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MODULAR FUNCTIONS AND RESOLVENT PROBLEMS

BENSON FARB, MARK KISIN AND JESSE WOLFSON

WITH AN APPENDIX BY NATE HARMAN

Abstract. The link between modular functions and algebraic functions was
a driving force behind the 19th century study of both. Examples include the
solutions by Hermite and Klein of the quintic via elliptic modular functions and
the general sextic via level 2 hyperelliptic functions. This paper aims to apply
modern arithmetic techniques to the circle of “resolvent problems” formulated
and pursued by Klein, Hilbert and others. As one example, we prove that
the essential dimension at p = 2 for the symmetric groups Sn is equal to the
essential dimension at 2 of certain Sn-coverings defined using moduli spaces of
principally polarized abelian varieties. Our proofs use the deformation theory
of abelian varieties in characteristic p, specifically Serre-Tate theory, as well
as a family of remarkable mod 2 symplectic Sn-representations constructed by
Jordan. As shown in an appendix by Nate Harman, the properties we need
for such representations exist only in the p = 2 case.

In the second half of this paper we introduce the notion of E-versality as a
kind of generalization of Kummer theory, and we prove that many congruence
covers are E-versal. We use these E-versality result to deduce the equivalence
of Hilbert’s 13th Problem (and related conjectures) with problems about con-
gruence covers.
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1. Introduction

The link between modular functions and algebraic functions was a driving force
behind the 19th century development of both. Examples include the solutions by
Hermite and Klein of the quintic via elliptic modular functions, degree 7 and 8
equations with Galois group PSL2(F7) via the level the level 7 modular curve, the
general sextic via level 2 hyperelliptic functions, the 27 lines on smooth cubic sur-
faces via level 3, dimension 2 abelian functions, and the 28 bitangents on a smooth
quartic via level 2, dimension 3 abelian functions.1 With the Nazi destruction of
the Göttingen research community this connection was largely abandoned, and the
study of algebraic functions and resolvent problems, as pioneered by Klein, Hilbert
and others, fell into relative obscurity. The purpose of this paper to reconsider the
link between modular functions and classical resolvent problems. We do this from
a modern viewpoint, using arithmetic techniques.

Essential dimension at p of modular functions. To fix ideas we work over
C. Recall that an algebraic function is a finite correspondence X 99K1:n P1; that is, a
rational function f : X̃ 99K P1 on some (finite, possibly branched) cover X̃ → X. 2

A fundamental example is the general degree n polynomial, equivalently the cover

M0,n → M0,n/Sn,

where M0,n denotes the moduli space of n distinct marked points in P1. When X
is a locally symmetric variety f is called a modular function. A basic example is
the cover Ag,N → Ag where Ag is the (coarse) moduli space of principally polarized
g-dimensional abelian varieties and Ag,N is the moduli of pairs (A,B) with A ∈ Ag

and B a symplectic basis for H1(A;Z/NZ).
The relationship between modular functions and the solutions of the general de-

gree n polynomial motivated Klein [Kl1884,Kl1888], Kronecker [Kr1861] and others
to ask about the intrinsic complexity of these algebraic functions, as measured by
the number of variables to which they can be reduced after a rational change of
variables. In modern terms (as defined by Buhler-Reichstein, see e.g. [Rei10]), the

essential dimension ed(X̃/X) ≤ dim(X) of an algebraic function is the smallest

d ≥ 1 so that X̃ → X is the birational pullback of a cover Ỹ → Y of d-dimensional
varieties.

One can also allow, in addition to rational changes of coordinates, the adjunction
of radicals or other algebraic functions. This is done by specifying a class E of covers
under which X̃ → X can be pulled back before taking ed of the resulting cover.
This gives the essential dimension ed(X̃/X ; E) relative to the class E of “accesory
irrationalities”. For example, if one fixes a prime p and pulls back by covers of
degree prime to p, one obtains the notion of essential dimension at p, denoted
ed(X̃/X ; p) (see e.g. [RY00]). The idea of accessory irrationality was central to the
approaches of Klein and Hilbert to solving equations. We axiomatize this notion in
Definition 4.1.3 below and explore its consequences in Section 4.

The general degree n polynomial is universal for covers with Galois group Sn,
even allowing prime-to-p accessory irrationalities; that is, for all p ≥ 2 and for

1See e.g. [Kl1879, Kl1884, Kl1888, Bu1890, Bu1891, Bu1893, KF1892, FK12, Fri26], as well as
[Kle22a,Kle22b].

2When the functions are understood, we denote an algebraic function simply by the cover
X̃ → X.
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ed(Sn; p) defined as the maximum of ed(X̃/X ; p) for all Sn-covers X̃ → X , we
have:

ed(M0,n/M0,n; p) = ed(Sn; p).

With the many examples relating the general degree n polynomial to modular
functions, it is natural to ask if the same “maximal complexity property” holds for
modular functions. Our first result states that for p = 2 this is indeed the case. To
explain this, for a subgroup G ⊂ Sp2g(Z/NZ) set Ag,G := Ag,N/G.

Theorem 1. Let n ≥ 2, g = ⌈n
2 ⌉ − 1, and let N ≥ 3 be odd. There exists an

embedding Sn ⊂ Sp2g(F2) ⊂ Sp2g(Z/2NZ) such that

ed(Ag,2N/Ag,Sn
; 2) = ⌊n/2⌋ = ed(Sn; 2).

We remark that what we actually prove is the first equality. The second equality
then follows from a result of Meyer-Reichstein [MR09, Corollary 4.2]. In particular,
one sees from their result that ed(Sn; p) takes its maximal value for p = 2, so this
case is, in some sense, the most interesting.

One ingredient in the proof of Theorem 1 comes from the link between binary
forms and hyperelliptic functions; specifically, Jordan proved that the monodromy
of the 2-torsion points on the universal hyperelliptic Jacobian gives a mod 2 sym-
plectic Sn-representation. These remarkable representations were rediscovered and
studied by Dickson [Dic08] in 1908. We deduce Theorem 1 by applying the following
general result to these representations.

Theorem 2. Let G be a finite group, and G → Sp2g(Fp) a representation. If
U ⊂ Sp2g is the unipotent of a Siegel parabolic then

ed(Ag,pN/Ag,G; p) ≥ dimFp
G ∩ U(Fp)

Theorem 2 is of most interest for thoseG which admit a symplectic representation
with dimFp

G ∩ U(Fp) = ed(G; p), where ed(G; p) is the essential dimension at p of
a versal branched cover with group G (see Definition 4.1.6 below). For G = Sn, a
result of Harman (Theorems A.1 and A.2) says that this is possible only for p = 2,
and only using the particular mod 2 symplectic representation of Jordan/Dickson!
We also show that for G the Fq-points of a split semisimple group of classical type,
there is a symplectic representation of G for which the lower bound in Theorem 2 is
either equal or nearly equal to the maximal rank of an elementary abelian p-group
in G. The only near-misses occur for odd orthogonal groups. Note however, that
this rank is in general less than ed(G; p).

E-versal modular functions. Kummer theory gives that for each d ≥ 2 the cover
P1 → P1/(Z/dZ) has the following universal property: any Z/dZ cover X̃ → X

is pulled back from it. It follows that ed(X̃/X ; p) = 1 for any such X̃ → X .
Klein’s Normalformsatz states that, while the icosahedral cover P1 → P1/A5 is not
universal in the above sense (indeed ed(M0,5 → M0,5/A5) = 2), there exists a
Z/2Z accessory irrationality

Ỹ → X̃
↓ ↓
Y → X

such that Ỹ → Y is a pullback of P1 → P1/A5. This nonabelian version of Kum-
mer’s theorem is a kind of classification of actions of A5 on all varieties. We say
in this case that P1 → P1/A5 is E-versal with respect to any collection E of covers
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containing Z/2Z covers. Note that this cover is modular; indeed it is equivariantly
birational to the cover H2/Γ2(5) → H2/SL2(Z), where H2 is the hyperbolic plane
and Γ2(5) is the level 5 congruence subgroup of SL2(Z); here we are using the
natural isomorphism PSL2(F5) ∼= A5.

In §4 we axiomatize the idea of E-versality and we give a number of examples
(most classically known) of congruence covers that are E-versal for various groups
G. One sample result on E-versality is the following (see §4.2 for terminology). For
Γ < SL2(R)× SL2(R) a lattice, let MΓ : (H2 ×H2)/Γ; these are complex-algebraic
varieties called Hilbert modular surfaces.

Proposition 3. For E any class of accessory irrationalities containing all quadratic
and cubic covers and composites thereof, the Hilbert modular surface

M ˜
SL2(Z[

1+
√

5

2
],3)

→ M
SL2(Z[

1+
√

5

2
])

is E-versal for A6, where
˜

SL2(Z[ 1+
√
5

2 ], 3) denotes the kernel of the map

SL2(Z[
1 +

√
5

2
]) → PGL2(F9) ∼= A6.

In particular, Hilbert’s Sextic Conjecture is equivalent to the statement that the
resolvent degree of this cover equals 2.

The connection between these E-versality results with the first part of this paper
is that E-versal G-covers always maximize ed(X̃/X ; E) over all G-covers X̃ → X .
In §4 we apply such E-versality results to exhibit further the close relationship
between modular functions and roots of polynomials. Specifically, Hilbert’s 13th
Problem, and his Sextic and Octic Conjectures (see §4 for their exact statements)
are phrased in terms of the resolvent degree of the degree 6, 7 and 8 polynomials.
The resolvent degree RD(X̃/X) is the smallest d such that X̃ → X is covered by a
composite of covers, each of essential dimension ≤ d (see e.g. [AS76,Bra75,FW18]).
Applying various E-versality results, we deduce in §4 the equivalence of each of
Hilbert’s conjectures with a conjecture about the resolvent degree of a specific
modular cover. Similarly, we show that such a modular reformulation is possible
not only for general polynomials of low degree, but also for each of the algebraic
functions considered by Klein and his school [Kl1871,Kl1888,Kle26,Fri26].

Methods. The proof of Theorem 2 uses a refinement of the results of [FKW19],
which is explained in §1. In loc. cit, we used Serre-Tate theory to give lower bounds
on the essential at p for the coverings Ag,pN → Ag,N , when restricted to (some)
subvarieties Z ⊂ Ag,N . Here we drop the assumption that Z is a subvariety and
allow certain maps Z → Ag,N (cf. Proposition 2.3.5). In particular, we can apply
the resulting estimate to Z = Ag,G for G a subgroup of Sp2g(Fp), which yields the
lower bound for ed(Ag,pN/Ag,G; p) in Theorem 2.

