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Behavioral flexibility in the corticostriatal network 

Sravani Kondapavulur 

 

Abstract 

 A critical question in skilled motor control is how brain circuits can flexibly apply 

learned motor behaviors to novel contexts. Plasticity in the corticostriatal network has been 

historically been implicated in motor learning across different species. In particular, the motor 

cortex and striatum are monosynaptically connected structures that play critical roles in early 

motor learning as well as consolidation of crystallized motor skills. However, when a well-

learned skill must adapt to a new context, how does neural activity in these important motor 

regions support the behavioral transition? 

 This thesis begins by providing a perspective on how motor learning, adaptation, and 

habit formation have been classically studied, in addition to the current understanding of neural 

bases for each of these processes. I then outline the implications of motor task selection and 

behavioral intervention when making conclusions about underlying neural mechanisms. In 

Chapter 2, I present my work investigating how the corticostriatal network supports transfer 

learning of a previously acquired complex coordinated upper limb action, demonstrating that re-

learning in a new context involves partial breakdown of previously crystallized neural activity. I 

conclude by presenting in Chapter 3 a model for network control of motor flexibility, proposing 

that cortico-striatal activity reflects dynamic optimization of neural patterns, adapting upstream 

cognitive contributions and driving existing downstream circuits for movement generation. 

Finally, I explore the implications of corticostriatal dysfunction in motor diseases. 
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Chapter 1: Introduction 

The motor behavior spectrum dilemma 

When a child stumbles onto the ice for the first time, a global network process of motor learning 

begins. What are the leg motions that allow forward gliding motion while not tripping over the 

toe pick at the front of the boot? How does one maintain balance? Once the basics such as 

gliding and stopping are mastered, the child may decide to devote many hours of practice to the 

sport, to master complex spins, jumps, and ultimately competition routines set to music. 

 

Now let us take one aspect of advanced skating, the mastery of two quite similar jumps, a flip 

and a lutz (Figure 1.1). The flip jump is generally learned first, and it involves leaning medially 

on the left foot and vaulting off the right toe pick to rotate in a counter-clockwise fashion in the 

air. Once this jump is mastered and becomes automatic, the lutz jump is learned; the lutz is 

identical in mechanics to the flip jump, except instead of leaning medially on the left foot, one 

leans laterally. Thus, learning a lutz involves transfer learning of the “vault off right toe into the 

air after gliding backward on the left leg” motor skill, 

with edge adaptation. However, due to initial learning 

of the flip to automaticity, some skaters become stuck 

in the medially leaning pattern – while initially 

leaning laterally, by the time they vault into the air the 

left foot is leaning medially, resulting in the motor 

error of a “flutz.” 

 

Figure 1.1. Similar figure skating jumps. L-R: flip, 
gliding backward on the left blade leaning 
medially, vaulting off the right toe pick (triangle); 
lutz, gliding backward leaning laterally, similarly 
vaulting off the right toe pick; flutz, erroneous 
jump with intended lateral lutz edge, but switching 
unintentionally to medial flip edge. 
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From this example, one can abstract many components of motor execution, demonstrating the 

“motor behavior spectrum dilemma.” The first axis is early learning to late learning: how does a 

flip jump become automatic? The second axis is between generalizable versus rigid motor 

actions: can learning the flip jump transfer skill to the lutz jump, or is learning the lutz jump a 

new motor skill? Finally, the third axis is between goal-directed versus habitual motor behavior – 

does a flutz occur due to intrusion of habitual medial edge on the intended jump? Most studies 

focus only on a single axis; however, there is overlap among the three in most motor behavior 

experiments. This chapter will define different components of motor behavior, and the current 

understanding of associated neural regions and activity patterns. The latter half will delve into 

merits and pitfalls of different readouts of neural activity and outline the current state of 

analytical methods for drawing conclusions about neural processing relevant to behavior. 
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What is a motor skill? 

Learning a skill involves expansion of a physical repertoire, such that previously acquired 

movements are combined into a goal-directed action.1 With practice, motor skills become faster 

and more accurate.2 Subsequently, when speed and accuracy have reached an asymptote, 

behavior is considered automatic, as characterized by decreased cognitive effort independent of 

decreased dependence on reinforcement learning.3,4 Behavioral automaticity underlies habits, 

compulsions, and addictions. Of note, both skills and habits can be automatic, with decreased 

dependence on reward, and resilience to intrusion of competing motor actions.2,5 

 

The behavioral axis of goal-directed versus habitual performance of a single motor task has been 

extensively studied. Whereas habits are ingrained, and performed autonomously of outcome2,5-9, 

goal-directed action involves active deliberation of action consequences and is therefore flexibly 

adaptive to changing environments5.  

 

Classifications of motor behavior differ amongst animal models, as well as scientific fields, such 

as neuroscience versus psychology, further adding difficulties to across-study comparisons. For 

example, the definition of habit in humans and primates is quite broad – actions that are 

reflexive, performed without thought, stereotyped, and following a stimulus-response 

relationship10-13, reminiscent of the currently accepted definitions of automaticity3. In rodents 

however, the definition of habit is quite specific, characterized by behavioral automaticity that is 

insensitive to devaluation by satiety (i.e. pre-task delivery of reward) or paired aversion (i.e. pre-

task pairing of reward with a nausogenic substance)14-16, reminiscent of human pathologies on the 

obsessive-compulsive spectrum17. In turn, random-ratio versus random-interval reward delivery 
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methods have promoted goal-directed and habitual performance respectively.16,18 Given the 

overlap in terminology, I will focus further behavior discussion and the neural correlates on early 

learning as compared to late, automatic skill execution. 

 

Overlaid on the early to late learning axis is a second-order question – once a skill has been 

learned in the context of also learning task cues and environment, how can the skill be adapted to 

environmental modifications while keeping task structure? Particularly in rodents, this transfer of 

learning has been studied during auditory perception and discrimination, T-maze side preference, 

and water maze reversal learning19-21. Does establishing behavioral flexibility after learning, also 

known as transfer of learning, involve a minor tweaking of existing learned motor skill? Or 

rather does this process involve “re-learning”, so to speak?  

These are the central behavioral questions that 

this thesis will delve into. In particular, in 

Chapter 2, I will explore the reach-to-grasp task 

in rodents (Figure 1.2), a correlate of gross 

proximal and dexterous distal movements that 

can also be seen in non-human primates and 

humans. Specifically, learning and execution of 

the reach-to-grasp task to a single location has 

been extensively studied in rodents22-24. However, it is unknown 1) whether this initially 

established behavior is rigid or generalizable; and 2) if the behavior is rigid, how a related reach-

to-grasp skill can be learned. 

 

Figure 1.2: Automated reach-to-grasp task for rodents. For 
each trial, the pellet arm receives a pellet from the dispenser 
and is moved to the reach location. The trial begins with a 
cue tone with door opening, and the rodent reaches through 
a slit in the front wall to grasp and retrieve the sugar pellet 
reward. 
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Network contributions to motor learning and related processes 

Generally, motor learning of a skill in a rodent is thought to involve a shift from associative 

cortex and striatum (i.e. secondary motor cortex (M2) and the dorsomedial striatum (DMS)) to 

the sensorimotor cortex and striatum (i.e. primary motor cortex (M1) and the dorsolateral 

striatum (DLS))5,25-28. Additionally, thalamus has been demonstrated to provide feedback input to 

cortex and striatum for potentiation of optimal synaptic patterns29. 

 

Of note, the role of DLS in motor learning may differ based on the task itself. While complex 

sequences that involve increased dexterity, such as grasping, demonstrate an overall increase in 

DLS activation, the number of task-modulated units decreases with overlearning in simpler tasks, 

such as lever-pressing or navigational locomotion in a T-maze23,30,31.  

 

Specifically in the reach-to-grasp task, acquisition of skill is marked by the emergence of reach-

related modulation of M2-M1 cross-area activity, with M2 local activity preceding M1 local 

activity32. When examining M1 and DLS during learning of the reach-to-grasp skill, 3-6 Hz theta 

LFP power and coherence increases, corresponding specifically with a decrease in kinematic 

variability of the proximal reaching motion23. Additionally, there is evidence towards M1 being 

responsible for the grasping and DLS for reaching during this skill: inactivation of M1 

preferentially disrupts grasping, while DLS inactivation preferentially decreases reach amplitude 

with intact grasping; dimensionality reduction of M1 population activity, rather than DLS 

population activity, via Gaussian process factor analysis can also separate out neural activity due 

to accurate versus inaccurate grasps. Finally, the role of M1 compared to thalamus has been 

recently explored. After the reach-to-grasp skill has been learned, temporary inactivation of M1 
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disrupts movement initiation but not execution, whereas temporary inactivation of thalamus 

disrupts movement execution itself24. Thus, there is a growing body of evidence towards multi-

site representation of complex learned movements in a well-learned state, demonstrating a need 

for more multi-region recordings throughout early learning, late learning, and task manipulations 

to further clarify the functional roles of different nodes in the motor network at different 

behavioral learning states. 
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Local field potentials vs. spiking, the debate 

Analysis of neural activity often falls into two different categories: 1) study of local field 

potential (LFP) activity detected in a region within certain frequency bands, due to lower 

sampling frequency for recording and more stable chronic signal quality52; 2) spiking activity, 

detecting depolarizations of single neurons extracellularly, providing a binary readout of unit 

firing. How do these two measures relate? LFP is often thought of as the aggregate electrical 

activity in a region, as demonstrated by Tetzlaff, et. al. 2011 (Figure 1.3)33. What information 

can be gleaned from this signal, as it has lower resolution than individual unit spiking 

contributions to overall activity? 

 

 

Figure 1.3. Tetzlaff, et.al. 2011 depiction of spiking and LFP detection. Electrodes inserted intracortically (left) can detect 
electrical activity due to single-neuron contributions (right, top) summating into a single “population” signal (right, bottom). 

 

Classically, different LFP band oscillations have been linked to different brain states, such as 

delta (0.5-4Hz) with deep sleep, theta (4-8Hz) with movement, and alpha (8-12Hz) with sleep-

wake cycles53. However, newer studies have made it apparent that even within a given band, 

many more parameters can be decoded from the signal. For example, in primary motor cortex, 

one can find directional-related signals in delta, theta/alpha, as well as higher frequency 
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oscillations35, further adding confusion as to how one should focus on interpreting aggregate LFP 

signals. One proposed method of reconciliation is the “communication through coherence” 

hypothesis36, positing that matched-frequency neural oscillations between brain regions provide a 

communication pathway, through which spiking from an upstream region can more robustly 

promote spiking in a downstream region. Dual analyses of spiking and LFP in multiple regions 

during behavior will be necessary in the future to shed more light on how each represents 

network information transmission37. 
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Analytical methods for measuring single- and cross-area communication 

Given that spiking is considered a “ground truth” readout for neural activity, this section will 

outline some common methods utilized for interpretation of these data. Generally, there are two 

classes of spiking analyses, those that directly use time series of individual unit spiking, and 

those that use dimensionality reduction techniques on population spiking by leveraging 

relationships between sub-populations of unit firing. 

