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A B S T R A C T

A primary concern of public health researchers involves identifying and quantifying heterogeneous exposure 
effects across population subgroups. Understanding the magnitude and direction of these effects on a given scale 
provides researchers the ability to recommend policy prescriptions and assess the external validity of findings. 
Traditional methods for effect measure modification analyses require manual model specification that is often 
impractical or not feasible to conduct in high-dimensional settings. Recent developments in machine learning 
aim to solve this issue by utilizing data-driven approaches to estimate heterogeneous exposure effects. However, 
these methods do not directly identify effect modifiers and estimate corresponding subgroup effects. Conse
quently, additional analysis techniques are required to use these methods in the context of effect measure 
modification analyses. While no data-driven method or technique can identify effect modifiers and domain 
expertise is still required, they may serve an important role in the discovery of vulnerable subgroups when prior 
knowledge is not available. We summarize and provide the intuition behind these machine learning methods and 
discuss how they may be employed for effect measure modification analyses to serve as a reference for public 
health researchers. We discuss their implementation in R with annotated syntax and demonstrate their appli
cation by assessing the heterogeneous effects of drought on stunting among children in the Demographic and 
Health survey data set as a case study.

1. Introduction

Effect measure modification (EMM) (or treatment effect heteroge
neity) is present when there are differences in an exposure-outcome 
relationship across subgroups in a population and constitutes an 
important consideration for public health researchers (VanderWeele, 
2009). Said differently, we say that M is a modifier of the effect of A on Y 
when the average treatment effect of A on Y varies across levels of M. 
Since the average treatment effect of A on Y can be measured using 
various effect measures on either multiplicative or additive scales, the 
presence of effect modification depends on the effect measure being 
used (VanderWeele & Knol, 2014). In this context, we can define effect 
modifiers as variables that will contribute to effect heterogeneity.

Understanding the effect of an exposure on a given outcome within 
population subgroups is important for several reasons. First, it can guide 
intervention prioritization for those who will benefit more (depending 
on the scale of interest) from the treatment (VanderWeele & Knol, 
2014). EMM analyses can also determine if an exposure is harmful or 
beneficial to a subgroup when the population level effect is zero or 

trends in the opposite direction (Toward Precision Medicine, 2011; 
VanderWeele & Knol, 2014). Discovery of this effect modification ad
vances the understanding of a potentially complex relationship between 
an exposure and outcome. Furthermore, quantifying EMM is critical to 
external validity applications including transportability and generaliz
ability analyses (Lesko et al., 2017). Indeed, the main reason for which 
effect estimates in a given study population may not be generalizable (to 
the target population) or transportable to another population is because 
of a differential distribution of effect modifiers.

Traditional methods for EMM analyses include two approaches: i) 
conducting stratified analyses coupled with a heterogeneity test; ii) 
including an interaction term in a multivariable model. The first 
approach consists of running separate models on subgroups and 
comparing subgroup treatment effects using a hypothesis test such as 
Cochran’s Q test (Kaufman & MacLehose, 2013). The second approach 
involves parametric regression modeling in which heterogeneity is 
assessed by an interaction term between the exposure variable and effect 
modifier(s). While this technique estimates EMM under the potential 
outcomes framework, we note that the concepts of EMM and causal 
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interaction fundamentally differ. The term “interaction” can refer to 
either a statistical interaction such as effect modification or causal 
interaction. However, when mobilizing the concept of causal interac
tion, we aim at manipulating both the exposure of interest A and a third 
variable of interest M, hypothesizing a joint intervention. This requires 
that the identification assumptions hold for both A and M, which is not 
the case when mobilizing the concept of effect modification.

Several problems exist with traditional methods. These approaches 
require manual specification of effect modifiers and confounders, which 
is often burdensome or simply not feasible for high-dimensional and 
nonlinear relationships. Assuming simple relationships between these 
variables is often naïve with real data and repeated modeling to detect 
heterogeneity induces multiple comparisons (Greenland, 2008). More
over, distributional assumptions may not hold with real data, intro
ducing bias and leading to incorrect conclusions about the estimated 
effects. These challenges prompt the use case for machine learning (ML) 
approaches that remove the requirement of manual specification and 
provide estimation of heterogeneous effects in a data-driven manner.

In the past decade, many ML methods have been proposed to address 
this need. Nonparametric tree-based methods, in both frequentist and 
bayesian frameworks, are some of the most developed and widely used 
approaches (Su et al., 2012; Athey & Imbens, 2016; Powers et al., 2018; 
Wager & Athey, 2018; Athey et al., 2019; H. A. Chipman et al., 2010; J. 
L. Hill, 2011; Hahn et al., 2020). Other methods traditionally used for 
prediction such as LASSO (Belloni et al., 2014; Imai & Ratkovic, 2013; 
Zhao et al., 2022) and neural networks (Shalit et al., 2017; Syrgkanis 
et al., 2019) have also been adapted for heterogeneous treatment effect 
estimation. Metalearners (Kennedy, 2023; Künzel et al., 2019; Nie & 
Wager, 2021) provide model-agnostic frameworks whereby any pre
dictive algorithms can be combined in an ensemble to estimate hetero
geneous effects. These approaches make use of a variety of estimation, 
inference, and analytical techniques and there is a growing body of 
literature comparing their performance and utility (Acharki et al., 2023; 
Caron et al., 2022; Dorie et al., 2019; A. Hu, 2023; Jacob, 2021; Liu, 
2022; McConnell & Lindner, 2019; Wendling et al., 2018). However, this 
is a rapidly evolving field of study and there is a continuous need for 
interpretation of these methods, as well as guidance on applying them to 
real data. Furthermore, there is minimal guidance on how to use these 
methods for EMM analyses, particularly for public health applications. 
With few exceptions, these methods do not directly identify effect 
modifiers and estimate corresponding subgroup effects, which creates a 
disconnect for researchers interested in using these methods to 
circumvent the limitations of traditional methods. While a limited 
number of epidemiological studies used such approaches in the past few 
years, we are not aware of an up-to-date summary of some of the most 
commonly used methods as well as a guide about their implementation 
for EMM analyses using an illustrative case study.