One may compare the bounds given by Theorem 2 to those obtained in [FKW19,
§4] for certain finite simple groups of Lie type. The bound in the case of odd
orthogonal groups in loc. cit is weaker than the one given here because of the
restriction on the signature of Hermitian symmetric domains associated to odd
orthogonal groups. On the other hand the coverings we consider here correspond
to rather more exotic congruence subgroups than those of loc. cit.
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2. Moduli of Abelian varieties

2.1. Extension classes.

2.1.1. Fix a prime p, and let V be a complete discrete valuation ring of charac-
teristic 0, with perfect residue field k of characteristic p, and a uniformizer π ∈ V.
Let A = V [[x1, . . . , xn]] be a power series ring over V. We denote by mA ⊂ A the

maximal ideal, and m̄A = mA/πA. and set X̃ = SpecA, and X = SpecA[1/p]. We
will denote by k[ǫ] = k[X ]/X2 the dual numbers over k.

Recall [FKW19, 3.1.2] that there is a commutative diagram

A×/(A×)p
∼

//

��

Ext1
X̃
(Z/pZ, µp)

��

A[1/p]×/(A[1/p]×)p
∼

// Ext1X(Z/pZ, µp)

where the terms on the right are extensions as Z/pZ-sheaves. The vertical maps
are injective, and the extensions in the image of the map on the right are called
syntomic. There is also a map [FKW19, 3.1.5]

θA : Ext1
X̃
(Z/pZ, µp)

∼−→ A×/(A×)p → m̄A/m̄
2
A.

which sends a class represented by a function f ∈ 1 +mA to f − 1.

Lemma 2.1.2. Let U ⊂ Ext1
X̃
(Z/pZ, µp) be an Fp-subspace of dimension ≤ n.

Suppose that for every map h : A → k[ǫ] the image of U under the induced map

(2.1.2.1) Ext1
X̃
(Z/pZ, µp) → Ext1Speck[ǫ](Z/pZ, µp)

is nontrivial. Then the map

(2.1.2.2) θA : U ⊗Fp
k → m̄A/m̄

2
A

is an isomorphism; in particular dimFp
U = n.

Proof. Since the image of U under 2.1.2.1 is nontrivial, the composite

θA : U ⊗Fp
k → m̄A/m̄

2
A → ǫ · k

is nontrivial for every h. This implies that 2.1.2.2 is surjective, and since dimFp
U ≤

n it is injective, and dimFp
U = n. �

2.1.3. We call a subspace U ⊂ Ext1
X̃
(Z/pZ, µp) satisfying the conditions of

Lemma 2.1.2 nondegenerate, and we fix such a subspace. Now assume that V
contains a primitive pth root of unity, and fix a geometric point x̄ of X. Then

Ext1X(Z/pZ, µp)
∼−→ H1(X,µp) = H1

ét(X,µp) = Hom(π1(X, x̄), µp).

If U ′ ⊂ U is a subspace, denote byX(U ′) → X the finite étale cover corresponding
to U

′. That is, X(U ′) is the cover corresponding to the intersection of all the

elements of Hom(π1(X, x̄), µp) that are images of elements of U ′. We let X̃ ′ =

SpecA(U ′) denote the normalization of X̃ in X(U ′).
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Lemma 2.1.4. For any U ′ ⊂ U the ring A(U ′) is a power series ring over V.
Further,

(2.1.4.1) dimk Im(m̄A/m̄
2
A → m̄A(U ′)/m

2
A(U ′)) = dimFp

(U /U ′).

Proof. Let f1, . . . , fr ∈ A× be elements with 1 − fi ∈ mA, and such that the
images of f1, . . . , fr in Ext1

X̃
(Z/pZ, µp) form an Fp-basis for U ′. By definition,

X(U ′) = SpecA[1/p]( p
√
f1, . . . ,

p
√
fr). To prove the first claim, it suffices to show

that

A( p
√
f1, . . . ,

p
√
fr) = A[z1, . . . , zr]/(z

p
i − fi)

is a power series ring over V. Since U is nondegenerate, the images of f1, . . . , fr
are k-linearly independent in mA/m

2
A. Hence, after a change of coordinates, we can

assume that A
∼−→ V [[x1, . . . , xn]] with xi = fi − 1 for i = 1, . . . r. Then we have

A[z1, . . . , zr]/(z
p
i − fi)

∼−→ V [[z1 − 1, . . . , zr − 1, xr+1, . . . , xn]].

This also shows 2.1.4.1, as both sides are equal to n− r. �

2.2. Monodromy on the ordinary locus.

2.2.1. Fix an integer g ≥ 1, a prime p ≥ 2, and a positive integer N ≥ 2 coprime
to p. Consider the ring Z[ζN ][1/N ], where ζN is a primitive N th root of 1. Denote
by Ag,N the Z[ζN ][1/N ]-scheme which is the coarse moduli space of principally
polarized abelian schemes A of dimension g equipped with a basis of A[N ] that is
symplectic with respect to the Weil pairing defined by ζN . When N ≥ 3, this is a
fine moduli space which is smooth over Z[ζN ][1/N ]. For a Z[ζN ][1/N ]-algebra B,
denote by Ag,N/B the base change of Ag,N to B. If no confusion is likely to result,
we sometimes denote this base change simply by Ag,N .

From now on, unless stated otherwise, we assume that N ≥ 3 and we let A →
Ag,N be the universal abelian scheme. The p-torsion subgroup A[p] ⊂ A is a finite
flat group scheme over Ag,N which is étale over Z[ζN ][1/Np]. Let x ∈ Ag,N be a
point with residue field κ(x) of characteristic p, and Ax the corresponding abelian
variety over κ(x).

The set of points x such that Ax is ordinary is an open subscheme Aord
g,N ⊂

Ag,N ⊗ Fp. We denote by Âord
g,N the formal completion of Ag,N along Aord

g,N . We

denote by Aord,an
g,N the “generic fibre” of Âord

g,N as a p-adic analytic space.3

Denote by k an algebraically closed perfect field of characteristic p, and let
K/W [1/p] be a finite extension with ring of integers OK and uniformizer π. Assume
that K is equipped with a choice of primitive N th root of 1, ζN ∈ K, so that we
may consider all the objects introduced above over OK . Let K̄/K be an algebraic
closure.

Proposition 2.2.2. Fix a geometric point x ∈ Âord,an
g,N (K̄) and denote by x̄ ∈ Aord

g,N

its reduction.The covering Ag,pN → Ag,N corresponds to a surjective representation

(2.2.2.1) π1(Ag,N , x) → Sp2g(Fp).

3The reader may think of any version of the theory of p-adic analytic spaces they prefer (Tate,
Raynaud, Berkovich, or Hüber’s adic spaces), as this will have no bearing on our arguments.
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(1) There exists a Siegel parabolic P ⊂ Sp2g /Fp
with unipotent radical U, such

that 2.2.2.1 induces a surjective representation

(2.2.2.2) π1(Âord,an
g,N , x) → P (Fp).

(2) Let A = ÔAg,N ,x̄ be the completion of the local ring at x̄. Then (2.2.2.1)
induces a surjective representation

(2.2.2.3) π1(SpecA[1/p], x) → U(Fp).

Proof. The first claim is well known. Indeed, the existence of the Weil pairing on
A[p] implies that Ag,pN corresponds to a symplectic representation. A comparison
with the topological fundamental group shows that the image of the geometric
fundamental group π1(Ag,N⊗KK̄, x) is Sp2g(Fp), so the representation is surjective.

Now recall, that a Siegel parabolic is the stabilizer of a maximal isotropic subspace
in the underlying vector space of a symplectic representation. Equivalently it is a
parabolic with abelian unipotent radical. All such parabolics are conjugate. Over

Âord
g,N the finite flat group scheme A[p] is an extension

(2.2.2.4) 0 → A[p]m → A[p] → A[p]ét → 0

of an étale by a multiplicative group scheme, where étale locally A[p]ét
∼−→ (Z/pZ)g

and A[p]m
∼−→ µg

p. The Weil pairing induces a map of group schemes

A[p]×A[p] → µp.

which identifies A[p] with its Cartier dual, and induces an isomorphism A[p]m with
the Cartier dual of A[p]ét. In particular, this shows that A[p]mx ⊂ A[p]x corresponds
to a maximal isotropic subspace under the Weil pairing. This defines a Siegel

parabolic such that (2.2.2.1) maps π1(Âord,an
g,N , x) into P (Fp). By [FC90, Prop. 7.2]

the image of the composite

π1(Âord,an
g,N , x) → P (Fp) → (P/U)(Fp)

is surjective. Hence it suffices to prove (2).
For this, we adopt the notation of 2.1 applied with A as in (2). Since we are

assuming k is algebraically closed, over A, the group schemes A[p]ét and A[p]m are
isomorphic to (Z/pZ)g and µg

p respectively. In particular, the map (2.2.2.3) factors

through U(Fp). Let U ⊂ Ext1X(Z/pZ, µp) be the span of the g2 syntomic extension
classes defining the extension (2.2.2.4). Note that U(Fp) is an elementary abelian

p-group of rank n = dimFp
U = dimAg =

(
g+1
2

)
. Any Fp-linear map s : U(Fp) → Fp

induces a representation

π1(SpecA[1/p], x) → µp(K̄)
∼−→ Fp

(choosing pth root of unity), and hence a class in

c(s) ∈ Ext1X(Z/pZ, µp)
∼−→ H1(X,Fp).

The subspace U is the span of all the classes c(s). This shows dimU ≤ n, with
equality only if (2.2.2.3) is surjective. However, by [FKW19, 3.2.2], one sees that
U satisfies the conditions of Lemma 2.1.2, so that dimU = n, which completes
the proof of the lemma. �

Corollary 2.2.3. With the notation above, HomFp
(U(Fp),Fp) is naturally identi-

fied with a nondegenerate subspace U ⊂ Ext1X(Z/pZ, µp).
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Proof. The proof of the Proposition 2.2.2 shows that there is a natural map

HomFp
(U(Fp),Fp) → Ext1X(Z/pZ, µp)

whose image U is a nondegenerate subspace of dimension n = dimFp
U. �

2.3. Essential dimension.

2.3.1. We refer the reader to [FKW19, §2] for the definitions and facts we will need
about essential dimension and essential dimension at p. We remind the reader that
for K a field and Y → X a finite étale map of finite type K-schemes, ed(Y/X ; p)
denotes the essential dimension at p of YK̄ → XK̄ , where K̄ is an algebraic closure
of K.

2.3.2. We continue to use the notation introduced above. In particular A =

ÔAg,N ,x̄ denotes the complete local ring which is a power series ring over OK in

n =
(
g+1
2

)
variables.

