A =
O4, v,z denotes the complete local ring which is a power series ring over Ok in
n= (g;rl) variables.

Lemma 2.3.3. Let g: A — B and f: C — B be maps of power series rings over
Ok, with f a flat map. Suppose there exists a finite étale covering Y' — Spec C[1/p]

~

and an isomorphism of étale coverings € : f*Y' — g*A[p] over Spec B[1/p]. Then
Im(ma/m% — mp/m%) C Im(me/mZ — mp/m%).

In particular,
dimg me/m% > dimy Im(ma/m? — mp/m%).

Proof. By [FEKWT9, 2.1.8], we may assume that Y’ is an extension of a constant
étale group scheme by a constant multiplicative group scheme, and that e is an
isomorphism of extensions. By [FKWT19| 3.1.4, 3.1.5], the extension Y” is syntomic,
and we may assume that the isomorphism f*Y’ — g*A[p] extends to an iso-
morphism of finite flat group schemes (which automatically respects the extension
structure) over Spec B.

Now let h : B — k[e] be any map which vanishes on the image of m¢/m%, so that
h induces the constant map C' — k. Then h* f*Y' — h*g* A[p] is a split extension
over Spec kle]. It follows from [FKWT9| 3.2.2] that ho g(my4) = 0, which proves the

inclusion in the lemma. O

2.3.4. We introduce the following notation. For a map f : X — Y of smooth
k-schemes, we let

_ : - . )
r(f) = Ién)?é) dimg Im(m () /M%) — Mg /m3)

For f a map of smooth Og-schemes, set r(f) = 7(f ® k). Note that r(f) does not
change if we restrict f to a dense open subset in X.

Proposition 2.3.5. Let Z be a smooth, connected Og-scheme, and let Z —
Ay N0y be a map of Ok-schemes such that the image of the special fiber, Zy,
meets the ordinary locus Agf}%, C Ay n/k- Then

ed(Alpllz. /Zx;p) > 7(f)

Proof. The proof of this is almost the same as that of Theorem [FKWI9l 3.2.6].
The only difference is that we use Lemma [2.3.3 instead of Lemma 3.2.4 of loc. cit
at the end of the proof. ([l
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Example 2.3.6. Let H, denote the moduli of hyperelliptic curves of genus g. Let
Hq[n] be the moduli of pairs (C, B) where C' is a hyperelliptic genus g curve and B
is a symplectic basis for Hy(C;Z/nZ). Let 7: Hy 0, — Agj0, denote the Torelli
map. By [Lanl9, Theorem 1.2], 7 is an embedding only when the characteristic
of k is prime to 2; when k is of characteristic 2, r(7) = g + 1. Because of this,
[FKW19, Theorem 3.2.6] does not give a lower bound on ed(H4[2]/H,4;2). Using
Proposition above instead, as well as the argument of [FKW19, Corollary
3.2.7], we obtain

ed(My[2]/Hg:2) 2 g+ 1.

Remark 2.3.7. More generally, Proposition 2.3.5] gives an arithmetic tool for ob-
taining lower bounds on the essential dimension at p, analogous to the “fixed point
method” (cf. [Reil(]). As forthcoming work of Brosnan-Fakhrudin-Reichstein
[BER] demonstrates, the fixed point method applied to the toroidal boundary
recovers the bounds of Theorem [ and similar bounds for non-compact locally
symmetric varieties (including those not of Hodge type); it also allows one to use
toroidal boundary components other than those corresponding to Siegel parabolics.
However, as remarked in [FKW19], we are not aware of methods besides Proposi-
tion that apply to unramified nonabelian covers of compact varieties.

2.3.8. Proposition [Z2.2 implies that the monodromy group of Ay ,n — Ay n can

be identified with Sp,,(F,). Fix such an identification. Let G be a subgroup of
Spa, (Fp) C Spy,(Z/pNZ). Denote by Ay e — Ay n the finite, normal, covering
corresponding to G.

Theorem 2.3.9. Let p be a prime, and let N > 3 be prime to p. G C Spy,(IF)) C
Spoy(Z/pNZ). Then

ed(A[p]|a, ¢/ Agcip) > max dimg, UN G,

where the mazimum on the right hand side is over all unipotent radicals of Siegel
parabolics in Spy, (Fp).

Proof. Let Uy C Spy,(F,) be an abelian unipotent subgroup such that dimg, UgNG
achieves the maximum. Let U C Sp,, /F, be the abelian unipotent subgroup defined
in Proposition Because all Siegel parabolics are conjugate in Sp,, (), there
exists a conjugate of G, denoted G’ C Sp,,(FF,), such that

dim]Fp U(Fp) NG = dim]Fp UsNG.

Because conjugate subgroups give isomorphic covers, and because ed(—;p) is a
birational invariant,

ed(Alplla,,n.¢/AgNn.cip) = ed(Alplla, v o / Ag N7 P)-

It therefore suffices to prove the theorem under the assumption that Uy = U(F,).
For this, it suffices to consider the case G = U(F,) N G. In the following we slightly
abuse notation and write U for U (F,).

Let z € Ay n(k) be a point in the ordinary locus. By (2) of Proposition 222
there exists y € Ay ,n(k) and @’ € Ay n (k) with y mapping to &’ and z, such
that the natural map

A:=0u4,n2 = Ouynua
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is an isomorphism, and such that, if B = @Ag,pw,yv then

Spec B[1/p] — Spec A[1/p]
is a U-covering.
Let # = Homp,(U,F,), and %/ = Homg,(U/(U N G),F,). By Corollary 2.2.3]
% is identified with a nondegenerate subspace of Exti (Z/pZ,pu,) where X =
Spec A[1/p]. Now let A" = Ou, y yne,z, Where 2 denotes the image of y in

Ay v une. Since Ay N une is normal, using the notation of Z1.3] we have A’ =
A(%}). Hence, by Lemma2.1.4] we have

dimy, Im(m/m% — ma/m%,) = dimg, U NG,
and A’ is a power series ring over Ok .
Since = was any point in the ordinary locus, this shows that r(f) > dimp, UNG,
where f : Ay nune — Agn, and that A, nunc is smooth over Ok, over the

ordinary locus of A4 n. Combining this with Proposition [2.3.5] proves the theorem.
O

3. MODULAR SYMPLECTIC REPRESENTATIONS OF FINITE GROUPS

3.1. General Finite Groups. Let p be prime, G a finite group and V a faithful,
finite-dimensional G-representation over F,. The pairing

ev: VaVY =T,

extends to a G-invariant symplectic form on V @ VV. We refer to the associated
representation
G—Sp(VaVY)

as the diagonal (symplectic) representation associated to V.

Lemma 3.1.1. Let H C G be an elementary abelian p-subgroup, such that H maps
to the unipotent radical of a mazimal parabolic in GL(V'). Then there exists a Siegel
parabolic of P C Sp(V @& V'V) with unipotent radical U such that, under the diagonal
representation associated to V,

HcUNG.

Proof. Any maximal parabolic in GL(V) is the stabilizer P(WW) of a subspace W C
V. Let U(W) denote the unipotent radical of P(W). Let W+ C V'V denote the dual
subspace. Then W @ W is a Lagrangian subspace of V @ V'V, and

GL(V) N Stabg,(vevv) (W @& W) = Stabgr,) (W) = P(W).
Hence
CL(V)NUW @ W) =UW),
where U(W @ W) is the unipotent radical of Stabg,vevv)(W @ W), the Siegel

parabolic corresponding to W @ W+, In particular H C U(W) Cc U(W @ W), the
Siegel parabolic corresponding to W @ W+, O

3.1.2. Let

5p(G) == max dimp, UNG
UCGL(V)

where the maximum is taken over all faithful representations G of V, and unipo-
tents U of maximal parabolics in GL(V'). Proposition BI1] and Theorem [2.3.
immediately imply the following.
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Corollary 3.1.3. For some g, there exists a congruence cover Ay, — Ag a with
ed(Ag,p/ Ag,cip) = 3p(G).