In this paper, we summarize and provide the intuition behind mod
ern ML approaches for EMM analyses in high-dimensional settings. 
These include bayesian additive regression trees, generalized random 
forests, and bayesian causal forests. While not an exhaustive list, these 
methods are the most commonly used ML methods in epidemiological 
studies at the time of this review. We discuss how these methods can be 
employed for EMM analyses, using supplemental techniques and tools to 
identify potential effect modifiers and estimate corresponding subgroup 
effects. While no data-driven method or technique can exhaustively 
identify effect modifiers and domain expertise is still necessary, these 
methods can serve an important role in the discovery of vulnerable 
subgroups when prior knowledge is not available. We discuss their 
implementation in R (R Core Team, 2023) with annotated syntax to 
serve as a reference for public health researchers interested in using 
these methods for their own EMM analyses. Lastly, we demonstrate the 
application of these methods by assessing the heterogeneous effects of 
drought on stunting among children from the Demographic and Health 
Survey (DHS) data as a case study.

In section 2, we provide the summaries of the ML methods. We 

organize these summaries into two categories: model-based and forest- 
based approaches. Section 3 discusses the implementation of the 
methods with the DHS data and provides several motivating examples. 
We conclude with a discussion in section 4.

2. EMM ML method overview

We first briefly introduce the terminology that will be used 
throughout this overview. The effect of an exposure A on a given 
outcome Y across a population is measured by the average treatment 
effect (ATE). To measure heterogeneous effects, the ATE is estimated 
within population subgroups. This quantity is called the conditional 
average treatment effect (CATE), as the ATE is conditional on covariates 
L that constitute relevant subgroups. If the CATE differs from the ATE, 
the corresponding subgroup is said to be heterogeneous with respect to 
the population.

Throughout this review, we assume the standard identification as
sumptions of conditional exchangeability, positivity, and consistency to 
make causal claims about the observed effects (Hernán, 2012). We 
provide more technical descriptions of the discussed estimands and as
sumptions in the appendix.

2.1. Model-based approaches

2.1.1. Bayesian additive regression trees
Bayesian additive regression trees (BART) (H. A. Chipman et al., 

2010) is the oldest method we consider. Like the traditional classifica
tion and regression tree (CART) algorithm (Breiman et al., 2017), BART 
is a nonparametric tree-based method that recursively partitions data to 
estimate the expected outcome conditional on partitioned covariates. 
However, BART is specified as an additive sum-of-trees model within a 
Bayesian framework. The additive model specification estimates linear 
relationships more accurately than individual tree models and attenu
ates interactions that individual tree models tend to overemphasize (J. L. 
Hill, 2011). Analogous to “boosting” in which multiple weak learners 
contribute to one strong learner, each tree is limited to small contribu
tions to the overall BART model. This is accomplished through a regu
larization prior that limits the influence of individual trees. The model is 
fit using a Bayesian backfitting Markov Chain Monte Carlo (MCMC) 
algorithm summarized by Fig. 1.

In each MCMC iteration, trees are randomly perturbed by one of four 
actions. The “grow” action assigns a covariate split to a terminal node at 
random, while the “prune” action removes the children of a random 
parent node. The “change” and “swap” actions alter the prediction of 
terminal nodes by either randomly replacing the splitting rule of an 
internal node or swapping the splitting rules of a random parent-child 
internal node pair. Rather than fitting new trees to partial residuals, 
the algorithm uses these perturbations and the defined priors to accept 
or reject the changes to each tree via the Metropolis-Hastings procedure. 
Fig. 2 illustrates this algorithm for m trees and K MCMC iterations.

As a standalone algorithm, BART only estimates the conditional ex
pected outcome. However, Hill introduced BART as an effective tool for 
heterogeneous treatment effect estimation where one BART model is 
used to estimate potential outcomes and generate CATE estimates (J. L. 
Hill, 2011). This approach is referred to as the S-learner due to the use of 
a single model. In more recent years, other approaches such as the T-, X-, 
DR- and R-learners have been developed (Kennedy, 2023; Künzel et al., 
2019; Nie & Wager, 2021). These approaches are known as metalearners 
and each performs optimally in different settings. We discuss the details 
of implementing BART with an S-learner in section 3.2.1 and provide a 
general discussion on the choice of metalearner in the appendix for 
interested readers.

Overall, the key property of BART is its applicability as an effective 
“off the shelf” method. This is due to the default regularization prior 
specification and its anti-overfitting nature. Parameter tuning and cross- 
validation are often not necessary and consequently, the method is 
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computationally less taxing and simple to implement. Moreover, BART 
provides inference in the form of credible posterior intervals, which can 
be a more intuitive uncertainty metric than standard frequentist confi
dence intervals.

2.2. Forest-based approaches

2.2.1. Generalized random forests
Generalized random forests (GRF) was proposed by Athey et al. 

(Athey et al., 2019) as the most recent development in a series of 
nonparametric tree-based methods for EMM (Athey & Imbens, 2016; 
Wager & Athey, 2018). The motivation behind these methods is twofold: 
data-driven estimation of heterogeneity and valid inference with con
fidence intervals for high-dimensional effect modification. GRF serves 
an abstraction to prior iterations and other common forest methods.

At a high level, GRF is a nonparametric tree-based method that 
recursively partitions data on covariate splits that maximize heteroge
neity between nodes. The primary output of the method is the estimated 
CATE for each unit in the sample. GRF implements an “honest estima
tion” technique where the data used to train a forest is split into a set for 
tree growth and a set for CATE estimation. This reduces potential 

overfitting and decreases bias (Athey & Imbens, 2016), and contrasts 
with conventional machine learning training-test splits that are used to 
evaluate model performance.

GRF closely follows the Causal Forest (CF) algorithm (Wager & 
Athey, 2018), but additionally implements ‘orthogonalization’ via 
Robinson’s transformation to better handle instances of strong con
founding (Robinson, 1988). In such setting, conditional exchangeability 
can only be achieved for a CF by creating partitions on confounders. 
However, this can bias the CATE estimation if the covariates being split 
do not contribute to heterogeneity. Orthogonalization handles this 
problem by first modeling the propensity score and marginal outcome 
functions to account for the effects of confounding. The residual treat
ment and outcomes are then computed and used to train a CF, allowing 
the partitioning to focus on covariates that contribute to effect 
modification.