Lemma 2.3.3. Let g : A → B and f : C → B be maps of power series rings over
OK , with f a flat map. Suppose there exists a finite étale covering Y ′ → SpecC[1/p]

and an isomorphism of étale coverings ε : f∗Y ′ ∼−→ g∗A[p] over SpecB[1/p]. Then

Im(m̄A/m̄
2
A → m̄B/m̄

2
B) ⊂ Im(m̄C/m̄

2
C → m̄B/m̄

2
B).

In particular,

dimk m̄C/m̄
2
C ≥ dimk Im(m̄A/m̄

2
A → m̄B/m̄

2
B).

Proof. By [FKW19, 2.1.8], we may assume that Y ′ is an extension of a constant
étale group scheme by a constant multiplicative group scheme, and that ε is an
isomorphism of extensions. By [FKW19, 3.1.4, 3.1.5], the extension Y ′ is syntomic,

and we may assume that the isomorphism f∗Y ′ ∼−→ g∗A[p] extends to an iso-
morphism of finite flat group schemes (which automatically respects the extension
structure) over SpecB.

Now let h : B → k[ǫ] be any map which vanishes on the image of m̄C/m̄
2
C , so that

h induces the constant map C → k. Then h∗f∗Y ′ ∼−→ h∗g∗A[p] is a split extension
over Spec k[ǫ]. It follows from [FKW19, 3.2.2] that h ◦ g(mA) = 0, which proves the
inclusion in the lemma. �

2.3.4. We introduce the following notation. For a map f : X → Y of smooth
k-schemes, we let

r(f) = max
x∈X(k)

dimk Im(m̄f(x)/m̄
2
f(x) → m̄x/m̄

2
x)

For f a map of smooth OK-schemes, set r(f) = r(f ⊗ k). Note that r(f) does not
change if we restrict f to a dense open subset in X.

Proposition 2.3.5. Let Z be a smooth, connected OK-scheme, and let Z →
Ag,N/OK

be a map of OK-schemes such that the image of the special fiber, Zk,

meets the ordinary locus Aord
g,N ⊂ Ag,N/k. Then

ed(A[p]|ZK
/ZK ; p) ≥ r(f)

Proof. The proof of this is almost the same as that of Theorem [FKW19, 3.2.6].
The only difference is that we use Lemma 2.3.3 instead of Lemma 3.2.4 of loc. cit
at the end of the proof. �
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Example 2.3.6. Let Hg denote the moduli of hyperelliptic curves of genus g. Let
Hg[n] be the moduli of pairs (C,B) where C is a hyperelliptic genus g curve and B
is a symplectic basis for H1(C;Z/nZ). Let τ : Hg/OK

→ Ag/OK
denote the Torelli

map. By [Lan19, Theorem 1.2], τ is an embedding only when the characteristic
of k is prime to 2; when k is of characteristic 2, r(τ) = g + 1. Because of this,
[FKW19, Theorem 3.2.6] does not give a lower bound on ed(Hg[2]/Hg; 2). Using
Proposition 2.3.5 above instead, as well as the argument of [FKW19, Corollary
3.2.7], we obtain

ed(Hg[2]/Hg; 2) ≥ g + 1.

Remark 2.3.7. More generally, Proposition 2.3.5 gives an arithmetic tool for ob-
taining lower bounds on the essential dimension at p, analogous to the “fixed point
method” (cf. [Rei10]). As forthcoming work of Brosnan-Fakhrudin-Reichstein
[BFR] demonstrates, the fixed point method applied to the toroidal boundary
recovers the bounds of Theorem 1 and similar bounds for non-compact locally
symmetric varieties (including those not of Hodge type); it also allows one to use
toroidal boundary components other than those corresponding to Siegel parabolics.
However, as remarked in [FKW19], we are not aware of methods besides Proposi-
tion 2.3.5 that apply to unramified nonabelian covers of compact varieties.

2.3.8. Proposition 2.2.2 implies that the monodromy group of Ag,pN → Ag,N can
be identified with Sp2g(Fp). Fix such an identification. Let G be a subgroup of
Sp2g(Fp) ⊂ Sp2g(Z/pNZ). Denote by Ag,G → Ag,N the finite, normal, covering
corresponding to G.

Theorem 2.3.9. Let p be a prime, and let N ≥ 3 be prime to p. G ⊂ Sp2g(Fp) ⊂
Sp2g(Z/pNZ). Then

ed(A[p]|Ag,G
/Ag,G; p) ≥ max

U
dimFp

U ∩G,

where the maximum on the right hand side is over all unipotent radicals of Siegel
parabolics in Sp2g(Fp).

Proof. Let U0 ⊂ Sp2g(Fp) be an abelian unipotent subgroup such that dimFp
U0∩G

achieves the maximum. Let U ⊂ Sp2g /Fp
be the abelian unipotent subgroup defined

in Proposition 2.2.2. Because all Siegel parabolics are conjugate in Sp2g(Fp), there
exists a conjugate of G, denoted G′ ⊂ Sp2g(Fp), such that

dimFp
U(Fp) ∩G′ = dimFp

U0 ∩G.

Because conjugate subgroups give isomorphic covers, and because ed(−; p) is a
birational invariant,

ed(A[p]|Ag,N,G
/Ag,N,G; p) = ed(A[p]|Ag,N,G′ /Ag,N,G′; p).

It therefore suffices to prove the theorem under the assumption that U0 = U(Fp).
For this, it suffices to consider the case G = U(Fp)∩G. In the following we slightly
abuse notation and write U for U(Fp).

Let x ∈ Ag,N (k) be a point in the ordinary locus. By (2) of Proposition 2.2.2,
there exists y ∈ Ag,pN (k) and x′ ∈ Ag,N,U (k) with y mapping to x′ and x, such
that the natural map

A := ÔAg,N ,x → ÔAg,N,U ,x′
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is an isomorphism, and such that, if B = ÔAg,pN ,y, then

SpecB[1/p] → SpecA[1/p]

is a U -covering.
Let U = HomFp

(U,Fp), and U ′
G = HomFp

(U/(U ∩ G),Fp). By Corollary 2.2.3,

U is identified with a nondegenerate subspace of Ext1X(Z/pZ, µp) where X =

SpecA[1/p]. Now let A′ = ÔAg,N,U∩G,x̄′′ , where x′′ denotes the image of y in
Ag,N,U∩G. Since Ag,N,U∩G is normal, using the notation of 2.1.3, we have A′ =
A(U ′

G). Hence, by Lemma 2.1.4, we have

dimk Im(m̄A/m̄
2
A → m̄A′/m2

A′) = dimFp
U ∩G,

and A′ is a power series ring over OK .
Since x was any point in the ordinary locus, this shows that r(f) ≥ dimFp

U ∩G,
where f : Ag,N,U∩G → Ag,N , and that Ag,N,U∩G is smooth over OK , over the
ordinary locus of Ag,N . Combining this with Proposition 2.3.5 proves the theorem.

�

3. Modular symplectic representations of finite groups

3.1. General Finite Groups. Let p be prime, G a finite group and V a faithful,
finite-dimensional G-representation over Fp. The pairing

ev : V ⊗ V ∨ → Fp

extends to a G-invariant symplectic form on V ⊕ V ∨. We refer to the associated
representation

G → Sp(V ⊕ V ∨)

as the diagonal (symplectic) representation associated to V .

Lemma 3.1.1. Let H ⊂ G be an elementary abelian p-subgroup, such that H maps
to the unipotent radical of a maximal parabolic in GL(V ). Then there exists a Siegel
parabolic of P ⊂ Sp(V ⊕V ∨) with unipotent radical U such that, under the diagonal
representation associated to V ,

H ⊂ U ∩G.

Proof. Any maximal parabolic in GL(V ) is the stabilizer P (W ) of a subspace W ⊂
V. Let U(W ) denote the unipotent radical of P (W ). Let W⊥ ⊂ V ∨ denote the dual
subspace. Then W ⊕W⊥ is a Lagrangian subspace of V ⊕ V ∨, and

GL(V ) ∩ StabSp(V⊕V ∨)(W ⊕W⊥) = StabGL(V )(W ) = P (W ).

Hence
GL(V ) ∩ U(W ⊕W⊥) = U(W ),

where U(W ⊕W⊥) is the unipotent radical of StabSp(V⊕V ∨)(W ⊕W⊥), the Siegel

parabolic corresponding to W ⊕W⊥. In particular H ⊂ U(W ) ⊂ U(W ⊕W⊥), the
Siegel parabolic corresponding to W ⊕W⊥. �

3.1.2. Let
sp(G) := max

U⊂GL(V )
dimFp

U ∩G

where the maximum is taken over all faithful representations G of V, and unipo-
tents U of maximal parabolics in GL(V ). Proposition 3.1.1 and Theorem 2.3.9
immediately imply the following.
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Corollary 3.1.3. For some g, there exists a congruence cover Ag,p → Ag,G with

ed(Ag,p/Ag,G; p) ≥ sp(G).

Remark 3.1.4. While Corollary 3.1.3 implies that ed(G; p) ≥ sp(G), this is not
hard to show directly, e.g. by [BR97, Lemma 4.1]. In fact, let

rp(G) := max
H⊂G

dimFp
H

where the maximum is taken over all elementary abelian p-groups H ⊂ G. Then
ed(G; p) ≥ rp(G) ≥ sp(G). The novelty of Corollary 3.1.3 is that a) this lower bound
can be realized by an explicit congruence cover; and b) the congruence cover, and
thus the lower bound, comes from modular representation theory at the relevant
prime, rather than from ordinary representation theory in characteristic 0 (as in
e.g. [BR97] or the theorem of Karpenko-Merkurjev [KM08]).

The corollary is most interesting in those cases where sp(G) is large. In the
remainder of this section we give examples where sp(G) is equal to, or at least very
close to rp(G). These consist of the case of alternating groups when p = 2, and the
case where G is the Fq-points of a split semisimple group of classical type.

3.2. The Groups Sn and An. We now specialize to the symmetric groups Sn and
the alternating groups An.

3.2.1. We would like to apply Corollary 3.1.3 to the case of symmetric and alternat-
ing groups. Meyer-Reichstein [MR09, Corollary 4.2] proved that ed(Sn; p) = rp(Sn)
and similarly for An for all n and p. However, in Appendix A, Harman shows that
for p > 2, sp(Sn) < rp(Sn) and similarly for An. The purpose of this section is to
show - see Proposition 3.2.2 below - that one has s2(Sn) = r2(Sn) for all n, and
s2(An) = r2(An) (resp. s2(An) = r2(An) − 1) for n = 2, 3 (resp. 0, 1) modulo 4.
This uses a remarkable mod 2 symplectic representation of Sn, discovered by Dick-
son. Harmon’s results imply that for n ≥ 5, this is the only mod 2 representations
for which the unipotent of a maximal parabolic meets Sn in a maximal elementary
abelian 2-group.

Recall the “permutation irrep” V of Sn over Fp.
4 For p ∤ n this is the analogue

over Fp of the standard permutation irrep in characteristic 0, i.e. the invariant
hyperplane

V = {(a1, . . . , an) ∈ Fn
p |

∑
ai = 0}

For p | n the diagonal line ∆ := {(a, . . . , a)} ⊂ Fn
p is an invariant subspace of the

invariant hyperplane, and

V = {(a1, . . . , an) ∈ Fn
p |

∑
ai = 0}/∆.

