
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Secure Communication Infrastructures for Cloud and IoT

Permalink
https://escholarship.org/uc/item/8z94x075

Author
Li, Xin

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z94x075
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SECURE COMMUNICATION INFRASTRUCTURES FOR CLOUD
AND IOT

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Xin Li

December 2018

The Dissertation of Xin Li
is approved:

Professor Chen Qian, Chair

Professor Katia Obraczka

Professor Ethan L. Miller

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Xin Li

2018

Table of Contents

List of Figures vii

List of Tables ix

Abstract xi

Dedication xii

Acknowledgments xiii

1 Introduction 1
1.1 Fortifying Network Security Infrastructure 2

1.1.1 Network Function and Service Function Chain 3
1.1.2 Desirable Properties of NFV Orchestration Framework . . 5

1.2 Fortifying the Internet of Things 6
1.2.1 Digital Signature . 8
1.2.2 Stringent Requirements . 9

1.3 Dissertation Outline . 10

2 Network Function Placement 11
2.1 Hardware Network Function Placement 11

2.1.1 Independent Network Function 11
2.1.2 Chained Network Functions 12

2.2 NFV Orchestration and Placement 13
2.2.1 Thread-based Framework 15
2.2.2 VM-based Framework . 16

2.3 Irregular Forms of Network Functions 18
2.3.1 Element-based Framework 18
2.3.2 Distributed NFs . 19
2.3.3 Host-based Framework . 19

2.4 Network Function Placement Discussions 20
2.5 Conclusion . 21

iii

3 Interference-free Policy Enforcement for NFV 22
3.1 Prior Work . 23
3.2 APPLE System Overview . 24
3.3 Design Challenges . 26
3.4 Optimization Engine . 27

3.4.1 Traffic Aggregation for Scalability 29
3.4.2 Spatial Distribution . 29
3.4.3 Mathematical Model Objectives and Variables 29
3.4.4 Simulated Annealing (SA)-Based Heuristic 33

3.5 Enforcing Optimization Results 34
3.5.1 Sub-class . 34
3.5.2 Tagging Scheme . 35
3.5.3 Flow Affinity Retaining . 38

3.6 Rule-based Load Balancing . 40
3.7 Incorporating Traffic Dynamics 41
3.8 Implementation Details . 42

3.8.1 ClickOS VM Initiation . 42
3.8.2 Overloading Detection . 45
3.8.3 Local Agent . 45

3.9 Prototype Evaluation . 46
3.9.1 Experiment Setup . 46
3.9.2 ClickOS VM Setup Time 46
3.9.3 Waiting For Five Seconds 46
3.9.4 Reconfiguring Existing VMs 47
3.9.5 Overloading Detection . 48
3.9.6 Performance of Local Agent 49

3.10 Simulation Evaluation Results . 50
3.10.1 Simulation Setup . 51
3.10.2 Computation Time . 52
3.10.3 Rule-based Load Balancing 53
3.10.4 TCAM Usage . 54
3.10.5 Hardware Resource Usage 55
3.10.6 React to Traffic Dynamics 56

3.11 Conclusion . 56

4 An IoT Data Communication Framework for Authenticity and
Integrity 59
4.1 Problem Statement . 63

4.1.1 Network Model . 63
4.1.2 Threat Model . 64

4.2 System Design . 65
4.2.1 Existing Signature Schemes 65

iv

4.2.2 Dynamic Tree Chaining (DTC) 66
4.2.3 Geometric Star Chaining (GSC) 71
4.2.4 Data Retrieval and Verification of GSC 73

4.3 Incorporating Budget Limit . 74
4.3.1 Sampling Protocol Design 75
4.3.2 Copping with Network Latency 79
4.3.3 Data Retrieval . 79

4.4 Security Analysis . 80
4.4.1 Defending against Message Forgery Attacks 80
4.4.2 Defending against Biased Sampling Attacks 82
4.4.3 Defending against Dishonest Coordinators 82

4.5 Performance Analysis . 83
4.5.1 K-degree Dynamic Tree Chaining 83
4.5.2 Geometric Star Chaining 84
4.5.3 Sampling Protocol . 85

4.6 Evaluation . 86
4.6.1 Experiment Setup and Methodology 86
4.6.2 Simulation Result . 87
4.6.3 Prototype Emulation Experiment Without Budget Limit . 91
4.6.4 Prototype Experiment in Raspberry Pi 96
4.6.5 Prototype Experiment with Sampling Protocol 98

4.7 Conclusion . 100

5 An IoT Data Management System for Verifiable Range Queries102
5.1 Existing Solutions . 105
5.2 System Design . 108

5.2.1 Overview . 108
5.2.2 Design of Prefix Tree . 111
5.2.3 Design of PrefixMHT . 114
5.2.4 Efficient PrefixMHT Update 118
5.2.5 Storage in the Cloud . 119
5.2.6 Extending to Multi-dimensional Data 120

5.3 Signature Scheme for VERID . 121
5.3.1 Preliminaries . 122
5.3.2 Hash Fusion Signature . 123
5.3.3 Condensed Bilinear Pairing 125
5.3.4 Incorperating General Sparse Setting 127

5.4 Evaluation . 129
5.4.1 Evaluation Methodology 129
5.4.2 Aggregation Queries . 132
5.4.3 Selection Queries . 135
5.4.4 Choose Self-balancing Tree 135

v

5.4.5 Comparison of Signature Schemes 136
5.4.6 Disk I/O at Cloud Storage 138

5.5 Conclusion . 138

6 Summary and Future Work 140
6.1 Summary . 140
6.2 Future Work . 141

6.2.1 Improvement to Current Projects 141
6.2.2 Long-term Research Projects 142

A Some Proofs on VERID Signature Scheme 143
A.1 Proof of Unforgeability of HFS . 143
A.2 Proof of Unforgeability of CBP 146

Bibliography 148

vi

List of Figures

3.1 Overview of APPLE . 27
3.2 Optimization Engine decouples path selection and resource allocation. 28
3.3 Data plane framework at an SDN switch. 36
3.4 Illustration of three common scenarios for tagging scheme. 39
3.5 Steps of fast failover for a sub-class whose policy chain is FW →

IDS: (1) Overloaded VNF instance sends an overloading notifica-
tion. (2) New light-weight instances are initiated. (3) Controller
installs forwarding rules for the new sub-class. (4) Inform the local
agent of the old and new sub-class IDs. (5) Update rules to forward
half traffic to the new sub-class. 43

3.6 Implementation of initiating a new ClickOS VM for a VNF in-
stance. 43

3.7 Performance of VNF . 45
3.8 ClickOS booting time . 47
3.9 File TX time distribution . 48
3.10 Illustration of fast failover . 49
3.11 Local agent performance . 50
3.12 Maximal Load . 54
3.13 TCAM usage reduction by tagging 55
3.14 Average CPU Core usage. 56
3.15 Packet loss rate over time for APPLE with and without fast failover. 57

4.1 Overview of the IoT data communication framework 60

vii

4.2 Illustration of tree chaining. 69
4.3 Visual representation of numerical intervals. 72
4.4 Illustration of GSC. 73
4.5 One-day micro-scale experiment. 88
4.6 #events saved in the cloud. 89
4.7 Computing average temperature from data saved in the cloud. . . 90
4.8 Throughput comparison . 93
4.9 Verifying throughput comparison with different sample rate. . . . 93
4.10 DTC reveiving throughput . 95
4.11 K-degree DTC Merkle tree exp. 97
4.12 Signing throughput at RPi . 98
4.13 DTC energy comsumption . 99
4.14 Throughput comparison with different parameter settings. 101

5.1 VERID design overview . 109
5.2 Intuition on PrefixTree . 114
5.3 Illustration of PrefixMHT . 114
5.4 Aggregation query performance results 133
5.5 Selection query performance results 136
5.6 Update Communication Cost Comparison 137

A.1 Pictorial reduction procedure . 144

viii

List of Tables

1.1 Performance of some cryptographic operations. 8

2.1 Comparison between independent NFs & chained NFs. 13
2.2 Comparison between different NFV frameworks 14

3.1 Comparison of NF orchestration frameworks 24
3.2 Notations in the optimization problem. 31
3.3 Layout of TCAM at physical switches 37
3.4 VNF data sheets . 52
3.5 Average computation time of different topologies. 53
3.6 Number of rounds having feasible solution without VNF redeploy-

ment. 54

4.1 Performance of some cryptographic operations. 62
4.2 Overall comparison of different signature schemes. 63
4.3 Important Notations. 65
4.4 Space Complexity of different signature schemes. 86
4.5 Quantitative comparison of different signature schemes. 92
4.6 Per-packet Generation Time with Fixed Height h = 3 96
4.7 Simulation results regards the number of events. 99

5.1 Qualitative comparison of representative database outsourcing schemes.
#: efficient; : inefficient; G#: inefficient in some situations/metics. 106

5.2 Summary of the Two Datasets . 130

ix

5.3 I/O Cost Comparison . 138

x

Abstract

Secure Communication Infrastructures for Cloud and IoT

by

Xin Li

Cloud computing is a paradigm that enables the rapid provisioning of shared

pools of hardware resources or high-level services. The cloud offers the flexibility

to create, configure and cancel resources on demand. Third-party clouds have rich

computing/storage resources and charge their tenants for resource usages. Despite

its wide adoption, the cloud is not immune to security attacks. This dissertation

attempts to enhance the security of cloud from two different aspects: 1) Fortify

network security infrastructure in the cloud. 2) Fortify IoT Data in the cloud.

The first half of this dissertation presents an SDN-based modular NFV orches-

tration framework called APPLE, aiming for interference-free policy enforcement

of security infrastructure in a resource-efficient manner. Several levels of mecha-

nisms are leveraged in APPLE to incorporate traffic dynamics. Both simulation

and prototype experiments using real network topologies and traffic traces show

that APPLE is resource-efficient and can quickly react to traffic dynamics.

The second half of the dissertation describes two security protocol suits for

verifiable data communication and management respectively. Both are specially

optimized for IoT applications to fit into resource-constraint IoT devices. Com-

pared to alternative solutions, both protocol suits reduce memory footprint on

IoT devices, communication cost between IoT devices and the cloud as well as

computing time on generation and verification of verifiable IoT data.

xi

To my parents and wife.

xii

Acknowledgments

I would like to express my best gratitude to my advisor, Professor Qian. He is the

most important person for my Ph.D study and career path. It is Professor Qian

that teaches me how to do solid research in computer networking starting from

scratch. From Kentucky to California, he always gives me precious academic and

life guidance in need. Without his encouragement and support, I would not have

survived in the Ph.D pursuit journey. Professor Qian is the most knowledgeable

person I have ever met in my life. He always encourages me to set foot in new

research areas, to communicate with other scholars and more importantly to think

out of box.

I would thank my qualifying-exam and dissertation committee, Professor Ka-

tia Obraczka, Professor Ethan L. Miller and Dr. Ying Zhang for their valuable

guidance and constructive suggestions.

I would acknowledge Professor Song Han from University of Connecticut and

Bo Han from AT&T Lab for their help shaping my research ideas into research

projects. I also appreciate the mentoring of Dr. Wolfram Schulte and help of

other colleagues during my internship at Facebook.

I am fortunate to have so many brilliant group members: Ye Yu, Huazhe

Wang, Yu Zhao, Minmei Wang, Shouqian Shi, Haofan Cai, Ge Wang, Junjie Xie

and Xiaofeng Shi. Many research challenges were tackled through discussions with

them.

I am grateful for my parents. They not only give my life but also teach me

how to be a good man. I would give special thanks to my beloved wife Ming. She

understands and supports all of my critical life decisions. We together enjoy this

chapter of our lives.

xiii

Chapter 1

Introduction

Cloud computing is a paradigm that enables the rapid provisioning of shared

pools of hardware resources or high-level services. Cloud offers the flexibility to

create, configure and cancel resources on demand. Third-party clouds have rich

computing/storage resources and charge their tenants for resource usages. Cloud

tenants could focus more on their core business and be free from the burden

of expending and maintaining underlying computer infrastructure. Numerous

companies start to deploy part of or even all services inside cloud [5, 36, 13].

Despite of its wide adoption, cloud is not immune to security attacks. Accord-

ing to a survey of 1400 IT decision-makers conducted by McAfee [25], 25% cloud

tenants have experienced data theft from the public cloud and 20% cloud tenants

have experienced an advanced attack against their public cloud infrastructure.

This dissertation attempts to enhance the security of cloud from two different

aspects:

1) Fortify network security infrastructure in cloud. Like enterprise net-

work, various kinds of network security infrastructure such as firewall [89], intru-

sion detection system [109] are critical for the security of services hosted in cloud.

This dissertation focuses on the orchestration of different security infrastructure

1

instances collectively enforce security policies to protect service operations. The

first half of this dissertation presents an SDN-based modular NFV orchestration

framework called APPLE, aiming for interference-free policy enforcement of se-

curity infrastructure in a resource-efficient manner. Several levels of mechanisms

are leveraged in APPLE to incorporate traffic dynamics. Both simulation and

prototype experiments using real network topologies and traffic traces show that

APPLE is resource-efficient and can quickly react traffic dynamics.

2) Fortify IoT Data in cloud. Data storage is another driver for the

adoption of cloud. Especially for emerging IoT, resource-restraint IoT devices

send their sensing data to cloud for storage. Tenants retrieve data from cloud

when needed. Ensure authenticity and integrity of data stored in the cloud is

essential for the correctness and security of many applications. Although ver-

ifiable data outsourcing has been studied for over a decade, current solutions

[110, 140, 180, 179, 120, 61] focus on general-purpose computing platforms such

as PC and they are not fully suitable for the IoT due to stringent hardware con-

straints. The dissertation thus focuses on offer authenticity and integrity to IoT

data in cloud. The second half of the dissertation describes two security protocol

suits for verifiable data communication and management respectively. Both are

specially optimized for IoT applications to fit into resource-constraint IoT devices.

Compared to alternative solutions, both protocol suits reduce memory footprint

on IoT devices, communication cost between IoT devices and the cloud as well as

computing time on generation and verification of verifiable IoT sensing data.

1.1 Fortifying Network Security Infrastructure

Network security infrastructure such as firewalls and intrusion detection sys-

tems is indispensable for today’s network. Security policies require traffic flow to

2

traverse designated kinds of security infrastructure in sequence. The correct op-

eration of network security infrastructure is critical to deliver security assurance.

Network security infrastructure belongs to a broader category of appliances called

network functions. Traditional network functions are shipped in dedicated hard-

ware, but recent advances in general-purpose CPUs motivate network functions

being implemented in software and then deployed through virtualization tech-

nologies, which is also referred to as Network Functions Virtualization (NFV).

Though NFV brings flexible management of network functions in their place-

ment, configuration and provisioning, off-the-shelf solutions from virtualization

technology cannot directly address the orchestration of different kinds of network

security infrastructure to collectively enforce security policies.

1.1.1 Network Function and Service Function Chain

Modern networks not only constitute of devices providing connectivity (e.g.

switches and routers) but also a large number of devices that perform functions

other than packet forwarding, which are called network functions (NFs). Therefore

network security infrastructure such as the firewall and the intrusion detection

system (IDS) belongs to NFs. Besides improving security, NFs (e.g. web proxy,

video transcoder and load balancer) optimize performance. NFs are crucial in

various modern networks, such as mobile networks [111, 171, 39, 182], enterprise

networks [69], datacenter networks [37, 121] and broadband access networks [177,

6]. A recent study [162] reveals that the number of NFs is comparable to that of

the switches.

Legacy NFs are usually shipped in dedicated hardware to trade manage flexibil-

ity for performance. The hardware NF introduces large capital expenses (CapEx)

as well as expensive operational costs (OpEx). As a result, only limited number of

3

hardware NFs are deployed in a network. Once NFs are deployed, it is unfeasible

to redeploy them.

The correct operation of network security infrastructure is critical to deliver

security assurance. Application or user requirements may specify security policies

that require flows traverse through a given sequence of NFs, called service function

chain. For example, an enterprise network administrator may specify a policy that

outbound traffic should follow the service function chain: firewall → IDS →

compressor.

To enforce service function chaining, traffic steering is utilized to make changes

on traffic paths such that network flows can traverse through the designated NFs.

However, traffic steering suffers from the following problems:

• Traffic steering may affect the performance of other network control appli-

cations such as traffic engineering. Ideally, policy enforcement should be

completely orthogonal to other applications.

• Traffic steering introduces additional path length, which increases the prob-

ability of congestion and long delay, especially for WAN. The links near NFs

are likely to become hot spots. The situation is aggravated if the NFs are

not properly placed in the network.

• Much more forwarding rules are installed in the switches/routers forwarding

table to support complex traffic steering [148]. Forwarding table space is a

scarce resource.

On the other hand, the computing capability of general-purpose CPUs increase

exponentially over time. As a result, NFV [106], or Network Functions Virtual-

ization, has been proposed to rest on modern general-purpose hardware to realize

functionality of various NFs. By leveraging virtualization technologies, NFV en-

4

ables flexible management of virtualized network functions (VNFs) in terms of

placement, configuration and provisioning. Nevertheless, off-the-shelf solutions

from virtualization technology (e.g. Openstack [32]) cannot directly address the

orchestration of different kinds of network security infrastructure to collectively

enforce service function chains.

1.1.2 Desirable Properties of NFV Orchestration Frame-

work

Besides resource-efficiency and resistance to traffic dynamics which are

commonly identified by all hardware NF and NFV orchestration frameworks [177,

156, 139, 138, 74], this dissertation further take advantages of the flexibility of

VNFs to achieve the following desirable properties that are impossible or irrelevant

without NFV.

Order preserving. The partial order of service function chain should be

preserved. Failure to preserve the order may nullify network security infrastruc-

ture and thus imposes great security risk on the network. For instance, IDS cannot

inspect the payload of outbound traffic packets if the packets traverse the com-

pressor first. Furthermore, network traffic should not traverse NFs not specified in

the service function chain. At minimum, some resources such as CPU are wasted.

Order preserving is not always retained for hardware NFs. As elaborated in the

survey at Chapter 2, some placement strategies for hardware NFs prefer placing

NF instances at certain vantage points and these NF instances directly tap into

traffic links. In this case, without fine-grained control some traffic flows inevitably

traverse irrelevant NF instance placed at vantage points.

Interference freedom. The framework should not change the existing flow

routing paths determined by other network applications such as routing, access

5

control, and traffic engineering. Since only limited number of hardware NFs are

deployed in a network, traffic steering is adopted by most hardware NF orchestra-

tion frameworks [177, 148]. NFV brings the ability to instantiate VNF instances at

hosts on demand, which opens up the desirable property of interference freedom.

Moreover, interference freedom is the key enabler of modular NFV orchestration

framework where different modules collectively control the network. Most current

NFV orchestration frameworks (e.g. [97] [138]) jointly optimize path selection and

instance placement. This tight coupling impedes novelty and continuous improve-

ment brought by modular plugins.

Genericity. The NFV orchestration framework needs to support as many

types of NFs as possible and requires no modification to the guest VNF to work.

On one hand, imposing no limitations or assumptions on the virtualized network

function can save human labors and hence boosting the adoption of the orchestra-

tion framework. More importantly, modern NFs are so diversified and the logic

is so complicated, not all NFs are able to be ported to follow the programming

paradigms/patterns of specified NFV orchestration frameworks.

None existing orchestration framework can satisfy the aforementioned require-

ments simultaneously. Chapter 3 demonstrates the design and implementation of

APPLE, a NFV orchestration framework with such desirable properties. Before

presenting APPLE, this dissertation first illustrates a survey on one of the most

important aspect of NF orchestration, NF placement, in Chapter 2.

1.2 Fortifying the Internet of Things

Internet of Things (IoT) is being widely applied in a great number of everyday

applications such as healthcare [11, 151], transportation [101], smart home [26,

14, 108], and surveillance systems [117, 75]. IoT devices usually generate a large

6

amount of sensing data to reflect physical environments or conditions of objects

and human beings. The majority of IoT hardware platforms are constrained in

resources where only one small on-board flash memory (e.g., 1MB for TelosB [46]

and 16MB for Z1 [47]) provides limited storage capacity. As most IoT devices

carry constrained resources and limited storage capacity, sensing data need to be

transmitted to and stored at resource-rich platforms, such as a cloud. On the other

hand, analyzing historical sensing data is essential for decision-making in various

IoT applications [26] [155]. For example, Nest Learning Thermostat [26], a system

that controls the temperature of a smart home automatically and intellectually,

learns a user’s preference by analyzing historical data of the home. Hence IoT

applications need to retrieve sensing data from the cloud for analysis and decision-

making purposes. To this end, both state-of-art IoT proposals [108, 105] and

industrial IoT practices [31] adopt the centralized data store residing in the cloud,

aiming that the sensing data can be stored economically and retrieved effectively

for analysis, as depicted in Figure 4.1.

Since the sensing data are stored in a third-party cloud, data authenticity and

integrity, which guarantee that data are from these sensing devices and have not

been modified, are important for trustworthy IoT applications [169]. However the

data could be corrupted by outside attackers [3, 4, 8], malicious cloud employees

[123], transmission failures, or storage loss [40]. Without data authenticity and

integrity, IoT applications may make wrong decisions and cause economic and

human-life losses.

A critical task of both IoT communication and data management systems are

to allow the data consumers to verify the correctness of the IoT data. The

“correctness” here includes two requirements: 1) Authenticity and integrity:

the data should be collected from the sensing devices and not be tampered by any

7

Table 1.1: Performance of some cryptographic operations.

Metric RSA DSA MD5 SHA1 SHA256
Time (ms) 203.6 192.8 0.041 0.051 0.098

Energy (mJouel) 37.6 36.2 0.007 0.009 0.017

third party; 2) Completeness: the data consumer should receive all and only

the data satisfying the conditions in its query.

1.2.1 Digital Signature

Digital signature is a widely used method to protect data authenticity and

integrity: The sender first computes a message digest D by hashing its original

message m using a cryptographic hash function H, D = H(m). H is also called

message digest function. Note the length of D is significantly shorter than that of

m. Then the sender uses its private key k to encrypt D and attaches the signature

Ek[D] to the original message. When the receiver gets m and Ek[D], it decrypts

Ek[D] using the public key of the sender and verifies whether D = H(m). How-

ever, applying the digital signature to every sensing record, called the Sign-each

method, is not practical, because public-key encryption/decryption is considered

slow and expensive, especially for sensing devices with limited resources.

The performance of some mostly used cryptographic operations is measured

on M3, one mainstream IoT hardware platform available from one public testbed

[12]. This hardware platform features one 32-bit ARM Cortex-M3 CPU@72MHz.

The result shows the average time and energy to encrypt (RSA/DSA) or to com-

pute hash (MD5/SHA1/SHA256) over a 10-byte string. The result is presented

in Table 4.1. Even though there is great advances in hardware performance com-

pared to prior platforms [144], directly applying RSA/DSA is still not suitable for

resource-constraint IoT devices, especially for those powered by batteries.

8

1.2.2 Stringent Requirements

Although verifiable data outsourcing has been studied for over a decade, cur-

rent solutions [110, 140, 180, 179, 120, 61] focus on general-purpose computing

platforms such as PC and they are not fully suitable for the IoT due to strin-

gent hardware constraints. Therefore, verifiable data outsourcing for IoT should

possess the following properties.

• Computation efficiency. IoT devices are usually limited in computation

power. Low-end CPUs are chosen for IoT because of their low prices and

their energy-efficiency.

• Memory efficiency. IoT devices are constrained by memory capacity.

Some IoT hardware platforms even do not equipped with off-chip memories.

• Communication efficiency. Communication of IoT devices is often more

power-consuming than computation by orders of magnitude [93, 96]. There-

fore, the sizes of updates from IoT devices to the cloud is an important

metric.

The dissertation describes two security protocol suits for verifiable data com-

munication and management respectively. Both are specially optimized for IoT

applications to fit into resource-constraint IoT devices. Both protocol suits in-

volves three key entities: IoT devices, cloud, and data consumer. The protocol

suits for verifiable IoT data communication is called GSC. GSC enables data con-

sumers to uniformly and efficiently fetch partial IoT data from the cloud. The

protocol for verifiable IoT data management, VERID, further provides data con-

sumers with the ability to retrieve data against SQL-like queries.

9

1.3 Dissertation Outline

In Chapter 2, a survey is conducted to show how NFs are placed in the net-

work for different systems. This chapter stands on a system view. A system is

developed to enforce policies in the network using VNFs and SDN. The design

considerations and results are shown in Chapter 3. Chapter 4 presents detailed

research approaches and challenges to resolve for design and implementation of

a security protocol suit to provide authenticity and integrity. Chapter 5 further

demonstrates a verifiable IoT data management protocol suit that provides data

consumers with the ability to retrieve data on customized searching criteria. This

feature is not supported in the security protocol described in Chapter 4. Finally,

the summary and future work are presented in Chapter 6.

10

Chapter 2

Network Function Placement

In this chapter, different NF frameworks and their placement issues are dis-

cussed. This chapter first reviews hardware NF placement problem in Section 2.1.

Some recent advances in NFV are provided in Section 2.2, followed by irregular

forms of NFs described in Section 2.3. Some NF placement-related discussions are

presented in Section 2.4.

2.1 Hardware Network Function Placement

Until recently, most NFs were shipped in dedicated hardware which are de-

ployed in certain vantage points in the network. Different types of hardware NFs

have their own placement considerations and thus different placement strategies,

as summarized in Table 2.1.

2.1.1 Independent Network Function

For some NFs, one instance of each NF can work independently to perform a

task, without explicit interaction with other instances. For instance, the passive

traffic monitor which taps into a communication link falls in this category. The

11

placement strategies for this kind of NFs try either 1) to maximize the utility

under fixed budget or 2) to minimize the total cost with a certain level of service

guarantee. The research on placing passive traffic monitors has been extensively

studied in literature [165, 76, 79, 150]. Particularly, Suk et al. formulated two

integer linear programs aiming to maximize the fraction of traffic being moni-

tored and to minimize total cost respectively [165]. The optimization variables

include the number of monitors, their optimal positions and their sampling rates.

This solution does not change the traffic routing paths. However varying traffic

matrix renders the previously optimal solution sub-optimal. MeasuRouting [150]

addresses this problem by strategically routing traffic to fixed monitoring points

allowing moderate traffic path alteration.

2.1.2 Chained Network Functions

Some network traffic may be required to traverse through a given set of NFs

in sequence, which is referred as service function chaining, or policy chaining. For

example, for security purposes all http traffic should follow the service function

chain: firewall → IDS → proxy. Existing solutions [115, 177] achieve service

function chaining by leveraging traffic steering. PLayer [115] is a shim layer of

network switches that explicitly forwards network traffic through its associated

NFs in sequence to fulfill the requirement of service function chaining. PLayer

does not use in-line processing fashion to avoid traffic being processed by unre-

lated NFs. Consequently, off-line processing is utilized, which means traffic is

explicitly forwarded to NFs plugged into switches for processing. The latency due

to the one-hop indirect path is negligible in datacenter networks. Inheriting the

core idea of PLayer to achieve service function chaining by steering traffic to fixed

NFs, the SDN-based solution StEERING [177] allows fine-grained per-subscriber

12

Table 2.1: Comparison between independent NFs & chained NFs.

NF type Location Traffic steering Placement objective
Independent NFs in-line optional max cov./min cost
Chained NFs off-line compulsory min latency

and per-application service function chaining through centrally configured for-

warding rules on SDN switches. With the aid of flexible traffic steering to achieve

service function chaining, network operators are free to place NFs anywhere in

the network. Nevertheless, the placement strategy impacts the user performance.

StEERING provides one placement strategy aiming to minimize the traffic delay.

Both PLayer and StEERING do not consider the problem of NF mangling of

service function chaining, which means some NFs such as NATs and web proxies,

actively modify the traffic header or the payload. A packet may be not trivially

recognized after mangling NFs.

2.2 NFV Orchestration and Placement

The new paradigm of NFV enables the great flexibility in terms of deployment,

instantiation, configuration, and termination of virtual NFs on demand. Recently,

numerous NFV frameworks have been proposed to efficiently manage the hard-

ware resources. Each NFV framework comes with its own appropriate placement

strategy. Table 2.2 compares different NFV frameworks and summarizes the im-

pact of their the design choices on the placement 1.
1In the case of CSamp, it does not address service function chaining. Therefore, the properties

of order preserving and mangling NFs are not listed for CSamp

13

T
ab

le
2.
2:

C
om

pa
ris

on
be

tw
ee
n
di
ffe

re
nt

N
FV

fra
m
ew

or
ks

N
F
V

fo
rm

N
F
V

fr
am

ew
or
k

P
la
ce
m
en
t

st
ra
te
gy

O
n
pa

th
?

M
an

gl
in
g?

Lo
ca
ti
on

de
pe

nd
en
t?

O
rd
er

pr
es
er
ve
?

T
hr
ea
d-
ba

se
d

C
oM

b
[1
56
]

M
on

ol
ith

ic
co
ns
ol
id
at
in
g

3
3

7
3

M
ID

A
S
[5
4]

C
ro
ss
-b
or
de

r
pl
ac
em

en
t

3
7

3
3

V
M
-b
as
ed

E2
[1
38
]

Pa
th

lo
os
el
y-
co
nt
ro
lle

d
7

7
7

3

St
at
os

[9
7]

Pa
th

lo
os
el
y-
co
nt
ro
lle

d
7

3
7

3

V
N
P-

O
P

[6
4]

Pa
th

tig
ht
ly
-c
on

tr
ol
le
d

7
3

7
3

PA
C
E

[1
21
]

Po
lic

y
un

or
de

re
d

7
7

7
7

Ir
re
gu

la
r
Fo

rm
s

Sl
ic
k
[5
8]

Pa
rt
ia
l

co
ns
ol
id
at
in
g

3
7

3
3

C
Sa

m
p
[1
59
]

O
n-
pa

th
di
st
rib

ut
ed

3
N
/A

3
N
/A

ET
T
M

[9
1]

M
on

ol
ith

ic
co
ns
ol
id
at
in
g

3
3

7
3

14

2.2.1 Thread-based Framework

Running software NFs as threads at generic hardware platforms enables re-

source multiplexing as well as components reuse.

