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Abstract

On Linked Quaternionic Pairings

Kayla Wright

In this paper, we study linked bilinear pairings G⇥G �! Q and their associated Witt

rings. An open problem is to classify all linked quaterionic pairings. The Elementary

Type Conjecture [1] asserts that every finite linked quaternionic pairing can be built from

symplectic pairings using direct sums and group extensions iteratively. We investigate

the validity of this conjecture by studying an infinite quaternionic pairing and its sub-

pairings motivated by certain structures arising in Henselian dyadic valued fields.
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1 Introduction

The study of quadratic forms initially emerged from number theory in attempts

to answer problems regarding quadratic diophantine equations, equivalence of

lattices over Z, and other problems that had been open for many years. In the

19th century, mathematicians began to realize it was easier to solve equations

with coe�cients over a field rather than a general integral domain. They also

realized that solutions to such equations can be interpreted in the associated

field of fractions. This idea led Minkowski to develop a general theory of

quadratic forms with coe�cients in Q.

Minkowski’s ideas led German number theorist, Hasse, to explore the sub-

ject and investigate its connection to algebraic number theory. He was able to

introduce Hensel’s p-adic numbers, Q
p

, into the theory of quadratic forms.

After the development of this general theory of quadratic forms, an abstract

version was developed by Witt. He took the concrete theory of quadratic forms

over a field F and introduced a ring structure on isometry classes of anisotropic

quadratic forms. Witt was able to recapture the theory of quadratic forms from

this point of view, and proved a fundamental theorem in quadratic form the-

ory known as Witt Cancellation. Namely, Witt constructed the commutative

ring, known as the Witt ring, whose elements are anisotropic quadratic forms.

In addition, Witt carried over Minkowski’s work in the case where the field

has characteristic not equal to 2.

In this thesis, we will explore the connection between quadratic forms over
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a field and the abstract Witt ring associated to the group F •/F •2 for spe-

cial fields F arising as the Henselization of Q2(i)(t). The Elementary Type

Conjecture is studied in this context.
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2 Background

In this section, we follow the definitions given by Marshall [1].

2.1 Quadratic Forms

Assume that F denotes a field of characteristic not equal to 2. Also assume

that ~x 2 F n denotes a row vector. In this subsection, we will define a quadratic

form over F and discuss the basic objects used in quadratic form theory.

Definition 2.1.1. A quadratic form f : F n �! F of dimension n over

F is a function defined by a second degree homogeneous polynomial f(~x) in n

variables over F , which has the form

f(~x) =
X

1ijn

a
ij

x
i

x
j

where a
ij

2 F.

We say that f is isotropic if there exists some nonzero ~v 2 F n such that

f(~v) = 0. If f is not isotropic, f is called anisotropic.

From another point of view, one can think of a quadratic form f over F

through its matrix representation. Let M
f

= (b
ij

) be an n ⇥ n matrix whose

ijth entry be given by

b
ij

=

8
>>>>>><

>>>>>>:

a
ij

if i = j

1
2aij if i < j

1
2aji if i > j

where
1

2
exists because char(F ) 6= 2

Notably, this construction ensures that M
f

is symmetric. From this, we have
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that

f(~x) =
nX

i,j=1

b
ij

x
i

x
j

= ~xM
f

~xT

We say that f is degenerate if det(M
f

) = 0. For the remainder of the thesis,

we will assume that f is nondegenerate.

Using these two notions of a quadratic form, it can be shown that there is

a one-to-one correspondence between symmetric n⇥n matrices and quadratic

forms of dimension n over F , whenever char(F ) 6= 2.

Definition 2.1.2. We say that two quadratic forms f and g of the same

dimension n over F are isometric, denoted f ⇠= g, if there exists B 2

GL
n

(F ), n ⇥ n invertible matrices over F , such that g(~x) = f(~xB), where

~x = (x1, . . . , xn

) a row vector.

Similarly, we say that the matrix representations M
f

,M
g

of f, g respectively

are similar when there exists B 2 GL
n

(F ) such that M
g

= BM
f

BT .

Remark 2.1.1. It can be checked using the definitions that M
f

is similar to

M
g

if and only if f ⇠= g.

Remark 2.1.2. Isometry of quadratic forms is an equivalence relation.

Note that if f ⇠= g, then f is isotropic if and only if g is isotropic. This

observation motivates the consideration of isometry classes of quadratic forms

as opposed to looking at one particular quadratic form.
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2.2 Basic Theorems

In this section, we will state some basic results about quadratic forms, see

for example (Marshall, 1980) or (Law, 2004), without proof. This first result

says that quadratic forms can be diagonalized. Recall we are assuming the

characteristic of F is di↵erent from two.

Theorem 2.2.1. Every quadratic form over F is isometric to one of the type

f = a1x
2
1 + · · ·+ a

n

x2
n

, where a1, . . . , an are nonzero elements of F .

We will refer to such a representation of f as a diagonalized quadratic form.

It is denoted f = ha1, . . . , ani. Using this notation we have the following:

Proposition 2.2.1. Let f, g be quadratic forms over F and let a
i

, b
i

2 F •

(where F • is the set of units in F ) for all i 2 {1, . . . , n}. Then,

1. If f ⇠= g, then af ⇠= ag for any a 2 F •

2. ha1b21, . . . , an, b2ni ⇠= ha1, . . . , ani

3. For any ⇡ 2 S
n

(symmetric group), ha
⇡(1), . . . , a⇡(n)i ⇠= ha1, . . . , ani

4. If ha1 . . . , aki ⇠= hb1, . . . , bki and ha
k+1, . . . , ani ⇠= hb

k+1, . . . , bni, then

ha1, . . . , ani ⇠= hb1, . . . , bni.