Remark 3.1.4. While Corollary B3] implies that ed(G;p) > s,(G), this is not
hard to show directly, e.g. by [BRI7, Lemma 4.1]. In fact, let

rp(G) == max dimy, H

where the maximum is taken over all elementary abelian p-groups H C G. Then
ed(G;p) > rp(G) > sp(G). The novelty of Corollary[B.1.3lis that a) this lower bound
can be realized by an explicit congruence cover; and b) the congruence cover, and
thus the lower bound, comes from modular representation theory at the relevant
prime, rather than from ordinary representation theory in characteristic 0 (as in
e.g. [BR97] or the theorem of Karpenko-Merkurjev [KMOS]).

The corollary is most interesting in those cases where s,(G) is large. In the
remainder of this section we give examples where s,(G) is equal to, or at least very
close to r,(G). These consist of the case of alternating groups when p = 2, and the
case where G is the Fg-points of a split semisimple group of classical type.

3.2. The Groups S,, and A,,. We now specialize to the symmetric groups S,, and
the alternating groups A,,.

3.2.1. We would like to apply CorollaryB.1.3to the case of symmetric and alternat-
ing groups. Meyer-Reichstein [MR09, Corollary 4.2] proved that ed(Sy; p) = 75(Sn)
and similarly for A,, for all n and p. However, in Appendix [A] Harman shows that
for p > 2, 5,(Sn) < rp(Syn) and similarly for A,. The purpose of this section is to
show - see Proposition below - that one has s3(S,) = r2(Sy) for all n, and
s2(Ap) = r2(A4y) (resp. s2(Ay) = ra(A4,) — 1) for n = 2,3 (resp. 0,1) modulo 4.
This uses a remarkable mod 2 symplectic representation of S,,, discovered by Dick-
son. Harmon’s results imply that for n > 5, this is the only mod 2 representations
for which the unipotent of a maximal parabolic meets S, in a maximal elementary
abelian 2-group.

Recall the “permutation irrep” V of .S, over FPH For p t n this is the analogue
over [F,, of the standard permutation irrep in characteristic 0, i.e. the invariant
hyperplane

V={(a1,...,a,) €Fp | > a; =0}

For p | n the diagonal line A := {(a,...,a)} C F} is an invariant subspace of the
invariant hyperplane, and

V={(a1,....an) €Fy | > a; =0}/A.

Dickson [Dic08| showed that over Fa, the permutation irrep of S, is a symplectic
representation. Let

n
dy = [51 -1,

so that Dickson’s representation gives a “Dickson embedding” S,, C Spy, (F2).

4The results of Dickson [Dic08] and Wagner [Wag76|[Wag77| show that the permutation irrep
is a minimal-dimensional faithful irrep for n > 8 and p = 2, or for n > 6 and p odd.
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Proposition 3.2.2. Let N > 3 be odd. For all n > 2, consider the Dickson
embedding Sp C Spyg, (F2) C Spyg, (Z/2NZ). There exists a Siegel parabolic with
unipotent radical U such that

n

dim]F2UﬂSn: LgJ,
dimp, U N A, = ng—l.

By Theorem [2.3.9, for alln > 1:

ed(Aq, on/Ad,,s,:2) = |
ed(Aqg, on/Ad, A,:2) = |

i.€.
ed(A4,;2)—1 n=0,1 mod4
ed(Aqg, on/Ad, 4,;2) = { edEAn'2§ n=2,3 mod4

Proof. Let V denote the permutation irrep of ,, over Fa, as in [Dic08], i.e.
orn
V=H/A={(z1,...,25137) €F3 2 | Y 2, = 0}/{(z,...,2) € F2}

A convenient basis for V' is given by the cosets in H of

e; :=1(0,...,1,...,0,0,1)]
~—_———
1 in the ith place
fori =1,...,2d,. With respect to this basis the action of Ss4, C Sy, is the standard
permutation action of Sag, on ng". Dickson [Dic0O8, p. 124] proved that the S,

action on ng" preserves the symplectic form ), ., Zi<d, TilYj- We now change basis
for ease of studying a Lagrangian. Let

Wi 1= €2i—1 + €2;

Vo 21
wj —ijo €j-

A straightforward computation shows that the planes W = ({w;}™ ;) and W+ =
({w; }*_,) are dual Lagrangians written with dual Lagrangian bases.

Now fix W and let P := Stab(W) be the corresponding Siegel parabolic with
unipotent U. From the Lagrangian basis for W, we see that

(3.2.2.1) FL# = ((12), (34),..., (2ng —1 2ng)> cUNS,

But this is a maximal elementary abelian 2-group in S,,, so (B22)) is an equality.
Thus

UNA, = <(12)(34),...,(12)(2ng 1 2LgJ)> gl

as claimed. O
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3.3. Finite groups of Lie type.

Proposition 3.3.1. Let ¢ = p", and G = H(F,), where H is one of the semisim-
ple Lie groups SLu,,SOam+1,SPa,, with m > 2 or SOgy,, with m > 4. Let p :
H — GL(V) be the standard representation of H over Fy. Then there exists a par-
abolic P(W) C GL(V) with unipotent radical U, such that dimp, W = 42V | " and
r,(G) == dimp, GNU satisfies:
o If G =SL,,(F,), then r, (G
e If G = Sp,,,(F,) then r,(G 5
o If G =800, (F,) then r)(G) = ™=,
o If G =S0s11(F,) then rl(G) = ™21,
We have r - 1,(G) = 1,(G) in all cases evcept if G = SOgzpq1, in which case

rp(G)/r = mm+1) if q is even and r,(G)/r = m(m U 41 (resp. 5, resp. 3) if q is
oddandmzél (resp. m = 3, resp. m = 2).

[ V)

Proof. We use the standard representations of the root systems of each of the groups
H. In each case, we will recall the weights appearing in V| specify the subspace
W C V, and describe a subgroup Ug C H as a sum of root spaces. In each case
if r is a root appearing in Ug and w,w’ are weights appearing in W and V/W
respectively, then r 4+ w does not appear in V, and r + w’ does not appear in V/W.
This implies that Ug € H N U.

If G = SL;,(Fy), then the weights of V' are e1,...,en, and W = (e1,...,e m)).
The roots appearing in Ug are e; — e; with i < [ J <J.

If G = Sp,,, (Fy), then the weights of V" are :l:el, oo tem,and W= {eq, ..., en).
The roots appearing in Ug are e; + e; and 2e; for 1 § 1< j<m.

If G = SO2,,(Fy), then the weights of V are teq, ..., tem, and W = (e1,. .., em).
The roots appearing in Ug are e; +¢e; for 1 <i < j <m.

If G = SOgm+1(Fy), then the weights of V' are +ey,...,+en,,0 and W =
(e1,...,em). The roots appearing in Ug are e; +¢; for 1 <i < j < m.

The maximal elementary abelian p-subgroups of H(F,) for each group H ap-
pearing above are computed in [Bar79]. In particular, for G equal to one of
SLn (Fy), SPop (Fq); SO2., (F,), one sees that Ug is already a maximal elementary
abelian p-subgroup, so that Ug = HNU and r-1,(G) = r,(G). For G = SOx2,,41(Fy)
the claims about r,(G) also follows from loc. cit, and it remains only to prove that
Us = HNU in this case.