Monolithic Consolidating

CoMb [156] is a representative of such NFV frameworks which consolidates

multiple modular VNFs in a single server. To avoid duplicated functions performed

at different modular VNFs, all incoming packets are first processed by functions

shared by all CoMb VNFs, such as protocol parser and session reconstructor.

CoMb then sends packets to their corresponding thread-based VNFs for further

processing. The authors of CoMb assume that the resource footprint of each

thread is proportional to its workload. CoMb [156] consolidates all the required

NFs in a single thread for each traffic class. Such monolithic consolidating obviates

the need for addressing mangling NFs, which drastically eases the management of

the service function chaining.

Cross-border On-path Placement

Monolithically consolidated NFs may fall short in some cases. A service func-

tion chain may contain NFs that have preferred locations in the network. For

example, web proxies are better to be placed closed to the end clients to reduce

bandwidth consumption and network latency.

To allow service function chains to be accomplished by NFs distributed at

different servers along the traffic routing path, MIDAS [54] is proposed to extend

the scope of CoMb. MIDAS resolves the problems of CoMb servers discovery and

on-path processing establishment across multiple NF service provider. MIDAS

would be particularly helpful in the Internet, where location dependency impacts

15

the performance significantly.

2.2.2 VM-based Framework

Isolation is an indispensable property for multi-tenant clouds, where the re-

sources are shared among cloud tenants. Without isolation, busy VNFs may

consume much more resources than other co-residing VNFs. In this case, QoS

cannot be guaranteed. Most NFV framworks leverage virtual machines (VMs) as

the container for isolation. The resource usage model is simplified in most VM-

based frameworks such that one instance of VNF consumes fixed resources and

possesses fixed processing capacity. Since VMs consumes substantial hardware re-

sources, it is prohibitively expensive to consolidate NFs like CoMb for each traffic

class to achieve service function chaining. Instead, VM-based frameworks steer

traffic flows between VNFs to fulfill service function chaining. VM-based frame-

works differ from traffic steering for hardware NFs in that the placement of VNFs

could be decided at run-time, hence more freedom to optimize the performance

and cost. Moreover, traffic steering could be augmented by other mechanisms

to incorporate traffic dynamics, such as flow distribution (small time-scale load

balancing), dynamic scaling in/out (resource efficiency), etc..

Flowstream [104] is the first VM-based framework. The authors of Flowstream

noticed the narrowed performance gap between commodity switches/servers and

customized high-end switches/hardware NFs, and successfully predicted the rise of

commodity general-purpose hardware to process traffic. Nevertheless, Flowstream

is just a high-level idea without concrete design and implementation.

16

Path Loosely Controlled Placement

There are existing network-aware placement algorithms [127, 122] resolving

the problem of mapping VMs onto physical machines in the cloud in such a way

that the communication cost is optimized.

E2 [138], a VM-based NFV framework, relies on them to minimize intra-server

traffic when mapping VNF instances to a servers. The NF placement of E2 involves

four steps. Firstly, merge individual service function chains into a single policy

graph (pGraph). Next, E2 determines the number of instances for each NF in the

pGraph given the estimation of the load on a NF and the per-instance capacity.

The workload of a NF will be evenly distributed among its VNF instances. The

third step is converting the pGraph to an iGraph, or the "instance graph". In

the iGraph, each node represents an instance of one NF and the edge weight

captures the traffic demand between the associated two VNF instances. Finally,

E2 computes an optimization problem with the objective to minimize inter-server

traffic.

Statos [97] is another network-aware NFV platform being able to correctly for-

ward traffic in face of mangling NFs. Statos exhaustively enumerates the possible

downstream paths for each mangling NF in the policy graph to ensure correctness

of service function chaining.

Path Tightly Controlled Placement

With emerging SDN technologies, some NFV frameworks could flexibly con-

trol the routing paths between NF pairs, enabling joint placement and routing

optimization.

VNP-OP [64] attempts to minimize the cost, penalty for SLO violation and

resource fragmentation by jointly optimizing placement of VNFs and traffic rout-

17

ing paths. This optimization is formulated as an Integer Linear Program (ILP)

considering resource capacity constraints and service function chaining.

Charikar et al. first theoretically analyzed this joint optimization problem by

recognizing it as a new extension to multi-commodity flow problem [78].

Unordered Placement

The aforementioned VM-based NFV frameworks all strictly preserve the se-

quential order specified by the service function chain. In some cases, the service

function chain however can be partially ordered or even completely unordered.

For instance, from the point view of security, there is little difference to put a

traffic monitor before or after a DPI. PACE [121] addresses the VNF placement

for unordered service function chains in cloud, with the objective to maximize the

number of satisfied requests.

2.3 Irregular Forms of Network Functions

2.3.1 Element-based Framework

The aforementioned NFs, either hardware, thread-based or VM-based, which

vertically integrate basic modules can independently complete a particular packet

processing task like packet parsing. Slick [58] takes another approach which imple-

ments NFs as a chain of lightweight functions (e.g, checksums) across the network.

These lightweight functions, referred as elements in Slick, are able to be reconfig-

ured at runtime.

Element placement consists of two steps. The first step is to consolidate el-

ements. The Slick controller decide whether to consolidate contiguous elements

onto a single machine or distribute them across multiple machines based on each

18

element’s inflation factor, which is defined as log(fout/fin) where fout and fin are

denoted as its output and input traffic volumes respectively. The second step is

to place consolidated elements. The placement strategy is that consolidated ele-

ments with negative (positive) inflation factors are placed onto the node closed to

sources on the longest common path of all traffic (destinations). The intuition is

that placing elements with negative inflation factors near the sources can reduce

the link bandwidth consumption.

2.3.2 Distributed NFs

CSamp [159] targets the scalability problem of fined-grained flow level monitor-

ing by employing distributed coordinated NFs. In CSamp, the traffic monitoring

modules are implemented as applications inside routers. To avoid duplicated traf-

fic sampling on the routing path, CSamp uses a hash-based packet selection to

achieve the implicit coordination. After distributed NFs are placed in the network,

a network-wide goal, such as maximizing the coverage, is achieved by distributing

the workload to monitor NFs across the network while respecting the resource

constraints.

Apart from distributed monitoring, distributed redundant elimination [57] and

distributed IDS/IPS [158] have been proposed on the same idea.

2.3.3 Host-based Framework

The NFs which have discussed are all residing inside the network. ETTM [91]

are proposed to move NFs onto endpoints to exploit the increasing computing

power with multi-core commodity servers. The NFs running on VMs residing in

the endpoints, but they are logically controlled by a central controller. ETTM ben-

efits from the trusted computing module (TPM) available in many current com-

19

puters to provide NFs with the Attested Execution Environment (AEE). These

distributed NFs residing in endpoints use Paxos [118] distributed consensus al-

gorithm to provide consistent decisions, fault-tolerance and reliability. Since the

traffic is only processed at endpoints, similar to CoMb [156], the required NFs

in the service function chain are consolidated at the endpoints. The abundant

resources in each endpoint are enough to support its own service function chains .

2.4 Network Function Placement Discussions

Can different forms of NFs be mixed together?

The hybrid environment has already been proposed in literature. VNF-P [129]

focuses on a scenario where the service function chaining is provided by both fast

dedicated hardware NFs for baseline workload as well as flexible on-demand VNFs

for burst workload.

Can NFs be outsourced?

Sherry et al. proposed APLOMB [161], a service to oursource NFs in cloud

without sacrificing performance. By leveraging DNS-based redirection, the in-

coming traffic of an APLOMB customer is routed directly to the cloud first for

outsourced NF processing, then to the customer. The latency due to the indirec-

tion is negligible.

Where do service function chains come from?

PGA [147] answers this question in the realm of enterprise network. PGA is a

fast automation tool to compose independent network policies into a global-scope

one for each traffic class. PGA allows the detection and resolving of the conflict,

if there is any.

20

2.5 Conclusion

In this chapter, a comprehensive survey is provided regarding the placement

issues of both conventional hardware network functions and virtualized network

functions. Different NF frameworks as well as how their design considerations

impact the network function placement strategies are presented.

21

Chapter 3

Interference-free Policy

Enforcement for NFV

As mentioned in Section 1.1.2, order preserving, interference freedom, and

genericity, are desirable for NFV orchestration frameworks. However, none ex-

isting solutions can satisfy all of them. This chapter present the design and im-

plementation of a novel SDN-based NFV orchestration framework, called APPLE

(proActive aPProach for poLicy embEdding), which satisfies the aforementioned

properties simultaneously. The core idea of APPLE is to distribute NFs on the

unmodified traffic path to enforce service function chain policies, which does not

belong to any placement strategy described in Chapter 2.

APPLE strictly preserve the order of policies. APPLE estimates the NF de-

mand of network-wide flows and proactively installs VNF instances on traffic paths

for potential flows to achieve interference freedom. VNF instances are contained

in VMs or containers for the sake of genericity. Moreover, VMs or containers are

able to separate fault domains which is especially useful for multi-tenant clouds

where hardware resources are shared by multiple entities.

22

3.1 Prior Work

None existing orchestration framework can simultaneously satisfy all the re-

quirements.

Policy enforcement of hardware NFs mostly relies on traffic steering. Two

typical works are StEERING [177] and SIMPLE [148]. Both of them use the SDN

technology to forward flows by assigned paths.

CoMb [156] and MIDAS [54] consolidate multiple VNF instances as threads

in a physical machine. However, resource and fault isolation are not considered

in these two orchestration frameworks which limits their applicable scenarios.

NetBricks [139] solves the problem of isolation by taking the advantage of safe

languages (e.g. Rust). However, such thread-based NFV framework also comes

with the price of not being generic. The host network functions need to be modified

to adapt their specific programming models.

VM/container-based NF orchestration frameworks are more widely adopted

due to its generacity. PACE [121] proposes to use smart VM placement to deploy

NFs. However PACE does not consider service function chains. Merge/split [149]

accelerates the process of flow migration for stateful NFs by transferring the states

associated with migration flows instead of the whole VM. OpenNF [98] follows the

same idea. However, both frameworks require the modification to NFs. Stratos

[97] and E2 [138] provide efficient and scalable NF provisioning by combining

traffic engineering and NF placement. They utilize traffic steering to enforce

policies and hence are not interference-free. This situation is true for SoftCell

[112] as well, which focuses more on the packet processing in the mobile access

network.

There are also irregular forms of NFs and their associated orchestration frame-

works. Eden [62] is proposed to move the NFs onto participating endpoints to

23

Table 3.1: Comparison of NF orchestration frameworks

NF Form Framework Policy
Enforcement

Interference
Freedom Genericity

Physical StEERING [177] 3 7 3
SIMPLE [148] 3 7 3

Thread-based
CoMb [156] 3 3 7
MIDAS [54] 3 3 7

NetBricks [139] 3 3 7

VM/Container

PACE [121] 7 3 3
Merge/Split [149] 7 3 7

Stratos [97] 3 7 3
E2 [138] 3 7 3

SoftCell [112] 3 7 3

Irregular forms

Eden [62] 3 3 7
OpenBox [74] 3 3 7

Slick [58] 3 3 7

exploit the their increasing computing power. ETTM [91] is another host-based

NFV orchestration framework. OpenBox [74] and Slick [58] separate the control

and data planes of NF packet processing. These NF orchestration frameworks

bear the same problem with thread-based ones: not generic and cannot reuse

existing NFs directly without modification.

For these existing orchestration frameworks, the comparison is summarized in

Table 3.1.

3.2 APPLE System Overview

Network Model. APPLE uses the SDN paradigm [126]. All physical nodes

that host VNF instances are connected to one of the SDN-enabled switches. When

a flow needs to be processed by a VNF, forwarding rules installed on the switch will

guide the packets of the flow to the VNF instance and continue forwarding after

receiving the packets again from the VNF instance. A central controller obtains

network information and installs forwarding rules onto switches via standard APIs

such as OpenFlow [126].

24

The overview of APPLE is shown in Figure 3.1.

APPLE host. Each physical node hosts multiple VNF instances, which is

also called an APPLE host. A virtual switch (vSwitch), such as Open vSwitch

[29], is installed in the node to switch packets to different VNF instances, which

is also connected to the outside network.

VNF Instance. VNF instances run as VMs on physical nodes. VMs guar-

antee the CPU and memory resource isolation.

Optimization Engine. It is a traffic-aware VNF placement algorithm. It

runs periodically to make adjustments according to the large time-scale network

dynamics. It takes the traffic rate, forwarding path, and service function chain of

each flow, together with the available hardware resources, as input. It computes

the proper placement of VNF instances and the particular VNF instances each

flow is supposed to traverse. The objective functions of the Optimization Engine

are defined by other modular control programs. Optimization Engineer is also able

to resolve conflicts between different control programs. The Optimization Engine

interacts with the Resource Orchestrator to install VNF instances accordingly

and obtains the information about available resources at APPLE hosts from the

Resource Orchestrator. It sends the information about how new flows are assigned

to different VNF instances to Rule Generator for the computation of data plane

forwarding rules.

Resource Orchestrator. It allocates sufficient resources and launches VNF

instances according to the result of Optimization Engine. In addition, it monitors

the available resource on APPLE hosts and reports this information to Optimiza-

tion Engine.

Rule Generator. It gathers the outputs from Optimization Engine and gen-

erates the data plane forwarding rules. These rules are installed at physical and

25

virtual switches through the SDN API.

Dynamic Handler. It may receive an overloading notification from SDN

monitoring applications. It will then re-balance the workload to resolve overload-

ing by requesting the Rule Generator to install new forwarding rules and possibly

by instantiating additional light-weight VMs (they are ClickOS instances in our

prototype implementation) through Resource Orchestrator.

Local Agent. It can either be a dedicated host or a VM inside one APPLE

host. Local Agent is used to detect new flows for the sake of flow affinity when

some traffic is migrated to other NFs. For switches supporting new standard of

SDN API (e.g. P4 [33]), they can match on the SYN flag in the TCP packet to

directly detect new flows. In this case, the functionality of local agent can be

replaced by these switches.

3.3 Design Challenges

There are several challenges involved in the design of APPLE: (1) There are

different and possibly conflicting strategies to place VMs on the substrate infras-

tructure. It is challenging to satisfy many resource allocation goals while enforcing

policies. (2) Traffic is highly dynamic. APPLE should avoid both under-provision

during peak load and over-provision during base load to strive for a balance of

performance and resource-efficiency. One specific challenge here for stateful VNFs

is that flow affinity needs to be preserved during load balancing, which means

all packets of each flow are required to traverse the same VNF instances. (3)

Proper forwarding rules are required to install in SDN switches and vSwitches in

the APPLE hosts to accomplish service function chaining. The challenge is how

to efficiently use scarce forwarding table entries to fulfill this task.

26

Figure 3.1: Overview of APPLE

3.4 Optimization Engine

The functionality of Optimization Engine is to find a NF placement plan while

still respecting the various resource constraints. Most of existing NF resource

management strategies tightly couple path selection and NF placement which

impede continuous improvements and an open ecosystem. To this end, the most

important design choice of Optimization Engine is to support modularity while

policy enforcement is still preserved. Conflict resolution is essential for modularity.

There are existing works trying to address the conflicts among modules for path

forwarding [146] and resource allocation [59, 60] respectively. Nevertheless, the

integration of the two branches remains unexplored.

The high-level idea of conflict resolution for a combination of path selection

and resource allocation is depicted in Figure 3.2. FortNOX [146] is leveraged for

path selection conflict resolution. However, FortNOX operates on low-level Open-

27

Figure 3.2: Optimization Engine decouples path selection and resource alloca-
tion.

Flow rules and therefore the routing path for each flow is not directly provided. A

recently developed tool AP-Classifier [175] can help to efficiently compute the for-

warding path for each network flow based on low-level OpenFlow rules. For each

network flow, the virtualized NFs are installed on the resulting forwarding path

to meet the requirement of policy enforcement. On the other hand, Optimization

Engine provides flexibility by allowing multiple modular modules to jointly control

how resources are allocated on the forwarding path. Resource allocation is math-

ematically model as an optimization problem which jointly optimizes different

and even conflicting goals of various resource allocation modules. Optimization

Engine ensures that other resource constraints (e.g. bandwidth, host computa-

tion/storage resources, etc.) are not violated in the meantime. Optimization

Engine applies global optimization that computes a VNF placement plan for all

current flows or online placement for any new flows.

28

3.4.1 Traffic Aggregation for Scalability

Optimization Engine of APPLE determines VNF placement driven by service

function chainins for all traffic flows. Kandula et al. [116] found that 100K

flows arrive every second on a 1500-server cluster. APPLE aggregates traffic

into equivalence classes. The flows having the same path and policy chain are

aggregated into a class. The input size of Optimization Engine and thus the time

to solve the optimization problem can be reduced significantly.

In this chapter, each class is denoted as h ∈ H, where H is the set of all

classes. The recently developed atomic predicate based analysis tool [170] is used

to classify flows into equivalence classes. Detailed explanation can be found in

[170].

3.4.2 Spatial Distribution

With a centralized network-wide view, APPLE spatially distributes the work-

load such that the responsibility of each VNF instance can be more balanced.

Load distribution is essential to process jumbo classes whose traffic rates are be-

yond the capacity of one single VNF instance.

3.4.3 Mathematical Model Objectives and Variables

Objectives. Optimization Engine moderates multiple resource allocation

modules. The possible objective of one module is to minimize the resource uti-

lization for policy enforcement in order to make more room for production VMs

co-located in Apple hosts. Another modules may aim at minimizing the number of

running physical hosts for energy efficiency reasons. As a result, there is no fixed

objective function for the mathematical model. The resource allocation module

is required to have an evaluation function f(S) to interact with Optimization En-

29

gine, where S represents the resource allocation state. Resource allocation state

includes the resource reservation information for all Apple hosts. The interface

f(S) returns a value in range [0, 1] representing a rating. A smaller value indi-

cates higher preference. In order to summarize all resource allocation modules,

the objective function is to minimize the weighted sum of evaluation functions.

Note that the detailed implementation of f(S) is not restricted to a liner function.

VNF capacity. The capacity of an instance of VNF n is denoted as Capn,

which captures the number of packets being processed per second. APPLE can

measure the capacity of each VNF instance in advance, which is one-shot effort.

Available Resource. Each VNF instance occupies hardware resources in its

APPLE host. Optimization Engine needs to ensure there are enough hardware

resources to launch new instances. The available hardware resources of all APPLE

hosts connected to switch v is represented as Av. Note that Av is a vector, where

each element denotes a type of hardware resource. Optimization Engine acquires

such information from Resource Orchestrator. Likewise, Rn is to denote a resource

requirement vector in which each element is the requirement of a type of resource

of VNF n.

Service function chains. Service function chains are determined by some

external mechanisms. They specify the sequence of NFs that each class of flows

need to traverse in order. Ch =< cjh > represents the service function chain for

class h ∈ H, where cjh means the the jth NF on the policy chain Ch.

Flow Paths. Forwarding paths are provided by pipelining existing SDN rule-

based confilicts resolution tool [146] and forwarding path analysis tool [170]. We

use Ph =< pih > to donate the path, where pih is the ith switch class h encounters.

Traffic Rate. It can be estimated by other applications [95]. Th captures the

traffic rate of class h ∈ H.

30

Table 3.2: Notations in the optimization problem.

Notations Explanation
pi

h i-th switch on the path of class h
cj

h j-th VNF on the policy chain of class h
di

h,j portion of class h processed in cj
h connected to pi

h

σi
h,j cumulative portion of class h processed in cj

h until pi
h

Th traffic volume of class h
Capn process capacity of VNF n
qv

n quantity of VNF n connected to switch v
lvv existing traffic load on VNF n connected to switch v
Rn the resource requirement vector of VNF n
Av available resource of APPLE host connect to switch v
fk(·) evaluation function for kth resource allocation module
S resource allocation state
wk weight for kth resource allocation module
|P (h)| path length of class h
|C(h)| number of VNFs at the policy chain of class h
i(P, h, v) index of switch v on the path of class h
i(C, h, n) index of VNF n at the policy chain of class h

The network topology is represented by a graph G = (V,E), where V and

E are the set of switches and links in the network respectively. Let N denote

the universal set of all VNFs. The optimization variable dih,j determines the por-

tion of traffic of class h to be processed in instances connected to switch pih for

VNF cjh. Another optimization variable qnv ∈ {0, 1, 2, ...} quantifies the number of

VNF instances instantiated for VNF n connected to switch v. σih,j is a derived

variable, which means the cumulative portion of traffic that has been processed,

from beginning to pih on the network path for VNF cjh for class h. |Ph|, |Ch| are

the length of Ph and Ch, respectively. i(P, h, v) gets the index of switch v on the

sequence Ph =< pih >. Likewise, i(C, h, n) is the index of VNF n on the sequence

of Ch =< cjh > . The notations used in this optimization problem is listed in

Table 3.2. The optimization formulations are stated as follows.

Minimize
∑
k

wk ∗ fk(S) (3.1)

31

s.t.

σih,j = σi−1
h,j + dih,j ∀i, j (3.2)

σih,j−1 − σih,j ≥ 0 ∀i, j (3.3)

σ
|P (h)|
h,|C(h)| = 1 (3.4)∑

h:v∈Ph
Thd

i(P,h,v)
h,i(C,h,n) + lvn ≤ Capn × qvn ∀v, n (3.5)∑

n∈N
Rn × qvn ≤ Av ∀v (3.6)

0 ≤ dih,j ≤ 1 ∀i, j (3.7)

qvn ∈ {0, 1, 2,} ∀n, v (3.8)

Eq. (3.3) makes sure that the order of service function chain is preserved. Eq.

(3.4) assures that 100% traffic of class h are processed by the service function

chain. Eq. (3.3) and Eq. (3.4) collectively define the requirements of service

function chaining. VNF capacity limits and resource constraints are captured by

Eq. (3.5) and Eq. (3.6). Even though i(P, h, v) and i(C, h, n) in Eq. (3.5) seem

to make the optimization problem nonlinear, actually once the input is given,

the values of i(P, h, v) and i(C, h, n) are known immediately, without solving the

whole optimization problem.

This optimization problem is an Integer Linear Program (ILP) when the objec-

tive function is also a linear function. This optimization problem can be reduced

from Set Cover Problem, which is known to be NP-hard. Furthermore, Dinur

et al. [90] have proved that Set Cover Problem cannot be approximated within(
1 − o(1)

)
· ln n, unless P = NP , where n is the number of subsets. Therefore,

a heuristic based on simulated annealing is proposed in this chapter to solve this

problem.

32

3.4.4 Simulated Annealing (SA)-Based Heuristic

Simulated Annealing (SA) is utilized to compute the VNF placement plan for

Optimization Engine. Simulated Annealing is an optimization problem solving

framework, where the user needs to customize some variables and functions. The

following content briefly introduces some important concepts and the correspond-

ing customization.

State. State describes the values of all variables in the optimization problem.

For the case of VNF placement, the state is about the number of each type of

VNF installed in each Apple host as well as where the policy chain is enforced for

each equivalent class.

Energy Function. This function summarizes how “good” the state is. For

Optimization Engine, it only focuses on resource allocation. It shares the same

idea of objective functions in optimization problems. Therefore, Optimization

Engine reuses the objective function Eq.(3.1) as the energy function of Simulated

Annealing.

Neighbor Generator Function. This function generates a new feasible state

from current state. To be more specific regarding APPLE, this function randomly

deletes one existing installed VNF or randomly installs a VNF instance of a ran-

dom type to a randomly chosen Apple host. In the meantime, the newly generated

state is checked whether it still meets the requirement of policy enforcement and

various resource constraints. If the two requirements are not satisfied, the neigh-

bor generator function keeps on proposing new states until the two requirements

hold.

The customization of State and Energy Function is trivial. However, Neighbor

Generator Function requires further discussion. By design every newly accepted

state is forced to meet the constraints. Once one flow deviates from these two

33

requirements, it is hard to cater the needs of policy enforcement again, because it

is unlikely to randomly allocate proper VNF types on its path when the network

topology is complex. Another key question is how packet processing positions

(i.e. dih,j and σih,j) change with respect to the new NFV placement plan. When

a new VNF instance is added to the network, dih,j and σih,j do not change since

all constraints still hold. However, in the situation where one VNF instance is

deleted, the traffic load imposing on that VNF instance should be shifted to other

VNF instances. During the migration, the policy enforcement and bandwidth

constraints (Eq.(3.2) - Eq.(3.5)) should be taken into consideration. Since all

constraints are continuous and linear, it is computational efficient to find a feasible

solution.

3.5 Enforcing Optimization Results

APPLE needs to enforce the optimization decisions made by Optimization

Engine. The installation of VNF instances at APPLE hosts are handled by Re-

source Orchestrator as ordinary VMs. However, it is non-trivial to enforce the

forwarding rules from the result of spatial distribution dic,j directly. Thus, a new

concept, sub-class, is introduced to help APPLE generate forwarding rules.

3.5.1 Sub-class

Note that the policy enforcement is on per-flow basis, even though Optimiza-

tion Engine solves the optimization problem in the scale of classes. All packets of

a flow are required to traverse the same stateful VNF instances, which is referred

as flow consistency. Therefore, a new concept, sub-class, is defined which is the

aggregation of flows within a class that traverse the same VNF instances. dsc rep-

34

resents the fraction of sub-class s in class c. Clearly, ∑s d
s
c = 1. The responsibility

for each sub-class is accepted as long as the space distribution from Optimization

Engine is satisfied. One way is to identify sub-class is to split the rule space.

For example, if < 10.1.1.0/24 > is a class, a sub-class contributing 50% of the

class could be < 10.1.1.128/25 >. However, one problem occurs when APPLE

changes the spatial distribution of a class due to network dynamics: changing

the assignment of VNF instances for existing flows may violate flow affinity. The

problem is resolved by a novel data plane scheme called flow tagging, presented

in the following subsections.

3.5.2 Tagging Scheme

A tag is an identifer written to a packet header. The header modification

could be easily customized in SDN-enabled switches. The unused bits in the

packet header can be used as the tag field, such as the 6-bit DS field and 12-bit

VLAN ID (if VLANs are not used). APPLE currently cannot support VNFs that

dynamically modify the packet header (e.g. NAT).

The main idea of the tagging scheme is to avoid duplicated classifications on

physical switches, which consume substantial TCAM resource. Current physical

SDN-enabled switches implements forwarding table in TCAM. In the APPLE

tagging scheme, the tag consists of two fields. One field specifies the host ID

which is the next host to process this packet. If one packet has traversed all the

required VNF instances, this tagging field is Fin. The other field encodes sub-

class ID within a class. Note that sub-class ID can be multiplexed by different

classes. The Sub-class tagging field remains unchanged in the network. Figure 3.3

shows the flowchart on how to process a packet arriving at a physical SDN switch.

Upon reception of a new packet, the switch checks the host ID field. If host ID

35

Match Switch ID

field?

Empty Tag? Process here?

Other App

Classification

Forward to Apple Host
Y

N

N

Y
Tag Sub-class ID

Y

Tag Router ID

N

For each incoming packet

Figure 3.3: Data plane framework at an SDN switch.

indicates one APPLE host connected to the switch, it would forward the packet

to the APPLE host for NF processing; otherwise, the switch would forward the

packet to the correct next hop. If this field is empty, it means that this packet just

entered the network and the switch should tag a sub-class ID first. After that,

if the packet is to be processed in any APPLE host connected to the switch, the

switch should forward it to the APPLE host.

Such semantics can be easily encoded in TCAM, when flow table pipelining is

supported. Table 3.3 illustrates the TCAM layout at the physical switch. Rules

of other applications are stored in the next table. Here, the sub-class matching

rules are a bunch of wildcard rules to achieve the target distribution computed

by Optimization Engine. For switches not supporting pipeline processing, the

semantics can still be retained by the cross-product of the two tables, but the

TCAM consumption would increase. Note that the classification rules are just

installed at the corresponding ingress switch for each sub-class to reduce TCAM

36

Table 3.3: Layout of TCAM at physical switches

Type Switch ID field Match Action
Self match Self switch ID * Fwd to APPLE host

Classification Empty Sub-classes Tag sub-class ID,
Fwd to APPLE host

Empty Sub-classes
Tag sub-class ID,
Tag switch ID,
Go to next table

Pass by * * Go to next table

consumption.

Forwarding rules are also needed in vSwitch embedded in APPLE hosts to

direct packets to desired VNF instances. The matching rule is based on three tu-

ples, <IncomePort, class, sub-class>, where class is specified by matching rules.

A packet may traverse multiple VNF instances in one APPLE host, and Income-

Port is enough to identify which VNF instances the packet has traversed. (This

dissertation assumes that a packet does not traverse a same instance twice.) The

combination of class identifier and sub-class IDs distinguishes different sub-classes.

APPLE does not directly match sub-classes, because sub-classes matching rules

change occasionally to adapt to the new spatial distribution. Hence it is an ef-

fective way to avoid VNF inconsistency caused by rules updating, which violates

flow affinity.