Additionally, unlike standard forest methods that average pre
dictions across trees (i.e. “bagging”), GRF uses an adaptive kernel 
method that performs locally weighted optimization to estimate CATEs. 
Each unit is assigned a weight that represents the frequency with which 
the i th sample falls in the same terminal node as l across all trees in the 
forest. These weights depict neighborhoods with similar observations to 

Fig. 1. Bayesian Additive Regression Trees algorithm pseudocode.

Fig. 2. Illustration of the BART Bayesian backfitting MCMC algorithm, inspired by Hastie and Tibshirani (Stanford Online, 2022).
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l and contribute to more stable estimates than averaging (Athey et al., 
2019). Fig. 3 illustrates the weighting process. Each square in the left 
column depicts a tree in a forest with internal boxes representing ter
minal node partitions. The given l is shown by a red triangle and the 
square in the right column shows the final observations with node sizes 
relative to their weights. The algorithm steps are summarized in Fig. 4.

2.2.2. Bayesian causal forests
Bayesian causal forests (BCF) aims to improve upon BART in a 

similar sum-of-trees model (Hahn et al., 2020). The authors identified 
two issues with BART: “regularization-induced confounding” and high 
CATE estimate variability in the presence of homogeneity or moderate 
heterogeneity. Regularization-induced confounding occurs when con
founders are regularized out of the model outcome surface due to their 
lack of predictive power (Hahn et al., 2018). This is an issue when the 
confounders serve the role of reducing bias in the exposure-outcome 
relationship. Hahn et al. propose including an estimate of the pro
pensity score as a covariate to address this issue. High CATE estimate 
variability occurs when the heterogeneity signal is low, and the authors 
propose reparameterizing the outcome surface into two independent 
BART ensembles as a solution: one prognostic component that models 
the relationship between the covariates and outcome, and another 
component that models the CATE.

This reparameterization allows for different covariate sets for the 
two BART components, which is beneficial when it is known that the set 
of confounders and effect modifiers are not equivalent. The number of 
trees can also differ between the components, enabling users to 
customize the complexity of the effects (McJames et al., 2023). Lastly, 
the components have independent BART priors that can provide 
different regularization. The default prior for the CATE component 
provides stronger regularization than the prior for the prognostic 
component, favoring homogeneity unless there is strong evidence to the 
contrary.

The Bayesian backfitting MCMC algorithm for BCF is identical to that 
of BART, with slightly modified priors and two BART models run within 
each MCMC iteration. Overall, BCF provides adjustments for identified 
problems with standard BART and seeks to improve the accuracy of 
CATE estimation.

3. Implementation of the selected EMM ML methods

In this section, we review the currently available tools to implement 
these methods in R version 4.3.2 (R Core Team, 2023) and apply them to 
a case study related to the effect of drought on stunting using the De
mographic and Health Survey (DHS) data. We also discuss common 
techniques to identify potential effect modifiers and estimate corre
sponding subgroup effects. We then compare the results from these 
methods to those of traditional methods. All tunable parameters for each 
method were left at their defaults and the code for these implementa
tions can be found on GitHub (https://github.com/benmarhnia-l 
ab/EMM-ML) and in the appendix.

3.1. Data

We use the DHS data set to demonstrate the application of these 
methods. These data focus on women in reproductive age (ages 15 to 49) 
and their children under 5 years of age in low- and middle-income 
countries (LMIC) and cover a wide range of health-related issues, 
including fertility, mortality, diseases, nutrition, and health-seeking 
behavior. A more detailed description of the data is provided in the 
appendix.

The outcome in our analysis is stunted child growth and the exposure 
is drought. The covariates are child sex, age, birth size, breastfed status, 
the mother’s education level, single status, occupation, and family 
media consumption, rural residence, and wealth level. We choose this 
set of covariates for the purpose of demonstration and simplicity. 
However, the methods and corresponding interpretation are generaliz
able to larger covariate sets and higher dimensions of EMM. Table 1 lists 
the variables used in this analysis and their prevalence in the data. All 
variables are coded as binary indicators and missingness has been 
removed such that all observations are complete.

3.2. ML methods

3.2.1. Bayesian additive regression trees
Several R packages exist to implement BART. The most prominent 

include dbarts (Dorie et al., 2014) and its corresponding causal inference 
derivative bartCause (J. L. Hill, 2011), and BART (Sparapani et al., 
2021). These packages are modern iterations of BayesTree (H. Chipman 
& McCulloch, 2006) and bartMachine (Kapelner & Bleich, 2016). We 
choose BART for our application, but any of these packages may be used 
to implement BART. The function wbart generates the model for 
continuous outcomes while lbart and pbart are used for dichotomous 
outcomes (logistic and probit links, respectively).

We implement BART using an S-learner to follow the original 
framework with which BART was proposed for estimating CATEs (J. L. 
Hill, 2011) and for the purpose of demonstration. We also choose an 
S-learner for our demonstration to conform with the majority of exam
ples in the literature. 2 counterfactual data sets are created where the 
exposure is present or absent for all observations. The BART model 
instance wbart can then be trained on the full sample with the coun
terfactual data sets used to estimate the potential outcomes. The 
required inputs to the function are the matrix of covariates (including 
the exposure) and outcome vector to train the model, and the matrix of 
counterfactual covariates. The vector of CATE estimates can be obtained 
by averaging the estimated potential outcomes across MCMC iterations 
and taking the difference between the exposed and unexposed sets. For 
binary or other outcomes in which the link function is not the identity, 
CATEs may be transformed back to the additive scale to estimate ab
solute risk (for a binary outcome, we use the inverse logit function 
expit(x) = 1/(1 + exp( − x))). Tuneable parameters of note are the 
number of burn-in MCMC iterations as the threshold for posterior 
convergence and the number of MCMC iterations to save after burn-in.