Dickson [Dic08] showed that over F2, the permutation irrep of Sn is a symplectic
representation. Let

dn := ⌈n
2
⌉ − 1,

so that Dickson’s representation gives a “Dickson embedding” Sn ⊂ Sp2dn
(F2).

4The results of Dickson [Dic08] and Wagner [Wag76,Wag77] show that the permutation irrep
is a minimal-dimensional faithful irrep for n > 8 and p = 2, or for n > 6 and p odd.
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Proposition 3.2.2. Let N ≥ 3 be odd. For all n ≥ 2, consider the Dickson
embedding Sn ⊂ Sp2dn

(F2) ⊂ Sp2dn
(Z/2NZ). There exists a Siegel parabolic with

unipotent radical U such that

dimF2
U ∩ Sn = ⌊n

2
⌋,

dimF2
U ∩ An = ⌊n

2
⌋ − 1.

By Theorem 2.3.9, for all n ≥ 1:

ed(Adn,2N/Adn,Sn
; 2) = ⌊n

2
⌋ = ed(Sn; 2),

ed(Adn,2N/Adn,An
; 2) = ⌊n

2
⌋ − 1,

i.e.

ed(Adn,2N/Adn,An
; 2) =

{
ed(An; 2)− 1 n = 0, 1 mod 4
ed(An; 2) n = 2, 3 mod 4

Proof. Let V denote the permutation irrep of n over F2, as in [Dic08], i.e.

V = H/∆ = {(x1, . . . , x2⌈n
2
⌉) ∈ F

2⌈n
2
⌉

2 |
∑

i

xi = 0}/{(x, . . . , x) ∈ F2}

A convenient basis for V is given by the cosets in H of

ei := [(0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 in the ith place

, 0, 1)]

for i = 1, . . . , 2dn. With respect to this basis the action of S2dn
⊂ Sn is the standard

permutation action of S2dn
on F2dn

2 . Dickson [Dic08, p. 124] proved that the Sn

action on F2dn

2 preserves the symplectic form
∑

1≤i6=j≤dn
xiyj . We now change basis

for ease of studying a Lagrangian. Let

ωi := e2i−1 + e2i

ω∨
i =

∑2i−1
j=0 ej .

A straightforward computation shows that the planes W = 〈{ωi}ni=1〉 and W⊥ =
〈{ω∨

i }ni=1〉 are dual Lagrangians written with dual Lagrangian bases.
Now fix W and let P := Stab(W ) be the corresponding Siegel parabolic with

unipotent U . From the Lagrangian basis for W , we see that

(3.2.2.1) F
⌊n

2
⌋

2 = 〈(12), (34), . . . , (2⌊n
2
⌋ − 1 2⌊n

2
⌋)〉 ⊂ U ∩ Sn

But this is a maximal elementary abelian 2-group in Sn, so (3.2.2.1) is an equality.
Thus

U ∩An = 〈(12)(34), . . . , (12)(2⌊n
2
⌋ − 1 2⌊n

2
⌋)〉 = F

⌊n
2
⌋−1

2

as claimed. �
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3.3. Finite groups of Lie type.

Proposition 3.3.1. Let q = pr, and G = H(Fq), where H is one of the semisim-
ple Lie groups SLm, SO2m+1, Sp2m with m ≥ 2 or SO2m, with m ≥ 4. Let ρ :
H → GL(V ) be the standard representation of H over Fq. Then there exists a par-

abolic P (W ) ⊂ GL(V ) with unipotent radical U, such that dimFq
W = ⌊dimV

2 ⌋, and
r′p(G) := dimFq

G ∩ U satisfies:

• If G = SLm(Fq), then r′p(G) = ⌊m2

4 ⌋.
• If G = Sp2m(Fq) then r′p(G) = m(m+1)

2 .

• If G = SO2m(Fq) then r′p(G) = m(m−1)
2 .

• If G = SO2m+1(Fq) then r′p(G) = m(m−1)
2 .

We have r · r′p(G) = rp(G) in all cases except if G = SO2m+1, in which case

rp(G)/r = m(m+1)
2 if q is even and rp(G)/r = m(m−1)

2 + 1 (resp. 5, resp. 3) if q is
odd and m ≥ 4, (resp. m = 3, resp. m = 2).

Proof. We use the standard representations of the root systems of each of the groups
H. In each case, we will recall the weights appearing in V, specify the subspace
W ⊂ V, and describe a subgroup UG ⊂ H as a sum of root spaces. In each case
if r is a root appearing in UG and w,w′ are weights appearing in W and V/W
respectively, then r+w does not appear in V, and r+w′ does not appear in V/W.
This implies that UG ⊂ H ∩ U.

If G = SLm(Fq), then the weights of V are e1, . . . , em, and W = 〈e1, . . . , e⌊m
2
⌋〉.

The roots appearing in UG are ei − ej with i ≤ ⌊m
2 ⌋ < j.

If G = Sp2m(Fq), then the weights of V are ±e1, . . . ,±em, andW = 〈e1, . . . , em〉.
The roots appearing in UG are ei + ej and 2ei for 1 ≤ i < j ≤ m.

IfG = SO2m(Fq), then the weights of V are±e1, . . . ,±em, andW = 〈e1, . . . , em〉.
The roots appearing in UG are ei + ej for 1 ≤ i < j ≤ m.

If G = SO2m+1(Fq), then the weights of V are ±e1, . . . ,±em, 0 and W =
〈e1, . . . , em〉. The roots appearing in UG are ei + ej for 1 ≤ i < j ≤ m.

The maximal elementary abelian p-subgroups of H(Fq) for each group H ap-
pearing above are computed in [Bar79]. In particular, for G equal to one of
SLm(Fq), Sp2m(Fq), SO2m(Fq), one sees that UG is already a maximal elementary
abelian p-subgroup, so that UG = H∩U and r·r′p(G) = rp(G). For G = SO2m+1(Fq)
the claims about rp(G) also follows from loc. cit, and it remains only to prove that
UG = H ∩ U in this case.

To see this, consider v =
∑

r arr ∈ Lie (H ∩ U) where r is a positive root of H
and ar is a scalar. Now V is a cyclic highest weight module for LieH. Using this
and that v annihilates ej ∈ W, one gets ar = 0 if r = ei − ej . Similarly, since v
annihilates −ej ∈ V/W, ar = 0 for r = ej. Thus v ∈ UG. �

Remark 3.3.2. Note that when q is even, one has SO2m+1(Fq) ≃ Sp2m(Fq), so
that sp(G) = rp(G) in this case.

4. Classical Problems and Congruence Covers

Beginning with the work of Hermite on the quintic [He1858], the use of modu-
lar functions to solve algebraic equations is a major theme of 19th century work,
including Klein’s icosahedral solution of the quintic [Kl1884], the Klein-Burkhardt
formula for the 27 lines on a cubic surface [Kl1888,Bu1890,Bu1891,Bu1893], the
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Klein-Gordan solution of equations with Galois group the simple group PSL(2, 7)
[Kl1879,Go1882], and the Klein-Fricke solution of the sextic [Kle05,Fri26]. Under-
lying this work is the fact that problems of algebraic functions are often equivalent
to problems of modular functions and congruence covers.

Our goal in this section is to record the classical equivalences, and add to them
using recent advances in uniformization. We begin by axiomatizing the notion of
accessory irrationality, and recalling the general context in which to take up Klein’s
call to “fathom the nature and significance of the necessary accessory irrationalities”
[Kl1884, p. 174]. We then recall the general setup of congruence covers of locally
symmetric varieties in order to state the precise equivalences.

While many of the results of this section are implicit in the classical literature, as
far as we can tell, with the exception of Klein’s Normalformsatz [Kl1884], that var-
ious classical problems are in fact equivalent has gone unremarked in the literature
until quite recently [FW18].

4.1. Accessory Irrationalities and E-Versality. For the rest of the paper we
fix an algebraically closed field K of characteristic 0.

4.1.1. By a branched cover Y → X, we mean a dominant, finite map of normal
K-schemes of finite type. Branched covers form a category: a map (Y ′ → X ′) →
(Y → X) is a commutative diagram

Y ′ //

��

Y

��

X ′ // X.

If f : X ′ → X is a map of normal K-schemes of finite type, denote by f∗Y the
normalization of Y ×X X ′. If X is connected then Y → X corresponds to a finite
set SY with an action of π1(U) for some dense open U ⊂ X, where π1(U) denotes
the étale fundamental group of U. We denote by Mon(Y/X) the image of π1(U) in
Aut(SY ).

4.1.2. We now introduce the notion of a class of accessory irrationalities (cf. Klein
[Kl1884,Kl1893], see also Chebotarev [Che32]).

Definition 4.1.3 (Accesory irrationalities). A class of accessory irrationalities
is a full subcategory E of the category of branched covers. If E(X) ⊂ E denotes the

subcategory consisting of branched covers X̃ → X, then we require that E(X) is
stable under isomorphisms, and satisfies the following conditions.

(1) For any X, the identity X → X is in E(X).
(2) For any map f : X ′ → X of normal K-schemes of finite type, f∗ induces a

functor f∗ : E(X) → E(X ′).
(3) E(X ∐

X ′) = E(X)× E(X ′).
(4) E(X) is closed under products: If E,E′ ∈ E(X), then E ×X E′ ∈ E(X).
(5) If U ⊂ X is dense open, then the map E(X) → E(U) induced by restriction

is an equivalence of categories.
(6) If E → X ′ → X are branched covers and if E → X is in E(X) then E → X ′

is in E(X ′).
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Axiom (2) implies that E is a category fibered over the category of normal K-
schemes. Note that Axiom (3) implies that it is enough to specify E(X) for X
connected.

Definition 4.1.4. Fix a class E of accessory irrationalities. The essential dimension
of a cover X̃ → X, with respect to E is:

ed(X̃/X ; E) := min
(E→X)∈E

ed(E ×X X̃/E).

Example 4.1.5. Some of the core classical examples of E are as follows (for sim-
plicity we specify E(X) only for X connected):

(1) For E(X) = {id : X → X}, the quantity ed(X̃/X ; E) is just the essential

dimension ed(X̃/X).
(2) Let p be a prime and let E(X) be the subcategory of branched covers of X

whose degree is coprime to p. Then ed(X̃/X ; E) is the essential dimension
at p. We emphasize that, although it leads to the same notion of essential
dimension at p, we do not insist that E is connected, as this version of the
definition does not satisfy Axiom (3) of Definition 4.1.3.

(3) Let E(X) be the set of covers E → X with Mon(E/X) abelian. Then

ed(X̃/X ; E) is the abelian resolvent degree. Likewise, we can consider the
class of accessory irrationalities with nilpotent (resp. solvable) monodromy,
to obtain the nilpotent (resp. solvable) resolvent degree (see [Kl1893,Che32,
Che43]).

