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Upadhayay, H. R., Bodé, S., Griepentrog, M., Huygens, D., Bajracharya, R. M., Blake, W. H.,
Dercon, G., Mabit, L., Gibbs, M., Semmens, B. X., Stock, B. C., Cornelis, W., and Boeckx, P. 2017.
Journal of Soils and Sediments 17(6):1537-1553. DOI: 10.1007/s11368-017-1706-4.

Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., and Semmens, B. X. 2018.
Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096.
DOI: 10.7717/peerj.5096.

Blake, W. H., Boeckx, P., Stock, B. C., Smith, H. G., Bodé, S., and others. 2018. A deconvolutional
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ABSTRACT OF THE DISSERTATION

Improving management of exploited species with knowledge of life history and spatial
processes

by

Brian Curtis Stock

Doctor of Philosophy in Marine Biology

University of California San Diego, 2019

Professor Brice X. Semmens, Chair

My dissertation is motivated by the desire to achieve balance between conservation and

exploitation of marine populations (i.e., sustainable harvest). Navigating between the extremes of

preservationism and extinction with any confidence requires that we assess the status of exploited

populations and the ecosystems that support them. Single-species, equilibrium-based fisheries

management has been somewhat divisive, with proponents giving it credit for largely ending

overfishing and critics citing spectacular examples of failing to prevent fisheries collapses. One of

the primary critiques of traditional fisheries assessments is that they ignore important ecological

realities, such as variability in vital population rates stemming from: 1) environmental variability, 2)

xiii



spatial population structure and movement, and 3) species interactions.

My dissertation focuses on improving management of exploited species by adapting models

to species’ life history, with particular emphasis on the effect of spatial structure. Chapter 1 improves

stable isotope mixing models, used to estimate animal diets, by introducing a new statistical structure

makes more ecologically-realistic assumptions about the relationship between predator and prey

isotope signatures. We demonstrate that this new parameterization implicitly estimates predators’

consumption rate and outperforms existing models. Chapter 2 considers how fisheries bycatch

species’ life history traits, use of space, and catch rates affect models used to predict spatiotemporal

bycatch risk. We find that machine learning approaches (e.g. random forests) outperform recently

developed semiparametric spatial models for the purpose of generating fisheries bycatch predictions

to be used in dynamic management tools. Chapter 3 develops assessment methodology for protected

fish species that form spawning aggregations, a life history strategy particularly vulnerable to

overexploitation. While no catch or effort data can be collected from the protected population,

we demonstrate the efficacy of length-frequency time-series collected in situ to detect recruitment

spikes and population recovery. Chapter 4 investigates the mortality and 3-dimensional dispersal of

eggs and larvae from a Nassau Grouper (Epinephelus striatus) spawning aggregation, and discusses

the likelihood of large self-recruitment events.

xiv
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Unifying error structures in commonly used biotracer  
mixing models

Brian C. Stock
1 and Brice X. Semmens

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 USA

Abstract.   Mixing models are statistical tools that use biotracers to probabilistically estimate 
the contribution of multiple sources to a mixture. These biotracers may include contaminants, 
fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate 
the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes 
(e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions 
remain about when each is most appropriate. In this study, we describe the structural differenc-
es between common mixing model error formulations in terms of their assumptions about the 
predation process. We then introduce a new parameterization that unifies these mixing model 
error structures, as well as implicitly estimates the rate at which consumers sample from source 
populations (i.e., consumption rate). Using simulations and previously published mixing 
model  datasets, we demonstrate that the new error parameterization outperforms existing 
models and provides an estimate of consumption. Our results suggest that the error structure 
introduced here will improve future mixing model estimates of animal diet.

Key words:   Bayesian; biotracers; fatty acid; mixing model; MixSIR; SIAR; stable isotope.

Introduction

Studies in trophic ecology often require estimates of 
consumer diets. Typically, the diets of consumers are dif-
ficult to quantify because direct in situ observations are 
challenging. When direct observation is not possible, 
researchers have relied on a raft of techniques, including 
experimentation, fecal analysis, and gut content analysis 
(Paine 1966, Root 1967, Hyslop 1980). In recent decades, 
ecologists have increasingly leveraged biological tracers 
(“biotracers”) in order to estimate consumer diet. 
Common biotracers include bulk stable isotopes (SI) as 
well as compound-specific SI and fatty acids (Boecklen 
et al. 2011).

Mixing models use biotracers to quantify diet by calcu-
lating source (prey) proportions to a mixture (consumer), 
using the principle, “you are what you eat.” While they 
are commonly applied to diet analyses, mixing models 
also inform such basic ecological inquiries as animal 
movement, nutrient cycling, and interspecific interac-
tions (Caut et al. 2006, Granek et al. 2009, Carlisle et al. 
2012). More broadly, mixing models are employed across 
the natural sciences to elucidate source contributions to 

a mixture; for instance, to identify sediment sourcing in 
river systems using trace element fingerprinting (Dutton 
et al. 2013, Nosrati et al. 2014). Herein, we use the terms 
“source” proportions to a “consumer” using “tracer” 
data, although a given application may use fatty acids to 
estimate prey proportions of an animal’s diet (Iverson 
et al. 2004, Galloway et al. 2014a, b), or use compound-
specific SI to estimate sediment sources of a soil sample 
(Gibbs 2008, Blake et al. 2012).

Recent Bayesian approaches to mixing models (Moore 
and Semmens 2008, Semmens et al. 2009b, Parnell et al. 
2010) have addressed many of the criticisms leveled at 
simpler linear mixing models (e.g., IsoSource; Phillips 
and Gregg 2003), such as the inability to incorporate 
prior information, the failure to encapsulate uncertainty 
in tracer data, and the assumption that all consumers in 
a population share the same diet proportions. For ecolo-
gists, a main advantage of Bayesian mixing models is that 
their flexible likelihood-based structure allows them to 
account for variability in consumer tracer data (here-
after, consumer variability) due to known biological pro-
cesses (Appendix S1: Table S1).

The most widely used Bayesian mixing model software 
packages are MixSIR (Moore and Semmens 2008) and 
SIAR (Parnell et al. 2010), which differ in their assump-
tions about consumer variability (i.e., their error struc-
tures). This difference has been debated in the literature 
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(Jackson et al.2009, Semmens et al. 2009a), but has not 
been resolved, with model choice likely based on software 
platform and familiarity rather than statistical phi-
losophy. Since the difference between MixSIR and SIAR 
is subtle, the biological assumptions of these mixing 
models may be unclear to many ecologists. The objectives 
of our analysis are to unify and improve the MixSIR/
SIAR framework by introducing a more process-based 
formulation of uncertainty in mixing models (Stock and 
Semmens 2013), and to evaluate how this new formu-
lation compares to the existing models. Herein, we 
introduce a set of ecological process-based scenarios in 
order to understand the assumptions behind each error 
structure. We then explicitly define the model error 
structure equations, and finally, we evaluate model 
performance.

Model descriptions

Thinking of a simple hypothetical consumer-source 
interaction will help illustrate two ways variability in 
source tracer values propagates into consumer varia-
bility. Imagine a consumer population feeding exclu-
sively on one source. After subtracting the trophic 
discrimination factor (TDF, difference between tracer 
values in consumer and source tissues), we expect the 
consumer tracer values to directly match those of the 
source. However, if we think of predation events as indi-
vidual consumers sampling the source population tracer 
distribution, there are two reasons consumer tracer 
values can differ from the source mean due to the process 
of sampling alone:

1.	� Sampling error: Consumer tracer values are an average 
of a finite number of samples, and there will be some 
variability in these sample means due to chance.

2.	� Specialization: Individual consumers may preferen-
tially sample above or below the source mean, resulting 
in some consumers enriched or depleted. For instance, 
larger shrimp can have higher δ13C values (Fry and 
Arnold 1982), so larger fish preferentially eating 
larger  shrimp would be enriched in 13C relative to 
smaller fish.

We refer to these as “process error”: variation in con-
sumer tracer values due to the sampling process. 
Researchers also can include “residual error” terms in 
mixing models to account for other agents of consumer 
variability, such as individual differences in digestibility, 
assimilation efficiency, and metabolic rates (see Table 1 in 
Boecklen et  al. 2011). Importantly, note one conspicu-
ously absent driver of consumer variability––diet. If  we 
do not include hierarchical model structures (as in 
Semmens et al. 2009b), all consumers are assumed to have 
the same diet. Researchers assume that deviations among 
consumers are due to some combination of these process 
and residual errors to derive mixing model error struc-
tures, which we introduce below:

Model 1: consumers as perfect specialists (MixSIR)

Consumers sample at exactly one location from each 
source distribution. All variability in consumer tracer 
values results from individual specialization and sam-
pling error as described previously (process error, 
Fig.  1a). Model 1 assumes the consumer tracer values, 
Xij, follow Eq. 1:

where:
Xij = tracer value j of mixture (consumer) i,
pk  = (diet) proportion of source k (estimated by model),
μjk = source k mean for tracer j,
λjk = m�ean trophic discrimination factor (TDF) for 

tracer j on source k,
ω2

jk
 = source k variance for tracer j, and

τ2

jk
 = d�iscrimination factor variance for tracer j on 

source k.

(1)Xij ∼N

(∑
k

pk

(
μjk+λjk

)
,
∑

k

p2

k

(
ω2

jk
+τ2

jk

))

Fig.  1.  Mixing model error terms. (a) Process error: 
consumers sample in different locations from each source 
distribution, and the variation in consumer tracer values is due 
to this sampling process. For example, the blue consumer has a 
higher tracer value (blue circle) than the red and grey consumers 
(red, grey circles) because it samples sources with higher tracer 
values (blue lines). (b) Residual error: all consumers sample 
from the source means (colored lines), and variation in consumer 
tracer data (circles) is due to unexplained deviations from the 
consumer mean (black dashed line). Potential sources of residual 
error include individual differences in digestibility, assimilation 
efficiency, and metabolic rates (see Table 1 in Boecklen et  al. 
2011).
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The variance term in Model 1 (MixSIR, Eq. 4 in 

Moore and Semmens 2008) is the mathematical result 
obtained by adding k independent normal random var-
iables, and defines the consumer variance as a function 
of the source variances (Fig. 1a). Importantly, note that 
no distinction is made between source variance,  
ω2

jk
, and TDF variance, τ2

jk
. Researchers often do not 

directly measure TDF means or variances for their 
system, yet accurate estimates of these quantities are 
important to mixing model results (Bond and Diamond 
2011).

Model 2: consumers as perfect integrators, but with 
residual error

Consumers randomly sample the source distributions 
many times, effectively sampling the mean. The observed 
spread in consumer tracer values is entirely due to unex-
plained deviations from the mean (residual error, Fig. 1b). 
While this “residual error only” model appears simpler, it 
introduces j new parameters by adding one σ2

j
 residual 

error term per tracer, seen in Eq. 2:

Model 3: consumers as perfect specialists, but with 
residual error (SIAR)

Consumers sample at exactly one location from each 
source distribution, which results in some consumer var-
iability as in Model 1. Then we assume the consumer var-
iability is higher than expected under Model 1, so we add 
residual error as in Model 2. This is how SIAR-based 
models are structured (Parnell et  al. 2010). Model 3 
(SIAR, Eq. 9 in Parnell et  al. 2010) adds the variance 
terms in Models 1 and 2:

The advantage of Model 3 is that it can fit “wide” con-
sumer data, with more variability than that of the sources, 
unlike Model 1 (Fig.  2a). On the other hand, Model 3 
must fit j additional parameters. Both Models 1 and 3 are 
unable to fit “narrow” consumer data, where the con-
sumer variance is less than that of the sources (Fig. 2c). 
Yet, one may expect this to be the case in natural 
predator-prey systems, as each consumer repeatedly 
samples the prey population.(2)

Xij ∼N

(∑
k

pk

(
μjk+λjk

)
, σ2

j

)
.

(3)
Xij ∼N

(∑
k

pk

(
μjk+λjk

)
,
∑

k

p2

k

(
ω2

jk
+τ2

jk

)
+σ2

j

)
.

Fig. 2.  1-tracer distributions of different consumer variances, demonstrating the difference between Model 1 (process error only, 
MixSIR), Model 3 (process + residual error, SIAR), and Model 4 (process × residual error). Solid colored lines show each 
model  fit  to  the consumer data (black points), and black dashed lines show the true consumer distribution. (a) Model 1 
cannot fit wide consumer data, σ2

X
>σ2

S
, because it does not have a residual error term. (b) When the consumer and source variances 

are roughly equal, σ2
X
≈σ2

S
, all models fit well. (c) Models 1 and 3 cannot fit narrow consumer data, σ2

X
<σ2

S
, where the consumer 

variance is much less than the source variances. Note that all models fit the same mean.

s ×
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Model 4: consumers between perfect specialists and 

perfect integrators

Considering these existing frameworks, it becomes 
clear that the ecologically most realistic scenario is 
missing; namely, Model 4, in which consumer popula-
tions fall somewhere between perfect specialists and 
perfect integrators. Model 4 multiplies the process error 
by a multiplicative error term, ɛj, as in Eq. 4:

The multiplicative error term, ɛj, allows the model to 
switch consumers from perfect integrators 

(
εj =0

)
 to 

perfect specialists 
(
εj =1

)
 to fit narrow consumer data, as 

well as fit wide consumer data with more variability than 
expected under Model 1 (εj >1; Fig.  2a–c). A U(0,20) 
prior was chosen for the ɛj term because models with this 
prior outperformed others considered in simulation tests 
(Appendix S2: Figs. S1 and S2).

Model 4 has the same number of parameters as Models 
2 and 3. However, in contrast to the ecologically mean-
ingless σ2

j
 residual terms in Models 2 and 3, the ɛj term is 

related to the consumer consumption rate (biomass con-
sumed per tissue turnover period). The underlying idea is 
that the ratio of consumer tracer variance to source var-
iance contains information about how frequently con-
sumers sample sources––more frequent sampling reduces 
consumer variance. If we assume that all consumer vari-
ability is either due to process error (Fig. 1a) or accounted 
for by covariates (i.e., there is no residual error), then we 
can solve for consumption, C, in terms of the variance, 
biomass, and diet proportion of the sources (for deri-
vation see Appendix S3). The consumption of each 
source, Ck, is then Ck = Cpk.

We hypothesize that Model 4 is generally a more 
appropriate model than Models 1 and 3, especially for 
systems with narrow consumer data 

(
εj <1

)
. We used sim-

ulated and published datasets to test the performance of 
all four models, calculating model selection criteria such 
as relative error, DIC, and credible interval width.

Methods

Simulations

We first tested the models using simulated data where 
the “true” diet proportions were known, across a range 
of consumer variability––generated by allowing con-
sumers to sample the source distributions a variable 
number of times (C  =  320, 160, 80, 40, 20, 10, 5) and 
adding residual error. We carried out all simulations for 
a simple case of three sources, two tracers, 10 consumer 
data points, and each source biomass = 1. Since mixing 
models assume that the correct sources have been iden-
tified a priori, we did not allow any source to contribute 
<5% to the true diet.

We simulated 1,000 datasets for each level of consumer 
variability, according to the following pseudo-code (see 
Appendix S9 for code):

1.	� Generate true proportions, pk, for each source k (p is 
a K-vector, the number of sources):

2.	� Generate source means, μjk, and standard deviations, 
ωjk, for each tracer j:

3.	� Each consumer i takes a sample of size Zik from source 
k (Zi is a K-vector):

4.	� Consumer i draws Zik samples from source k, resulting 
in sample means Yijk for each tracer j:

5.	� Each consumer i’s tracer values, Xij, are means of all 
source samples:

6.	Add residual error from  (0, 0.1).

Representative simulated datasets across the range 
of  consumer variability are shown in Appendix S4: 
Fig. S1.

For each dataset, we fit all four models via Markov 
Chain Monte Carlo (MCMC) using JAGS and R 
software (Plummer 2003, R Core Team 2015). We 
assessed model convergence with the Gelman-Rubin 
diagnostic, not allowing more than 50 values above 1.1 
across all variables and datasets for each level of mixture 
variability (Gelman et al. 2004). Finally, we used the fol-
lowing metrics to gauge model performance (for details 
see Appendix S5):

1.	� Proportion of true pk captured within 95% credible 
intervals.

2.	 Mean difference in DIC (ΔDIC).
3.	 Mean 95% credible interval width.
4.	 Mean absolute percent error.

Published datasets

Simulations are useful in model assessment because 
knowing the truth allows us to evaluate model accuracy 
and precision. However, simulated data may not ade-
quately describe variation found in natural systems. 

(4)Xij ∼N

(∑
k

pk

(
μjk+λjk

)
,
∑

k

p2

k

(
ω2

jk
+τ2

jk

)
×εj

)
.

p∼Dirichlet(�), αk =1

μjk ∼ (0, 5)

ωjk ∼ (0.5, 1.5)

Z
i
∼Multinomial(C, p)

Yijk =

∑Zik

z=1
 (μjk, ω2

jk
)

Zik

Xij =
∑

k YijkZik

C
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While we hypothesize that Model 4 will perform well in 
situations with narrow consumer data, how often is this 
the case?

We surveyed the recent ecological literature for pub-
lished datasets from studies employing mixing models. 
Searching in ISI Web of Science for terms “stable 
isotope*” AND “mixing model*” returned 387 articles 
for years 2012–2014, of which thirteen had complete 
data––raw consumer tracer values (not means and 
standard deviations), source tracer values (raw, or means, 
standard deviations, and sample size), and discrimination 
values (Appendix S6). Three additional SI datasets were 
available online and opportunistically included (Stock 
and Semmens 2013). As in the simulation study, we fit the 
models via MCMC using JAGS and R, remaining faithful 
to the original mixing model analysis as performed by the 
authors. We included multiple mixture groups analyzed 
separately by the authors as one model with fixed effects 

in order to avoid one study dominating the results (see 
Appendix S10 for code). We compared models solely 
using ΔDIC, since estimating model accuracy without 
knowing the true diet is not possible.

Results

Simulations

Models 2 and 4 outperformed Models 1 and 3 (MixSIR 
and SIAR) across all measures of model selection for low 
consumer variability: lower ΔDIC (Fig. 3a), more accurate 
point estimates (Fig. 3b), tighter credible intervals (Fig. 3c), 
and lower absolute percent error (Fig. 3d). Model 4 per-
formed similarly to Model 2 (residual error only) except a 
slight tradeoff between accuracy and precision for datasets 
with higher consumer variability (Fig.  3). As expected, 
Model 1 (MixSIR) was clearly the worst model for datasets 

Fig. 3.  Simulation results as functions of consumer variance: (a) mean ΔDIC, (b) percent of true proportions captured by 95% 

credible intervals, (c) mean 95% credible interval widths, and (d) mean absolute percent error (MAPE). Model 1 = process error only 

(MixSIR), Model 2 = residual error only, Model 3 = process + residual error (SIAR), and Model 4 = process × residual error. 

MAPE is calculated as 
∑���

est.p−true.p

true.p

���∕1,000, where est.p is the proportion point estimate (median posterior density) and true.p is 

the simulated “true” proportion. Error bars (SE) are smaller than the size of points (n = 1,000 simulations).
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with higher consumer variability, while the other three 
models performed adequately.

Published datasets

Without knowing the true proportions of the pub-
lished datasets, we cannot evaluate the models’ accuracy 
or bias directly. However, Models 2 and 4 fit the pub-
lished datasets better than Models 1 and 3 overall, as evi-
denced by lower median ΔDIC values (Model 2 = 1.5, 
Model 4 = 2.7, Model 1 = 8.1, Model 4 = 9.2, Fig. 4). 
Model 2 had strong support for most datasets (11 out of 
16 ΔDIC ≤3.2), but performed poorly in the others (five 
out of 16 ΔDIC ≥40). Just under half (46%) of the esti-
mated ɛj terms in Model 4 were less than one, indicative 
of narrow consumer data (Appendix S7: Fig. S1). Based 
on the simulation results, we would expect Model 4 to 
outperform Models 1 and 3 for these datasets with ɛj < 1 
(more accurate point estimates and tighter intervals). 
Model 4 diet estimates were quite different than those of 
Models 1 and 3 for some––but not all––datasets (for a 
typical example, Appendix S7: Fig. S2).

Consumption rate calculation

We calculated consumption rates from ɛj terms esti-
mated by Model 4 fit to data simulated without residual 
error, and these agreed with the true simulated con-
sumption rates (Appendix S3: Fig. S1). We then tested 
the practicality of using ɛj to estimate consumption rates 
using a familiar SI mixing model application to coastal 
wolf diet (Semmens et al. 2009b). Inserting the fitted ɛj 
values (maximum posterior densities, 0.90 and 0.38) into 
Eq. 4 yielded consumption rates between 3.8 and 0.3 kg 
per wolf per day (see Appendix S3 for calculations), 
which straddle other estimates of consumption for wolves 
primarily relying on deer (Kolenosky 1972, Person et al. 
1996).

Discussion

The error structures in two commonly used Bayesian 
mixing models, MixSIR (Model 1) and SIAR (Model 3), 
were clearly outperformed by Models 2 (residual error 
only) and 4 (multiplicative error) in both simulations and 
published datasets. This is likely due to inaccurate under-
lying assumptions about the biological process of pre-
dation, where it is helpful to think of predation events as 
individual consumers sampling the source population 
biotracer distributions.

Models 2 and 4 performed similarly in simulation tests 
(Fig. 3), but Model 4 rests on more ecologically realistic 
assumptions. Model 2 assumes the observed variation in 
consumer tracer values is completely due to unexplained 
deviations from the mean (Fig. 1b). In contrast, Model 4 
is founded on a basic biological process––consumers 
sample sources through predation events––linked to the 
consumption rate. Thus, we advise implementing 

multiplicative error (Model 4) as the default option in 
mixing models, although Models 1 and 2 are useful in 
some cases. For instance, Model 1 is the only option for 
fitting single mixture data points and may make sense 
when including hierarchical structures. Model 2 could be 
preferred in applications other than diet estimation (e.g., 
sediment sourcing), or where consumers essentially feed 
infinitely many times (e.g., filter feeders such as oysters).

If predation cannot be envisioned as occurring in dis-
crete events, as with oysters filter feeding, the quantitative 
estimates of consumption from Model 4 may not make 
sense. In such cases, the ɛj terms should still qualitatively 
agree with our biological knowledge of the consumption 
rate (see Appendix S7: Table S1 for all ɛj estimates). For 
example, it is unclear what the biomass of POM that an 
oyster consumes in a “predation event” is, or even if it 
makes sense to think of “predation events” for oysters. 
Model 2 is probably more appropriate for oysters: assume 
they integrate so many source particles that they effec-
tively “feed at the mean” of each source. Still, Model 4 
estimates low ɛj (0.13 and 0.32, Appendix S7: Table S1), 
which is consistent with our conceptualization of how 
consumer sampling affects biotracer variance––oysters 
consume many individual particles per tissue turnover 
period, thus we expect their biotracer values to vary less 
than that of their sources.

Importantly, the relative support for Model 4 increases 
as biotracer variability from ecological processes is 
accounted for in the mixing model (Appendix S1: Table 
S1). As an example, consider the wolf SI dataset of 
Semmens et  al. (2009b). Adding region and pack as 
random effects in the model explains much of the 

Fig. 4.  Differences in DIC from the model with lowest DIC 
for each literature dataset. Model 2 had the lowest DIC 
(ΔDIC = 0) for six of the 16 datasets and lowest median ΔDIC, 
1.5. Model 4 had the lowest DIC for five of the 16 datasets and 
next lowest median ΔDIC, 2.7. Models 1 and 3 had higher 
median ΔDIC: 8.1 and 9.2, respectively. DIC differences of 3–7 
are significant.
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variation in wolf isotope values. As a result, the consumer 
variance becomes less than the source variance, ɛj esti-
mates decrease, and Model 4 gains more support 
(Appendix S8: Table S1). Researchers are increasingly 
building such processes into mixing models, and Model 4 
should perform well in these process-based mixing 
models (Parnell et al. 2013, Ogle et al. 2014).