To identify potential effect modifiers and estimate corresponding 
subgroup effects, a technique known as “fit-the-fit” is often performed in 

Fig. 3. Visualization of the Generalized Random Forest weighting procedure, 
inspired by Fig. 1 from Athey et al. (Athey et al., 2019).
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which the estimated CATEs are modeled as a function of the covariates 
in a CART model. This allows for efficient identification of covariates 
that contribute most to the variability of the CATE estimates and pro
vides effect estimates of the subgroups defined by the covariate splits. 
This technique is often implemented with a maximum node depth of 3 so 
that the corresponding subgroups are meaningful (J. Hill & Su, 2013).

Fig. 5 shows the fit-the-fit CART of the estimated CATEs from BART 
with a set maximum node depth of 3. The CATEs are first split on 
maternal education with an estimated ATE of 1.8%. 49% of the obser
vations have some maternal education with an exposure effect of 
− 0.72% while 51% of the observations have no maternal education and 
an effect of 4.2%. Residence status is also represented in a level 1 node 
split with subgroup effects of 0.83% and 4.9%, corresponding to the 
two-way interaction of no maternal education and non-rural or rural 
status.

Example applications of BART for EMM analysis with real-world data 
can be found in Blette et al., Hu et al., and Kraamwinkel et al. (Blette 

et al., 2023; L. Hu et al., 2021; Kraamwinkel et al., 2019). Blette et al. 
conducted a post hoc heterogeneity analysis of the COVID STEROID 2 
trial, which compared 6 mg/d to 12 mg/d of dexamethasone for patients 
with severe or critical COVID-19. In the original trial, subgroup analyses 
were conducted with prespecified covariates, and no subgroup effects 
were found to be statistically significant at the P < .01 threshold 
adjusted for multiple comparisons. Using BART in an S-learner frame
work and fit-the-fit to identify potential effect modifiers, the authors 
found that individuals who needed higher level respiratory support had 
a greater benefit from the higher dexamethasone dose compared to the 
study population. Moreover, those treated with IL-6 inhibitors had less 
benefit from the higher dose. Hu et al. also conducted a post hoc analysis 
of data from a lung cancer trial, looking at the heterogeneous effects of 
low-dose computed tomography compared to chest radiography on 
survival rates. BART with an S-learner and fit-the-fit were used to reveal 
potential racial disparities in the overall mortality benefit. Lastly, 
Kraamwinkel et al. employed BART with an S-learner to analyze the 
effect of maternal education on severe child undernutrition using the 
DHS data. Despite the literature suggesting armed conflict as a potential 
effect modifier, the authors did not find it produced significant effect 
modification. These examples highlight the utility of BART for discov
ering potential effect modifiers and vulnerable subgroups.

3.2.2. Generalized random forests
GRF is implemented with the causal_forest function in the R package 

grf (Tibshirani et al., 2017). The required inputs for the function are the 
matrix of covariates, the outcome vector, and the exposure vector. By 
default, causal_forest implements orthogonalization described in the 
prior section. Notable parameters include the number of trees grown in 
the forest, minimum node size, and honest splitting ratio, which can be 
tuned via the tune_parameters argument. After the forest has been 
generated, the predict function is used to obtain the output vector of 
CATEs expressed as risk differences and average_treatment_effect can be 
used to estimate the ATE.

To assess overall heterogeneity, a “best linear predictor” (BLP) 
analysis may be conducted with the function test_calibration. This serves 
as an omnibus calibration test of the quality of the CATE estimates and 
presence of heterogeneity within the data (Athey & Wager, 2019; 
Chernozhukov et al., 2018). Results are presented as regression co
efficients for mean and differential forest predictions. The coefficient for 
the mean forest prediction represents the quality of the ATE estimate 
while the coefficient of the differential forest prediction represents the 
quality of the CATE estimates. When the coefficient is close to 1 in 
magnitude, the ATE or CATEs are well calibrated, respectfully. More
over, if the coefficients are positive and significant, then there is 

Fig. 4. Generalized Random Forests algorithm pseudocode.

Table 1 
Descriptive statistics.

Stunted Child Growth

Variable Overall, N =
345,499a

Not Stunted, N =
212190 (61%)1

Stunted, N =
133309 (39%)a

Exposure
Drought 50,310 (15%) 30,034 (14%) 20,276 (15%)
Covariates (Effect Modifiers/Confounders)
Child Sex - Male 174,324 

(50%)
103,099 (49%) 71,225 (53%)

Child Age - Under 2 127,378 
(37%)

84,656 (40%) 42,722 (32%)

Child Birth Size - 
Small

62,218 (18%) 34,449 (16%) 27,769 (21%)

Child Breastfed - 
Never

7463 (2.2%) 4558 (2.1%) 2905 (2.2%)

Mother’s Education - 
None

174,528 
(51%)

99,828 (47%) 74,700 (56%)

Mass Media 
Consumption - Yes

156,872 
(45%)

105,636 (50%) 51,236 (38%)

Single Mother - Yes 27,128 (7.9%) 16,348 (7.7%) 10,780 (8.1%)
Agricultural 

Occupation - Yes
161,724 
(47%)

87,741 (41%) 73,983 (55%)

Residence - Rural 249,258 
(72%)

142,971 (67%) 106,287 (80%)

Wealth - Poor 158,259 
(46%)

83,998 (40%) 74,261 (56%)

All variables recorded as binary.
a n (%).
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evidence to reject the null hypothesis of no treatment effect or hetero
geneity in the data. An informal calibration test may also be conducted 
by grouping the CATE estimates into quantiles and visually observing 
the trend in the average CATE values across quantiles (Shiba & Inoue, 
2024). If the forest is well-calibrated, the average CATEs should 
monotonically increase across quantiles.