To see this, consider v = )" a,r € Lie (H N U) where r is a positive root of H
and a, is a scalar. Now V is a cyclic highest weight module for Lie H. Using this
and that v annihilates e; € W, one gets a, = 0 if » = e; — ;. Similarly, since v
annihilates —e; € V/W, a, = 0 for r = e;. Thus v € Ug. O

Remark 3.3.2. Note that when ¢ is even, one has SOgy,41(F,) =~ Spy,, (Fy), so
that s,(G) = r,(G) in this case.

4. CrLASSICAL PROBLEMS AND CONGRUENCE COVERS

Beginning with the work of Hermite on the quintic [Hel858], the use of modu-
lar functions to solve algebraic equations is a major theme of 19th century work,
including Klein’s icosahedral solution of the quintic [KI1884], the Klein-Burkhardt
formula for the 27 lines on a cubic surface [K11888[Bul890,[Bul891.[Bul&93|, the
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Klein-Gordan solution of equations with Galois group the simple group PSL(2,7)
[K11879l[Go1882], and the Klein-Fricke solution of the sextic [Kle05,[Fri26]. Under-
lying this work is the fact that problems of algebraic functions are often equivalent
to problems of modular functions and congruence covers.

Our goal in this section is to record the classical equivalences, and add to them
using recent advances in uniformization. We begin by axiomatizing the notion of
accessory irrationality, and recalling the general context in which to take up Klein’s
call to “fathom the nature and significance of the necessary accessory irrationalities”
[K11884L p. 174]. We then recall the general setup of congruence covers of locally
symmetric varieties in order to state the precise equivalences.

While many of the results of this section are implicit in the classical literature, as
far as we can tell, with the exception of Klein’s Normalformsatz [K11884], that var-
ious classical problems are in fact equivalent has gone unremarked in the literature
until quite recently [FWTS§].

4.1. Accessory Irrationalities and £-Versality. For the rest of the paper we
fix an algebraically closed field K of characteristic 0.

4.1.1. By a branched cover Y — X, we mean a dominant, finite map of normal
K-schemes of finite type. Branched covers form a category: a map (Y’ — X') —
(Y — X) is a commutative diagram

Y —Y

||

X —X.

If f: X’ — X is a map of normal K-schemes of finite type, denote by f*Y the
normalization of Y x x X’. If X is connected then Y — X corresponds to a finite
set Sy with an action of w1 (U) for some dense open U C X, where 71 (U) denotes
the étale fundamental group of U. We denote by Mon(Y/X) the image of 71 (U) in
Aut(Sy).

4.1.2. We now introduce the notion of a class of accessory irrationalities (cf. Klein
IK11884l[K11893], see also Chebotarev [Che32]).

Definition 4.1.3 (Accesory irrationalities). A class of accessory irrationalities
is a full subcategory £ of the category of branched covers. If £(X) C & denotes the
subcategory consisting of branched covers X — X, then we require that £(X) is
stable under isomorphisms, and satisfies the following conditions.

(1) For any X, the identity X — X is in £(X).

(2) For any map f: X’ — X of normal K-schemes of finite type, f* induces a
functor f*: E(X) — E(X).

(3) EXIX) =&E(X) x EX).

(4) £(X) is closed under products: If E, E’ € £(X), then E x x E' € £(X).

(5) If U C X is dense open, then the map £(X) — £(U) induced by restriction
is an equivalence of categories.

(6) If E — X’ — X are branched covers and if E — X isin £(X) then F — X’
is in £(X").
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Axiom (2) implies that £ is a category fibered over the category of normal K-
schemes. Note that Axiom (3) implies that it is enough to specify £(X) for X
connected.

Definition 4.1.4. Fix a class £ of accessory irrationalities. The essential dimension
of a cover X — X, with respect to & is:

ed(X/X;€) = (Ein;(r;eged(E xx X/E).
Example 4.1.5. Some of the core classical examples of £ are as follows (for sim-
plicity we specify £(X) only for X connected):

(1) For £(X) = {id : X — X}, the quantity ed(X/X;&) is just the essential
dimension ed(X/X).

(2) Let p be a prime and let £(X) be the subcategory of branched covers of X
whose degree is coprime to p. Then ed(X/X; ) is the essential dimension
at p. We emphasize that, although it leads to the same notion of essential
dimension at p, we do not insist that E is connected, as this version of the
definition does not satisfy Axiom (3) of Definition

(3) Let £(X) be the set of covers E — X with Mon(E/X) abelian. Then
ed(f( /X;E) is the abelian resolvent degree. Likewise, we can consider the
class of accessory irrationalities with nilpotent (resp. solvable) monodromy,
to obtain the nilpotent (resp. solvable) resolvent degree (see [K11893[Che32]
Che43)).

(4) Let G be a finite simple group, and let £(X) consist of all E — X such
that for each connected component E’ of E, the branched cover B/ — X is
Galois and a composition series for Gal(E’/X) has no factor isomorphic to
G. We write ed(X/X; G) for ed(X/X;E).

Definition 4.1.6 (E-versality). Let £ be a class of accessory irrationalities. A
Galois branched cover X — X with group G is £-versal if for any other Galois
G-cover Y — Y, and any Zariski open U C X, there exists

(1) an accessory irrationality £ — Y in E(Y),

(2) a nontrivial rational map f: E — U, and

(3) an isomorphism f*X|y 2 Y|g.

Remark 4.1.7. If £ is the trivial class of accessory irrationalities, i.e. £(X) only
contains the identity, then £-versal is just “versal” in the usual sense of the term
(see e.g. [GMSO03, Section 1.5]).

If & C & are classes of accessory irrationalities, then &’-versality for a G-cover
implies £-versality. In particular a cover which is versal is £-versal for any class £.

Example 4.1.8.

(1) Hilbert’s Theorem 90 implies that for a finite group G, and every faithful
linear action G O A™, the map A™ — A™/G is versal (see [DR15]).

(2) The Merkujev-Suslin Theorem [MS83, Theorem 16.1] implies that for every
faithful, projective-linear action G © P", the map P" — P"/G is solvably
versal, i.e. £-versal for the class £ of solvable branched covers[i

Lemma 4.1.9. Let G be a finite group, let & be a class of accessory irrationalities,
and let X — X be an E-versal G-cover.

5 Mutatis mutandis, this follows by the same reasoning as in [DR15].
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(1) Let X — Z be a G-equivariant dominant rational map. Then Z — Z]G is
an E-versal G-cover.

(2) Let H C G be any subgroup. Then X - X/H is an E-versal H-cover.

Proof. The first statement follows immediately from the definition. For the second,
let Y — Y be a Galois H-cover. Then

?XHG%Y

is a Galois G-cover which is H-equivariantly isomorphic to Y x G/H —- Y. By
E-versality, for any Zariski open U C X, there exists an accessory irrationality

E—-Y

in £, and a rational map
fE—=U
with an isomorphism of G-covers

By the Galois correspondence for covers, the H-equviariant isomorphism above
implies that £ — U factors through a map

frE— (X/H)|y
We conclude that f*X 2 Y|z and that X — X /H is E-versal for H as claimed. [J

Remark 4.1.10. Example L T.8(1) and Lemma [T.9(1) immediately imply that
for each n > 4, the cover Mg ,, — My /Sy, is versal for the group S,.