Relative support for Model 4 also depends on 
researchers faithfully incorporating uncertainty in 
trophic discrimination factor (TDF) values. Recall that 
mixing models do not distinguish source variance from 
TDF variance (ω2

jk
 and τ2

jk
 in Eqs. 1–4). Including unreal-

istically low estimates of τ2

jk
, or worse, assuming a single 

fixed TDF (τ2

jk
=0), artificially reduces 

∑
p2

k

�
ω2

jk
+τ2

jk

�
 

and increases ɛj in Eq. 4, weakening relative support for 
Model 4 over Models 1 and 3. Along with others, we con-
sider the inclusion of uncertainty in TDFs into Bayesian 
mixing models a significant advance (Bond and Diamond 
2011), especially given the wide range of calculated TDFs 
and the prevalence of borrowing literature values from 
different species and tissues (Caut et al. 2009). Calculating 
TDF variance via feeding experiments is clearly pref-
erable, and we suspect mixing model users tend to under-
estimate TDF variance when using borrowed values. In 
such cases, including appropriate τ2

jk
 values would 

strengthen relative support for Model 4.
Including ecological processes and realistic TDF var-

iance in mixing models not only determines relative model 
support, it also strongly affects the consumption rate 
calculation. The idea that there is information about 
consumption rate in the ratio of consumer to source bio-
tracer variance is intriguing and merits further study, 
since consumption is fundamental to population dynamics 
but difficult to measure (Lotka 1925, Holling 1959). The 
primary limitation is that ɛj is confounded with unex-
plained, residual error. Thus, consumption estimates 
depend on accurate measures of the variability in con-
sumer and source tracer values, as well as accounting for 
consumer variability from ecological processes and 
trophic discrimination. Additionally, the method derived 
here should underestimate consumption, since it assumes 
all of the consumer variance is due to the sampling process, 
when in reality some is due to residual error (i.e., ɛj are too 
high). Despite these limitations, this work provides a basis 
upon which to  improve estimates of consumption via 
source apportionment, especially as including more (and 
better conserved) biotracers becomes common in ecology 
(e.g., fatty acids, compound-specific SI).

Finally, there has been confusion whether the models 
considered here––simply by virtue of being Bayesian––can 
solve the problem of underdetermined systems (number of 
sources > number of tracers + 1, Boecklen et al. 2011). We 
simulated determined systems (three sources, two tracers), 
but six of the sixteen published datasets analyzed were 
underdetermined (Appendix S6: Table S1). While Bayesian 
mixing models can fit any number of sources, they are not 
a panacea for underdetermined systems––as Brett (2014) 

demonstrates, the “uninformative” prior has more weight 
the less information (more uncertainty) the data contain. 
Including biotracers beyond bulk SI offers the opportunity 
to increase the number of sources while avoiding underde-
termined systems. We caution, however, that the effect of 
an “uninformative” prior increases with the number of 
sources and is not only an issue in underdetermined 
systems––this is true even with more tracers than sources.
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Chapter 2

Comparing predictions of fisheries bycatch using multiple spatiotemporal species

distribution model frameworks
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Abstract

Spatiotemporal predictions of bycatch (i.e. catch of non-targeted species) have shown

promise as dynamic ocean management tools for reducing bycatch. However, which spatiotemporal

model framework to use for generating these predictions is unclear. We evaluated a relatively new

method, Gaussian Markov random fields (GMRFs), with two other frameworks, generalized additive

models (GAMs) and random forests. We fit geostatistical delta-models to fisheries observer bycatch

data for six species with a broad range of movement patterns (e.g. highly migratory sea turtles vs.

sedentary rockfish) and bycatch rates (percent of observations with non-zero catch, 0.3-96.2%).

Random forests had better interpolation performance than the GMRF and GAM models for all six

species, but random forests performance was more sensitive when predicting data at the edge of

the fishery (i.e. spatial extrapolation). Using random forests to identify and remove the 5% highest

bycatch risk fishing events reduced the bycatch-to-target species catch ratio by 34% on average.

All models considerably reduced the bycatch-to-target ratio, demonstrating the clear potential of

species distribution models to support spatial fishery management.
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2.1 Introduction

Bycatch—catch of non-targeted species—occurs in nearly every commercial and recreational

fishery, and in many cases is a serious environmental and economic problem (Alverson et al., 1994;

Davies et al., 2009; NMFS, 2016). For high-profile protected species such as loggerhead sea

turtles (Caretta caretta), even extremely low bycatch rates can result in population impacts and

fisheries closures (Howell et al., 2015). Some species sustain highly valuable targeted fisheries

but are considered bycatch in others, resulting in litigation and economic losses (e.g. chinook

salmon bycatch in the Alaska pollock fishery; Ianelli and Stram, 2015). Bycatch of undesired

and unprotected species is also concerning because it reduces fishing efficiency and threatens

ecosystem biodiversity (Boyce, 1996; FAO, 1995; Kelleher, 2005). Thus, for a variety of reasons,

the fishing community is interested in using species distribution models (SDMs) to understand

spatiotemporal patterns of bycatch, with the hope that SDM-based tools could predict—and thus

help avoid—bycatch.

Maps of relative bycatch risk (e.g. probability or density) updated in near real-time have

already shown promise as dynamic ocean management tools, both complementing and contrasting

traditional static time and area closures (Breivik et al., 2016; Dunn et al., 2016; Eguchi et al., 2017;

Hazen et al., 2017; Howell et al., 2008, 2015; Lewison et al., 2015). It is not clear, however, what

SDM is most appropriate to use as the framework supporting such tools. Further, because bycatch

species vary from commonly to rarely caught, bycatch datasets offer a wide range of occurrence

rates and densities. Thus, in addition to providing guidance for spatial bycatch management, large

bycatch datasets are excellent testbeds for evaluating SDM performance more generally.

Understanding how species distributions change in time and space is critical for conservation

planning and natural resource management (Parmesan and Yohe, 2003; Sumaila et al., 2011; Pinsky

et al., 2013), and this has motivated rapid development of SDMs in the last decade. There is now

a wide range of statistical tools available to ecologists and fisheries scientists for fitting data on

species presence/absence and abundance (Phillips et al., 2006; Illian et al., 2013; Conn et al., 2015;
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Golding and Purse, 2016).

SDMs can be coarsely divided into parametric, semiparametric, and nonparametric ap-

proaches. Generalized linear models (GLMs) are one of the simplest parametric approaches used

to understand species distributions and their relationships with biotic and abiotic covariates (Ven-

ables and Dichmont, 2004). GLMs predict the response variable, Y i (species presence/absence or

abundance at location i), by specifying a probability distribution and link function:

Yi ∼ distribution with mean µi,

g(µi) = ηi,

ηi = Xiβ

(2.1)

where Xi is a vector of covariate values for location i, and β is a vector of coefficients to be

estimated. GLMs can permit nonlinear relationships between the covariates and response by

including transformations of the covariates, e.g. polynomial terms ηi = β0 + β1X1i + β2X2
1i +

β3X3
1i + . . ., or by discretizing continuous covariates and treating them as categorical variables.

Generalized additive models (GAMs) extend the GLM framework by allowing the linear

predictor to include smooth functions of the covariates (Guisan and Thuiller, 2005; Wood, 2017).

GAMs are often referred to as semiparametric, since the smoothers do not have a specified functional

form but do have associated parameters that are estimated using penalized likelihood (Wood, 2011;

Guélat and Kéry, 2018). The ability of GAMs to incorporate complex, non-linear covariate effects,

as well as improvements to computing power and software, has led to their wide adoption in fisheries

and ecology in the last decade (Becker et al., 2014; Leathwick et al., 2006; Li and Pan, 2011; Watson

et al., 2009). Extending the linear predictor in Equation 2.1 to include a 2-dimensional spline, f (),

on the geographical coordinates of location i, si, specifies a GAM:

ηi = Xiβ+ f (si). (2.2)
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Equation 2.2 is estimated by penalized likelihood maximization, which balances smoothness and

fit to the data by penalizing the curvature (i.e. integral of the squared second derivative) of f (si)

(Wood, 2017). Kammann and Wand (2003) refer to Equation 2.2 as a ‘geoadditive’ model, and have

shown that this is mathematically equivalent to explicitly modeling spatial correlation with random

effects, u:

ηi = (Xβ+Zu)i (2.3)

(Diggle et al., 1998; Kneib et al., 2008; Péron et al., 2011; Fahrmeir et al., 2013; Guélat and Kéry,

2018). When the spatial random effects are assumed to follow a zero-mean multivariate normal

distribution, Equation 2.3 can be written as:

ηi = Xiβ+ ε(si),

ε(s)∼MVN (0,Σ) ,
(2.4)

where ε is a Gaussian field (Kneib et al., 2008). Analogous to how the curvature of the spline is

penalized when estimating the GAM, the correlation function that defines Σ acts as a penalized

spatial smoother in the Gaussian field model—nearby locations are more highly correlated, and

thus more smoothed, than distant locations (Fahrmeir et al., 2013). Gaussian fields are attractive

because they directly model spatial correlation, but applications have historically been limited to

smaller datasets because inverting the covariance matrix, Σ, makes them computationally intense

(Lindgren et al., 2011). In summary, both the GAM and Gaussian field model account for spatial

autocorrelation not explained by environmental covariates, are semiparametric, mathematically

equivalent, and typically fit using penalized likelihood that optimizes spatial smoothing.

Modeling species distributions using Gaussian Markov random fields (GMRFs) has become

increasingly common as advances in computing power and software implementation have allowed

ecologists to apply them to large datasets. Lindgren et al. (2011) demonstrated that a Gaussian

field, which is defined in continuous space, can be approximated by a discrete GMRF that arises

as the solution to a stochastic partial differential equation. Among other advantages, the GMRF
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approach can be implemented by integrated nested Laplace approximation, which is faster than other

methods of Bayesian inference (i.e. Markov chain Monte Carlo) and allow GMRF approximations

of Gaussian fields to be computationally feasible (Rue et al., 2009). GMRF models have shown

promise in assessing relationships between habitat and distribution (Illian et al., 2013), the effects

of interspecific relationships such as density dependence (Thorson et al., 2015c), as well as the

relationships between multiple co-occurring taxa (Ward et al., 2015). From a quantitative standpoint,

GMRF models have been shown to estimate population abundance trends with greater precision

and accuracy compared to non-spatial models (Thorson et al., 2015b).

Clearly, GMRFs are intimately related to GAMs, since GMRFs approximate the Gaussian

field model (Eqn. 2.4), which is an alternative parameterization of the GAM in Equation 2.2. The

spatial smoothing terms for both GAMs and GMRFs can be defined on a sphere or differ according

to spatial direction (anisotropy can be included in GAMs by using tensor product smooths, and Σ

can be both non-stationary and anisotropic in GMRFs). GAMs and GMRFs differ, however, in two

regards. First, the spatial smoothing term appears as a mean trend for GAMs and as a covariance

matrix for GMRFs. This distinction may not be important for modelling species distributions, and

researchers may prefer the method that reflects their view of how spatial autocorrelation arises in

the problem at hand. For instance, GMRFs would be the more natural framework if the spatial

variation remaining after including environmental covariates is considered random. Second, and

more importantly, the different parameterizations lead to different estimation methods and software

implementations. Since spatial models for large datasets contain many parameters, numerically

efficient implementations are crucial (Fahrmeir et al., 2013). Several R packages fit GAMs, the most

popular being ‘mgcv,’ which uses generalized cross-validation to estimate smooth terms by default

(Wood, 2017). GMRFs can be fit via ‘INLA,’ which uses a Bayesian framework and estimates

models by integrated nested Laplace approximation (Lindgren and Rue, 2015). In theory, ‘mgcv’

and ‘INLA’ should be quite similar. In practice, however, differences in approximation methods,

runtime, convergence criteria, ease of use, and default settings may impact model predictions.
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Most nonparametric approaches ecologists use to model species distributions have evolved

from machine learning algorithms (Hastie et al., 2009; Olden et al., 2008). These data-driven

approaches include random forests (RF; Breiman, 2001; Cutler et al., 2007), MaxEnt (Phillips et al.,

2006; Phillips and Dudı́k, 2008), and support vector machines (Drake et al., 2006). In this analysis

we highlight RF because 1) data in our application—fisheries bycatch—contain true absences,

whereas MaxEnt is designed for presence-only data, and 2) RF is widely used and has shown good

predictive performance in SDM testing (Prasad et al., 2006; Marmion et al., 2009; Scales et al.,

2016). The RF algorithm predicts the response by constructing m regression (or classification) trees

and averaging their predictions (Breiman, 2001). Each individual tree begins with all observations

and then iteratively partitions the data by splitting along one covariate (e.g. depth > 100 m versus

depth ≤ 100 m), choosing the covariate and split point that minimizes the sums of squares error

at each node (where the predicted response at each node is the mean of observations within the

node; Breiman et al., 1984). The process continues until each terminal node contains less than a

specified number of observations. Individual trees are simple and computationally cheap but are

also unstable (i.e. sensitive to slight alterations in the data) and sub-optimal at prediction (i.e. they

are “weak learners”), because they only allow rectangular partitions of covariate space. The RF

algorithm increases predictive performance by reducing the correlation between trees, which is

accomplished via two processes: 1) fitting each tree to a bootstrap sample of the original data, and

2) at each split, randomly selecting a subset of covariates to consider (Kuhn and Johnson, 2013).

This works because reducing the correlation between individual trees reduces the correlation of

their errors, which therefore reduces the predictive error of their average, the RF estimate.

Random forests are popular because they are simple to use (few parameters to tune and

the default values work well in most cases), generate accurate predictions, designed to not overfit,

seamlessly accommodate missing data, and are robust to the inclusion of many non-informative

covariates (Biau and Scornet, 2016). Compared to parametric and semiparametric models, RF will

often have better out-of-sample (i.e. cross-validated) prediction performance due to their ability to
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estimate more complex patterns, as non-linearity and interactions are inherent in their construction

(Elith and Leathwick, 2009). However, this data-driven complexity does come at the cost of model

interpretability, and this is one of the main factors limiting the adoption of RF—and machine

learning methods more generally—by ecologists (Olden et al., 2008). Three other disadvantages of

RF are the difficulty of generating uncertainty estimates with well-understood properties, analyzing

model diagnostics, and specifying constraints on model fit (e.g., we may wish yearly estimates to

be independent, which can be specified in parametric models).

The primary objective of this paper is to compare the performance of GAMs, GMRFs

and RF in a predictive framework. There has been an increased emphasis on predictive metrics in

ecology (Hooten and Hobbs, 2015), and one of the advantages of this approach is that nonparametric

and parametric models can be compared (Ward et al., 2014). While each of these methods have

individually been applied to understand spatiotemporal trends in fisheries bycatch (Becker et al.,

2014; Hazen et al., 2017; McCracken, 2004; Watson et al., 2009; Breivik et al., 2016, 2017;

Cosandey-Godin et al., 2015; Carretta et al., 2017; Eguchi et al., 2017; Pons et al., 2009), their

predictive performance has not been tested in a comparative study. A secondary objective of our

analysis is to evaluate whether any of these models offer consistent advantages across a wide

range of bycatch rates (% fishing events with non-zero catch) and life history characteristics (such

as movement or habitat preference). Our final objective is to evaluate the utility of using SDM

predictions of bycatch risk as a tool to reduce bycatch in fisheries.

2.2 Methods

Fisheries observer data

Collecting reliable bycatch data depends on fisheries observer programs, where on-board

observers enumerate and record the species caught (as well as fishing location, gear type, time,

and other relevant information). To explore the performance of species distribution models across

taxa, we used two datasets from United States fisheries observer programs in the Pacific Ocean
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with high observer coverage. The first dataset was from the West Coast Groundfish Observer

Program (WCGOP) at the Northwest Fisheries Science Center (NWFSC; Bellman et al., 2010).

The WCGOP dataset contained records of 42 786 commercial bottom trawls from 2003-2012

off the west coast of the USA, primarily targeting groundfish such as Dover sole (Microstomus

pacificus), thornyheads (Sebastolobus spp.), sablefish (Anoplopoma fimbria), and rockfish (Sebastes

spp., Fig. 2.1). Observers recorded haul duration, location, date, time, depth, gear type, and catch

(which includes at-sea discarded bycatch; for details see NWFSC, 2016). Observer coverage

was approximately 20% from 2003-2010 under limited access management, with 100% coverage

starting in 2011 with the transition to an individual fishing quota (IFQ) system. In the pre-IFQ era,

fishermen were not permitted to land rebuilding species (i.e. populations declared overfished with

management plans to rebuild to sustainable levels), so we defined bycatch as only at-sea discards.

Under the IFQ system fishermen can land a low quota of rebuilding species, so we considered

bycatch to be the sum of discarded and retained catch for non-target species.

The second dataset was from the Hawaii longline (HILL) fishery, monitored by the Pacific

Islands Regional Observer Program (PIROP, 2014), which has recorded fishing location, date, time,

sea surface temperature (SST), gear characteristics, and catch of longline sets from 1994-2014. The

Hawaii longline fleet is divided into two sectors, one targeting tuna (Thunnus spp.) and the other

swordfish (Xiphias gladius), with distinct gear configurations and spatiotemporal effort patterns,

both of which affect interaction rates with bycatch species (Li and Pan, 2011). We modeled 16

714 observations from the shallow-set swordfish fishery in 1994-2001 and 2005-2014 (Fig. 2.2),

distinguishing between sets targeting swordfish and tuna by the number of hooks between surface

floats (following Li and Pan, 2011). Concerns over bycatch of protected species, particularly of

loggerhead (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea), motivated the

closure of the swordfish fishery from 2001 to 2004. This led to two important differences between

the data from 1994-2001 and 2005-2014. First, sea turtle bycatch rates have been an order of

magnitude lower in the later period, the result of stricter regulations and modifying hooks (J to circle
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Figure 2.1: Effort and target species catch density in the West Coast groundfish trawl fishery from 2003
to 2012. a) Bivariate kernel density estimate showing smoothed density of fishing effort (42,786 haul
locations, ‘bkde2D’ function in R package ‘KernSmooth’). b) Thin plate spline surface estimating the
average density of target species catch at a given location, log(pounds groundfish) per haul, fit using
the ‘Tps’ function from the R package ‘fields’. Note that the map of total catch would be produced by
multiplying a) effort and b) target catch density, just as the binomial and positive components are multiplied
in the delta-model.
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hooks) and bait types (squid to fish; Gilman et al., 2007). Second, observer coverage increased

from roughly 5% to 100% (Howell et al., 2008).

Model performance may be linked to species’ movement patterns, because species that

move less (or whose movement patterns do not change in time) may not need a spatiotemporal

model. Instead, a time-constant spatial model may be adequate. To ascertain whether differences

in SDM performance were related to movement pattern or bycatch rate (i.e. % observations with

non-zero catch), we selected three bycatch species from each dataset: blue shark (Prionace glauca),

Pacific halibut (Hippoglossus stenolepis), darkblotched rockfish (Sebastes crameri), yelloweye

rockfish (Sebastes ruberrimus), loggerhead sea turtle, and leatherback sea turtle. These species

widely differ in their bycatch rates (96.2%, 28.9%, 17.9%, 1.4%, 0.7%, and 0.3%, respectively),

habitat preferences, and movement patterns. For instance, rockfish are relatively sedentary and

closely associated with rocky bottom habitat, whereas halibut exhibit seasonal and long-distance

migrations (Skud, 1977; Gunderson, 1997). In contrast to the groundfish, blue sharks and sea turtles

inhabit the open ocean and range much more widely (Benson et al., 2011; Kobayashi et al., 2008;

Nichols et al., 2000).

While both datasets include periods with 100% observer coverage, they also span periods

with partial coverage. This is relevant since the models assume that the data represent a random

sample of the studied fishery, i.e. each fishing event has an equal probability of being observed. For

several reasons, it is difficult for observer programs to achieve random sampling: a list of trips and

their departures often does not exist far in advance, certain vessels may not be able to accommodate

observers, observers may not always be available, and fisher behavior can change when observers

are on board (Hall, 1999; Liggins et al., 1997; McCracken, 2004). The WCGOP data from years

with 20% coverage are likely to be representative of the fishery, because the WCGOP stratified

sampling by port group, vessel, and 2-month blocks with the goals of sampling all vessels for two

months in each year and discouraging changes to fishing behavior when observers were on-board

(NWFSC, 2006). It is less likely that this was true for the 1994-2001 HILL data. Nevertheless,
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Figure 2.2: Effort and target species catch density in the shallow-set Hawaii longline swordfish fishery
from 1994 to 2014. c) Bivariate kernel density estimate showing smoothed density of fishing effort (16,714
set locations, ‘bkde2D’ function in R package ‘KernSmooth’). d) Thin plate spline surface estimating the
average density of target species catch at a given location, number of swordfish per set, fit using the ‘Tps’
function from the R package ‘fields’.
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we included data from periods with partial coverage because there were very few observations of

non-zero catch for rarely encountered species in the years with full coverage (yelloweye rockfish:

38, loggerhead turtle: 89, leatherback turtle: 82), and in many cases, bycatch of these ‘rare-event’

species are often of highest management concern (Martin et al., 2015).

Environmental covariates

In addition to the locations of observed fishing, we considered several spatially referenced

covariates that may help explain the likelihood of bycatch events. For the WCGOP dataset, we

included fishing depth, day of year, sea surface temperature (SST), distance to rocky habitat, size of

nearest rocky patch, predicted occurrence from survey data, and whether the trawl occurred in or

near a Rockfish Conservation Area (RCA). RCAs are large areas along the U.S. West Coast closed

to fishing designed primarily to reduce bycatch of overfished rockfish, such as two of the species we

considered. RCA boundaries have changed by and within years, and are defined by latitude, date,

and depth (NOAA Fisheries West Coast Region, 2015). Trawls were determined to be inside or

outside of an RCA based on the trawl date, average position of trawl start and end, and bottom depth

(calculated via bathymetry from NOAA National Centers for Environmental Information, 2015).

We included linear and quadratic terms for fishing depth and SST following Shelton et al. (2014).

Depth was recorded by on-board observers, while SST anomalies were measured via satellite. For

each trawl, we collected daily SST anomalies on a 0.25º grid and used bilinear interpolation to create

SST values corresponding to each trawl location (http://www.esrl.noaa.gov/psd/, Reynolds et al.,

2007). Rocky habitat data were from NMFS (2013), calculated as per Shelton et al. (2014). Finally,

we used the above covariates to fit a geostatistical delta-GLMM to fisheries-independent trawl survey

data (Bradburn et al. 2011, modeled as in Shelton et al. 2014), and applied this model to predict

bycatch occurrence at the fishing times and locations in the observer dataset. These survey-predicted

occurrence probabilities were included as another linear covariate. All environmental covariates

were standardized and centered before model estimation.
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The only available environmental covariate for the HILL dataset was observer-recorded SST,

and therefore we fit the HILL models with covariates of standardized SST, SST2, and day of year.

Statistical models

As is common for species distribution data, five of the six species exhibited large proportions

of zero catches. We followed the hurdle- or delta-model approach to this complication, which is

commonly applied in ecology and fisheries (Pennington, 1983; Maunder and Punt, 2004). Delta-

models separate the observed catches, Y i, into two processes: a ‘binomial’ component for the

probability of non-zero catch, πi, and a ‘positive’ component for the mean catch density given the

catch is non-zero, µi:

Zi ∼ Bernoulli(πi),

Yi ∼ Zi h(µi),

(2.5)

where Zi is a binary variable that equals 1 if the species was caught and 0 if it was not, and h()

is a distribution to be specified (e.g. lognormal, gamma). Splitting the modeling into these two

components can be advantageous because different mechanisms may affect one component but

not the other (e.g. a habitat quality covariate may be a significant predictor of catch rate, but not

occurrence).

We applied a total of eight delta-models with varying spatial structure to each of the six

species included in our analysis (Table 2.1). Bycatch of yelloweye rockfish, loggerhead turtles,

and leatherback turtles were extremely rare events (0.3-1.4% non-zero observations) with too few

multiple-individual catches to meaningfully fit the positive component. All analyses were conducted

using R v3.4.1 (R Core Team, 2017), with the following libraries: ‘mgcv’ was used to implement

GLMs and GAMs (v1.8-17, Wood, 2017); ’randomForest’ (v4.6-12, Liaw and Wiener, 2002),

’DMwR’ (v0.4.1, Torgo, 2010), and ’forestFloor’ (v1.9.5, Welling et al., 2016) were used to

fit RFs; and ‘INLA’ was used to fit the GMRF models (v0.0-1485844051, Lindgren and Rue,

2015). We assessed model fit with plots of covariate-response relationships, predicted versus
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observed response in out-of-sample data, spatial residual maps, and spatial correlograms (Moran’s I,

package ‘ncf’ v1.2-5, Bjørnstad and Falck, 2001). Code to fit each of the models is provided at

https://github.com/brianstock/spatial-bycatch.

Our first model was a delta-GLM with linear and quadratic effects of the environmental

covariates (which are intrinsically spatially correlated), but without any spatial terms—neither

geographic coordinates nor spatial autocorrelation for residual errors. As in Guélat and Kéry (2018),

the delta-GLM served as a baseline that allowed us to evaluate the value of adding spatial terms in

the subsequent models, which were fit using the same covariates and only differ in how they include

spatial information. The delta-GLM fits the observed bycatch in fishing event i, Yi, as in Eqns. 2.1

and 2.5, with binomial component determining the probability of non-zero bycatch, πi:

Zi ∼ Bernoulli(πi),

logit(πi) = Xiα,

(2.6)

and positive component for the mean catch density given the catch is non-zero, µi:

Yi ∼ ZiGamma(µi,k),

log(µi) = Xiβ.