In addition to the fit-the-fit procedure, variable importance can be 
used to readily identify potential effect modifiers. This metric, provided 
by the function variable_importance, represents the weighted sum of the 
number of times each covariate was used in a tree node split. A large 
variable importance value indicates large influence in the CATE esti
mation, suggesting the corresponding covariate may be a strong modi
fier of the treatment effect. However, it is crucial to note that variable 
importance does not equate to theoretical relevance as an effect modi
fier. While there are no strict guidelines that dictate how covariates 
should be identified, it is common to view covariates that have a metric 
value above a given threshold or the mean value as potential effect 
modifiers (Athey & Wager, 2019). With this information, a second stage 
regression analysis can be performed with the function bes
t_linear_projection that regresses the CATE estimates on prespecified 
covariates. The resulting model coefficients are doubly robust effect 
estimates for subgroups defined by the provided covariates.

It is also common to conduct descriptive analyses of the CATEs for 
predefined subgroups to investigate potential heterogeneity. For 
example, one may plot the CATE distribution across subgroups to visu
alize differences. Unlike traditional analyses that require discrete effect 
modifier definitions, the CATEs can be plotted across continuous cova
riates to reveal potential nonlinearities (Shiba & Inoue, 2024). Lastly, 
one can rank the CATEs by quantile and compare the mean CATE values 
across covariates. This is commonly performed with quintiles, the me
dian (i.e. above or below the 50th percentile), or the top 10% against the 
bottom 10%. However, these techniques require manual specification of 
potential effect modifiers and are subject to the problem of multiple 

comparisons.
Table 2 shows the results from applying the BLP test, second stage 

regression analyses, and lists the variable importance for each covariate. 
The mean forest prediction coefficient is close to 1 in magnitude and 
statistically significant, indicating that there is an overall effect of 
drought on stunted child growth measured by the ATE and the GRF 
captures this effect well. The coefficient for the differential forest pre
diction is statistically significant but not close to 1 in magnitude. This 
implies that heterogeneity exists in the data, but it was not accurately 
captured by the GRF CATEs. For demonstration, we perform second 
stage regression on the subgroups of the covariates with over 10% 
variable importance. We see that maternal education and residence 
status are the most important covariates in the forest. The second stage 
regression finds that the exposure effects for those whose mothers have 

Fig. 5. Fit-the-fit CARTs (classification and regression trees) of GRF, BART, and BCF. The value at the top of each box gives the estimated treatment effect for the 
subgroup defined by the splitting rules. The value at the bottom of each box represents the proportion of units in the subgroup.

Table 2 
Generalized Random Forests results.

Estimand Estimate (p-value or 95% CI)

Best Linear Predictor Calibration
Mean forest prediction 0.988 (<0.001)
Differential forest prediction 0.385 (<0.001)
Second Stage Regression
Mother’s Education - None 0.042 (0.033, 0.051)
Residence - Rural 0.019 (0.009, 0.029)
Variable Importance
Mother’s Education 61.9%
Residence 11.1%
Mass Media Consumption 6%
Single Mother 4.5%
Agricultural Occupation 3.9%
Child Age 3.6%
Child Birth Size 3.6%
Wealth 3.2%
Child Sex 2.2%
Child Breastfed 0%
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no education and those who live in a rural area are 4.2% (95% CI: [3.3%, 
5.1%]) and 1.9% (95% CI: [0.9%, 2.9%]), respectively. The GRF fit-the- 
fit CART is shown in Fig. 5. Maternal education is again the first co
variate split used and the subgroup effects are similar to those from 
BART. Rural residence features as level 1 splitting variable and the 
subgroup effects agree with the BART results.

Examples of GRF can be seen in papers such as Shiba et al., Naito 
et al., and Matsuyama et al. (Matsuyama et al., 2024; Naito et al., 2024; 
Shiba et al., 2021, 2023) Shiba et al. used GRF to examine the hetero
geneous effects of disaster-related home loss on cognitive disability and 
functional limitations in older adults. To identify potential effect mod
ifiers, they compared the top decile of the estimated CATE distribution 
to the bottom decile across available covariates. Additionally, they 
compared the CATE distributions across the covariates with the 3 largest 
variable importance metrics for the functional limitation outcome. They 
found that the most vulnerable individuals were older, not married, 
living alone, less educated, and had more health problems. Surprisingly, 
they also found that vulnerable individuals were likely to have higher 
income when paired with less education and more health problems. 
While the literature suggests a protective effect of high income, the 
authors were able to uncover complex effect modification in the 
opposing direction using these approaches. Naito et al. demonstrated 
heterogeneous associations of environmental risk factors and car
diometabolic diseases across age, sex, and polygenic risk score by 
comparing the top decile to the bottom decile of the CATEs estimated by 
GRF. Lastly, Matsuyama et al. analyzed the heterogenous effects of tooth 
loss on functional capacity and found larger effects for individuals who 
were older men, did not have a partner, had poor health, and were of 
lower socioeconomic status.

3.2.3. Bayesian causal forests
BCF is implemented with the package and identically named func

tion bcf (Hahn et al., 2020). The required inputs are the matrix of 
covariates, outcome vector, exposure vector, and estimated propensity 
score. We choose to estimate the propensity score with a logistic 
regression model where the exposure is modeled as a function of the 
additive effects of the covariates for simplicity. Like BART, the burn-in 
MCMC iteration threshold and the number of saved MCMC iterations 
after burn-in are tuneable parameters, and the CATE estimates expressed 
as risk differences are obtained by averaging the posterior samples. The 
primary tool to identify potential effect modifiers and estimate subgroup 
effects using BCF is the fit-the-fit CART approach. Currently, we are not 

aware of other example applications of BCF for EMM analysis using 
real-world data.

Fig. 5 shows the BCF CART. The covariate used in the first split rule is 
maternal education and the subgroup effects are similar to those from 
the GRF and BART CARTs. Unlike the GRF and BART CARTs, rural 
residence is not used as a level 1 splitting variable, but it is used as a level 
2 splitting variable for all nodes in the tree.

3.2.4. Comparison of approaches to identify effect heterogeneity
The most common technique to identify potential effect modifiers 

and estimate corresponding subgroup effects using these methods is the 
fit-the-fit CART. While crude, this technique does not require prior 
knowledge of effect modifiers or manual specification. Variable impor
tance metrics can also be used to identify potential effect modifiers and 
second stage regression or CATE quantile comparisons allows for effect 
estimation of specified subgroups.