4.1.11. We can also consider the resolvent degree of a cover X — X, which is
somewhat different from, but related to the idea of the general notion of essential
dimension defined above. To explain this, write E, — X for a tower of branched
covers E = E, — --- — Eg = X. The resolvent degree of X — X is defined as

RD(X/X) = min max {ed(E xx X/E), {ed(E; /Ei,l)}le}

where F, — X runs over all sequences of covers.

When Mon(X /X) is simple, it follows from [FWI8| Cor. 2.18] that the definition
of RD(X/X) does not change if we consider only Fy — X such that the compo-
sition 71 (E) — m1(X) — Mon(X/X) is surjective and ed(E;/E;_1) < dim(X). In
particular

(4.1.11.1) Jnin_ed(E x x X/E) <RD(X/X)

where Fq — X runs over sequences of covers satisfying these conditions. On the
other hand, in every known example, the current best upper bound for RD(—) can
be exhibited using such a sequence F, — X which in addition satisfies ed(E X x
X/E) > ed(Eif1 /Ey), fori=1,...,r.

Hilbert [Hil900,[Hil27] made three conjectures on the resolvent degree of the
general degree n polynomial; equivalently on

RD(n) := RD(Mo,/(Mo,n/Sn)) = RD(Mo.n/(Mon/An)).
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Conjecture 4 (Hilbert). The following equalities hold:

Sextic Congecture:  RD(6) = 2.
13th Problem: RD(7) = 3.
Octic Conjecture: RD(8) = RD(9) = 4.

The upper bounds in Conjecture [d] are known; the first two are due to Hamilton,
the last to Hilbert.

Our interest in &E-versality comes from the following lemma, which is proven
mutatis mutandis by the same argument as in the proof of [FW18, Proposition 3.7].

Lemma 4.1.12. Let & be a class of accessory irrationalities and let X — X be an
E-versal G-cover. For any Galois branched cover Y — 'Y with monodromy G,

ed(Y/Y;€) <ed(X/X;E).

In particular, for any other €-versal G-cover X' — X',

ed(X'/X';€) = ed(X/X;E).
Further, if € is any of the classes of Example[{.1.0] and if G is simple, then

RD(Y/Y) <RD(X/X) and RD(X'/X') =RD(X/X).

Lemma makes precise the classical discovery that £-versal G-covers pro-
vide “normal forms” to which every other G-cover or can be reduced. Notably, for
many groups G of classical interest, congruence covers are £-versal for a natural
choice of £.

Remark 4.1.13. While the notion of versality has been studied intensively for
several decades, many of the most interesting normal forms, beginning with Klein’s
Normalformsatz, rely on the notion of solvable versality, which is substantially more
flexible. For example, a versal G-variety of minimal dimension must be unirational.
On the other hand, there are no rational Ag curves (by Klein’s classification of
finite Mobius groups), and the level 3 Hilbert modular surface of discriminant
5, which is solvably versal for Ag and conjectured by Hilbert to be of minimal
dimension among such varieties, has arithmetic genus equal to 5 (see the discussion
in the proof of Propositon below). A better understanding of the geometric
implications of solvable versality (and related notions) could shed significant light
on the underpinnings of Hilbert’s conjectures.

4.2. £-Versal Congruence Covers. We can now record the £-versal congruence
covers that we know. Klein’s Normalformsatz provides the paradigmatic example
for what follows.

4.2.1. Let G be a group-scheme of finite type over Z whose generic fiber, which
we also denote by G, is a connected semisimple group. A subgroup I' C G(Z) is
called a congruence subgroup if it contains

G(Z,n) :=ker(G(Z) — G(Z/n))
for some positive integer n.

We assume that the quotient X of G(R) by its maximal compact subgroup is
a Hermitian symmetric domain. Then for any congruence subgroup I', a theorem
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of Baily-Borel asserts that Mp := X/T" is a complex, quasiprojective variety. For
I” C T congruence subgroups there is a natural map covering map Mp — Mp.
For L a totally real number field, one can apply the above to Resy, /oG, instead
of G. In this case we have G(Or) — ResyoG(Z) and when we write G(Op)
we mean that we are working the Hermitian symmetric domain and congruence
subgroups associated with the group Resy,oG. Similarly, we write G(Opr,n) for

Resy, /oG(Z,n). If L = Q(V/d) is real quadratic, denote by G(Op, V/d) the kernel of
Resy /G(Z) = G(Or) = G(OL/Vd).

If L is quadratic imaginary and a, b are non-negative integers, one can consider
the unitary group U(a, b) of signature a, b defined by L. This is the subgroup scheme
of Reso, /zGL,, where n = a+ b, which fixes the standard Hermitian (with respect
to conjugation on K) form of signature (a,b). One also has the corresponding
projective unitary group PU(a,b).

In fact for the rest of this section we take L = Q(w), where w is a primitive
cube root of 1, and we will only need groups of signature n — 1,1. We denote by
PU(n — 1,1)(Z,+/=3) the kernel of the composite

PU(n —1,1)(Z) — Resp, jz PGLn(Z) = PGL,(Or) — PGL,(F3).
Theorem 4.2.2 (Klein’s Normalformsatz, [KI1884]). Let £ be any class of
accessory irrationalities containing all quadratic branched covers. Then the level 5
cover of the modular curve

Ms1,z,5) = Mst,(z)-

is an E-versal As-cover. In particular, for any branched cover X — X with mon-
odromy As, ) 3
ed(X/X;E)=RD(X/X)=1.

This is in contrast to Klein’s theorem that ed(As) = 2. We can add another
example for As, which was studied in detail by Hirzebruch [Hir76], and was likely
known to Kronecker, Klein and Hilbert.

Proposition 4.2.3. The level 2 cover of the Hilbert modular surface

Msmm%ﬂz) — Msmm#n

is versal for As.

Proof. By [Hir76|, there is an As-equivariant birational equivalence

MO,5 =~ MSLQ(Z[ 1+2\/§]72) .

There is an As-equvariant dominant map
AS — ./\/1075,

where the source is the permutation representation and the map is the quotient
by the diagonal action of Aut(A'). By Hilbert’s Theorem 90, A% is versal. The
proposition now follows from Lemma [£.1.9] (I

Similar to, but less well-known than, Klein’s normalformsatz is the following (see
[K11879[Go1882], [Hir77, p. 318-319] and [Fri26l Vol. II, Part 2, Chapters 1-2]).
Denote by PSL(2,7) the image of SLy(F7) — PGLa(F7); this is a simple group.

Proposition 4.2.4 (Normal forms for PSL(2,7)).
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(1) Let PGLF(Z[V7]) € PGLa(Z[VT]) denote the subgroup of elements which
lift to an element of GLy(Z[\/T]) with totally positive determinant. The
cover

M paL,@iva,vn = M eary @ivay
of Hilbert modular surfaces is versal for the simple group PSL(2,7).
(2) Let € be any class of accessory irrationalities containing all Sy-covers. Let

SLo(Z,7) denote the kernel of the surjection SLa(Z) — PSL(2,7). Then
the level 7 modular curve

Msizan = Msta@

is an E-versal PSL(2,7)-cover. In particular, for any branched cover X =
X with monodromy PSL(2,7),

ed(X/X;E)=RD(X/X) =1.

Proof. We remark that Z[v/7]* = {4¢"} where ¢ = 8+3+/7 is the fundamental unit.
Hence PGLy(Z[V7],V/7) C PGLJ(Z[\/7]), and in particular, the latter group is a
congruence subgroup.