When the packet leaves an APPLE host, it also needs to be tagged to indicate

the next APPLE host to process it. Since production VMs can also be installed

in APPLE hosts, the vSwitch adopts a similar tagging scheme and the processing

pipeline to store rules of other applications. One difference is that IncomePort is

enough to distinguish whether a packet has been tagged or not: the packets from

the ports connect to production VMs are not tagged yet. Figure 3.4 gives three

common scenarios for tagging scheme. There are 3 classes, and they have the same

path, S1 → S2. The classes can be distinguished by the srcIP field. Each class

37

only has only one sub-class (denoted as sID in the figure). The traffic ip1 → ip4

represents the scenario where the packets traverse multiple APPLE hosts. The

traffic ip2 → ip4 represents the scenario where the packets are processed in APPLE

hosts not connected to the ingress switch. The traffic ip3 → ip4 represents the

scenario where the packets originate within an APPLE host.

3.5.3 Flow Affinity Retaining

When the distribution of a class changes, the matching rule for each sub-class

may adjust accordingly, which in turn changes the sub-classes that some flows

belong to. Statos [97] retains flow affinity by installing a new exact microflow rule

in the virtual switch everytime a new flow is encountered. This method does not

work for APPLE because TCAM in physical switches do not possess enough space

to host all microflows [130]. To this end, a new method to retain flow affinity is

proposed in this chapter. The main idea of this method is to use SYN packets

as the indication of new flows and only new flows are allowed to be classified into

new sub-classes. FIN flag on the other hand is leveraged to detect the termination

of flows. However, current OpenFlow switches cannot perform matching of TCP

flags. Hence the controller installs higher-priority rules at OpenFlow switches to

forward all incoming packets of affected sub-classes to a local agent to check their

TCP flags. In this local agent, packets with a SYN flag would be tagged with

the new sub-class IDs and then are sent back to the OpenFlow switch. On the

other hand, the local agent also records which flows have switched to the new sub-

classes, so that their following packets can also be tagged with new sub-class IDs.

For other packets, the local agent only gives them the old sub-class IDs in order

to retain flow affinity. After 60 seconds, which it is sufficient for all old flows to

terminate, the controller deletes the forwarding rules that direct all packets to the

38

ip
1

->

ip
4

ip
2

->

ip

4

ip
3

->

ip
4

 F
W

ID
S

P
ro

xy

W
A

N
 O

p
ti

m
iz

e
r

 F
W

 F
W

ID
S

R
1

R
2

v
S

w
it

ch

P
ro

xy
W

A
N

 O
p

ti
m

iz
e

r

ip
3

ip
1

ip
2

v
S

w
it

ch
1

2
3

4

1

2
3

A
1

A
2

ip
4

R
o

u
te

r
T

a
g

S
rc

IP
A

ct
io

n

R
1

E
m

p
ty

E
m

p
ty

*

*
F
w

d
 t

o
 A

1

ip
1

T
a
g

 s
ID

,
F
w

d
 t

o
 A

1

ip
2

T
a
g

 s
ID

,
T

a
g

 R
2

,
N

e
x
t

ta
b

le

*
 N

e
x
t

ta
b

le

S
rc

IP
A

ct
io

n

..
.

ip
1

ip
2

ip
3

..
.

..
.

F
w

d
 t

o
 R

2

F
w

d
 t

o
 R

2

F
w

d
 t

o
 R

2

..
.

T
a

g
S

rc
IP

A
ct

io
n

R
2

E
m

p
ty

*

*
F
w

d
 t

o
 A

2

ip
4

T
a
g

 s
ID

,
T

a
g

 F
in

,
N

e
x
t

ta
b

le

*
N

e
x
t

ta
b

le

S
rc

IP
A

ct
io

n

..
.

ip
1

ip
2

ip
3

..
.

..
.

F
w

d
 t

o
 V

M
4

F
w

d
 t

o
 V

M
4

F
w

d
 t

o
 V

M
4

..
.

V
M

1

V
M

2

V
M

3

V
M

4

In
 P

o
rt

S
rc

IP
A

ct
io

n

P
o

rt
1

P
o

rt
2

P
o

rt
3

P
o

rt
2

P
o

rt
4

ip
1

F
w

d
 t

o
 P

o
rt

2

ip
1

 F
w

d
 t

o
 P

o
rt

3

ip
1

T
a
g

 R
2

,
F
w

d
 t

o
 P

o
rt

1

ip
3

T
a
g

 F
in

,
F
w

d
 t

o
 P

o
rt

1

ip
3

T
a
g

 s
ID

,
F
w

d
 t

o
 P

o
rt

2

sI
D 1 1 1 1 *

In
 P

o
rt

S
rc

IP
A

ct
io

n

P
o

rt
1

P
o

rt
2

P
o

rt
1

P
o

rt
3

ip
1

F
w

d
 t

o
 P

o
rt

2

ip
1

T
a
g

 F
in

,
F
w

d
 t

o
 P

o
rt

1

ip
2

F
w

d
 t

o
 P

o
rt

3

ip
2

T
a
g

 F
in

,
F
w

d
 t

o
 P

o
rt

1

sI
D 1 1 1 1

Figure 3.4: Illustration of three common scenarios for tagging scheme.

39

local agent and install the new sub-class matching rules in the OpenFlow switch.

From then on, all incoming packets match on the new rules without violating flow

affinity.

3.6 Rule-based Load Balancing

Even though VNFs are contained in software and hence flexible to be installed

on demand, to redeploy VNFs after each optimization described in Section 3.4

also imposes a heavy burden on Resource Orchestrator to install/delete virtual

network function instances. On the other hand, changing the forwarding rules

is much more agile than virtual machine management. As a result, this section

present a proposal that when the traffic matrix is updated, the VNF placement

remains unchanged and the forwarding rules are modified to accommodate the

new traffic matrix. The location of VNFs may change if no feasible solution is

available given the current placement.

The new optimization problem is very similar to the one described by Eq. (3.1)

- (3.8). Given fixed VNFs, the objective of the previous optimization problem does

not make any sense. Instead, the objective now is to minimize the maximal load

of any network function instance in order to balance the workload. Let µ be

the maximal load of any network function instance. The load of virtual network

function n at router v is represented as Lnv . The new objective and the associated

constraints are given in Eq. (3.9) - (3.11). The other constraints are brought from

Eq. (3.2) - (3.7).

Minimize µ (3.9)

40

s.t.

µ ≥ Lnv ∀v, n (3.10)

Lnv =
∑
h:v∈Ph Thd

i(P,h,v)
h,i(C,h,n)

Capn × qvn
∀v, n (3.11)

Since all decision variables in this optimization problem are fractional numerical

values, this optimization problem can be solved using linear programming.

Thus, the overall procedure to take when traffic matrix is updated is first to

solve the linear optimization problem defined in this section. If there is no feasible

solution, a new NF placement plan should be given by solving the mixed integer

linear programming problem described in Section 3.4; otherwise the forwarding

rules are modified according to the optimization result.

The purpose of NF load balancing is to adapt to traffic dynamics without

VNF placement changes. It is possible that NF load balancing can absorb traffic

dynamics with minimal number of VNFs deployed in the network even though

redundancy improves the chance of successfully absorbing traffic dynamics.

3.7 Incorporating Traffic Dynamics

The large time-scale traffic dynamic domonstrates clear daily or weekly pat-

terns [68]. Since the traffic pattern changes slowly, for this kind of traffic dynamics,

it can be easily handled by periodically running Optimization Engine and placing

VNF instances accordingly.

The difficult part is to efficiently handle small time-scale traffic dynamics is

both fast and vigorous. Even if load balancing can help in this case, the time to

collect traffic matrix information takes up to tens of minutes [95]. In this chapter,

another mechanism is proposed to adapt to the traffic dynamics quickly, called

41

fast failover. The core idea is to temporally re-balance the distribution of sub-

classes to relieve the overloaded VNF instance. Since overloading is transient, the

distribution will roll back to the normal state when the VNF instance is no longer

overloaded.

Fast failover can react quickly to small time-scale traffic dynamics, because it

only temporarily changes the TCAM matching rules and if possible installs light-

weight VNF instances (i.e. ClickOS[125]). When a VNF instance is overloaded, it

sends an overloading notification to Dynamic Handler which in turn spreads half

workload of all sub-classes that traverse this VNF instance to other sub-classes. If

such re-balance is expected to result in overloading of another light-weight VNF

instance, the Dynamic Handler installs new instances to absorb traffic dynamics.

Also, when the VNF instance is no longer overloaded, the temporarily installed

instances are canceled to save hardware resources. During fast failover, if there is

any stateful VNF involved, flow affinity should be ensured. Figure 3.5 illustrates

the steps to achieve fast failover for a particular example, where the firewall is a

light-weight VNF instance. Initially, there are two IDS and one firewall instances

on the path. When the master IDS instance is overloaded, APPLE builds a

new sub-class by installing a new firewall to accommodate traffic from previous

sub-class.

3.8 Implementation Details

3.8.1 ClickOS VM Initiation

A prototype system of APPLE is developed based on open-source software

tools including OpenStack [32], ClickOS [125], Open vSwitch [29], and OpenDay-

Light SDN controller [30]. A step-by-step procedures to initiate a new ClickOS

42

Mater IDS

S2

vSwitch

Failover IDS

2

FW

vSwitch

S3S1

Controller

New FW

S4

Orginal
Path

Failover
Path

༃�༄�༅

༆
�

༇

Local
agent

Figure 3.5: Steps of fast failover for a sub-class whose policy chain is FW →
IDS: (1) Overloaded VNF instance sends an overloading notification. (2) New
light-weight instances are initiated. (3) Controller installs forwarding rules for the
new sub-class. (4) Inform the local agent of the old and new sub-class IDs. (5)
Update rules to forward half traffic to the new sub-class.

Figure 3.6: Implementation of initiating a new ClickOS VM for a VNF instance.

43

[125] VNF instance is illustrated in Figure 3.6. The central controller is a stand-

alone application that calls services provided by Openstack [32] and Opendaylight

[30] via their REST APIs. It is worth noticing why Openstack delegates the net-

working part to Opendaylight. An Openstack controller contains a component

called Neutron, which is responsible for the management of the embedded virtual

network. However, Neutron exposes no APIs for the users to install customized

forwarding rules to Open vSwitches [29] used in APPLE hosts. However, if the

network opertor manually sets Opendaylight as the controller for Open vSwitches,

Openstack will seize control of Open vSwitches intermediately. Explicitly config-

uring that Opendaylight handles the networking for Openstack is used in the pro-

totype. Upon VM initiation request, Openstack notifies Opendaylight to prepare

the networking via REST API (Step 2). In Step 3, Opendaylight calls OVSDB

[143] South-bound RPC to create a new port on the Open vSwitch. Since Xen

VMs do not support Open vSwitch directly, a Linux Bridge [21] is added between

one Xen [63] VM and the Open vSwitch (Step 4). Augmented with the network-

ing information from Opendaylight (Step 5), Openstack leverages libvirt driver

[20] to create a new VM (Step 6). After that, the newly created VM fetches the

ClickOS image from Openstack and installs it (Step 7). Once APPLE is noti-

fied the completion of the VM installation (Step 8), it configures the ClickOS

VM into the desired VNF through a customized tool describe in [125] (Step 9).

Finally, APPLE proactively installs the forwarding rules in the Open vSwitch by

calling Opendaylight’s REST API (Step 10&11).

For normal VMs other than ClickOS, the procedures to initiate them are al-

most the same. The only different is that in Step 9, generic configuration tools

are utilized (e.g. the tools from Openstack).

44

14 16 18 20 22 24 26
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Throughput (kpps)

500 Byte/pkt

1500 Byte/pkt

Figure 3.7: Performance of VNF

3.8.2 Overloading Detection

It is found that for most of the VNFs, the performance is closely related to the

packet receiving rate as illustrated by Figure 3.7 which shows how the loss rate of

a ClickOS-based traffic monitor changes.

3.8.3 Local Agent

The performance of the local agent is fairly important. A kernel module is built

based on Netfilter [28] to check the ’SYN’ flag and tag sub-class ID at the IP DS

field. This kernel module inserts the hook function at the point where the packets

just enter the kernel, and thus obviating the resource-consuming but unnecessary

Linux network stack. Once the packets are tagged, they are directly sent to the

NIC output queue, bypassing Linux network stack again. Another optimization

to further accelerate the processing rate is that instead of consuming CPU cycles,

the calculation of the new checksum is off-loaded to the NIC. If all the traffic flows

consist of 1500-Byte packet, the local agent can sustain 4.2Gbps.

45

3.9 Prototype Evaluation

3.9.1 Experiment Setup

Openstack (Liberty release), Opendaylight (Lithium release), Xen Hypervisor

(version 4.4.2) and Open vSwitch (version 2.0.2) are installed on a VirtualBox

VM with quad cores@3.4G and 8GB memory. Two network namespaces [22] in

Dom0 and all Xen VMs are connected to a same Open vSwitch. Here, network

namespaces, light-weight containers, are created to emulate production hosts or

VMs. One network namespace sends packets to the other one via a ClickOS VM

that is configured as a passive monitor.

3.9.2 ClickOS VM Setup Time

The prototype experiment indicates that the booting time is much longer if

Openstack is involved. The setup time is estimated by measuring the duration

when the throughput drops to zero: new forwarding rules are installed on the

Open vSwitch (which consumes only negligible time, as little as 70ms) right be-

fore ClickOS VM creation, meanwhile the namespaces are sending UDP packets

(Figure 3.8). The experiment is conducted 10 times. The approximate booting

time ranges from 3.9 seconds to 4.6 seconds, with an average of 4.2 seconds. The

main reason for the longer booting time is that Openstack and Opendaylight con-

sume substantial time to orchestrate and prepare the networking before actually

initiating a new VM.

3.9.3 Waiting For Five Seconds

One solution to obviate the overhead introduced by failover is to change the

forwarding rules after the complete creation of the ClickOS VM. In this subsection,

46

0 2 4 6 8 10
0

50

100

150

Time (Sec)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Figure 3.8: ClickOS booting time

the controller modifies the forwarding rules on the Open vSwitch 5 seconds after

VM initiation request. According to previous VM setup time measurement, 5

seconds is enough to completely boot a new ClickOS VM.

This subsection evaluates the overhead of failover for TCP and UDP flows, by

using Iperf [17] and Netcat [27] to send UDP packets and to transfer a 20MB file

via TCP, respectively. Both experiments are conducted 10 times. As expected,

there is no overhead associated with failover. For all 10 times of the UDP experi-

ment with 1500-Byte UDP packets sent at 10Kpps, the loss rate for the UDP flow

is always 0%. Figure 3.9 shows the CDF plot of the time to transmit a 20MB file

with and without failover, which indicates that failover does not bring extra over-

head. The performances of the three situations in Figure 3.9 are approximately

the same and their differences are due to the statistical fluctuation.

3.9.4 Reconfiguring Existing VMs

Even though the solution in Section 3.9.3 introduces no performance degrada-

tion, the 5-second waiting time constrains the flexibility of the system to adapt

to network dynamics. The booting timer can be saved by configuring existing

ClickOS VNFs. The micro-measurements shows that the time to install forward-

47

1.45 1.455 1.46 1.465 1.47 1.475
0

0.2

0.4

0.6

0.8

1

Transmission time less than (Sec)

F
ra

c
ti
o

n
 o

f
e

x
p

e
ri
m

e
n

t
ti
m

e
s

TCP failover (new VM)

TCP failover (reconfiguration)

TCP no failover

Figure 3.9: File TX time distribution

ing rules is 70ms and reconfiguration only takes 30ms. A similar experiment to

Section3.9.3 is conducted. The only difference is that reconfiguring an existing

ClickOS VM replaces initiating a new one. Still, the UDP packet flow rate is 0%

for each time of the UDP experiment. There is also no noticeable difference in

TCP performance (Figure 3.9).

3.9.5 Overloading Detection

One namaspace use pktgen[136] to send 1500-Byte UDP packets to another

one via a ClickOS instance that is configured as a passive monitor. The passive

monitor is viewed as being overloaded if the receiving packets rate is greater than

8.5 Kpps. The distribution will roll back to the normal state if the packets rate

drops to 4 Kpps or lower. Figure 3.10 illustrates how fast our system detects

overloading. Initially, the source sending rate is 1 Kpps. To mimic network dy-

namics, the source sending rate soars to 10 Kpps. The overloading is immediately

detected. Therefore, another ClickOS instance is quickly configured as a passive

monitor and the traffic is evenly split to the two passive monitors. 50% is indeed

a very conservative number. However, the workload is also hopefully evenly dis-

tributed to two VNF instances to prevent further overloading as much as we can.

48

0 1 2 3 4 5 6 7

Time (Sec)

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Source

MB1

MB2

Figure 3.10: Illustration of fast failover

After 5 seconds, the source sending rate becomes 1 Kpps again, which causes the

network to roll back to the normal state. During the whole process, the packet

loss is 0%.

3.9.6 Performance of Local Agent

In this experiment, two physical machines each with 1Gbps NIC are intercon-

nected with a switch. One physical machine utilizes pktgen to send UDP packets

to the other machine that runs the local agent. Given a bandwidth of only 1Gbps,

The packet sending rate is controlled by changing the packet size between 60 Byte

and 1500 Byte. Three different experiments are conducted. The first experiment

is a control group in which the local agent does nothing and the packets are for-

warded to Linux network stack. In the second experiment, the kernel module is

installed in the local agent, but this kernel module calculates the checksum by its

own. The third experiment is similar to the second one. The only difference is

that the calculation of checksum is off-loaded to NIC. Figure 3.11 shows that with

the kernel module, the throughput of the local agent that processes packets is even

greater than that of the local agent doing nothing. It can also be inferred from

Figure 3.11 that the offloading provides considerable improvement. The kernel

49

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
o

s
s
 r

a
te

RX rate (Mpps)

Network stack

Netfilter with CPU calculating checksum

Netfilter with NIC calculating checksum

Figure 3.11: Local agent performance

module can receive packets at a rate of 0.3 Mpps without any packet loss, which

is enough for our system. One experiment further monitors the latency overhead

introduced by flow affinity by computing the timestamp when one packet is sent

to the local agent and the timestamp the packet is sent back from the local agent.

packet stamps are from tcpdump. Nevertheless, the latency is so negligible that

the accuracy of tcpdump is not able to capture the negligible difference which

indicates that the latency overhead can be ignored due to the indirection path to

the local agent.

It is found that the processing overhead of flow tagging in software switches is

low (latency increase < 1% and memory increase < 1%) and independent of the

load.

3.10 Simulation Evaluation Results

Extensive simulation experiments are performed using real traffic trace data

and real network topologies.

50

3.10.1 Simulation Setup

Topology and data set. Three representative topologies for campus net-

work, enterprise network, and data center network are leveraged. Internet2 re-

search network (12 nodes and 15 links) represents campus network. Time-varying

traffic matrices for internet2 are provided in [41], which consist of snapshots of

12 × 12 traffic matrices. The totem data set [166] is adopted to represent enter-

prise network. It contains an intradomain network, GEANT (23 nodes and 74

links) and associated time-varying traffic matrices. A 2-tier campus data center

network, UNIV1 (23 nodes and 43 links) [68] is used for the data center network

experiment. To illustrate that Optimization Engine is scalable even for large

topologies, a Rocketfuel router-level ISP topology, AS-3679 [164] is used too. The

traffic matrices for UNIV1 and AS-3679 are synthesized using FNSS tools [153].

Optimization Engine is run against one traffic matrix input which is the mean

value of 672 snapshots. After that, VNFs are placed in the network according to

the result from Optimization Engine. At last, all the traffic matrices are replayed

in time order and how APPLE reacts to traffic changes is measured. For each

topology, experiments are conducted multiple times with different traffic matrices.

Internet2 traces consist of 672 ∗ 24 snapshots. Therefore, there are 24 sets of

experiments for Internet2. Likewise, the experiments on GEANT and UNIV1 will

run 15 rounds and 20 rounds respectively.

Service function chains. Due to the lack of publicly available information

on NF related policies, service function chains are synthesized based on one real-

network study [157] and case studies [38]. The service function chains are the

sequences of 4 different NFs: firewall, proxy, NAT and IDS.

VNF specifications. The information on capacity and resource requirements

for each NF is from the survey in [64], which is listed in Table 3.4. It is assumed

51

Table 3.4: VNF data sheets

NF type # Cores Capacity ClickOS
Firewall 4 900Mbps 3

Proxy 4 900Mbps 7

NAT 2 900Mbps 3

IDS 8 600Mbps 7

that the firewall and NAT are implemented in ClickOS, while the proxy and IDS

are contained in normal VMs. It is assumed that there are 64 cores at each APPLE

host.

Metrics. The following metrics are measured: TCAM and hardware con-

sumption, the algorithm computation time, and packet loss ratio during traffic

dynamics.

3.10.2 Computation Time

Short computing time is crucial to timely VNF provisioning. In order to com-

pare with optimal solutions computed by CPLEX [15], the objective function is

chosen to be a simple linear function : minmizing the number of installed VNF

instances. Another comparison method is based on LP relaxation, a universal

technique to approximate the integer programming by continous linear program-

ming. The optimization problem discussed in Section 3.4 is solved by CPLEX

[15] on a quadcore@3.40G desktop with 16GB memory. Table 3.5 compares the

average time to solve the problem for different topologies. The running time of

SA is configurable and it determines the quality of the solution. We set the run-

ning time such that the resulting objective value is at most 35% larger than the

optimal value. As inferred from Table 3.5, the computation speed of SA lies be-

tween those of CPLEX and LP relaxation based method. However, CPLEX and

LP relaxation based methods are not able to support unlinear objective functions.

52

Table 3.5: Average computation time of different topologies.

Topology Nodes Links LP relax SA
Internet2 12 15 0.029 s 0.056 s
GEANT 23 74 0.1 s 0.31 s
UNIV1 23 43 0.235 s 0.52 s
AS-3679 79 147 3.013 s 16.11 s

For small and medium topologies (Internet2, GEANT and UNIV1), Optimization

Engine is fast: the computation time is less than 1 second. Even for the large

topology (e.g. AS-3967), the computation time is acceptable.

3.10.3 Rule-based Load Balancing

By utilizing rule-based load balancing, the overhead of resource orchestrator

is reduced significantly. There are 24 sets of data for Internet2, and 15 sets, 20

sets of data for GEANT and UNIV1 respectively. In this set of simulation ex-

periments, for each topology, the VNF placement is first computed by using the

average traffic rate of the first dataset as traffic matrix input. Two VNF place-

ment algorithms are used: one getting the optimal result using CPLEX directly;

the other resulting in approximate result utilizing LP relaxation and SA. After

that, rule-based load balancing is performed by feeding the average traffic rate of

other datasets with fixed VNF placement. The number of rounds having feasible

solution without VNF redeployment for each topology is illustrated in Table 3.6,

which clearly shows that the VNF placement based on the heuristic is more robust

to traffic dynamics compared to the optimal result. After all, from the result of the

heuristic, there are more instantiated VNF instances which provide redundancy

and flexibility.

The maximum workload of any VNF (e.g. µ in Eq. (3.9)) of feasible solutions

is demonstrated in Figure 3.12. It can observed that the maximum workload

53

Table 3.6: Number of rounds having feasible solution without VNF redeploy-
ment.

Topology Rounds Optimal LP relax SA
Internet2 23 19 21 21
GEANT 14 1 12 7
UNIV1 19 6 19 19

Figure 3.12: Maximal Load

obtained from optimal VNF placement is generally larger. This observation again

illustrates the flexibility and redundancy provided by the heuristic. Note that

even it seems that the optimal VNF placement yields smaller maximum workload

in UNIV1, it has much smaller feasible solutions.

3.10.4 TCAM Usage

By leverage the tagging scheme, the TCAM consumption is reduced. Figure

3.13 gives the boxplot of the TCAM usage reduction ratio compared to that

without tagging scheme, for three topologies under different traffic matrices .

There is a least 4X reduction for all three topologies. The reduction ratio for

UNIV1 topology is more impressive than the other two, because traffic exploits

multi-paths in data center networks. Therefore, we are more motivated to tag

these traffic at their ingress switch, rather than match them on all multi-paths,

54

4

6

8

10

12

14

16

18

20

Internet2 GEANT UNIV1
T

C
A

M
 r

e
d

u
c
ti
o

n
 r

a
ti
o

Figure 3.13: TCAM usage reduction by tagging

resulting in less TCAM consumption.

3.10.5 Hardware Resource Usage

Since APPLE is the first VM-based orchestration framework that introduces

no interference to the network, this subsection compares the hardware resource

usage for APPLE with an alternative strawman solution called ingress, which

consolidates all the VNFs of one service function chain in the ingress switch and

enforce policy there for each class. For simplicity it is assumed that CPU core is

the only required resource for launching a new VNF instance. Figure 3.14 plots

the hardware usage for the two solutions. There is 4X reduction for internet2 and

2.5X reduction for GEANT. This benefit comes from the resource multiplexing

between different classes. The gap in UNIV1 is not that significant, because

UNIV1 only has two core switches. Therefore, the limited hardware capacity at

the core switches force APPLE to place VNFs at the ingress switches.

55

Internet2 GEANT UNIV1
0

100

200

300

400

500

600

700

800

C
P

U
 C

o
re

 u
s
a

g
e

APPLE

Ingress

Figure 3.14: Average CPU Core usage.

3.10.6 React to Traffic Dynamics

With fast failover, APPLE can quickly react to traffic changes with low packet

loss rate. Figure 3.15 depicts the packet loss rate over time for three different

topologies with/without fast failover. Thanks to fast failover, the packet loss rate

remains much lower for all three topologies even in the face of fiercely changed

traffic. This plot illustrates the ability of fast failover to absorb traffic burst

efficiently. In the mean time, only a few new ClickOS instances are installed to

support fast failover. The average additional cores to support fast failover is less

than 17 for all topologies.

3.11 Conclusion

APPLE is the first implementation of an NFV orchestration framework based

on VMs that satisfies three requirements, namely order preserving, interference

freedom, and genericity. APPLE applies an optimization engine to determine

VNF placement and a flow tagging scheme to reduce TCAM consumption and

retain flow affinity. Results from both prototype and simulation experiments

using real network topologies and traffic matrices show that APPLE achieves

56

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(a) internet2

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(b) GEANT

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Timeseries

without failover

with failover

(c) UNIV1

Figure 3.15: Packet loss rate over time for APPLE with and without fast failover.

57

good performance.

58

Chapter 4

An IoT Data Communication

Framework for Authenticity and

Integrity

The design of an IoT data communication framework involving the three key

entities: IoT devices, cloud, and data consumer. The following key requirements

or challenges of the IoT data communication framework distinguishes it from

traditional data collection and management methods.

1) Time series data and event data. IoT sensing data can be classified into

two types: time series data and event data [178]. Time series data are generated

by each device for every fixed time period, such as 1 second. They are used to

conduct continuous monitoring tasks such as temperature reports. Event data are

generated whenever a certain type of events occurs, such as a vehicle appearing in

a smart camera. They are used to monitor discrete events. Note time series data

can be viewed as a special case of event-based data driven by clocks. Hence this

chapter focuses on finding a solution for event-based data. The proposed methods

59

IoT devices
Data	Consumer

Cloud
data+VO

query

Figure 4.1: Overview of the IoT data communication framework

are applicable to time series data as well.

2)Data random sampling. A common but critical problem shared by state-

of-art IoT designs is that the resources for transmitting and storing data (e.g.

network bandwidth, storage quota) are limited in presence of massive IoT data.

By 2022, the IoT data is expected to constitute 45% traffic in the Internet [92].

Cloud providers charge users for storage, retrieval and transferring of data [2]. It

is desired to have predictable cost for both users (in finance) and the cloud (in

resource) [87]. Hence only a fixed resource budget can be allocated to the sensing

data over a time period, called an epoch. For example, the cloud can only keep 100

data records from any device collected during every minute. Random sampling is

widely used in IoT [65]. To guarantee representative samples, every event should

have an equal probability to be sampled, which is called the uniformity property.

Uniformity is essential for unbiased statistics estimation such as histogram [80],

median [124] and average [134].

3) Authenticity and integrity. Since the sensing data are stored in a third-

party cloud, data authenticity and integrity, which guarantee that data are from

these sensing devices and have not been modified, are important for trustworthy

60

IoT applications [169]. However the data could be corrupted by outside attackers

[3, 4, 8], malicious cloud employees [123], transmission failures, or storage loss

[40]. Without data authenticity and integrity, IoT applications may make wrong

decisions and cause economic and human-life losses. Authenticity and integrity

should be verifiable by data applications.

4) Flexible application requirements. Different applications may have

different requirements on sending data granularity. For example, applications like

self-driving cars need fine-grained road information, while other applications like

road-traffic estimation only need a few sampled data. Even if the cloud can store

up to 100 records, some applications only retrieve part of them, e.g., 10 records,

due to bandwidth limit, memory limit, or application requirements. In addition,

these 10 records should have verifiable authenticity, integrity, and uniformity. We

call this feature partial sample-rate data retrieval.

There are mature solutions for any individual requirement that has been stud-

ied by researchers for over decades. However, no existing solution collectively

resolves all requirements of emerging IoT applications. The difficulty stems from

the combination of seemly conflicting requirements. The main contribution of this

chapter is to present two holistic solutions, namely DTC and GSC, which strive

for a balance of security and performance in IoT settings. Digital signature is a

widely used method to protect data authenticity and integrity: The sender first

computes a message digest D by hashing its original message m using a crypto-

graphic hash function H, D = H(m). H is also called message digest function.