(2.7)

where Xi is a vector of covariate values for location i, α and β are vectors of coefficients to

be estimated, and k is the shape parameter of the gamma distribution. The gamma distribution

is appropriate for positive, right-skewed data, and therefore is commonly used in the positive

component of delta-models for fisheries catch (Lecomte et al., 2013; Stefansson, 1996). While

we would not expect the GLM to outperform the models with explicit spatial terms, it is possible

that the (spatially-structured) environmental covariates could explain most of spatial structure in

the response. In that case, including spatial terms in the model (i.e. a 2-d spline as in Eqn. 2.2 or

covariance matrix as in Eqn. 2.4) would be unnecessary.

We fit two delta-GAM models that extend Eqns. 2.6 and 2.7 by adding a 2-dimensional
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spline, f (), on the geographical coordinates of location i, si, to both the binomial and positive

components, as in Eqn. 2.2:

Zi ∼ Bernoulli(πi) ,

logit(πi) = Xiα+ fZ (si) ,

Yi ∼ Gamma(µi,k) ,

log(µi) = Xiβ+ fY (si) .

(2.8)

The first, “GAM-CONSTANT,” includes one 2-d spline constant across years, with an offset (fixed

effect) for each year. This allows the mean bycatch probability and density to vary temporally and

spatially, but in the same pattern each year. The second, “GAM-YEAR,” fits an independent 2-d

spline for each year, which allows the spatial pattern to vary between years (Table 2.1).

As for the GAMs, we fit two delta-GMRF models which extend Eqns. 2.6 and 2.7 by

estimating the covariance between observed locations, si, as in Eqn. 2.4:

Zi ∼ Bernoulli(πi),

logit(πi) = Xiα+ εZ(si),

εZ(s)∼MVN(0,Q−1
Z ),

Yi ∼ Gamma(µi,k) ,

log(µi) = Xiβ+ εY (si),

εY (s)∼MVN
(

0,Q−1
Y

)
,

(2.9)

where both QZ
-1 and QY

-1 are defined to approximate stationary, isotropic Matérn covariances:

Cov(s1,s2) =
σ2

2ν−1Γ(ν)
(κ‖s1− s2‖)ν Kν (κ‖s1− s2‖) , (2.10)

and εZ() and εY () represent the estimated spatial fields using random effects. We used the default

Matérn smoothness, ν = 1, and priors on parameters as implemented in R-INLA (Lindgren and

27



Rue, 2015). Analogous to the GAM-CONSTANT and GAM-YEAR models, we fit a “GMRF-

CONSTANT” model with one random field constant across all years, and a “GMRF-YEAR” model

with a random field estimated for each year (Table 2.1). As for GAM-CONSTANT, the GMRF-

CONSTANT model includes fixed effect terms for each year, which allow for an increase or decrease

in the mean bycatch probability and density for each year while assuming the spatial pattern is

constant across years. The GMRF-YEAR model uses the simplest spatiotemporal option in R-INLA,

‘exchangeable,’ which refers to the spatiotemporal structure—the random fields in all years are

uniformly correlated (as opposed to an autoregressive spatiotemporal structure where nearby years

are more correlated than distant years).

To include spatiotemporal effects in RFs, we added year (treated as a factor), latitude, and

longitude as covariates. For the positive component of the delta-model, we fit only one RF model:

“RF-BASE,” following the original RF algorithm as described by Breiman (2001) and implemented

in the ‘randomForest’ R package (Liaw and Wiener, 2002). For the binomial component, we also fit

two modifications to the original RF algorithm designed to improve performance on imbalanced

class data (i.e. proportions of 0s and 1s very unequal), because several species showed strong

class imbalance (e.g., yelloweye rockfish had 99.7% tows with zero catch and only 0.3% tows with

non-zero catch). Training a RF on such severely imbalanced class data tends to produce models that

predict the majority class well but performs poorly on the minority class (Kuhn and Johnson, 2013).

The first approach was to down-sample the majority class observations (e.g. 0s, tows with zero

catch for yelloweye rockfish) when training the RF such that each tree used a stratified bootstrap

sample of the data with equal numbers of majority and minority (e.g. 1s, tows with non-zero catch

for yelloweye rockfish) class observations. We implemented down-sampling in the “RF-DOWN”

model, setting the sample size equal to one-sixth the number of minority class observations. The

second approach, “RF-SMOTE” (Synthetic Minority Over-sampling Technique, Chawla et al.,

2002), combined down-sampling of the majority class with over-sampling of the minority class.

Simply over-sampling the minority class with replacement overfits the RF to the specific observed
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minority data and typically does not significantly improve prediction of the minority class. Instead,

SMOTE creates synthetic minority class samples by generating random linear combinations of

nearby observed minority samples, i.e. if X1 and X2 are nearest neighbors with X1 = {SST1, Lat1,

Lon1} and X2 = {SST2, Lat2, Lon2}, draw p from Uniform(0,1) and create Xsyn = {p(SST1 – SST2)

+ SST2, p(Lat1 – Lat2) + Lat2, p(Lon1 – Lon2) + Lon2}.

Model performance comparison

We performed 5-fold cross-validation repeated 10 times, which allowed us to evaluate

semiparametric and nonparametric SDMs’ predictive error on new data (Shmueli, 2010; Kuhn

and Johnson, 2013). We blocked by year (rather than systematically excluding a given year) to

account for temporal structure and mimic predictive performance for cases where a random subset

of samples in a given year are not observed (Roberts et al., 2017). Thus, we generated 50 test/train

splits, where each selects 20% of the data from each year to reserve for testing, and fits the models

on the remaining 80% training data. After fitting the models to training data, we used the fitted

models to predict bycatch probability (binomial component of the delta-model) and density (positive

component of the delta-model) at the test locations. This gave us predicted and observed values

to compare parametric and nonparametric model performance: area under the receiver operating

characteristic curve (AUC) scores for the binomial component, and root-mean-square error (RMSE)

for the positive component. AUC can be interpreted as the expectation that a model ranks a

uniformly drawn random positive (bycatch event) as more likely than a uniformly drawn random

negative (non-bycatch event, Hand, 2009).

Since AUC and RMSE are abstract metrics of model performance, we calculated a more

tangible measure: how much each of the models could possibly reduce the bycatch-to-target species

catch ratio if it were used to identify and remove high bycatch risk fishing events. In other words,

what does an AUC performance gap of 0.03 mean in terms of bycatch reduction (keeping catch of the

target species constant)? For each species and model fit, we rank-ordered the bycatch probabilities
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predicted by the binomial component, identified the X% of fishing events with the highest bycatch

probabilities (X% = 1%, 2%, 5%, and 10%), removed both bycatch and target catch from those

events, and calculated the resultant change in bycatch-to-target species catch ratio.

Finally, we evaluated the transferability, i.e. spatial extrapolation performance, of the

GMRF and RF models by conducting a second cross-validation blocking on spatial data density.

Predictions in areas of covariate-space with few data are more sensitive to model misspecification

and overfitting, and therefore caution is especially warranted for complex, nonparametric approaches

such as RF (Merow et al., 2014). In addition, SDMs that are more data-driven and complex have

been shown to have better interpolation performance but be worse at spatial extrapolation (Araujo

and Rahbek, 2006; Heikkinen et al., 2012; Randin et al., 2006). Since we wished to evaluate

using SDM predictions of bycatch risk as a spatial management tool, it was important to assess

how sensitive the predictions were to spatial location. For example, one model may have higher

predictive performance in the core fishing area with high data density but underperform other

models in areas with sparse sampling coverage. Whereas our previous cross-validation procedure

partitioned the data into training and testing sets randomly, here we constructed test/train splits by

ordering fishing locations relative to data density. We calculated a bivariate kernel density estimate

at each of the observed fishing locations (‘bkde2D’ function in ‘KernSmooth’ R package) and

sequentially used the lowest 0.5%, 1%, 2%, 5%, 10%, and 20% density locations as test datasets.

2.3 Results

For all species, residuals were more variable between cross-validation fits as model complex-

ity increased (RF > GMRF > GAM > GLM, Figs. S1-S18). Most models did not exhibit spatial

patterns in residuals, although residuals in the positive component of the delta-model were larger

and more variable for blue shark and Pacific halibut north of 40°N and 47°N, respectively (Figs.

S1-S2, S11-S12). GMRFs and GAMs had similarly lower residual spatial autocorrelation compared

to the baseline GLMs, with one exception where the GMRF reduced spatial autocorrelation more

30



than the GAM (blue shark positive model, Fig. A1). RF generally had the lowest spatial autocorre-

lation, and it was negative instead of positive at short distances. The Hawaii longline species had

greater decorrelation distances than the West Coast groundfish species (distance at which spatial

autocorrelation goes to zero, 40 km vs. 5 km, Fig. A1).

RF provided better bycatch predictions than both GAMs and GMRFs for all six species

in both the binomial (higher AUC, Fig. 2.3a) and positive (lower RMSE, Fig. 2.3b) components

of the delta-model, although the magnitude of this performance advantage varied by species. RF

modifications designed for data with imbalanced classes, down-sampling and SMOTE, outperformed

the original RF algorithm for the four species with high or low bycatch rates (Fig. A2). Of the

semiparametric models, GMRF-YEAR that allowed for time-varying spatial effects performed the

best (Figs. 2.3 and A3), whereas the binomial GAM-YEAR that estimated 2-d splines by year failed

to converge. For rare bycatch species with few positive occurrences, GMRF models that allowed for

time-varying spatial effects offered no improvement over the time-constant spatial models (Fig. A3);

in such cases, this time-constant GMRF spatial model would only be marginally different from a

GLM including latitude and longitude (Fig. A4). The variability in model performance among cross-

validation runs was similar within a given species but varied greatly between species; variability in

the binomial component was lowest for species with moderate bycatch rates (darkblotched rockfish

and Pacific halibut in Fig. 2.3a), and in the positive component it was lowest for species with high

bycatch rates (blue shark in Fig. 2.3b).

When using the models to identify and remove high bycatch risk fishing events, RF also

performed best. Averaged across the six species, RF reduced the bycatch-to-target species catch

ratio by 8% when removing 1% of fishing effort, 34% when removing 5% of fishing effort, and 50%

when removing 10% of fishing effort (Fig. 2.4). Bycatch predictability as measured by bycatch-to-

target ratio reduction generally agreed with the traditional performance metrics (AUC and RMSE)

and varied substantially among the six species (Fig. A5). As GMRF and RF outperformed GLM

and GAM, we only considered these two models in further comparisons.
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Figure 2.3: Predictive performance of the a) binomial and b) positive components of the delta-model
on test data from 5-fold cross-validation repeated 10 times: a) AUC for the binomial component, and b)
normalized RMSE for the positive component. Random forests (RFs) outperformed GAMs and GMRFs
for all species (highest AUC, lowest RMSE). Binomial component results were more variable for species
with extremely low or high bycatch rates (YEYE, LOGG, LEATH, and BLUE). Species abbreviations:
DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG = loggerhead
turtle, LEATH = leatherback turtle, BLUE = blue shark. Only the best submodel, e.g. CONSTANT or
YEAR, within each model class for each species is shown here (see Supplement).
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Figure 2.4: Bycatch-to-target species catch ratio achieved by using the binomial component of the delta-
model to predict and remove fishing sets in the test data, relative to the bycatch-to-target ratio with no
fishing sets removed. Lines show median of 50 cross-validation runs for each model class (5-fold CV
repeated 10 times), averaged across the six species. Shaded areas are bootstrapped 95% confidence
intervals for the median. Random forest (RF) performed the best, reducing the bycatch-to-target ratio by
34% when removing 5% of fishing, and by 50% when removing 10% of fishing. As in Figure 2.3, only the
best submodel within each model class (e.g. CONSTANT or YEAR) for each species is shown here.

33



Predictions from the GMRF and RF models were highly correlated for all species (r =

0.69-0.91, Fig. A6) and therefore produced roughly similar bycatch risk maps. Taking blue sharks

as an example, both models predicted higher bycatch in the north and moderate bycatch west of

195°E (Fig. 2.5a,c). We calculated the variance at each grid point for both GMRF (using the

posterior standard deviation) and RF (using the infinitesimal jackknife estimator, Wager et al. 2014)

predictions to produce maps of prediction uncertainty (Fig. 2.5b,d). Bycatch risk maps from both

models revealed artifacts of their construction: the mesh triangulation is evident in the GMRF

variance map (Fig. 2.5b), and the sharp gradients in the RF mean (Fig. 2.5c) and variance (Fig.

2.5d) maps are a consequence of RF trees splitting on latitude and longitude. As expected, the

uncertainty of GMRF predictions was lower in areas of high data density (compare Figs. 2.2c and

2.5b). Uncertainty in RF predictions did not follow this trend—RF variance was relatively low and

constant below 41.5°N latitude, and much higher above 41.5°N latitude (Fig. 2.5d). However, this

was consistent with the data, as there were few observed sets north of 41.5°N and these had higher

and more variable bycatch (Fig. A7).

To investigate this difference, we tested the models’ ability to extrapolate in space, i.e. to

predict at locations outside the core area of the fishery when trained using observations in areas of

highest data density. In this test, GMRFs and RFs performed equal to or worse than when test-train

splits were random (Fig. 2.6). GMRFs had lower RMSE than RFs in the positive component of the

delta-model but there was no difference in AUC in the binomial component (Wilcoxon signed-rank

test, p = 0.91 for AUCGMRF 6= F, AUCRF, p = 0.003 for RMSEGMRF 6= RMSERF). Compared to

GMRFs, RF performance was also more sensitive to withholding data at the edge of the fishery

(Fig. 2.6). The degree to which this was true, however, differed widely between species. For

instance, the performance of both models was stable for some species (e.g. darkblotched rockfish

in binomial component, blue shark in positive component), indicating that both models captured

relevant spatial environment-bycatch relationships in the core area of the fishery and that these

relationships remained valid at the edge of the fishery.
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Figure 2.5: Maps of blue shark bycatch predictions with uncertainty for the Hawaii longline swordfish
fishery in 2014 from the GMRF and random forest (RF) models (binomial × positive = expected). a)
Log mean expected bycatch from the GMRF-CONSTANT model. b) Log variance of expected bycatch
from the GMRF-CONSTANT model. c) Log mean expected bycatch from the RF-BASE model. d) Log
variance of expected bycatch from the RF-BASE model. Maps created by both models show artifacts of
their construction: the mesh triangulation is evident in the GMRF variance map (b), and the sharp gradients
in the RF mean (c) and variance (d) maps are a consequence of RF trees splitting on latitude and longitude.
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Figure 2.6: Predictive performance of the a) binomial and b) positive components of the GMRF-
CONSTANT and RF delta-models at test locations beyond the geographic data range (i.e. spatial
extrapolation). We fit a 2d kernel density estimate at each observed fishing location (‘bkde2D’ func-
tion in ‘KernSmooth’ R package), then sequentially used the lowest 0.5%, 1%, 2%, 5%, 10%, and 20%
density locations as test datasets. Triangles show median model performance from 5-fold cross-validation
runs with random test/train splits. When extrapolating spatially, GMRF and RF performed equal to or
worse than when interpolating (i.e. points are lower AUC and higher RMSE than triangles). GMRF had
lower RMSE than RF in the positive component of the delta-model but there was no difference in AUC
in the binomial component (Wilcoxon signed-rank test, p = 0.91 for AUCGMRF 6= F, AUCRF, p = 0.003
for RMSEGMRF 6= RMSERF). Compared to GMRF, RF performance was more sensitive to withholding
data at the edge of the fishery (i.e. regression lines have steeper slopes). Species abbreviations: DBRK =
darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG = loggerhead turtle,
LEATH = leatherback turtle, BLUE = blue shark.
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GMRF and RF models estimated similar covariate effects, as demonstrated for darkblotched

rockfish (Fig. 2.7). The main covariate effects were as expected: both probability and amount of

bycatch increased with higher survey-predicted occurrence, increased for tows inside or near RCAs,

and showed an optimal depth range of 100-300 fathoms.
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Figure 2.7: Covariate effects estimated by the GMRF and random forest (RF) models for darkblotched
rockfish. GMRF and RF estimate a positive effect of PredOcc (predicted occurrence from survey data,
left column), quadratic effect of Depth, and positive effect of In/near RCA (haul location inside or near
rockfish conservation area boundary) for both the binomial and positive components of the delta-model.
GMRF covariate effects are marginal posterior distributions (‘INLA’ package in R), and RF covariate
effects are feature contributions (‘forestFloor’ package in R).
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2.4 Discussion

The interpolation performance of the four models was consistent across a wide range of

bycatch rates and life histories: RFs performed best, followed by GMRFs, GAMs, and the baseline

GLM (Fig. 2.3). When extrapolating beyond the geographic range of the data, however, RFs were

more sensitive to which data were withheld and performed similar to, or worse than, GMRFs (Fig.

2.6b). This is consistent with previous work documenting that more data-driven, complex SDMs

can have better interpolation performance but be worse at spatial extrapolation (Heikkinen et al.,

2012; Randin et al., 2006).

Our results beg the question: if RFs are expected to have higher interpolation accuracy, why

ever use GMRFs or GAMs? This is a decidedly relevant concern given the significant research

investment in these modeling approaches (Becker et al., 2014; Thorson and Barnett, 2017). RF will

generally have better out-of-sample prediction, largely due to its ability to incorporate nonlinear and

interaction effects of covariates inherently (i.e., without user specification). In addition, RF models

are much simpler and quicker to both write code for and run. Contrary to references describing RFs

as “black boxes” (Prasad et al., 2006; Cutler et al., 2007; Elith and Leathwick, 2009; Evans and

Cushman, 2009; Kuhn and Johnson, 2013), there are methods for investigating RF model structure,

including covariate effects and interactions (Fig. 6, Welling et al., 2016). In a similar vein, it

is possible to calculate prediction variance and confidence intervals for RF (Meinshausen, 2006;

Wager et al., 2014), despite older ecological literature stating otherwise (Cutler et al., 2007; Olden

et al., 2008), or using ad-hoc substitutes such as the standard deviation of individual tree predictions

(Smoliński and Radtke, 2017). Additionally, promising theoretical work may soon widen the ability

to use RFs for statistical inference by developing asymptotically normal, unbiased point estimates

with valid confidence intervals (Mentch and Hooker, 2017; Wager and Athey, 2017). In many cases,

RF’s performance advantage is probably sufficient to warrant its use over other semiparametric

methods. Yet, there may be several cases where semiparametric methods are preferred.

Semiparametric frameworks like GMRFs and GAMs have clear advantages over machine

39



learning algorithms such as RF. First, they can be derived from probability theory and therefore

allow for traditional statistical inference on their mean response predictions. GMRF estimates

full posterior distributions for the response variable (in this study, probability and/or expected

amount of bycatch) everywhere in the spatial domain. This enables us, for instance, to use a

GMRF model to identify regions that are above/below a threshold probability (i.e. risk level) of

a defined bycatch quantity. By contrast, basic statistical properties of RF remain unknown (Biau

and Scornet, 2016). Thus, GMRF models may be preferred for applications where estimates of

model uncertainty are decidedly important, such as using models to produce annual estimates of

bycatch (expanded from the observed to unobserved fleet). Second, GMRFs and GAMs explicitly

estimate covariate effects with uncertainty intervals, facilitating ecological interpretation of factors

significantly affecting the response (Fig. 2.7). This is especially important when the primary goal

of ecological modeling is parameter estimation, as in fisheries stock assessments. Third, GMRF

models are particularly well-suited to incorporate spatial ecological processes, such as movement,

spatial variation in fishing mortality or observation error. RFs, on the other hand, are based solely

on observations without taking into consideration the data generating process. Fourth, GAMs and

GMRFs produce smoothed spatial predictions that are more likely ecologically plausible, whereas

RF spatial predictions appear rectangular by default due to splits on the geographical coordinates.

This can be mediated, however, by including transformations of the coordinates, fitting a linear

model within each node instead of taking the mean (Quinlan, 1992, 1993), or including buffer

distances as covariates (Hengl et al., 2018). Fifth, RFs can simultaneously have high interpolation

accuracy and lower extrapolation accuracy (Fig. 5b). This matters if SDM predictions of bycatch

risk are to be used as a spatial management tool, where predictions in areas with sparse or no

sampling coverage may be most important. Finally, GMRFs can be easily specified to produce

independent or exchangeable estimates of a given quantity (e.g., total predicted bycatch in different

years), while it is unclear how to assign a specific dependence-structure on factors in a RF model.

This is important when using estimates from a spatial model as input in a secondary model, for
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example, where the secondary model assumes that estimates are independent among years. In

situations where these concerns are inconsequential, however, RFs may be the better method

for spatial bycatch prediction—they are faster and have better predictive performance than the

alternatives.

On a more detailed level, the six species differed widely in their predictability. The West

Coast groundfish species were more predictable than the Hawaii longline species, likely because

we included several more relevant environmental covariates (WCGOP: sea surface temperature,

depth, rocky habitat, in/near RCA, and survey-predicted occurrence; HILL: sea surface temperature)

and the WCGOP dataset had 2.5 times the number of observations (WCGOP: 42 786; HILL:

16 714). The HILL models’ performance could presumably be improved by incorporating more

satellite-based environmental covariates capable of explaining the species’ distributions, such as

chlorophyll and SST-derived frontal indices (Nieto et al., 2017). Among the West Coast species,

Pacific halibut was more difficult to predict than the two rockfish species, despite having more

positive bycatch occurrences for the models to fit. One possible explanation is that adult halibut

move more and have less strict habitat associations than rockfish, decreasing their predictability

(Skud, 1977; Gunderson, 1997). Among the Hawaii longline species, loggerhead turtles were

much easier to predict than leatherback turtles and blue sharks, perhaps because they have stronger

SST-based habitat preferences where the fishing occurs (Howell et al., 2015). Indeed, the loggerhead-

temperature association is the basis for TurtleWatch, a decade-long effort to reduce turtle bycatch

by providing fishermen with dynamic recommendations of high bycatch risk areas to avoid in the

Central Pacific (Howell et al., 2008). Despite plausible life history explanations for some among-

species differences in predictability, however, the advantage of fitting time-varying vs. time-constant

models appeared to be primarily driven by the species’ bycatch rates. In other words, there was

little difference in model performance for rare bycatch species (yelloweye rockfish, loggerhead

turtle, and leatherback turtle) and greater differences between models for common bycatch species

(darkblotched rockfish, Pacific halibut, and blue shark, Figs. 2.3a and A3).
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Our results demonstrate the clear potential of SDMs to predict fishing activity with higher

bycatch risk. Importantly, predicting and removing high bycatch risk fishing lowered the bycatch-

to-target ratio because target catch and bycatch were generally not correlated. In other words,

removing 5% of fishing effort typically only removed 5% of target catch, but much more than 5%

of the total bycatch. While the models varied considerably in their ability to predict bycatch, even

the worst performer (baseline GLM without latitude and longitude) achieved AUC from 0.68–0.86

and reduced bycatch-to-target ratios on average by 25% for a 5% reduction in fishing effort. RF

performed the best, achieving cross-validated AUC above 0.89 for all three West Coast groundfish

species and reducing bycatch-to-target ratios by 34% for a 5% reduction in fishing effort averaged

across the six species.

Given their good predictive performance overall, SDMs could be used to support spatial

bycatch management, whether static (e.g. design habitat closures to be semi-permanent, such

as the Pacific Leatherback Conservation Area along the U.S. West Coast; 50 CFR Part 660) or

dynamic in time (e.g. closures change every year, month, week, etc., such as the Loggerhead Turtle

Conservation Area along the Southern California Bight, 72FR 31756; Fig. 2.8, as in Dunn et al.

2016). If so, they should be compared to and integrated with existing tools that aim to reduce

bycatch by producing risk maps; examples include Eguchi et al. (2017), TurtleWatch (Howell

et al., 2008, 2015), and WhaleWatch (Hazen et al., 2017). Both TurtleWatch and WhaleWatch are

based on satellite telemetry observations and known habitat preferences of sea turtles and blue

whales, in contrast to the models developed here that rely exclusively on fisheries observer data.

Since fisheries observer datasets cover many more bycatch species than those with satellite tagging

programs, SDMs based on fisheries observer data are more widely applicable than those based

solely on satellite telemetry. Bycatch occurs when non-target species and fishing gear co-occur,

both of which are affected by various factors, such as environmental conditions, economics, and

behavior (Soykan et al., 2014). Consequently, using fishery observer data combined with animal

movements data would provide a comprehensive dataset to develop predictive models of bycatch.
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Figure 2.8: GMRF-YEAR random field for bycatch probability of darkblotched rockfish from 2008 to
2012.