(4) Let G be a finite simple group, and let E(X) consist of all E → X such
that for each connected component E′ of E, the branched cover E′ → X is
Galois and a composition series for Gal(E′/X) has no factor isomorphic to

G. We write ed(X̃/X ;G) for ed(X̃/X ; E).
Definition 4.1.6 (E-versality). Let E be a class of accessory irrationalities. A

Galois branched cover X̃ → X with group G is E-versal if for any other Galois
G-cover Ỹ → Y , and any Zariski open U ⊂ X , there exists

(1) an accessory irrationality E → Y in E(Y ),
(2) a nontrivial rational map f : E → U , and

(3) an isomorphism f∗X̃|U ∼= Ỹ |E .
Remark 4.1.7. If E is the trivial class of accessory irrationalities, i.e. E(X) only
contains the identity, then E-versal is just “versal” in the usual sense of the term
(see e.g. [GMS03, Section 1.5]).

If E ′ ⊂ E are classes of accessory irrationalities, then E ′-versality for a G-cover
implies E-versality. In particular a cover which is versal is E-versal for any class E .
Example 4.1.8.

(1) Hilbert’s Theorem 90 implies that for a finite group G, and every faithful
linear action G 	 An, the map An → An/G is versal (see [DR15]).

(2) The Merkujev-Suslin Theorem [MS83, Theorem 16.1] implies that for every
faithful, projective-linear action G 	 Pn, the map Pn → Pn/G is solvably
versal, i.e. E-versal for the class E of solvable branched covers.5

Lemma 4.1.9. Let G be a finite group, let E be a class of accessory irrationalities,
and let X̃ → X be an E-versal G-cover.

5Mutatis mutandis, this follows by the same reasoning as in [DR15].
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(1) Let X̃ → Z̃ be a G-equivariant dominant rational map. Then Z̃ → Z̃/G is
an E-versal G-cover.

(2) Let H ⊂ G be any subgroup. Then X̃ → X̃/H is an E-versal H-cover.

Proof. The first statement follows immediately from the definition. For the second,
let Ỹ → Y be a Galois H-cover. Then

Ỹ ×H G → Y

is a Galois G-cover which is H-equivariantly isomorphic to Ỹ × G/H → Y . By
E-versality, for any Zariski open U ⊂ X , there exists an accessory irrationality

E → Y

in E , and a rational map

f : E → U

with an isomorphism of G-covers

f∗X̃ ∼= (Ỹ ×H G)|E .
By the Galois correspondence for covers, the H-equviariant isomorphism above
implies that E → U factors through a map

f̃ : E → (X̃/H)|U
We conclude that f̃∗X̃ ∼= Ỹ |E and that X̃ → X̃/H is E-versal for H as claimed. �

Remark 4.1.10. Example 4.1.8(1) and Lemma 4.1.9(1) immediately imply that
for each n ≥ 4, the cover M0,n → M0,n/Sn is versal for the group Sn.

4.1.11. We can also consider the resolvent degree of a cover X̃ → X , which is
somewhat different from, but related to the idea of the general notion of essential
dimension defined above. To explain this, write E• → X for a tower of branched
covers E = Er → · · · → E0 = X. The resolvent degree of X̃ → X is defined as

RD(X̃/X) = min
E•→X

max
{
ed(E ×X X̃/E), {ed(Ei/Ei−1)}ri=1

}

where E• → X runs over all sequences of covers.
When Mon(X̃/X) is simple, it follows from [FW18, Cor. 2.18] that the definition

of RD(X̃/X) does not change if we consider only E• → X such that the compo-

sition π1(E) → π1(X) → Mon(X̃/X) is surjective and ed(Ei/Ei−1) < dim(X). In
particular

(4.1.11.1) min
E•→X

ed(E ×X X̃/E) ≤ RD(X̃/X)

where E• → X runs over sequences of covers satisfying these conditions. On the
other hand, in every known example, the current best upper bound for RD(−) can
be exhibited using such a sequence E• → X which in addition satisfies ed(E ×X

X̃/E) ≥ ed(Ei+1/Ei), for i = 1, . . . , r.
Hilbert [Hi1900, Hil27] made three conjectures on the resolvent degree of the

general degree n polynomial; equivalently on

RD(n) := RD(M0,n/(M0,n/Sn)) = RD(M0,n/(M0,n/An)).
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Conjecture 4 (Hilbert). The following equalities hold:

Sextic Conjecture: RD(6) = 2.
13th Problem: RD(7) = 3.

Octic Conjecture: RD(8) = RD(9) = 4.

The upper bounds in Conjecture 4 are known; the first two are due to Hamilton,
the last to Hilbert.

Our interest in E-versality comes from the following lemma, which is proven
mutatis mutandis by the same argument as in the proof of [FW18, Proposition 3.7].

Lemma 4.1.12. Let E be a class of accessory irrationalities and let X̃ → X be an
E-versal G-cover. For any Galois branched cover Ỹ → Y with monodromy G,

ed(Ỹ /Y ; E) ≤ ed(X̃/X ; E).
In particular, for any other E-versal G-cover X̃ ′ → X ′,

ed(X̃ ′/X ′; E) = ed(X̃/X ; E).
Further, if E is any of the classes of Example 4.1.5 and if G is simple, then

RD(Ỹ /Y ) ≤ RD(X̃/X) and RD(X̃ ′/X ′) = RD(X̃/X).

Lemma 4.1.12 makes precise the classical discovery that E-versal G-covers pro-
vide “normal forms” to which every other G-cover or can be reduced. Notably, for
many groups G of classical interest, congruence covers are E-versal for a natural
choice of E .
Remark 4.1.13. While the notion of versality has been studied intensively for
several decades, many of the most interesting normal forms, beginning with Klein’s
Normalformsatz, rely on the notion of solvable versality, which is substantially more
flexible. For example, a versal G-variety of minimal dimension must be unirational.
On the other hand, there are no rational A6 curves (by Klein’s classification of
finite Möbius groups), and the level 3 Hilbert modular surface of discriminant
5, which is solvably versal for A6 and conjectured by Hilbert to be of minimal
dimension among such varieties, has arithmetic genus equal to 5 (see the discussion
in the proof of Propositon 4.2.5 below). A better understanding of the geometric
implications of solvable versality (and related notions) could shed significant light
on the underpinnings of Hilbert’s conjectures.

4.2. E-Versal Congruence Covers. We can now record the E-versal congruence
covers that we know. Klein’s Normalformsatz provides the paradigmatic example
for what follows.

4.2.1. Let G be a group-scheme of finite type over Z whose generic fiber, which
we also denote by G, is a connected semisimple group. A subgroup Γ ⊂ G(Z) is
called a congruence subgroup if it contains

G(Z, n) := ker(G(Z) → G(Z/n))

for some positive integer n.
We assume that the quotient X of G(R) by its maximal compact subgroup is

a Hermitian symmetric domain. Then for any congruence subgroup Γ, a theorem
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of Baily-Borel asserts that MΓ := X/Γ is a complex, quasiprojective variety. For
Γ′ ⊂ Γ congruence subgroups there is a natural map covering map MΓ′ → MΓ.

For L a totally real number field, one can apply the above to ResL/QG, instead

of G. In this case we have G(OL)
∼−→ ResL/QG(Z) and when we write G(OL)

we mean that we are working the Hermitian symmetric domain and congruence
subgroups associated with the group ResL/QG. Similarly, we write G(OL, n) for

ResL/QG(Z, n). If L = Q(
√
d) is real quadratic, denote by G(OL,

√
d) the kernel of

ResL/QG(Z) = G(OL) → G(OL/
√
d).

If L is quadratic imaginary and a, b are non-negative integers, one can consider
the unitary group U(a, b) of signature a, b defined by L. This is the subgroup scheme
of ResOL/ZGLn, where n = a+ b, which fixes the standard Hermitian (with respect
to conjugation on K) form of signature (a, b). One also has the corresponding
projective unitary group PU(a, b).

In fact for the rest of this section we take L = Q(ω), where ω is a primitive
cube root of 1, and we will only need groups of signature n − 1, 1. We denote by
PU(n− 1, 1)(Z,

√
−3) the kernel of the composite

PU(n− 1, 1)(Z) → ResOL/Z PGLn(Z) = PGLn(OL) → PGLn(F3).

Theorem 4.2.2 (Klein’s Normalformsatz, [Kl1884]). Let E be any class of
accessory irrationalities containing all quadratic branched covers. Then the level 5
cover of the modular curve

MSL(Z,5) → MSL2(Z).

is an E-versal A5-cover. In particular, for any branched cover X̃ → X with mon-
odromy A5,

ed(X̃/X ; E) = RD(X̃/X) = 1.

This is in contrast to Klein’s theorem that ed(A5) = 2. We can add another
example for A5, which was studied in detail by Hirzebruch [Hir76], and was likely
known to Kronecker, Klein and Hilbert.

Proposition 4.2.3. The level 2 cover of the Hilbert modular surface

M
SL2(Z[

1+
√

5

2
],2)

→ M
SL2(Z[

1+
√

5

2
])

is versal for A5.

Proof. By [Hir76], there is an A5-equivariant birational equivalence

M0,5 ≃ M
SL2(Z[

1+
√

5

2
],2)

.

There is an A5-equvariant dominant map

A5 → M0,5,

where the source is the permutation representation and the map is the quotient
by the diagonal action of Aut(A1). By Hilbert’s Theorem 90, A5 is versal. The
proposition now follows from Lemma 4.1.9. �

Similar to, but less well-known than, Klein’s normalformsatz is the following (see
[Kl1879,Go1882], [Hir77, p. 318-319] and [Fri26, Vol. II, Part 2, Chapters 1-2]).
Denote by PSL(2, 7) the image of SL2(F7) → PGL2(F7); this is a simple group.

Proposition 4.2.4 (Normal forms for PSL(2, 7)).
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(1) Let PGL+
2 (Z[

√
7]) ⊂ PGL2(Z[

√
7]) denote the subgroup of elements which

lift to an element of GL2(Z[
√
7]) with totally positive determinant. The

cover

M PGL2(Z[
√
7],

√
7) → M PGL+

2
(Z[

√
7])

of Hilbert modular surfaces is versal for the simple group PSL(2, 7).
(2) Let E be any class of accessory irrationalities containing all S4-covers. Let

˜SL2(Z, 7) denote the kernel of the surjection SL2(Z) → PSL(2, 7). Then
the level 7 modular curve

M ˜SL2(Z,7)
→ MSL2(Z)

is an E-versal PSL(2, 7)-cover. In particular, for any branched cover X̃ →
X with monodromy PSL(2, 7),

ed(X̃/X ; E) = RD(X̃/X) = 1.

Proof. We remark that Z[
√
7]× = {±ǫn} where ǫ = 8+3

√
7 is the fundamental unit.