Consider the modular curve M, STaUET)" This has genus 3, and so the action of
2 9

PSL(2,7) on 1-forms gives a linear action of PSL(2,7) on A3, and an equivariant
dominant rational map A3 — P2, Lemma EI1.9 then implies that P? is versal
for PSL(2,7). As noted on [Hir77, p. 318-319], there is a PSL(2, 7)-equivariant

birational isomorphism
P* = M par, @y, ve)-
This proves the first statement of the proposition.
The second statement follows from [KI1879,[Go1882]. In modern language, it
suffices to construct an accessory irrationality E — P?/PSL(2,7) and a PSL(2,7)-
equivariant dominant rational map

2
P |E — MSI;—FZ/J)'

For this, the canonical embedding of the modular curve M, SL2ZT) gives a PSL(2, 7)-
2 )
equivariant map

2

MSL2(Z,7) — P=.
As Klein discovered, the image of this map is a quartic curve, the so-called “Klein
quartic”. Fixing any PSL(2, 7)-invariant pairing on P2, there is a rational map

]P)2 — M074/S4.
which sends a point z € P? to the intersection of the dual line L, with the Klein
quartic. Let

E = M0)4|[p>2.

Then there is a PSL(2, 7)-equivariant dominant map

2
Plp — MSL/;(Z7)
as claimed. (]
We can add the following result to the above.

Proposition 4.2.5 (Normal forms for the sextic).
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(1) The congruence cover

.A212 — .Az
and the Picard modular 3-fold

Mpus,1)z.y=3) — Mpru1) (@)

are versal for AGE
(2) For & any class of accessory irrationalities containing all quadratic covers
and composites thereof, the congruence cover

A3 /Ty — Ag 4,
and the Picard modular 3-fold

Mpus,1)z,2) = Mpu,1)(z,46)

are E-versal for Ag.
(3) For & any class of accessory irrationalities containing all quadratic and
cubic covers and composites thereof, the Hilbert modular surface

SLg(Z[%\/g]ﬁ) - MSLz(Z[ilJrz\/g])

is E-versal for Ag, where SLQ(Z[HQ—‘/E],?)) denotes the kernel of the map
SLo(Z[1/5]) — PGLy(Fy) = As.

In particular (cf. Remark[{-1.10 and Lemma[{-1.12) Hilbert’s Sextic Conjecture
is equivalent to the statement that the resolvent degree of any (and thus each) of

the above covers is dim(MSLQ(Z[%])) = 2.

Let PSp(4, 3) denote the image of Sp,(F3) — PSp,(F3); this is a simple group.
To prove the proposition, we make use of the following lemma.

Lemma 4.2.6. Let PSp(4,3) act linearly on P3 and let G C PSp(4,3) be any
subgroup. Let € be any class of accessory irrationalities containing all composites
of quadratic covers. Then P3 is an £-versal G-variety.

Proof. There is (see e.g. JABL™19]) an Sp,(F3)-equivariant dominant rational map
At — P

Lemma then implies that P3 is versal for Sp,(F3) As observed in the proof
of [FW18, Theorem 4.3], this implies that P is £-versal for PSp(4,3) and thus, by
Lemma .19 for any G C PSp(4,3) as well. O

Proof of Proposition [{.2.5] For versality, as in the proof of Proposition 23] it
suffices to prove that there are Ag-equivariant birational isomorphisms

(4.2.6.1) Mo = A2z = Mpy(3,1y(2,v=3)

where Mo is the moduli of 6 distinct points in P'. The first isomorphism of
([@26.7)) is the classical period map which sends 6 points in P! to the Jacobian of

6Recall that there are exceptional isomorphisms Spy (F2) = OI (F3) = S6.
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the hyperelliptic curve branched at those points. For the second, consider the Segre
cubic threefold X3 in P? given by

5 5
Xy o= {lag: oz €F: 3w =0= Y ad).
i=0 1=0

The permutation action of Sg on P° leaves invariant X3, permuting its 10 nodes.
Kondo [KonI3] proved that X3 is isomorphic to the Satake-Bailey-Borel compact-
ification of the Picard modular 3-fold Mpy(31y(z,,=3)- One can check that the
birational map Mpys,1y(z,y=5) — X3 is Se-equivariant (cf. e.g. [SBTI7 p. 6,
Lemma 2.1]).

Hunt proves in [Hun96l Theorem 3.3.11] that the dual variety to X3 is the so-
called Igusa quartic Iy, which is the moduli space of 6 points on a conic in P2. The
two varieties X3 and Z, are Sg-equivariantly birational. The Igusa quartic Z, is the
Satake compactification of Ag 2. The second birational isomorphism in (Z.2.6.1)) is
the composition of these.

Now let £ be any class of accessory irrationalities containing all quadratic covers
and composites thereof. As explained in Hunt [Hun96, Chapter 5.3], there is a 6: 1
(in particular, dominant) PSp(4, 3)-equivariant rational map

P > B

where the action of PSp(4,3) on P? is linear and where B denotes the “Burkhardt
quartic”. There is also a PSp(4, 3)-equivariant birational isomorphism

B Ay 3/F5.

Lemma 2.6 implies that As 3/F5 is E-versal for G = Ag C PSp(4, 3).

Thus Ay 3/F5 is E-versal for any subgroup of PSp(4, 3), in particular Ag. Finally,
Hunt [Hun96, Theorem 5.6.1] proved that B is PSp(4, 3)-equivariantly biregularly
isomorphic to the Baily-Borel compactification of Mpy3,1)(z,2)-

For the last statement, let £ be any class of accessory irrationalities containing
all composites of quadratic and cubic covers. By [vdG88| Chapter VIII, Theorem
2.6], there exists an Ag-equivariant birational isomorphism

Yt 5
MSL2(Z[1+2\5]13) =2VipsaCP

where Vi 24 is the common vanishing locus of the 1st, 2nd and 4th elementary
symmetric polynomials and Ag acts on P° via the permutation representation. As
above, it suffices to construct an accessory irrationality £ — A%/Ag in £ and an
equivariant dominant rational map

ASlp — Viga.

This follows from the classical theory of Tschirnhaus transformations (see e.g. [Wol]
for a contemporary treatment). Recall that a Tschirnhaus transformation Ty, for
some b := (b, ...,bs) € AS, is the assignment which sends a root z of the generic

sextic to
5
i=0
This defines an Sg-equivariant rational map

Ty : A8 — AS
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Letting b vary, we have an AP parameter space of Tschirnhaus tranformations for
each sextic, which we view as a trivial bundle

1 : AS xAg — AS.
We also have an evaluation map
ev: A® x A8 — AS

By direct computation (see e.g. [Wol Definition 3.5 and Lemma 3.6]), evil(‘m),
i.e. the preimage under the map ev of the affine cone over V; s 4, is the intersection

of a (trivial) family of hyperplanes T3, a cone over a generically smooth quadric ﬁ

(for smoothness, see e.g. [Wol, Lemma 2.6]), and a quartic cone Ty. By the classical
theory of quadrics (e.g. [Wol, Lemma 5.10]), there exists a finite, generically étale
map

Eyg — AG/AG

with monodromy a 2-group such that the quadric cone T;| E, contains a (trivial)
family £ — Ejy of 2-planes over Ey. The intersection

ExEoﬁ

is thus the affine cone over a family of 4 distinct points in P1. There thus exists an
Sy-cover

E — Ey
and a section o: E — ev=1(V}.2.4)| . The map
evoo: A6|E — ‘/1)274

gives the dominant map we seek. By construction £ — A®/Ag is in the class &,
and thus Vi 2 4 is indeed &-versal. O

Proposition 4.2.7 (Normal forms for the 27 lines).