Fig. 6 shows each method’s CATE distribution for different sub
groups of potential effect modifiers. For all three methods, there is a 
visible increased risk for units with no maternal education compared to 
those who had education, and for those whose residence status is rural 
compared to non-rural.

3.3. Comparison with traditional methods

As discussed in section 1, traditional methods for EMM analysis 
involve either stratified analyses or a multivariable model with inter
action terms. We conduct a stratified analysis of logistic regression 
models adjusted for all covariates with subgroup effects represented by 
odds ratios. To compare results to those from the ML methods, we use 
the subgroups defined by the two levels of maternal education. We also 
conduct Cochran’s Q test to determine if there is evidence to reject the 
null hypothesis of no heterogeneity.

Table 3 gives the estimands and corresponding 95% confidence in
tervals for the traditional analysis methods and results from Cochran’s 
chi-squared test for heterogeneity. The first two rows give the unad
justed risk difference and risk ratio estimates in the full data, no 
maternal education subgroup, and some maternal education subgroup. 
We find a significant increased risk of stunted child growth due to 
drought in the full sample (RD: 2% [1.5%, 2.5%]; RR: 1.05 [1.04, 1.07]). 
The risk is larger in the no maternal education subgroup (RD: 3.4% 
[2.8%, 4.1%]; RR: 1.08 [1.07, 1.1]), and there is no strong evidence of 
an increased risk in the some maternal subgroup (RD: − 0.7% [− 1.4%, 

Fig. 6. CATE comparison for GRF/BART/BCF across levels of mother’s education and rural residence.
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0%]; RR: 0.98 [0.96, 1]). The third row gives the ATE in the full sample 
and effects from the maternal education subgroups. These estimates also 
suggest a significant increased risk of stunted child growth due to 
drought in the full sample (OR: 1.07 [1.05, 1.09]) and a larger risk in the 
no maternal education subgroup (OR: 1.15 [1.12, 1.18]). Again, we find 
no strong evidence of an effect of drought on stunted child growth in the 
some maternal education subgroup (OR: 0.97 [0.94, 1]). Cochran’s Q 
test suggests there is evidence to reject the null hypothesis of no EMM 
between the maternal education subgroups (P < 0.001). These findings 
agree with those found by the ML methods and strengthen the case for 
maternal education as an effect modifier.

4. Discussion

In this overview, we summarized three recently developed ML 
methods for EMM analysis that have been used in various quantitative 
social sciences disciplines but to a lesser extent in epidemiology data. 
These nonparametric, data-driven methods allow for flexible modeling 
of nonlinear outcome surfaces and high-dimensional interactions that 
are impractical to test by hand. However, the methods do not identify 
effect modifiers and estimate corresponding subgroup effects. We dis
cussed their current implementation in R, the common techniques used 
to identify potential effect modifiers and estimate corresponding sub
group effects, and applied them using a case study focusing on the effect 
of drought on stunting among children in multiple Sub-Saharan coun
tries. With these techniques, the ML methods identified maternal edu
cation as a potential effect modifier, which may have been overlooked or 
obscured by a multiple comparisons adjustment had only traditional 
methods been used.

“Fit-the-fit” CART and variable importance are tools that are often 
used to efficiently identify potential effect modifiers. However, these 
techniques do not guarantee that identified covariates are true effect 
modifiers (variables that would modulate the amplitude of the effect 
estimate). Covariates may have large influence in fit-the-fit CART 
models or large variable importance due to high correlation with other 
effect modifiers (Jawadekar et al., 2023). Variable importance should 
not be interpreted as the proportional influence of heterogeneity or the 
likelihood of a covariate being a true effect modifier. In addition, the 
assessment of potential effect modifiers is driven by data availability, 
and it is worth mentioning that in some settings, a given effect modifier 
may be correlated with other unmeasured effect modifiers. This re
inforces the importance of distinguishing the concepts of EMM and 
causal interaction as no manipulation is required for EMM analyses. 
These tools are helpful for identifying covariates for which variability in 
the effect estimates is high with no prior knowledge of true effect 
modifiers. Second stage regression and descriptive analyses such as 
plotting CATE distributions across covariate groups are also used to 
assess EMM but require manual specification of potential effect 
modifiers.

It is important to emphasize that no algorithm can automatically 

select what constitutes a true effect modifier. The methods and tech
niques discussed in this overview only provide data-driven results in
sofar as modeling the CATE and highlighting covariates that are 
associated with CATE estimates. Selecting effect modifiers must be 
based on pre-existing knowledge regarding a specific exposure-outcome 
relationship. While the concepts of confounding and effect modification 
are fundamentally different, it is known that confounders (that are 
minimally associated with the outcome of interest, without being a 
collider variable) constitute effect modifiers on at least one scale (ad
ditive or multiplicative) (Rothman et al., 2021). Therefore, we suggest it 
is reasonable to consider all confounders (and their multiple combina
tions and functional forms) as potential effect modifiers when exploring 
high-dimensional EMM analyses. Furthermore, methods such as those 
discussed in this paper are often designed to estimate effects on an ad
ditive scale and not a multiplicative scale. As previously mentioned, 
heterogeneity of effects is scale-dependent and it is recommended to 
report effects on both scales (Kent et al., 2020; VanderWeele & Knol, 
2014). Therefore, researchers may consider methods or frameworks 
such as the S- or T-learner that estimate potential outcomes to construct 
effect estimates on a multiplicative scale.

It is also important to differentiate between estimation strategies and 
estimators. Metalearners such as those discussed in the previous sections 
are CATE estimators while methods like BART are predictive algorithms 
that can be specified as base learners. Moreover, there has been a recent 
emphasis on classifying methods for CATE estimation using the metal
earner typology. For example, GRF may be seen as a special case of the 
R-learner that uses regression forests as base learners. Nonetheless, there 
are several studies that demonstrate how estimates can vary widely 
across estimators and estimation strategies (Bouvier et al., 2024; Jacob, 
2021; W. Zhang et al., 2022), indicating that varying specifications of 
both are worthy of comparison.