Hence PGL2(Z[
√
7],

√
7) ⊂ PGL+

2 (Z[
√
7]), and in particular, the latter group is a

congruence subgroup.
Consider the modular curve M ˜SL2(Z,7)

. This has genus 3, and so the action of

PSL(2, 7) on 1-forms gives a linear action of PSL(2, 7) on A3, and an equivariant
dominant rational map A3 → P2. Lemma 4.1.9 then implies that P2 is versal
for PSL(2, 7). As noted on [Hir77, p. 318-319], there is a PSL(2, 7)-equivariant
birational isomorphism

P2 ∼= M PGL2(Z[
√
7],

√
7).

This proves the first statement of the proposition.
The second statement follows from [Kl1879, Go1882]. In modern language, it

suffices to construct an accessory irrationality E → P2/PSL(2, 7) and a PSL(2, 7)-
equivariant dominant rational map

P2|E → M ˜SL2(Z,7)
.

For this, the canonical embedding of the modular curve M ˜SL2(Z,7)
gives a PSL(2, 7)-

equivariant map

M ˜SL2(Z,7)
→ P2.

As Klein discovered, the image of this map is a quartic curve, the so-called “Klein
quartic”. Fixing any PSL(2, 7)-invariant pairing on P2, there is a rational map

P2 → M0,4/S4.

which sends a point x ∈ P2 to the intersection of the dual line Lx with the Klein
quartic. Let

E = M0,4|P2 .

Then there is a PSL(2, 7)-equivariant dominant map

P2|E → M ˜SL2(Z,7)

as claimed. �

We can add the following result to the above.

Proposition 4.2.5 (Normal forms for the sextic).
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(1) The congruence cover

A2,2 → A2

and the Picard modular 3-fold

MPU(3,1)(Z,
√
−3) → MPU(3,1)(Z)

are versal for A6.
6

(2) For E any class of accessory irrationalities containing all quadratic covers
and composites thereof, the congruence cover

A2,3/F×
3 → A2,A6

and the Picard modular 3-fold

MPU(3,1)(Z,2) → MPU(3,1)(Z,A6)

are E-versal for A6.
(3) For E any class of accessory irrationalities containing all quadratic and

cubic covers and composites thereof, the Hilbert modular surface

M ˜
SL2(Z[

1+
√

5

2
],3)

→ M
SL2(Z[

1+
√

5

2
])

is E-versal for A6, where
˜

SL2(Z[ 1+
√
5

2 ], 3) denotes the kernel of the map

SL2(Z[ 1+
√
5

2 ]) → PGL2(F9) = A6.

In particular (cf. Remark 4.1.10 and Lemma 4.1.12) Hilbert’s Sextic Conjecture
is equivalent to the statement that the resolvent degree of any (and thus each) of
the above covers is dim(M

SL2(Z[
1+

√
5

2
])
) = 2.

Let PSp(4, 3) denote the image of Sp4(F3) → PSp4(F3); this is a simple group.
To prove the proposition, we make use of the following lemma.

Lemma 4.2.6. Let PSp(4, 3) act linearly on P3 and let G ⊂ PSp(4, 3) be any
subgroup. Let E be any class of accessory irrationalities containing all composites
of quadratic covers. Then P3 is an E-versal G-variety.

Proof. There is (see e.g. [ABL+19]) an Sp4(F3)-equivariant dominant rational map

A4 → P3.

Lemma 4.1.9 then implies that P3 is versal for Sp4(F3) As observed in the proof
of [FW18, Theorem 4.3], this implies that P3 is E-versal for PSp(4, 3) and thus, by
Lemma 4.1.9 for any G ⊂ PSp(4, 3) as well. �

Proof of Proposition 4.2.5. For versality, as in the proof of Proposition 4.2.3, it
suffices to prove that there are A6-equivariant birational isomorphisms

(4.2.6.1) M0,6
∼= A2,2

∼= MPU(3,1)(Z,
√
−3)

where M0,6 is the moduli of 6 distinct points in P1. The first isomorphism of
(4.2.6.1) is the classical period map which sends 6 points in P1 to the Jacobian of

6Recall that there are exceptional isomorphisms Sp4(F2) ∼= O+

4
(F3) ∼= S6.
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the hyperelliptic curve branched at those points. For the second, consider the Segre
cubic threefold X3 in P5 given by

X3 := {[x0 : · · · : x5] ∈ P5 :

5∑

i=0

xi = 0 =

5∑

i=0

x3
i }.

The permutation action of S6 on P5 leaves invariant X3, permuting its 10 nodes.
Kondo [Kon13] proved that X3 is isomorphic to the Satake-Bailey-Borel compact-
ification of the Picard modular 3-fold MPU(3,1)(Z,

√
−3). One can check that the

birational map MPU(3,1)(Z,
√
−3) → X3 is S6-equivariant (cf. e.g. [SBT97, p. 6,

Lemma 2.1]).
Hunt proves in [Hun96, Theorem 3.3.11] that the dual variety to X3 is the so-

called Igusa quartic I4, which is the moduli space of 6 points on a conic in P2. The
two varieties X3 and I4 are S6-equivariantly birational. The Igusa quartic I4 is the
Satake compactification of A2,2. The second birational isomorphism in (4.2.6.1) is
the composition of these.

Now let E be any class of accessory irrationalities containing all quadratic covers
and composites thereof. As explained in Hunt [Hun96, Chapter 5.3], there is a 6 : 1
(in particular, dominant) PSp(4, 3)-equivariant rational map

P3 → B
where the action of PSp(4, 3) on P3 is linear and where B denotes the “Burkhardt
quartic”. There is also a PSp(4, 3)-equivariant birational isomorphism

B ∼= A2,3/F
×
3 .

Lemma 4.2.6 implies that A2,3/F×
3 is E-versal for G = A6 ⊂ PSp(4, 3).

Thus A2,3/F
×
3 is E-versal for any subgroup of PSp(4, 3), in particular A6. Finally,

Hunt [Hun96, Theorem 5.6.1] proved that B is PSp(4, 3)-equivariantly biregularly
isomorphic to the Baily-Borel compactification of MPU(3,1)(Z,2).

For the last statement, let E be any class of accessory irrationalities containing
all composites of quadratic and cubic covers. By [vdG88, Chapter VIII, Theorem
2.6], there exists an A6-equivariant birational isomorphism

M
SL2(Z[

1+
√

5

2
],3)

∼= V1,2,4 ⊂ P5

where V1,2,4 is the common vanishing locus of the 1st, 2nd and 4th elementary
symmetric polynomials and A6 acts on P5 via the permutation representation. As
above, it suffices to construct an accessory irrationality E → A6/A6 in E and an
equivariant dominant rational map

A6|E → V1,2,4.

This follows from the classical theory of Tschirnhaus transformations (see e.g. [Wol]
for a contemporary treatment). Recall that a Tschirnhaus transformation Tb, for
some b := (b0, . . . , b5) ∈ A6, is the assignment which sends a root z of the generic
sextic to

5∑

i=0

biz
i.

This defines an S6-equivariant rational map

Tb : A6 → A6
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Letting b vary, we have an A6
b
parameter space of Tschirnhaus tranformations for

each sextic, which we view as a trivial bundle

π1 : A6 × A6
b
→ A6.

We also have an evaluation map

ev : A6 × A6
b
→ A6

By direct computation (see e.g. [Wol, Definition 3.5 and Lemma 3.6]), ev−1(Ṽ1,2,4),
i.e. the preimage under the map ev of the affine cone over V1,2,4, is the intersection

of a (trivial) family of hyperplanes T̃1, a cone over a generically smooth quadric T̃2

(for smoothness, see e.g. [Wol, Lemma 2.6]), and a quartic cone T̃4. By the classical
theory of quadrics (e.g. [Wol, Lemma 5.10]), there exists a finite, generically étale
map

E0 → A6/A6

with monodromy a 2-group such that the quadric cone T̃2|E0
contains a (trivial)

family L → E0 of 2-planes over E0. The intersection

L ×E0
T̃4

is thus the affine cone over a family of 4 distinct points in P1. There thus exists an
S4-cover

E → E0

and a section σ : E → ev−1(Ṽ1,2,4)|E . The map

ev ◦ σ : A6|E → V1,2,4

gives the dominant map we seek. By construction E → A6/A6 is in the class E ,
and thus V1,2,4 is indeed E-versal. �

Proposition 4.2.7 (Normal forms for the 27 lines).

(1) The congruence cover

MPU(4,1)(Z,
√
−3) → MPU(4,1)(Z)

is versal for O+
5 (F3) ∼= W (E6).

7

(2) For E any class of accessory irrationalities containing all quadratic covers
and composites thereof, the congruence cover

A2,3/F×
3 → A2

and the Picard modular 3-fold

MPU(3,1)(Z,2) → MPU(3,1)(Z)

are E-versal for the simple group PSp(4, 3) ∼= W (E6)
+ (the normal index

2-subgroup of W (E6)).

In particular, [FW18, Conjecture 1.8] implies and is implied by the resolvent
degree of any (and thus each) of the above covers equaling dim(A2) = 3.

7Recall that there is an exceptional isomorphism of O+

5
(F3) with the Weyl group of E6.



MODULAR FUNCTIONS AND RESOLVENT PROBLEMS 23

Proof. By Allcock-Carlson-Toledo [ACT02], there exists an O+
5 (F3) ∼= W (E6)-

equivariant birational isomorphism

H3,3(27) ≃ MPU(4,1)(Z,
√
−3)

from the moduli H3,3(27) of smooth cubic surfaces with a full marking of the
intersection of their 27 lines to the Picard modular 4-fold.

By [DR14, Lemma 6.1] H3,3(27) is versal for W (E6). By Lemma 4.1.9, both
varieties are therefore versal for any subgroup of W (E6).

The remaining statements follow from the proof of Proposition 4.2.5 above. Con-
cretely, there we showed that A2,3/F×

3 was E-versal for any subgroup of PSp(4, 3),
in particular for PSp(4, 3) itself. Together with the PSp(4, 3)-equivariant birational
isomorphism

A2,3/F×
3 ≃ MPU(3,1)(Z,2)

recalled in the proof of Proposition 4.2.5, this implies the result. �

Proposition 4.2.8 (Normal forms for the septic, the octic, and 28 bitan-
gents). Let G ⊂ Sp6(F2) be any subgroup. Then the cover

A3,2 → A3,G

is versal for G. In particular (cf. Remark 4.1.10 and Lemma 4.1.12) :

(1) Hilbert’s 13th Problem is equivalent to

RD(A3,2/A3,A7
) = 3.

(2) Hilbert’s Octic Conjecture [Hil27, p. 248] is equivalent to

RD(A3,2/A3,A8
) = 4.

(3) [FW18, Problem 5.5(2)], which asks for the resolvent degree of finding a
bitangent on a planar quartic, is equivalent to asking for RD(A3,2 → A3).