(1) The congruence cover
Mpu1)z,.v=3) = Mpu,1)(2)

is versal for OF (F3) = W (FEs). i
(2) For & any class of accessory irrationalities containing all quadratic covers
and composites thereof, the congruence cover

A273 / F; — Ag
and the Picard modular 3-fold

Mpys,1)@z,2) = Mpus,1) @)

are E-versal for the simple group PSp(4,3) = W(Eg)* (the normal index
2-subgroup of W (FEg)).

In particular, [FW18| Conjecture 1.8] implies and is implied by the resolvent
degree of any (and thus each) of the above covers equaling dim(As) = 3.

"Recall that there is an exceptional isomorphism of O;r (F3) with the Weyl group of Fs.
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Proof. By Allcock-Carlson-Toledo [ACT02], there exists an OF (F3) = W(Eg)-

equivariant birational isomorphism

Hs,3(27) ~ MPU(4,1)(Z,\/—_3)

from the moduli Hz3(27) of smooth cubic surfaces with a full marking of the
intersection of their 27 lines to the Picard modular 4-fold.

By [DRI14] Lemma 6.1] Hs33(27) is versal for W(Eg). By Lemma 1.9, both
varieties are therefore versal for any subgroup of W (Es).

The remaining statements follow from the proof of Proposition[£.2.5 above. Con-
cretely, there we showed that Ay 3/F5 was E-versal for any subgroup of PSp(4, 3),
in particular for PSp(4, 3) itself. Together with the PSp(4, 3)-equivariant birational
isomorphism

Az 3 /T35 ~ Mpuys,1)z.2)
recalled in the proof of Proposition [£.2.5 this implies the result. O
Proposition 4.2.8 (Normal forms for the septic, the octic, and 28 bitan-
gents). Let G C Spg(F2) be any subgroup. Then the cover
Az = A3 g

is versal for G. In particular (cf. Remark[[.1.10] and Lemma[f.1.19) :
(1) Hilbert’s 13th Problem is equivalent to

RD(A372/A37A7) =3.
(2) Hilbert’s Octic Conjecture [Hil27, p. 248] is equivalent to
RD(As,2/As,45) = 4.

(3) [EW18| Problem 5.5(2)], which asks for the resolvent degree of finding a
bitangent on a planar quartic, is equivalent to asking for RD(As 2 — As).

Proof. This follows as in the proof of [FWI18, Proposition 5.7], which in turn
draws on [DOSE| and ideas of Coble. As explained there, there exists an Spg(Fs)-
equivariant dominant rational map

AT = H40(28) ~ M3[2]

where H4,2(28) denotes the moduli of smooth planar quartics with a marking of
their 28 bitangents, and Ms3[2] denotes the moduli of genus 3 curves with full
level 2 structure. The period mapping gives an Spg(F3)-equivariantly birational
isomorphism

M;3[2] ~ A3 o,
and thus As o is a versal G-variety for any G C Spg(F2) as claimed. O

4.2.9. By Klein [KI1887], the action A7 O P3 is solvably versal. As a result,
Hilbert’s 13th problem is equivalent to the assertion that the cover P3 — P3 /A7 is
a normal form of minimal dimension.

Question 4.2.10. Is there a congruence cover Xr» — Xr with Galois group A7 and
dim Xt = 3 which is also £-versal for one of the classes of accessory irrationalities
considered in Example 1.5V
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Finding such a congruence cover would give the transcendental part of Klein’s 3-
variable solution of the degree 7, as in [K11884, Chapter 5.9]. Note that Prokhorov’s
classification [Prol2, Theorem 1.5] of finite simple groups acting birationally on
rationally connected 3-folds gives strong constraints on any possible congruence
cover.

Question 4.2.11. Is there a congruence cover X1+ — X with Galois group Ag and
dim Xt = 4 which is also £-versal for one of the classes of accessory irrationalities
considered in Example . 1.5V

4.2.12. As Propositions[L.2.5land L.2.8show, for g = 2,3 the Sp,, (IFa)-variety A, 2

is G-versal for any subgroup G C Sp,,(IF2). Hence for n = 6, 7, 8 the resolvent degree
of the cover A4, 2 — A4, .4, is equal to RD(n), as defined in the introduction.
Interestingly, Hilbert’s conjectured value for resolvent degree, and the value of the
essential dimension at 2 for these covers, almost agree :

n 6 78 9
Hilbert: RD(n) 2 3 4 4
ed(A4,;2) 2 2 4 4

Note that in these cases the value of ed(Ag, 2 = Ag,. 4,;2) = ed(A4,;2) is already
given by Proposition B.Z.2] except when n = 8 and g = 3, in which case Proposi-
tion B2:2 gives the lower bound 3. The actual value ed(As 2 — As a,;2) = 4 follows
from versality (e.g. from Lemmal[d.T. T2 applied to the modular cover A4 2 — Ag a4
arising from the diagonal representation of Ag = SL4(IF3); the ed at 2 of this cover
follows from Corollary BI.3)).

APPENDIX A. ON QUADRATIC REPRESENTATIONS OF S,
By Nate Harman

A.1. Statement of Results. Recall that any linear representation of a p-group G
over a field k of characteristic p contains a non-zero invariant vector, in particular
this implies that the only irreducible representation of G over k is the trivial repre-
sentation. This does not mean that all representations are trivial though, there are
non-split extensions of trivial representations and understanding their structure is
a central part of modular representation theory.

In a non-semisimple setting, one basic invariant of a representation is its Lowey
length. For representations of p-groups in characteristic p it can be defined as
follows: Start with a representation V' and then quotient it by its space of invariants
to obtain a new representation V' = V/V&  then repeat this process until the
quotient is zero. The Lowey length is the number of steps this takes.

In the above work Farb, Kisin, and Wolfson analyze certain special represen-
tations of symmetric groups in characteristic 2, the so-called Dickson embeddings.
Typically denoted D(™~1:1) in the representation theory literature, these representa-
tions have the following key property: Let n = 2m or 2m + 1, these representations
have Lowey length 2 when restricted to the rank m (which is the maximum possible)
elementary abelian 2-subgroup H,, generated by (1,2), (3,4),..., and (2m—1,2m).

This motivates the following definition: We say that an irreducible representation
of a .S, in characteristic p is quadratic with respect to a maximal rank elementary
abelian p-subgroup H if it has Lowey length 2 upon restriction to H. The purpose
of this note is to prove first that this is only a characteristic 2 phenomenon, and
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second that these representations D™~ 11 are the only representations which are
quadratic with respect to some maximal rank elementary abelian p-subgroup for n
sufficiently large (n > 9).

In characteristic p > 2, the maximal rank elementary abelian p-subgroups in .S,
are just those generated by a maximal collection of disjoint p-cycles. Our first main
theorem tells us that there are no quadratic representations in characteristic p > 2,
and in fact we can detect the failure to be quadratic here by restricting to a single
p-cycle.

Theorem A.1. Any irreducible representation of S, with n > p in characteristic
p > 2 which is not a character has Lowey length at least 3 upon restriction to the
copy of Cy, generated by (1,2,...,p), and therefore is not quadratic with respect to
any mazximal rank elementary abelian p-subgroup.

Note that in any characteristic p > 2 the characters of S,, are just the trivial
and sign representations.

In characteristic 2 things are a bit more complicated. While the subgroup H,
of S, is a maximal rank elementary 2-subgroup, it is no longer the unique such
subgroup up to conjugation. Recall that in S; there is the Klein four subgroup
K = {e, (12)(34), (13)(24), (14)(23)}, which is a copy of C2 not conjugate to Hj.

We can construct other maximal rank elementary 2-subgroups of S,, by taking
products

KxKx---xXxKxHy, _4m C SgXx84%x-XxX8XSp_4m C Sp

m times m times

and up to conjugacy though these are all the maximal rank elementary abelian
2-subgroups inside S,,.