Future efforts to use spatial models to predict fisheries bycatch risk should carefully consider

the hierarchical structure common to observer datasets with less than 100% coverage. In the typical

case where observers are placed on vessels on a trip-by-trip basis and then observe all sets within

a trip, the sets are likely not independent (e.g. sets within the same trip, and trips on the same

vessel may be correlated). As done in this study, including spatiotemporal correlation structure will

account for some of the correlation between sets within a trip because they are presumably closer

together in time and space. One approach is to include the nested data structure in the model as

random effects (Candy, 2004; Thorson et al., 2015b), although this can be more complicated than it

first appears (e.g. captains and crew transfer between vessels in the Hawaii longline fishery, making

it unclear whether including a vessel effect is appropriate). Roberts et al. (2017) make an excellent

case for an alternative approach, using block cross-validation to account for spatial, temporal,

and group dependence structure when validating and selecting models. A related issue with the

delta-models used here is that they assume two independent processes determine the probability
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and amount of bycatch (i.e., the binomial and positive components of the delta-model). Thorson

(2017) and Cantoni et al. (2017) both recently demonstrated that this is unlikely to be true, and their

proposed solutions should improve spatial bycatch analyses in the future.

Finally, just as single-species fisheries management paints a rosier picture than can truly be

implemented, the results presented here are unrealistic in their treatment of multispecies fisheries

because bycatch prediction cannot be optimized for each individual species simultaneously. These

results are still useful if fisheries managers are particularly concerned about a single species, but

less so if reducing bycatch of multiple species is the objective. Both RF and GMRF models have

multivariate extensions that could fruitfully be applied to multispecies spatial bycatch prediction,

and future work should investigate this possibility (Thorson et al., 2015a; Thorson and Barnett,

2017; Ishwaran and Kogalur, 2017).

Data Accessibility

Unsummarized fisheries observer data are deemed confidential. Code to download and

process publicly available fisheries survey data, run each of the models, and replicate figures is pro-

vided at https://github.com/brianstock/spatial-bycatch. Summarized reports of the fisheries observer

program data are available at: https://www.nwfsc.noaa.gov/research/divisions/fram/observation/

data products/data library.cfm (U.S. West Coast groundfish) and http://www.fpir.noaa.gov/OBS/

obs hi ll ss rprts.html (Hawaii longline).
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Smoliński, S. and K. Radtke. 2017. Spatial prediction of demersal fish diversity in the Baltic
Sea: comparison of machine learning and regression-based techniques. ICES Journal of Marine
Science: Journal du Conseil, 74:102–111.

Soykan, C. U., T. Eguchi, S. Kohin, and H. Dewar. 2014. Prediction of fishing effort distributions
using boosted regression trees. Ecological Applications, 24:71–83.

Stefansson, G. 1996. Analysis of groundfish survey abundance data: combining the GLM and delta
approaches. ICES Journal of Marine Science, 53:577–588.

Sumaila, U. R., W. W. L. Cheung, V. W. Y. Lam, D. Pauly, and S. Herrick. 2011. Climate change
impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1:449–456.

Thorson, J. T. 2017. Three problems with the conventional delta-model for biomass sampling data,
and a computationally efficient alternative. Canadian Journal of Fisheries and Aquatic Sciences,
pages 1–14.

Thorson, J. T. and L. A. K. Barnett. 2017. Comparing estimates of abundance trends and distribution
shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of
Marine Science: Journal du Conseil, 74:1311–1321.

Thorson, J. T., M. D. Scheuerell, A. O. Shelton, K. E. See, H. J. Skaug, and K. Kristensen. 2015a.
Spatial factor analysis: a new tool for estimating joint species distributions and correlations in
species range. Methods in Ecology and Evolution, 6:627–637.

Thorson, J. T., A. O. Shelton, E. J. Ward, and H. J. Skaug. 2015b. Geostatistical delta-generalized lin-
ear mixed models improve precision for estimated abundance indices for West Coast groundfishes.
ICES Journal of Marine Science, 72:1297–1310.

Thorson, J. T., H. J. Skaug, K. Kristensen, A. O. Shelton, E. J. Ward, J. H. Harms, and J. A. Benante.
2015c. The importance of spatial models for estimating the strength of density dependence.
Ecology, 96:1202–1212.

Torgo, L. 2010. Data Mining with R: Learning with Case Studies, volume 20105341 of Chapman
& Hall/CRC Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC.

52



Venables, W. and C. Dichmont. 2004. GLMs, GAMs and GLMMs: an overview of theory for
applications in fisheries research. Fisheries Research, 70:319–337.

Wager, S. and S. Athey. 2017. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, pages 1–15.

Wager, S., T. Hastie, and B. Efron. 2014. Confidence intervals for random forests: The jackknife
and the infinitesimal jackknife. Journal of Machine Learning Research, 15:1625–1651.

Ward, E. J., E. E. Holmes, J. T. Thorson, and B. Collen. 2014. Complexity is costly: a meta-
analysis of parametric and non-parametric methods for short-term population forecasting. Oikos,
123:652–661.

Ward, E. J., J. E. Jannot, Y.-W. Lee, K. Ono, A. O. Shelton, and J. T. Thorson. 2015. Using
spatiotemporal species distribution models to identify temporally evolving hotspots of species
co-occurrence. Ecological Applications, 25:2198–2209.

Watson, J. T., T. E. Essington, C. E. Lennert-Cody, and M. A. Hall. 2009. Trade-Offs in the Design
of Fishery Closures: Management of Silky Shark Bycatch in the Eastern Pacific Ocean Tuna
Fishery. Conservation Biology, 23:626–635.

Welling, S. H., H. H. F. Refsgaard, P. B. Brockhoff, and L. H. Clemmensen. 2016. Forest Floor
Visualizations of Random Forests. arXiv:1605.09196 [cs, stat]. ArXiv: 1605.09196.

Wood, S. N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models: Estimation of Semiparametric Generalized Linear
Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73:3–36.

Wood, S. N. 2017. Generalized additive models: An introduction with R (2nd ed.). Chapman &
Hall/CRC, Boca Raton, FL.

53



Figure A1. Spatial spline correlograms of residuals from the A) binomial and B) positive 

components of the delta-models. Positive and negative values indicate positive and negative 

spatial autocorrelation (Moran’s I), and y = 0 is the expected value under the null hypothesis of 

no spatial autocorrelation. The distance where the autocorrelation intersects y = 0 is the 

decorrelation distance, which is roughly 40 km for the Hawaii longline species (blue shark = 

BLUE, loggerhead turtle = LOGG, and leatherback turtle = LEATH) and 5 km for the West 

Coast groundfish species (darkblotched rockfish = DBRK, Pacific halibut = PHLB, yelloweye 

rockfish = YEYE). Calculations were made by package ‘ncf’ v1.2-5 (Bjornstad and Falck 2001).
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Figure A2. Binomial model predictive performance (AUC) for the three random forest (RF) 

algorithms for all six species. Modifications designed for data with severely imbalanced classes, 

downsampling and SMOTE, outperformed the default algorithm for the four species with high or

low bycatch rates (BLUE, LOGG, LEATH, and YEYE). Species are sorted on the x-axis by 

class imbalance, i.e. PHLB has the most moderate bycatch rate (29%), and YEYE has the most 

extreme bycatch rate (0.3%). For blue sharks the minority class is negative (sets with zero 

bycatch, 3.8%). Species abbreviations: DBRK = darkblotched rockfish, PHLB = Pacific halibut, 

YEYE = yelloweye rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, BLUE = 

blue shark.
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Figure A3. Binomial model predictive performance (AUC) for the two GMRF models: 

CONSTANT (white, one random field constant across years) and YEAR (grey, random field fit 

for each year). Fitting random fields for each year (GMRF-YEAR) resulted in better model 

performance (higher AUC) for species with moderate to high bycatch rates (DBRK, PHLB, 

BLUE), but nearly identical performance for species with few bycatch occurrences (YEYE, 

LOGG, LEATH). Species abbreviations: DBRK = darkblotched rockfish, PHLB = Pacific 

halibut, YEYE = yelloweye rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, 

BLUE = blue shark.
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Figure A4. GMRF-CONSTANT spatial random field for bycatch probability of the three West 

Coast groundfish species (DBRK = darkblotched rockfish, PHLB = Pacific halibut, and YEYE =

yelloweye rockfish). The GMRF-CONSTANT model estimates one spatial field constant across 

years from 2003-2012. Fitting a complex spatial field is less useful for species with very low 

bycatch rates (e.g. yelloweye rockfish, right panel, non-zero bycatch in 143 out of 42,787 tows). 

In these cases, simply including linear and quadratic effects of latitude and longitude could 

achieve nearly the same result.
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Figure A5. Bycatch-to-target ratio achieved for each species by using the binomial component of

the delta model to predict fishing sets to remove in the test data, relative to 0% fishing removed. 

Lines show median of 50 cross-validation runs for each model class (5-fold CV repeated 10 

times). Lines are noisier for species with few bycatch events (e.g. YEYE, LOGG, and LEATH). 

Species abbreviations: DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = 

yelloweye rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, BLUE = blue 

shark.
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Figure A6. Correlations between predictions from GMRF and RF for the A) binomial and B) 

positive components of the delta-model. Each point depicts the mean out-of-sample prediction 

for each observation, i.e. averaged across cross-validation runs when it was in the test data. 

Correlations were high for all species, r = 0.69-0.91.
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Figure A7. Distribution of blue shark bycatch by latitude. Above 41.5°N (red line), there were 

few observed fishing sets (26 out of 16,714 total), and these resulted in higher and more variable 

bycatch.
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Comparing predictions of fisheries bycatch using multiple spatiotemporal species distribution model 
frameworks

Brian C. Stock*, Eric J. Ward, Tomoharu Eguchi, Jason E. Jannot, James T. Thorson, Blake E. Feist, 
and Brice X. Semmens
*b1stock@ucsd.edu

Supplementary Figures S1-S18. Maps of model residuals for all species for the binomial and positive 
components of the delta-model. For each species and model, means and variances of raw residuals 
were calculated for each data point in out-of-sample cross-validation runs (i.e. when each data point 
was in the test dataset). These means and variances were then averaged within spatial bins on a 
hexagonal grid to protect confidentiality of fisheries observer data while still displaying spatial patterns
of the residuals and their variance. Residuals were calculated as predicted – observed in order to better 
visualize where models were over- and under-predicting observed bycatch.
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Figure S1. Blue shark positive mean. GLM exhibits significant large-scale spatial autocorrelation 
(negative residuals to NW, positive to SE). Residuals from all models were quite variable north of 
35°N, and especially north of 40°N.
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Figure S2. Blue shark positive variance. Predictions of the three spatial models (GAM, GMRF, and RF)
were more variable than for the GLM north of 40°N.
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Figure S3. Blue shark binomial mean.

64



Figure S4. Blue shark binomial variance. RF predictions were more variable than the other three 
models throughout the fishery region.
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Figure S5. Loggerhead sea turtle binomial mean.
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Figure S6. Loggerhead sea turtle binomial variance. RF predictions were more variable than the other 
three models throughout the fishery region.

67



Figure S7. Leatherback sea turtle binomial mean.
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Figure S8. Leatherback sea turtle binomial variance.
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Figure S9. Darkblotched rockfish positive mean.

70



Figure S10. Darkblotched rockfish positive variance. Predictions from GAM and GMRF were more 
variable than from GLM and RF.
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Figure S11. Pacific halibut positive mean. Residuals were highest for the GLM, followed by GAM, 
GMRF, and RF.
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Figure S12. Pacific halibut positive variance. Predictions from GMRF and RF were more variable than 
for GLM and GAM. Predictions were more variable north of 47°N for all models.
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Figure S13. Darkblotched rockfish binomial mean.
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Figure S14. Darkblotched rockfish binomial variance. Predictions from GMRF and RF were more 
variable than for GLM and GAM. 
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Figure S15. Pacific halibut binomial mean. Residuals were lower for RF than the other three models.
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Figure S16. Pacific halibut binomial variance. Predictions from GMRF and RF were more variable than
for GLM and GAM. 

77



Figure S17. Yelloweye rockfish binomial mean.
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Figure S18. Yelloweye rockfish binomial variance.
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Chapter 3

Assessing the response of Cayman Islands Nassau Grouper (Epinephelus striatus) spawning

aggregations to spatial protections using in situ length data

80



Abstract

Fish species that form large, predictable fish spawning aggregations (FSAs) are especially

vulnerable to overexploitation. Despite their vulnerability, quantitative assessments of FSAs are

rare. The fate of Nassau Grouper (Epinephelus striatus) in the Caribbean is a textbook example,

where overfishing has caused dramatic declines in catch and the disappearance of roughly half of

the known FSAs. Responding to this risk and fishers’ concerns, the Cayman Islands government

protected its known and historic Nassau Grouper FSAs in 2003 and implemented a long-term

monitoring program to evaluate these protections. To detect changes in size structure following

protection, we collected noninvasive length distribution data using diver-operated laser calipers

(video camera mounted between parallel lasers calibrated a set distance apart). Combining 15

years of such length data with an estimate of abundance (numbers of mature fish) and life history

parameters, we fit a length-based assessment model to calculate recruitment and spawning stock

biomass of the Little Cayman FSA through time. While the number of fish has roughly doubled

(ca. 3000 to 6000), it took longer for the size structure to recover—only now, after 15 years, has

the spawning biomass reached pre-exploitation levels. We also documented a large recruitment

spike (7x average, 95% CI: 4.0–12.5) from 2011 spawning as a pulse of small fish in the bimodal

length distributions from 2017 and 2018. A similar pulse of small fish was evident on Cayman Brac,

although the Cayman Brac fish were 3–5 cm larger than those on Little Cayman. Density-dependent

growth can explain 2–3 cm (35–80%) of this size difference, which suggests that there was one

synchronous successful recruitment event in 2011 on both islands. Our results bear four noteworthy

lessons for managers: i) spatial closures can be effective conservation measures, but expectations

of population response timelines should be realistic—the Cayman Islands waited 14 years after

protections to see a strong cohort of Nassau Grouper; ii) as populations recover, density-dependent

growth may slow the increase in biomass and this effect should be considered; iii) appropriate SPR

targets for managing spawning aggregation fisheries may need to be much higher than previous

studies recommend (i.e. >0.65 instead of 0.4); iv) population size structure is important to consider
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in addition to numbers, and collecting in situ length data is an especially effective method for

monitoring protected fish spawning aggregations.
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3.1 Introduction

Traditional fisheries management based on stock assessments and biological reference points

is effective for many fish populations (stocks). Because of this, the majority of assessed stocks are

either above sustainable levels or are currently exploited at rates that should allow them to rebuild

(Beddington et al., 2007; Worm et al., 2009). On the other hand, overfishing has caused many species

to decline to the point where they are threatened or endangered with extinction (Jackson et al.,

2001). Not all fish species are equally at risk, however. Vulnerability to overfishing is commonly

divided into two components—productivity and susceptibility (Hobday et al., 2011; Stobutzki et al.,

2001, 2002; Hordyk and Carruthers, 2018). Species with life history traits associated with low

productivity are more vulnerable to overfishing (e.g. long-lived, late maturity, slow growth, low

fecundity, high trophic level; Hobday et al., 2011; Patrick et al., 2010). Species that are more

susceptible to overfishing are also at higher risk (e.g. easier to catch, exhibit aggregating behavior,

more economically desirable, not assessed or well-managed; Patrick et al., 2010). Large-bodied

reef fish that form fish spawning aggregations (FSAs), such as grouper (Epinephelidae) and snapper

(Lutjanidae), exhibit many of these characteristics. As such, they are particularly vulnerable to

overfishing and ought to be harvested only with precautionary, or even “data-less”, management

(Sadovy and Domeier, 2005; Johannes, 1998).

Aggregating reef fish are not only easily overfished, they are prone to collapse because they

are hyperstable. When large numbers of fish aggregate predictably, fishers’ catch-per-unit-effort

(CPUE) can remain high even as abundance declines (Hilborn and Walters, 1992). Thus, using

CPUE data as an index of abundance in assessments can be misleading (Rose and Kulka, 1999;

Robinson et al., 2015). While fishery-dependent CPUE data have issues relating to hyperstability,

fishery-independent data via underwater visual censuses are also difficult to gather effectively

(Sadovy and Domeier, 2005). Counts of fish at FSAs can vary for a variety of reasons: visibility

and fish behavior can change the probability of detection, the number of fish present can change

daily over the spawning season, and the area occupied by the FSA can shift within a day, between
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days, and year-to-year (Sadovy de Mitcheson, 2016). Aggregation spawning may also lead to

Allee effects, i.e. lower reproductive success at low population sizes, which requires many years

of stock–recruit data to detect and complicates assessment modeling (Allee, 1931; Sadovy de

Mitcheson and Erisman, 2012; Chen et al., 2002; Liermann and Hilborn, 2001). Furthermore,

aggregation fisheries are often small-scale, found in tropical developing countries, and lack basic

biological data necessary for classical stock assessments (e.g. stock structure, movement, age-length

and length-weight relationships, sex ratios, and fecundity; Sadovy de Mitcheson and Colin, 2012a).

Taken together, these factors begin to explain why quantitative assessments of aggregating species

are rare, and highlight the urgent need for cost-effective assessment methodologies (Grüss et al.,

2014; Sherman et al., 2016).

Spatial closures, or marine protected areas (MPAs), are a complementary fisheries manage-

ment tool to biological reference points (Beddington et al., 2007). While the wisdom of using MPAs

to control fishing mortality in general is debatable (Sala and Giakoumi, 2018b,a; Hilborn, 2018a,b;

Pendleton et al., 2018), MPAs are particularly attractive to protect large, transient spawning aggrega-

tions because fishing can be extremely intense over very small spatial and temporal scales (e.g. 100s

of meters, 1s of days; Russell et al., 2012). Oftentimes, a temporal ban during spawning season

may actually be far easier to enforce, since this prevents situations where catch can be claimed

legal simply by leaving the spawning grounds. Although many spatiotemporal closures have been

implemented to conserve FSAs, in most cases populations have continued to decline or their status is

unknown (Table 11.1 in Russell et al., 2012, 2014). This may be due to significant fishing pressure

continuing outside spawning season, or to the difficulty of simultaneously achieving the necessary

community buy-in, effective enforcement, and long-term monitoring. Well-documented cases of

FSA population increases following spatiotemporal protection do exist, but are uncommon (Russ

and Alcala, 2004; Nemeth, 2005a; Luckhurst and Trott, 2009; Hamilton et al., 2011; Sadovy de

Mitcheson and Colin, 2012b).

Understanding population dynamics processes is necessary for evaluating population re-
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sponses to protection. For example, populations with a long history of exploitation may exhibit

changes in growth, age and size at maturity, fecundity, and survival (Hutchings, 2005). Density-

dependent growth can slow the increase in biomass of a recovering population as more individuals

compete for resources. This is likely not a concern initially for a severely depleted population for

two reasons: 1) density is low, and 2) large fish, responsible for more of the density-dependence,

likely have been removed by fishing (Lorenzen, 2008). However, density-dependent growth may

become important as a recovering population approaches carrying capacity, and this has led some

to predict that MPAs may counterintuitively decrease fisheries yield (Gårdmark et al., 2006). Sec-

ond, population increases are driven by successful recruitment (i.e. offspring reaching maturity

and joining the spawning population), which is highly variable. Very few stock-recruitment data

exist for tropical reef fish (Szuwalski et al., 2015; Porch et al., 2003), and the recruitment process

remains poorly understood even for most well-studied temperate species supporting large-scale

fisheries (Myers, 1998; Pepin, 2016). In addition, long-lived species are periodic strategists that can

withstand long periods of recruitment failure punctuated by sporadic successes (Winemiller and

Rose, 1992). For such species, decades of protection may be necessary before conservation actions

yield measurable results (Jennings, 2001; Russ and Alcala, 2004; Porch et al., 2003; Hutchings,

2000).

Managers can use several metrics to assess fish population responses to protection, e.g.

numbers, biomass, or size structure of adult spawners. The expected recovery timelines for each of

these metrics differ, depending on life history traits, metapopulation structure, and the stochastic

success of individual recruitment events (Jennings, 2001). Increases in adult numbers and biomass

are fundamental expectations following FSA protections. Any initial (i.e. before the age at maturity)

increases in numbers or biomass would be due to decreased fishing mortality on juveniles and

already recruited cohorts (Jennings, 2001). Subsequent increases in numbers and biomass require

successful recruitment events. Distinguishing between biomass increases attributable to decreased

fishing mortality versus recruitment requires size-frequency data collected over multiple years. For
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spawning aggregations that still support fisheries, scientists can easily collect length and weight

data by sampling catch. For protected FSAs, scientists can use underwater visual censuses, stereo

cameras, or laser calipers to obtain length measurements (Colin, 2012a; Heppell et al., 2012). Mean

size of fish at FSAs is expected to increase following protections, and most length-based analyses

of FSA responses to protections stop there (e.g. Beets and Friedlander, 1999; Nemeth, 2005b;

Luckhurst and Trott, 2009). However, length-frequency data collected over many years and across

sites contains more information, however, and may allow density-dependent growth (differences by

site) or recruitment events (differences by year) to be detected (Heppell et al., 2012).

Spawning potential ratio, or spawning biomass per recruit (SPR), is another commonly used

metric of population status and measures the reduction in reproductive potential due to fishing as

SPR = (egg production with fishing)/(egg production without fishing) (Goodyear, 1993; Walters

and Martell, 2004). By definition, SPR ranges from 0 to 1, and in the absence of stock–recruitment

data many fisheries are managed using SPR between 0.3 and 0.4 as a target reference point (Clark,

1993, 2002; Mace, 1994; Restrepo et al., 1998). However, the appropriate SPR for a given stock

depends on its productivity, the slope of the stock–recruit curve at low stock size. Therefore, less

productive stocks such as rockfish (Sebastes spp.) and sharks (Carcharhinus spp.) may require

higher SPR in the range 0.5–0.85 (Restrepo et al., 1998; Brooks et al., 2010; Clark, 2002). Hordyk

et al. (2015a,b) showed that SPR could be calculated from life history parameters and length-

frequency data under the assumptions of knife-edge selectivity and maturity, and Hordyk et al.

(2016) extended their work to cases where selectivity is size-dependent. The length-based SPR

(LBSPR) assessment model they developed is a promising method for populations with limited

monitoring data.

The LBSPR model, however, has a number of limitations that may warrant caution when

applying it to aggregating species. First, the LBSPR model and SPR guidelines are derived from

Beverton-Holt or Ricker stock–recruit relationships that do not allow for an Allee effect (i.e.

depensation, lower recruits per spawner at low stock size; Brooks et al., 2010; Hordyk et al., 2015b).
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Spawning aggregation behavior may be an strong Allee effect mechanism, whereby FSAs no longer

form at population sizes (or densities) below a threshold and few, if any, recruits are produced

(Courchamp et al., 2008; Sadovy de Mitcheson, 2016). Second, recruitment of pelagically-spawning

tropical reef fish that form FSAs may be highly variable and driven more by ocean currents than

stock size. Third, the LBSPR model assumes the population is in equilibrium and only considers

one length distribution at a time (either one year of data, or multiple years pooled). Rudd and

Thorson (2018) relaxed this equilibrium assumption in their length-based integrated mixed effects

(LIME) model. LIME estimates time-varying recruitment and fishing mortality in a state-space

framework and can be run using only length data (as the LBSPR) or include fishery catch and an

index of abundance if they exist. Despite their limitations, the LBSPR and LIME models may be

well-suited for monitoring protected FSAs because all mature fish gather in high density, which

enables the necessary length and maturity data to be efficiently collected.

The decline of Nassau Grouper (Epinephelus striatus) is a textbook example of the challenge

that aggregating behavior poses to fisheries management. Nassau Grouper are large (mature adults

range 50-85 cm), long-lived (at least 29 years) piscivorous reef fish found throughout the Caribbean

Sea (Sadovy and Eklund, 1999). They are important predators in coral reef ecosystems, capable

of causing trophic cascades and impacting reef health by regulating the biomass of their prey

(Mumby et al., 2006; Stallings, 2008). Nassau Grouper form large (tens of thousands) spawning

aggregations that are predictable in time and space, which makes them easily overexploited by

small-scale fishermen using traps and handlines (Smith, 1972). These aggregations historically

supported one of the most important finfish fisheries in the Caribbean (Sala et al., 2001), but intense

aggregation fishing has driven striking population declines, leading to a Critically Endangered listing

by the IUCN (Sadovy and Eklund, 1999; Sadovy et al., 2018). The United States has prohibited

take and possession of Nassau Grouper since 1990 and recently listed the species as Threatened

under the Endangered Species Act (NMFS, 2016). Several Caribbean governments, including

Mexico, Belize, the Cayman Islands, and the Bahamas, have instituted MPAs or other protections
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at known Nassau Grouper FSA sites in response to steep declines in catch. These efforts have

been generally successful at reducing fishing mortality at FSA sites, but recovery has been variable

and quantitative estimates of population responses—either abundance or size-frequency—are rare

(Sadovy de Mitcheson and Colin, 2012b).