Note the length of D is significantly shorter than that of m. Then the sender

uses its private key k to encrypt D and attaches the signature Ek[D] to the orig-

inal message. When the receiver gets m and Ek[D], it decrypts Ek[D] using the

public key of the sender and verifies whether D = H(m). However, applying the

61

Table 4.1: Performance of some cryptographic operations.

Metric RSA DSA MD5 SHA1 SHA256
Time (ms) 203.6 192.8 0.041 0.051 0.098

Energy (mJouel) 37.6 36.2 0.007 0.009 0.017

digital signature to every sensing record, called the Sign-each method, is not prac-

tical, because public-key encryption/decryption is considered slow and expensive,

especially for sensing devices with limited resources.

A more efficient method, concatenate, is to compute the message digest D

for a large number of records and sign once on D. This approach requires each

sensing device to cache all records and has the all-or-nothing feature: if some

applications only require part of the records, the signature cannot be verified. A

well-known method to sign a data stream is hash chaining [100]. However, it does

not fit the IoT framework either, because sampling and partial sample-rate data

retrieval will break the chain and hence make the signature unverifiable. The

authors test the performance of some mostly used cryptographic operations on

M3, one mainstream IoT hardware platform available from one public testbed [12].

This hardware platform features one 32-bit ARM Cortex-M3 CPU@72MHz. The

result shows the average time and energy to encrypt (RSA/DSA) or to compute

hash (MD5/SHA1/SHA256) over a 10-byte string [144]. The result is presented

in TABLE 4.1. Even though there is great advances in hardware performance

compared to prior platforms [30], directly applying RSA/DSA is still not suitable

for resource- constraint IoT devices, especially for those powered by batteries.

A qualitative comparison on GSC, DTC, and other possible methods are is

presented in Table 4.2.

62

Table 4.2: Overall comparison of different signature schemes.

Signature
Scheme

Computation
efficiency

Partial data
retrieval

Constant
space cost

Sampling
uniformity

Sign-each 7 3 3 7

Concatenate 3 7 7 7

Hash chaining 3 7 3 7

DTC 3 3 7 3

GSC 3 3 3 3

4.1 Problem Statement

4.1.1 Network Model

The life cycle of IoT sensing data is demonstrated in Figure 4.1. The commu-

nication model consists of three different kinds of entities:

IoT devices are resource-constraint devices that generate sensing data. Pro-

grams running on the IoT devices should abide stringent resource limits in com-

putation, memory, and power resources. IoT devices transmit sensing data to the

cloud at a fixed time interval called epoch. IoT devices do not require perfect syn-

chronization, but one synchronization protocol is needed to loosely synchronize

clocks on different IoT devices with bounded drift.

Cloud is a third-party storage provider who has rich resources. It stores the

sensing data from IoT devices and exposes an interface for Data Consumers (DCs)

to make queries.

Data Consumers (DCs) are a vast variety of software systems, devices and

human clients that retrieve the IoT sensing data for analysis purposes. DCs may

also be IoT devices. The data consumers are able to make ad-hoc queries on

history data.

IoT sensing data can be classified into two types: time series data and event

data [178]. Time series data, generated periodically, are used to describe con-

63

tinuously changing environment parameters such as temperature. Event data are

generated whenever a certain type of events occurs, such as a door with one smart

lock being opened. Note time series data can be viewed as a special case of event-

based data driven by clocks. Hence this chapter uses event-based data in the

model for generality. At the end of each epoch, a device sends all events data to

the cloud.

4.1.2 Threat Model

IoT sensing devices and data consumers are trustworthy and any entities in

between including the cloud are subject to attack or may perform functionalities

in a dishonest way. The correctness of range selection are two-folded:

1. Each data item in the query result should be from the intended database and

not tampered by any third party. This property is called as authenticity

and integrity.

2. Each data item in the result must satisfy the query. This second requirement

is denoted as completeness.

This work does not address the issue of privacy and confidentiality. They are

orthogonal to the database query correctness and there are exiting works [145] on

solving these two aspects of data outsourcing.

The cloud can claim that it stores no data to a data consumer. However this

cheating is relatively easy to audit and detect. As long as the cloud claims it

stores sensing data, the returned data to a DC must be correct and complete.

To make the system robust against device compromise, each IoT device hosts

and uses its own private key. The work assumes the existence of a well-functioning

PKI which manages the distribution of the public keys. There is also an external

64

Table 4.3: Important Notations.

Notation Definition
Di Message digest of sample block i or event i
Dij Message digest summarizing ith till jth events
H(·) Message digest function
pk Public key
pk−1 Private key
{·}pk−1 Encrypt using private key pk−1

{·}pk Decrypt using public key pk
m Number of sampled events
n Number of monitored events
K Number of sensing devices
Sa Numerical interval between 2−a−1 and 2−a
h(·) Hashing function whose range is between 0 and 1
B Budget limit

mechanism for the data consumer to get the relation schema and the names of all

collaborative IoT devices in the task groups of interest.

4.2 System Design

At first it is assumed that there is no budget constraint as it is a common sce-

nario in current IoT settings. This work relaxes this assumption and incorporate

budget constraints in Section 4.3.

4.2.1 Existing Signature Schemes

Digital signature is widely used to ensure data authenticity and integrity. How-

ever, none of existing signature schemes are appropriate for the IoT setting.

First, the straightforward Sign-each method causes expensive computational

cost on both the signer and the verifier owe to excessive public-key encryp-

tion/decryption operations. Since data selection is completely executed in the

cloud, if the cloud selects event samples or the partial data with bias, data con-

65

sumers are unaware of it. Furthermore, the Sign-each method may not be able to

detect data loss if an event record is entirely disappeared.

The concatenate signature scheme can amortize the signing and verification

cost to multiple messages, but it is not suitable for sensing devices which may be

lack of buffer space to accommodate all messages. In addition, it does not support

partial sample-rate data retrieval.

Hash chaining [100] reduces the buffer space complexity from O(m) to O(1)

for both the signer and verifier, where m is the number of messages buffered in

the sensing device to be jointly signed. In the hash chaining signature scheme,

only the first message is signed and each message carries the one-time signature

for the succeeding message. However, hash chaining fails when some events are

dropped due to sampling or partial sample-rate data retrieval.

Two signature schemes are proposed in this chapter to address the aforemen-

tioned problems when applying digital signature in the IoT scenario: 1) the Dy-

namic Tree Chaining (DTC) that is developed based on Merkle tree [128] and a

later more detailed design by Wong and Lam [172]. DTC serves as the baseline

in this chapter. 2) a novel signature scheme specifically designed for the IoT data

communication framework, called Geometric Star Chaining (GSC).

4.2.2 Dynamic Tree Chaining (DTC)

Let start from the Tree chaining designed by Wong and Lam [172], one vari-

ation of Merkle tree [128]. The digest of each event report is one leaf node in

binary authentication tree presented in Figure 4.2. The value of the internal node

is computed as the hashing of the concatenation of its two children. Take the

authentication tree in Figure 4.2 as an example. D12 is the parent of D1 and

D2 and D12 = H(D1||D2), where H(·) is the message digest function, such as

66

SHA-1 [50] or MD5 [24], used for tree chaining. Likewise, D14 = H(D12||D34) and

D18 = H(D14||D58). As a result, the root summarizes all the leaf nodes. The root

node is regarded as the block digest. The block digest is appended with epochID

and then signed by the private key to create the block signature. EpochID is

used to identify which epoch the data are generated; otherwise, the cloud returns

events from other epochs without being detected.

The verification process is on a per-event basis. In order to verify the in-

tegrity/authenticity of an event e, the verifier requires the block signature, the

position of event e in the authentication tree and the sibling nodes in the path to

the root, which are all appended to event e. As a result, the overhead to transmit

this metadata is O(log n), where n denotes the number of events.

Basically, the verification algorithm is to replay the process to build the au-

thentication tree and to verify the nodes in the path to the root. Imagine the

receiver begins to verify event e3 which is represented as the dashed circle in Fig.

4.2. First, the receiver computes D′3 = H(e3) and then its ancestors in order:

D′34 = H(D′3||D4), D′14 = H(D12||D′34), D′18 = H(D′14||H48). Event e3 is verified

if the decrypted block signature equal D′18, that is to say {{D18}pk−1}
pk

= D′18,

where {·}pk−1 denotes singing using private key whereas {·}pk is the function to

decrypt signature with public key. In this case, all the nodes in the path, as well as

their siblings, are verified and they could be cached to accelerate the verification

process. Suppose the 4th event e4 arrives after e3 has been verified. Event e4 is

verified directly if H(e4) = D4.

Note that the expensive encryption operation is amortized to all events in

one authentication tree and thus tree chaining is computationally efficient. More

importantly, since every single event is verifiable in tree chaining, it is fully com-

patible with partial sample-rate data retrieval without resource waste. The most

67

severe issue that impedes the adoption of the original tree chaining in IoT envi-

ronment is that all events should be buffered in the IoT device before the building

of authentication tree, since each event ought to be appended with auxiliary au-

thentication information from the authentication tree.

Introducing cloud can greatly reduce the memory footprint at IoT devices.

The IoT device only maintains the message digest of each event and stores all

events to the cloud directly without caching. At the end of each epoch, with all

leaf nodes available, the IoT device builds the authentication tree, which is then

sent to the cloud. The cloud in turn attaches essential authentication information

to each event received in the current epoch. The memory footprint can be further

optimized if the authentication tree grows in an online fashion: The IoT device

transmits to the cloud internal nodes no longer needed for calculating the rest

of authentication tree. An internal node is generated when its two children are

available. In the meantime, these two children are transmitted to the cloud.

Figure 4.2 illustrates the online authentication tree building process. Verifying

D3 requires sibling nodes in the path to the root (D4, D34, D58), signature of

the root ({D18}pk) and the position of e in the tree (3). D1 − D8 represent the

message digests of the events in timely order. D12 is calculated immediately when

D2 comes into play. In the meantime, D1 and D2 cached in the sensing device

are transmitted to the cloud. Likewise, when D4 is available, D34 is computed,

which in turn immediately contributes to the calculation of D14. As a result,

at that time D3, D4, D12 and D34 are dismissed from the sensing device. This

optimization reduces the space complexity in the sensing device to host nodes of

authentication tree from O(n) to O(log n), where n denotes the number of events

monitored in one epoch.

For DTC, data selection is completely executed in the cloud when the data

68

D1 D2 D3 D4 D5 D6 D7 D8

D12 D34 D56 D78

D14 D58

D18

Figure 4.2: Illustration of tree chaining.

consumer retrieves partial sample-rate data. Without additional mechanisms, if

the cloud selects event samples or the partial data with bias, data consumers are

unaware of it. The plausible solution is to allow the data consumer to specify the

sequences of the interesting events. It is the data consumer’s own responsibility

to guarantee uniformity. Apparently, this straightforward method is not scalable.

This solution could be optimized by expressing the sequence of requested events

in a succinct way. A sequence number is appended to each event to indicate

its position in the authentication tree. The data consumer sends a number m

which specifies the number of events requested as well as a seed s which uniquely

determines one random permutation. The cloud returns the events specified by

the top m elements in the random permutation.

The data consumer checks whether these events sequence numbers confine

the random permutation. In this proposal, the uniformity is guaranteed by the

random permutation. The pseudocode of random permutation algorithm in Al-

gorithm 1, which is an implementation of Fisher-Yates shuffle [154]. The random

69

Algorithm 1: Random Permutation
Input: An array of of events E; A seed s for the pseudorandom number

generator; A positive number n
Output: A list of n elements from E

1 l← E.size();
2 rng.init(s); // Initialize random number generator
3 for i← 0 to n− 1 do
4 j ← random integer with i 6 j 6 l − 1;
5 swap (E[i], E[j]);
6 end
7 return E[0:n-1]; // return first n elements

permutation algorithm ensures that the m randomly sampled events confirm to

uniformity.

Furthermore, using different seeds enables re-sampling, which means that the

receiver can request for different sets of uniformly drawn events from the cloud.

This feature is useful for some machine learning applications. One example

is ensemble learning [183] in which each weak learner requires one instance of

training dataset generated by one round of re-sampling from the whole dataset.

Nevertheless, the number of generated events is unpredictable and may be

unbounded. Once the buffer in the sensing device is full, the root node in the

authentication tree is signed and the remaining nodes are flushed to the cloud to

spare space for upcoming events. In this case, one IoT device may apply digital

signature more than once in one single epoch. The verifier also requires additional

space to cache the verified nodes. The verifier stops caching new verified nodes

when the buffer is full. As a result, the buffer space constrains the performance

of DTC, which is a particularly severe problem in IoT environment where most

devices possess little buffer space. DTC can be also extended to k-degree Merkle

tree.

70

4.2.3 Geometric Star Chaining (GSC)

This subsection presents a more efficient and secure data communication frame-

work in this chapter, called Geometric Star Chaining (GSC). The basic idea of

GSC is inspired by one observation that any arbitrary fraction value can be rep-

resented or closely approximated by a few number of binary digits. For instance,

5/8 = (0.101)2. Thus, partial data with sample rate p, where p = ∑ 2−bi and bi is

the position of the i-th 1 in the binary expression of p, is equivalent to the union

of multiple data blocks each corresponds to one set bit in the binary representa-

tion. The data block is called sample blocks. For instance, to retrieve a sampled

data with sampling rate 5/8, the cloud can send the data consumer two blocks

containing (approximately) 1/2 and 1/8 of the samples respectively.

The events included in the sample blocks are in geometric distribution. Each

sample block should draw events uniformly from the IoT data stream. In order to

ease the presentation of how sample blocks form, this dissertation defines a set of

successive numerical intervals {Si} where Si , {x ∈ R : 2−i−1 < x ≤ 2−i, i ∈ N},

which are visually represented as rectangles in Figure 4.3. On receiving a new

event e, the sensing device computes which numeric interval in {Si} that h(e)

falls in and event e is inserted into the corresponding sample block, where h(·) is

a non-cryptographic uniform random hashing function and ∀x : 0 ≤ h(x) ≤ 1.

Note that events in the same data block are either completely retrieved or not

retrieved at all. Each of such data block could be viewed as an atomic “giant

event”. GSC computes one message digest for every block and concatenates these

digests to a single digest for digital signature, as is depicted in Figure 4.4. Verifying

the second sample block requires the events in it, D1, D3 and D4. The digest of

one sample block is computed in an online fashion. One variable Di is allocated

to each sample block to capture the newest value of message digest. Suppose a

71

(0.25,0.5]

(0.5, 1]

(0.125,
0.25]

h()

...

Figure 4.3: Visual representation of numerical intervals.

new event e observed at the device which belongs to the ith sample block. The

message digest updates as Di = h (h(e)||Di). This online updating proceeds until

the end of the epoch. At this time, concatenate approach is applied to all the

message digests {Di}. The result summarizes all events generated in one epoch.

Note the value i, which indicates the sampling rate of each block, should also be

stored and hashed with the block. In this way, the data consumer that receives

the block can verify the sampling rate.

In fact, any random function can be used to implement the geometric distribu-

tion for GSC, such as continuous coin-tossing, but using a uniform random hash

is convenient. One practical issue about hashing is that the raw output of hashing

functions is one finite-length bit sequence. Computing which numerical interval

in {Si} that h(e) falls in is equivalent to counting leading zeros (CLZ) in that bit

sequence, which is intrinsically supported in many hardware platforms including

X86 and ARM. Therefore, |{Si}| and hence |{Di}| are bounded by the size of the

bit sequence. For the case of xxHash64 [44], this function produces 64-bit hash

values and thus |{Si}0≤i≤64| = 65 and |{Di}0≤i≤64| = 65. It is evident that space

cost for this signature scheme at the sensing device is constant.

72

D1

D2

D3

D4

Event

Hash

D14

Figure 4.4: Illustration of GSC.

4.2.4 Data Retrieval and Verification of GSC

A sampled fraction of sensing data is usually sufficient for most IoT appli-

cations [34]. In the network model presented in Section 4.1.1, a data consumer

requests for a certain fraction of events observed at a particular sensing device

from the cloud. GSC provides verifiable authenticity, integrity, and uniformity for

partial data retrieval with an arbitrary sampling rate.

Based on the application requirement, a data consumer first determines the

maximum number of events of each sensing device for an epoch it wants to receive,

called a portion number. It then sends all portion numbers to the cloud. For each

portion number, the cloud converts it to a sampling rate p and constructs the

binary expression of p, such that p = ∑ 2−bi where bi is the position of the i-th

1 in the binary expression of p. Then the cloud sends the corresponding sample

blocks to the data consumer.

For example, if the data consumer requests for data with a sample rate of

73

5/8 = (0.101)2, it should fetch two sample blocks correspond to sample rate of 2−1

and 2−3 respectively. The message digests associated with all sample blocks from

one epoch are stored in a single file, such that it is convenient for the data consumer

to access the necessary information to verify the data. For the received sample

blocks, the data consumer first computes their digests as the final digest used for

the signature. It then compares the final digest and the decrypted signature. This

step verifies the following properties. 1) The received blocks were not modified or

partially dropped and 2) The data were indeed uniformly sampled based on the

given sampling rates and the uniform random hash function.

Compared to DTC, GSC requires smaller buffer size on each sensing device.

It also provides verifiable uniformity. In addition, retrieving GSC-signed IoT data

from the cloud can be achieved by sequential reads which are much faster than

random reads [42, 35]. GSC does not support random permutation as in DTC

because GSC by design ensures verifiable uniformity which is the motivation for

random permutation; otherwise, random permutation would offset most of the

performance gain of GSC.

4.3 Incorporating Budget Limit

With ever-growing volume of IoT data, storing all raw IoT data in the cloud

poses a heavy monetary burden on the users. In the previous section, the system

design without restricted budget limits is discussed. This section relaxes this

assumption and incorporates the budget limit. The solution presented in this

section to address the issue of budget limit is compatible with DTC and GSC.

This section describes a distributed sampling protocol incorporating the bud-

get limit, in which any event, no matter which IoT device generates it, has the

same probability to be sampled and finally stored in the cloud. The total number

74

of sampled events does not exceed the budget limit.

4.3.1 Sampling Protocol Design

This sampling protocol introduces a new entity, called coordinator, in the

network model described in Section 4.1.1. One coordinator is a software working

as a sampler which sits between the sensing devices and the cloud. A coordinator

can be installed on an IoT hub or a server at the edge of the Internet. It maintains

communications with all sensing devices on behalf of the cloud and temporarily

buffers IoT data samples.

The sampling protocol presentation focuses on one single epoch since at the

beginning of each epoch, the sampling protocol (SP) is reset to the initial state.

At the end of each epoch, the coordinator signals all sensing devices to advance

to the next epoch. The straightforward solution is to buffer all the events in the

coordinator and uniformly sample them based on the budget limit. However, the

number of these events could possibly be very large, and therefore the storage

capacity of the coordinator may be not enough to accommodate them all. Thus,

a sampling protocol with space bound for both the sensing device and the coordi-

nator is desired. The challenge of such sampling protocol design derives from the

combination of the distributed setting and the unpredictability of data streams.

If only one stream of data is considered, the problem is regressed to classic reser-

voir sampling [167], which has been studied extensively in the literature. Also,

as long as the number of elements in each stream of data is known in advance,

the central coordinator can decide how many samples are allocated to different

sensing devices, each of which runs an instance of reservoir sampling.

The basic idea of this sampling protocol is to dynamically maintain events with

the smallest hash values on the coordinator, also known as bottom-k sampling [85].

75

Suppose B is the sampling budget per epoch. For the simplest implementation, all

IoT devices upload generated events to the coordinator directly. The coordinator

only maintains the B events with smallest hashing value and discards others in

an online fashion. As long as the hashing is uniform, the events maintained in the

coordinator are drawn uniformly from all events already observed from the epoch.

In order to reduce network bandwidth consumption, the coordinator could

broadcast to all sensing devices current global B-th smallest hash value, denoted

as τ , so that the IoT devices could discard the events locally whose hash value is

greater than τ . Let σ denotes the total number of events sent to the coordinator

and K is the number of sensing devices. One straw-man sampling protocol is

that the coordinator broadcasts the new value of τ every time it changes. Since τ

changes O(B log σ) times, the communication cost between the coordinator and

the sensing devices is O(KB log σ). Cormode et al. proposed a distributed sam-

pling algorithm [87], which is proved to be optimal in terms of communication

cost, which is O(K logK/B σ +B log σ) with high probability. Basically, the coor-

dinator accepts any event from all IoT devices until the budget limit is exceeded.

The coordinator discards half of the received events (i.e. the coordinator halves

the sample rate) to accommodate new events. The coordinator repeats this pro-

cess until the end of the epoch and then uploads the stored events to the cloud.

The detailed distributed sampling protocol is presented as follows.

The sampling protocol executes in multiple rounds. The coordinator as well

as the sensing devices maintain a variable which represents which round the sam-

pling protocol is in, and the coordinator ensures that all devices are kept up to

date with this information. Initially, the sampling protocol begins at round 0.

Suppose the sampling protocol is at round j. Round j indicates a sample rate of

2−j. This protocol involves two algorithms at the sensing device and the coordi-

76

nator respectively. The pseudocode for the sensing device and the coordinator is

presented in Algorithm 2 and Algorithm 3 respectively.

Sensing device: On receiving a new event e, the sensing device first computes

which numeric interval in {Si} that h(e) falls in, and updates the local counter

associated with this set, where h(·) is a uniform random hashing function and ∀x :

0 ≤ h(x) ≤ 1. Computing the numeric interval can still be visually interpreted

by Figure 4.3 where the result presented the i − th largest rectangle. Let lki be

the local counter for Si at device k. Each sensing device and the coordinator

maintain their own local counters. The local counters at devices are used for

auditing the coordinator. It is worth mentioning that all sensing devices and the

coordinator use the same hashing function. Suppose h(e) ∈ Si. If i ≥ j, which

implies h(e) ≤ 2−j (sample rate), the device instantly forwards event e to the

coordinator; otherwise, the event is discarded locally. At the end of each epoch,

the sensing device signs both sampled events and all counters it maintains. Note

that none events are buffered at the device in any case.

Coordinator: The coordinator maintains queues {Qk
i }, each of which corre-

sponds to one numerical interval in {Si} of each sensing device. Upon receiving

an event e, the coordinator first computes i, such that h(e) ∈ Si, followed by com-

paring the value of i and j. In the case of i < j, event e is discarded; otherwise, it

is buffered at queue Qk
i (suppose the event is from kth sensing device) followed by

updating both the counter associated with numerical interval Si and the global

counter g, which records the total number of events buffered at the coordinator.

At this moment, as long as the value of the global counter g exceeds the budget

limit B, all event queues associated with Si are discarded, the global counter is

updated accordingly and the sampling protocol advances to the next round (i.e.

j ← j + 1). The coordinator then signals all sensing devices to promote to the

77

Algorithm 2: SP at sensing device k in round j
1 foreach event e do
2 i← min{x ∈ N : h(e) ≥ 2−x−1};
3 lki ← lki + 1;
4 if i ≥ j then
5 Forward e to the coordinator;
6 else
7 Discard e;
8 end
9 end

Algorithm 3: SP at the coordinator in round j
1 foreach event e do
2 i← min{x ∈ N : h(e) ≥ 2−x−1};
3 k ← e.source;
4 if i ≥ j then
5 Qk

i .add(e);
6 l

′
i ← l

′
i + 1;

7 g ← g + 1;
8 while g > B do
9 Discard queues {∀k̂, Qk̂

j};
10 g ← g − l′j;
11 j ← j + 1;
12 Broadcast j to all sensing devices;
13 end
14 else
15 Discard e;
16 end
17 end

newest round j. It is evident that coordinator buffers at most B + 1 events all

the time. Hash chaining cannot coexist with the sampling protocol, because

the coordinator is allowed to discard events that are essential for the verifier to

validate the received data. DTC and GSC, on the other hand, do not bear the

same problem. Algorithm 3 is the pseudo-code for the coordinator part of this

sampling protocol.

78

4.3.2 Copping with Network Latency

In the last subsection, it is assumed that all communications between the

coordinator and the sensing device are instantaneous. However, it is not the case

in real networks and the network latency attributed to propagation and processing

is inevitable. Consequently, different sensing devices and the coordinator miss

synchronization when the coordinator signals all sensing devices to advance to the

next epoch. Lagged round promotion does not impact the eventual correctness of

the sampling protocol, even though a lot of network bandwidth is wasted owing

to the transmission of events that should be discarded at devices locally.

4.3.3 Data Retrieval

The sampling protocol is compatible with DTC and GSC. It is natural for this

budget-based sampling mechanism to be compatible with GSC since the sampling

algorithm discarding the events half at each round which is essentially removing

the existing largest GSC sampling block. As a result, the remaining buffered

sample blocks correspond to successive numerical intervals. The data consumer

can still fetch any fraction of data that is stored in the cloud. DTC requires a

minor modification to support verifiable uniformity when the sampling protocol is

performed. Recall how DTC leverages random permutation to guarantee unifor-

mity in Section 4.2.2. The sampling algorithm may discard the events specified by

the random permutation. The receiver can still draw events uniformly from the

cloud if the receiver can check the existence of every event. Suppose the receiver

would like to fetch n events from the cloud. Instead of sending to the receiver the

first n events specified by the random permutation, the cloud should reply with

the first n existing events sorted by the random permutation. To enable the

receiver to check the existence of an event locally, the hash function h(·) in the

79

sampling algorithm is based on the event sequence number and epochID, but not

the content. If the hash value falls outside the discarded numerical intervals, the

receiver instantly knows the existence of the event.

4.4 Security Analysis

Any inconsistency in the verification procedure indicates data in the cloud

untrusted. In the sampling protocol, each sensing device maintains a counter to

record the number of events that fall in a certain sample block. With the signa-

ture, an attacker cannot manipulate, delete or produce fake samples by modifying

contents of events and counters without being detected. For the first subsection, it

discusses how DTC and GSC guarantee the security by defending the attacks de-

scribed in the thread model (Section 4.1.2) when the coordinator is not introduced.

After that, this section analyzes how to defend against dishonest coordinators by

leveraging the local counters from IoT devices.

4.4.1 Defending against Message Forgery Attacks

Both DTC and GSC follow classic Hash-and-Sign Signature paradigm to pro-

vide the desirable property of existential unforgeability [72] to defend against mes-

sage forgery attack. Hash-and-Sign Signature paradigm requires the hash function

to be collision resistant.

Tree Chaining (used in DTC) and Star Chaining (used in GSC) are collision

resistant if the underlying hash function is collision resistant.

Let function H : {0, 1}l(n) → {0, 1}n, where l(n) > n. H(·) is collision resistant

if the following two conditions are satisfied.

• H(x) can be computed in polynomial time.

80

• Pr[(x 6= x′)∧(H(x) = H(x′))] ≤ negl(n), where negl(·) represents a negli-

gible function.

For Tree Chaining, suppose the underlying hash function to compute internal

node is H : {0, 1}2n → {0, 1}n. For simplicity, the tree is full and the height is h.

The i − th leaf node is denoted as mi. Tree Chaining could be viewed as a hash

function H ′ : {0, 1}∗ → {0, 1}n such that the root is H ′(m1,m2, · · · ,m2h).

H ′(·) is collision resistant. Assume that there is a probabilistic polynomial-

time attacker A(s) could output x = (m1,m2, · · · ,m2h) 6= x′ = (m′1,m′2, · · · ,m′2h)

such that H ′(x) = H ′(x′) with probability ε(n). Collision of H ′(x) means that

the two root nodes corresponding to x and x′ are equal. Suppose one internal

node computed from x is equal to its counterpart computed from x′. There are

two possible cases for their children nodes:

1) At least one node computed from x differs from its counterpart computed

from x′.

2) The nodes for x are identical to those for x′.

If case 1 is true, one collision of H(·) is found which contradicts the initial

assumption that H(·) is collision resistant. If case 2 is true, recursively compare

nodes of lower levels until case 1 becomes true. At least one time of case 1

should be encountered; otherwise x = x′. Therefore, that H ′(·) of Tree-chaining

is collision resistant is proved by contradiction.

The proof of Star Chaining being collision resistant is similar to the one for

Tree Chaining: If an adversary outputs a collision, then we can use the result to

find the collision of the underlying hash function.

81

4.4.2 Defending against Biased Sampling Attacks

For DTC, random permutation is leveraged to sample data from the cloud.

The property of uniformity is preserved by random permutation. Random per-

mutation is an implemented of Fisher-Yates shuffle [154]. It has been proved that

after random permutation any element can be placed at any position with equal

probability. Since the implementation outputs the first m elements of random

permutation, the uniformity is preserved.

For GSC, which sample block events belongs to is uniquely determined by a

non-cryptographic uniform random hashing function. As a result, any sample

block contains uniformly drawn events.

4.4.3 Defending against Dishonest Coordinators

The sampling protocol also defends against dishonest coordinators which do

not execute the protocol in a correct way. For example, a dishonest coordinator

may stop monitoring sensing devices by intentionally setting a negligible sample

rate. The most difficult part is to check the final round that sampling protocol

terminates at. The analysis assumes that any sensing device, whether

compromised or not, does not collude with the coordinator.

Theorem 1. The counter values from all sensing devices can be used to compute

which round the sampling protocol terminates.

Proof. Suppose the sampling protocol stops at round j at the end of the epoch,

which means all counters associated with sample block i (i ≥ j) are finally stored

in the cloud. ∑k l
k
i = l

′
i (i ≥ j) and hence

g =
i≥j∑
i

l
′
i =

i≥j∑
k,i

lki ≤ B (4.1)

82

On the other hand, the necessary condition for sampling algorithm to promote

from round j − 1 to j is that ∑i≥j−1
i l

′
i > B. Since ∀i,∑k l

k
i ≥ l

′
i,

i≥j−1∑
k,i

lki ≥
i≥j−1∑
i

l
′
i > B (4.2)

Combining Eq. (4.1) and Eq. (4.2), it is not hard to reach

j = argmin
ĵ


i≥ĵ∑
k,i

lki ≤ B

 (4.3)

As a result, the final round and therefore the sample blocks should be stored in

the cloud can be computed from the counters.