 

One method of measuring spiking activity directly is population coupling, the measure of how 

likely an individual neuron is likely to spike relative to the local population spiking activity, 

giving an idea of whether neurons in a region are firing together or separately for a given 

behavior38. Variability in neural response to a stimulus may be shared among neurons; thus 

another measure of correlating spiking activity between pairs of neurons across trials is via the 

noise correlation metric39. With learning, spike-spike correlations may increase as neural patterns 

consolidate. Additional methods such as analyzing whether individual unit firing rates are tuned 

to a given stimulus or action direction have also been used, by analyzing peri-event time 

histograms (PETH) of firing around a given task or behavioral marker. 

 

With the advent of electrophysiology tools enabling thousands of neurons to be recorded 

simultaneously, studies have demonstrated that the amount of information required to explain 

most of the data variance is primarily located in a lower dimensional space than the full n-

dimensional space, where n is the total number of neurons recorded. Thus, there exist various 

methods of leveraging inherent relationships between individual and sub-population neural firing 

to describe neural activity in a low-dimensional manner. Principal component analysis (PCA), 
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extracts a set of orthogonal principal components that are linear combinations of the original 

neural firing, capturing the greatest variance in the data40-43. An extension of this analysis, 

demixed PCA (dPCA) weights a given component such that one component can maximize 

representation of a task variable, such as auditory stimulus or behavioral task choice44. Factor 

analysis (FA) has also been extensively used due to improved capability of separating changes in 

overall spiking rate from changes in spiking variability, by identifying orthogonal factors that 

preserve variance that is shared across neurons and discarding variance that is independent to 

each neuron41,43,45. An extension of FA is Gaussian process factor analysis (GPFA); instead of 

smoothing the data first and then applying dimensionality reduction techniques, GPFA is a 

process that simultaneously smooths and reduces the dimensionality of the data, thus allowing 

for single-trial comparisons of neural trajectory activations43,46. Finally, while each of these 

techniques mainly examines single-area dimensionality reduction, recently methods for 

examining cross-area low-dimensional activations have emerged. One method is canonical 

correlation analysis (CCA), a dimensionality reduction technique that defines axes of maximal 

correlation between two populations of activity32,47,48. By optimizing for dual-area covariance, 

one can better identify shared area communication as compared to other dimensionality-

reduction techniques, such as PCA and FA, that optimize for local variance. 

 

How do these direct measures of spiking and dimensionality-reduced metrics relate? Pairwise 

and population metrics utilize the same spike count covariance matrices; while few studies report 

how pairwise and population metrics relate, those that do demonstrate similarities32. Changes in 

spike count correlation could be due to strength of shared variability (i.e. strength of common 

input), intra-area connectivity (i.e. intra-area co-fluctuation), or the dimensionality of the neural 
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activity in the area (i.e. if the area receives multiple competing inputs). Additionally, the standard 

deviation of pairwise spike count correlations can be due to changes in population co-variability, 

providing a complementary view to just the strength of correlated activity as an explanation of 

neural communication. 

 

In turn, there has recently been a 

movement towards defining low-

dimensional activity spaces as 

neural manifolds (Figure 1.4). A 

neural manifold reflects covariance 

patterns across population activity, 

with patterns of neural activity 

arising from structural network 

connectivity38,49,50. How do spiking 

manifolds relate to learning? Motor 

adaptation, and adaptation of neural 

patterns to external outputs (i.e., different reaching action, BCI cursor control) can occur quickly 

if the patterns of activity lie on the intrinsic manifold. Thus, within-manifold perturbations can 

be learned within a day. In contrast, off-manifold perturbations can be enforced with BCI 

learning paradigms. This learning of mapping between M1 activity and cursor control distinct 

from the original, intuitive mapping requires several days, but demonstrates a direct link between 

newly established activity and novel cursor control patterns45,51. In the reach-to-grasp task in 

rodents, one can posit that a corticostriatal manifold develops with learning. In Chapter 2, I will 

Figure 1.4. Gallego and Miller depiction of neural manifold. A) network of 
connected neurons of which we can experimentally sub-sample from. B) 
neural manifold derived directly from neural firing. C) depiction of 
dimensionality reduction of spiking into latent factors L1 and L2. D) Overlay 
of neural manifold from dimensionality reduction (pink) versus raw neural 
firing rates (grey); from Gallego…Miller, 2018. 



 12 

delve into whether transfer learning of the original skill is supported by the on- or off-manifold 

learning paradigm, as well as the implications of the result. In Chapter 3, I will then introduce a 

model for motor flexibility that will challenge the idea of M1 as a pattern-generating manifold, 

but rather one node of a larger motor network that can flexibly utilize on- or off-manifold 

patterns of activity to generate movement, along with the corresponding implications of 

corticostriatal network dysfunction.  
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Chapter 2: Breakdown of corticostriatal patterns underlies motor transfer learning 

 

Abstract 

Applying prior learned actions to novel contexts is critical for survival. Motor learning has been 

historically demonstrated to establish consistent neural patterns in primary motor cortex (M1), 

and more recently downstream structures as well, such as the dorsolateral striatum (DLS). 

However, when a single motor task has been learned in a single environmental context, it is 

unknown how the transfer of that learned motor task to a modified environment occurs, with 

competing possibilities of quick adaptation of existing neural patterns versus longer term re-

learning involving aspects of an early learning process. Here, we overtrained rats to a single 

location in the reach-to-grasp task, and then studied how M1 and DLS activity patterns changed 

with reaching to a second pellet location. We found that early post-switch, reaching to the 

previously learned location persisted, accompanied by consistent patterns of activity in M1 and 

DLS. However, early in transfer learning, there was a state shift to variable patterns of activity 

supporting smooth reaching with variable endpoints for grasp between the old and new locations; 

subsequently, patterned activity returned in both regions. Together, these findings demonstrate 

that from an automatic motor state, establishing behavioral flexibility involves breakdown of 

corticostriatal spiking patterns, subsequently re-emerging with re-learning of the related skill. 
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Introduction 

Motor cortex has been characterized as an engine for precise movement control through the 

generation of reliable neural activity patterns1-4. Yet, in real world scenarios, organisms must also 

be capable of generating variable exploratory movements in order to adjust to changes in the 

environment. It is unclear how the primary motor cortex (M1) and downstream subcortical areas 

enable both exploratory variable movements as well as highly predictable movements in a well-

known environment. For example, a prominent current hypothesis is that stable M1 population 

activity patterns -- for example sequential firing of neural activity2,5-7-- are important for the 

production of reliable behaviors. Reliable sequencing of neural activity appears to emerge 

through the process of learning and consolidation3,6-8; such activity is also associated with greater 

coupling between M1 and subcortical regions such as the dorsolateral striatum (DLS)4,7,9. It 

remains unknown how established activity patterns across cortical and subcortical regions are 

altered in a setting where generated movements no longer result in successful outcomes. 

 

How then might M1 and downstream structures allow for more flexible exploration when 

previously successful movement output must be adapted for reward? One possibility is that prior 

learning established a generalizable neural manifold in M1, such that modified movement 

patterns are largely similar to the previous ones, with minor differences in unit tuning. A second 

possibility is that while M1 reverts to an exploratory, variable state, downstream structures such 

as DLS maintain firing patterns to support robust learned movement. Finally, M1 and DLS could 

be functioning in tandem after initial learning of a skilled movement, re-establishing exploratory 

neural activity patterns together to enable behavioral flexibility. 
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In this study, we probed how behavioral flexibility is established by training rodents to automatic 

performance on the reach-to-grasp skill for a single location, and then switched the pellet reward 

location. We found that this transfer of learning was a multi-day process; we did not find 

evidence for rapid within-session adaptation. Establishment of initial behavioral flexibility 

during transfer learning corresponded with a return to an exploratory neural state in M1 and 

DLS, marked by decrease in consistency of task-modulated units and reaching spiking patterns, 

as well as a reduction of the coordination of cross-area spiking patterns. Subsequently, M1 and 

DLS exhibited coordinated re-establishment of task-aligned spiking structure, further adding 

evidence towards the third transfer learning hypothesis. Together, our results indicate that from 

an automatic motor state, establishing behavioral flexibility in a complex motor skill involves 

breakdown of M1-DLS spiking structure at single-unit, population, and shared communication 

levels, subsequently re-emerging with successful transfer learning. 
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Results  

Transfer learning of an automatic skilled motor behavior is a multi-day process, with individuals 

exhibiting variability. 

We recorded single-unit activity and local field potentials (LFPs) in M1 and DLS as rats (n = 6 

animals) learned a reach-to-grasp skill. We then continued recording neural activity after the 

reach location was switched. Rats were trained for at least 1000 trials to Location A in automated 

behavioral boxes (Figure 2.1A)36, after which the reach location was switched to Location B, 50-

150 trials per day, for 3-5 days (Figure 2.1B,C). Decay curves of automatic reaches to A were fit 

for each animal (Figure 2.1D, Figure 2.2A), and the tau decay constant was correlated with how 

many trials to A rats had been exposed to (Figure 2.2B, R2 = 0.892, p = 0.00455). Accuracy of 

each trial was dependent on both correct reach location, as well as dexterous grasping for reward 

(Figure 2.2C). For each session, we examined reach duration, defined as time from first reach to 

first grasp (Figure 2.2D), and reaction time, defined as time from trial start to first reach (Figure 

2.2E). When examining sessions after switch of pellet location, there was a slight increase and 

subsequent decrease of reach to grasp duration, with a corresponding increase and decrease of 

normalized reaction time, from baseline to three and four sessions after switch, respectively 

(Figure 2.2F-G).  