In the Cayman Islands, a UK Overseas Territory in the Caribbean Sea, Nassau Grouper

historically formed five known FSAs (Fig. 3.1). Fishermen have targeted these FSAs with small

boats and handlines around the full moons in January and February since the early 1900s (Bush

et al., 2006). An additional FSA exists at Pickle Bank, an offshore seamount whose political

jurisdiction is unclear due to the overlapping Exclusive Economic Zones of the Cayman Islands and

Cuba. Responding to fishermen’s concerns over declining numbers and size of Nassau Grouper,

the Cayman Islands government restricted fishing these FSAs to residents and hook-and-line gear

in 1985. In 1987 the Cayman Islands Department of the Environment (CIDOE) began monitoring

catch-per-unit-effort and collecting biological data (length, weight, sex, and age; Bush and Ebanks-

Petrie, 1994). This study produced the most complete growth curve and oldest recorded individual

for the species (29 years; Bush et al., 2006; Sadovy and Eklund, 1999).

Four of the Cayman FSAs were fished out by 2000, but in 2001 local fishermen discovered

a new FSA off the west end of Little Cayman Island (Bush et al., 2006). At the time of its discovery

the aggregation was estimated to attract 7,000 fish (Whaylen et al., 2007). Intense fishing by local

fishermen removed roughly 4,000 fish in two years (ca. 2,000 in 2001 and 1,934 in 2002; Whaylen

et al., 2004). In 2003, the Cayman Islands Marine Conservation Board banned fishing on the

aggregation site. Since 2003, the Grouper Moon Project, a collaboration between the CIDOE, Reef

Environmental Education Foundation (REEF), and academic scientists, has published several key

findings: i) acoustically-tagged adult fish on Little Cayman and Cayman Brac do not cross deep

water to other islands, and all tagged fish attend the FSA on their island to spawn (Semmens et al.,

2009, 2007); ii) observations of ocean currents suggest that larvae spawned at the Little Cayman

FSA may self-recruit to Little Cayman, Cayman Brac, or Grand Cayman (Heppell et al., 2009, 2011;
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Figure 3.1: Map showing the location of historic and current Nassau Grouper spawning aggregations in
the Cayman Islands. Aggregations (black points) are found either at shelf edges near reef promontories
(Grand Cayman, Little Cayman, Cayman Brac) or offshore seamounts that rise to within 30 m of the
surface (12 Mile Bank, Pickle Bank). The three FSAs on the east ends of Grand Cayman, Little Cayman,
and Cayman Brac historically supported the fishery. The FSA off the west end of Little Cayman Island
is currently the largest and the main focus of this study. Bathymetry is shown in blue with grey contour
lines at 50, 100, 200, 500, and 1000 m. Adult Nassau Grouper apparently do not cross deep water between
islands (>200 m).

Colin, 2012b; Sadovy de Mitcheson and Colin, 2012b); and iii) mark-recapture and length-frequency

analysis indicates that numbers have increased at the Little Cayman FSA (Heppell et al., 2012;

Semmens et al., 2012; Waterhouse et al., In prep). This evidence motivated continued renewal of the

initial FSA fishing bans, and in 2016 protections were strengthened via comprehensive legislation

(Cayman Islands Cabinet, 2016).

We present a case study of Nassau Grouper (Epinephelus striatus) population responses to

15 years of spatiotemporal spawning aggregation protection in the Cayman Islands. We combine

fishery-independent data (15 years of in situ length-frequency, 14 year index of abundance) with
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fishery-dependent data (age-length and length-weight relationships) into a length-based stock

assessment model (Rudd and Thorson, 2018). We specifically address the following:

i) How have population size structure and biomass changed?

ii) How do SPR estimates compare across sites and years, and what SPR target might be

appropriate?

iii) What is the timeline of biomass recovery, and has this been affected by density-dependent

growth and pulse recruitment?

3.2 Methods

In situ length frequency data

For each year from 2004 to 2018 we collected noninvasive length distribution data from the

west end Little Cayman FSA using diver-operated laser calipers (video camera mounted between

parallel lasers calibrated a set distance apart, Fig. 3.2), following Heppell et al. (2012). In addition

to the aluminum bracket system described in Heppell et al. (2012), we created two new systems

that placed two red laser diodes (Bea Lasers 160-5-650, www.bealasers.com) 20 cm apart inside

a waterproof acrylic housing, with GoPro HeroTM video cameras attached in front. We aimed to

collect 500–1,000 total length measurements per year because simulation studies of length-based

assessment methods show a performance plateau above this sample size (Hordyk et al., 2015b; Rudd

and Thorson, 2018). The number of dives and days necessary to achieve this sample size varied by

year, primarily depending on dive conditions and currents. We were not able to collect large sample

sizes at the FSA on the east end of Cayman Brac (n2017 = 107, n2018 = 125) because there were

fewer and more dispersed fish and because the site typically has challenging boat operation and

dive conditions (high seas, strong currents).

We calibrated the laser caliper systems before diving to be within 19.5–20.5 cm at a distance

of 10 m. On a given dive, the operator turned on the video camera and lasers, and placed the laser
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Figure 3.2: Laser caliper system used to measure fish lengths in situ. Two parallel laser diodes are placed
20 cm apart inside a custom-machined acrylic housing, with a GoPro HeroTM camera in separate housing
mounted in front. A) A diver using the system. B) Example still-frame image with the two laser dots on a
fish perpendicular to the camera. The known distance between the laser dots is used as a scale to measure
total length.

points on a dive slate held perpendicularly by their dive buddy, while the dive buddy swam away

until the laser points could not be seen. The operator then moved to the far end of the aggregation

and swam slowly back to the starting point, placing the laser points on fish that were perpendicular

to the camera for ∼3 s per fish.

The first step to obtain length measurements from the video is to capture still frames where

the laser points are on a fish, the fish is perpendicular to the camera and fully in view, and the fish is

straight (tail not curved). We then opened the still frames in ImageJ software, used the measurement

of the laser points on the dive slate to set the scale (pixels cm-1), and measured the total length of

the fish.

We estimated the measurement error of the laser caliper method by a similar analysis to

Heppell et al. (2012). For two objects of known size (55.72 and 60.96 cm), we replicated the above

method at 2 and 4 m distances, and increasing angles offset from perpendicular (0◦, 5◦, 10◦, 15◦,

20◦, 25◦, and 30◦). For both distances, the measurement error was 5–7% at angles less than 10◦

(Fig. 3.3). Beyond 10◦, measurement error increased to 10–20%. Although we did not do a formal
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Figure 3.3: Measurement error of the laser caliper system as a function of distance-to-camera and angle
offset from perpendicular. We measured two objects of known size typical of Nassau Grouper (55.72 cm,
solid lines; 60.96 cm, dashed lines) at 2 and 4 m distances and 0–30◦ from perpendicular. Measurement
error was 5–7% at angles less than 10◦ and increased rapidly beyond 15◦.

test to determine at which angles video analysts rejected images, analysts felt they would begin to

reject images at angles >10◦.

Nassau Grouper at the Little Cayman FSA typically spawn in either January or February,

depending on when the full moon falls in the month (e.g. if the full moon is in late January and late

February, major spawning is likely to be in January, and vice-versa). When full moons fall in the

middle of the month, it is difficult to know whether major spawning will be in January or February.

Thus, in some years we collected length data from both major and minor spawning months. We

found no differences in length distributions between major and minor spawning months across

years, and therefore pooled all data within years in subsequent analyses (Fig. 3.4).

In 2018 we used an alternative method, a stereo camera system (described in Williams et al.,

2010), to collect in situ length measurements from the east end Cayman Brac FSA. In contrast to the

laser calipers, which can only measure one fish at a time and must be diver-operated, stereo systems

effectively build a 3-dimensional image from two synchronized cameras and can measure objects

anywhere in their field of view. Thus, they can be used remotely (either baited or un-baited; Watson

et al., 2005) and may be more efficient for monitoring FSA size structure. In order to confirm that
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Figure 3.4: Length distributions for major versus minor spawning months. Fish lengths in major spawning
months were larger in 4 out of 7 years (blue curve right of red curve; 2004, 2006, 2011, 2014), and smaller
in the other 3 years (blue curve left of red curve; 2005, 2007, 2008).

the stereo camera produced comparable length measurements, we attached the laser calipers to the

stereo camera for two dives and measured all fish with laser points in the stereo camera images. We

found good agreement between the length measurements produced by the two systems (Fig. 3.5).

Since they reconstruct 3-dimensional coordinates, stereo cameras also can estimate the distance to

objects in images. These estimates confirmed that most of our distances-to-fish when using the laser

calipers were between 3–4 m, and all were between 2–5 m.
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Figure 3.5: Length distributions measured from the stereo camera (blue) and laser calipers (red). On two
dives the laser calipers were attached to the stereo camera and all fish with laser points in the stereo camera
images were measured.

Fisheries-dependent data

We used biological data collected from the Cayman Islands Nassau Grouper FSA fishery in

1987–1995 before protections (Bush and Ebanks-Petrie, 1994; Bush et al., 2006). CIDOE recorded

length, weight, sex, and age of fish caught at the three main historic FSAs on the east ends of

Grand Cayman, Cayman Brac, and Little Cayman (Fig. 3.1). Following Bush and Ebanks-Petrie

(1994) and Bush et al. (2006), we added one year to otolith ring counts because all fish were caught

on FSAs and had ”plus” growth. We also included 104 lengths of un-aged fish known to be 1.5

years old from a large recruitment event in 2012 (simulated from N (µ = 18.4, σ = 3.4); Camp

et al., 2013). We fit standard age-length (von Bertalanffy growth, L[a] = L∞[1− e−k(a−a0)]) and

length-weight (W [L] = aLb) relationships using maximum likelihood estimation.

We estimated natural mortality, M = 0.262 yr-1 (95% CI: 0.14–0.38), using catch-curve

analysis of length data from Pickle Bank, a sporadically exploited, offshore Nassau Grouper FSA

(Fig. 3.1). We converted length data to ages using the best fit growth curve (k = 0.191, L∞ = 77.3,

and a0 = −0.01; Fig. 3.6), and then followed the guidance of Smith et al. (2012) to use the

Chapman-Robson estimator (Chapman and Robson, 1960), implemented in the ‘FSA’ R package
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(Ogle et al., 2018). This estimate of M depends on the assumption that Pickle Bank is unexploited

and will be biased upwards if this is not true, although this assumption is reasonable given the large

fish observed on Pickle Bank (Fig. 3.7). The estimate M = 0.262 yr-1 falls within the range reported

by previous catch-curve analysis for Nassau Grouper (M = 0.17–0.30 yr-1; Thompson and Munro,

1978) and is well below the estimate from the Pauly (1980) method (M = 0.46, using a conservative

average annual sea surface temperature for the Cayman Islands, 27◦C).

Length-based assessment

Stock assessments typically rely on three types of data to estimate stock status: i) fishery

catch, ii) an index of population abundance, and iii) age- or length-composition. Assessment

methods using all three data types can be classified as “data-rich”, methods with two data types

as “data-moderate”, and methods with only one data type as “data-poor” (Berkson and Thorson,

2015). The Little Cayman FSA falls into the “data-moderate” category, since we have time series

of length-frequency (this study) and a fishery-independent index of abundance (Waterhouse et al.,

In prep), as well as biological data (Sec 3.2). While CIDOE collected catch and effort data from

the FSA fishery before protection, we did not have catch data following the ban on FSA fishing

from 2003–2018. Note that fishing Nassau Grouper was still legal after the FSA protections were

enacted, but only outside the FSA and spawning season. We used two length-based assessment

frameworks to estimate the Little Cayman population response to protection.

First, the length-based spawning potential ratio (LBSPR) model is a data-poor method that

uses length-compositions to estimate spawning potential ratio (SPR), a measure of stock status

relative to unfished levels (Hordyk et al., 2015b). Since the LBSPR model leverages length and

maturity data, it is well-suited for assessing FSAs because all large, mature fish gather in high

density. The LBSPR model, however, assumes the population is in equilibrium and only considers

one length distribution at a time (either one year of data, or multiple years pooled). We fit the

LBSPR model to FSA length-frequency data from before and after protections, using the parameters
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Table 3.1: Parameters used to fit the LBSPR model.

Parameter Description Value Source

L∞ von Bertalanffy asymptotic length 77.3 cm this study (Fig. 3.6)
k von Bertalanffy growth coefficient 0.191 yr-1 this study (Fig. 3.6)
M Natural mortality 0.262 yr-1 this study
L50 Length at 50% maturity 47.4 cm Sadovy and Eklund (1999)
L95 Length at 95% maturity 55.7 cm Sadovy and Eklund (1999)

Table 3.2: Parameters used to fit the LIME model.

Parameter Description Value Source

L∞ von Bertalanffy asymptotic length varied this study (Fig. 3.10)
k von Bertalanffy growth coefficient varied this study, (Fig. 3.10)
M Natural mortality varied this study
L50 Length at 50% maturity 47.4 cm Sadovy and Eklund (1999)
L95 Length at 95% maturity 55.7 cm Sadovy and Eklund (1999)
S50 Length at 50% selectivity 47.4 cm Sadovy and Eklund (1999)
S95 Length at 95% selectivity 55.7 cm Sadovy and Eklund (1999)
α Length–weight scalar 3.726e-06 this study
β Length–weight allometric 3.385 this study
σF Fishing mortality process error 0.3 default
σI Abundance index observation error 0.3
σR Recruitment process error 1
CVL Growth curve coefficient of variation 0.06–0.08

in Table 3.1 and the ‘LBSPR’ R package (Hordyk, 2017; Hordyk et al., 2016).

The length-based integrated mixed effects (LIME) model is similar to the LBSPR but has

more data requirements and does not assume that the population is in equilibrium (Rudd and

Thorson, 2018). LIME estimates time-varying recruitment and fishing mortality in a state-space

framework and can be run using only length data (i.e. data-poor) or can include fishery catch and

an index of abundance if they exist (i.e. data-moderate or data-rich). We fit the LIME model to 15

years of in situ length data and a 14-year index of abundance (numbers of mature fish, Waterhouse

et al., In prep) from the Little Cayman FSA, using the parameters in Table 3.2 and the ‘LIME’ R

package (Rudd, 2018).

To account for uncertainty in life history parameters (M, k, and L∞), we fit LIME using 53
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Figure 3.6: Range of growth parameters used to fit the length-based assessment model. Growth curves
defined by each parameter set (grey lines) are plotted on top of the data (black points). The maximum
likelihood estimates from the best growth curve fit were k = 0.191 and L∞ = 77.3 (blue).

different parameter sets (Figs. 3.6 and 3.10). The parameter grid was centered on the maximum

likelihood estimates (MLE) from the growth curve fit (k = 0.191, L∞ = 77.3) and estimated M =

0.262 yr-1 from the catch-curve analysis. Nodes in the grid were generated using the covariance

matrix from the R package ‘FishLife’ and a 2-dimensional Gauss-Hermite quadrature rule, level 5,

via the R package ‘mvQuad’ (Fig. 3.10 Rudd et al., In prep; Thorson, 2017; Thorson et al., 2017;

Weiser, 2016).

Density-dependent growth calculations

The 2017 and 2018 length distributions from both Little Cayman and Cayman Brac were

bimodal. The differences in the smaller of the two modes between islands and years could either

be explained by differences in growth or age of strong year classes. Under the assumption that

the modes represented fish of the same age, we analyzed shifts in the smaller modes to evaluate
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whether differences in growth stemming from density-dependence could plausibly explain the

observed length distribution differences. For each year and FSA, we generated 10,000 bootstrap

samples from the length data and calculated the kernel density modes for each. We calculated the

growth increments for each FSA and differences between FSAs in the same year by subtracting the

bootstrapped mode lengths.

To estimate density-dependent growth we needed the habitat area (ha) on each island and

the biomass (kg) that would affect growth for fish spawned in 2011. For the Little Cayman FSA, we

approximated biomass by multiplying the number of spawners by the weight-distribution (observed

length-distribution multiplied by the length-weight relationship) for each year, and then took the

mean across years 2011-2018. The number of spawners on Cayman Brac is less well-known, so

we repeated the above calculation for a range of possible population sizes (NBrac = 500, 1000, and

1500). We calculated adult habitat area as the geographic area for depths between 5 and 50 m using

high-resolution bathymetry (R packages ‘raster’ v2.8-4 and ‘sf’ v0.7-1; Hijmans, 2018; Pebesma,

2018).

Finally, we used the empirical relationship from Lorenzen and Enberg (2002) to estimate

the plausible difference in growth due to different observed biomass densities of Nassau Grouper on

Little Cayman and Cayman Brac. Density-dependent growth as a result of competition for food is

not expected to change the growth rate, k, but is expected to reduce L∞ according to:

L∞(B) = L∞L−gB,

where g, the competition coefficient, accounts for decreases in asymptotic size as biomass density

increases (Eq. 1.1 in Lorenzen and Enberg, 2002). L∞(B) is the asymptotic length for a given level

of biomass density, B, and L∞L is the limiting asymptotic length as B approaches 0. We then used

the empirical relationship g = 3.3 B̄−1 to calculate L∞(B), where B̄ is average biomass density.
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3.3 Results

Length distribution analysis

The catch length distributions from the three historic FSAs on the east ends of Little Cayman,

Cayman Brac, and Grand Cayman were similar, except that catch lengths from Grand Cayman

had a smaller range and were about 3 cm larger on average. (Fig. 3.7). Catches from the recently

discovered west end Little Cayman FSA in 2002 had a notably wider range than catches from the

historic east end FSA in 1987–1995. This increased range was due to more large individuals present,

not fewer small individuals. Pickle Bank had much larger fish—the average was 10 cm larger than

the three historic FSAs. Individuals greater than 70 cm were rare at the three historic FSAs, whereas

they comprised roughly half of the catch on Pickle Bank.

All years (2002-2018) of length distributions from the recently discovered west end Little

Cayman FSA had wider range and larger individuals than catches at the historic east end FSA

(1987–1995, Fig. 3.8). This was true both for fisheries catch before protection (2002) and in situ

laser caliper data after protection (2003–2018). The 2017 and 2018 distributions were bimodal,

with a pulse of small fish 40–55 cm not seen in the other 21 years.
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Figure 3.7: Nassau Grouper catch length distributions from four FSA fisheries in the Cayman Islands
before protections. We pooled data across years for Little Cayman (1987–1988, 1992–1995), Cayman
Brac (1990–1995, 1998, 2000), Grand Cayman (1988–1989, 1993, 1995, 1997), and Pickle Bank (2000).
We divided data from Little Cayman into two periods because no fishing occurred for 7 years between
1995 and 2001, and data from 1987–1995 are from the historic east end FSA while data from 2002 are
from the current west end FSA. Dashed lines indicate the means by FSA.
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Figure 3.8: Length distributions from the west and east end Little Cayman Nassau Grouper FSAs. Data
from 1987–1995 are from fisheries catch at the historic east end FSA. Data from 2002-2018 were collected
at the “rediscovered” west end FSA, from fisheries catch before protections (2002) and from laser calipers
after protections (2003–2018). Density curves are shaded according to length, with larger fish in red
and smaller fish in dark grey. The increase in larger fish following 7 years of no fishing and subsequent
protection is shown by more red shading from 2002-2018. The 2017 and 2018 distributions are bimodal,
showing a pulse of small fish (dark grey). The sample sizes for each year are displayed at right.
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Length-based assessment models

The LBSPR model estimated SPR at the three historic FSAs before protections to range from

0.46 to 0.59 (mean and 95% CI: Little Cayman, 0.46 (0.43–0.50; Cayman Brac, 0.56 (0.49–0.63);

Grand Cayman, 0.59 (0.54–0.64); Fig. 3.9). The lightly exploited Pickle Bank FSA had higher

SPR, 0.76 (95% CI: 0.62–0.91). SPR for the Little Cayman population in 2002, following several

years of no fishing, was estimated to increase from 0.46 to 1.00 (95% CI: 1.00–1.00). Following

two years of intense aggregation fishing (2001, 2002) and protection in 2003, the Little Cayman

SPR decreased over the next 10 years to 0.63 (95% CI: 0.58–0.66) before increasing to 1.00. SPR

for Cayman Brac also dramatically increased following protection, from 0.56 to 1.00.

The data-moderate LIME model, fit to in situ length data and an index of abundance,

converged for 19 out of 53 growth parameter combinations (Fig. 3.10). Models using slightly lower

k and higher L∞ than the MLE from the fitted growth curve were generally more supported by AIC,

and the model with lowest AIC used k = 0.166 and L∞ = 78.3 (Fig. 3.10). LIME generally fit the

length-frequency data well, including the bimodal distributions in 2017 and 2018 (Fig. 3.11).

The LIME model with lowest AIC estimated a decline in spawning biomass from 2000–

2008, driven by both decreasing size and numbers of fish, and then increased by 280% from

2008–2018 (Fig. 3.12). The number of spawners reached a minimum in 2007, increased slightly

from 2008–2013, and then increased dramatically from 2015–2018. Mean size went through three

periods: decrease 2004–2010, increase 2010–2016, and a steep decrease 2016–2018. A large

recruitment pulse was estimated in 2011, 7 times average recruitment (95% CI: 4.0–12.5).
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Figure 3.9: Estimated spawning potential ratio (SPR) for Cayman Islands Nassau Grouper spawning
aggregations before and after protections implemented in 2003. Pre-protection length data (squares) were
collected by sampling fisheries catch on Little Cayman (“Pre A”: 1987–1988 and 1992–1995, “Pre B”:
2002), Cayman Brac (1990–1995, 1998, 2000), Grand Cayman (1988–1989, 1993, 1995, 1997), and Pickle
Bank (2000). Data from Little Cayman were divided into two pre-protection periods, “Pre A” and “Pre B”,
because no fishing occurred for 7 years between 1995 and 2001, manifested by large differences in size
structure (Fig. 3.7). Post-protection length data (circles) were collected from diver-operated laser calipers
on Little Cayman (2003–2018, pooled into 5-year bins) and Cayman Brac (2017–2018).
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Figure 3.10: Range of von Bertalanffy growth curve parameters, k (growth rate, yr-1) and L∞ (asymptotic
size, cm), used to fit the length-based assessment model. The parameter grid was centered on k = 0.179
and L∞ = 75.3. The grid was calculated using the FishLife covariance matrix and a 2-dimensional Gauss-
Hermite quadrature rule, level 5 (Rudd et al., In prep). The assessment model converged for 19 parameter
combinations (large colored points) and failed to converge for 30 (small black points). The model using
k = 0.166 and L∞ = 78.3 was most supported by the data (lowest AIC, yellow), and models with high k
and low L∞ were less supported (higher AIC, purple).
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Figure 3.11: Fits to in situ Little Cayman length-frequency data from the LIME model with lowest AIC.
Histograms show raw length data and curves show LIME model fits. LIME was able to fit the bimodal
length distributions in 2017 and 2018. The model was fit starting in 1999, five years before data time series
begins.
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Figure 3.12: Length-based assessment model output for the Nassau Grouper spawning aggregation on
Little Cayman Island: A) mean length (cm), B) recruitment (relative), C) abundance (number of spawners),
and D) spawning biomass (relative). Black triangles show the input data. Green points, lines, and shading
depict the maximum likelihood estimates and 95% confidence intervals. Years with estimates but not data
are distinguished by green lines without points (length: 1999–2003, abundance: 1999–2004).
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Bimodal length distributions in 2017 and 2018

The 2017 and 2018 length distributions were bimodal from the FSAs on both Little Cayman

and Cayman Brac (Fig. 3.13). The modes (local maxima, dashed lines in Fig. 3.13) shifted right

from 2017 to 2018 on both islands, as expected if the modes represent growth of a single strong

cohort. In both years the modes are larger on Cayman Brac than Little Cayman. The Cayman Brac

modes align well with growth curve predictions of age 6 in 2017 (growth curve prediction: 52.8

cm, mode: 53.4 cm) and age 7 in 2018 (growth curve prediction: 57.1 cm, mode: 58.6 cm). The

Little Cayman 2017 mode (49.5 cm) lies in between growth curve predictions for ages 5 (47.6 cm)

and 6 (52.8 cm), and the Little Cayman 2018 mode aligns with age 6 (52.6 vs. 52.8 cm). Thus, the

observed growth increment (2018 mode minus 2017 mode) on Cayman Brac agrees well with the

growth curve expectation, while the growth increment on Little Cayman is smaller than expected

(Fig. 3.14).