We have not discussed other methods that may be used to identify 
heterogeneous subgroups and estimate CATEs due to their novelty and 
lack of use in empirical settings. However, we would like to mention 
some recently developed alternative approaches. In particular, the 
causal rule ensemble (CRE) (Bargagli-Stoffi et al., 2024), multilevel 
analysis of individual heterogeneity and discriminatory accuracy 
(MAIHDA) (Rodriguez-Lopez et al., 2023), and the iterative Causal 
Forest (iCF) (T. Wang et al., 2024) are methods that can automate effect 
modifier identification. The CRE accomplishes this through a procedure 
of estimating CATEs, generating heterogeneous subgroups from the 
CATE estimates, and selecting the most important heterogeneous sub
groups through penalized regression. Several ML methods are used in 
this ensemble procedure such as random forests and LASSO, and any of 
GRF, BART, or BCF may be used during the CATE estimation step. 
MAIHDA implements a mixed-effects regression model where subgroups 
are treated as random-intercepts. Heterogeneous subgroups can be 
identified by the magnitude of the estimated random effects and CATEs 
are estimated as linear combinations of fixed and random effects. Lastly, 
iCF utilizes GRF to build and select the best trees from forests at different 
low-dimensional depths, resulting in heterogeneous subgroups defined 
by the splitting rules. These methods are not commonly used for EMM 
analyses yet but are promising tools for automating heterogeneous 
subgroup identification.

There are several limitations of this overview. We chose to imple
ment these methods in a simple setting with a small set of covariates and 
default specifications that have been used in applied studies. While the 
methods theoretically extend to larger data sets, they have not been used 
extensively with real-world, high-dimensional data to the best of our 
knowledge. However, examples such as Waldmann (who used BART to 
identify single-nucleotide polymorphisms that contributed most to 
genome-wide prediction) show the potential of these methods in high- 
dimensional settings (Waldmann, 2016). Moreover, we did not eval
uate the performance of these methods or provide in-depth theoretical 
explanations of the different estimation strategies. While we aim to 
provide a practical, straightforward tutorial of these methods, we 

Table 3 
Traditional methods results.

Estimand Group

Full Sample Mother’s 
Education - None

Mother’s 
Education - Some

Risk Difference (95% 
CI)

0.02 (0.015, 
0.025)

0.034 (0.028, 
0.041)

− 0.007 (− 0.014, 
0)

Risk Ratio (95% CI) 1.053 (1.04, 
1.065)

1.081 (1.066, 
1.096)

0.979 (0.96, 
0.999)

(C)ATE (95% CI)a,b 1.066 (1.045, 
1.087)

1.151 (1.121, 
1.182)

0.97 (0.941, 1)

Cochran’s Q test 
statistic (p-value)

​ 65.492 (<0.001) 65.492 (<0.001)

a Expressed as odds ratio.
b Adjusted for covariates.
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acknowledge these discussions are beyond the scope of this paper and 
refer to others for more detail (Athey et al., 2019; Chernozhukov et al., 
2024; H. A. Chipman et al., 2010; Hahn et al., 2020). We also chose to 
demonstrate the application of these methods using observational data. 
However, post-hoc heterogeneity analyses of clinical trial data are often 
underpowered because the data are collected to power the main treat
ment effect (Brookes et al., 2004). Extending these methods outside of 
the observational setting to clinical trial data with techniques such as 
data fusion and integration remains a methodological challenge (L. 
Zhang et al., 2018). Ultimately, all the considered methods are useful 
tools for exploring heterogeneity within real world data. The 
data-driven nature of these methods distinguishes them as helpful tools 
for initial exploration of effect modification, while traditional methods 
better serve as tools for confirmatory analyses.

Machine learning for effect measure modification is a burgeoning 
and promising field of study. As such, there is a constant need for simple 
interpretation of newly developed tools to increase their accessibility for 
applied researchers. This overview provides this interpretation and 
guides readers on implementing these tools and other supplemental 
analysis techniques in their own research. We hope that it serves as a 
useful reference for researchers in public health and adjacent 
disciplines.
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Appendix 

A.1 Technical definitions and assumptions for valid causal inference

Under Neyman-Rubin’s potential outcomes framework (Rubin, 1974), let Yi(Ai) be the potential outcome for the exposure Ai = 0,1 and Li be the 
covariate values for unit i = 1, ...,n. The ATE is defined as E[Yi(1) − Yi(0)] and the CATE is defined as τ(l) = E[Yi(1) − Yi(0)|Li = l] for covariates l ∈ Rp.

We assume the standard identification assumptions of conditional exchangeability, positivity, and consistency to make claims about observed 
effects (Hernán, 2012).

Conditional exchangeability states that the potential outcomes for both levels of the exposure are independent of the observed exposure condi
tional on observed covariates. Formally, Yi(1),Yi(0)⊥Ai|Li. This assumption is also referred to as the assumption of no unmeasured confounding.

Positivity guarantees that the conditional probability of being exposed or unexposed is greater than zero for any set of observed covariates, i.e., 
P(Ai = a|Li = l) > 0.

Lastly, consistency states that the observed outcome is equal to the potential outcome that would have been observed if the exposure took the same 
value. For a two-level exposure, Yi = AiYi(1)+ (1 − Ai)Yi(0).

A.2 BART and BCF model definitions

BART is modeled as 

Y = f(a, l)+ ϵ=
∑m

j=1
g
(
a, l;Tj,Mj

)
+ ϵ 

where 
(
Tj,Mj

)
is the binary tree Tj with corresponding b terminal node parameters Mj = {μ1, ..., μb} for trees j = 1,…,m, and ϵ ∼ N

(
0,σ2). g

(
a, l;Tj,Mj

)

is the parameter associated with the terminal node that contains the pair (a, l) for tree 
(
Tj,Mj

)
.

The BCF model is expressed as 

Y = f(a, l)+ ϵ= μ(l, π̂(l))+ τ(l)a + ϵ 

where μ is the BART component that explains the relationship between l and Y, and τ is the BART component that represents the CATE.