 

From a macro level, we observed that switching reaching to location B was a multi-day process 

(Figure 2.1C,D) that involved a transition from initiating trials to A to initiating trials to B, with 

little evidence of within-trial switching and or outcome-based switching from trial-to-trial . To 

assess for within-trial switching we analyzed whether extra reaches within a trial occurred 

(Figure 2.3A, Figure 2.4A). Subsequently, we characterized types of reach after the first reach, 
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Figure 2.1. Transfer learning of an automatic, skilled behavior. (A) Reach-to-grasp experiment setup. A pellet is retrieved 
automatically from the dispenser and moved to reach position. A cue is then delivered, after which the door opens and rat 
reaches through a slit to retrieve the pellet. (B) Transfer learning paradigm. Rats are over-trained to reach to location A to 
retrieve the pellet reward (left). Then the pellet is moved to location B for retrieval (middle) over multiple days (right). (C) Top: 
histogram of x-position of grasp, across trials. Bottom: reach trajectories (lines) and grasp locations (small dots) relative to 
pellet location (large black circle). (D) Percentage of trials in a session with first reach to location A, as compared to low-
amplitude reaches and/or reaches to location B.  
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Figure 2.2. Breaking out of an automatic, skilled motor behavior is a multi-day process, with individuals exhibiting variability.  
(A) Percentage of reaches to A, per 10 trials, with exponential decay curve fit, for one animal (left), and across animals (right). 
(B) Slope of decay, tau, versus trials of training to A prior to switch. (C) Total accuracy across sessions, as defined by percent of 
trials in a session with successful pellet retrieval. (D) Reach duration, defined as first reach onset to first grasp time, across 
sessions for example animal. (E) Reaction time, as defined by reach onset time relative to trial start, example animal. (F) 
Normalized first reach to first grasp time across animals and sessions. (G) Normalized reaction time across animals and sessions. 
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within a trial (Figure 2.3B, Figure 2.4B). In the first session post-switch, rats perseverated in 

reaching to A as opposed to switching to B (Figure 2.3C, ANOVA, A vs. S, p=4.3e-4; A vs. B, 

p=0.023; Figure 2.4C). This perseveration did not happen on the few trials when reaches to B 

occurred (Figure 2.4D). Thus, when animals initiated a reach to A or B, they continued to reach 

to the same location within a trial. Finally, we probed whether early post-switch error-updating 

happened from trial to trial based on accurate retrieval of a pellet (Figure 2.3D). After reaching 

to B accurately, perseveration to A on the next trial’s first reach continued for the first session 

post-switch (Figure 2.3E, ANOVA, A vs. S, p=4.4e-3; A vs. B, p=0.057). This was also true for 

inaccurate trials where the final reach was to A (Figure 2.4E), indicating that early on animals 

did not adjust their strategy based on recently received or missed rewards. Of note, in the low 

number of trials early post-switch where rats reached inaccurately to B, there were more reaches 

to A than to B on the subsequent trial, although not significant (Figure 2.4F).  Overall, this 

indicated that early post-switch, successfully transfer learning to B did not happen within trials, 

or even across trials based on the previous trials’ outcome, but rather was a multi-day process 

that required learning to consistently initiate trials to B.  
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Figure 2.3. In a rigid state, error-based updating occurs neither within trials nor across trials. (A) Example x-trajectory of paw 
during a trial, with reach onset marked. (B) Within-trial updating for reaches after the first were classified into low-amplitude 
(short), old (A), or new (B) reaches. (C) For all reaches after the first reach in a trial, percentage of A, B, or short (S) reaches. (D) 
Across-trial updating of first reach was divided on whether the previous trial was accurate with successful pellet retrieval, or 
inaccurate. (E) For all reaches after accurate pellet retrieval, percentage of subsequent trial first reaches to A, B, or S. 
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Figure 2.4. In a rigid state, error-based updating occurs across days. (A) Average number of reaches per trial, across sessions. (B) 
Within-trial updating for reaches after the first were classified into A, B, or low-amplitude (S, not shown). (C) Proportion of A, B, 
or S reaches for all within-trial reaches after a reach to A. (D) Proportion of A, B, or S reaches for all within-trial reaches after a 
reach to B. (E) Proportion of first A, B, or S reaches after inaccurate trial with final reach to A. (F) Proportion of first A, B, or S 
reaches after inaccurate trial with final reach to B. 
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Breakdown of reach-locked M1 and DLS unit spiking underlies transfer learning of reach-to-

grasp skill 

In a well-learned task, cortical and striatal units have predictable firing rate dynamics relative to 

the kinematics of behavior. However, it is unknown how this predictability of unit dynamics 

changes with transfer learning. When tracking M1 units over time, at sessions early to 

intermediate after the switch of pellet to B, we saw a breakdown of unit firing rate modulation 

aligned to reach onset (RO) across all trials in a session (Figure 2.5A, Figure 2.7A), despite 

rodents completing smooth, fast reaches (Figure 2.2G). While cortical dynamics of the reach-to-

grasp task break down over learning a second similar skill, one might predict that striatal 

dynamics do not, given the similarity of gross movement and kinematics for reaches to A and B 

(Figure 2.1C, Figure 2.2D,E). However, DLS units also exhibited a similar pattern as those in 

M1, simultaneously dropping RO modulation on the same sessions during which M1 spiking 

modulation decreased (Figure 2.5B, Figure 2.7B). In turn, sessions were categorized into the 

following based on task parameters, behavior curves, and Fano factor (Figure 2.5C) of unit 

spiking activity (see Methods, Spiking analysis: Determination of session type): A) Baseline 

(BL), pellet at location A, reaching to A, consistent reach-modulated spiking activity; 2) 

Automatic (auto), pellet at location B, reaching mostly to A, consistent reach-modulated spiking 

activity; 3) Variable (var), pellet at location B, reaching to A and B, local maximum of lowest 5 

Fano factors per unit, aggregated, with significant deviation from baseline minimum Fano 

factors; 4) Relearned (rel), pellet at location B, reaching mostly to B, consistent reach-modulated 

spiking activity (Figure 2.5D,E).  
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Figure 2.5. Breakdown of reach-locked M1 and DLS unit spiking underlies transfer learning of reach-to-grasp skill. (A) Top: trial 
rasters for a single example M1 unit, matched across sessions. Bottom: trial-averaged firing rate of the same unit (mean ± SEM) 
for -2s to 2s around first reach onset. (B) Same as A, for an example DLS unit. (C) Equation for determining Fano factors for each 
50ms time bin, with 80 total Fano factors per unit, per session. (D) Five minimum Fano factors per unit for -0.5s to 0.5s around 
first reach onset, across sessions, for two example animals. (E) Session type re-categorization based on Fano factors: indigo = 
baseline, blue = automatic (post-switch, before increase in Fano factors), gray = variable (post-switch, maximum increase in 
Fano factors), orange = relearned (post-switch, subsequent decrease in Fano factors). 
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Trial-averaged spiking modulation was calculated for each neuron in one session type per 

animal, with modulation defined as the z-scored absolute peak of firing rate between -0.5s and 

0.5s around reach onset. In M1, there was a significant drop in trial-averaged unit modulation on 

the variable session for trials with first reach to A (Figure 2.6A, first reach to A (mean +/- sem), 

BL: 1.71 +/- 0.080; auto: 1.89 +/- 0.093; var: 0.801 +/- 0.057; rel: 1.76 +/- 0.095; linear mixed 

effects model p-values, BL vs var: 1.44e-14; auto vs. var: 2.66e-17; rel vs. var: 1.24e-15). 

Similarly, for trials with first reach to B, there was a drop in M1 reach-locked unit modulation on 

the variable session (Figure 2.6A, first reach to B (mean +/- sem), auto: 1.78 +/- 0.088; var: 1.02 

+/- 0.064; rel: 1.75 +/- 0.11; linear mixed effects model p-values, auto vs. var: 4.48e-10; rel vs. 

var: 9.63e-10).  

 

In DLS, the same pattern of unit spiking losing reach-modulation on the variable session was 

observed for both trials with first reach to A and trials with first reach to B (Figure 2.6B, first 

reach to A (mean +/- sem), BL: 1.32 +/- 0.11; auto: 1.78 +/- 0.099; var: 0.829 +/- 0.057; rel: 1.52 

+/- 0.080; linear mixed effects model p-values, BL vs var: 3.46e-4; BL vs. rel: 3.60e-3; auto vs. 

var: 3.45e-12; rel vs. var: 3.19e-12; first reach to B (mean +/- sem), auto: 1.61+/- 0.12; var: 

0.811 +/- 0.046; rel: 1.62 +/- 0.086; linear mixed effects model p-values, auto vs. var:2.29e-7; rel 

vs. var: 2.20e-14). Importantly, M1 and DLS average task firing rate does not change across 

session types (Figure 2.7C,D), and increased reach-related firing rate relative to non-reach 

periods per unit is preserved on the variable sessions (Figure 2.7E; M1 units, paired t-test, 

p=1.17e-4; DLS units, paired t-test, p=8.98e-6). 
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Figure 2.6. Both M1 and DLS units lose reach modulation of spiking activity with transfer learning. (A) Trial-averaged z-scored 
modulation peak per M1 unit across re-categorized session types, averaged separately for trials with first reach to A (blue dots) 
and trials with first reach to B (orange dots). (B) Same as A, for DLS units across session types. 
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Figure 2.7. While unit modulation drops, M1 and DLS unit task-averaged activity does not change by session type. (A) Top: trial 
rasters for a single example M1 unit, matched across sessions. Bottom: trial-averaged firing rate of the same unit (mean ± SEM) 
for -2s to 2s around first reach onset. (B) Same as A, for an example DLS unit. (C) Normalized average firing rate for all M1 units 
in an animal for A reaches (blue) and B reaches (orange) for -2s to 2s around reach onset. (D) Same as C, for DLS units. (E) Unit 
modulation during reach period, -0.5s to 0.5s around reach onset, relative to non-reach periods, for M1 (green) and DLS (black) 
units, paired t-test. 
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M1 and DLS temporal patterning re-emerges following variable session. 

A hallmark of crystallized skills is a consistent temporal neural pattern of activation2, which can 

be visualized in both a trial-averaged manner as well as in a single trial (Figure 2.8A). 