Sg has a special irreducible representation D(®3) of dimension 8 which upon
restriction Ag decomposes as a direct sum D3+ @ D63~ of two representations
of dimension 4. These representations realize the “exceptional” isomorphism Ag =
GL4(F2), or rather they realize two different isomorphisms differing by either by
conjugating Ag by a transposition in Sg or by the inverse-transpose automorphism
of GL4(F2). Under this isomorphism the subgroup K x K C Ag gets identified with
the subgroup of matrices of the form

OO O
OO = O
o~ 0O 2
= O Qo

which is manifestly quadratic. Our second main theorem will be to show that there
are no other quadratic representations other than the Dickson embedding once n
is at least 9.

Theorem A.2. Suppose V is a mon-trivial irreducible representation of S, with
n > 9 over a field of characteristic 2 which is quadratic with respect to a mazximal
rank elementary abelian 2-subgroup H. Then V = D=1V and H is conjugate to
H,.
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A.2. Proofs of Main Theorems. We will be assuming a familiarity with the
modular representation theory of symmetric groups. A standard reference for this
material the book [JamT78] of James, which we will be adopting the notation from
and referring to for all the basic results we need. The irreducible representations
of S, in characteristic p are denoted by D?, for p-regular partitions A of n. These
arise as quotients of the corresponding Specht modules S*, which are well behaved
reductions of the ordinary irreducible representations in characteristic zero.

A.2.1. Proof of Theorem [Adl First we will reduce the problem to just looking at
representations of S,. For that we have the following lemma:

Lemma A.2.1.

(1) Every irreducible representation V' of S,, with n > p in characteristic p > 3
which is not a character has a composition factor when restricted to Sp
which is not a character.

(2) Ewvery irreducible representation V of S, with n > 4 in characteristic 3
which is not a character has a composition factor when restricted to Sy
which is not a character.

Proof: For part (a) suppose V only has composition factors which are characters
when restricted to Sp. If we restrict this to the alternating group A, all the com-
position factors must be trivial, as A, only has the trivial character. If we further
restrict to A,—1 the whole action must be trivial because representations of A,
are semisimple in characteristic p. However if the action of A, is trivial on V'
then so is the action of the entire normal subgroup generated by A,_; inside S,
which we know is all of A, if n > 3. So V must be the trivial as a representation
of A,, and is therefore a character of S,,.

For part (b), let’s again suppose V only has composition factors that are char-
acters when restricted to Sy, which implies it only has trivial composition factors
when restricted to A4. If we further restrict to the Klein four subgroup K the whole
action must be trivial because representations of K are semisimple in characteristic
p # 2. As before we see V' must be trivial for the normal subgroup of 5,, generated
by K, which we know is all of A,, for n > 4. Therefore V' is a character. O

Remark: The modification for characteristic 3 is necessary because in character-
istic 3 the only irreducible representations of S3 are the trivial and sign represen-
tations. Theorem [A] holds vacuously in this case.

It is now enough to prove Theorem [Adlfor S, in characteristic p > 3, and for Sy
in characteristic 3. Let’s first focus on the case where p > 3. If X is a p-core, then
Nakayama’s conjecture (which is actually a theorem, see [Jam78] Theorem 21.11)
tells us D* = S is projective, and hence remains projective when restricted to
Cp and therefore has Lowey length p. This leaves those irreducible representations
corresponding to hook partitions A = (p — k, 1%).

In the simplest case where A\ = (p — 1,1) then D? is the (p — 2)-dimensional
quotient of the standard (p — 1)-dimensional representation S®~11) by its one
dimensional space of invariants, and one can easily verify this forms a single (p —2)-
dimensional indecomposable representation of C,. Peel explicitly computed the
decomposition matrices for S, in characteristic p (see [Jam78] Theorem 24.1), and
it follows from his calculation that the remaining irreducible representations D
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with A = (p — k, 1) for 1 < k < p — 2 are just exterior powers A*¥D®P~LD of this
(p — 2)-dimensional representation.

Since k < p we know that A¥D®~11) is a direct summand of (D®P~11)2k,
which as a representation of C), is just the unique (p — 2)-dimensional indecompos-
able representation tensored with itself k£ times. Tensor product decompositions for
representations of cyclic groups are known explicitly ([Gre62] Theorem 3), and in
particular it is known that a tensor product of two odd dimensional indecomposable
representations of C), always decomposes as a direct sum of odd dimensional inde-
composable representations. So we see (D®P~11)@k and AFDEP-1.1) — D—k1%)
only have odd length indecomposable factors when restricted to Cj,. If it had Lowey
length 1 when restricted to C), that means the action is trivial, which implies the
action of A, must also be trivial as A, is simple, but that would imply the original
representation of S,, was a character.

In the characteristic 3 case there are only two irreducible representations of
Sy, they are the standard 3-dimensional representation S = DG and its
sign twisted version S(>11) = D@L These are 3-core partitions so again by
Nakayama’s conjecture they are both projective and therefore remain projective
when restricted to C3 and have Lowey length 3. [J

A.2.2. Proof of Theorem[A 3. The overall structure of the proof will be to succes-
sively rule different classes of representations and maximal rank elementary abelian
2-subgroups through a sequence of lemmas. The first such lemma will let us rule
out those irreducible representations D* where ) is a 2-regular partition with at
least 3 parts.

Lemma A.2.2. If X is a 2-regqular partition with at least 3 parts, then the irreducible
representation D of S, contains a projective summand when restricted to Sg.

Proof: Note that any 2-regular partition A\ with at least 3 parts can be writ-
ten as (3,2,1) + pu = (u1 + 3,2 + 2,43 + 1, pa, ..., pg) for some partition p =
(1, ph2y -« -, pe). James and Peel [PJ79] constructed explicit Specht filtrations for
I”dEZxSn,G(S(B’M) ® S*), which have S as the top filtered quotient. In particular

this implies Ind?;‘xsn,ﬁ (8321 @ S#) has D* as a quotient. However by Frobenius
reciprocity we know that

Homg, (Indgr, s (S®*V@S"), DY) = Homs, x5, o (S®*V@S", Resgr, s (DY)

So since the left hand side is nonzero, the right hand side is as well.

Now if we look at S(>21) ® S* as a representation of Sg it is just a direct
sum of dim(S*) copies of S®21 which we know is irreducible and projective by
Nakayama’s conjecture. In particular the image under any nonzero homomorphism
is also just a direct sum of copies of S(21) so D* must contain at least one copy
of §321) ag a direct summand. O

Corollary A.3. If X is a 2-reqular partition with at least 3 parts, then D> is not
quadratic with respect to any mazimal rank elementary abelian 2-subgroup of S,,.

Proof: After conjugating we may assume that our maximal rank elementary
abelian subgroup intersects Sg in an elementary abelian 2-group of rank at least 2.
The previous lemma says any such irreducible representation must contain projec-
tive summand when restricted to Sg, and then this summand remains projective
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upon restriction to the intersection of Sg with our maximal rank elementary 2-
subgroup. Projective representations of C3 have Lowey length 3, so the Lowey
length for the entire maximal rank elementary abelian 2-subgroup of S,, must be
at least that big. [J

This reduces the problem to understanding what happens for two-part partitions
A = (a,b). These representations are much better understood then the general case.
For one thing, the branching rules for restriction are completely known in this case,
although we’ll just need the following simplified version:

Lemma A.3.1. (See [Kle98| Theorem 3.6, following [She99]) If (a,b) is a two-part
partition of n with a—b > 1 then D=1 appears as a subquotient with multiplicity
one inside the restriction of D@ to S,_1, and the other composition factors are
all of the form D@=1Hmb=") with r > 0.