Proof. This follows as in the proof of [FW18, Proposition 5.7], which in turn
draws on [DO88] and ideas of Coble. As explained there, there exists an Sp6(F2)-
equivariant dominant rational map

A7 → H4,2(28) ≃ M3[2]

where H4,2(28) denotes the moduli of smooth planar quartics with a marking of
their 28 bitangents, and M3[2] denotes the moduli of genus 3 curves with full
level 2 structure. The period mapping gives an Sp6(F2)-equivariantly birational
isomorphism

M3[2] ≃ A3,2,

and thus A3,2 is a versal G-variety for any G ⊂ Sp6(F2) as claimed. �

4.2.9. By Klein [Kl1887], the action A7 	 P3 is solvably versal. As a result,
Hilbert’s 13th problem is equivalent to the assertion that the cover P3 → P3/A7 is
a normal form of minimal dimension.

Question 4.2.10. Is there a congruence coverXΓ′ → XΓ with Galois group A7 and
dim XΓ = 3 which is also E-versal for one of the classes of accessory irrationalities
considered in Example 4.1.5?
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Finding such a congruence cover would give the transcendental part of Klein’s 3-
variable solution of the degree 7, as in [Kl1884, Chapter 5.9]. Note that Prokhorov’s
classification [Pro12, Theorem 1.5] of finite simple groups acting birationally on
rationally connected 3-folds gives strong constraints on any possible congruence
cover.

Question 4.2.11. Is there a congruence coverXΓ′ → XΓ with Galois group A8 and
dim XΓ = 4 which is also E-versal for one of the classes of accessory irrationalities
considered in Example 4.1.5?

4.2.12. As Propositions 4.2.5 and 4.2.8 show, for g = 2, 3 the Sp2g(F2)-varietyAg,2

isG-versal for any subgroupG ⊂ Sp2g(F2). Hence for n = 6, 7, 8 the resolvent degree
of the cover Adn,2 → Adn,An

is equal to RD(n), as defined in the introduction.
Interestingly, Hilbert’s conjectured value for resolvent degree, and the value of the
essential dimension at 2 for these covers, almost agree :

n 6 7 8 9
Hilbert: RD(n) 2 3 4 4
ed(An; 2) 2 2 4 4

Note that in these cases the value of ed(Adn,2 → Adn,An
; 2) = ed(An; 2) is already

given by Proposition 3.2.2, except when n = 8 and g = 3, in which case Proposi-
tion 3.2.2 gives the lower bound 3. The actual value ed(A3,2 → A3,A8

; 2) = 4 follows
from versality (e.g. from Lemma 4.1.12 applied to the modular cover A4,2 → A4,A8

arising from the diagonal representation of A8 = SL4(F2); the ed at 2 of this cover
follows from Corollary 3.1.3).

Appendix A. On quadratic representations of Sn

By Nate Harman

A.1. Statement of Results. Recall that any linear representation of a p-group G
over a field k of characteristic p contains a non-zero invariant vector, in particular
this implies that the only irreducible representation of G over k is the trivial repre-
sentation. This does not mean that all representations are trivial though, there are
non-split extensions of trivial representations and understanding their structure is
a central part of modular representation theory.

In a non-semisimple setting, one basic invariant of a representation is its Lowey
length. For representations of p-groups in characteristic p it can be defined as
follows: Start with a representation V and then quotient it by its space of invariants
to obtain a new representation V ′ = V/V G, then repeat this process until the
quotient is zero. The Lowey length is the number of steps this takes.

In the above work Farb, Kisin, and Wolfson analyze certain special represen-
tations of symmetric groups in characteristic 2, the so-called Dickson embeddings.
Typically denotedD(n−1,1) in the representation theory literature, these representa-
tions have the following key property: Let n = 2m or 2m+1, these representations
have Lowey length 2 when restricted to the rankm (which is the maximum possible)
elementary abelian 2-subgroupHn generated by (1, 2), (3, 4), . . . , and (2m−1, 2m).

This motivates the following definition: We say that an irreducible representation
of a Sn in characteristic p is quadratic with respect to a maximal rank elementary
abelian p-subgroup H if it has Lowey length 2 upon restriction to H . The purpose
of this note is to prove first that this is only a characteristic 2 phenomenon, and
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second that these representations D(n−1,1) are the only representations which are
quadratic with respect to some maximal rank elementary abelian p-subgroup for n
sufficiently large (n ≥ 9).

In characteristic p > 2, the maximal rank elementary abelian p-subgroups in Sn

are just those generated by a maximal collection of disjoint p-cycles. Our first main
theorem tells us that there are no quadratic representations in characteristic p > 2,
and in fact we can detect the failure to be quadratic here by restricting to a single
p-cycle.

Theorem A.1. Any irreducible representation of Sn with n ≥ p in characteristic
p > 2 which is not a character has Lowey length at least 3 upon restriction to the
copy of Cp generated by (1, 2, . . . , p), and therefore is not quadratic with respect to
any maximal rank elementary abelian p-subgroup.

Note that in any characteristic p > 2 the characters of Sn are just the trivial
and sign representations.

In characteristic 2 things are a bit more complicated. While the subgroup Hn

of Sn is a maximal rank elementary 2-subgroup, it is no longer the unique such
subgroup up to conjugation. Recall that in S4 there is the Klein four subgroup
K = {e, (12)(34), (13)(24), (14)(23)}, which is a copy of C2

2 not conjugate to H4.
We can construct other maximal rank elementary 2-subgroups of Sn by taking

products

K ×K × · · · ×K︸ ︷︷ ︸
m times

×Hn−4m ⊂ S4 × S4 × · · · × S4︸ ︷︷ ︸
m times

×Sn−4m ⊂ Sn

and up to conjugacy though these are all the maximal rank elementary abelian
2-subgroups inside Sn.

S8 has a special irreducible representation D(5,3) of dimension 8 which upon
restriction A8 decomposes as a direct sum D(5,3)+ ⊕D(5,3)− of two representations
of dimension 4. These representations realize the “exceptional” isomorphism A8

∼=
GL4(F2), or rather they realize two different isomorphisms differing by either by
conjugating A8 by a transposition in S8 or by the inverse-transpose automorphism
of GL4(F2). Under this isomorphism the subgroup K×K ⊂ A8 gets identified with
the subgroup of matrices of the form




1 0 a b
0 1 c d
0 0 1 0
0 0 0 1




which is manifestly quadratic. Our second main theorem will be to show that there
are no other quadratic representations other than the Dickson embedding once n
is at least 9.

Theorem A.2. Suppose V is a non-trivial irreducible representation of Sn with
n ≥ 9 over a field of characteristic 2 which is quadratic with respect to a maximal
rank elementary abelian 2-subgroup H. Then V ∼= D(n−1,1), and H is conjugate to
Hn.
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A.2. Proofs of Main Theorems. We will be assuming a familiarity with the
modular representation theory of symmetric groups. A standard reference for this
material the book [Jam78] of James, which we will be adopting the notation from
and referring to for all the basic results we need. The irreducible representations
of Sn in characteristic p are denoted by Dλ, for p-regular partitions λ of n. These
arise as quotients of the corresponding Specht modules Sλ, which are well behaved
reductions of the ordinary irreducible representations in characteristic zero.

A.2.1. Proof of Theorem A.1. First we will reduce the problem to just looking at
representations of Sp. For that we have the following lemma:

Lemma A.2.1.

(1) Every irreducible representation V of Sn with n ≥ p in characteristic p > 3
which is not a character has a composition factor when restricted to Sp

which is not a character.
(2) Every irreducible representation V of Sn with n ≥ 4 in characteristic 3

which is not a character has a composition factor when restricted to S4

which is not a character.

Proof: For part (a) suppose V only has composition factors which are characters
when restricted to Sp. If we restrict this to the alternating group Ap all the com-
position factors must be trivial, as Ap only has the trivial character. If we further
restrict to Ap−1 the whole action must be trivial because representations of Ap−1

are semisimple in characteristic p. However if the action of Ap−1 is trivial on V
then so is the action of the entire normal subgroup generated by Ap−1 inside Sn,
which we know is all of An if n > 3. So V must be the trivial as a representation
of An, and is therefore a character of Sn.

For part (b), let’s again suppose V only has composition factors that are char-
acters when restricted to S4, which implies it only has trivial composition factors
when restricted to A4. If we further restrict to the Klein four subgroup K the whole
action must be trivial because representations of K are semisimple in characteristic
p 6= 2. As before we see V must be trivial for the normal subgroup of Sn generated
by K, which we know is all of An for n > 4. Therefore V is a character. �

Remark: The modification for characteristic 3 is necessary because in character-
istic 3 the only irreducible representations of S3 are the trivial and sign represen-
tations. Theorem A.1 holds vacuously in this case.

It is now enough to prove Theorem A.1 for Sp in characteristic p > 3, and for S4

in characteristic 3. Let’s first focus on the case where p > 3. If λ is a p-core, then
Nakayama’s conjecture (which is actually a theorem, see [Jam78] Theorem 21.11)
tells us Dλ = Sλ is projective, and hence remains projective when restricted to
Cp and therefore has Lowey length p. This leaves those irreducible representations
corresponding to hook partitions λ = (p− k, 1k).

In the simplest case where λ = (p − 1, 1) then Dλ is the (p − 2)-dimensional
quotient of the standard (p − 1)-dimensional representation S(p−1,1) by its one
dimensional space of invariants, and one can easily verify this forms a single (p−2)-
dimensional indecomposable representation of Cp. Peel explicitly computed the
decomposition matrices for Sp in characteristic p (see [Jam78] Theorem 24.1), and
it follows from his calculation that the remaining irreducible representations Dλ
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with λ = (p − k, 1k) for 1 < k ≤ p − 2 are just exterior powers ΛkD(p−1,1) of this
(p− 2)-dimensional representation.

Since k < p we know that ΛkD(p−1,1) is a direct summand of (D(p−1,1))⊗k,
which as a representation of Cp is just the unique (p− 2)-dimensional indecompos-
able representation tensored with itself k times. Tensor product decompositions for
representations of cyclic groups are known explicitly ([Gre62] Theorem 3), and in
particular it is known that a tensor product of two odd dimensional indecomposable
representations of Cp always decomposes as a direct sum of odd dimensional inde-

composable representations. So we see (D(p−1,1))⊗k and ΛkD(p−1,1) = D(p−k,1k)

only have odd length indecomposable factors when restricted to Cp. If it had Lowey
length 1 when restricted to Cp that means the action is trivial, which implies the
action of Ap must also be trivial as Ap is simple, but that would imply the original
representation of Sn was a character.