Previously we have demonstrated a drop in single-unit modulation relative to reach onset 

(Figure 2.5-2.7). However, there could still be an underlying temporal structure in spiking 

activity from trial to trial. Consistency of pattern activation in a region can be assessed via 

correlation of a trial spiking sequence to the trial-averaged spiking sequence for a session 

(Figure 2.8A). A reach trials were compared to the template for all reaches to A; the same 

process was completed for B reach trials in a session, as described in Methods, Spiking analysis: 

Template matching. Strikingly, sequential activity similarly broke down on the variable session 

(Figure 2.8B), reminiscent of an early skill learning state4,7. In M1, when comparing first reach 

to A spiking to the average neural template for first reaches to A, there was a drop in neural 

pattern consistency during the variable session as compared to the other sessions; interestingly, 

there was a slight  increase in neural pattern consistency from baseline to the automatic and 

relearned sessions (Figure 2.8C, first reach to A (mean +/- sem), BL: 0.267+/- 0.0096; auto: 

0.342 +/- 0.0085; var: -0.0480 +/- 0.0094; rel: 0.356 +/- 0.014; linear mixed effects model p-

values, BL vs auto: 1.07e-4; BL vs. var: 4.34e-78; BL vs. rel: 9.32e-7; auto vs. var: 1.20e-100; 

rel vs. var: 8.42e-69). For first reaches to B, M1 spiking activity was similarly more temporally 

consistent for the automatic and relearned sessions as compared to the variable sessions (Figure 

2.8C, first reach to B (mean +/- sem), auto: 0.280 +/- 0.015; var: 0.0450 +/-0.013; rel: 0.0322 +/- 

0.0092; linear mixed effects model p-values, auto vs. var: 3.34e-8; rel vs. var: 3.31e-55).  
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Figure 2.8. M1 temporal patterning breaks down and re-emerges with transfer learning. (A) Top: leave-one-out trial-averaged 
spiking pattern of M1 units for reach period, -0.5s to 0.5s around first reach onset, across session types. Bottom: left-out trial 
spiking correlation with corresponding session template. (B) Trial-to-template correlation across trials, with A trial-to-template 
correlations shown for the baseline session, and B trial-to-template correlations shown for subsequent sessions. Variable 
session is shaded in grey. (C) M1 trial-to-template correlations for all trials by session type, A trial-A template correlations in 
blue and B trial-B template correlations in orange. 
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This same pattern of changes in trial-to-template correlation across session types was observed in 

DLS (Figure 2.9A). Specifically, for first reaches to A and B, there was a decrease in spiking 

pattern consistency during the variable sessions, with a slight increase in pattern consistency for 

first reaches to A on the automatic and relearned sessions relative to baseline (Figure 2.9B, first 

reach to A (mean +/- sem), BL: 0.170 +/- 0.012; auto: 0.184 +/- 0.011; var: -0.0662 +/- 0.011; 

rel: 0.240 +/- 0.013; linear mixed effects model p-values, BL vs auto: 2.33e-3; BL vs. var: 3.23e-

34; BL vs. rel: 9.54e-5; auto vs. var: 8.12e-20; rel vs. var: 4.04e-43;  first reach to B (mean +/- 

sem), auto: 0.193 +/- 0.020; var: -0.0237 +/-0.0088; rel: 0.2208 +/- 0.011; linear mixed effects 

model p-values, auto vs. var: 2.05e-25; rel vs. var: 3.35e-55). While the variability in pattern on 

the variable session can be inferred from the variability in spiking on this session (Figure 2.5-

2.7), this analysis emphasizes that not only does spiking return to reach-locked modulation, but 

that there’s a consistent temporal ordering of unit modulation soon after, indicating that 

consolidation of an optimal neural pattern follows the exploratory neural state in M1 and DLS. 
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Figure 2.9. DLS temporal patterning also re-emerges following transfer learning. A) Top: leave-one-out trial-averaged spiking 
pattern of DLS units for reach period, -0.5s to 0.5s around first reach onset, across session types. Bottom: left-out trial spiking 
correlation with corresponding session template. (B) DLS trial-to-template correlations for all trials by session type. 
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M1 and DLS single-trial population modulation becomes less temporally consistent during 

transfer learning 

While individual units lose reach-specific modulation of activity, there exist two possibilities: 1) 

the majority of spiking occurs with relation to trial start cues; 2) in an exploratory state, the 

majority of population spiking bursts are not aligned to the trial structure (i.e. trial start, reaching 

movement), despite overall increased firing in M1 and DLS during reach (Figure 2.7E). Thus, 

we examined M1 and DLS single-trial population spiking activity throughout the trial across the 

different session types (Figure 2.10A,B) demonstrating no consistent modulation relative to trial 

start across sessions.  

 

On the variable session there was a drop in reach-related population spiking activity modulation, 

defined as z-scored peak of trial population activity -0.5s to 0.5s around first reach onset,  in both 

M1  (Figure 2.10C,D, Figure 2.11A,C, first reach to A (mean +/- sem), BL: 2.12 +/- 0.0029; 

auto: 2.33 +/- 0.0026; var: 1.08 +/- 0.0060; rel: 2.24 +/- 0.0080; linear mixed effects model p-

values, BL vs var: 6.87e-31; auto vs. var: 4.53e-33; rel vs. var: 4.72e-13; first reach to B (mean 

+/- sem), auto: 2.51 +/- 0.0062; var: 1.59 +/-0.0045; rel: 1.98 +/- 0.0038; linear mixed effects 

model p-values, auto vs. var: 2.02e-5; rel vs. var: 4.27e-6) and DLS (Figure 2.10C,D, 2.11B,D, 

first reach to A (mean +/- sem), BL: 1.71 +/- 0.0033; auto: 1.99 +/- 0.0028; var: 1.28 +/- 0.0053; 

rel: 1.94 +/- 0.0078; linear mixed effects model p-values, BL vs. auto: 1.97e-5; BL vs var: 6.90e-

3; auto vs. var: 3.14e-11; rel vs. var: 2.97e-9; first reach to B (mean +/- sem), auto: 2.09 +/- 

0.0078; var: 1.34 +/-0.0041; rel: 2.05 +/- 0.0034; linear mixed effects model p-values, auto vs. 

var: 2.97e-11; rel vs. var: 7.05e-19).  However, when looking across the entire task period of -2s 



 40 

to 2s around reach onset, there was little to no variation in peak firing rate in either M1 or DLS 

across session types (Figure 2.11E,F).  

 

Is the drop in trial-averaged spiking modulation due to a shift in peak timing, as hinted by 

observation of trial firing (Figure 2.10C,D)? While peak firing rate throughout the task period 

remained relatively unchanged, for both A and B reaching, the time at which the peak of 

population firing occurred was significantly more spread out over the trial period during the 

variable session. This was true  in both M1 (Figure 2.10E, first reach to A (mean time in 

seconds relative to reach onset +/- sem), BL: -0.0976 +/- 0.0023; auto: -0.00960 +/- 0.0022; var: 

-0.201 +/- 0.0072; rel: -0.202 +/- 0.0039; Bartlett’s test p-values, BL vs. auto: 4.50e-3; BL vs 

var: 1.69e-19; auto vs. var: 1.05e-28; rel vs. var: 5.10e-11; Figure 2.10E, first reach to B (mean 

+/- sem), auto: -0.0250 +/- 0.055; var: -0.0330 +/-0.049; rel: -0.328 +/- 0.0035; Bartlett’s test p-

values, auto vs. var: 6.50e-15; auto vs. rel: 2.73e-7; rel vs. var: 4.66e-6) and DLS (Figure 2.10F, 

first reach to A (mean +/- sem), BL: 0.0684 +/- 0.0032; auto: 0.0998 +/- 0.0035; var: -0.199 +/- 

0.0070; rel: 0.0747 +/- 0.0090; Bartlett’s test p-values, BL vs var: 5.97e-4; auto vs. var: 2.26e-5; 

rel vs. var: 1.38e-4; Figure 2.10F, first reach to B (mean +/- sem), auto: -0.0390 +/- 0.0092; var: 

-0.0637 +/-0.0050; rel: -0.0671 +/- 0.0038; Bartlett’s test p-values, auto vs. var: 4.67e-5; rel vs. 

var: 2.24e-6). Overall, this indicated that while M1 and DLS population spiking retained 

modulation, it became less RO-aligned, as examined on a trial-by-trial level, during the variable 

session early in transfer learning. 
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Figure 2.10. M1 and DLS single-trial population spiking activity loses temporal consistency with transfer learning. (A) M1 (left) 
and DLS (right) z-scored population spiking across entire trial, for all trials in a baseline session for an example animal. (B) Same 
as A, for example animal variable session. (C) Baseline session, example A reach trials, z-scored population spiking in M1 (left) 
and DLS (right) for shortened trial window, -2s to 2s around first reach onset. (D) Same as C, for example variable session trials 
with first reach to A. (E) Time of peak population spiking within -2s to 2s around first reach onset in M1 units for trials with first 
reach to A (left), and trials with first reach to B (right). (F) Same as E, for DLS units across session types. 
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Figure 2.11. M1 and DLS single-trial reach-modulated population spiking breakdown underlies transfer learning. (A) Top: M1 
unit rasters for a single example trial, across session types. Bottom: Summed M1 population spiking for the corresponding trial. 
(B) Same as A, for DLS population and example trials across session types. (C) M1 single-trial population spiking modulation 
during reach period, -0.5s to 0.5s around first reach onset, across session types for trials with first reach to A (blue) and trials 
with first reach to B (orange). (D) Same as C, for DLS single-trial population spiking across session types. (E) M1 single-trial 
population spiking modulation over expanded trial window, -2s to 2s around first reach onset, across session types. (F) Same as 
E, for DLS single-trial population spiking modulation over expanded trial window. 
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M1-DLS task population spiking drops correlation with preservation of modulation during 

transfer learning 

Given that M1 and DLS are monosynaptically connected structures implicated in motor skill 

formation and consolidation, which independently demonstrated breakdown and re-emergence of 

task activity, we then examined how correlation of M1 and DLS population spiking activity 

evolved over session types. During the variable session, M1 and DLS spiking correlation drops 

during the task period of -2s to 2s around reach onset (Figure 2.12A-C; A reach trials, BL<auto, 

p=1.16e-10, auto>var, p=3.19e-11, var<rel, p=4.00e-4; B reach trials, auto>var, p=2.28e-5, 

var<rel, p=5.22e-7). However, the modulation of M1 and DLS peaks themselves, from trial to 

trial, still occurred in a coordinated manner during the variable session (Figure 2.12D,E; A reach 

trials, R2 = 0.301, p=2.40e-14; B reach trials, R2 = 0.529, p=1.83e-38).  

 

M1-DLS reach-related cross-area dynamics drop during learning of switched contingency 

We then explored how coordinated communication of M1 and DLS evolved during the 

breakdown of neural patterning seen with transfer learning using canonical correlation analysis 

(CCA). As opposed to directly comparing correlations of single-trial M1 and DLS population 

spiking activity (Figure 2.12), CCA finds maximally correlated combinations of simultaneous 

M1 and DLS activity, measuring cross-area dynamics10-12. Through this method, axes of maximal 

correlation are identified for M1 and DLS (Figure 2.13A), with subsequent projection of high-

dimensional neural activity on these axes to examine shared signals in a lower dimension 

(Figure 2.13B). To establish that CCA models of M1-DLS cross-area activity were behaviorally 

significant, we compared the R2 of CCA models fit on actual data to the R2 of CCA models fit on 

trial-shuffled data. From this generated distribution of shuffled R2 values, a CV from the true 
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Figure 2.12. M1-DLS task population spiking drops correlation with preservation of modulation during 
transfer learning. (A) Average population spiking for M1 units (green) and DLS units (black) over a single 
trial, relative to first reach onset. (B) Correlation of M1 and DLS average population firing traces across 
session types for trials with first reach to A. (C) Same as B, for trials with first reach to B. (D) Variable 
session, single-trial M1 and DLS peak firing rate within -2s to 2s around first reach onset window, for trials 
with first reach to A (left, blue) and trials with first reach to B (right, orange).  
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dataset was considered significant if its R2 value exceeded the 95th percentile of the reference 

distribution (Figure 2.13C). Most datasets had 1-3 significant CVs, demonstrating that CCA 

could identify shared low-dimensional activity across M1 and DLS (Figure 2.13D); datasets that 

had no significant CVs were excluded from analyses. 