There are two alternate hypotheses for the difference in length modes between the two

islands: i) fish on both islands are the same age, which means they grew faster on Cayman Brac, or

ii) fish grew at the same rate on both islands, but are one year older on Cayman Brac. Hypothesis

(ii) could be tested by aging fish on the two islands, although this is unlikely to happen due to their

protected status. Aside from this, hypothesis (ii) is improbable, as it would require large recruitment

events in subsequent years that the islands did not share, even though they are only separated by

8 km. On the other hand, several mechanisms could reasonably cause differences in growth rates

between the two islands (hypothesis i). One such mechanism could be density-dependent growth,

since the density of fish is much (roughly six times) lower on Cayman Brac. Thus, we evaluated

how much of the observed length differences could possibly be explained by density-dependent

growth.

Little Cayman and Cayman Brac are approximately the same size. We calculated available

adult habitat (area covering 5–50 m depth) for Little Cayman as 1,440 ha and for Cayman Brac as

1,689 ha (Fig. 3.15).
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Figure 3.13: Bimodal length distributions from Little Cayman and Cayman Brac in 2017 and 2018. The
modes (local maxima, dashed lines) shift right from 2017 to 2018 on both islands. In both years the modes
are larger on Cayman Brac than Little Cayman. Predicted lengths from the growth curve are: 47.6 cm at
age 5, 52.8 cm at age 6, and 57.1 cm at age 7.

Figure 3.14: Bootstrap distribution of the growth increment of modes from 2017 to 2018. For each island
and year, we took 10,000 bootstrap samples from the length data, calculated the kernel density modes, and
subtracted the 2017 mode length from 2018. The observed growth increment on Cayman Brac matches
the expected growth increment for age 6 to 7 from the growth curve (black lines). The observed growth
increment on Little Cayman is smaller than expected (bootstrap samples left of line). Assuming growth is
density-dependent, expected growth increments are fairly insensitive to population size (line type).
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Figure 3.15: Habitat area available to Nassau Grouper on Little Cayman and Cayman Brac. A) Little
Cayman has 1,440 ha of adult habitat area (5–50 m depth, dark blue) and 1,315 ha of juvenile habitat area
(0–5 m depth, light blue). B) Cayman Brac has 1,689 ha of adult habitat and 572 ha of juvenile habitat.
FSA locations are depicted by black points at the west (current) and east (historic) ends of Little Cayman,
the east end of Cayman Brac.
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Figure 3.16: Bootstrap distribution of the difference in modes between Little Cayman and Cayman Brac in
2017 and 2018. For each island and year, we took 10,000 bootstrap samples from the length data, calculated
the kernel density modes, and subtracted the Little Cayman mode (smaller) from the Cayman Brac mode
(larger). Assuming the population size on Cayman Brac is 500–1,500, density-dependent growth can
explain 1.9–3.2 cm (black lines, 48–81%) of the observed difference in 2017 (3.9 cm). Density-dependent
growth can explain 2.1–3.5 cm (34–59%) of the observed difference in 2018 (6.0 cm).

We estimated that density-dependent growth could explain 1.9–3.2 cm (48–81%) of the

observed length mode difference in 2017 (3.9 cm), and 2.1–3.5 cm (34–59%) of the difference in

2018 (6.0 cm, Fig. 3.16). See Section 3.2 for calculation details.

3.4 Discussion

Our results attest to the value of monitoring population size structure in addition to numbers.

We demonstrated that collecting in situ length data over time is an especially effective method for

monitoring protected FSAs, where all mature fish aggregate at high density and can be efficiently

measured. Both the laser caliper and stereo camera systems had measurement error rates of 5–7%

at angles less than 10◦, which was accurate enough to detect strong year classes in bimodal length

distributions.
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What have we learned about recruitment?

Driven by the bimodal length distributions in 2017 and 2018, the LIME model estimated

one year of very strong recruitment (7 times average, 95% CI: 4.0–12.5, Fig. 3.12B) out of 16 years

of monitoring. Accordingly, recruitment variability was estimated to be high (σr = 0.82, 95% CI

0.57–1.16). This is not surprising, since Nassau Grouper are periodic strategists (Winemiller and

Rose, 1992): long-lived and highly fecund, capable of withstanding years of recruitment failure

sporadically punctuated by large successful spawning events. Given the dramatic decline of Nassau

Grouper throughout the Caribbean, it is possible that external recruitment (i.e. from other FSAs) is

more sporadic now than in the past. When FSAs were far greater in size and number, the probability

of a population receiving larvae from a different FSA was likely higher, and therefore recruitment

less variable. Now, with fewer active FSAs, the remaining FSAs may be more dependent on

self-recruitment. More reliance on self-recruitment, however, implies a tighter stock–recruitment

relationship (Strathmann et al., 2002). Contrary to this expectation, we observed high recruitment

variability for the Little Cayman FSA that had no correlation with spawning stock biomass. This is

important information for management as it implies long recovery timelines should be expected.

We found that spawning biomass took 14 years to recover from two years of intense FSA fishing

(Fig. 3.12d).

Length-frequency analysis showed that the big successful recruitment event occurred in

2011, synchronously on Little Cayman and Cayman Brac. This is supported by observations of

numerous 1.5 year old juveniles on Little Cayman in July 2012 (Camp et al., 2013; Semmens et al.,

2013). Nearly zero juveniles were sighted in all years 2004–2017 except for 2011 (Semmens et al.,

2013). It is reasonable that Little Cayman and Cayman Brac would show strong recruitment in

the same year because they are only separated by 8 km, and late-stage larvae are easily capable of

swimming this distance against currents (Leis, 2015).

An obvious question is: What was special about conditions in 2011? Like many reef fish,

Nassau Grouper are benthic but spawn pelagically, and successful recruitment may largely depend
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on favorable currents bringing larvae close to suitable reef habitat. The prevailing current around the

Cayman Islands flows east-northeast to west-southwest, but the mean current is weak and looping

eddies that retain water for months are common (Richardson, 2005). Thus, the possibility exists

for self-recruitment within the Caymans (Colin, 2012b; Heppell et al., 2011, 2009; Colin et al.,

1987). Future work could model larval dispersal from Little Cayman using archived remote sensing

data and compare 2011 against low recruitment years. Alternatively, strong recruitment in 2011

could have been related to abundant prey or fewer predators at critical space and time scales for

larval survival (e.g. Cushing’s match-mismatch hypothesis; Cushing, 1990). It is also possible for

physical forcing to positively affect larval dispersal and survival simultaneously (Checkley Jr et al.,

1988). While intriguing, these possibilities would be difficult to test in hindsight.

Nassau Grouper at different locations throughout the Caribbean appear to spawn during

months when average temperature is around 26 ◦C (Table 2 in Tucker et al., 1993). Sea surface

temperature off Little Cayman was indeed relatively cold in 2011, around 26 ◦C (Fig. 3.17).

However, temperatures were also cold in 2005, 2006, and 2009, and no large recruitment events

were observed in these years. Future work could investigate a possible temperature effect on

recruitment, which may be acting as a proxy for effects related to currents, prey, or predators.
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Figure 3.17: Sea surface temperature surrounding Little Cayman after spawning events from 2004–2018,
7-day average. For each year, peak spawning dates were recorded by divers from CIDOE and REEF. Tem-
perature was averaged for the 7 days following each spawning date over latitude 19.6–19.8 ◦N and longitude
80.15–79.70 ◦W. Temperature data were downloaded from https://podaac.jpl.nasa.gov/dataset/MUR-JPL-
L4-GLOB-v4.1.
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Aggregation fisheries status and management

The LBSPR model estimated SPR at the three historic FSAs to range from 0.46 to 0.59, and

all of these populations soon declined to levels not worth fishing. The Grand Cayman FSA, with an

estimated SPR of 0.59 (95% CI: 0.54–0.64) from pooled 1988–1997 data, has shown no sign of

recovery despite 15 years of protection. In addition, only two years of intense aggregation fishing

(2001, 2002) caused the Little Cayman SPR to decrease from 1.00 to 0.63. These observations

suggest that SPR <0.6 would be an unsustainable reference point for managing the Nassau Grouper

spawning aggregation fishery. Many studies repeat the advice of Clark (2002, 1993) and Mace

(1994), which recommend SPR = 0.4 as a risk-adverse reference point in cases where the stock–

recruit relationship is not estimable (e.g. Hordyk et al., 2015b; Rudd and Thorson, 2018). Brooks

et al. (2010) and Clark (2002), however, demonstrated that the appropriate SPR depends on the

slope of the stock-recruit curve at low stock size, and that for less resilient species (i.e. lower

stock–recruit steepness) SPR in the range 0.6–0.86 could be warranted. The appropriate SPR for

Nassau Grouper may also lie in this range, well above the oft-cited 0.4 value.

We would expect the sustainable SPR to be higher than 0.4 for Nassau Grouper because

the species’ life history does not follow the assumptions underlying the typical SPR reference

point guidelines. First, the SPR guidelines are derived from Beverton-Holt or Ricker stock–recruit

relationships that do not admit the possibility of an Allee effect (i.e. depensation, lower recruits

per spawner at low stock size; Brooks et al., 2010). The spawning aggregation behavior of Nassau

Grouper may well be a strong Allee effect mechanism, whereby FSAs no longer form at population

sizes (or densities) below a threshold and few, if any, recruits are produced (Courchamp et al., 2008;

Sadovy de Mitcheson, 2016). If such a threshold exists, Nassau Grouper stock sizes need to be kept

above it. Second, Nassau Grouper exhibit highly variable recruitment. As a pelagically-spawning

tropical reef fish, Nassau Grouper recruitment may be driven by variable larval dispersal and only

weakly related to stock size. The SPR guidelines were derived based on stock–recruit curves for

temperate species, as assessments and stock–recruit data do not exist for most tropical species. In
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addition, stock assessments assume that stock structure and connectivity are known, but the degree

to which FSAs are connected by larval dispersal within the Cayman Islands and throughout the

Caribbean is poorly understood for Nassau Grouper. All of these demonstrate the danger of blindly

applying recommendations from well-studied, temperate fish species to poorly-studied, tropical

species, either based on theoretical or meta-analysis studies. They also highlight the need for

fisheries assessment and management tools to be adapted for aggregating species’ life history (e.g.

depensation, variable recruitment weakly related to stock size, and metapopulation stock structure;

Sadovy de Mitcheson, 2016).

The Cayman Islands government should be commended for acting quickly to protect the

Little Cayman FSA. Roughly two-thirds of the population was harvested in the two years before

protection, but the remaining population never stopped forming a spawning aggregation. It will

likely take longer for Nassau Grouper to recover at historic FSA sites elsewhere where aggregating

behavior ceased. The recovery of these historic sites may depend on getting a pulse of larvae from a

healthy FSA–it is possible this occurred on Cayman Brac in 2011.

Ecological impacts of recovering Nassau Grouper

The biomass density of Nassau Grouper increased five-fold from 2008 to 2018 (4 to 22

kg ha-1). Nassau Grouper growth may be slower on Little Cayman than Cayman Brac due to

density-dependent effects. In the small modes of the 2017 and 2018 bimodal length distributions,

the Cayman Brac fish were 3–5 cm larger than those on Little Cayman, and it is reasonable to assume

that these represent fish of the same age. Density-dependent growth could possibly explain 2–3 cm

(35–80%) of this size difference. As populations recover, density-dependent growth may slow the

increase in biomass and this effect should be considered in assessment models and management.

For example, the equation for density-dependent growth in Lorenzen and Enberg (2002) could

easily be added to the LIME assessment model.

Nevertheless, density-dependence is only one of many possible mechanisms underlying
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the difference in growth rates between Little Cayman and Cayman Brac. Instead of intraspecific

competition, Nassau Grouper may have less access to food on Little Cayman because interspecific

competition is higher or the system is less productive as a whole. Prey may be harder to capture on

Little Cayman, requiring Nassau Grouper to allocate more energy to active metabolism and less

to growth. Water temperature may be slightly warmer or colder on one island compared to the

other, pushing Little Cayman Nassau Grouper away from their growth optimum. Nassau Grouper

on Little Cayman may have matured earlier than their counterparts on Cayman Brac, which would

result in an energy reallocation from somatic growth to reproductive growth. Of these alternative

explanations, we can at least rule out different ages at maturity because the 2011 cohort was absent

from the 2015 length distribution on Little Cayman. Still, there are many conceivable mechanisms

behind the difference in growth rates, and future work could test for these possibilities.

Nassau Grouper are dominant predators in reef ecosystems, and the substantial increase in

Nassau Grouper–especially large Nassau Grouper–on Little Cayman is likely to affect other species

as well. The Exuma Cays Land and Sea Park (ECLSP), Bahamas, is another rare location in the

Caribbean with high Nassau Grouper density. At ECLSP, Nassau Grouper populations increased in

response to protection and this was associated with reduced densities of smaller grouper such as

coney and graysby (Chiappone and Sealey, 2000). Mumby et al. (2006) demonstrated that Nassau

Grouper caused a trophic cascade in the ECLSP, whereby only large parrotfish escape predation,

and these provide disproportionate grazing control of macroalgae. Another potential ecosystem

benefit of increasing Nassau Grouper predation is the control of invasive lionfish (Mumby et al.,

2011; but see Hackerott et al., 2013).

Future work and outlook for the species

Several important questions remain whose answers would inform Nassau Grouper manage-

ment in the Cayman Islands and aid recovery efforts Caribbean-wide.

i) How connected are FSAs via larval dispersal? Relatedly, how important is self-recruitment

116



to sustaining FSAs, and does this vary amongst FSAs? Currents and reef topography vary sub-

stantially throughout the Caribbean, ranging from small isolated islands (e.g. Little Cayman) and

offshore seamounts (e.g. Pickle Bank) to larger islands (e.g. Cuba) and wide shelf platforms

(e.g. Bahamas). A key difference is that on the larger islands and shelves, adult Nassau Grouper

can migrate long distances and access multiple FSAs (Bolden, 2000; Sadovy de Mitcheson et al.,

2008), whereas on smaller islands and atolls only one FSA typically forms (e.g. Glover’s Reef,

Starr et al., 2007; Little Cayman, Semmens et al., 2007; Cayman Brac, Semmens et al., 2009).

Physical processes leading to local retention of larvae and self-recruitment in one location may

differ from other locations. In addition, the relative significance of self-recruitment is dependent

on population size. For FSAs where local retention of larvae occurs, self-recruitment will appear

increasingly important as the population size increases because external recruits will comprise a

shrinking proportion of total recruitment (Strathmann et al., 2002). The Little Cayman Nassau

Grouper FSA, therefore, should appear more reliant on self-recruitment now than in the past when

it was smaller. Conversely, if the Little Cayman FSA supplies demographically-relevant levels of

larvae to populations elsewhere, the importance of self-recruitment at those sites would be expected

to decrease. Given currents in the region and probable dispersal distances of tens to hundreds of

kilometers, transport of Little Cayman larvae only seems likely within the Cayman Islands and to

southern Cuba (Cowen, 2006; Richardson, 2005; Jackson et al., 2014; Cowen et al., 2000).

ii) What is the carrying capacity for Nassau Grouper on Caribbean reefs, and how much

larger can the Little Cayman FSA grow? Although appropriate management action for declining

FSAs has long been fairly obvious (e.g. protect FSAs from fishing; Sadovy and Domeier, 2005), it

is less clear how to manage an increasing FSA such as Little Cayman. The current biomass density

on Little Cayman is approximately 22 kg ha-1 (220 g 100 m-2) and should increase substantially as

the 2011 year class grows. It is unclear how this density estimate compares with historic levels or

recent estimates from other locations based on visual transects outside spawning season (Mumby

et al., 2011; Chiappone and Sealey, 2000; Tupper and Rudd, 2002), and the few documented reports
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of FSA size (Sala et al., 2001). While we know—based on imprecise diver counts—that many

FSA sizes have dramatically declined (e.g. Smith, 1972; Sala et al., 2001), we often do not know

the catchment area or size structure to estimate biomass density. More accurate and comparable

population assessments would be helpful.

iii) Are large spawning aggregations necessary for successful reproduction, or will Nassau

Grouper spawn in smaller social groups (Colin, 1992)? In other words, does an Allee effect exist,

and if so, how strong is it? This is a critical question, as it determines the species’ ability to recover

at the many FSA sites where aggregations have disappeared. Increases have been seen at FSAs

with very low numbers of Nassau Grouper (e.g. from 30 to 214 individuals over 8 years, Bernard

et al., 2016), although spawning has not been documented and it is unclear if the increase is due

to adult migration or recruitment. Nassau Grouper have been directly observed to spawn at FSAs

numbering approximately 100 and 500 individuals (Colin, 1992).

iv) What is the contribution of FSAs at natural refuges? FSA sites that are more remote and

have rough sea conditions are less susceptible to fishing and may harbor healthy populations that

can replenish depleted stocks elsewhere, even without protections (Thompson and Munro, 1978).

For example, the Nassau Grouper population on Pickle Bank appeared healthy when sampled in

2000 (SPR = 0.76, 95% CI 0.62–0.91), even though jurisdiction of Pickle Bank is disputed and

protection is unlikely.

The FSA on Little Cayman is the largest currently documented for the species. Although

they remain to be formally assessed, sizable Nassau Grouper populations exist elsewhere. FSA

protections are increasingly common, and Nassau Grouper recovery Caribbean-wide depends on

population responses to these protections. In the Cayman Islands, scientific monitoring following

temporary FSA protections bolstered the necessary political will to expand and make these protec-

tions permanent. We found that time series of in situ length data is an especially effective method

for assessing protected FSAs, and was even able to detect recruitment of strong year classes and

differences in growth between FSAs. The methods demonstrated here are useful for assessing FSAs
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and lend themselves to efforts aimed at managing sustainable reef fisheries.
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Chapter 4

3-dimensional advection, diffusion, and mortality of eggs and larvae dispersing from a

Nassau Grouper (Epinephelus striatus) spawning aggregation observed with a novel

plankton imaging system
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Abstract

Fisheries biologists’ quest to disentangle the roles of fishing from the environment often

centers on understanding recruitment, as it largely determines fluctuation in adult abundance.

Recruitment variability is driven by physical-biological processes that mediate the survival and

dispersal of egg and larval stages. In addition, the degree of self-recruitment and population

connectivity via larval dispersal is important to the population dynamics and spatial management of

fish with limited adult movement, e.g. tropical reef fish. For all of these reasons, understanding the

fate of eggs and larvae is a critical part of efforts to characterize population processes. Satellite-

tracked drifter releases and physical-biological models are frequently applied to study dispersal, but

their assumptions often go untested without direct field data of egg and larvae distributions. In this

study, we demonstrated the ability of a novel in situ plankton imaging system to observe the 3D

positions of individual eggs and larvae around drogued drifters. The egg and larvae images were

of sufficient resolution to clearly distinguish development stages. We then used these fine-scale

spatiotemporal data to statistically fit parameters of a 3-dimensional diffusion-mortality model for

two cohorts of Nassau Grouper eggs as they dispersed following spawning in 2017. Finally, we used

our estimates of diffusivity and mortality to predict the spread of eggs and larvae around previous

years’ drifter tracks in order to evaluate the possibility of self-recruitment. Our results confirm

that drogued drifters track eggs at least until hatching (23–26 hours), and suggest self-recruitment

as a possible mechanistic explanation for the strong 2011 year class of Nassau Grouper on Little

Cayman Island.

130



4.1 Introduction

Recruitment, i.e. survival from the egg stage to adult stage and entering the fishery, is

highly variable in most marine fish and thought to be the principal driver of natural variability

in adult abundance (Miller and Kendall, 2009; Hjort, 1914; Leggett and Deblois, 1994). This is

the case because, for fish that spawn in the water column, mortality is generally highest during

the egg stage and decreases as larvae grow and develop (Bailey and Houde, 1989; Peterson and

Wroblewski, 1984; Fuiman et al., 2015). Thus, small changes in mortality rates at these stages can

have disproportionate impacts on the adult population size. Understanding the mechanisms that

drive variability in recruitment is, therefore, important to explaining and predicting past and future

changes in adult numbers. Fisheries scientists have long known that differences in egg and larval

survival are key to recruitment variability (Hjort, 1914). Although many researchers have since

refined and expanded on Hjort’s hypotheses (Houde, 2008), evidence has mounted that mortality of

the early life history stages largely dictates recruitment variability and deserves research into its

causal mechanisms (Cushing, 1975).

Three important processes govern successful recruitment: larvae must eat enough prey, avoid

predation, and disperse to suitable habitat (Bailey and Houde, 1989). Disentangling the relative

importance of these processes is difficult because of the interactions between feeding, growth,

capability development, and mortality (Leggett and Deblois, 1994). Still, Bailey and Houde (1989)

concluded that predation was likely more important than starvation, and perhaps especially so in

tropical reef systems (Johannes, 1978). Much less is known about tropical reef fish recruitment and

its causal mechanisms than for temperate fish. For example, there are very few stock assessments

or stock–recruitment relationships for tropical reef fish (Szuwalski et al., 2015), and recruitment

hypotheses based on temperate ecosystems simply may not apply to the tropics (e.g. timing of spring

bloom and the match-mismatch hypothesis; Cushing, 1990). In addition to predation, dispersal is

considered to be particularly important to reef fish recruitment. Until the late 1990s, larval dispersal

was assumed to be long-range and determined by mean surface currents (e.g. Roberts, 1997). This
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paradigm has been convincingly overturned, however, by many studies demonstrating that reef fish

recruitment is often local (Jones et al., 1999; Cowen et al., 2000; Cowen, 2006; Swearer et al., 1999;

Thorrold et al., 2001; Jones, 2015; Jones et al., 2005). Work in the last decade has progressed to

explain mechanisms allowing self-recruitment, e.g. how reef fish can detect, orient to, and capably

swim towards home reefs (Gerlach et al., 2007; Leis et al., 2013; Leis, 2015; Staaterman et al., 2012;

Irisson et al., 2015; Atema et al., 2015; Kingsford et al., 2002). The next step in the progression is

to record the variability in physical and biological conditions and how they relate to recruitment

in the tropical reef fish, with the ultimate aim of predicting future recruitment in order to inform

appropriate management.

Dispersal, connectivity, and the degree of self-recruitment of fish populations are hugely

important to population dynamics and management (Strathmann et al., 2002; Fogarty and Bots-

ford, 2007; Cowen and Sponaugle, 2009). First, connectivity determines the appropriate scale of

management. If self-recruitment dominates, then the population size and growth rate are relatively

insensitive to the periodic arrival of external recruits. This simplifies management, as local protec-

tions will directly benefit local populations. If dispersal dominates, local actions have less effect

and population-scale impacts of fishing depend on the connectivity between locations. Second,

connectivity matters in the design and evaluation of marine reserves (Jennings, 2001). For example,

to determine if a reserve benefits a fishery, it is necessary to measure the extent of larval exchange

from the reserve to fished areas (Fogarty and Botsford, 2007).

Yet, it is difficult to directly estimate diffusion or mortality of fish eggs in the open ocean—

the entire egg distribution must be sampled, and physical transport must be accounted for (Helbig

and Pepin, 1998; Davis et al., 1991; McGurk, 1989; Gawarkiewicz et al., 2007). Researchers have

used many methods to quantify dispersal, reviewed by (Cowen and Sponaugle, 2009) and (Jones,

2015): drogued drifters (either long-range, satellite-tracked; Richardson (2005); or cheaper, short-

range GPS-tracked; Méndez-Jiménez et al. (2015); Johnson et al. (2003)), otolith microchemistry

(Thorrold et al., 2001), biophysical models (Miller, 2007; Cowen, 2006), and genetics (Taylor, 2003;
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Jackson et al., 2014). Drifters are a particularly attractive option to approximate the dispersal of eggs

and larvae for reef fish that form large fish spawning aggregations (FSAs), where all of the annual

reproductive output may be released over a few days and from a well-defined spatial location that is

consistent across years (Méndez-Jiménez et al., 2015; Colin, 2012, 1992; Heppell et al., 2009, 2011;

Cimino et al., 2018). The simplest biophysical models of dispersal are advection-diffusion-mortality

models, which typically assume constant diffusivity in each direction and do not include larval

behavior, mesoscale physical features, or complex coastlines (McGurk, 1989; Hill, 1991; Largier,

2003; Roberts, 1997; Siegel et al., 2003; Hill, 1990). In the last two decades, individual-based

coupled physical-biological models have included increasing realism, although they are often not

informed by direct field data (Miller, 2007; Cowen and Sponaugle, 2009; Gawarkiewicz et al., 2007).