4.5 Performance Analysis

Merkle tree can be constructed in the form of k-degree tree as well. For the

extreme case, Merkle tree authentication is degraded to star chaining when k

exceeds the number of events.

4.5.1 K-degree Dynamic Tree Chaining

Suppose the IoT device detects n events in one epoch. Therefore, the height

of the k-degree Merkle tree is O(logk n). The sibling nodes in the path to the

root are needed to compute the root hash value for signature verification. As a

result, O(k logk n) hash values are attached to every event. For the same rea-

son, the signer maintains at least O(k logk n) nodes to dynamically update the

authentication tree.

The time to sign a set of events consists of three parts: authentication tree

building time, root signing time and packet generation time. The time to build

83

the authentication tree is proportional to the number of nodes in the tree. In the

k-degree Merkle tree summarizing n events, there are 1
k
n+ 1

k2n+ . . . = O(1
k−1n)

internal nodes in total. The value of each internal node is computed by taking

the hashing of the concatenation of all its children. Suppose the time complexity

of the hashing function is O(l), where l is the length of the input string. (This

is the case for most hash functions such as MD5 [24] and SHA-1 [50].) In this

case, computing one internal node takes O (k ∗O(1)) = O(k) time units. With

O(1
k−1n) internal nodes, the time complexity to compute all internal node values

is O(n). For the leaf node, its value equals the hashing of raw data. Denote li

as the data length of event ei, the time complexity of computing leaf nodes is

O(∑n
i=1 li). The overall authentication construction time is thus O(n+∑n

i=1 li).

Signing the root is one public-key encryption operation, which is the same for

any degree of Merkle tree.

Packet generation is to append necessary verification information to each event.

In DTC, packet generation is offloaded to the cloud. Following what discussed

above, O(k logk n) time units are required to append all hash values to the event

for verification.

If the receiver is granted enough space to cache all the internal nodes, the

time complexity to build the authentication tree in the receiver side is identical

to that in the sender side. Accordingly, one public-key decryption is applied to

the signature of the authentication tree root.

4.5.2 Geometric Star Chaining

Following the notation in the last subsection, the number of events detected in

one epoch is presented as n. Recall that hash value of sample block is updated as

D = h (h(ei)||D) upon a new event ei. The time complexity to update the sample

84

block is thus O (l +O(1)). In GSC, an individual event does not go through

packet generation phase. Instead, one whole sample block is only associated with

one piece of verification information which significantly reduces the packet signing

time consumption. In conclusion, the time to sign n events in one epoch for GSC

is O(n+∑n
i=1 li) plus one public-key encryption.

The main advantage of GSC over DTC is its constant space complexity. The

memory footprint is only bounded by the number of sample blocks.

4.5.3 Sampling Protocol

Both the sensing device and the coordinator are sensitive to space consump-

tion. Since the space consumption for the events themselves is the same, the

analysis concentrates on the space used for different signature schemes. The space

complexities of different signature schemes, which are compatible with the sam-

pling protocol, at the sensing device and the coordinator respectively, are shown

in Table 4.4, where n is the number of events monitored at one device and n′ de-

notes the maximum value of n among all sensing devices. The space complexity of

DTC at the coordinator is O(B log n′) because there are O(B) events buffered at

the coordinator and in the worse case each event is appended with O(log n′) hash

values for verification. Following the same line of reasoning in Section 4.2.2, the

lack of buffer space in the coordinator may significantly degrade the performance

of DTC. GSC requires O(K) space at the coordinator because the coordinator

maintains the sample block digests for all K devices. Note that space complexity

discussed above is for the verification metadata and the space complexity of the

raw data is always O(B) for all signature schemes.

The communication cost of the sampling protocol is the same as the protocol

proposed by Cormode et al. [87], which is proved to be optimal in terms of

85

Table 4.4: Space Complexity of different signature schemes.

Signature Scheme Device Coordinator
Sign-each O(1) O(B)
DTC O(log n) O(B log n′)
GSC O(1) O(K)

communication cost, which is O(K logK/B σ +B log σ) with high probability.

4.6 Evaluation

Two widely used encryption algorithms, RSA-1024 [152] and DSA-512 [10] are

from OpenSSL library [52] . MD5 [24], SHA-1 or SHA-256 [50] are leveraged as

the message digest function.

4.6.1 Experiment Setup and Methodology

Dataset. The dataset [1] includes a wide variety of 90-day sensing data col-

lected from sensing devices at three homes. 7 sources event data from the dataset

selected to represent the event reports generated at sensing devices: environ-

mental information (including temperature and humidity, etc.) about homeA,

homeB and homeC respectively; electrical data from dimmable and non-dimmable

switches for homeA; two sets of operational data on door and furnace on/off for

homeA; the data from the motion detector located at homeA. Each record is

encoded into 4 bytes: 2 bytes for timestamp and 2 bytes for sensor reading.

Hardware configuration. The prototype emulation experiments are con-

ducted on a quadcore@3.40GHz Linux desktop with 32GB memory and a Rasp-

berry Pi 3 Model B with a quad-core 64-bit ARM Cortex A53@1.2GHz. For all

prototype experiments, only one core is used.

Methodology. The simulation experiment takes the budget limit into consid-

86

eration. Conducting the simulation experiment servers two purposes: 1) Investi-

gate the sampling protocol. 2) More importantly, the data trace of the simulation

experiment will be feed the prototype experiment. For example, the simulation

experiment computes which events should be sent to the coordinator and which

events should be discarded locally. Only the events sent to the coordinator are feed

to the prototype to evaluate signature generation through/speed at full speed. The

prototype experiments are conducted on both the Linux desktop and the Rasp-

berry Pi board to represent IoT device. Unless otherwise explicitly expressed, the

default hardware platform to conduct prototype experiment is the Linux desktop.

The throughput/speed is not tested in real distributed settings, because the data

trace (e.g. sparse event data) may not be able to stimulate the IoT device to

run at full speed. The prototype experiment is not conducted on M3 (the cryp-

tographic operation performances are evaluated on this IoT platform) because it

is hard to replay trace on the M3 board. The prototype experiment first tests

the signing and verifying performance without sampling protocol involved under

varied parameters. Next, prototype experiment is conducted in a setting where

sampling protocol is involved. The second prototype experiment focuses more

on the potential maximal throughput of tested signature schemes, since other

impacting factors are explored in the prior prototype experiment.

4.6.2 Simulation Result

Figure 4.5 illustrates how the sampling protocol proceeds when new events

arrive, where the budget limit is fixed to 500 events. The three lines in Figure 4.5

represent the number of events buffered at the coordinator, sent to the coordinator

by all the 7 sensing devices and monitored at all sensing devices, respectively. The

three lines vary against time in one day (May 1st, 2012). Initially, the number of

87

0 2 4 6 8 10 12

Time (s) 10
4

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

e
v

e
n

ts

Buffered

Sent

Monitored

Figure 4.5: One-day micro-scale experiment.

events is the same for the three lines until the number of buffered events at the

coordinator reaches the budget limit. At this time, approximately half buffered

events are discarded, illustrated as the first vertical drop in Figure 4.5. Events

at the coordinator then are accumulated over time until the next sharp decrease.

This process repeats down to the end of this epoch. It is evident that the space

used at the coordinator never exceeds the budget limit. It is worth mentioning

that the total number of events sent to the coordinator grows slower with the time,

which is a desirable property since the communication cost stays low even if much

more events are monitored. This simulation experiment, to some extent, validates

the theoretical analysis on the communication cost in which the communication

cost only grow logarithmically. From Figure 4.5, totally 1057 events were sent to

the coordinator on May 1st, 2012. On the other hand, there were totally 2572

events monitored on that day.

Next, how different values of budget limit impact the number of events even-

tually saved to the cloud is investigated. Figure 4.6 presents the number of events

saved at the cloud each day from May 1st, 2012 to July 31st, 2012. with differ-

ent values of budget limit. From the description of the sampling protocol, the

88

0 20 40 60 80

Day

0

2000

4000

6000

8000

10000

N
u
m

b
er

 o
f

ev
en

ts

Budget = 500

Budget = 1000

Budget = 4000

Monitored

Figure 4.6: #events saved in the cloud.

final number of saved events is not necessarily equal to the budget limit. Figure

4.6 shows that this sampling protocol utilizes approximately 75% of the budget

on average for different budget values. Figure 4.6 demonstrates that this sam-

pling protocol works correctly in the presence of drastic changes, as the number

of events monitored soars at the 40th day. In this case, the sampling protocol

does not violate the budget constraints. On condition that the total number of

monitored events is smaller than the budget limit, the sampling protocol saves all

of them in the cloud, as is exemplified by the case where budget = 4000 in Figure

4.6.

The underlying foundation of the sampling protocol is that uniformly sampling

is ensured. The importance of uniformity is demonstrated by one real application.

The temperature sensor periodically measures the environmental temperature and

sends the sensing data to the cloud for archiving purpose. The ground truth is

the mean of all temperate sensing data from the temperature sensor. In order to

illustrate the need for uniformity, the average temperature by the first 40 trun-

cated sensing data (which is greater than the number of saved data in the cloud

under most circumstances in this simulation experiment) is shown in Figure 4.7a.

89

0 20 40 60 80 100
−30

−20

−10

0

10

Day

D
eg

re
e

Truncation

Uniform Sampling

(a) Deviation from the ground truth (budget = 500)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Relative error

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Budget = 250

Budget = 500

Budget = 1000

(b) Impact of budget limit

Figure 4.7: Computing average temperature from data saved in the cloud.

Figure 4.7a demonstrates how estimated average temperature deviates from the

true one with respect to using the sampling protocol and using naive truncation,

when the budget limit is fixed to 500. In this example, the truncated data are

measured in the morning. Thus, the average temperatures calculated by truncated

data are smaller than real average temperatures in nearly all days (only one day

is an exception). How the value of budget limit affects the accuracy of estimated

average temperature is evaluated. As expected, a greater value of budget limit

yields more accurate results, as illustrated in Figure 4.7b.

90

4.6.3 Prototype Emulation Experiment Without Budget

Limit

The efficiency of the signature scheme used greatly impacts the adoption of

sensing devices, since most sensing devices are resource-constraint. As an indirect

measurement of power consumption, the speed of signing/verifying under different

parameter settings is evaluated.

The 7 data sources each divided into 90 epochs are the input to the singing

phase of the signature scheme, whose output feeds the verifying phase afterwards.

No budget constraints are involved and therefore all signed events are stored in the

cloud. The parameter space consists of the space available at the signer/verifier

as well as the sampling rate of the data application. The space cost at both the

signer and the verifier to host the events themselves is orthogonal to the choice of

signature scheme. Thus, the space cost in this subsection is in particular referred

to the memory footprint of the signature scheme. It can be implied from the

algorithm descriptions in Section 5.4.5 that the memory usage for all signature

schemes mentioned in this chapter is a multiple of the length of the message digest

function. In order to simplify the presentation, one unit of space cost is referred

as the memory space used for storing one message digest. DSA is applied to the

public encryption/decryption and MD5 is utilized as the message digest function

in this subsection.

First of all, quantitatively comparison on the performance of the signature

schemes is shown in Table 4.2. In this set of experiments, no limits are placed

onto the signer/receiver space usage and the data consumer’s sampling rate is

set to be 50%. The encryption algorithm is RSA-1024 and the hashing function

to compute digest is MD5. Especially, the amortized receiver communication

cost is computed as the #received bytes
#records of interest

. The results are listed in Table 4.5. As

91

Table 4.5: Quantitative comparison of different signature schemes.

Signature
Scheme Encryption time Sender

communication cost
Receiver

communication cost
Sign-each 2.82 ms 132 bytes 132 bytes

Concatenate 0.59 ms 4.43 bytes 8.89 bytes
Hash chaining 0.57 ms 4.43 bytes 8.89 bytes

DTC 0.55 ms 4.45 bytes 4.52 bytes
GSC 0.41 ms 4.43 bytes 4.43 bytes

expected, the amortized time to sign one record much larger for Sign-each method.

Since the signature length of RSA-1024 is 128 bytes, the amortized sender/receiver

communication cost is 128 + 4 = 132 bytes. For all other signature schemes,

their amortized encryption time is similar. For Concatenate and Hash chaining,

the receiver’s communication cost is approximately twice as large as the sender’s

because only half of the received records are of interest.

To focus on the impact of the space issues at the signer side, enough free space

is allocated to the verification process and the receiver takes all data stored in

the cloud. If DTC is used, once the buffer in the signer is full, the root node

in the authentication tree is signed and the remaining nodes are flushed to the

cloud to spare space for upcoming events. Thus, lacking space in the signer may

lead to multiple expensive encryption operations in one epoch. Furthermore, the

same number of decryption operations are also needed at the verifier side. On the

other hand, the available space affects the resolution of the sample blocks, rather

than signing speed. Only one encryption operation is performed in a single epoch.

Figure 4.8 illustrates the signing/verifying performance comparison between GSC

and DTC under varied space available at the signer. Both signing and verifying

performance of DTC are capped by available memory at the signer, whereas GSC

runs at full speed all the time.

The sampling rate at the receiver side also affects the verifying performance

92

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3
x 10

6

Space available at the device

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

GSC sign

GSC verify

DTC sign

DTC verify

Figure 4.8: Throughput comparison

1 2 3 4 5 6 7 8 9 10 11 12
104

105

106

107

Space available at the device

E
ve

nt
s

pe
r

se
co

nd

GSC

1 2 3 4 5 6 7 8 9 10 11 12
104

105

106

107

Space available at the device

E
ve

nt
s

pe
r

se
co

nd

DTC

1% 10% 50% 90% 100%

Figure 4.9: Verifying throughput comparison with different sample rate.

93

for both GSC and DTC, because it directly determines the number of events to

share the cost of encryption/decryption, as depicted in Figure 4.9, where higher

sampling rate yields better verifying throughput. Another observation from Fig-

ure 4.9 is that sampling rate also impacts GSC in terms of the space needed in

the signer to achieve the maximal verifying throughput. Recall that the available

space in the signer defines the resolution of sample blocks. The unused but veri-

fied events decrease as the resolution of the sample block improves. Suppose the

receiver asks for 10% data in the cloud. In the case where there are 2 units of

space in the signer, the receiver fetches and verifies 30% unused data because the

finest sample block contains 50% data. If the available space increases to 3 units,

the smallest sample block consists 25% data and thus the unused data shrinks

to 15%. The time wasted for unused data becomes increasingly prominent when

the sampling rate decreases. Therefore, smaller the sampling rate, more space

required at the signer. Nevertheless, as small as 7 units of space are enough to

support maximal verifying throughput when the sampling rate is 1%.

Moreover, the verifying throughput varies with the space allocated to cache

verified nodes in the authentication tree for DSC. In the current prototype imple-

mentation, the verifier stops caching new verified nodes if the buffer is full. As

expected, the performance acceleration is more evident with more cached verified

nodes, as illustrated in Figure 4.10. Before any of the three lines in Figure 4.10

reaches full speed, for a given fixed space at the verifier, the verifying throughput

is higher when there is less space available in the signer. This is because the lo-

cality of the cache nodes favors higher refreshing frequency. When smaller space

is available at the signer, the number of jointly signed events is less and thus the

cached nodes refresh quicker.

This chapter also measures time to build the Merkle tree and to generate

94

0 5 10 15 20 25
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

6

Space available at the data application

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

Sender space = 8

Sender space = 9

Sender space = 10

Figure 4.10: DTC reveiving throughput

packets for K-degree DTC. In this set of experiments, various synthesized data

traces feed the machine running K-degree DTC. MD5 is used as the cryptographic

hash function. For each trace, the experiment runs for 10 times. Figure 4.11

depicts the medians of per-packet amortized time consumption for Merkle tree

building and packet generation. In terms of per-packet time to build the Merkle

tree of a certain degree, it remains stable with the varying number of events, which

conforms the time complexity analysis in Section 4.5.1. In Figure 4.11, the lines

lightly decline because more events share the initial setup overhead. It is faster

to build the K-degree Merkle tree when K = 4 than when K = 2 and K = 3,

even though they all share one asymptotic time complexity. The performance

gap is mainly due to the asymptotic time complexity of hash functions cannot

describe the time consumption in K-degree Merkle tree building accurately. In

Section 4.5.1, it is assumed that the time complexity of the cryptographic hashing

function is O(l), where l is the length of the input string. However, the actual

time consumption is proportional to the number blocks the input data are chopped

into. For MD5, the block size is 512 bits which can host 4 digests. As a result,

computing an internal node of a 4-degree Merkle tree is not more expensive

than computing a 2-degree Merkle tree internal node in terms of performing the

95

Table 4.6: Per-packet Generation Time with Fixed Height h = 3

Degree (K) 500 600 700 800 900 1000
DTC (µs) 4.219 5.035 5.933 7.078 7.925 8.800

hash function. Building a 4-degree Merkle tree requires less hashing operations

compared to the other two, hence smaller per-packet amortized time to build the

Merkle tree. The per-packet generation time grows with more events as illustrated

in Figure 4.11. This is expected from the theoretical analysis which indicates that

the time complexity is O(logk n), where n is the number of events signed under

a same Merkle tree. From Figure 4.11, 4-degree Merkle tree is more efficient in

generating the packet due to the fact that appending multiple hashes from the

same level in the Merkle tree in batch is efficient. The per-packet generation time

with fixed height h = 3 is evaluated to validate its asymptotic time complexity.

As shown in Table 4.6, the packet generation overhead is more prominent with

larger tree degree.

4.6.4 Prototype Experiment in Raspberry Pi

Experiments are conducted on a Raspberry Pi 3 Model B board to compare

the power and time consumption of GSC and DTC. The two metrics are especially

important for resource-constrained IoT devices. The experiment setup is exactly

the same as the PC experiment which has been described in Section 4.6.3, except

that the program is running in one Raspberry Pi instead of a more powerful PC.

An inline power meter measures he power consumption overhead to finish the

asigning process. The voltage remains at 5.1V all the time but the current jumps

from 0.23A in the idle state to 0.37A when the signing program starts. In the

96

0 1 2

Event Number 10
6

0.06

0.08

0.1

0.12

0.14
T

im
e
 (

s
)

Degree = 2

Degree = 3

Degree = 4

(a) Amortized building time

0 1 2

Event Number 10
6

0.35

0.4

0.45

0.5

0.55

0.6

T
im

e
 (

s
)

Degree = 2

Degree = 3

Degree = 4

(b) Amortized packet generation time

Figure 4.11: K-degree DTC Merkle tree exp.

97

1 2 3 4 5 6 7 8 9 10 11 12

Space available at the data application

0

0.5

1

1.5

2

2.5

3

E
v
e

n
ts

 p
e

r
s
e

c
o

n
d

10
5

GSC sign

DTC sign

Figure 4.12: Signing throughput at RPi

experiment, the energy consumption due to the signing program is calculate as

Esign = Etotal − Pidle × time (4.4)

where Etotal and time can be read from the power meter. Pidle is computed as

5.1V × 0.23A = 1.18W . As shown in Section 4.6.3, the signing speed for DTC is

limited by the available memory space. The situation is also true on Raspberry

Pi where the signing speeds for both GSC and DTC are about 10 times slower

than those in the PC experiment. Figure 4.12 illustrates the signing speed. When

the program is running, the voltage and current remain stable, hence the power.

Therefore, the power consumption is proportional to the program running time.

For DTC, the limited memory space elongates the programming running time,

leading to higher power consumption, as depicted in Figure 4.13.

4.6.5 Prototype Experiment with Sampling Protocol

From the prototype experiment without budget limit, it seems that the space

requirement, log n units, at the signer is trivial, where n is the number of event

reports generated in one sensing device. If the sampling protocol is utilized, the

98

1 2 3 4 5

Space available at the device

0

50

100

150

200

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Figure 4.13: DTC energy comsumption

Budget 500 1000
Signature 115821 186619
Verify 35038 70296

Table 4.7: Simulation results regards the number of events.

signing/verifying performance is likely to be limited by the space available at

the coordinator. The spacial cost to host auxiliary authentication information is

B log n, where B could be very large. Suppose the space available at the coordi-

nator is C. It is equivalent to the situation where there are C
B
units of space in the

signer. Since Figure 4.8 has already illustrated the impact of space in one single

signer, how signing/verifying throughput changes with varied available space in

the coordinator is not shown for brevity.

The evaluation focuses more on the potential maximal throughput of tested

signature schemes. Suppose there is enough space at both the signer and verifier

sides. The events sent to the coordinator are used for signing performance evalu-

ation whereas the verification algorithm is fed by the events saved at the cloud.

The number of events involved is listed in Table 4.6.5.

Figure 4.14 shows the throughput comparison between GSC and DTC. Since

each day is one epoch and there are only 7 sensing devices, there are only 90 ×

99

7 = 630 encryption/decryption operations for both GSC and DTC. For all the

experiments conducted in this subsection, GSC is faster than DTC in terms of

both signing and verifying. This is because processing an event in GSC is simpler

than tree traversal in DTC, but not more hashing operations. This conjecture

can be verified by analyzing the performance comparison in Figure 4.14. The

performance gap between GSC and DTC becomes more prominent when quicker

message digest function is applied. For example, the throughput gap increases

from 0.35M events per second to 0.7M events per second if MD5 replaces SHA256

in the prototype emulation experiment using DSA signature and the budget limit

is 500. The throughput decreases when the value of budget limit is reduced as

implicated in Figure 4.14, because the same number of encryption/decryption

operations are amortized to fewer events.

4.7 Conclusion

This chapter first summarizes the new challenges of the IoT data communica-

tion framework with authenticity and integrity and argue that existing solutions

cannot be easily adopted. This chapter then illustrates the design of a protocol

suit to address these challenges. The sub-systems in this protocol suit symbioti-

cally operate together and this protocol suit is efficient in terms of space and time,

as is validated by extensive simulation and prototype emulation experiments.

100

M
D

5
S

H
A

1
S

H
A

25
6

0

0.
51

1.
52

2.
53

x
10

6

Events per second

D
S

A
 s

ig
na

tu
re

M
D

5
S

H
A

1
S

H
A

25
6

0

0.
51

1.
52

2.
53

x
10

6
Events per second

R
S

A
 s

ig
na

tu
re

M
D

5
S

H
A

1
S

H
A

25
6

0

0.
51

1.
52

2.
53

x
10

6

Events per second

D
S

A
 v

er
ifi

ca
tio

n

M
D

5
S

H
A

1
S

H
A

25
6

0

0.
51

1.
52

2.
53

x
10

6

Events per second

R
S

A
 v

er
fic

at
io

n

G
S

C
, B

ud
ge

t =
 5

00
D

T
C

, B
ud

ge
t =

 5
00

G
S

C
, B

ud
ge

t =
 1

00
0

D
T

C
, B

ud
ge

t =
 1

00
0

F
ig
ur
e
4.
14
:
T
hr
ou

gh
pu

t
co
m
pa

ris
on

w
ith

di
ffe

re
nt

pa
ra
m
et
er

se
tt
in
gs
.

101

Chapter 5

An IoT Data Management

System for Verifiable Range

Queries

This chapter presents VERID, a verifiable IoT data management protocol suit

that provides data consumers the ability to retrieve data on customized searching

criteria. This feature is not supported in both DTC and GSC described in Chapter

4.

VERID supports many SQL-style range selection and aggregation operations

including AVG, MAX, MIN, COUNT, SUM and MEDIAN.

1) Selection (σ). σC(r) = {t ∈ r|C(t)}. A selection operation σC(r) over

relation r returns all the tuples in the relation r meeting the condition C. C can

be used to specific the range of a range query on indexed attributes (dimensions).

2) Aggregate (G). Aggregate function f maps a set of values into a single

value. Common aggregate functions include AVG, MAX, MIN, COUNT, SUM.

In addition, VERID supports MEDIAN and its generalization p-th percentile.

102

To satisfy the requirements of IoT applications, VERID enables a number of

SQL-like ranged selection and aggregate queries of sensing data while imposing

minimal overhead for resource-constraint IoT devices.

The general problem of verifiable database outsourcing has been studied for

over a decade [140, 110, 180, 179, 120, 81, 61]. A common approach is that a data

publisher also uploads an Authentication Data Structures (ADS) to the cloud and

keeps updating it. An ADS is a data structure signed by the IoT device using

its private key. When a Data Consumer (DC) receives the data from the cloud,

it also gets a number of Verification Objects (VOs) which are constructed by the

cloud from the ADS and can be used to verify the data correctness. However,

existing solutions are not fully suitable or optimized for the IoT framework. The

hardware constraints, deployment features and application requirements of IoT

demand a new design of verifiable data management.

Computation efficiency. IoT devices are usually limited in computation

power. In addition energy efficiency may be another top concern. Hence solutions

based on computation-intensive cryptographic operations [180, 179, 19] are not

appropriate for IoT applications.

Memory efficiency. IoT devices are constrained by memory capacity as

well. Solutions based on multi-way trees [120, 81] are not efficient on disk-less

IoT devices with limited available memory. For dynamic database outsourcing

schemes using memory-friendly ADSes [140, 180], these ADSes however grow fast

with #update. When the ADS exceeds memory limit, it is signed and then flushed

to the cloud. In this case a query may result in a jumbo VO constructed from

an overwhelming number of ADSes. vSQL [179] uses an information-theoretic

interactive proof system to achieve small memory footprint. However it assumes

the data publisher and consumer are the same device hence vSQL is not applicable

103

to IoT environments.

Communication efficiency. Communication of IoT devices is often more

power-consuming than computation by orders of magnitude [93, 96]. There-

fore, the sizes of updates from IoT devices to the cloud is an important metric.

Multiway-tree based schemes such as AAR-tree [120] configure the ADS node size

to that of a page. When the IoT device updates its ADS, entire stale nodes (nodes

different from the previous version) are transmitted to the cloud even with a small

modification, which are in large size.

Multiple data publishers. Multiple homogeneous IoT devices being de-

ployed to collectively monitor the physical environment is an unique feature of

IoT. These homogeneous IoT devices form a task group. For example, one dataset

[55] provides the outdoor temperature of areas in Rome collected by 289 taxicabs

over 4 days. Existing data outsourcing methods do not exploit any opportunities

from this unique feature, spatial locality.

Multi-dimensional range query. Many IoT devices are equipped with

multiple sensors and IoT data analytics often rely on range queries, which may

be in multi-dimension. Most existing IoT sensing datasets are multi-dimensional,

such as those in [45, 1, 43, 18, 9]. For example, querying the data collected during

8-9AM and reporting temperature in 30-40◦C is a two-dimensional range query.

Massive data. Massive data are generated over time from multiple devices.

Hence storing and retrieving massive data and the corresponding ADSes in the

cloud should be scalable. Some proposed schemes [180, 179] do not take scala-

bility into account and the large in-memory ADSes incur both enormous capital

expenditure and operating cost.

Monotonically increasing timestamps. Most IoT data carry timestamps

(called ‘epoch’ in this chapter) that are monotonically increasing. The ADS may

104

require careful re-design to avoid performance downgrading under this situation,

such as those using unbalancing trees, e.g., VKD-tree [81]. Note the timestamp

may not be the time dimension indexed for range queries. For example, analyt-

ics may be more interested in the time of 24 hours rather than the timestamps

including dates and years.

5.1 Existing Solutions

Verifiable database outsourcing have been studied for over a decade and two

broad categories of approaches are exerted towards this goal. General verifiable

delegation of computation [83, 99, 67, 88, 160, 19] can handle any query on out-

sourced data which requires the data owner to compile the entire dataset into

an arithmetic circuit. Circuit-based systems incur excessive proof construction

overhead. A very recent work vSQL [179] improves the performance of this ap-

proach by combining an information-theoretic interactive proof system [86] and a

polynomial-delegation protocol [142]. However, the overhead of vSQL is still high

for practical uses.

On the other side, numerous prior works aim at verifying one or multiple

specific data query types, including range query [180, 141, 140, 61, 81], data

aggregation [120, 110], join [176, 181, 140], search over encrypted data [173], etc..

VERID falls into this category. Table 5.1 shows an qualitative comparison between

representative database outsourcing schemes.

Chained Signature Approach [140]. The ADS is an authenticated and

unforgeable linked list ordered by one dimension (such as time, temperature) over

the dataset where each node contains the cryptographic hashes of its predecessor

and successor. At query execution, all nodes falling in the query range are lined up

to form the VO. The data consumer verifies authenticity and completeness of the

105

T
ab

le
5.
1:

Q
ua

lit
at
iv
e
co
m
pa

ris
on

of
re
pr
es
en
ta
tiv

e
da

ta
ba

se
ou

ts
ou

rc
in
g
sc
he
m
es
.
#
:
effi

ci
en
t;

:
in
effi

ci
en
t;
G#
:

in
effi

ci
en
t
in

so
m
e
sit

ua
tio

ns
/m

et
ic
s.