 

To examine whether M1-DLS shared communication is task-relevant or reach-relevant, we 

compared M1 cross-area activity vs. DLS cross-area activity prior to reach onset and during 

reach for the different behavioral states (Figure 2.13E). We then calculated the relative 

modulation index (RMI) of CCA activation per trial, to compare how reach-related cross-area 

activity was modulated over the process of unlearning an automatic action (Figure 2.13F). For 

trials with first reach to A, M1 cross-area activity was higher at the automatic state, as compared 

to the baseline and variable states (Figure 2.13G, reach modulation index, linear mixed effects 

model p-values, BL vs auto: 2.65e-12; auto vs. var: 5.19e-10). Cross-area activity in DLS 

exhibited a similar pattern, with reach-related cross-area activity higher at the automatic state, as 

compared to the variable state (Figure 2.13G, reach modulation index, linear mixed effects 

model p-value, auto vs. var: 6.01e-4). 

 

Even more importantly, this drop of reach-related cross-area activity on the variable sessions was 

pronounced for the new reach being learned to B, with moderate re-emergence during relearning. 

M1 cross-area activity was higher at the automatic state as compared to the variable state, with 

increase in cross-area activity from the variable to relearned state (Figure 2.13H, reach 

modulation index, linear mixed effects model p-values, auto vs. var: 1.34e-31; var vs. rel: 1.31e-

9). Cross-area activity in DLS followed the same pattern, with decrease in activity from 



 46 

automatic to variable state and increase in activity from variable to relearned state (Figure 

2.13H, reach modulation index, linear mixed effects model p-values, auto vs. var: 7.75e-16; var 

vs. rel: 7.44e-8). Thus, with increased sequence variability in M1 and DLS (Figure 2.8, Figure 

2.9), there was a corresponding decrease in M1-DLS shared cross-area activity during reach 

(Figure 2.13G,H), indicating that while M1-DLS spiking activity was coordinated enough to 

identify a shared subspace, in an exploratory state there is minimal modulation of cross-area 

communication during the reach-relevant period of the task on the variable sessions. 
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Figure 2.13. M1-DLS reach-related cross-area dynamics drop during transfer learning. (A) Canonical correlation analysis (CCA): 
example identification of axis with maximal shared variance between M1 and DLS activity (purple dotted line), with example 
value of projected population activity  at time t1 (solid line on shared axis) for M1 population activity (left, green) and DLS 
population activity (right, black). (B) Projection of population activity onto axis which maximizes shared variance, over time. (C) 
Example bootstrap shuffled distribution of R2 values for identification of significant canonical variable (CV) axes. (D) Top: single-
trial M1 spiking activity. Middle: single-trial DLS spiking activity. Bottom: corresponding single-trial M1 (green) and DLS (black) 
activations along CV1. Pre-reach period (grey) is -1 to -0.5s before first reach onset. Reach period (blue-orange) is -0.1s to 0.4s 
around first reach onset. (E) M1 and DLS CV1 activity for pre-reach period (black dots) vs. CV1 activity for reach period for A 
reaches (blue, top) and B reaches (orange, bottom), across session types. (F) Equation for relative modulation index (RMI) of 
CCA activation, comparing reach and pre-reach periods. (G) RMI for trials with first reach to A, for M1 activations (left, green) 
and DLS activations (right, green), across session types. (H) Same as G, for trials with first reach to B, across session types. 
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Behavior and spiking activity on the variable session have features of both early and late 

learning states 

How might one explain how robust behavior is observed during the variable sessions without 

consistent M1 and DLS neural patterns? First, with re-categorization of sessions neurally, we 

observe an increase in normalized reaction time from the automatic to variable session when 

combining both first reach to A and first reach to B trials (Figure 2.14A, linear mixed-effects 

model, p=5.31e-15). Surprisingly, normalized reach-to-grasp time decreases with transfer 

learning (Figure 2.14B, BL vs. var: 7.42e-11; BL vs. rel: 7.42e-13; auto vs. var: 2.73e-11; var 

vs. rel: 1.69e-6), indicating that there may be greater cognitive exploration during this session 

accompanied by execution of the previously learned reach-to-grasp skill. 

 

Earlier analyses demonstrated that the timing of M1 and DLS population spiking peaks on the 

variable session were distributed away from reach onset (Figure 2.10C-F), and recent work has 

demonstrated that single-trial neural dynamics can be due to variable movements independent of 

expert movement execution13. What behavior, if any, is occurring during these events of peak 

firing within the trial? We found that the majority of behavior during M1 peak activity involved 

movements, such as preparatory paw activity, movement onset before pausing, reaching, and 

grasping (Figure 2.14C). Spiking activity for each neuron during the reach-related periods of the 

variable session still remained higher than non-reach periods of spiking, in both M1 and DLS 

(Figure 2.15A, pairwise t-test p-values, M1: 1.17e-4; DLS: 8.97e-6), indicating de-coupling of 

population spiking bursts and underlying reach-supporting neural activity. 
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Figure 2.14. Motor behavior during the variable state has features of early and late learning. (A) Normalized reaction time, 
defined as time from trial start to first reach adjusted by minimum reaction time per animal, across re-categorized session 
types. (B) Normalized reach-to-grasp time, defined as time from first reach to first grasp adjusted by minimum reach-to-grasp 
time per animal, across re-categorized session types. (C) Behavior at peak of M1 population spiking in the -2s to 2s around first 
reach onset window. 
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If peak timing varies, is there still a consistent neural sequence of preparatory movement activity 

that is not locked to reach onset that co-exists with an overlying population activity burst? 

SeqNMF is a newly introduced algorithm that utilizes convolutional non-negative matrix  

factorization to identify patterns of neural activity in an unsupervised fashion (Figure 2.15B)14. 

In turn, with peaks of an optimal sequence identified, one can measure the robustness of this 

neural activity pattern using trial-to-template correlation as completed previously (Figure 2.8, 

Figure 2.9), with alignment instead to the seqNMF-identified peak of onset (Figure 2.15C). In 

M1, there was a decrease in seqNMF peak-aligned trial-to-template correlation from baseline to 

variable state (Figure 2.15D, top, linear mixed effects model, p=9.03e-5), and trend towards 

increase from variable to relearned states (Figure 2.15D, top, linear mixed effects model, 

p=0.0501). In DLS, there was a drop in seqNMF peak-aligned trial-to-template correlation from 

the baseline to automatic state (Figure 2.15D, bottom, linear mixed effects model, p=6.01e-3) 

but not to the variable state with Bonferroni correction (alpha = 8.33e-3), hinting towards 

preservation of an underlying sequence of activity in DLS with some neural pattern exploration 

in M1 during the variable session. Additionally, the overall linear mixed-effects model was 

nonsignificant in both M1 and DLS for differences in trial-to-template correlation, indicating that 

there may be preservation of weak M1 and DLS spiking patterns for the reach-to-grasp skill 

across session types that cannot be found when aligning neural activity to observed behavior 

markers, thus allowing for downstream generation of robust movements. 
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Figure 2.15. Unsupervised alignment of spiking activity suggests underlying trial structure in DLS. (A) Variable session, 
modulation of M1 (green) and DLS (black) unit firing rate during reach period, -0.5s to 0.5s around reach onset, relative to non-
reach periods. (B) Unsupervised discovery of neural patterns with sequential non-negative matrix factorization (seqNMF). (C) 
M1 (left) and DLS (right) B trial-average spiking templates on the variable session for an example animal, aligned to peak of 
seqNMF activation in window of -2s to 2s around first reach onset. (D) Trial-to-template correlations with seqNMF peak 
activation alignment for M1 activity (top) and DLS activity (bottom), across session types. 



 52 

Discussion 

In this study, we find that automaticity in the reach-to-grasp task entails establishment of a rigid, 

inflexible motor skill. Learning to slightly modify behavior to adjusted task parameters from this 

rigid state is a multi-day process. In both M1 and DLS, neural pattern breakdown underlies this 

shift from rigid to flexible behavior. At a single neuron level, the reach-specific modulation 

across trials decreased during this return to behavioral exploration. Similarly, at the population 

level, the variable and exploratory behavioral state was characterized by equivalent modulation 

of activity from trial to trial, with increased temporal spread of when this population spike 

bursting occurs. After this variable state, there was subsequent establishment of consistent 

spiking patterning in M1 and DLS for the newly learned movement. Finally, we examined the 

communication subspace between M1 and DLS spiking. In the well-learned and automatic states, 

M1-DLS communication during reach was high, as compared to pre-reach. However during the 

exploratory state, there was little reach-modulated communication, consistent with the idea that 

M1-DLS patterns of activity are more consolidated when a motor skill is well-learned. In turn, 

we demonstrate that traversing from an automatic, rigid state to a more behaviorally flexible 

state involves a breakdown of M1 and DLS spiking patterns, with subsequent re-establishment of 

the cross-area manifold with re-learning. 

 

A major question underlying this work is whether this rigid behavioral state is general to 

automatic behaviors, or whether this could be a sign of habit formation. Classically, 

establishment of habit has been promoted via random-interval delivery of reward, in contrast 

with random-ratio delivery of reward for goal-directed movement15,16. This is difficult to de-

couple in the reach-to-grasp task, due to the reward being part of the grasping component of the 
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skill. In turn, more nuanced versions of this task, such as a reach-grasp-pull of a joystick for 

example, would enable more specific determination of the neural basis of habit formation and 

breakdown in a complex skilled forelimb task. 

 

The prolonged nature of skill re-learning seen in this task paradigm is perhaps more akin to 

reinforcement learning than within-session adaptation17-19. Reinforcement learning has classically 

been studied with regard to reward-informing dopaminergic neurons in the striatum determining 

optimal patterning for synaptic strengthening20-23. In this study, we are unable to classify sub-

types of neurons being recorded, or verify that recorded neurons are the same day-to-day. With 

emerging technologies, such as the combination of optogenetic tagging with calcium imaging24,25, 

more detailed questions, such as whether dopaminergic neuron activity specifically increases 

during the variable session, can be addressed. Additionally, we are unable to verify that the same 

neurons are being recorded over time, as a majority of this data is a combination of single unit 

and multi-unit activity. Thus, we cannot determine whether the corticostriatal manifold is the 

same from a baseline to automatic state, and whether the automatic A reach manifold is the same 

as that when accidental reaches are made to A following relearning.  