Recall that we defined Hap C Sai to be the elementary abelian 2-subgroup of Say,
generated by the odd position adjacent transpositions (2 — 1,2:) for 1 <1i < k, we
will also consider Hyy, as a subgroup of S, for n > 2k via the standard inclusions of
Sok into S,. The next lemma will be to settle for us exactly which representations
are have Lowey length 2 when restricted to the standard maximal rank elementary
abelian subgroup H,,.

Lemma A.3.2. D55 contains a projective summand when restricted to Hoy,.

Proof: We know from the branching rules (Lemma [A3.1]) that D(®~**) contains
a copy of DFH+1LF) ag a subquotient when restricted to Sapy1, so it is enough to
verify it for D*+1F) Moreover Hyy, C Say, so really this calculation is taking place
inside M (2k) := Resg2 "' D10,

These representations D*+1%) and M(2k) are well studied. Benson proved
D+LE) {5 a reduction modulo 2 of the so-called basic spin representation of Sox1
in characteristic zero ([Ben88| Theorem 5.1). Nagai and Uno ([Uno02] Theorem 2,
or see [Oku08] Proposition 3.1 for an account in English), gave explicit matrix pre-
sentations for M (2k) and showed that they have the following recursive structure:

Res?m o M(2m) 2 M(2i) ® M(2m — 2i)

In particular since M (2) can easily be seen to be the regular representation of
Sy = Hs, it follows by induction that M (2k) is projective (and just a single copy
of the regular representation) for Hog. O

Corollary A.4. The only nontrivial irreducible representation of S,, which is qua-
dratic with respect to H,, is D11,

Proof: Corollary [A.3] tells us that if A has at least 3 parts, D* has Lowey length
at least 3 when restricted to H,,. Then Lemma tells us that D(™=Fk) hag
Lowey length at least k + 1 as a H,, representation and is therefore not quadratic
for k>1. 0O

To finish the proof of Theorem [A.2] we need to show that for n at least 9 that
there are no representations which are quadratic with respect to to any of these
other maximal rank elementary abelian 2-subgroups K™ x H,_4; with m > 1.
Lemma [A-3] rules out D* for A of length at least 3, so again we will just need to
address the case when A is a length 2 partition.
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We do this through a series of lemmas ruling out different cases, but first will state
the following well-known fact from the modular representation theory of symmetric
groups:

Lemma A.4.1. ([Jam78] Theorem 9.3) If X is a partition of n, then S* restricted
to Sp—1 admits a filtration

0=MyC M C---CMy==S*

such that the successive quotients M;/M;_y are isomorphic to Specht modules S,,,
and S* appears if and only if u is obtained from A by removing a single box, in
which case it appears with multiplicity one.

Lemma A.4.2. D"=LD  for n > 5, contains a projective summand when re-
stricted to K, and is therefore not quadratic with respect to any group containing

K.

Proof: It suffices to prove it for D™*1 as every D=1 for n > 5 contains it as
a composition factor upon restriction to S5 by Lemma [A. 3.1l This representation
D™D s just the 4 dimensional subspace of 5 where the sum of the coordinates is
zero. If we restrict this representation to Sy this can be identified with the standard
4-dimensional permutation representation via the map (a, b, ¢,d) — (a,b,¢,d, —a —
b — ¢ —d). The restriction of the standard action of Sy on a 4-element set to K is

simply transitive, so this representation is just a copy of the regular representation.
O

Lemma A.4.3. D22 forn > 7 and D=3 forn > 9 each contain a projective
summand when restricted to K, and are therefore not quadratic with respect to any
group containing K.

Proof: It suffices to prove it for D2 and D63 as every D("=22) for n > 7
contains D(®?) as a composition factor upon restriction to S7, and similarly every
D("=22) for n, > 7 contains D(®3) as a composition factor upon restriction to Sg
by Lemma [A-3.1]

For S7 and Sy the decomposition matrices are known explicitly and we have
that D2 = §6:2) and D6:3) = §(6:3) (see the appendix of [Jam78]). For Specht
modules the branching rules are given by Lemma [A 4.1 and S(2) and S both
contain S*1) as a subquotient upon restriction to Ss. The result then follows from
the previous lemma. [J

Lemma A.4.4. D("—kF) fork >4 andn > 2k+1 is not quadratic when restricted
to K™ X Hy_4pm for any m > 1.

Proof: We know by Lemma [A.3 2 these are projective upon restriction to Hay, and
are therefore projective when restricted to the intersection of Hoy, with K™ X Hy,— g4, .
This intersection has rank at least 2 since k& > 4, and therefore projective objects
have Lowey length at least 3. [J

This completes the proof of Theorem O
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A.3. Modifications for A,. We will now briefly describe what changes if we work
with alternating groups instead of symmetric groups, but we will omit some of the
details of the calculations. First a quick summary of the modular representation
theory of alternating groups in terms of the theory for symmetric groups:

Upon restriction from S,, to A,,, the irreducible representations D* either remain
irreducible, or split as a direct sums D* = D> @ D*~ of two irreducible non-
isomorphic representations of the same dimension; all irreducible representations
of A, are uniquely obtained this way. We’ll note that in characteristic p > 2 this
is a standard application of Clifford theory, but in characteristic 2 it is a difficult
theorem of Benson ([Ben88] Theorem 1.1). Moreover it is known exactly which D*
split this way, but we won’t go into the combinatorics here.

When p > 2 the maximum rank abelian p-groups in S, all lie in A,,, and the proof
of Theorem [AT] goes through without modification to give the following theorem.

Theorem [A.IP. Any non-trivial irreducible representation of A4,, with n > p in
characteristic p > 2 has Lowey length at least 3 upon restriction to the copy of
C, generated by (1,2,...,p), and is therefore not quadratic with respect to any
maximal rank elementary abelian p-subgroup.

When p = 2, the difference is more dramatic. It is no longer true that every
maximum rank abelian 2-subgroup of S, lies in A,, in particular H, is not a
subgroup of A,,. Let H,, denote the intersection of H,, and A, this has rank one
less than H,,. The maximal rank elementary abelian 2-subgroups of A, are as
follows:

If n = 4b or 4b 4+ 1 then up to conjugacy the only maximal rank elementary
abelian 2-subgroup inside A,, is K, and it is of rank 2b. If n = 4b+ 2 or 4b + 3
then all maximal rank elementary abelian 2-subgroups in S, still have maximal
rank when intersected with A,, and up to conjugacy the maximal rank elementary
abelian 2-subgroups inside A,, are of the form:

KXKxX- - X KXHp_gm C Agx Ay XX Ay XAp—am C An

m times m times

and these have rank 2b — 1.
The appropriate modification to Theorem for alternating groups is the fol-
lowing:

Theorem [A.2'. Suppose V is a non-trivial irreducible representation of A,, with
n > 9 over a field of characteristic 2 which is quadratic with respect to a maximal
rank elementary abelian 2-subgroup H. Then n = 2 or 3 modulo 4, V = D(»—1L1)
and H is conjugate to H,,.

The proof of Theorem [A2lmostly goes through in this case. Some additional care
is needed to handle the representations D** and D*~ which are not restrictions
of irreducible representations of S,,, however one simplifying observation is that
since DA and D~ just differ by conjugation by a transposition, they are actually
isomorphic to one another upon restriction to a maximal rank elementary abelian
2-subgroup. We will omit the remaining details though.
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