Sc
he

m
e

C
at
eg
or
y

M
em

or
y

C
om

pu
ta
ti
on

Lo
g
A
D
S
up

da
te

M
ul
ti
-d
im

en
si
on

C
om

m
en
ts

B
A
S
[1
40
]

Si
gn

at
ur
e-
ba

se
d

G#
#

3
7

in
effi

ci
en
t
fo
r
ag
gr
eg
at
e

A
PS

-t
re
e
[1
10
]

Pr
efi

x
Su

m
#

G#
3

3
co
ar
se

gr
an

ul
ar
ity

In
te
gr
iD

B
[1
80
]

Se
t
op

er
at
io
n

3
3

cr
yp

to
he

av
y

vS
Q
L
[1
79
]

C
irc

ui
t-
ba

se
d

#

3
3

co
m
pu

ta
tio

na
li
nt
en

siv
e

A
A
R
-t
re
e
[1
20
]

M
ul
tiw

ay
-t
re
e

G#
#

3
3

la
rg
e
V
O

siz
e

V
K
D
-t
re
e
[8
1]

B
in
ar
y-
tr
ee

G#
#

7
3

un
ba

la
nc

ed
tr
ee

C
or
re
ct
D
B

[6
1]

H
ar
dw

ar
e-
ai
d

#
#

7
7

tr
us
te
d
ha

rd
w
ar
e

V
ER

ID
(t
hi
s
w
or
k)

B
in
ar
y-
tr
ee

#
#

3
3

ho
lis
tic

de
sig

n
fo
r
Io
T

106

results by sequentially checking the signatures of the nodes in the VO. For data

publishing, the newly inserted node along with its two neighbors are updated, re-

signed and then uploaded to the cloud by the data publisher. Chained signature

approaches perform three signing operations per data insertion which would be

inefficient on IoT devices. This approach does not support aggregate queries such

as SUM or multi-dimensional queries.

Prefix Sum. APS-tree [110] uses Prefix Sum for efficient validation of aggre-

gate operations, specially on SUM. The basic idea is to pre-process the data at

the data publisher’s side such that the aggregated value could be easily assembled

by those pre-processed values. Compared to signature-based approaches, Prefix

Sum reduces the communication cost of aggregate queries to O(1). Prefix Sum

however suffers from inefficient update: A single update may trigger conducting

pre-processing over the whole dataset in the worst case.

Authenticated Set Operations. Some prior works [180, 141] achieve au-

thentication of set operations including union, intersection, and set-difference,

which are powerful building blocks to compute multi-dimensional range queries.

However they are very inefficient in computation. Each data publisher needs 1)

computing q exponents with up to the sqth powers where s is secret value and q

is a big integer, and future ranged queries are limited to those whose results have

cardinality less than q; 2) O(log |r|) encryptions per insertion (|r| denotes #rows

of the relation).

Tree-based Approaches. Tree-based approaches employ Merkle Hash Tree

(MHT) [128] or its variants (e.g. Merle B+-tree [119, 103], Merkle R*-tree

[176, 120]) as the core ADSes. During a query phase, the cloud traverses the tree

to identify the query results and construct the tree traversal path as the proof to

the data consumer. Based on the received proof information, the data consumer

107

reconstructs and replays the path to verify the correctness of the query results.

Most tree-based approaches employ disk-based multi-way search tree such as B+

tree and R* tree as the indexing structure. The node size of one Multiway-tree

is configured to that of a page whose minimum size is 4KB on most architec-

tures. When the IoT device updates the multi-way tree, the entire stale nodes are

transmitted to the cloud even only a small fraction inside a stale node is modified.

Trusted Hardware Aided Approaches. CorrectDB [61] and EnclaveDB

[82] rely on the specialized trusted hardware Intel SGX [51] inside the cloud to

conduct the heavy-lifting tasks in database outsourcing. Trusted hardware how-

ever can be attested by only one party. For IoT applications, it is impractical to

pair every IoT device with one SGX in the cloud.

5.2 System Design

5.2.1 Overview

This chapter first dissects VERID into steps and depicts the design overview

in Figure 5.1. Multiple IoT devices are sending data to the cloud simultaneously,

but only one IoT device is demonstrated in the picture for ease of presentation.

Let all IoT devices collaboratively perform a monitoring task be defined as a task

group. All data from one single group follow a common schema.

Authentication Data Structure (ADS) is an indexing data structure whose op-

erations can be carried out by an untrusted cloud and the result could be verified

by data consumers. Each IoT device maintains and updates one ADS in accor-

dance with the sensor readings during its entire life cycle. In VERID, the ADS is

a new data structure PrefixMHT, which is essentially a binary search tree (BST)

and can be authenticated similar to the Merkle Hash Tree (MHT) [128] (see de-

108

St
ep

De
sc
rip

tio
n

1
Se
ns
or
	in
se
rt
io
n

2
Bu

ild
AD

S	
up

da
te

3
Si
gn

w
ith

	se
cr
et
	k
ey

4
Se
nd

	si
gn
ed

AD
S	
up

da
te
	to

	c
lo
ud

5
U
pd

at
e
AD

S	
m
et
ad
at
a	

6
St
or
e	
AD

S	
up

da
te

in
	B
+	
tr
ee

7
Se
nd

qu
er
y	
to
	c
lo
ud

8
Re

tr
ie
ve

ro
ot
	n
od

e	
to
	st
ar
t	s
ea
rc
h

9
Tr
av
er
se

lo
gi
ca
l	A

DS
	+
	b
ui
ld
	V
O
	

a
Se
nd

VO
	to

	d
at
a	
co
ns
um

er
b

Ve
rif
y
VO

	si
gn
at
ur
e	
w
ith

	Io
T
pu

bl
ic
	k
ey

c
Re

pl
ay
	V
O
	

…

D
ev
ic
eI
D

Ep
oc
h

Ro
ot

N
od

e
Si
gn

at
ur
e

…
…

…
… B+
Tr
ee

Lo
gi
ca
l

AD
S

Ep
oc
h
=
t

AD
S

AD
S $
%
&

AD
S $

Io
T
de

vi
ce
	sk

VO

Io
T
de

vi
ce
	p
k

Io
T
De

vi
ce

Cl
ou

d
Da

ta
	C
on

su
m
er

1

2
5

4

7

8

a

AD
S	

U
pd

at
e

3

6

b

c

9

AD
S	
M
et
a	
Da

ta

F
ig
ur
e
5.
1:

V
ER

ID
de
sig

n
ov
er
vi
ew

109

tails in Section 5.2.3). Therefore, VERID falls in the broad category of tree-based

method. Upon new sensor readings, the IoT device inserts the value into Pre-

fixMHT as a normal BST insertion except that all visited nodes are marked as

stale. (Step 1). VERID updates the latest ADS to the cloud at a fixed time inter-

val called epoch. Therefore, each PrefixMHT node includes an epoch attribute to

indicate the epoch when the node is updated. The epoch attribute together with

the node value can uniquely identify a PrefixMHT node over time and thus are

collectively defined as the NodeID which is the key enabler for VERID to perform

queries on historical data. At the end of each epoch, the IoT device updates the

digests of the PrefixMHT by recomputing the hash of stale nodes from bottom up

like all other MHT variants. As such, the hash of the root digest summarizes the

whole PrefixMHT and therefore is also referred as the digest of the PrefixMHT.

(Step 2). Afterwards, the IoT device signs the root node using its own private

key (Step 3). Thanks to the tree structure of the PrefixMHT, the IoT device

sends to the cloud only the stale nodes along with the new signature instead of the

entire PrefixMHT (Step 4). Since BST insertion starts from the root, the root

node for every epoch is always stale and included in every PrefixMHT update.

To maintain the tree structure when serializing PrefixMHT nodes, the NodeIDs

of both left and right children are explicitly included in each node. Note it is

possible that one or two children are attributed to previous epochs.

When the PrefixMHT update is received, the cloud first stores the root NodeID

as well as the signature in one structure for maintaining ADS Meta Data table.

ADS Meta Data are used at the data query procedure described later. (Step

5). All other parts of the ADS update, i.e. the stale nodes, are stored at the

leaf nodes of one B+ Tree, which indexes PrefixMHT nodes by their NodeIDs.

Since the cloud has all the incremental updates history (i.e. PrefixMHT updates

110

from all proceeding epochs), it is able to reconstruct the complete PrefixMHT of

any epochs hitherto from PrefixMHT nodes stored in the B+ tree. As a result,

multi-version logical PrefixMHTs embed in the B+ tree to answer data queries.

Steps 1-6 run repetitively during the whole lifecycle of the IoT device. On the

other hand, one round of Steps 7-c are stimulated when the data consumer issues

an data query to the cloud. The query may span multiple epochs across the IoT

sensing devices. The same search criteria will be applied to all IoT devices in the

task group (Step 7). Upon receiving and parsing the data query request, the

cloud uses (DeviceID, epoch) as the key to retrieve from ADS Meta Data table

the root NodeIDs and the signatures of interest (Step 8). Given the root node,

the logical PrefixMHT, basically a binary search tree, is traversed according to

the search criteria specified by the data consumer. The PrefixMHT nodes on the

search path in the logical PrefixMHTs are assembled as an unforgeable Verification

Object (VO) used by the data consumer later to verify the query result: The VO

consists of one or multiple partial PrefixMHTs which have already signed by the

IoT device (Step 9). The query result, together with the VO and associated

signatures, are returned to the data consumer (Step a). Following the signatures

verification with the public key of the IoT device (Step b), the data consumer

replay the searching path embedded in the VO to verify the query result finally

(Step c).

The rest of this section elaborates on the design of the PrefixMHT for VERID

as well as the concrete cloud storage solution.

5.2.2 Design of Prefix Tree

This subsection introduces a new design called Prefix Tree which enables effi-

cient aggregation queries. Prefix Tree are motivated by the idea from Prefix Sum

111

[110] but are further extended to handle dynamic updates. This subsection then

describes an ADS which embeds Prefix Tree in Merkle Hash Tree (MHT) called

PrefixMHT.

Prefix Sum [110] performs the SUM operation over static dataset with low

overhead. Given an integer array nums, Prefix Sum can efficiently find the sum of

the elements between any two indices. The basic idea is to pre-process the array

such that range sum query could be easily assembled by pre-processed values. The

prefix sum PS of array M is an array and each element is: PS [i] = ∑i
j=0M [j].

Given the prefix sum, the range sum can be computed as: Sum([l, h]) = PS[h]−

PS[l], where l and h denote the exclusive lower bound and inclusive upper bound

of the range query respectively. To apply Prefix Sum in IoT applications to

answer the question like "show the number of temperature readings between 5

and 13 degree", the sensor readings are bucketized and an array M is initiated to

maintain the number of readings in each bucket. Obviously the number of buckets

hence space complexity determines the query precision. More significantly, Prefix

Sum suffers from inefficient update: A single update may trigger conducting pre-

processing over the whole dataset in the worst case. Additionally, Prefix Sum

wastes considerable space when the array itself is sparse, which is a common

situation in IoT applications if the distribution of some sensor readings are highly

skewed and the values are highly concentrated.

Prefix Tree thus is proposed to handle the dynamic updates while achieving

the efficiency on aggregation queries. Prefix Tree does not suffer from space-

precision dilemma. Each interval node of Prefix Tree maintains four attributes:

key, cardinality, sub-tree count and sub-tree sum. The key attribute stores the

searchable sensor reading value (e.g. temperature) and is used as the search key.

All data items are sorted along the tree based on the key attribute. All future

112

range and aggregate queries should be on the key attribute dimension. How this

method can be extended to support multi-dimensional range queries is presented

in Section 5.2.6. Cardinality refers to #elements having the associated value.

Sub-tree count and sum summarize the corresponding sub-tree (including the

node itself) which are analogous to the element of Prefix Sum array PS. Since

the operations of the both aggregated values are similar, the following discussion

concentrates on sub-tree count only. Prefix Tree enables efficient prefix count

queries, like "show the number of temperature readings below 13 degree". Figure

5.2 gives an illustrative example to accomplish the query "SELECT COUNT(*)

FROM value <= 13". In Figure 5.2, the two numbers inside each node attribute to

the value and its cardinality respectively. For instance, 10(3) inside N01 indicates

three instances of value 10. The numeric aside the link summarizes the total

number of instances under the subtree: the sub-tree count attribute of lower node

of this link. The prefix-count query starts from the root and traverses the Prefix

Tree like a normal BST. Count is initialized to 0 in the beginning. On delving

into the right child, count is increased by the difference of the sub-tree count of

the parent node and that of the right-child node. Take Figure 5.2 for instance. On

traversing from Nroot to N1 the count is increased from 0 to 14− 7 = 7, meaning

that number of instances equal or smaller than 11 is exactly 7. On traversing from

N1 to N10, the count does not change. When the leaf node N10 is reached, its

cardinality is then added to the count if its value equals to the higher searching

bound. In particular, the query result of the aforementioned example is 7+2 = 9.

Range sum query can be conducted similarly (sub-tree sum is not shown in Figure

5.2).

Upon insertion, only nodes on the path from the newly inserted node to the

root are updated. Therefore, the insertion complexity is O (log n), where n is

113

N0

Nroot

N00 N01
1 3

N1

N10
2 2

16(3)

13(2) 19(2)

11(2)
5 7

14

Q

9(1)

3(1)
N11

9(3)

Figure 5.2: Intuition on PrefixTree

H H HIV

N0

Nroot

N1

N00 N01 N10 N11

Z0 Z01 Z1

…

Figure 5.3: Illustration of PrefixMHT

#nodes in the Prefix Tree. Prefix Tree is far more efficient than Sum Prefix in

dynamic settings.

5.2.3 Design of PrefixMHT

PrefixMHT is an ADS based on Prefix Tree. PrefixMHT allows a Prefix Tree to

be authenticated in a fashion similar to a Merkle Hash Tree (MHT). PrefixMHT

ensures query correctness of both selection and aggregation queries.

114

Each PrefixMHT node is composed of the following attributes: key, cardinality,

sub-tree count, sub-tree sum, epoch, lchild NodeID, rchild NodeID, hash accumula-

tor, lchild hash and rchild hash. The first four attributes are consistent to those of

the Prefix Tree. The epoch attribute indicating when the node is updated which

is indispensable to reconstructing multi-version ADSes in the cloud. In addition,

PrefixMHT node stores the NodeIDs of its two children to enable logical tree

traversal in the cloud.

Another data structure included in PrefixMHT is called a hash accumulator.

The hash accumulator is associated with the Prefix Tree, which is used for authen-

ticating the non-searable part of a sensor reading for every epoch. For example,

an acoustics sensor measuring ambient background noise may send both the raw

audio signal and the associated noise level to the cloud for storage. In this case,

only the noise level can be indexed and authenticated through the Prefix Tree.

Each raw signal is associated with a searchable key indexed by the Prefix Tree.

To this end, VERID utilizes Merkle-Damgård construction to compute running

digests of non-searchable raw signals for authentication. The running digests will

be stored as the hash accumulator attribute in the PrefixMHT nodes. At the

end of each epoch, the IoT device sorts all raw signals generated at that epoch in

search key order and then constructs one hash chain in Merkle-Damgård fashion:

The hash accumulator is computed by taking the hashing of the concatenation of

its intermediate upstream hash accumulator and the hash of corresponding raw

signal. The example in Figure 5.3 demonstrates one hash chain consisting of three

raw signals, where Initial Vector (IV) is the hash chain starting point that has

been hard-coded in the program. Compared to stand-alone hashes for authenti-

cating individual raw signals, hash accumulators curtail verification objects (VO

s) for verifying range selection queries. Suppose the range selection query for a

115

certain epoch returns raw signals chained consecutively in the Merkle-Damgård

construction. The authenticated hash accumulator corresponding to the close up-

per query bound on the hash chain, accompanied by unauthenticated open lower

bound, suffices to verify the query result. For example, in order to authenticate

the raw signals S01, S1 associated with N01 and N1 respectively, the verifier checks

H
(
H
(
Z0||H(S01)

)
||H(S1)

)
?= Z1.

In order to explain lchild (rchild) hash, the concept of node hash is introduced.

Node hash encompasses all aforementioned attributes in the PrefixMHT node and

is used for authentication at node level. The attribute lchild (rchild) hash is sim-

ply the node hash of its left (right) child. Therefore the node hash recursively

summarizes the whole subtree. The root node hash is referred as the digest of

the whole PrefixMHT and is signed by the private key to create the digital signa-

ture. The authentication of PrefixMHT can therefore be conducted in a top-down

approach starting from the root node.

The IoT device does not create a PrefixMHT from scratch for every individual

epoch. PrefixMHT incrementally accumulates cardinality, sub-tree count and sum

over time. However, the hash accumulator is computed on a per-epoch basis. The

directly impacted nodes due to insertion and nodes on their paths to the root are

collectively defined as stale nodes because they all contribute to the incremental

update. The prefix count PC[k, t], for instance, can be interpreted as accumulated

#insertions whose key values are smaller than or equal to k from epoch 0 to epoch

t. As such, the answer for range count across multiple epochs are modified to:

Count([l, h], [tb, te])

=PC[h, te]− PC[l−, te]− PC[h, tb − 1] + PC[l−, tb − 1]
(5.1)

The two inclusive key search bounds are denoted as l and h. Let tb and te be

116

the inclusive start and end epochs. These four parameters collectively defines the

search predicate. The correctness of Eq. (5.1) can be easily checked by a Venn

diagram.

Property 1. When a data consumer (DC) queries k, the cloud needs to

find the PrefixMHT node hosting the largest key value that is smaller than or

equal to k. Recall that PrefixMHT was constructed by the data publisher (i.e.

IoT device in this chapter) and its root was signed using the private key of the

publisher. PrefixMHT is a binary search tree such that the cloud can easily find

the PrefixMHT node hosting the largest key value that is smaller than or equal to

k by traversing the PrefixMHT. The path from that node to the root is called the

authentication path. Given all PrefixMHT nodes on the authentication path, the

verifier (i.e. data consumer) replays the tree traversal and checks the node hash

in a top-down approach. The PrefixMHT signature allows the verifier to detect

any tampered node. Hence the DC can successfully verify that the result

of querying k is the PrefixMHT node hosting the largest key value that

is smaller than or equal to k.

Property 2. When a data consumer (DC) queries k for a specific

epoch, it can verify the position of the first node in the hash accumu-

lator whose key is smaller than or equal to k. For a particular epoch, all

stale nodes is a subgraph of the complete PrefixMHT which also forms a BST.

Therefore the conclusion is implied by Property 1.

Proposition 5.2.1. PrefixMHT ensures query correctness of both selection and

aggregation queries.

Demonstration of the proposition. For selection queries from a DC, the

authenticity, integrity, and correctness of the results returned by the cloud can be

verified by the hash accumulators corresponding to the boundary values, which can

117

be authenticated through the Prefix Tree embedded in the PrefixMHT according

to Property 2. One selection query spanning multiple epochs can be broken down

into multiple per-epoch queries and be verified individually.

For aggregated queries, range COUNT (SUM) can be assembled by four prefix

counts (sums) as shown in Eq (5.1). The prefix counts (sums) can be authen-

ticated based on Property 1. COUNT and SUM are authenticated directly by

PrefixMHT and calculating AVG requires one additional division operation. The

data consumer can validate MAX/MIN result by issuing another COUNT query

where the range exceeds the returned MAX/MIN value. If the result of the second

query equals 0, the MAX/MIN value is finally validated. Authenticating MEAN

and general p-th percentiles follows this two-stage process as well.

5.2.4 Efficient PrefixMHT Update

Upon the end of an epoch, the IoT device builds the hash chain and updates

PrefixMHT according to the sensing data generated at that epoch. The root

node is always marked with the new epoch even if no insertion occurs in that

epoch; otherwise the cloud may discard data without being detected. The hash

of the root node summaries a snapshot of the whole PrefixMHT, which is signed

at every epoch by the IoT device using its own private key. The signing proce-

dure is discussed in Section 5.3. Stale nodes and the PrefixMHT signature are

transmitted in JSON format [16], together with the raw signals if there is any, to

the cloud for storage. In IoT settings, communication is more energy-consuming

than computation [93, 96]. By leveraging JSON, unassigned attributes such as

the hash accumulator can be encoded succinctly to reduce communication cost.

AVL tree is chosen for self-balancing among possible methods, according to the

results shown in Section 5.4.4.

118

5.2.5 Storage in the Cloud

As shown in Figure 5.1 PrefixMHT updates are stored at the leaves of a B+

tree in the cloud. Most prior tree-based methods let the cloud create individual

B+ trees, one for each IoT device, since different IoT devices host their own pri-

vate keys. VERID however takes the opposite way: PrefixMHT updates from

the a same task group are stored one per-group B+ tree. In the per-group

B+ tree, a PrefixMHT node in an update is uniquely identified by a tuple of

(DeviceID, key, Epoch), where DeviceID is augmented upon the node arriving

at the cloud and key is the key field of the PrefixMHT node. How the updates are

sorted in the B+ tree have a profound impact on the I/O cost. Through excessive

experiments that the three attributes prioritized as Epoch > key > DeviceID ex-

hibits the best I/O performance. Basically, Epoch preserves least locality because

the query can specify arbitrary starting and ending epochs. On the other hand,

since the same query range is applied to all IoT devices in the same task group,

clustering together all PrefixMHT nodes associated with the same key values ex-

ploits the spatial locality. Thus, DeviceID possesses the lowest priority among

the three constitutional attributes of the node identification.

Meanwhile, raw signals are stored at per-device Binary Large OBject (BLOB)

files to preserve locality: Range selection queries demand consecutive sensor read-

ings meeting the search criteria. Since the raw signals have already been sorted

by the IoT device before transmission, newly arrived raw signals are directly ap-

pended to the BLOB file. In-file offsets of different sensor readings are saved at

the corresponding PrefixMHT nodes to index the BLOB file.

Buffer management is an integral part of VERID, which caches the content

of disk reads in the memory to reduce I/O cost. The basic management unit is

one page, a fixed-length contiguous disk block (e.g. 4KB). Upon read from the

119

disk, the page is cached at one of the page frames in the buffer pool. Some cache

replacement algorithm decides which page frame the page should resides in and

writes its former resident back to the disk. In VERID, its buffer management uses

Clock replacement algorithm [163] for its simplicity. VERID may leverage buffer

management to exploit the spatial locality to significantly reduce I/O cost. For

example some PrefixMHT nodes, especially those near the root are repetitively

retried to construct VO.

5.2.6 Extending to Multi-dimensional Data

The previously discussed PrefixMHT is a binary search tree which can only

handle one-dimensional data. However, most IoT devices carry multiple sensors

and as a result, IoT data are mainly high-dimensional. VERID rests on Space-

filling Curves (SFCs) to map a high dimensional data point to a one 1-D value.

SFC is a bijection from multi-dimensional discrete universe to one-dimensional

universe of the same cardinality. Notable examples of SFC include C-curve, Z-

curve (a.k.a. Morton order) [132] and Hilbert curve [131]. Therefore, by utilizing

SFC, one high-dimensional range is transformed to one or multiple 1-D segments

which can be computed efficiently using the divide & conquer strategy [137].

Clustering number [131] is proposed to capture #segments during range query

processing. From the viewpoint of VERID, smaller clustering number leads to

shorter VO size. For IoT applications, the range query usually exhibits some

constraints or patterns. For example, in geographical IoT applications, each query

zone (e.g. from citywide to street block) is bounded to one 2-D query range with

fixed length and width. As a result, VERID employs the query-aware QUILTS

[135] as the space-filling curve. QUILTS is a framework optimizing clustering

number by choosing one SFC from a family of Bit-Merging Curves [135] based on

120

the query pattern. IoT devices are also in favor of QUILTS over other SFC such

as Hilbert curve [131] due to the low computational overhead to map the multi-

dimensional data point to 1-D QUILT point. The QUILT 1-D address is calculated

by interweaving the binary representation of values from each dimension following

a certain template. Suppose a 2-D point is represented as 2 × 4 bit-sequences

< x1x2x3x4, y1y2y3y4 >. If the interweaving template is xyxyxyxy, the QUILT

address in accordance is then x1y1x2y2x3y3x4y4. Likewise, the QUILT address

becomes y1y2y3y4x1x2x3x4 when the template is yyyyxxxx. Due to space limit,

the detailed construction of bit-interweaving template from a-priori information

on query patterns is skipped.

QUILT enjoys a property that if two points are close in the high-dimensional

space, it is highly likely that their 1-D counterparts are also nearby. With the

help of SFC, validation of one range query is converted to authenticating its

corresponding end points in the SFC space, which are indexed by the B+ trees in

the SFC order. Therefore, VERID also provides the property of locality preserving

described in Section 5.2.5. Other multi-dimensional search tree solutions (e.g.

Merkle R*-tree [176, 120], VKD-tree [81]) do not maintain an unified order across

IoT devices and hence have weak locality.

Authenticating one end point requires all nodes on the path to the root, which

is named as authentication path. The authentication paths of different end points

share significant number of common nodes. To save the communication cost,

VERID detects and removes duplicated nodes in a VO.

5.3 Signature Scheme for VERID

This signature scheme allows aggregation of multi-user signatures to reduce

both computation and communication costs from data consumer’s perspective.

121

Multi-user signatures aggregation should be ubiquitous in VERID: The data query

is applied to all IoT devices in a task group. Every device in the task group

generates the signature with its own private key. Moreover, the signature scheme

exploits the sparse setting of event detection applications where the IoT device

generates data only when events of interests occur. These events, by their nature,

are rare. As a result, the PrefixMHT of each IoT device is rarely updated except

for the monotonically increasing epoch of the root node. Our signature takes

advantage of this fact to further optimize the verification phase. The signature

scheme introduces little overhead compared to existing solutions such as BGLS

[71].

This section first gives the preliminaries to understand the signature scheme.

After that, Hash Fusion Signature (HFS) generated at the IoT device side is de-

scribed in Section 5.3.2. The signature aggregation scheme, Condensed Bilinear

Pairing (CBP) and its verification are discussed in Section 5.3.3. How the signa-

ture scheme is optimized in sparse settings are illustrated in Section 5.3.4.

5.3.1 Preliminaries

Notations

Let λ denote the security parameter. υ(·) represents a negligible function,

which means ∃L ∈ N, such that υ(x) < 1/f(x) for any x > L and any polynomial

function f(·). x ←R S means assigning x a uniformly dawn value from set S. If

A(·) is a probabilistic algorithm, y ← A(x) means A return its output to x. PPT

is a shorthand for Probabilistic Polynomial-Time. {0, 1}∗ represents the set of

string of any length. Concatenation is written as ||. Pr[E] means the probability

of the occurrence of event E.

122

Bilinear Pairing

CBP is based on an algebraic structure, namely bilinear pairing. Suppose

G1 and G2 are two cyclic multiplicative groups of prime order p with the cyclic

generators g1 and g2 respectively. GT is another cyclic multiplicative group of

the prime order p. A bilinear pairing is a map e: G1 × G2 7→ GT satisfying 1)

Bilinearity: ∀u ∈ G1,∀v ∈ G2,∀a, b ∈ Zp, e(ua, vb) = e(ua, v)b = e(u, vb)a =

e(u, v)ab. 2) Non-degeneracy: e(g1, g2) 6= 1. 3) Computability: An algorithm

exists to compute the mapping efficiently. Bilinearity and non-degeneracy imply

another two important property:

e(u1u2, v) =e(u1, v)e(u2, v) ∀u1, u2 ∈ G1,∀v ∈ G2 (5.2)

e(ψ(u), v) =e(ψ(v), u) ∀u, v ∈ G2 (5.3)

Here ψ is an efficient computable isomorphism function ψ : G2 7→ G1 such that

ψ(g2) = g1. The 7-tuple bp := (p,G1,G2,GT , e, g1, g2) defines a bilinear pairing.

5.3.2 Hash Fusion Signature

Hash Fusion Signature (HFS) is the building block of the signature scheme.

HFS is a variant of BGLS signature scheme [71] which is constructed based on

bilinear pairing. HFS is defined as a tuple (KeyGen, Sig, V er) consisting of three

algorithms. Assume an algorithm BilGen(1λ) is available to setup the public

parameters of bilinear paring, which is used as a subroutine in KeyGen. bp :=

(p,G1,G2,GT , e, g1, g2) ← BilGen(1λ), where λ is the security parameter and p

is a λ-bit prime. Let H: {0, 1}∗ → G1 be a full domain hash function modeled as

a random oracle [66]. The message to be signed are composed of two sub-strings,

123

i.e. −→m = m1||m2. −→m[i] represents the ith component of −→m, i ≥ 1.

Definition 5.3.1 (HFS). Hash Fusion Signature (HFS) is a tuple of three algo-

rithm (KeyGen, Sig, V er) as described below.

KeyGen(1λ): bp ← BilGen(1λ), pick a random secrete s ←R Z∗p and com-

pute gs2. Set the public key pk ← (gs2) and the private key sk ← s. The public

parameter is pp← (bp, pk).

Sig(−→m, sk): for message −→m = m1||m2, let h← H(m1) ∗H(m2). The signa-

ture is σ ← hs. Return α← (−→m,σ, pk).

V er(−→m, σ, pk): for message −→m = m1||m2, let h ← H(m1) ∗ H(m2). Check

e(gh1 , gs2) ?= e(σ, g2). If the two terms are equal, return 1; otherwise return ⊥.

In the case of VERID, m2 is the epoch and m1 represents other content of Pre-

fixMHT root node. The purpose to isolate epoch is to align the signature scheme

with the highly structured communication pattern of IoT applications where only

the epoch increases and other part stays unchanged most of the time. This design

is the key enabler to reduce communication and computation complexity of sparse

settings described in Section 5.3.4.

The security of HFS is captured by a standard notation, Existential Unforge-

ability under Chosen Message Attack (EU-CMA) [102]. EU-CMA of HFS is de-

fined by an experiment where the advantage of any PPT adversary A is negligible.

In this experiment, A is provided with a signing oracles HFS.Sigsk(·). The sign-

ing oracle HFS.Sigsk(·) returns the signature of the input under private key sk.