 

While this study examines M1 and DLS activity across a re-learning paradigm, it is unknown 

whether M1 neural variability is driving DLS neural variability during the exploratory state. 

While M1 and DLS are monosynaptically connected structures4,7, and well-learned motor actions 

may follow a feedforward neural pattern from M12, recent studies have introduced some 

exceptions. In a forelimb joystick task, it has been shown that M1 exhibits variability in 

patterning over longer-term motor learning26. Additionally, lesion of M1 after well-learned 
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simple motor skill has been demonstrated to have no effect on action execution27,28, hinting that 

downstream structures such as DLS may be driving gross forelimb movement, such as reaching, 

rather than M1. Thus, a future direction would be to inactivate M1 prior to the introduction of the 

second reach location, to study whether DLS exhibits neural variability on its own, let alone 

being able to support reaching to a new location itself. Alternatively, a third structure, such as the 

secondary motor cortex10 or prefrontal cortex29, both of which have projections to M1 and DLS, 

may be coordinating this simultaneous establishment of neural variability. Thus, simultaneous 

recording in these four regions during early motor skill learning, automatic performance, and 

introduction of a second motor skill, would more definitively address directionality of M1-DLS 

coordinated activity during this task. 

 

This study could have clinical implications for the disruption of extreme patterns of motor 

behavior, such as those in obsessive compulsive disorder30-32. One could posit that the mechanism 

for breaking down automatic behavior not only requires consistent behavioral monitoring to 

cognitively decide to change the behavior, but also an internal breakdown of established patterns 

of corticostriatal dynamics. Some forms of electrical stimulation (intra-cortical 

microstimulation33, transcranial magnetic stimulation34,35) have been demonstrated to disrupt 

manifold activity in a single region. There is an open question as to how selective disruption of 

one manifold can influence downstream dynamics. By extension, however, it is still unclear how 

to manipulate one set of multi-area dynamics for a pathological behavior, while still preserving 

multi-area dynamics for the broad distribution of functionally beneficial motor behaviors. This 

study demonstrates that multi-area manifold activity dynamically re-organizes with new learning 

in the context of a previously learned task. Future work elucidating the mechanism of this 
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process will inform more nuanced, specific neuromodulation therapies for establishing 

behavioral flexibility. 
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Methods 

Animal Care 

All procedures were in accordance with protocols approved by the Institutional Animal Care and 

Use Committee at the San Francisco Veterans Affairs Medical Center. Adult male Long-Evans 

rats between 3 and 6 months old (n=6, 300-500g; Charles River Laboratories) were housed in a 

controlled temperature room with a 12-h light/12-h dark cycle. All experiments were conducted 

during the light cycle. 

 

Surgery 

All surgeries were performed using sterile surgical technique under 2% isoflurane (5% at 

induction). Surgery involved exposure and cleaning of the skull, preparation of the skull surface 

(using cyanoacrylate) and implantation of skull screws on the perimeter for headstage stability. 

Reference screws were implanted posterior to lambda, contralateral to neural recordings. Ground 

screws were implanted posterior to lambda, ipsilateral to neural recordings. Craniotomy and 

durectomy were performed, followed by implantation of neural probes. Neural probes (32- or 64-

channel 33um polyimide-coated tungsten microwire electrode arrays (Tucker-Davis 

Technologies)) were implanted in the forelimb area of M1 (centered at 3.5mm lateral and 0.5mm 

anterior to bregma; layer V at a depth of 1.5mm) and DLS (centered at 4mm lateral and 0.5mm 

anterior to bregma; at a depth of 4.5mm). The final location of the electrodes was confirmed by 

electrolytic lesion. Post-operative recovery regimen included the administration of 0.02 mg/kg 

buprenorphine for 2 days, and 0.2 mg/kg meloxicam, 0.5 mg/kg dexamethasone and 15 mg/kg 

trimethoprim-sulfadiazine for 5 days. All animals were allowed to recover for 1 week prior to 

further behavioral training. 
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Histology 

Rats were anesthetized with isoflurane and transcardially perfused with 0.9% sodium chloride, 

followed by 4% paraformaldehyde. The harvested brains were then postfixed in 4% 

paraformaldehyde for 24 hours and immersed in 20% sucrose for 2 days prior to drop freezing. 

Coronal cryostat sections (40um thickness) were mounted with permount solution (Fisher 

Scientific) on super-frosted coated slides (Fisher Scientific). Microscope images of the whole 

section were taken by a Zeiss microscope. 

 

Behavioral training 

Rats naive to motor training were first assessed for forelimb preference: approximately 10-20 

pellets were placed in front of the animal, with preference defined by the limb which reached to 

the pellets the most. 4 out of 6 animals then underwent surgery for electrode implantation 

followed by a recovery period. Rats were then trained within an automated behavior box to 

perform dexterous reach-to-grasp movements36 to a single location A for at least 1000 trials. 2 

out of 6 animals were trained similarly, with electrode implantation one week after training the 

reach-to-grasp motor skill to A. Following surgical recovery, these 2 animals were re-trained to 

baseline level of reach to A. Overall, this initial behavioral training required minimal user 

intervention, as the automated reach-box was controlled by custom MATLAB scripts and an 

Arduino microcontroller. Each trial consisted of a pellet dispensed on the end of an arm with 

pellet holder groove, movement of the pellet arm to the pre-programmed location, beep alerting 

the animal the trial was beginning, and then door opening. Animals needed to then reach through 

a slit, grasp, and retrieve the pellet within 15 seconds. An IR sensor centered over the pellet was 

used to detect when there was no longer a pellet in the groove, indicating the trial was over; the 
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door then closed. Each animal was trained to plateau performance of reaching to A (~100-150 

trials per day), prior to pellet location being switched to a second location, B, that was 

equidistant from the center of wall slit as pellet location A and still reachable with a rat’s 

preferred forelimb. Animals were then trained on the second pellet location B for 4-6 days (~100 

trials per day). 

 

Behavioral analysis 

For 2/6 animals, rat behavior was video recorded using a side-view camera. For the remaining 

4/6 animals, rat behavior was recorded using both top-down and side-view cameras. Three types 

of cameras were used: Microsoft LifeCams, which captured videos at 30Hz; Basler cameras, 

which captured videos at 75Hz; and Point Grey/FLIR cameras, which captured videos at 75-

100Hz. Reach trajectories were captured from video using DeepLabCut37 to track the center of 

the rat’s paw. Reach trajectories consisted of paw trajectory from each reach onset to subsequent 

grasping motion that occurred beyond the slit. Reach videos and trajectories were viewed and 

scored to obtain trial success, reach type (low amplitude, endpoint at old location A, endpoint at 

new location B), and timepoints for reach onset, pellet touch, grasp onset, and retract onset.  

 

To characterize motor performance, we quantified reaction time, reach duration, pellet retrieval 

success for each trial, and location of reach endpoints both within and across trials. Reaction 

time was defined as the time taken from when the door opened for the start of the trial to when 

the rat began to reach, combining both attentional and cue-related motion behaviors (Figure 

2.2G, Figure 2.14A). Reach duration was defined as the time from first reach onset to first grasp 

onset (Figure 2.2F, Figure 2.14B).  Percent reach success was defined as the percent of trials on 
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which a pellet was successfully retrieved out of total trials with a full amplitude reach within a 

session (Figure 2.2C). Low amplitude reaches were those in which the center of the paw reached 

past the slit but digits did not reach the vertical plane where the pellet was located. Reaches to 

the new location B were defined as those where at least half of the paw covered the pellet on 

grasp. All other full amplitude reaches were classified as reaches to old location A.  

 

For denoting behavior at time of maximal task M1 population firing (Figure 2.14C), 25 frames 

from peak of firing onwards were viewed, and description of rodent behavior at first frame was 

qualitatively described. Movements were then grouped by similarity of behavior relative to the 

trial (i.e. reach, grasp, turn). 

 

Electrophysiology data collection 

We recorded extracellular neural activity, including units and local field potentials (LFP), using 

an RZ2 system (Tucker-Davis Technologies). Spike data was sampled at 24,414Hz; LFP data 

was sampled at either 1,017Hz (n=2) or 24,414Hz (n=4). Snippets of data that crossed a high 

signal-to-noise threshold (at least 4 standard deviations away from the mean) were deemed 

spiking events; time stamps and peak-aligned waveforms were stored for any event that crossed 

the threshold. Spike sorting was then performed using Offline Sorter v.4.3.0 (Plexon) with a k-

means-based clustering method followed by manual inspection. Spikes were sorted separately for 

each session. We accepted units based on waveform shape, clear cluster boundering in principal 

component space, and 99.0% of detected events with an ISI > 2ms. Clusters interpreted to be 

single units or multi-units were kept for analysis; those determined to be noise were discarded.  

 



 60 

Neural data analysis 

Analyses were conducted using a combination of custom-written scripts and function in 

MATLAB R2018B (MathWorks), along with functions from the EEGLAB 

(http://sccn.ucsd.edu/eeglab/) and the Chronux (http://chronux.org/) toolboxes. 

 

LFP analysis 

For the four animals with LFP recorded at 24,414Hz, raw LFP signals were decimated channel 

by channel with an 8th order Chebyshev Type I low pass filter to a tenth of the original signal 

(2,414Hz).  LFP for all animals was then pre-processed with the following steps: z-scoring the 

entire recording session, channel by channel; artifact rejection (manually removing noisy/broken 

channels, identifying trials with motion artifact on the majority of channels); common-mode 

referencing using the median signal (the median signal across all non-noisy channels in a region 

was calculated at every time point and subtracted from each channel to decrease common noise 

and minimize volume conduction). Common-mode referencing was performed independently for 

channels in each region, M1 and DLS.  