Implicit in the use of drifters and biophysical models are that the eggs and larvae actually remain

with the drifters and simulated particles. This assumption of these commonly applied tools is rarely

tested using field observations of egg and larval concentrations. Models have taught us much about

fish egg and larval transport, but they are infrequently validated by in situ (Gawarkiewicz et al.,

2007).

The ultimate goal of this work is to understand the role of physical-biological processes

in determining recruitment and connectivity of tropical reef fish populations. In this study, we

demonstrate the ability of a novel in situ towed plankton imaging system to observe the 3D positions

of individual eggs and larvae. We then use this fine-scale spatiotemporal data to statistically fit

parameters of a 3-dimensional diffusion-mortality model of Nassau Grouper eggs as they dispersed

from their origin following spawning in 2017. Finally, we use our estimates of diffusivity and

mortality to predict the spread of eggs and larvae around previous years’ drifter tracks in order

to evaluate the possibility of self-recruitment. Our results confirm that drogued drifters track

eggs at least until hatching (23–26 hours), and suggest self-recruitment as a possible mechanistic

explanation for a previously observed strong year class of Nassau Grouper (Stock et al., in prep).
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4.2 Methods

Study species: Nassau Grouper

Nassau Grouper are ecologically, economically, and culturally important predatory reef

fish in the Caribbean (Sadovy and Eklund, 1999; Mumby, 2006; Stallings, 2008). They form

large (hundreds to tens of thousands), transient (6–8 days) fish spawning aggregations (FSAs)

that are highly predictable, typically following one or two full moons per year at a given location

(Whaylen et al., 2007; Smith, 1972; Whaylen et al., 2004; Sadovy and Eklund, 1999). The 2–4

days over which spawning occurs at these FSAs likely represents the total annual reproduction

for the species (Whaylen et al., 2007). FSAs are targeted by fishermen and easy to overharvest

even with simple fishing methods such as small skiffs and handlines (Smith, 1972; Sala et al.,

2001). Heavy fishing of these FSAs is a difficult management problem because population declines

are often masked by stable catch-per-unit-effort trends (i.e. hyperstability, Hilborn and Walters,

1992). As a result, Nassau Grouper have dramatically declined throughout their range and are

currently listed as Critically Endangered by the IUCN and Threatened under the United States’

Endangered Species Act (Sadovy and Eklund, 1999; NMFS, 2016; Sadovy et al., 2018). Several

nations have instituted protections for the species, but populations have failed to recover in many

places (Sadovy de Mitcheson and Colin, 2012). Recovery hinges upon successful spawning and

recruitment, yet little is known about the necessary conditions for this to occur or what happens to

the eggs and larvae after spawning.

Nassau Grouper early life history has been described by lab-reared collections of eggs at

FSAs or induced ovulation of captured females. Eggs are transparent, spherical, 0.86–1.02 mm

in diameter, neutrally buoyant at 32‰ salinity, and typically contain a single oil globule (Tucker

et al., 1991; Powell and Tucker, 1992; Waterhouse et al., in prepb). Time to hatching is temperature-

dependent and takes roughly 24–27 hours at 26 ◦C (Powell and Tucker, 1992; Watanabe et al.,

1995; Colin et al., 1987). Recently hatched larvae are unpigmented and slightly curved around
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their yolk-sac and (Powell and Tucker, 1992). At 3–4 days post hatch (dph), larvae begin feeding

and gain pigmentation in the eyes and caudal peduncle. By 5–7 dph, larvae exhaust their yolk and

oil reserves and will starve if unfed (Watanabe et al., 1995; Waterhouse et al., in prepb). Larval

swimming speed and endurance greatly increases after notochord flexion (Clark et al., 2005; Leis

et al., 2009), which occurs around 5–6.5 mm and 16–20 dph in Nassau Grouper (Powell and Tucker,

1992). The few measurements of swimming speed for postflexion Serranidae and Epinephelidae

larvae indicate that they can swim 25–35 cms−1 at settlement stage (Fisher et al., 2005; Leis et al.,

2009). Larvae transition from pelagic to juvenile habitat around 35–45 dph and 20–27 mm length,

with settlement possibly aided by onshore water movement during flood tides and storms (Colin

et al., 1997; Shenker et al., 1993). Nassau Grouper sexually mature and recruit to the spawning

population between 4–7 years old (Sadovy and Eklund, 1999).

The Nassau Grouper FSA off the west end of Little Cayman Island is the largest quanti-

tatively assessed FSA for the species (Sadovy et al., 2018). The population declined to roughly

1,500 individuals following heavy fishing in 2001–2001, but has since recovered in both numbers

and size structure. By the time of this study in 2016–2017, the FSA comprised 4,200–5,400 fish

(Waterhouse et al., in prepa). Acoustic tagging studies have found that adult Nassau Grouper on

Little Cayman and a neighboring island, Cayman Brac, remain on the island on which they are

tagged and do not cross the deep water between them (Semmens et al., 2007, 2009). Thus, the

observed population increase has been driven by recruitment and not by immigration of adults. A

length-based stock assessment found that recruitment has been highly variable with one particularly

strong year class spawned in 2011 that joined the FSA in 2017 (Stock et al., in prep). Although

undocumented, the possibility of Nassau Grouper larvae settling near the FSA where they were

spawned (i.e. self-recruitment) has long been hypothesized based on general circulation patterns

and observations of satellite-tracked drifters, both in the Cayman Islands and elsewhere (Colin et al.,

1987, 1997; Heppell et al., 2009, 2011).
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Study location

Nassau Grouper aggregate to spawn at the southwestern tip of the Little Cayman shelf (Figs.

4.1, 4.2). The shelf slopes very gradually to 30 m depth and then abruptly drops to over 500 m

(Kobara and Heyman, 2008). The benthic habitat is composed of alternating sand valleys and ridges

of hard and soft corals and sponges (Whaylen et al., 2004). During the day, Nassau Grouper form a

band along the shelf edge, with some individuals scattered nearby on the bottom. Spawning begins

shortly after sunset and lasts about one hour. Small groups of 10–15 individuals rapidly ascend and

release gametes between 20–30 m, then return to the bottom (Sadovy and Eklund, 1999). Prevailing

winds and currents are westward, and the FSA site is on the leeward side of the island. Currents at

the FSA site are complex, vary vertically, and range from slack to 3 knots (Whaylen et al., 2004).
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Figure 4.1: Satellite-tracked drifters released from the Little Cayman FSA (black diamond) on nights of
spawning in 2016 (red) and 2017 (blue). Subsequent nights of spawning in a given year are distinguished
by line type (2 in 2016, 4 in 2017). A) After 40 days, roughly the end of the larval duration period, three
drifters had entered the Gulf of Mexico while the other ten remained in the northwest Caribbean. B)
After 20 days, when larvae complete flexion, the two drifters released on Feb 14, 2017 were within 15–20
km of the Cuban archipelago Jardines de la Reina (top-right, blue solid lines). C) After 4 days, at first
feeding, there was substantial variability in drifter location between and within years (west, north, east, and
grounded on Little Cayman). All releases were standard Surface Velocity Program (SVP) drifters drogued
at 15 m depth.
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Figure 4.2: 20-hour drifter tracks from sampled spawning nights: Feb 25, 2016 (dashed red), Feb 26, 2016
(solid red), Feb 14, 2017 (dashed blue), and Feb 15, 2017 (solid blue). All five drifters released on Feb 15,
2017 grounded on the north side of Little Cayman Island within 20 hours. Light grey indicates the Little
Cayman shelf (0–30 m depth).

Drifter deployments

On four nights of spawning in 2016 (Feb 25, 26) and 2017 (Feb 14, 15), we released standard

drogued surface velocity program (SVP) drifters to track currents at 15 m depth (Pacific Gyre, Inc.

and Global Drifter Program). On Feb 14, 2017, two drifters were released near the end of the

evening’s spawning. On Feb 15, 2017, we released five drifters staggered throughout the hour of

spawning. Divers signaled to the boat when and where spawning was occuring by sending a float

to the surface. The drifters served as visual references for sampling, and we affixed strobes (ACR

Firefly PRO SOLAS) to the drifter floats to enable visual tracking at night.

Plankton imaging systems

We sampled the concentration of eggs around the drifters with two different in situ towed

plankton imaging systems in 2016 and 2017, both based on the Scripps Plankton Camera (SPC;
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Jaffe, 2016; Roberts et al., 2014). The SPC uses darkfield illumination and is composed of two

coupled pressure housings. One holds a telecentric imaging lens, camera, computer, and interface

electronics. The second holds a set of high intensity LED strobes and illumination optics. The

onboard computer controls image acquisition, processing, and storage. Raw images are segmented

into regions of interest (ROIs) in real-time, and only these ROIs are saved. Hereafter, ROIs will be

referred to as images. Because these ROIs were saved but not collated or summarized in real-time,

we attempted to survey the egg patch by towing the imaging systems along alternating 1–2 km

transects perpendicular and parallel to the drifter trajectories. In both years we used the Cayman

Islands Department of the Environment R/V Seakeeper (46 foot Newton) to tow the imaging

systems.

In 2016 we used the ‘NetCam’, consisting of a plankton net (0.5 m diameter, 500 µm mesh)

with two SPCs attached on the cod end (Fig. 4.3a; Jaffe, 2016). The two SPCs each imaged

17.3 mL per frame and captured 8 frames s−1. Assuming the plankton net filtration efficiency was

close to 100% (UNESCO, 1968), we calculated that the net concentrated plankton in the images by

a factor of 30.9 by taking the ratio of the mouth area to the cod end area (i.e., 252/4.52 = 30.9). The

overall sampling rate was 8.55 Ls−1. The effective pixel size was 13.8 µm, constant throughout the

field of view because the SPCs are telecentric. The NetCam was deployed with a fixed amount of

line, allowing for only crude depth control by varying the towing speed. To account for the effect of

tow speed on volume filtered per second, we divided by the real-time flow rate (Valeport Model 106

Current Meter) when calculating organism densities. We towed the NetCam around drifters released

during spawning on Feb 25, 2016 for 4 hours. We cut sampling short as sea conditions worsened.

In 2017 we used a next-generation SPC microscope with much larger imaging volume,

627 mL, but lower resolution, 22.6 µm pixels. The frame rate was 7 s−1, for a volume sampling rate

of 4.4 Ls−1. We removed the plankton net and attached the SPC to an undulating towed vehicle

(AcrobatTM, Sea Sciences, Inc.) and CTD (SBE 49, Sea-Bird Scientific), hereafter the ‘TowCam’,

to better sample the vertical distribution of Nassau Grouper eggs through time (Fig. 4.3b). We
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Figure 4.3: In situ plankton imaging systems used to measure Nassau Grouper egg concentration. A) In
2016, the ‘NetCam’ featured two Scripps Plankton Camera (SPC) microscopes in a cross pattern, each
with 17.3 mL imaging volumes at the center of the cross. We attached a plankton net (NET) to concentrate
plankton in the microscope images. Photo courtesy of Tammi Warrender. B) In 2017, the ‘TowCam’ used
a next-generation SPC microscope with larger imaging volume and lower resolution. We attached the
SPC to an undulating towed vehicle (ACRO, AcrobatTM, Sea Sciences, Inc.) and CTD to measure egg
concentration, temperature, and salinity in three dimensions.
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towed the TowCam at 4–5 knots because vertical control was best at that speed. On Feb 14, 2017 we

undulated the TowCam between 5–30 m depth for the first 6 hours at roughly 3 cycles km−1, and

switched to 1–30 m undulations after 6 hours. Vertical sampling on Feb 15, 2017 was complicated

by the drifters initially moving north and remaining over the shelf (Figs. 4.2 and 4.13). To avoid

hitting the reef (20–30 m depth), we undulated the TowCam at 2–10 m until the drifters moved off

the shelf (hours 0–1.5), and then switched to the intended tow profile (5–30 m initially, then 2–30 at

7 hours). Around 14.5 hours when three of the drifters grounded on the reef, we shifted to sampling

along the shelf edge at 3–15 m depths. The two remaining drifters became widely separated, and we

sampled around the drifter that entered Bloody Bay during hours 30–36 post-spawning (Fig. 4.13).

Plankton sample collection

To groundtruth the in situ microscope images, we collected plankton samples using a variety

of methods. While sampling with the NetCam on Feb 25, 2016, we towed a plankton net (30 cm

diameter, 333 µm mesh) obliquely for 5 minutes starting at 17 m depth, centered on the drifters,

at 2 and 3 hours post spawning. We sampled around the drifter released the subsequent night

of spawning, Feb 26, 2016, with a bongo net (66 cm diameter, 200 µm mesh) approximately 20

and 40 hours after spawning. On nights of TowCam sampling in 2017, divers collected Nassau

Grouper eggs by hand-towing a plankton net through the spawn cloud. These eggs were raised

to hatch in aquaria at ambient temperature in filtered seawater to generate an image sequence of

egg development. Finally, divers collected eggs from individual Nassau Grouper spawning bursts

roughly 15–20 seconds after gamete release using plastic zipper bags in 2014, 2016, and 2017.

All plankton samples were split, half preserved in 2–5% formalin for visual analysis and

half in 95% ethanol for genetic analysis. We sorted fish eggs in formalin-preserved samples, took

photos under a dissecting microscope (Zeiss Stemi 2000-C, Cannon EOS Rebel T3), and measured

egg diameters using ImageJ (Schneider et al., 2012), using a stage calibration slide to set the scale.

We selected eight individual eggs from the ethanol-preserved samples covering a range of diameters
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(0.56–1.00 mm) and identified them to species using DNA barcoding following the methods in

Harada et al. (2015).

Image classification

The NetCam deployment on 2016 produced 49,904 images, which we manually classified

using a custom MATLAB graphical user interface. The TowCam deployments in 2017 generated

many more images (238,184), so we manually classified a subset and then trained a machine

learning algorithm to predict plankton classes for the remaining images. We manually verified all

of the algorithm-classified fish egg images and estimated the false positive rate. To estimate the

false negative rate (i.e. true fish eggs missed by the algorithm), we manually identified fish eggs in

a random sample of 20,000 images. The false negative rate is then the number of false negatives

(i.e. images identified as fish eggs manually but not by the algorithm) divided by the number of

true positives (total images identified as fish eggs manually). Since yolk-sac larvae were rare in the

image dataset, we manual identified all images in the sampling period with possible yolk-sac larvae,

hours 30–36 after spawning on Feb 15, 2017.

3-dimensional advection-diffusion-mortality model

We estimated horizontal diffusivity and mortality by fitting the Nassau Grouper egg concen-

tration data (counts s−1 = counts [4.4L]−1) from the two 2017 cohorts to a simple 3-dimensional

model of advection, diffusion, and mortality. We did not fit the model to the NetCam data from

2016 because sampling was only conducted for 4 hours.

Assuming that the drifters captured the horizontal advection and there was no vertical current

shear, we subtracted the locations of the drifter centroid from the egg concentration locations and

removed advective terms. We assumed continuity (i.e. seawater was incompressible), constant

mortality in space and time, and separability of vertical and horizontal diffusion (i.e. vertical

diffusion did not vary horizontally, and horizontal diffusion did not vary vertically). These assump-
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tions allowed us to model the egg concentration at depth z and time t, C(z, t), independently from

mortality, µ, and the concentration in horizontal space, C(x,y, t), and then multiply the results to get

the concentration at any point in 3-dimensional space and time:

C(x,y,z, t) =C(z, t)×C(x,y, t)

Vertical diffusion

To model vertical diffusion, we used a particle-tracking (random-walk) model based on

Tanaka and Franks (2008). The vertical diffusivity, Kz(z), is a function of wind speed, U , and decays

exponentially with depth, z:

Kz(z) = [K1 +K2U2]e−z/zMLD

where K1 is the background diffusivity at the surface, K2 scales the effect of wind speed on mixing,

and zMLD is the mixed layer (i.e. pycnocline) depth. This formulation is appropriate when there is

weak vertical stratification (i.e. buoyancy frequency is ∼constant), as in the surface mixed layer.

The wind speed and vertical stratification were relatively constant and weak during our experiment

(U = 2.2 m s-1, Fig. 4.9). Therefore we reduced Eq. 1 to:

Kz = K0 e−z/zMLD ,

which reduced the number of parameters by one. Ordinarily the initial condition does not matter

much because the vertical distribution rapidly reaches equilibrium (in a few hours). However,

a substantial portion of our observations came before equilibrium. We set the initial particle

distribution for both cohorts as N (µ = 26.4, σ = 3) to match the observed egg distribution of cohort

1 in the first hour, because we were unable to sample cohort 2 below 10 m. We simulated 10,000
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particles, updating depths at time steps, ∆t = 10s, according to:

zn+1 = zn +
∂Kz(zn)

∂z
∆t +R

[
2Kz(zn +

1
2

∂Kz
∂z ∆t)

r

]1/2

+ws∆t

where R is a random process with mean zero and variance r, and ws is the egg floating speed. Fol-

lowing Tanaka and Franks (2008) and Ross and Sharples (2004), we used r = 1/3, R∼Unif(−1,1),

and a reflecting boundary condition at the surface (i.e. a particle that diffuses a distance z above 0 m

is placed at z m).

We used a floating speed of ws =−0.00169ms−1 based on Eq. 1 in Sundby (1983), average

seawater properties measured during the experiment at 15 m depth, and egg salinity at neutral

buoyancy of 32‰ (Tucker et al., 1991). This floating speed is close to the ws =−0.00183ms−1

value cited for the congeneric E. fulva (Colin, 1992). Following Sundby (1983), we gave the

particles a range of floating speeds to account for individual egg differences in density and diameter,

ws ∼N (−0.000169, σw).

The unknown parameters in the above vertical diffusion model were diffusivity at the surface

(K0), pycnocline depth (zMLD), and standard deviation of egg floating speed (σw). For each cohort

in 2017, we ran the particle-tracking model over combinations of the parameters ranging from: K0

(0.01–0.08), zMLD (60–100), and σw (0.00015–0.00045). We took the 2D kernel density estimate

of the particle distributions to be Ĉ(z, t), the predicted egg concentration at depth z and time t.

We fit negative binomial generalized linear models (GLMs) of Ĉ(z, t) to the observed egg data,

Yi ∼ NB
(

µ = eα+βĈ(zi,ti)
)

, and selected the best model based on AIC. We used a negative binomial

distribution because the egg counts showed evidence of overdispersion (positive slope in Ord

plots, Fig. 4.4; Ord, 1967), and the negative binomial was supported by AIC over other possible

distributions for count data (Table 4.1).
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Figure 4.4: Ord plots of egg count data from cohorts 1 (A) and 2 (B). Positive slopes indicate overdispersion
and that the negative binomial distribution is appropriate, while a horizontal line would indicate a Poisson.

Table 4.1: AIC table for considered distributions for the egg count data. The negative binomial distribution
had the lowest AIC for both cohort 1 (AIC1) and cohort 2 (AIC2), indicating that overdispersion was more
important than zero-inflation.

Model AIC1 ∆AIC1 AIC2 ∆AIC2 df

Poisson 8061.761 328.1 9889.557 975.4 4
Zero-inflated Poisson 7780.313 46.7 9000.516 86.4 5
Negative Binomial 7733.615 0.0 8914.134 0.0 5
Zero-inflated Negative Binomial 7735.630 2.0 8916.129 2.0 6
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Horizontal diffusion and mortality

We allowed for anisotropic horizontal diffusivity, i.e. Kx 6= Ky, and assumed that diffusivity

was constant in each direction following Fick’s Law, where the diffusive flux, Jx, is proportional to

the concentration gradient, Jx = Kx
∂C
∂x (Okubo and Levin, 2010). Alternative models of diffusion

may be more appropriate in general, but assuming Fickian diffusion was justifiable here because

the size of the egg patch varied much less than one order of magnitude over the course of our

observations (i.e. 500–1500 m; Okubo and Levin, 2010). Assuming an instantaneous point release

at 19:00 local time, the horizontal egg concentration, C(x,y, t), is given by McGurk (1989) and Hill

(1991):

C(x,y, t) =
1

4πt
√

KxKy
e

(
− x2

4Kxt−
y2

4Kyt−µt
)

However, instead of assuming eggs are evenly distributed throughout a water column of thickness

H as in McGurk (1989), we multiply the horizontal concentration, C(x,y, t), by the vertical concen-

tration, C(z, t), to get the egg concentration at any given x, y, z, and t, C(x,y,z, t). We then fit the

egg count data for observation i, Y (xi,yi,zi, ti), with a negative binomial GLM using C(x,y,z, t) as

the expected mean:

Y (xi,yi,zi, ti)∼ NB
(

µ = eβC(xi,yi,zi,ti)
)

We fit the model using maximum likelihood via the ‘bbmle’ package in R (v1.0.20; Bolker, 2017),

and calculated confidence intervals for the parameters Kx, Ky, and µ using likelihood profiles. In

addition to the model described above, we fit all nested submodels and evaluated the importance of

including each parameter using AIC.

146



4.3 Results

Drifter trajectories

Drifters released from the Little Cayman FSA on nights of spawning exhibited substantial

variability, both between years and nights within a given year (Figs. 4.1, 4.2). On one night in 2016

the drifters moved swiftly west, coming close to Grand Cayman around 3 days after spawning (Fig.

4.1c) before entering the Yucatan Current (Fig. 4.1a). On the following spawning night in 2016 the

lone released drifter made a slow loop to the north, returned within 2 km of the FSA 20 hours after

spawning (Fig. 4.2), and was still within 20 km of the FSA after 4 days (Fig. 4.1c).

The two drifters released on Feb 14, 2017 moved north and then east, coming within 15–20

km of the Cuban archipelago Jardines de la Reina after 20 days, when larvae complete flexion and

become increasingly capable swimmers (Fig. 4.1b). All five drifters from Feb 15, 2017 grounded on

the north side of Little Cayman within 20 hours (Figs. 4.2 and 4.13). Three of these had grounded

by 15 hours on the protrusion marking the east end of Bloody Bay, while one continued east and the

other entered Bloody Bay to the south (Figs. 4.2 and 4.13).

Lab-reared eggs

Of the eggs collected from spawning on Feb 14–15, 2017 and raised in aquaria, roughly

50% hatched between 23–26 hours post fertilization (hpf) and all eggs hatched by 28 hpf (Fig. 4.5).
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Figure 4.5: Hatching time of lab-reared Nassau Grouper eggs collected from spawning on Feb 14–15,
2017.

In situ microscope images

Of the 49,904 NetCam images from Feb 25, 2016, we manually identified 1,331 as fish eggs.

Of the 238,184 TowCam images from Feb 14–15, 2017, the algorithm predicted 3,153 fish eggs.

Manual verification identified 414 of these as false positives, which amounts to a false positive rate

of 13.1%. Two of the images contained two overlapping eggs. Thus, the total count of fish eggs

from 2017 sampling was 2,741. The false negative test detected one missed fish egg out of 195 true

positives in 20,000 images, for a false negative rate of 0.51%. Manual identification of the images

from cohort 2 in hours 30–36 revealed 47 yolk-sac larvae (Fig. 4.7n–r).

All methods indicated that egg diameter between 0.87–1.20 mm was a reliable metric to

classify in situ fish egg images as Nassau Grouper eggs (Fig. 4.6). Of the 2,741 total fish egg images

in 2017, 2,264 (82.6 %) were between 0.87–1.20 mm and classified as Nassau Grouper. None of

the 89 fish eggs detected in sampling 30–36 hours post-spawning were 0.87–1.20 mm, when all

Nassau Grouper eggs should have hatched into yolk-sac larvae.
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Figure 4.6: Diameters of fish eggs sampled near drifters using different methods: A) in situ NetCam
images taken 1–5 hours after spawning on Feb 25, 2016 (n = 1331, 42% NG); B) in situ TowCam images
taken 0–36 hours after spawning Feb 14–16, 2017 (n = 2741, 83% NG); C) plankton tows taken 3 and 4
hours after spawning Feb 25, 2016 (n = 1386, 17% NG); D) bongo net tows taken 20 and 40 hours after
spawning Feb 26, 2016 (n = 1604, 88% NG); E) diver-collected samples of Nassau Grouper spawning
bursts taken 10–30 seconds after spawning 2014–2017 (n = 3317, 99% NG); F) Eggs from C) identified to
species using DNA barcoding (n = 8, 25% NG). Eggs of unknown species are shown in grey (A–D); eggs
of known species are shown in color (E, F). All methods indicated that egg diameter between 0.87–1.2 mm
(vertical dashed lines) was a reliable metric to classify fish egg microscope images as Nassau Grouper (=
NG) eggs.
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TowCam images were of sufficient resolution to distinguish Nassau Grouper egg and larval

development stages (Fig. 4.7), following Kimmel et al. (1995). Egg and larval development in situ

aligned well with the sequence of images of lab-reared eggs and larvae.