A can adaptively choose the messages as the input to the signing oracle, but it

can only query the signing oracles for up to poly(λ) times, where poly(·) can be

any polynomial function and λ denotes the security parameter. A finally returns a

forgery (−→m∗, σ∗) under pk, where A did not query the signing oracle on −→m∗ before.

A wins iff V er(σ∗,−→m∗, pk) = 1. EU-CMA of HFS can be expressed formally as:

124

Definition 5.3.2 (EU-CMA of HFS). HFS is Existential Unforgeable Secure un-

der Chosen Message Attack if the following formula holds.

AdvEU−CMA
HFS (A) = Pr


(sk, pk)← HFS.KeyGen(1λ)

(m∗, σ∗)← AHFS.Sigsk(·)(pk)

1← HFS.V er(σ∗,m∗, pk)

 < υ(λ)

Even though a HFS signature can be viewed as the aggregation of two BGLS

signatures from a same user, the definition of unforgeability of BGLS is slightly

different from that of HFS. EU-CMA of HFS focuses onm1||m2 as a whole whereas

the notion of unforgeability in BGLS captures individual parts. The proof of the

unforgeability of HFS is provided in Appendix A.1 under the assumption given in

the following theorem.

THEOREM 5.3.1. Hash Fusion Signature Scheme is EU-CMA secure with the

assumption of Computational Co-CDH hardness under random oracle model.

5.3.3 Condensed Bilinear Pairing

Imagine a fire alarm system with thousands of sensors deployed in the forest.

Individual sensor sends an alarm only when detecting hazardous situations. If high

temperature never occur in the forest, the sensor periodically generates default

messages indicating safety, i.e. a PrefixMHT node with sub-tree count = 0. Since

the content of the default message has been known priori, sending default messages

on the network is not necessary. The epoch attribute is the same across sensors.

In the case of most sensors sending default messages, Condensed Bilinear Pairing

(CBP) can accelerate the verifying speed and save communication cost.

Definition 5.3.3 (CBP). Condensed Bilinear Pairing (CBP) is a tuple of six

algorithms (KeyGen, Sig, V er, PkAgg, SigAgg, V erAgg). The default message is

125

denoted as M ||t where M is the static content and t is the epoch. SigAgg and

V erAgg are only applicable to messages from the same epoch, and hence identical

epoch value. KeyGen, Sig and V er have already been formalized in Definition

5.3.1. SigAgg and V erAgg are described below.

PkAgg(pk1, pk2, · · ·, pkn): given public keys for every IoT device in a task

group, the aggregated public key is apk = ∏n
i=1 pki

SigAgg(αi, αj): for any two HFS signatures, αi = (−→mi, σi, pki) and αj =

(−→mj, σj, pkj), if −→mi[2] 6= −→mj[2], return ⊥. We define Γ̃i = (−→mi[1], pki) if −→m[1] 6=

M ; otherwise Γ̃i = ∅. Γ̃j is defined similarly. The aggregated signature is α =

(Γ̃i t Γ̃j, σi ∗ σj,−→mi[2]), where t represents the merging operation.

V erAgg(α,apk): let the aggregated signature be α = (Γ, σ, t) where Γ =

{(−→m1[1], pk1), · · · , (−→mκ[1], pkκ)}. Define ãpk = apk∏κ

i=1 pki
.

Check e(σ, g2) ?= e
(
H(M), ãpk

)
∗∏κ

i=1 e (H(mi), pki)∗e (H(t), apk). If the equation

holds, return 1; otherwise return ⊥.

The following derivation provides the intuition on the correctness of CBP.

e
(
H(M), ãpk

)
∗

∏
(mi,pki)∈Γ

e (H(mi), pki) ∗ e (H(t), apk)

=e
(
(H(M) ∗H(t)), ãpk

)
∗

∏
(mi,pki)∈Γ

e ((H(mi) ∗H(t)), pki) = e(σ, g2)

THEOREM 5.3.2. Condensed Bilinear Pairing is EU-CMA secure with the as-

sumption of Computational Co-CDH hardness under random oracle model.

Appendix A.2 presents associated EU-CMA security definition and the proof

for Theorem 5.3.2.

The unforgeability of aggregated signature is different from that of a single

message, which requires that an adversary cannot generate a signature indicating

the authenticity of an unsigned message, even if all other signers are dishonest.

126

Compared to the naïve method where the receiver verifies every single times-

tamped default message separately, our newly proposed scheme reduces both the

communication cost and computation cost from O(k) to O(1), where k is #sen-

sors. Even if the assumption that most sensors have not detected any events does

not hold, CBP can still work but is degenerate into BGLS signature scheme.

5.3.4 Incorperating General Sparse Setting

In the sparse setting, most of roots of PrefixMHT remains untouched except for

their monotonically increased epochs. However, applying CBP directly does not

work in general because no default message is shared by most sensors in VERID.

If no event is detected between two epochs tb (begin epoch) and te (end epoch),

we can reach to:

e(σb/σe, g2) = e

(
(H(M) ∗H(tb))s
(H(M) ∗H(te))s

, g2

)
= e

(
H(tb)
H(te)

, gs2

)
(5.4)

By verifying the above equality, the data consumer is able to ensure no new event

being detected without knowing concrete M .

THEOREM 5.3.3. Given two HFS signatures (σb, σe) and two epochs (tb, te),

e(σb/σe, g2) = e
(
H(tb)
H(te) , g

s
2

)
indicates identical content at tb and te except with

negligible probability.

The formal procedure to prove Theorem 5.3.3 is very similar to the techniques

we used to prove Theorem 5.3.1. Intuitively, there is only negligible probability

for a PPT adversary to find random oracle collisions.

The roots’ signatures could be aggregated even with differentM value, because

the two instances of H(M) at the denominator and the numerator in Eq. (5.4)

127

are canceled out. Condensed Bilinear Pairing-VERID (CBP-VERID) opportunis-

tically aggregates HFS signatures.

Definition 5.3.4 (CBP-VERID). Condensed Bilinear Pairing-VERID is a tu-

ple of six algorithm (KeyGen, Sig, V er, PkAgg, SigAgg, V erAgg). KeyGen, Sig,

V er and SigAgg are exactly the same as those of CBP presented in Definition

5.3.3. Inherent from CBP, SigAgg and V erAgg in CBP-VERID also require that

the operated messages are from two epoches only: the begin and the end. For ease

of representation, we define augmented signature α̂ , (mb, tb, σb,me, te, σe, pk)

from a single device, where the subscription b and e stands for begin epoch and

end epoch respectively. m, t are the two constructional components of the Pre-

fixMHT root: content and epoch value. Aggregated signature is Σ = (Γ, σ, t),

where Γ concatenates changing content, σ is the product of individual signatures

and t represents the epoch.

SigAgg(α̂i,Σ
b,Σe): for the input, α̂i = (mb

i , t
b
i , σ

b
i ,m

e
i , t

e
i , σ

e
i , pki), If (tbi 6=

Σb.t) ∨ (tei 6= Σe.t), return ⊥. Define Γ̂bi = (mb
i , pki), Γ̂ei = (me

i , pki) if mb
i 6= me

i ;

otherwise ˆΓb(e)i = ∅. The aggregated signature is updated as follows. Σb(e).Γ =

Σb(e).Γ t ˆΓb(e)i , Σb(e).σ = Σb(e).σ ∗ σb(e)i .

V erAgg(Σb,Σe, apk) : if (|Σb.Γ| 6= |Σe.Γ|), return ⊥.

Let Σb(e).Γ = {(mb(e)
1 , pk1), · · · , (mb(e)

κ , pkκ)} Define ãpk = apk∏κ

i=1 pki
. Then check

e
(
σb/σe, g2

) ?= e
(
H(tb)/H(te), ãpk

)
∗∏κ

i=1 e
(
H(mb

i)/H(me
i), pki

)
. If the equation

holds, return 1; otherwise return ⊥.

To speed up the computation of ãpk when more than half devices contribute

Σ, ãpk can alternatively calculated as the product of their signatures.

THEOREM 5.3.4. Condensed Bilinear Pairing-VERID is EU-CMA secure with

the assumption of Computational Co-CDH hardness under random oracle model.

128

The experiment to define EU-CMA and the corresponding proof are nearly

the same as those of Condensed Bilinear Pairing in Appendix A.2, except that

multiplication is replace with division.

5.4 Evaluation

The prototype of VERID includes all parts: the working programs on sensing

devices, cloud, and DCs. All experiments are compiled by gcc 5.4.0. The cloud and

DC instances run on one quadcore@3.40GHz Linux desktop with 32GB memory

and each sensing device instance runs on a Raspberry Pi 3 Model B [53] equipped

with a quad-core 64-bit ARM Cortex A53@1.2GHz as well as one 16GB flash

drive. The experiments all are driven by real datasets.

5.4.1 Evaluation Methodology

Two publicly available IoT datasets are used for the experiments:

(1) IntelLab [45]: 54 Mica2Dot sensors with weather board deployed in the

Intel Berkeley Research Lab collecting timestamped temperature, light, etc. once

every 31 seconds. In the experiments, timestamp and temperature (in Fahrenheit)

information is extracted to represent 1-D dataset. The queries for experiments

are synthetic, which are 100 randomly generated aggregation count queries. For

the synthetic queries, the lower temperature bound is a float number uniformly

drawn from [0, 200]. The upper bound is set to always 20 degrees higher than the

lower bound.

(2)Rome [55]: 289 taxicabs in Rome occasionally report outdoor temperature

readings together with the GPS coordinates (i.e. longitude and i.e. latitude).

The dataset spans 4 days and the tuple (longitude, latidues, temperature) forms

129

Table 5.2: Summary of the Two Datasets

IntelLab Rome
#Devices 54 289
#Original readings 370667 4992
#Injections 387 110719
#Total readings 371054 115711

multi-dimensional sensing readings. VERID utilizes QUILT to map individual

multi-dimensional readings into 1-D points. The temperature is represented by

one 16-bit integer. Synthetic count queries are generated to simulate those from

geographic information system applications, where the spatial range is displayed in

different hierarchical levels: from city-wide to street block level. The experiments

have 24 levels of hierarchical spatial query ranges. Given level l, the entire region

in a 224×224 grid, is partitioned into l2 square areas with each being 224−l×224−l.

To synthesize one spatial range query, first uniformly generate one hierarchical

level l and then choose a spatial range from the l2 square areas at random. The

temperature range [0, 216 − 1] is evenly partitioned into 16 sub-ranges and each

synthetic query specified one sub-range to explore.

For both datasets, one epoch is set to 15 minutes and all experiments driven

by the data are from the first 400 epochs, which is approximately 4 days. To make

sure every epoch is signed, one dummy message are artificially injected indicating

an empty epoch into the epochs that do not possess any sensor reading. For the

two sets of synthetic queries, the start and end epochs are randomly drawn from

[1, 400]. The datasets details are summarized in TABLE 5.2. Rome represents

one sparse setting as can be inferred from the large injection to reading ratio.

IntelLab obviously posits at the opposite side.

Methods to compare with. VERID compares with two other state-of-art

works, Authenticated Aggregation R-tree (AAR-tree) [120] and IntegriDB [180].

130

The two works are selected among a large number of existing methods because

1) they support both aggregation and selection queries; and 2) they are relatively

recent and demonstrate good performance compared to other methods. In fact,

IntegriDB supports more operations (e.g. JOIN) than VERID does at extra cost.

This chapter discusses and measures its performance in IoT scenarios for reference.

For VERID and AAR, the capacity of the buffer pool is set to host 1000 frames

of size 4KB. IntegriDB has a parameter q which determines the largest possible

cardinality of verifiable query result. q is set to 1000 in the experiments.

Cryptographic algorithms to use. SHA-256 [49] in OpenSSL [52] are used

as the cryptographic hash function for all the three works in the experiments.

For both VERID and IntegriDB, the bilinear pairing for signature is Ate-paring

[70, 48] on a 254-bit elliptic curve which is estimated to offer 128-bit security. Since

the encryption scheme to generate signatures is not specified in the original paper

of AAR, in the experiments it is specified as BGLS [71] on a 254-bit elliptic curve

rather than the classic RSA [114] for fair comparison. From the measurement in

generating signatures, BGLS is nearly 30X faster than RSA with 3072-bit keys

which also approximately offers 128-bit security.

Methodology and Metrics. The prototype experiments on IoT devices

are conducted on the Raspberry Pi board. The data trace contributed by each

individual device is feed into the VERID prototype program at full speed. The

timestamp from the trace drives the program to update the PrefixMHT digest

and generate a signature when one epoch ends as indicated by the timestamp.

The output of the program, i.e. what should be transmitted to the cloud, is

stored locally at the flash drive. The evaluation measures the following metrics:

1) Average time to process one insertion captures the computation costs at the

IoT device side, which is denoted as the insertion time. 2) The ADS update cost

131

reflects the amortized communication cost which is computed by the size of all

updates (excluding original data and signatures) divided by #insertions. 3) The

memory is an average memory usage of IoT devices. These three metrics for AAR

and IntegriDB are measured on the Raspberry Pi in the same way.

After the Raspberry Pi experiments, the generated ADS updates and signa-

tures along with original data are directly restored in the Linux desktop to study

all other parts of VERID. Therefore, the experiments avoid the impact of varying

networking environments. The synthetic queries are applied to all devices. VERID

(or AAR/IntegriDB) constructs the VO when receiving the query request. The

evaluation measures both 4) the VO construction time and 5) the VO size. The

verification procedure starts in the same program immediately after the query re-

sult and its VO are produced. 6) The verification time captures the computation

efficiency at the data consumer’s side.

5.4.2 Aggregation Queries

Figure 5.4 demonstrates the aggregation queries performance results for In-

telLab and Rome.

From the IoT devices’ perspective, VERID outperforms AAR and IntegriDB in

terms of computation (insertion time), communication (ADS update) and mem-

ory consumption for both datasets. Particularly, for VERID the insertion time in

IntelLab experiments is smaller than that of Rome (Figure 5.4a) because more in-

sertions amortize the signature generation time at each epoch. When the insertion

is rare as in Rome dataset, the time to generate signatures dominates the compu-

tation cost and this explains the comparable insertion time for VERID and AAR

in the experiment using Rome dataset. For AAR, the amortized insertion time

increases in the IntelLab experiments due to excessive time spent on computing

132

Intel Rome
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

In
se

rt
io

n
 t

im
e
 (

m
s)

0.01

0.20

0.43

0.22

0.16

0.51VERID

AAR

IntegriDB

(a) Insertion time

Intel Rome
0
1
2
3
4
5
6
7
8
9

A
D
S
 u
p
d
a
te
 (
K
B
)

0.15 0.14

1.27

5.44

5.37
5.12

VERID

AAR

IntegriDB

(b) ADS update size

Intel Rome
0

100

200

300

400

500

600

M
e
m
o
ry

 (
K

B
)

216.22

2.81

283.05

12.97

16395 9043

VERID

AAR

IntegriDB

(c) Memory

Intel Rome
0

100

200

300

400

500
V
O

 C
o
n
st

ru
ct

io
n
 t
im

e
 (
m

s)

18.99
41.75

15.90

123.48

322.39
787

VERID

AAR

IntegriDB

(d) VO construction time

Intel Rome
0

200

400

600

800

1000

V
O
 s
iz
e
 (
K
B
)

340.44

430.72

411.81

242.64

564.45

4311

VERID

AAR

IntegriDB

(e) VO size

Intel Rome
0

200

400

600

800

1000

1200

V
e
ri
fi
ca

ti
o
n
 t
im

e
 (
m

s)

58.91

220.84

90.05

745.00

1528 21762

VERID

AAR

IntegriDB

(f) Verification time

Figure 5.4: Aggregation query performance results

133

hashes of 4-KB tree nodes. The long insertion time for IntegriDB is mainly due

to excessive cryptographic operations. Since PrefixMHT of VERID is operated at

fine grain, the ADS update size is much smaller than that of AAR which needs

to update the whole stale 4-KB nodes (Figure 5.4b). The update size of AAR

is worse when rare insertions amortize the update cost, as can be validated from

the results of Rome. The average ADS size for VERID in the Rome experiments

is slightly smaller than in the IntelLab experiments due to the lower PrefixMHT

height. VERID is memory efficient and acquires additional memory space when

a new PrefixMHT node is inserted (Figure 5.4c). On the other hand, AAR allo-

cates memory at per-page basis. If the dataset is small, no enough readings are

available to fill up the allocated memory space. Therefore, the memory usage gap

between VERID and AAR is huge for Rome. Even if IntegriDB updates ADS at

fine grain like VERID, its ADS node size is much larger hence ADS update size

and memory footprint.

The mechanisms to construct VO for VERID and AAR are similar: recording

the searching path on the ADS. The experiments conducted at the Linux desktop

involves all devices collectively. For example, the VO construction time is the

total time to find ADS paths for all 54 (387) devices in the IntelLab (Rome) ex-

periments. VERID spends slightly more time to construct the VO than AAR does

in the IntelLab experiments but the situation reverses in the Rome experiments

where the data exhibit higher locality hence faster searching speed (Figure 5.4d).

The VO size of AAR is smaller than that of VERID for Rome (Figure 5.4e),

because the ADS of AAR is extended from R* tree, which is originally designed

for GIS applications. VERID outperforms AAR regarding verification time for

both datasets (Figure 5.4f) because the AAR data consumers need to compute

excessive hashes to verify the query results. Another contributing factor is the

134

signature scheme which avoids some bilinear pairing evaluations. IntegriDB con-

structs and verifies VO by doing complicated cryptographic operations, which

consume considerable time.

5.4.3 Selection Queries

Each selection query requests for data from a specific epoch, which represents

the scenario where the data consumer retrieves data from latest epoch for further

analysis. The selection queries are generated by modifying the range queries

described in the experiment setup: The range exception for the epoch attribute

stays the same and the epoch of interest is set to the upper epoch bound from the

corresponding aggregation query.

The VO construction time, VO size and verification time are reduced compared

to the results from aggregation experiments as shown in Figure 5.5. Each range

query requires 4 ADS paths as indicated by Eq.(5.1). On the other hand, the

performance of AAR and IntegriDB downgrades significantly. The ADS of AAR

relies on the R* tree. The range query within a single epoch can be geometrically

viewed as a “long strip”. R* tree is not good at processing “long strip” range

queries. For IntegriDB, the mechanism of selection query is different from that of

count queries.

5.4.4 Choose Self-balancing Tree

Figure 5.6 shows the communication cost using different BSTs to transmit

stale nodes over time where input sensor readings are subject to normal, uniform,

or Zipf distributions. The communication cost is conspicuously reduced for AVL

Tree, which is used in VERID. The performance of Red-Black Tree (RBT) is

even slightly inferior than plain BST without self-balancing. For RBT, the extra

135

Intel Rome
0

100

200

300

400

500

V
O
 C
o
n
st
ru

ct
io
n
 t
im

e
 (
m
s)

4.16
19.08

47.98

357.12
131450 227460

VERID

AAR

IntegriDB

(a) VO construction time

Intel Rome
0

200

400

600

800

1000

1200

V
O

 s
iz

e
 (
K
B
)

24.98 51.04

589.21
612.33

647.53

3383

VERID

AAR

IntegriDB

(b) VO size

Intel Rome
0

200

400

600

800

1000

1200
V
e
ri
fi
ca

ti
o
n
 t
im

e
 (
m
s)

15.51
83.19101.10

809.65

4110 17460

VERID

AAR

IntegriDB

(c) Verification time

Figure 5.5: Selection query performance results

communication cost due to self-balancing such as rotation offsets the lower average

height. It is also worth noting that communication cost growth rate declines

significantly over time. New data are gradually inserted into the PrefixMHT and

thus the later insertions have lower probability to create a new node. For the same

reason, the normal distribution case incurs slightly less communication overhead

compared to uniform distribution case. The cost of kd-tree is very high especially

for Zipf distribution, as shown in Figure 5.6c.

5.4.5 Comparison of Signature Schemes

For VERID, validating signatures dominates the verification time at the data

consumer’s side: 99% and 98% verification time are spent on signature validation

for IntelLab and Rome datasets respectively. VERID signature scheme reduces the

signature validation time for sparse settings. For Rome dataset, VERID signature

136

0 200 400 600 800

Epoch

0

1

2

3

K
B

/I
n
s
e
rt

io
n

no balance bst

rbt

avl

kdtree

(a) Normal Distribution

0 200 400 600 800

Epoch

0

1

2

3

K
B

/I
n
s
e
rt

io
n

no balance bst

rbt

avl

kdtree

(b) Uniform Distribution

0 200 400 600 800

Epoch

0

5

10

15

20

K
B

/I
n
s
e
rt

io
n

no balance bst

avl

rbt

kdtree

(c) Zipf Distribution

Figure 5.6: Update Communication Cost Comparison

137

Table 5.3: I/O Cost Comparison

#disk I/O times IntelLab Rome
Per-device B+ tree 20051 10125
Per-group B+ tree 5610 1209

scheme totally avoids 8143 out of 38700 PrefixMHT traversals in the cloud and

bilinear pairing evaluations at the data consumer’s side. This subsection evaluates

the performance gain from VERID signature scheme by comparing it with BGLS

[71]. The verification time is 307.19ms for BGLS and 220.84ms for VERID, an

approximately 28% reduction. The VO construction time is reduced from 48.10ms

(BGLS) to 41.75ms (VERID). Similarly, the VO size experiences a 19.8% decrease.

In IntelLab dataset, nearly all devices have insertions for all epochs. Only 8/5400

PrefixMHT traversals thus are avoided in this case. As a result, there are no

apparent changes on construction and verification time as well as VO size.

5.4.6 Disk I/O at Cloud Storage

VERID leverages the special query pattern of IoT application to build per-

group B+ tree to store PrefixMHT nodes instead of using individual per-device

B+ trees. The measurements of I/O cost, i.e. #disk reads for both IntelLab and

Rome datasets are presented in this subsection. Per-group B+ tree greatly reduce

the I/O cost as as illustrated in Table 5.3.

5.5 Conclusion

Due to the lack of studies of verifiable data management for IoT applications,

VERID is designed to satisfy the unique properties and requirements. VERID is

designed to resolve the unique requirements of IoT systems including computa-

138

tion, memory, and communication efficiency, multi-dimensional data, and mono-

tonically increasing timestamps. The innovations of VERID include a new au-

thentication data structure PrefixMHT and a novel signature aggregation scheme

Condensed Bilinear Pairing. Experimental results show that VERID is much

more efficient in memory, update, and time cost than prior works on both sensing

devices and data consumers.

139

Chapter 6

Summary and Future Work

6.1 Summary

This dissertation consists of two parts to enhance the security of cloud. The

first part focuses on the efficient and correct policy enforcement for network se-

curity infrastructure, i.e. network functions for security purposes. This disser-

tation presents one VNF orchestration framework called APPLE which provides

interference-free policy enforcement. APPLE applies an optimization engine to

determine VNF placement and a flow tagging scheme to reduce TCAM consump-

tion and retain flow affinity. Results from both implementation and simulations

using real network topologies and traffic matrices show that APPLE is resource

efficient and can quickly react to traffic changes.

The second part targets at authenticity and integrity of emerging IoT applica-

tions. This dissertation identifies the hardware constraints, deployment features

and application requirements of IoT that demand new designs of IoT communi-

cation and data management for authenticity and integrity. The proposed IoT

communication framework, GSC, is able to uniformly sample data from sensing

devices and then securely store the data in the cloud while respecting resource

140

budget constraint. A distributed sampling protocol that is compatible with GSC

is also proposed to incorporate budget limits. Extensive simulations and proto-

type emulation experiments driven by real IoT data show that the GSC is more

efficient than alternative solutions in terms of time and space. This dissertation

further introduces VERID, a verifiable IoT Data Management system. VERID

provides an expressive interface that enables the data consumers to retrieve IoT

data on customized multidimensional searching criteria. The innovations include

a new authentication data structure PrefixMHT and a novel signature aggregation

scheme Condensed Bilinear Pairing. Experimental results show that VERID is

much more efficient in memory, update, and time cost than prior works on both

sensing devices and data consumers.

6.2 Future Work

There are several directions can expand this dissertation, including both im-

provement to the works presented in this dissertation as well as long-term research

projects.

6.2.1 Improvement to Current Projects

APPLE: When VNF instances processing packet, they consume multiple

hardware resources (e.g. CPU cycles, NIC bandwidth). However, current VM

hypervisor’s resource scheduler only considers how to statically fairly share CPU

and memory [107]. To integrate a max-min fair multi-resource scheduler for policy

enforcement would be the future work.

GSC: Different sensing devices may send generated data to the coordinator

at vastly different speed. The video surveillance system [75] continuously gen-

141

erates tons of data whereas human-motion detector [174] sends much less data

occasionally. In order to avoid starvation of devices, the sampling protocol can be

easily generalized to allow weighted items. How to automatically set weights for

different devices with little human intervention could be the future work.

VERID: VERID only supports a subset of SQL language but it can integrate

with verifiable computation frameworks such as Pantry [73] to conduct arbitrary

computation including the rest of SQL operations. The PrefixMHT structure

perfectly matches the data structure that Pantry can manage.

6.2.2 Long-term Research Projects

1) Automatic management of smart-home IoT devices. The number

of smart-home IoT devices is ever increasing. However, to manually configure

the variety of smart-home IoT devices to work collaboratively is cumbersome for

users. Following the basic idea of APPLE, one future research direction could be

designing a modular management system that automatically orchestrate smart-

home IoT devices. This system also enforces some policies to provide security and

privacy.

2) Incorporate trusted hardware for IoT data manipulation. Trusted

computation result from the cloud is not provided in this dissertation work.

Trusted hardware such as Intel SGX [51] provides trust and privacy on the arbi-

trary computing results which significantly improves the efficiency of various IoT

applications. In my future work, I would discover and resolve the challenges in

applying trusted hardware for IoT data manipulation.

142

Appendix A

Some Proofs on VERID

Signature Scheme

A.1 Proof of Unforgeability of HFS

We assume that there is no PPT adversary can compute ga1 ∈ G1 given g2, g
a
2 ∈

G2 and g1 ∈ G1 except with negligible probability υ(λ), where λ is the bit length

of prime p.

Assumption 1 (Co-CDH Problem). Let g1 and g2 be the generators of two mul-

tiplicative cyclic groups of order p respectively. For any PPT adversary, the fol-

lowing probability is negligible.

AdvCo−CDH(A) = Pr
[
A(g1, g2, h, g

b
2) = gab1 : h←R G1, b←R Zp

]

The pictorial view of HFS EU-CMA experiment (Definition 5.3.2) is given at

Figure A.1a, where H(·) and Sign(·) stand for the Random Oracle and Signing

Oracle respectively. To prove the the unforgeability, we construct a reduction in

which any PPT adversary A breaking HFS EU-CMU experiment indicating the

143

𝒜

𝑃𝐾 =	(𝑔(, 𝑔*, 𝑔*+)	

𝑧.

𝑦. = 	𝐻(𝑧.)
𝑦.

𝑚2

𝜎2 𝜎2 = 𝑆𝑖𝑔𝑛(𝑚2)

𝑚∗, 𝜎∗

(a) Illustration of Adversary A

ℬ𝒜

𝑔$, 𝑔&, ℎ, 𝑔&(

𝑦∗

HSim

𝑔$, 𝑔&, 𝑔&(

𝑧,
𝐻(𝑧,)

𝑚1

𝜎1

𝑚∗, 𝜎∗

SignSim

(b) Illustration of Adversary B

Figure A.1: Pictorial reduction procedure

144

violation of Assumption 1.

The reduction is through another PPT adversary B who tries to solve Co-CDH

Problem with non-negligible probability ε(λ). B wins iff the output y∗ = gab1 .

Adversary B runs A with the public key PK = (g1, g2, g
b
2) as a subroutine to solve

the problem as illustrated in Figure A.1b. The adversary A is limited to query

oracles provided by adversary B. We assume that the forgery output of adversary

A is (−→m∗, σ∗). Let −→m∗ = m∗1||m∗2. A should had queriedm∗1 andm∗2 on the random

oracle during the experiment. Suppose adversary A queries the random oracle qH

times in total, where qH is any polynomial of λ. Adversary B "programs" HSim

and SignSim to mimic the random oracle and the signing oracle from adversary

A’s view. If A succeeds in producing a forgery signature σ∗, the probability that

it can be transformed to answer for Co-CDH problem is at least 1/q2
H . Adversary

A has totally q2
H ways to pick up 2 out of qH HSim query results to construct

(H(m∗1) ∗H(m∗2))a. Therefore, the advantage of adversary B is:

AdvCo−CDH(B) = Pr[y∗ = gab1] > ε(λ)
q2
H

which implies the violation of Assumption 1.

The formal reduction procedure at adversary B is presented as follows:

1) Choose j∗1 ← {1, · · · , qH}, j∗2 ← {1, · · · , qH}.

Let us assume j∗1 < j∗2 without losing generality.

2) On a Random Oracle query zj from A:

(a) if j 6= j∗2 :

g
xj
1 ←R G1; output yj = g

xj
1 ; add (xj, zj) to list L.

(b) otherwise:

output yj = h/zj∗1

3) On signing query mi = mi1||mi2, mi1 = zj1 and mi2 = zj2:

145

(a) Lookup zj1 and zj2 in list L. If neither is found, abort.

(b) if (j1, j2 6= j∗1) ∨ (j1, j2 6= j∗2):

output ψ
(
(gb2)xj1 ∗ (gb2)xj2

)
= (gxj1

1 ∗ gxj2
1)b

(c) otherwise:

abort

4) Output σ∗

A.2 Proof of Unforgeability of CBP

The unforgeability is aggregated signature is different from that of a single

message, which requires that an adversary cannot generate a signature indicating

the authenticity of an unsigned message, even if all other singers are dishonest.