 

We filtered the LFP signals to isolate and display the low-frequency (3-6Hz) component of the 

signal. Filtering was performed using the EEGLAB function ‘eegfilt.’ To examine power across 

multiple frequency bands, we calculated movement-related LFP spectrograms and power spectra 

within each region using wavelets with the EEGLab function ‘newtimef.’ This function was also 

used to calculate the inter-trial coherence (ITC) of LFP signals. 
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Spiking analysis 

Unit modulation 

All spiking analyses were aligned for first reach onset (RO). To determine unit modulation 

(Figure 2.5A,B; Figure 2.6A,B; Figure 2.7A-D), peri-event time histograms (PETHs) were 

generated by averaging spiking activity for each neuron across trials in a session, locked to first 

reach onset, and binned at 50ms. PETHs were then fit with a smoothing spline using a custom 

MATLAB function. To determine task-related unit modulation, we z-scored each unit’s average 

firing rate for the session, found all peak prominences and times of activity from 2s before reach 

onset to 2s after reach onset with the MATLAB function ‘findpeaks’, and identified the 

maximum peak of z-scored activity from -0.5s to 0.5s around first reach onset (Figure 2.6A,B). 

This process was conducted separately for trials with first reach to pellet location A and trials 

with first reach to pellet location B across sessions.  

 

Determination of session type 

Sessions were categorized into the following based on task parameters, behavior curves, and 

Fano factors of unit spiking activity:  A) Baseline (BL), pellet at location A, reaching to A, 

consistent reach-modulated spiking activity; 2) Automatic (auto), pellet at location B, reaching 

mostly to A, consistent reach-modulated spiking activity; 3) Variable (var), pellet at location B, 

reaching to A and B, local maximum of lowest 5 Fano factors per unit, aggregated, with 

significant deviation from baseline minimum Fano factors; 4) Relearned (rel), pellet at location 

B, reaching mostly to B, consistent reach-modulated spiking activity (Figure 2.5D,E).  
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Fano factors describe how variable spiking activity is at a given time point across trials; with 

increased spike count consistency within a given time bin, there is a decrease in the Fano factor 

value for that time bin. To calculate Fano factors for each unit the following process was 

followed (Figure 2.5C). First, for each animal, the minimum trial number across sessions was 

identified for sub-sampling. For each unit and each trial in a session, spike counts from -2s to 2s 

around RO were binned at 50ms, z-scored, and smoothed with a 5-bin moving average. Trials in 

a session were then sampled to the minimum trial number, and the Fano factor of each time bin 

was calculated, where Fano_timebin = standard deviation of spike counts in that time bin across 

trials, squared, divided by the mean spike count across trials. For each unit in a given session, 

this process was repeated with 1000 total trial sub-samples, and the final Fano factor per time bin 

was the median value of the 1000 sub-sampled Fano factors per bin, with each unit having 80 

total Fano factors spanning -2s:RO:2s per session. 

 

To examine consistency of unit spiking activity, we identified the 5 Fano factors per unit per 

session with lowest value, thus allowing for timing-agnostic sampling of minimum variation in 

unit firing (Figure 2.5D). To determine which sessions had a significantly different distribution 

of Fano factors from baseline, we used the MATLAB function ‘kstest2’; if multiple sessions 

were significantly different from baseline, the session with the greatest Fano factor median was 

determined to be the ‘variable’ session. Subsequently, the ‘automatic’ session was the session 

recorded closest in time before the variable session, and the ‘relearned’ session the closest in 

time after for each animal. One animal did not have a variable or relearned session, one animal 

did not have a relearned session, and two animals did not have automatic sessions (Figure 2.5E).  
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Average task firing rate 

To calculate average task firing rate, the minimum number of neurons in each region for an 

animal across sessions was identified. For A or B trials in a session, average firing rate for -2s to 

2s around first reaches in the session across the sub-sampled neurons was calculated 1000 total 

times, with re-sampling of neurons each time to account for unit-to-unit firing rate variability. 

The median value of average firing rate was taken for each session per rat.  

 

Reach-related firing rate unit modulation 

To calculate reach-related spiking activity versus that at non-reach periods for the variable 

session, average trial firing rate from -0.5s to +0.5s around first reach onset was compared to the 

average session firing rate for that unit outside of the reaching time periods (Figure 2.7E, Figure 

2.15A). 

  

Template Matching 

To assess how temporally consistent single trial spiking activity was across session types, for 

each animal on each session we separated out trials with first reach to A and first reach to B. If 

there were at least 5 trials of one type for a given rat and session, each trial’s spiking activity for 

a region (e.g. M1 units) was compared to the average template spiking from the remaining trials 

of that type. Specifically, regional spiking activity from 500ms before first reach RO to 500ms 

after first RO was binned at 20ms, smoothed with a 60ms Gaussian kernel standard deviation, 

and concatenated across units for a given trial. Given the variable number of units in a session, 

the minimum number of units an animal had in a region, across sessions, was determined to be 

the number of units to subsample for this analysis; a minimum of 5 units was necessary for a 
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session to be included. Each trial spiking activity, with sub-sampled units, was correlated to the 

average spiking activity from trials with the same sub-sampled units (Figure 2.8A, Figure 2.9A). 

This process was repeated 1000 times per set of trials, keeping the mean correlation across trials 

for each iteration; the median of these means is reported as the session trial-template correlation 

(Figure 2.8C, Figure 2.9B). 

 

Population modulation 

To characterize population spiking activity modulation (Figure 2.11A,B), z-scored unit activity 

from 2s before first RO and 2s after first RO for each trial was smoothed using a 5-point moving 

average, summed and then divided by the number of neurons for normalization. Trial activity for 

each session was then grouped into trials with first reach to A or trials with first reach to B. 

Normalized population single-trial spiking activity was then averaged across trials to A or B 

within a session for both M1 and DLS units separately. All peak prominences and times of 

activity from 2s before first RO to 2s after first RO were detected with the MATLAB function 

‘findpeaks’ with no minimum peak prominence. Maximum modulation prominence out of all 

local maxima in period from -0.5s to 0.5s around first reach onset was identified as peak of 

population reach-modulation (Figure 2.11C,D). This same data was used to identify population 

spiking peak firing rate in the larger trial window (Figure 2.11E,F) and times of peak firing rate 

relative to reach onset (Figure 2.10C,D). Correlation of population peak activity (Figure 2.12D) 

was computed by comparing the normalized M1 and DLS peak prominences from each trial of 

the variable session, across animals. 
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Cross-area spiking correlation 

Correlation of M1-DLS population spiking activity (Figure 2.12A-C) was computed by binning 

spikes at 1ms, from -2s to +2s around first reach onset, averaging population activity across 

neurons, and applying the MATLAB function ‘xcorr.’ M1 activity was trial-shuffled relative to 

DLS activity 1000 times across animals per session to compute 95% significance level, 

 

Cross-area neural subspace 

Shared cross-area subspaces between M1 and DLS were identified using canonical correlation 

analysis (CCA), which defines axes that maximally correlates activity between the two areas10-12. 

Neural data in M1 and DLS were binned at 50ms, and data from -2s to +0.5s surrounding first 

reach onset was concatenated across trials with first reach to A and trials with first reach to B 

separately; mean activity in each group was subtracted. CCA models were then fit using the 

MATLAB function ‘canoncorr’. The number of canonical variables (CVs) output by CCA is the 

minimum number of neurons in either M1 or DLS for that session. The R2 value for each CV 

was computed using tenfold cross-validation, with 95% significance determined by comparison 

to a bootstrap distribution of top CV R2 created from trial-shuffled data (104 shuffles), as 

described previously10 (Figure 2.13A-C). Only sessions with minimum 5 units in both areas were 

included for analysis; sessions with no significant CVs were subsequently removed from 

analyses. For evaluating cross-area signals (Figure 2.13D-H), only the top CV was used for 

consistency across datasets.  
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Cross-area task representation 

To calculate the difference in cross-area activity before first reach versus during first reach, we 

defined a pre-reach period as -1 to -0.5s before first reach onset, and reach period as -0.1 to +0.4s 

around first reach onset (Figure 2.13D,E). Cross-area median activity within a trial was 

calculated for each time period, and compared across session types (Figure 2.13F-H). 

 

Unsupervised sequence detection 

To detect neural sequences independent of imposed behavioral marking alignment, we applied a 

convolutional non-negative matrix factorization method, seqNMF14. First, spike times from -2s 

to +0.5s around first reach onset were binned at 20ms and concatenated across trials per unit. The 

factorization parameter L (length in time bins of each factor) was set to 50, indicating search for 

a 1s maximum length sequence. The regularization parameter lambda was set to 0.001. Next, a 

5-fold cross-validation with up to 5 possible sequences was run on each session, to identify a 

local minimum of identifiable sequences. Across all sessions, the local minimum was one 

sequence. Subsequently, we used the function ‘seqNMF’ in MATLAB with K=1 (number of 

sequences to identify), L=50 (maximum 1s sequence), lambda = 0.001 (regularization parameter) 

to identify the top sequence and strength of activation over the concatenated time series. This 

process was repeated ten times and the average signal was used for peak detection.  

 

To detect time of peak sequence strength in a trial, maximum activation during each trial period 

(-2s to +0.5s around first reach onset) was found using the MATLAB function ‘findpeaks.’ This 

marked the start of the 1s sequence (Figure 2.15B). To measure consistency of the sequence 

detected across trials, trial-to-template correlation was performed as detailed in the ‘Template 
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Matching’ section, with spiking times now from 0 to +1s relative to maximum sequence peak 

detection time (Figure 2.15C,D). 

 

Statistics 

Linear mixed-effects models were used to test the significance of differences across both 

behavioral and neural measures when comparing differences in group means. These models 

account for units or trials coming from the same animal, which are more correlated than those 

from different animals, thus providing a stricter computation of statistical significance. For 

comparison of distribution broadness (Figure 2.10C,D), the Bartlett’s test was used to determine 

whether samples came from populations with equal variances. 
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Chapter 3: Two pieces of the puzzle – introducing a model for motor flexibility 

As demonstrated in Chapter 2, transfer learning of a complex motor skill is a multi-day process, 

involving a breakdown of consistent spiking activity in both M1 and DLS, in contrast with the 

adaptation hypothesis that prior learning could generalize for within-session updating of spiking 

patterns (Figure 3.1). Most prior studies of the reach-to-grasp skill have focused on the neural 

evolution of M1 and connected motor structures during learning1-4, or during execution of a well-

learned single-location skill5-7. However, studies of motor learning conflate reach-to-grasp 

specific learning with learning of trial structure, cues, reward identification, and more. Similarly 

studies of motor execution are limited by reach-to-grasp skill performance to a single location, 

such that it is unknown whether the skill and corresponding neural state is rigid or generalizable.  