Of the 2,264 Nassau Grouper egg images, 10 (0.4%) showed possible predation by pelagic

invertebrate zooplankton. Of these, 2 were of medusae, 1 was a polychaete, and 7 were radiolaria,

likely spinose planktonic foraminifera (Fig. 4.8).
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Figure 4.8: In situ microscope images of possible predation on Nassau Grouper eggs by pelagic invertebrate
zooplankton. A, B) Medusae. C) Polychaete. D–J) Rhizaria, likely spinose planktonic foraminifera. Pixels
in TowCam images are 22.6 µm and eggs are ∼ 0.95 mm in diameter (Fig. 4.6e).
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Cohort #1: Feb 14, 2017

The two drifters released at the Little Cayman FSA during spawning on Feb 14, 2017

traveled 18.3 km NNE during the 14.5 hours of sampling (average velocity 0.35 ms−1, Fig. 4.2).

The initial (first hour) vertical distribution of Nassau Grouper eggs was approximately normal with

mean depth 26.4 m (standard deviation 2.7 m). The upper 30 m of the water column was weakly

stratified (∆ρ = 0.2kgm−3) with no pycnocline throughout sampling (Fig. 4.9).

The best fit (lowest AIC) model of vertical diffusion produced reasonable predictions of

relative egg concentration and used K0 = 0.05m2 s−1, zMLD = 60m, and σw = 0.00045ms−1 (Fig.

4.10). The model predicted that eggs spawned at 26.4 m were spread throughout 0–30 m depths 1–3

hours after spawning, and accumulated in the upper 5 m beyond 3 hours after spawning.

Horizontal diffusion was clearly noticeable in the egg distribution over the 14.5 hours of

sampling, as the egg patch increased in horizontal extent and the concentration at the center of the

patch decreased through time (Fig. 4.11).

The horizontal diffusivity and mortality parameters were estimable in the 3D diffusion-

mortality model and nested submodels (Table 4.2). The full model clearly fit the best (100% Akaike

weight), and estimated horizontal diffusivity to be Kx = 14900 (95% CI: 12000–19000) m2 h−1 = 4.1

(95% CI: 3.3–5.3) m2 s−1 in the x-direction and Ky = 49100 (95% CI: 40800–60500) m2 h−1 = 13.6

(95% CI: 11.3–16.8) m2 s−1 in the y-direction. Instantaneous mortality was estimated as 0.172 h−1,

which implies that daily mortality was 1− e−0.172×24 = 0.984 d−1 and 1.6% of the eggs survive

to hatching at 24 hours. Estimating isotropic vs. anisotropic horizontal diffusion (i.e. Kx = Ky vs.

Kx 6= Ky) did not affect the mortality estimates (e.g., compare Models 1 vs. 2 and 3 vs. 5 in Table

4.2). However, including or excluding vertical or (especially) horizontal diffusion did impact the

mortality estimates. The 3D diffusion-mortality model fit the observed data well and explained

24.2% of the deviance (Fig. 4.12).
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Figure 4.9: Vertical density profile and distribution of Nassau Grouper eggs along the track of the drifter
centroid (blue dashed line in Fig. 4.2) following spawning for cohort 1 (Feb 14, 2017). Depths 0–5 m were
not sampled for the first 6 hours. The upper 30 m of the water column was weakly stratified with no clear
pycnocline. The drifters traveled 18.3 km from the FSA over 14.5 hours of sampling.

Figure 4.10: Best fit vertical diffusion model for Nassau Grouper eggs following spawning for cohort 1
(Feb 14, 2017). Predicted relative concentration is shown in color and contour lines. Black points indicate
the time and depth of TowCam microscope images classified as Nassau Grouper eggs. The initial particle
distribution was input as N (µ = 26.4, σ = 3) to match the observed egg distribution in the first hour.
Parameter values were K0 = 0.05m2 s−1, zMLD = 60m, and σw = 0.00045ms−1. Grey transparency shows
depth-times that were not sampled (0–5 m in hours 0–6).
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Figure 4.11: Horizontal diffusion of Nassau Grouper eggs in the 15 hours following cohort 1 spawning
(Feb 14, 2017). Points are north-south (x-y) distances of individual Nassau Grouper eggs from the
egg centroid (weighted average). Color and contour lines indicate 2D kernel density estimate of egg
concentration within 2-hour time intervals.
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Figure 4.12: Predicted egg concentrations from the best fit 3D diffusion-mortality model versus observed
Nassau Grouper egg counts (s−1 for cohort 1 (Feb 14, 2017). Violin plots show the distribution of predicted
egg concentrations (Ĉ(x,y,z, t)), points show the median, and lines show the interquartile range (25%–75%).
The diffusion-mortality model predictions explained 24.2% of the observed deviance in a generalized
linear model, Y∼ NB(µ = eα+βĈ(x,y,z,t)).
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Cohort #2: Feb 15, 2017

Unlike previous drifter releases at the Little Cayman FSA, the five drifters released during

spawning on Feb 15, 2017 (cohort 2) all grounded on the Little Cayman shelf within 20 hours (Fig.

4.2). Three of the drifters grounded on a protrusion of the shelf on the northeast side of Bloody Bay,

one drifter continued approximately 5 km east along the north edge of the shelf before grounding,

and the other drifter entered Bloody Bay before eventually grounding (Fig. 4.13). As was the case

during the previous evening, the upper 30 m of the water column was weakly stratified at the FSA

(0.15 psu difference between 30 m and the surface), but became more well-mixed as the drifters

turned east and hit the Little Cayman shelf (Fig. 4.14). The water column east of Bloody Bay was

weakly stratified in a manner similar to the area near the FSA.

Just as with cohort 1, the horizontal diffusion of the cohort 2 egg patch was clearly noticeable

over the 20 hours of sampling (Fig. 4.15). The horizontal extent of the egg patch increased from

hours 0–5 to the hours 5–10, but did not change much from hours 5–10 to 10–15. The egg patch

greatly increased in size when it hit the Little Cayman shelf around 15 hours after spawning (Fig.

4.15).

The best fit vertical diffusion model used K0 = 0.08m2 s−1, zMLD = 100m, and σw =

0.00035ms−1. The model predictions were similar to those for cohort 1; the eggs spread throughout

0–30 m depth shortly (1 hour) after spawning and then reached an equilibrium distribution with

highest concentrations just below the surface (2–3 m depth), decreasing with depth (Fig. 4.16).

Vertical diffusivity, K0, was estimated slightly higher than for cohort 1, which meant the eggs

reached the surface slightly earlier.

Since the horizontal diffusivity appeared to abruptly increase when the drifters hit the shelf

at 15 hours (Figs. 4.15, 4.13), we only fit the diffusion-mortality models to the first 15 hours of data.

The model with lowest AIC was Model 8, which included isotropic horizontal diffusivity (Kx = Ky)

and vertical diffusivity (Kz), but not mortality (µ, Table 4.3). Unlike for cohort 1, however, there

was no clear best model and Models 4, 2, and 1 received non-trivial Akaike weights (20.1%, 19.5%,
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Figure 4.13: Drifter grounding locations (triangles) and horizontal distribution of Nassau Grouper eggs
and yolk-sac larvae following cohort 2 spawning (Feb 15, 2017). The starting point for eggs and drifters
was the FSA off the west end of Little Cayman, marked by *. Nassau Grouper egg counts (s−1, circles)
were converted to concentration (eggs L−1, circle size) based on the TowCam imaging volume and frame
rate. Circle color highlights the increased horizontal spread of eggs observed after (hours 15–22, red)
versus before (hours 0–15, grey) the drifters grounded (Fig. 4.15). Locations of yolk-sac larvae 30–36
hours post-spawning are shown as blue squares. Sampling tracks are shown as light grey lines.
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Figure 4.14: Vertical salinity profile around drifters released during spawning of cohort 2 (Feb 15, 2017).
The upper 30 m of the water column was initially weakly stratified at the FSA (*) and became more
well-mixed as the drifters neared the Little Cayman shelf. Triangles show approximate drifter grounding
locations.

Figure 4.15: Horizontal diffusion of Nassau Grouper eggs in the 20 hours following spawning on Feb
15, 2017 (cohort 2). Points are north-south (x-y) distances of individual Nassau Grouper eggs from the
egg centroid (weighted average). Color and contour lines indicate 2D kernel density estimate of egg
concentration within 5-hour time intervals.
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Figure 4.16: Best fit vertical diffusion model for Nassau Grouper eggs following spawning on Feb 15,
2017 (cohort 2). Predicted relative egg concentration is shown as color and contour lines. Black points
indicate the time and depth of TowCam microscope images classified as Nassau Grouper eggs. Grey
transparency shows depth-times that were not sampled (10–30 m in hours 0–1.5, 0–5 m in hours 1.5–7,
and 15–30 m after hour 14.5). The initial particle distribution was input as N (µ = 26.4, σ = 3) to match
the observed initial egg distribution of cohort 1. The model predicted that eggs spread throughout 0–30 m
depths 1–3 hours after spawning, and accumulated in the upper 5 m beyond 3 hours after spawning.

and 7.4% respectively). Horizontal diffusivity estimates were higher than for cohort 1, and this

was consistent across models (Model 8: Kx = Ky = 60500m2 h−1; Model 4: Kx = 65400m2 h−1,

Ky = 60100m2 h−1). Mortality was only estimable by Models 6 and 11, which did not include

horizontal diffusion and were not supported by AIC. Nevertheless, the instantaneous mortality

estimates of 0.144 and 0.122 h−1 imply 3.2 and 5.3% daily survival. The best model (#8) appeared

to fit the observed data well but only explained 11.1% of the deviance (Fig. 4.17).
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Figure 4.17: Predicted egg concentrations from the best fit diffusion-mortality model versus observed
Nassau Grouper egg counts (s−1) for cohort 2 (Feb 15, 2017). The best fit model (#8) did not include
anisotropic diffusion or mortality. Violin plots show the distribution of predicted egg concentrations
(Ĉ(x,y,z, t)), points show the median, and lines show the interquartile range (25%–75%). The diffusion-
mortality model predictions explained 11.1% of the observed deviance in a generalized linear model,
Y∼ NB(µ = eα+βĈ(x,y,z,t)).
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4.4 Discussion

This study demonstrates how technological advances can further our understanding of the

physical-biological processes that determine recruitment and connectivity of tropical reef fish

populations. We developed a novel in situ towed plankton imaging system and demonstrated its

ability to observe 3-dimensional positions of individual zooplankton, fish eggs, and larvae (Figs.

4.7 and 4.8). We measured the 3D concentration of two cohorts of Nassau Grouper eggs for over 15

hours as they dispersed from the Little Cayman FSA (Figs. 4.9, 4.11, and 4.13). Drifters tracking

the second cohort ran aground on the island and we followed this cohort beyond hatching, observing

yolk-sac larvae 31–35 hours after spawning (Figs. 4.13 and 4.7). Our plankton imaging system

had sufficient resolution to document egg development through the cleavage, blastula, gastrula, and

segmentation periods (Fig. 4.7). We generated sufficient fine-scale egg position data to estimate

diffusivity and mortality simultaneously using a 3D diffusion-mortality model (Tables 4.2 and 4.3).

We are not aware of any studies of egg and larval dispersal that have fit an advection-

diffusion-mortality model to 3-dimensional data. Our unique dataset allowed us to evaluate the

effect of commonly-made simplifying assumptions. For example, over the time and space scales

considered here, it was not important to consider anisotropic horizontal diffusivity (i.e. estimate

Kx 6= Ky separately instead of assuming Kx = Ky); the mortality estimates were nearly identical (e.g.

models 1 vs. 2 and 3 vs. 5 in Table 4.2). Neglecting the vertical egg distribution (i.e. assuming eggs

are distributed evenly in the water column and only considering Kx, Ky, and µ) only slightly changed

the mortality rate estimates, from 0.172 h−1 to 0.166 h−1 (models 1 vs. 3 in Table 4.2); this small

difference is well within the 95% confidence intervals. There was a much larger effect of neglecting

horizontal diffusion (i.e. including only Kz and µ, models 6 and 11 in Table 4.2). Similarly, we can

evaluate the effect of excluding mortality on the estimates of horizontal diffusivity (models 1 vs. 4

in Table 4.2). As expected, the model that does not include mortality compensates by substantially

increasing diffusivity, 43% in the x-direction and 83% in the y-direction. In contrast to cohort 1, we

were not able to simultaneously estimate diffusivity and mortality for cohort 2 (Table 4.3), when our
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sampling was complicated by the egg patch staying over and returning to the shelf (Figs. 4.13 and

4.16). This suggests that either i) the simple diffusion-mortality model centered on drifter tracks

less adequately describes the more complex nearshore physical oceanography, or ii) the model

was adequate but simply not estimable without observations over the full depth range of the eggs.

Taken together, these results illustrate the importance of considering dispersal as a problem in three

dimensions, even if one is primarily interested in mortality or diffusion in one dimension.

Field estimates of fish egg mortality are wildly variable, and we are not aware of any for

tropical reef fish. Bunn et al. (2000) report 48 instantaneous daily mortality rates, all from temperate

species, that range from 0.02–3.64 d−1 (mean 0.516). Our estimated daily mortality rate for cohort

1, 0.984 d−1, is both well above this average and well within this range. Pepin (1991) showed that

fish egg mortality increases substantially with increasing temperature across 18 species, although all

species considered that spawn in waters above 20 ◦C were clupeoids. The expected daily mortality

at 27 ◦C, the temperature observed during TowCam sampling, using Eqn. 9 in Pepin (1991) is

0.03e0.18×27 = 3.87 d−1. Thus, our estimate of Nassau Grouper egg mortality is within the reported

range for pelagic fish eggs, above the average for temperate species, but below the expectation

taking temperature into account.

The horizontal diffusivities estimated here (4–13 m2 s−1) are within the range predicted by

Okubo (1971) given the observed patch size (3
√

2σX σY = 300–1500 m), albeit towards the upper

end. For comparison, McGurk (1989) and Davis et al. (1991) estimated slightly lower horizontal

diffusivities (1–5.5 m2 s−1) at slightly larger spatial scales (ca. 10 km) using advection-diffusion-

mortality models applied to fish larvae. The higher horizontal diffusivity observed in our study may

be the result of vertical current shear, especially during the initial dispersal when the egg patch is

near, or over, the Little Cayman shelf.

The biological parameter estimates from the vertical diffusion model, egg floating speed

(ws) and its standard deviation (σw), should apply to future studies considering the diffusion of fish

eggs from FSAs at other locations, or different years at this location. In contrast, estimates of the
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physical parameters (vertical diffusivity, horizontal diffusivity, pycnocline depth) and mortality may

not represent average values or be broadly applicable. Notably, the diffusivity estimates presented

here are likely lower than Nassau Grouper eggs typically encounter in the waters surrounding Little

Cayman. The wind speed (2 m s-1) and sea state (< 0.5 m, Beaufort 2) were anamolously calm

during the TowCam deployment on Feb 14–15, 2017. Conditions during Nassau Grouper spawning

off Little Cayman are generally between Beaufort 3–5, as in the NetCam deployment on Feb 25,

2016. At higher wind speeds, and therefore higher vertical diffusivity, the Tanaka and Franks (2008)

model predicts eggs would be less accumulated at the surface and more evenly distributed with

depth. The horizontal diffusion model did not include a direct effect of wind speed, but horizontal

diffusivity is also expected to be higher in rougher seas. We note, however, that recruitment of

long-lived reef fish such as Nassau Grouper can be highly variable and occur in sporadic pulses

(Stock et al., in prep). With this in mind, the notion of an ‘average recruitment event’ may make

little sense, and it may be more relevant to characterize the variability of the physical-biological

processes governing recruitment. This may be true more generally, beyond long-lived tropical reef

fish. For example, McGurk (1989) found 3–6-fold differences in horizontal diffusivity and 8-fold

differences in mortality between two cohorts of Pacific herring larvae.

With the above caveats in mind, we can use the estimated horizontal diffusivities and

mortality rate to predict the spread of eggs and yolk-sac larvae around drifters released in previous

or future years from the Little Cayman FSA. This is a useful exercise because releasing drifters is

inexpensive and takes little time, and can therefore be done much more frequently than following

the patch of spawned eggs for 24 hours. One year of interest is 2011, when an extremely strong

year class was spawned (7× average; Stock et al., in prep), and we do not know if the fish that

recruited to the Little Cayman FSA were spawned on Little Cayman (i.e. self-recruited). However,

we released drifters on the two nights of observed spawning in 2011, Feb 24–25, and they remained

within 20 km of the FSA during the first 4–5 days. We calculated that there were roughly 4.2

(3.4–5.2) billion eggs spawned by the Little Cayman FSA in 2011, assuming a sex ratio of 1:1
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and multiplying numbers-at-length (Waterhouse et al., in prepa; Stock et al., in prep) by fecundity-

at-length (Carter et al., 1994). We then used the diffusivity and mortality estimates from cohort

1 in 2017 to calculate the expected concentration of larvae around the drifters. Note that using

the diffusivities and mortality estimated from 2017 is conservative for three reasons: sea state

was calmer in 2017 than 2011, the 2017 diffusivity estimates were from shorter time and length

scales (diffusivity increases with scale; Okubo, 1971), and the 2017 mortality estimate was from

the egg stage (mortality decreases with development and size; Bailey and Houde, 1989). The

results showed that by Feb 29 (5 days after spawning on Feb 24, 4 days after spawning on Feb 25),

non-trivial concentrations of passive larvae would be dispersed to Little Cayman reefs (Fig. 4.18).

Recognizing that we made many oversimplifications in this calculation, these results nonetheless

provide a compelling mechanistic explanation for the strong 2011 year class on Little Cayman:

favorable currents that allowed for self-recruitment.

Beyond the diffusion-mortality model, the observation that all five drifters released during

spawning on Feb 15, 2017 grounded on the reef is noteworthy. The current paradigm of reef fish

recruitment does not make a clear prediction of the fate of pelagic eggs immediately returning to

the reef before hatching. Instead, it seeks to explain the more typical observation whereby eggs are

spawned pelagically, larvae move offshore and develop away from the reef, and then return after a

significant duration (e.g. 35–45 days for Nassau Grouper). The most commonly cited hypothesis for

the evolutionary motivation underlying this behavior is that predation on eggs would be extremely

high on coral reefs and lower offshore (Johannes, 1978). This is consistent with several common

characteristics of reef fish eggs that minimize predation: eggs are transparent, develop rapidly,

and are spawned at sunset. We would therefore expect cohort 2 to have experienced very high

predation, especially as vulnerable eggs and yolk-sac larvae. On the other hand, we would also

expect more abundant food near the reef and no loss due to advection (Strathmann et al., 2002).

It will be interesting to see whether a strong year class from 2017 spawning recruits to the Little

Cayman FSA.
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Figure 4.18: Estimated dispersal of larvae from the Little Cayman FSA on Feb 29, 2011 around drifters
released during spawning on Feb 24 (A) and Feb 25 (B). The predicted concentration is lower and more
diffuse in A) than B) because 5 days have elapsed after Feb 24 spawning (A) while 4 days have elapsed
after Feb 25 spawning (B), and the assumed mortality rate implies 1.6% survival per day.
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In this study we found that currents on subsequent spawning nights were quite variable

(Figs. 4.1, 4.2). The fact that Nassau Grouper choose to spawn on multiple nights in an environment

where this behavior enhances the spread of siblings is consistent with the hypothesis that there

is some selection for dispersal (i.e. spread of siblings; Strathmann, 1974). If habitat patches

exhibit temporal variation in quality, dispersal should reduce variation and increase average fitness

over several generations. If we consider human-induced fishing mortality on FSAs (which can be

extremely high and variable) as an important component of habitat quality, then a mix of dispersal

and self-recruitment is likely advantageous for Nassau Grouper in the current era of high human

impact. As the Little Cayman FSA is the largest known remaining FSA for the species (Sadovy

et al., 2018), this is good news because it allows for the possibility that larvae from Little Cayman

may replenish other FSAs while still motivating local protection.

The diffusion model used here could be improved upon in at least two ways. First, parameter-

izing horizontal diffusivity by latitude, Ky, and longitude, Kx, is somewhat arbitrary. Decomposing

horizontal diffusivity into along (parallel to) drifter track versus across (orthogonal to) drifter track

components would more consistent with physics because i) along-track diffusivity should be greater

than across-track diffusivity due to shear diffusion (Strathmann, 1974; Okubo and Levin, 2010), and

ii) if the drifter track curves—as on Feb 15, 2017—the along- and across-drifter directions change

(Fig. 4.13). Second, alternative models of diffusion where the apparent diffusivity, A, increases as a

function of length scale, `, are more generally appropriate than the Fickian diffusion equation used

here (A = K independent of `; Okubo and Levin, 2010). Future work could consider the diffusion

models A = 0.204P` (Joseph and Sendner, 1958), or A = 0.266γ`4/3 (Ozmidov, 1958), especially if

considering longer time periods and therefore larger spatial scales.

The images of possible predation on Nassau Grouper eggs by pelagic invertebrate zooplank-

ton are intriguing. Pelagic coelenterates (medusae, ctenophores, and siphonophores) can certainly

have high predation rates on fish eggs and larvae (Purcell and Arai, 2001). Planktonic fish eggs and

young larvae are ideal prey because they are small, passive (i.e. unable to escape predation attempts),

169



nutrient-rich, and often occur in high densities (Peterson and Wroblewski, 1984; Bailey and Houde,

1989; Purcell and Arai, 2001; Fuiman et al., 2015). For these reasons they may be targeted and

consumed in large quantities, especially by cruising predators that can occur at high densities (e.g.

scyphomedusae; Purcell and Arai, 2001). Because Nassau Grouper spawn at sunset, contact and

cruising predators may be more important than visual predators (Bailey and Houde, 1989). Seven

of the ten predation images are likely pelagic foraminifera. It is possible that foraminifera are

significant predators of Nassau Grouper eggs; they grow largest in the tropics, can consume prey

2–3 times their size, and spinose species in particular prefer zooplankton to phytoplankton prey

(Schiebel and Hemleben, 2017). Omnivory and symbiosis allows pelagic foraminifera to persist in

oligotrophic environments and then bloom when prey becomes abundant—as would be the case in a

high density patch of Nassau Grouper eggs (Schiebel and Hemleben, 2017). While siphonophores

were abundant in the TowCam images, there were no images of them predating on fish eggs. This is

unsurprising since they are ambush predators more likely to attack mobile fish larvae than passive

eggs (Purcell, 1981). Still, they may be important predators of Nassau Grouper larvae in a high

density patch once they hatch. While these observations are interesting, a much larger sample

size would be necessary to quantify the degree of invertebrate predation and its impact on Nassau

Grouper egg mortality.

Inference at both fine and large spatiotemporal scales was limited by sampling constraints.

While we obtained fine-scale 3D position data (i.e. latitude, longitude, depth, and time of indi-

vidual eggs), the high proportion of zeros and low counts limited our ability to analyze fine-scale

spatiotemporal patterns such as patchiness. At larger space and time scales, the area and density

of observations were constained by having one research vessel traveling at 4–5 knots. Both of

these considerations will be important if we hope to observe Nassau Grouper larval distributions

further in time to critical biological timepoints, e.g. first-feeding at 3–5 days, flexion at 14–20

days, and settlement at 35–45 days. The patch should progressively increase in size and decrease

in concentration, complicating observation. Attaching a plankton net to concentrate organisms in
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the images (as in the NetCam, Fig. 4.3a) is one possibility to increase sampling volume, but this

decreases vertical control.

The in situ plankton imaging systems used here demonstrated promising capabilities. We

envision that future technological improvements enabling higher spatiotemporal sampling resolution

and better characterization of physical variables (e.g., currents) could shed light on important

physical-biological processes affecting recruitment from FSAs: i) annual variation in diffusivity and

mortality parameters. How applicable are the estimates presented here in past and future years? ii)

in situ variability in egg and larvae development, growth, and mortality. How do these compare to

estimates made in the lab? For example, lab studies often use antibiotics and filtered seawater (no

bacteria, parasites, predators, etc.), iii) spatiotemporal overlap with predator and prey distributions,

iv) spatial variability or density-dependence in mortality, v) spatiotemporal distribution of larger

predators, and vi) separation of mortality due to predation, starvation, and transport (Hjort, 1914;

Bailey and Houde, 1989).
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