In the characteristic 3 case there are only two irreducible representations of
S4, they are the standard 3-dimensional representation S(3,1) = D(3,1) and its
sign twisted version S(2,1,1) = D(2,1,1). These are 3-core partitions so again by
Nakayama’s conjecture they are both projective and therefore remain projective
when restricted to C3 and have Lowey length 3. �

A.2.2. Proof of Theorem A.2. The overall structure of the proof will be to succes-
sively rule different classes of representations and maximal rank elementary abelian
2-subgroups through a sequence of lemmas. The first such lemma will let us rule
out those irreducible representations Dλ where λ is a 2-regular partition with at
least 3 parts.

Lemma A.2.2. If λ is a 2-regular partition with at least 3 parts, then the irreducible
representation Dλ of Sn contains a projective summand when restricted to S6.

Proof: Note that any 2-regular partition λ with at least 3 parts can be writ-
ten as (3, 2, 1) + µ = (µ1 + 3, µ2 + 2, µ3 + 1, µ4, . . . , µℓ) for some partition µ =
(µ1, µ2, . . . , µℓ). James and Peel [PJ79] constructed explicit Specht filtrations for

IndSn

S6×Sn−6
(S(3,2,1)⊗Sµ), which have Sλ as the top filtered quotient. In particular

this implies IndSn

S6×Sn−6
(S(3,2,1)⊗Sµ) has Dλ as a quotient. However by Frobenius

reciprocity we know that

HomSn
(IndSn

S6×Sn−6
(S(3,2,1)⊗Sµ), Dλ) ∼= HomS6×Sn−6

(S(3,2,1)⊗Sµ, ResSn

S6×Sn−6
(Dλ)).

So since the left hand side is nonzero, the right hand side is as well.
Now if we look at S(3,2,1) ⊗ Sµ as a representation of S6 it is just a direct

sum of dim(Sµ) copies of S(3,2,1), which we know is irreducible and projective by
Nakayama’s conjecture. In particular the image under any nonzero homomorphism
is also just a direct sum of copies of S(3,2,1), so Dλ must contain at least one copy
of S(3,2,1) as a direct summand. �

Corollary A.3. If λ is a 2-regular partition with at least 3 parts, then Dλ is not
quadratic with respect to any maximal rank elementary abelian 2-subgroup of Sn.

Proof: After conjugating we may assume that our maximal rank elementary
abelian subgroup intersects S6 in an elementary abelian 2-group of rank at least 2.
The previous lemma says any such irreducible representation must contain projec-
tive summand when restricted to S6, and then this summand remains projective
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upon restriction to the intersection of S6 with our maximal rank elementary 2-
subgroup. Projective representations of C2

2 have Lowey length 3, so the Lowey
length for the entire maximal rank elementary abelian 2-subgroup of Sn must be
at least that big. �

This reduces the problem to understanding what happens for two-part partitions
λ = (a, b). These representations are much better understood then the general case.
For one thing, the branching rules for restriction are completely known in this case,
although we’ll just need the following simplified version:

Lemma A.3.1. (See [Kle98] Theorem 3.6, following [She99]) If (a, b) is a two-part
partition of n with a−b > 1 then D(a−1,b) appears as a subquotient with multiplicity
one inside the restriction of D(a,b) to Sn−1, and the other composition factors are
all of the form D(a−1+r,b−r) with r > 0.

Recall that we defined H2k ⊂ S2k to be the elementary abelian 2-subgroup of S2k

generated by the odd position adjacent transpositions (2i− 1, 2i) for 1 ≤ i ≤ k, we
will also consider H2k as a subgroup of Sn for n > 2k via the standard inclusions of
S2k into Sn. The next lemma will be to settle for us exactly which representations
are have Lowey length 2 when restricted to the standard maximal rank elementary
abelian subgroup Hn.

Lemma A.3.2. D(n−k,k) contains a projective summand when restricted to H2k.

Proof: We know from the branching rules (Lemma A.3.1) that D(n−k,k) contains
a copy of D(k+1,k) as a subquotient when restricted to S2k+1, so it is enough to
verify it for D(k+1,k). Moreover H2k ⊂ S2k so really this calculation is taking place

inside M(2k) := Res
S2k+1

S2k
D(k+1,k).

These representations D(k+1,k) and M(2k) are well studied. Benson proved
D(k+1,k) is a reduction modulo 2 of the so-called basic spin representation of S2k+1

in characteristic zero ([Ben88] Theorem 5.1). Nagai and Uno ([Uno02] Theorem 2,
or see [Oku08] Proposition 3.1 for an account in English), gave explicit matrix pre-
sentations for M(2k) and showed that they have the following recursive structure:

ResS2m

S2i×S2m−2i
M(2m) ∼= M(2i)⊗M(2m− 2i)

In particular since M(2) can easily be seen to be the regular representation of
S2 = H2, it follows by induction that M(2k) is projective (and just a single copy
of the regular representation) for H2k. �

Corollary A.4. The only nontrivial irreducible representation of Sn which is qua-
dratic with respect to Hn is D(n−1,1).

Proof: Corollary A.3 tells us that if λ has at least 3 parts, Dλ has Lowey length
at least 3 when restricted to Hn. Then Lemma A.3.2 tells us that D(n−k,k) has
Lowey length at least k + 1 as a Hn representation and is therefore not quadratic
for k > 1. �

To finish the proof of Theorem A.2 we need to show that for n at least 9 that
there are no representations which are quadratic with respect to to any of these
other maximal rank elementary abelian 2-subgroups Km × Hn−4k with m ≥ 1.
Lemma A.3 rules out Dλ for λ of length at least 3, so again we will just need to
address the case when λ is a length 2 partition.
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We do this through a series of lemmas ruling out different cases, but first will state
the following well-known fact from the modular representation theory of symmetric
groups:

Lemma A.4.1. ([Jam78] Theorem 9.3) If λ is a partition of n, then Sλ restricted
to Sn−1 admits a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ MN
∼= Sλ

such that the successive quotients Mi/Mi−1 are isomorphic to Specht modules Sµ,
and Sµ appears if and only if µ is obtained from λ by removing a single box, in
which case it appears with multiplicity one.

Lemma A.4.2. D(n−1,1), for n ≥ 5, contains a projective summand when re-
stricted to K, and is therefore not quadratic with respect to any group containing
K.

Proof: It suffices to prove it for D(4,1) as every D(n−1,1) for n > 5 contains it as
a composition factor upon restriction to S5 by Lemma A.3.1. This representation
D(4,1) is just the 4 dimensional subspace of F5

2 where the sum of the coordinates is
zero. If we restrict this representation to S4 this can be identified with the standard
4-dimensional permutation representation via the map (a, b, c, d) → (a, b, c, d,−a−
b− c− d). The restriction of the standard action of S4 on a 4-element set to K is
simply transitive, so this representation is just a copy of the regular representation.
�

Lemma A.4.3. D(n−2,2) for n ≥ 7 and D(n−3,3) for n ≥ 9 each contain a projective
summand when restricted to K, and are therefore not quadratic with respect to any
group containing K.

Proof: It suffices to prove it for D(5,2) and D(6,3) as every D(n−2,2) for n > 7
contains D(5,2) as a composition factor upon restriction to S7, and similarly every
D(n−2,2) for n > 7 contains D(6,3) as a composition factor upon restriction to S9

by Lemma A.3.1.
For S7 and S9 the decomposition matrices are known explicitly and we have

that D(5,2) = S(5,2) and D(6,3) = S(6,3) (see the appendix of [Jam78]). For Specht
modules the branching rules are given by Lemma A.4.1 and S(5,2) and S(6,3) both
contain S(4,1) as a subquotient upon restriction to S5. The result then follows from
the previous lemma. �

Lemma A.4.4. D(n−k,k) for k ≥ 4 and n ≥ 2k+1 is not quadratic when restricted
to Km ×Hn−4m for any m ≥ 1.

Proof: We know by Lemma A.3.2 these are projective upon restriction to H2k, and
are therefore projective when restricted to the intersection ofH2k withKm×Hn−4m.
This intersection has rank at least 2 since k ≥ 4, and therefore projective objects
have Lowey length at least 3. �

This completes the proof of Theorem A.2. �
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A.3. Modifications for An. We will now briefly describe what changes if we work
with alternating groups instead of symmetric groups, but we will omit some of the
details of the calculations. First a quick summary of the modular representation
theory of alternating groups in terms of the theory for symmetric groups:

Upon restriction from Sn to An, the irreducible representationsD
λ either remain

irreducible, or split as a direct sums Dλ ∼= Dλ+ ⊕ Dλ− of two irreducible non-
isomorphic representations of the same dimension; all irreducible representations
of An are uniquely obtained this way. We’ll note that in characteristic p > 2 this
is a standard application of Clifford theory, but in characteristic 2 it is a difficult
theorem of Benson ([Ben88] Theorem 1.1). Moreover it is known exactly which Dλ

split this way, but we won’t go into the combinatorics here.
When p > 2 the maximum rank abelian p-groups in Sn all lie in An, and the proof

of Theorem A.1 goes through without modification to give the following theorem.

Theorem A.1’. Any non-trivial irreducible representation of An with n ≥ p in
characteristic p > 2 has Lowey length at least 3 upon restriction to the copy of
Cp generated by (1, 2, . . . , p), and is therefore not quadratic with respect to any
maximal rank elementary abelian p-subgroup.

When p = 2, the difference is more dramatic. It is no longer true that every
maximum rank abelian 2-subgroup of Sn lies in An, in particular Hn is not a
subgroup of An. Let H̃n denote the intersection of Hn and An, this has rank one
less than Hn. The maximal rank elementary abelian 2-subgroups of An are as
follows:

If n = 4b or 4b + 1 then up to conjugacy the only maximal rank elementary
abelian 2-subgroup inside An is Kb, and it is of rank 2b. If n = 4b + 2 or 4b + 3
then all maximal rank elementary abelian 2-subgroups in Sn still have maximal
rank when intersected with An, and up to conjugacy the maximal rank elementary
abelian 2-subgroups inside An are of the form:

K ×K × · · · ×K︸ ︷︷ ︸
m times

×H̃n−4m ⊂ A4 ×A4 × · · · ×A4︸ ︷︷ ︸
m times

×An−4m ⊂ An

and these have rank 2b− 1.
The appropriate modification to Theorem A.2 for alternating groups is the fol-

lowing:

Theorem A.2’. Suppose V is a non-trivial irreducible representation of An with
n ≥ 9 over a field of characteristic 2 which is quadratic with respect to a maximal
rank elementary abelian 2-subgroup H . Then n ≡ 2 or 3 modulo 4, V ∼= D(n−1,1),
and H is conjugate to H̃n.

The proof of Theorem A.2 mostly goes through in this case. Some additional care
is needed to handle the representations Dλ+ and Dλ− which are not restrictions
of irreducible representations of Sn, however one simplifying observation is that
since Dλ+ and Dλ− just differ by conjugation by a transposition, they are actually
isomorphic to one another upon restriction to a maximal rank elementary abelian
2-subgroup. We will omit the remaining details though.
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