 

Here, I demonstrate that overtraining the reach-to-grasp skill to a single location promotes a rigid 

state, and the behavioral manipulation of environmental modification, pellet location for reward, 

can probe motor learning specifically, independent of task structure learning. From the variable 

state, it is apparent that other regions in the larger brain network can support the learned fast 

reach-to-grasp movement without robust patterned input from M1 and DLS. The following 

section will delve into a possible model for how behavioral flexibility could be enabled in the 

context of skilled motor execution. 
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Figure 3.1. Hypotheses for transfer learning of reach-to-grasp skill. From early learning to establishment of a rigid skill (left), 
corticostriatal communication has been demonstrated to increase, particularly during motor execution. How then does 
corticostriatal patterning support re-aiming the initial reach for transfer learning? Hypothesis A (top, right) predicts an adaptive 
response, with communication maintained and minor adjustment of secondary patterns of communication, such as neural 
tuning. Hypothesis B (bottom, right) predicts some amount of preserved communication, with some features of early learning 
as the previously rewarded neural pattern breaks down to allow for exploration. 
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Motor cortex – a node in multiple coexisting pathways 

Primary motor cortex has been recently described as a pattern generator for downstream 

structures, serving as the primary driver for a motor dynamical system7-11. While this could be 

true for execution of well-learned movements, it is apparent from neural variability in early 

motor learning and now transfer learning that other nodes in the larger brain network can support 

movement execution outside of the well-learned optimized skill state. How do parallel 

processing loops (i.e. limbic, associative, sensorimotor) interact with each other? Knowlton and 

Yin, 200612 illustrated this beautifully in a simplified schematic, showcasing how cortical, 

striatal, and thalamic nodes can interact across both shorter timescales (Figure 3.2a) and 

proposing how parallel loops interact on longer timescales for increased automaticity (Figure 

3.2b). However, what are specific regions other than M1 and DLS directly implicated in 

movement pattern generation, from cortical regions through peripheral neurons controlling 

muscle activation? 

 

The prefrontal cortex (PFC) along with dorsomedial striatum (DMS) have been heavily 

implicated in associative learning across species13-17. Thus, with transfer learning there could be a 

shift in pattern generation from M1-DLS to PFC-DMS for modification of directionality in 

reaching. Of note, due to recurrent networks involving each of these node pairs, a parallel 

hypothesis is that specific patterns seen in a well-learned M1-DLS state are a byproduct of strong 

recurrent network activation. In turn, with exploratory behavior, there could be less consistent 

neural patterning in PFC-DMS as well, but increased firing rates overall are sufficient to drive 

downstream motor patterns with constrained variability. 
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Figure 3.2. Simplified interaction of network loops, from HH Yin and BJ Knowlton, 2006. (A) Theory of cortical, striatal, and 
brainstem nodes may interact across the limbic, associative, and sensorimotor network loops. (B) Hypothesis as to how 
increased automaticity and habit formation shifts neural representation of motor action from associative network to 
sensorimotor network. 
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What are downstream nodes of M1 that could support the reach-to-grasp behavior after initial 

learning? There are two parallel pyramidal tract (PT) projection systems from M1, with both 

projecting to basal ganglia and brainstem: 1) the first type forms a recurrent loop with thalamic 

regions back to motor cortex; 2) the second type bypasses thalamus and projects directly to 

motor nuclei in the medulla18. The former has been implicated in early preparatory activity, and 

the latter in later preparatory activity and motor execution. In turn, the variability in temporal 

firing seen in M1 and DLS on the variable session could be due to disruption of consistency in 

the motor preparatory pathway, with some preservation of consistency in the movement 

execution pathways from M1 which cannot be discretely separated from higher order 

electrophysiology techniques used in the study from Chapter 2. A third type of projection system 

exists in M1, the intratelencephalic (IT) type neuron pathway, which only projects to cortical and 

basal ganglia regions, but not to downstream structures such as thalamus and brainstem19. 

Similarly, the IT pathway alongside cortico-thalamic PT pathway could be responsible for 

overall variability in sequential firing seen in M1 and DLS during transfer learning. As recurrent 

loops are disrupted to enable behavioral variability, movement generating PT pathway activity is 

likely preserved to enable fast and constrained reaching. Evidence towards this hypothesis 

includes validation that population bursting in M1 is linked to movements, but not necessarily 

the same movement trial-to-trial, hinting towards a smaller subset of neural activity underlying 

the actual desired task movement20. 

 

In turn, I propose the following simplified model of neural support for flexible movement 

generation. First, with learning of a motor skill, co-activation of associative and sensorimotor 

loops establishes an optimal neural patterning, or manifold, over time, driven predominantly by 
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recurrent loops (Figure 3.3). If a variable skill is learned during this time (i.e. reaching to 

multiple locations), the manifold can support generalizable, adaptive skill that is seen in non-

human primates and humans performing center-out reaching and variable reach-to-grasp skills21-

25. However, if the skill is too specific, and a broadening of the learned skill needs to occur via 

transfer learning instead of adaptation, the intrinsic motor manifold must alter in order to support 

these new movements26,27. Specifically in the case of transfer learning of a fast, automatic skill, 

downstream motor pathways, such as motor brainstem nuclei, and connected spinal outputs have 

likely consolidated an optimal muscle output pattern. In turn, variability in spiking patterns at the 

cortico-striatal level could reflect a pause in strong recurrent activity, adding a constrained 

variability to the generated motor output, which still is likely influenced by non-recurrent PT 

projections from M1 (Figure 3.4). 
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Figure 3.3. Proposed model of parallel motor loops in early versus late learning. In early learning (left) recurrent PT and IT 
pathways have not yet been consolidated; rather direct PT motor pathways and tandem activation of associative pathways 
support exploratory movement. In late learning (right), recurrent PT and IT pathways are more prominent, providing an optimal 
short-circuit for skilled execution. 
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Figure 3.4. Proposed network model of behavioral flexibility in transfer 
learning. In comparison to early and late learning (Figure 3.3), transfer 
learning could involve a hybrid network state. Downstream brainstem to 
spinal cord output could constrain skilled movement patterns, with 
variability introduced by re-introduction of associative input and 
reduction of recurrent motor input when generating neural activity to 
support movement. 
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Implications of corticostriatal dysfunction 

Many neuropsychiatric diseases with motor symptoms exhibit disrupted corticostriatal 

functioning, such as obsessive-compulsive disorder (OCD) and autism spectrum disorder 

(ASD)28. With well-learned healthy motor movement, there is co-engagement of sensorimotor 

cortical and striatal pattering that disengages following completion of the motor skill, 

demonstrating innate flexibility between movement execution modes2,15. In Chapter 2, it becomes 

apparent that transfer learning, a subset of behavioral flexibility, also appears to relies upon 

corticostriatal patterning flexibility to break out of a rigid skill state and expand to include a 

second learned skill. How then might behavioral dysfunction arise with disruption of normal 

corticostriatal function? 

 

One intriguing idea is that corticostriatal patterning may become rigid, with the inability to 

flexibly adapt back to a neutral state or to novel situations. The motor patterns in ASD and OCD 

can be quite stereotyped, demonstrating minimal variance, or perseverative, occurring repeatedly 

despite any goal-directed intention, respectively28.29. What is the neural basis of these symptoms? 

While there are many competing hypotheses as to what drives compulsions in humans30,31, mouse 

models of OCD recapitulate similar symptomatology and demonstrate altered corticostriatal 

synaptic function, specifically reduction of glutamate-mediated synaptic transmission in Sapap3-

ko mice32, increased orbitofrontal cortex (OFC) activity and disrupted striatal morphology in 

Slitrk5 mice33, and reduction of striatal synapses in Hoxb8 mice34, among others. Similarly in 

ASD, mice models demonstrate perseverative behavioral features (i.e. increased grooming, 

impaired reversal learning), with accompanying striatal dysfunction (i.e. reduced striatal A2a 

receptor function, decreased dendritic morphology)35-37.  
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Even more intriguingly, repeated stimulation of OFC-ventromedial striatum (VMS) connections, 

in contrast to acute stimulation, promoted persistent grooming behaviors that were reversed by 

administration of fluoxetine, an OCD treatment38. Most of these studies have been focused on 

two associative nodes of the cortico-striatal network, and almost none have examined the role of 

motor generating networks (i.e. M1-DLS) in the execution of these repetitive movement patterns.  

In particular, few electrophysiology studies examine the neural substrates of compulsive motor 

behavior in animal models of OCD or ASD. Thus, future studies examining how associative 

networks, such as those influenced by OFC, and motor networks interact in neuropsychiatric 

disorders with motor symptoms would likely shed light on: 1) neural firing patterns in motor 

network nodes (i.e. M1, DLS) that underlie these repetitive behaviors; 2) whether M1-DLS 

connections in disease animal models are as flexible as demonstrated in wildtype rodents; 3) how 

associative networks influence motor network firing patterns. By examining neuropsychiatric 

diseases from a higher-level network perspective, there can be further symptom-specific target 

discovery for either pharmacological or electrical intervention, enabling design of better 

therapeutic interventions. 
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Summary 

In Chapter 1, I explored in depth the dilemmas faced when studying motor behavior, due to 

multiple axes being reflected in tasks currently studied in neuroscience (i.e. early versus late 

learning, goal-directed versus habitual action, and rigid versus generalizable skill). In turn, 

comparisons of the neural bases of behaviors across task types, both in terms of which skill and 

when each skill is studied, makes it difficult to abstract higher order conclusions about how 

motor regions interact during learning and execution of a variety of motor skills. However, more 

careful characterization of behavioral states, as well as newer methods of analyzing higher-

dimensional neural data, are setting the scene for current neuroscientific endeavors to more 

carefully parse out network contributions to nuanced motor behavior. 

 

I was particularly interested in exploring how motor network activity could support the transfer 

of a learned motor skill to a slightly modified environmental context, as detailed in Chapter 2. 

Surprisingly, I found that constrained learning of the reach-to-grasp skill promotes a rigid neural 

state, such that re-learning how to successfully retrieve the pellet from a new location was a 

multi-day process. Even more striking was the discovery that both M1 and DLS neural activity 

returned to an exploratory state early in transfer learning, while executed movements were still 

smooth and fast in contrast to true early learning of the skill. Thus, it is apparent that specific 

patterns of motor network activity may be more of a reflection of optimized recurrence from 

learning, that downstream motor structure may play a role in constraining learned behavior, and 

that parallel associative processing may enable the motor network to explore novel 

environmental parameters for subsequent re-consolidation of optimal recurrent patterns. 
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A model reconciling these hypotheses is introduced in Chapter 3, with supporting evidence from 

the literature regarding establishment of manifolds in the motor network during learning. In 

particular, differential M1 pathways, such as the recurrent pyramidal tract (PT) and 

intratelencephalic (IT) tract may provide the pattern generation seen in well-learned movements, 

whereas the non-recurrent PT pathway may support the actual motor output signal provided to 

downstream structures for movement execution. Subsequently I review the implications of 

disrupted corticostriatal flexibility in human disease, with future research directions. 
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