A.3 Choice of metalearner

To estimate CATEs, a metalearner such as the S-, T-, X-, DR-, or R-learner may be used. The choice of metalearner is context dependent and no 
metalearner outperforms all other options in every setting (Chernozhukov et al., 2024). Briefly, the S-learner trains a single model and treats the 
exposure variable as another covariate, resulting in instances in which the exposure is regularized out of the outcome surface and ignored entirely. It is 
simple to implement and preferable when the true CATE function is frequently zero. However, this can result in estimated CATEs being biased towards 
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zero when the true function is nonzero. The T-learner is more appropriate for estimating weak CATEs with complex outcome surfaces but does not 
perform as well when the surfaces are simple and similar between the exposed and unexposed groups. This is a consequence of imbalanced designs 
which are common in observational data. The X-learner handles imbalanced designs better than the S- and T-learners by weighting the exposed and 
unexposed outcome surfaces by the propensity score. If the CATE function is simpler than the exposed or unexposed outcome surfaces, the X-learner is 
preferable to other metalearners. Lastly, unlike the S-, T-, and X-learners, the DR- and R-learners are optimized to estimate the CATE function rather 
than outcome surfaces. This is beneficial when the true CATE function is complex, particularly more than the outcome surfaces. The DR-learner is 
doubly robust such that only one of the propensity or outcome model needs to be accurately learned to achieve accurate CATE estimates. However, the 
DR-learner can be unstable and produce large variances when the true propensities include extreme values. Conversely, the R-learner is more stable in 
the presence of extreme propensities but is more dependent on accurate propensity score modeling than the DR-learner. We refer to others, in 
particular Salditt et al., for a full tutorial on implementation of these metalearners (Salditt et al., 2024).

A.4 GRF application

A.5 BART application
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A.6 BCF application

A.7 Description of Data

The DHS surveys are repeated cross-sectional surveys that have been collected in over 90 low- and middle-income countries (LMIC) since the 
1980s. These data focus on women in reproductive age (ages 15 to 49) and their children and cover a wide range of health-related issues, including 
fertility, mortality, diseases, nutrition, and health-seeking behavior. The surveys also include detailed socioeconomic information, such as household 
assets, urban or rural places of residence, and type of occupation, among other information. A two-stage cluster sampling process guarantees that the 
data collected is nationally representative. More recent survey rounds include global positioning system (GPS) information (latitude and longitude) for 
each primary sampling unit (PSU). A PSU is defined as a city block in an urban area and a village in a rural area. We were able to connect the survey 
data with high-resolution gridded climate data via the GPS information.
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For our analysis, we restrict the data to surveys collected between 2000 and 2022 in sub-Saharan African countries. We focus on children under 5 
years of age for whom detailed information was collected, including anthropometric measurements (weight and height), birth weight, and feeding 
practices. To reduce the risk of misreporting bias, we restrict the sample to children who live with their mothers and are usual residents at the place of 
interview. Our final sample consists of 345,499 children from 32 countries and 86 individual surveys.

Following standard practice, we construct a binary indicator for child stunting based on the children’s height-for-age z-scores (HAZ). Children are 
classified as stunted if their HAZ score is more than 2 standard deviations below the World Health Organization’s (WHO) growth standard median for 
children of the same age-group (World Health Organization, 2019). We dropped observations with implausible HAZ scores (below − 6 and above 6). 
Low HAZ values reflect chronic undernutrition in children (stunted growth) (De Onis, 2017). It is a serious health concern since stunted growth has 
been associated with a range of negative outcomes such as diminished cognitive function, learning challenges and an increased risk of chronic health 
conditions (Arthur et al., 2015; Black et al., 2013; Poveda et al., 2021; Prendergast & Humphrey, 2014; Victora et al., 2008). Nearly a third of children 
in sub-Saharan African are stunted – some of the highest levels observed worldwide (Levels and Trends in Child Malnutrition Child Malnutrition, 
2023).

In addition to children’s anthropometric measurements, we retrieve information about the demographic and socioeconomic characteristics of the 
children and their households, including the mother’s level of education (grouped into none or some education), the type of occupation of the 
household head (agricultural or non-agricultural), the location of the household (urban or rural), mother’s consumption of mass media (including 
television, radio and newspaper), and household’s relative wealth group (constructed based on standard DHS procedures) (Rutstein, 2015).

To assess the impact of climate shocks on the health status of LMIC children under 5, we merged the survey data with Standardized Precipitation 
Evapotranspiration Index (SPEI), a multi-scalar drought index that is commonly used to measure the intensity and spatial distribution of droughts. The 
SPEI index is computed using input monthly precipitation and potential evapotranspiration data from the Climatic Research Unit at the University of 
East Anglia (CRU TS4) (Harris et al., 2020). We focus on identifying droughts during key agricultural periods. In particular, the main crop growing 
period for each PSU location is identified using high-resolution gridded data on the geographical distribution of crop areas (Monfreda et al., 2008) and 
crop calendar information (Sacks et al., 2010). Following standard practice, droughts are defined as crop-growing period SPEI values below − 1. We 
focus on exposure to agricultural droughts during the infancy period (the first 12 months of life) since this is a period when most growth faltering is 
shown to occur (Alderman & Headey, 2018).

There is strong evidence that droughts pose a serious threat to child health and nutrition in LMICs (Belesova et al., 2019; Cooper et al., 2019). 
However, the population groups most at risk have not been well studied. The extent to which climate shocks impact human health is likely to vary 
depending on the underlying level of population vulnerability. The degree to which agricultural droughts disrupt livelihoods and have an impact on 
human health depends on both individual and community-level factors, including dependence on agricultural produce, the capacity to diversify 
income, and access to information, to mention a few. Identifying population groups that are particularly vulnerable to climactic shocks is important for 
designing targeted interventions. Yet, few studies have looked into such disparities in drought-induced undernutrition, possibly due to the limitations 
of traditional methods of identifying effect modifiers.

Data availability

I have shared the link to the data at the Attach File step.
data_droughts_malnutrition.csv (Reference data) (Github)
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