Since the dishonest signers can manipulate (pk, sk) pairs, PPT adversary A is

only provided with public key pk1 chosen at random. Adversary A can adaptively

choose the messages to query the singing oracle with pk1. The forgery should con-

tain pk∗ and other κ−1 (pk, sk) pairs as well as the messages to be authenticated.

CBP is EU-CMA secure if the advantage of any PPT adversary A is negligible.

The reduction procedure is similar to what presented in Appendix A.1 except

for how adversary B constructs y∗ from the output of adversary A. On receiving

the output from A, adversary B first checks that hski = pki for 2 ≤ i ≤ κ. Assume

that adversary A succeeds in producing a forgery. If it is the case, adversary B

recorded the discrete logarithms of H(M), H(mi) and H(t) in the list L, which

are denoted as r, ri and rt respectively. If the forged message m∗ belongs to the

explicitly transmitted messages, we can compute hb from the following equation

146

with probability 1/q2
H :

e(σ, g2) = e
(
H(M), ãpk

)
∗

∏
(mi,pki)∈Γ

e (H(mi), pki) ∗ e (H(t), apk)

=e(ψ(ãpk)r, g2)∗∏
(mi,pki)∈Γ,mi 6=m∗

e(ψ(pki)ri , g2) ∗ e(ha, g2) ∗ e(ψ(apk)rt , g2)

Therefore, ha can be computed as:

σ ∗

ψ(ãpk)r ∗
∏

(mi,pki)∈Γ,mi 6=m∗
ψ(pki)ri ∗ ψ(apk)rt

−1

In the case that m∗ is the static M and M was never queried against the

signing oracle. Again, if adversary A produced a successful forgery, adversary B

have access to the discrete logarithms ri of H(mi). The derivation is as follows:

e(σ, g2) = e

 κ∏
i=1

(mi,pki)/∈Γ

hski , g2

 ∗ e(ha, g2) ∗
∏

(mi,pki)∈Γ
e(ψ(pk)ri , g2)

Thus, ha in this case is:

σ ∗

 κ∏
i=1

(mi,pki)/∈Γ

hski ∗
∏

(mi,pki)∈Γ
ψ(pk)ri


−1

147

Bibliography

[1] http://traces.cs.umass.edu/index.php/Smart/Smart.

[2] Amazon S3 Pricing. https://aws.amazon.com/s3/pricing/.

[3] AWS Cloud Hacked by Bitcoin Miners. https://www.enterprisetech.
com/2017/10/09/aws-cloud-hacked-bitcoin-miners/.

[4] AWS Cloud Hacked by Bitcoin Miners . https://www.enterprisetech.
com/2017/10/09/aws-cloud-hacked-bitcoin-miners/.

[5] AWS customer success. https://aws.amazon.com/solutions/
case-studies/.

[6] Broadband Network Gateway and Network Function Virtualization. https:
//www.broadband-forum.org/technical/download/TR-345.pdf.

[7] The caida ucsd anonymized internet traces 2013 - 2014. mar. http://www.
caida.org/data/passive/passive_2013_dataset.xml.

[8] Computer hackers take to the cloud. https:
//www.sciencenewsforstudents.org/article/
computer-hackers-take-cloud.

[9] Crawdad. https://crawdad.org/.

[10] Dsa. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[11] eHealth. http://www.who.int/topics/ehealth/en/.

[12] FIT IOT-Lab. https://www.iot-lab.info.

[13] Google cloud customers. https://cloud.google.com/customers/.

[14] HVAC Monitoring System. https://www.sensaphone.com/industries/
hvac.php.

[15] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

148

http://traces.cs.umass.edu/index.php/Smart/Smart
https://aws.amazon.com/s3/pricing/
https://www.enterprisetech.com/2017/10/09/aws-cloud-hacked-bitcoin-miners/
https://www.enterprisetech.com/2017/10/09/aws-cloud-hacked-bitcoin-miners/
https://www.enterprisetech.com/2017/10/09/aws-cloud-hacked-bitcoin-miners/
https://www.enterprisetech.com/2017/10/09/aws-cloud-hacked-bitcoin-miners/
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/solutions/case-studies/
https://www.broadband-forum.org/technical/download/TR-345.pdf
https://www.broadband-forum.org/technical/download/TR-345.pdf
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
https://www.sciencenewsforstudents.org/article/computer-hackers-take-cloud
https://www.sciencenewsforstudents.org/article/computer-hackers-take-cloud
https://www.sciencenewsforstudents.org/article/computer-hackers-take-cloud
https://crawdad.org/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.who.int/topics/ehealth/en/
https://www.iot-lab.info
https://cloud.google.com/customers/
https://www.sensaphone.com/industries/hvac.php
https://www.sensaphone.com/industries/hvac.php
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

[16] Introducing json. https://www.json.org/.

[17] Iperf. https://iperf.fr/.

[18] Kaggle datasets. https://www.kaggle.com/datasets.

[19] libsnark. https://github.com/scipr-lab/libsnark.

[20] Libvirt virtualization API. http://libvirt.org/.

[21] Linux bridge. http://www.linuxfoundation.org/collaborate/
workgroups/networking/bridge.

[22] Linux network namespace. http://man7.org/linux/man-pages/man8/
ip-netns.8.html.

[23] M3 open node. https://www.iot-lab.info/hardware/m3/.

[24] The md5 message-digest algorithm. https://tools.ietf.org/html/
rfc1321.

[25] Navigating a cloudy sky: Practical guidance and the state of
cloud security. https://www.mcafee.com/enterprise/en-us/assets/
executive-summaries/es-navigating-cloudy-sky.pdf.

[26] Nest. https://nest.com.

[27] Netcat: the tcp/ip swiss army. http://nc110.sourceforge.net/.

[28] Netfilter. http://www.netfilter.org/.

[29] Open vswitch. http://openvswitch.org/.

[30] Opendaylight. https://www.opendaylight.org/.

[31] OpenSensors. https://www.opensensors.io/.

[32] OpenStack. http://www.openstack.org/.

[33] P4. http://www.p4.org.

[34] Sampling for big data. www.kdd.org/kdd2014/tutorials/t10_part1.
pptx.

[35] Samsung SSD 850 EVO 120GB, 250GB, 500GB&1TB Review. http://
www.anandtech.com/show/8747/samsung-ssd-850-evo-review/8.

[36] See the amazing things people are doing with Azure. https://azure.
microsoft.com/en-us/case-studies/.

149

https://www.json.org/
https://iperf.fr/
https://www.kaggle.com/datasets
https://github.com/scipr-lab/libsnark
http://libvirt.org/
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html
https://www.iot-lab.info/hardware/m3/
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://www.mcafee.com/enterprise/en-us/assets/executive-summaries/es-navigating-cloudy-sky.pdf
https://www.mcafee.com/enterprise/en-us/assets/executive-summaries/es-navigating-cloudy-sky.pdf
https://nest.com
http://nc110.sourceforge.net/
http://www.netfilter.org/
http://openvswitch.org/
https://www.opendaylight.org/
https://www.opensensors.io/
http://www.openstack.org/
http://www.p4.org
www.kdd.org/kdd2014/tutorials/t10_part1.pptx
www.kdd.org/kdd2014/tutorials/t10_part1.pptx
http://www.anandtech.com/show/8747/samsung-ssd-850-evo-review/8
http://www.anandtech.com/show/8747/samsung-ssd-850-evo-review/8
https://azure.microsoft.com/en-us/case-studies/
https://azure.microsoft.com/en-us/case-studies/

[37] Service Function Chaining Use Cases In Data Centers. https://
datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/.

[38] Service function chaining use cases in data centers. http://datatracker.
ietf.org/doc/draft-ietf-sfc-dc-use-cases/.

[39] Service Function Chaining Use Cases in Mobile Networks. https://
datatracker.ietf.org/doc/draft-ietf-sfc-use-case-mobility/.

[40] The 10 Biggest Cloud Outages Of 2015. https://tinyurl.com/y7sxjf8m.

[41] The Abilene Observatory Data Collections. http://www.cs.utexas.edu/
~yzhang/research/AbileneTM/.

[42] The Seagate 600 & 600 Pro SSD Review. http://www.anandtech.com/
show/6935/seagate-600-ssd-review/5.

[43] UCI machine learning repository. https://archive.ics.uci.edu/ml/
datasets.html.

[44] xxHash. http://www.xxhash.com/.

[45] Intel lab data. http://db.csail.mit.edu/labdata/labdata.html, 2004.

[46] Telosb datasheet. http://www.memsic.com/userfiles/files/
Datasheets/WSN/telosb_datasheet.pdf, 2005.

[47] Z1 datasheet. http://zolertia.sourceforge.net/wiki/images/e/e8/
Z1_RevC_Datasheet.pdf, 2010.

[48] https://github.com/herumi/ate-pairing, 2015.

[49] Secure hash standard. http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf, 2015.

[50] Sha-1. http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf, 2015.

[51] Intel SGX. https://software.intel.com/en-us/sgx, 2018.

[52] Openssl. https://www.openssl.org/, 2018.

[53] Raspberry pi. https://www.raspberrypi.org/, 2018.

[54] A. Abujoda and P. Papadimitriou. Midas: Middlebox discovery and selec-
tion for on-path flow processing. 2015.

150

https://datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/
https://datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/
http://datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/
http://datatracker.ietf.org/doc/draft-ietf-sfc-dc-use-cases/
https://datatracker.ietf.org/doc/draft-ietf-sfc-use-case-mobility/
https://datatracker.ietf.org/doc/draft-ietf-sfc-use-case-mobility/
https://tinyurl.com/y7sxjf8m
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5
http://www.anandtech.com/show/6935/seagate-600-ssd-review/5
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://www.xxhash.com/
http://db.csail.mit.edu/labdata/labdata.html
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
https://github.com/herumi/ate-pairing
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://software.intel.com/en-us/sgx
https://www.openssl.org/
https://www.raspberrypi.org/

[55] Mohannad A. Alswailim, Hossam S. Hassanein, and Mohammad Zulkernine.
CRAWDAD dataset queensu/crowd_temperature (v. 2015-11-20): derived
from roma/taxi (v. 2014-07-17). https://crawdad.org/queensu/crowd_
temperature/20151120, 2015.

[56] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A. Sadeghi, and M. Schunter.
Sana: secure and scalable aggregate network attestation. In Proc. of ACM
CCS, 2016.

[57] A. Anand, V. Sekar, and A. Akella. SmartRE: an architecture for coordi-
nated network-wide redundancy elimination. In Proc. of ACM SIGCOMM,
2009.

[58] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming slick net-
work functions. In Proc. of ACM SOSR, 2015.

[59] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul. Democratic resolution of resource conflicts between sdn
control programs. In Proc. of ACM CoNext, 2014.

[60] A. Bairley and G. G. Xie. Orchestrating network control functions via
comprehensive trade-off exploration. In Proc. of IEEE NFV-SDN, 2016.

[61] S. Bajaj and R. Sion. CorrectDB: SQL engine with practical query authen-
tication. 2013.

[62] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis, L. Ko-
romilas, and G. O’Shea. Enabling end-host network functions. In Proc. of
ACM SIGCOMM, 2015.

[63] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM
SOSP, 2003.

[64] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orchestrating
virtual network functions. In Proc. of IEEE CNSM, 2015.

[65] B. A. Bash, J. W. Byers, and J. Considine. Approximately uniform random
sampling in sensor networks. In Proc. of ACM DMSN, 2004.

[66] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proc. of ACM CCS, 1993.

[67] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs
for c: Verifying program executions succinctly and in zero knowledge. In
CRYPTO. 2013.

151

https://crawdad.org/queensu/crowd_temperature/20151120
https://crawdad.org/queensu/crowd_temperature/20151120

[68] T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data
centers in the wild. In Proc. of ACM IMC, 2010.

[69] T. Benson, A. Akella, and D. A. Maltz. Mining policies from enterprise
network configuration. In Proc. of ACM IMC, 2009.

[70] J. Beuchat, J. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-
Henríquez, and T. Teruya. High-speed software implementation of the op-
timal ate pairing over barreto–naehrig curves. In International Conference
on Pairing-Based Cryptography, 2010.

[71] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In In Proc. of EUROCRYPT,
2003.

[72] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based
on computational diffie-hellman. In Proc. of PKC, 2006.

[73] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish.
Verifying computations with state. In Proc. of the ACM SOSP, 2013.

[74] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: a software-defined
framework for developing, deploying, and managing network functions. In
Proc. of ACM SIGCOMM, 2016.

[75] A. J. Brush, J. Jung, R. Mahajan, and F. Martinez. Digital neighborhood
watch: Investigating the sharing of camera data amongst neighbors. In Proc.
of ACM CSCW, 2013.

[76] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran. Refor-
mulating the monitor placement problem: Optimal network-wide sampling.
In Proc. of ACM CoNEXT, 2006.

[77] D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured english query
language. In Proc. of ACM SIGMOD workshop on Data description, access
and control, 1974.

[78] M. Charikar, Y. Naamad, J. Rexford, and K. Zou. Multi-commodity
flow with in-network processing. www.cs.princeton.edu/~jrex/papers/
mopt14.pdf.

[79] C. Chaudet, E. Fleury, I. G. Lassous, H. Rivano, and M. Voge. Optimal posi-
tioning of active and passive monitoring devices. In Proc. of ACM CoNEXT.
ACM, 2005.

152

www.cs.princeton.edu/~jrex/papers/mopt14.pdf
www.cs.princeton.edu/~jrex/papers/mopt14.pdf

[80] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for his-
togram construction: How much is enough? In Proc. of ACM SIGMOD,
1998.

[81] W. Cheng, H. Pang, and K. Tan. Authenticating multi-dimensional query
results in data publishing. In IFIP Annual Conference on Data and Appli-
cations Security and Privacy, 2006.

[82] Manuel C. Christian P., Kapil V. EnclaveDB: A secure database using sgx.
In Proc. of IEEE S&P, 2018.

[83] K. Chung, Y. T. Kalai, F. Liu, and R. Raz. Memory delegation. In Crypto,
2011.

[84] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proc. of the USENIX
NSDI, 2005.

[85] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In
Proc. of ACM PODC, 2007.

[86] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computa-
tion with streaming interactive proofs. In Proc. of ACM ITCS, 2012.

[87] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Continuous sampling
from distributed streams. JACM, 59(2), 2012.

[88] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur. Geppetto: Versatile verifiable computation. In
Proc. of IEEE S&P, 2015.

[89] J. Cropper, J. Ullrich, P. Frühwirt, and E. Weippl. The role and security of
firewalls in iaas cloud computing. In Proc. of IEEE ICARES, pages 70–79,
2015.

[90] I Dinur and D Steurer. Analytical approach to parallel repetition. In Proc.
of ACM STOC, 2014.

[91] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and A. Krish-
namurthy. ETTM: a scalable fault tolerant network manager. In Proc. of
USENIX NSDI, 2011.

[92] D. Evan. The Internet of Things, Cisco White Paper. https://www.cisco.
com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

[93] K. Fan, S. Liu, and P. Sinha. Scalable data aggregation for dynamic events
in sensor networks. In Proc. of the ACM SenSys, 2006.

153

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[94] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing
network-wide policies in the presence of dynamic middlebox actions using
flowtags. In Proc. of USENIX NSDI, 2014.

[95] A. Feldmann et al. Deriving traffic demands for operational ip networks:
Methodology and experience. In Proc. of ACM SIGCOMM, 2000.

[96] J. Gao, L. Guibas, N. Milosavljevic, and J. Hershberger. Sparse data aggre-
gation in sensor networks. In Proc. of ACM IPSN, 2007.

[97] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella. Stratos: A network-aware orchestration
layer for virtual middleboxes in clouds. arXiv preprint arXiv:1305.0209,
2013.

[98] A. Gember, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and
A. Akella. OpenNF: Enabling innovation in network function control. In
Proc. of ACM SIGCOMM, 2014.

[99] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Cryptology, 2010.

[100] R. Gennaro and P. Rohatgi. How to sign digital streams. In Crypto, 1997.

[101] M. Gerla, E. Lee, G. Pau, and U. Lee. Internet of vehicles: From intelligent
grid to autonomous cars and vehicular clouds. In Proc. of IEEE WF-IoT,
2014.

[102] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2), 1988.

[103] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verifi-
cation of dynamic outsourced databases. In CT-RSA. 2008.

[104] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and
L. Mathy. Flow processing and the rise of commodity network hardware.
ACM SIGCOMM CCR, 39(2), 2009.

[105] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future Gen-
eration Computer Systems, 29(7), 2013.

[106] R. Guerzoni et al. Network functions virtualisation: an introduction, ben-
efits, enablers, challenges and call for action, introductory white paper. In
SDN and OpenFlow World Congress, 2012.

154

[107] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing perfor-
mance isolation across virtual machines in xen. In Middleware. 2006.

[108] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan. Bolt:
Data management for connected homes. In Proc. of USEIX NSDI, 2014.

[109] J. He, C. Tang, Y. Yang, Y. Qiao, and C. Liu. 3d-ids: Iaas user-oriented
intrusion detection system. In Proc. of IEEE ISISE, 2012.

[110] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in olap data
cubes. In Proc. of ACM SIGMOD, 1997.

[111] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Softcell: Scalable and flexible
cellular core network architecture. In Proc. of the ACM CoNEXT, 2013.

[112] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Softcell: Scalable and flexible
cellular core network architecture. In Proc. of ACM CoNext, 2013.

[113] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rex-
ford, and R. Wattenhofer. Dynamic scheduling of network updates. In Proc.
of ACM SIGCOMM, 2014.

[114] J. Jonsson, K. Moriarty, B. Kaliski, and A. Rusch. Pkcs# 1: Rsa cryptog-
raphy specifications version 2.2. 2016.

[115] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for
data centers. In Proc. of ACM SIGCOMM, 2008.

[116] S. Kandula et al. The nature of data center traffic: measurements & analysis.
In Proc. of the ACM IMC, 2009.

[117] Y. Kim, J. Kang, D. Kim, E. Kim, P. K. Chong, and S. Seo. Design of a
fence surveillance system based on wireless sensor networks. In Proc. of the
Autonomics, 2008.

[118] Leslie Lamport. Paxos made simple. 2001.

[119] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenti-
cated index structures for outsourced databases. In ProcACM SIGMOD,
2006.

[120] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Authenticated index
structures for aggregation queries. ACM TISSEC, 13(4):32, 2010.

[121] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wilfong, Y. R. Yang,
and C. Guo. Pace: policy-aware application cloud embedding. In Proc. of
IEEE INFOCOM, 2013.

155

[122] X. Li and C. Qian. Traffic and failure aware vm placement for multi-tenant
cloud computing. In Proc. of IEEE/ACM IWQoS, 2015.

[123] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. Depot: Cloud Storage with Minimal
Trust. ACM Trans. Comput. Syst., 29, 2011.

[124] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians
and other quantiles in one pass and with limited memory. In Proc. of ACM
SIGMOD, 1998.

[125] J. Martins et al. Clickos and the art of network function virtualization. In
Proc. of USENIX NSDI, 2014.

[126] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM Comput. Commun.
Rev., 2008.

[127] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center
networks with traffic-aware virtual machine placement. In Proc. of IEEE
INFOCOM, 2010.

[128] R. C. Merkle. A digital signature based on a conventional encryption func-
tion. In Proc. of CRYPTO, 1987.

[129] H. Moens and F. De Turck. Vnf-p: A model for efficient placement of
virtualized network functions. In Proc. of IEEE CNSM, 2014.

[130] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and
S. Banerjee. Devoflow: scaling flow management for high-performance net-
works. In Proc. of ACM SIGCOMM, 2011.

[131] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. IEEE TKDE, 13(1),
2001.

[132] G. M. Morton. A computer oriented geodetic data base and a new technique
in file sequencing. 1966.

[133] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and
Integrity in Outsourced Databases. In Proc. of NDSS, 2004.

[134] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson. Synopsis diffusion for
robust aggregation in sensor networks. ACM TOSN, 4(2), 2008.

156

[135] S. Nishimura and H. Yokota. Quilts: Multidimensional data partitioning
framework based on query-aware and skew-tolerant space-filling curves. In
Proc. of ACM SIGMOD, 2017.

[136] R. Olsson. Pktgen the linux packet generator. In Proc. of the Linux Sym-
posium, 2005.

[137] J. A. Orenstein and T. H. Merrett. A class of data structures for associative
searching. In Proc. of ACM PODS, 1984.

[138] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker. E2: A framework for nfv applications. In Proc. of ACM SOSP,
2015.

[139] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Net-
Bricks: Taking the V out of NFV. In Proc. of USENIX OSDI, 2016.

[140] H. Pang, J. Zhang, and K. Mouratidis. Scalable verification for outsourced
dynamic databases. In Proc. of the VLDB Endowment, 2009.

[141] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos. Taking authen-
ticated range queries to arbitrary dimensions. In Proc. of ACM CCS, 2014.

[142] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computa-
tion. In Theory of Cryptography. 2013.

[143] B. Pfaff and Ed. B. Davie. The open vswitch database management protocol.
Technical report, RFC 7047, December, 2013.

[144] K. Piotrowski, P. Langendoerfer, and S. Peter. How public key cryptography
influences wireless sensor node lifetime. In Proc of ACM SASN, 2006.

[145] R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
protecting confidentiality with encrypted query processing. In Proc. of ACM
SOSP, 2011.

[146] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A se-
curity enforcement kernel for openflow networks. In Proc. of ACM HotSDN,
2012.

[147] C. Prakash, J. Lee, Y. Turner, J. M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. PGA: Using Graphs to Express and
Automatically Reconcile Network Policies. In Proc. of ACM SIGCOMM,
2015.

157

[148] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-fying
middlebox policy enforcement using sdn. In Proc. of the ACM SIGCOMM,
2013.

[149] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/Merge:
System support for elastic execution in virtual middleboxes. In Proc. of
USENIX NSDI, 2013.

[150] S. Raza, G. Huang, C. N. Chuah, S. Seetharaman, and J. P. Singh. Mea-
surouting: a framework for routing assisted traffic monitoring. IEEE/ACM
ToN, 20(1), 2012.

[151] World Health Organization. mHealth: New horizons for health through mo-
bile technologies. http://www.who.int/goe/publications/goe_mhealth_
web.pdf.

[152] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. CACM, 21(2), 1978.

[153] L. Saino, C. Cocora, and G. Pavlou. A toolchain for simplifying network
simulation setup. In Proc. of ICST SIMUTOOLS, 2013.

[154] S. Sattolo. An algorithm to generate a random cyclic permutation. Infor-
mation processing letters, 22(6), 1986.

[155] J. Scott, Bernheim B., J. Krumm, B. Meyers, M. Hazas, S. Hodges, and
N. Villar. Preheat: controlling home heating using occupancy prediction.
In Proc. of ACM Ubicomp, 2011.

[156] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and im-
plementation of a consolidated middlebox architecture. In Proc. of USENIX
NSDI, 2012.

[157] V. Sekar et al. The middlebox manifesto: enabling innovation in middlebox
deployment. In Proc. of ACM HotNets, 2011.

[158] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter. Network-wide
deployment of intrusion detection and prevention systems. 2010.

[159] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G.
Andersen. cSamp: A system for network-wide flow monitoring. In Proc. of
USENIX NSDI, 2008.

[160] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish.
Resolving the conflict between generality and plausibility in verified compu-
tation. In Proc. of ACM Eurosys, 2013.

158

http://www.who.int/goe/publications/goe_mhealth_web.pdf
http://www.who.int/goe/publications/goe_mhealth_web.pdf

[161] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network processing
as a cloud service. 2012.

[162] J. Sherry and S. Ratnasamy. A Survey of Enterprise Middlebox Deploy-
ments. Technical report, EECS, UC Berkeley, 2012.

[163] A. J. Smith. Sequentiality and prefetching in database systems. ACM
TODS, 3(3), 1978.

[164] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with
Rocketfuel. 2002.

[165] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors:
complexity, heuristics, and coverage. Computer Communications, 29(10),
2006.

[166] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon. Providing public intrado-
main traffic matrices to the research community. ACM SIGCOMM CCR,
36(1), 2006.

[167] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software, 11(1), 1985.

[168] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for
interactive verifiable computation. In Proc. of IEEE S&P, 2013.

[169] C. Wang, Q. Wang, K. Ren, and W. Lou. Ensuring data storage security in
cloud computing. In Proc. of IEEE IWQoS, 2009.

[170] H. Wang, C. Qian, Y. Yu, H. Yang, and S. Lam. Practical network-wide
packet behavior identification by ap classifier. In Proc. of ACM CoNext,
2015.

[171] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold story of
middleboxes in cellular networks. In Proc. of ACM SIGCOMM, 2011.

[172] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. In
Proc. of IEEE ICNP, 1998.

[173] Z. Xia, X. Wang, X. Sun, and Q. Wang. A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE TPDS,
27(2), 2016.

[174] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. IzadiNajafabadi,
D. N. Futaba, and K. Hata. A stretchable carbon nanotube strain sensor
for human-motion detection. Nature nanotechnology, 6(5), 2011.

159

[175] H. Yang and S. S. Lam. Real-time verification of network properties using
atomic predicates. In Proc. of IEEE ICNP, 2013.

[176] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join
processing in outsourced databases. In Proc. of ACM SIGMOD, 2009.

[177] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al. Steering: A software-defined networking for inline service chaining. In
Proc. of IEEE ICNP, 2013.

[178] Y. Zhang, L. Duan, and J. L. Chen. Event-Driven SOA for IoT Services. In
Proc. of IEEE SCC, 2014.

[179] Y. Zhang, J. Katz, D. Genkin, D. Papadopoulos, and C. Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced databases.
In Proc. of IEEE S&P, 2017.

[180] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable sql for out-
sourced databases. In ACM CCS, 2015.

[181] Q. Zheng, S. Xu, and G. Ateniese. Efficient query integrity for outsourced
dynamic databases. In Proc. of ACM CCSW, 2012.

[182] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzenmacher,
R. Wang, and A. Singh. Scaling Up Clustered Network Appliances with
ScaleBricks. In Proc. of ACM SIGCOMM, 2015.

[183] Z. Zhou. Ensemble learning. Encyclopedia of biometrics, pages 411–416,
2015.

160

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Fortifying Network Security Infrastructure
	Network Function and Service Function Chain
	Desirable Properties of NFV Orchestration Framework

	Fortifying the Internet of Things
	Digital Signature
	Stringent Requirements

	Dissertation Outline

	Network Function Placement
	Hardware Network Function Placement
	Independent Network Function
	Chained Network Functions

	NFV Orchestration and Placement
	Thread-based Framework
	VM-based Framework

	Irregular Forms of Network Functions
	Element-based Framework
	Distributed NFs
	Host-based Framework

	Network Function Placement Discussions
	Conclusion

	Interference-free Policy Enforcement for NFV
	Prior Work
	APPLE System Overview
	Design Challenges
	Optimization Engine
	Traffic Aggregation for Scalability
	Spatial Distribution
	Mathematical Model Objectives and Variables
	Simulated Annealing (SA)-Based Heuristic

	Enforcing Optimization Results
	Sub-class
	Tagging Scheme
	Flow Affinity Retaining

	Rule-based Load Balancing
	Incorporating Traffic Dynamics
	Implementation Details
	ClickOS VM Initiation
	Overloading Detection
	Local Agent

	Prototype Evaluation
	Experiment Setup
	ClickOS VM Setup Time
	Waiting For Five Seconds
	Reconfiguring Existing VMs
	Overloading Detection
	Performance of Local Agent

	Simulation Evaluation Results
	Simulation Setup
	Computation Time
	Rule-based Load Balancing
	TCAM Usage
	Hardware Resource Usage
	React to Traffic Dynamics

	Conclusion

	An IoT Data Communication Framework for Authenticity and Integrity
	Problem Statement
	Network Model
	Threat Model

	System Design
	Existing Signature Schemes
	Dynamic Tree Chaining (DTC)
	Geometric Star Chaining (GSC)
	Data Retrieval and Verification of GSC

	Incorporating Budget Limit
	Sampling Protocol Design
	Copping with Network Latency
	Data Retrieval

	Security Analysis
	Defending against Message Forgery Attacks
	Defending against Biased Sampling Attacks
	Defending against Dishonest Coordinators

	Performance Analysis
	K-degree Dynamic Tree Chaining
	Geometric Star Chaining
	Sampling Protocol

	Evaluation
	Experiment Setup and Methodology
	Simulation Result
	Prototype Emulation Experiment Without Budget Limit
	Prototype Experiment in Raspberry Pi
	Prototype Experiment with Sampling Protocol

	Conclusion

	An IoT Data Management System for Verifiable Range Queries
	Existing Solutions
	System Design
	Overview
	Design of Prefix Tree
	Design of PrefixMHT
	Efficient PrefixMHT Update
	Storage in the Cloud
	Extending to Multi-dimensional Data

	Signature Scheme for VERID
	Preliminaries
	Hash Fusion Signature
	Condensed Bilinear Pairing
	Incorperating General Sparse Setting

	Evaluation
	Evaluation Methodology
	Aggregation Queries
	Selection Queries
	Choose Self-balancing Tree
	Comparison of Signature Schemes
	Disk I/O at Cloud Storage

	Conclusion

	Summary and Future Work
	Summary
	Future Work
	Improvement to Current Projects
	Long-term Research Projects

	Some Proofs on VERID Signature Scheme
	Proof of Unforgeability of HFS
	Proof of Unforgeability of CBP

	Bibliography