The next result characterizes one and two-dimensional quadratic forms up to

isometry.

Theorem 2.2.2. Let a, b, c, d 2 F •, then

1. hai ⇠= hbi if and only if a ⌘ b mod F •2.

2. ha, bi ⇠= hc, di if and only if ab ⌘ cd mod F •2 and there exists x, y 2 F

such that c = ax2 + by2.
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Corollary 2.2.1. For all a 2 F •, ha,�ai ⇠= h1,�1i.

In particular, these above results allow us to establish another characterization

of isotropicity for diagonal quadratic forms.

Theorem 2.2.3. Let f be a quadratic form over F of dimension n � 2.

Then, f is isotropic if and only if there exists b3, . . . , bn 2 F • such that f ⇠=

h1,�1, b3, . . . , bni.

The next result is key to the development of the algebraic theory of quadratic

forms. It is essential to the subsequent definition of the Witt Ring.

Theorem 2.2.4 (Witt’s Cancellation Theorem). Suppose that ha1, . . . , ani ⇠=

hb1, . . . , bni and a1 = b1, then ha2, . . . , ani ⇠= hb2, . . . , bni.

This theorem allows us to formulate the following definitions:

Definition 2.2.1. Let f = ha1, . . . , ani, g = hb1, . . . , bmi be quadratic forms

with a
i

, b
j

2 F . The direct sum of f and g, denoted �, is given by

f � g := ha1, . . . , an, b1, . . . , bmi

The tensor product of f and g, denoted ⌦, is given by

f ⌦ g := ha1b1, . . . , a1bm, . . . , anb1, . . . , anbmi

And we scale by some a 2 F as follows:

af := haa1, . . . , aani

With these two operations, we are able to form the following ring:

6



Definition 2.2.2. Let �
i

, 
i

be quadratic forms over F . Then we define the

Witt-Grothendeick ring of F, denoted Ŵ (F ), to be formal di↵erences of

��  with the following notion of equivalence:

�1 �  1 ⇠ �2 �  2 () �1 �  2
⇠= �2 �  1

Remark 2.2.1. Note that the notion of formal di↵erence mimics the behavior

of definition Z as an equivalence relation on N. Moreover, Ŵ (F ) is well defined

because of Witt Cancellation Theorem.

With the definition of Ŵ (F ), we can define the Witt ring of a field.

Definition 2.2.3. The Witt ring of F, denoted WF , is given by WF =

Ŵ (F )/(h1,�1i).

Definition 2.2.4. One ideal of WF that is of particular importance later on,

is the ideal IF of all even-dimensional forms.

Remark 2.2.2. The elements of WF correspond to the classes of anisotropic

quadratic forms.

2.3 Quaternionic Pairings

In this section, we define a quaternionic structure, state some basic results,

and explain how the study of quadratic forms can be viewed as the study of

quaternionic structures over a field F . Quaternionic pairings enable the de-

velopment of an abstract theory of quadratic forms without referencing a field.

Recall that an elementary abelian 2-group is an abelian group such that
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every nontrivial element has order 2. Also recall that every elementary abelian

2-group carries a vector space structure over Z2.

Definition 2.3.1. Let (G, ·), (Q,+) be elementary abelian 2-groups, where

(G, ·) has a distinguished element �1 2 G. A quaternionic pairing is a

map q : G⇥G �! Q that satisfies the following four conditions:

1. For any g1, g2 2 G, q(g1, g2) = q(g2, g1).

2. For any g1, g2, g3, g4 2 G, q(g1 · g3, g2) = q(g1, g2) + q(g2, g3) and (g1, g2 ·

g4) = q(g1, g2) + q(g1, g4).

3. For any g1, g2 2 G, q(1, g2) = q(g1, 1) = 0.

4. For any g 2 G, q(g, (�1)g) = 0.

For notational convenience, we for any a, b 2 G, we will denote q(a, b) as

(a, b). We also abbreviate the structure above as a 3-tuple (q,G,Q).

In order to connect quaternionic pairings to quadratic forms, Marshall requires

one further axiom of quaternionic pairings called linkage.

Definition 2.3.2. Given a quaternionic pairing q : G ⇥ G �! Q, we say

that this pairing is linked if for every z 2 Q, if z = (g1, h1) = (g2, h2) for

g1, g2, h1, h2 2 G, then there exists an ` 2 G such that z = (g1, `) = (g2, `).

2.3.1 The Quaternionic Pairing Associated to a Field

The addition of the linkage axiom allows us to develop an abstract theory of

quadratic forms in terms of quaternionic pairings.

Define G
F

to be the quotient F •/F •2 , which is notably an elementary abelian
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2-group. Using proposition 2.2.1 (2), we can view quadratic forms over F

as n-tuples over F . Now, we define Q
F

to be the set of isometry classes

h1,�a,�b, abi with a, b 2 Q
F

. With this, we can define the following:

Definition 2.3.3. The quaternionic structure associated to F is the

map q
F

: G
F

⇥ G
F

�! Q
F

where (a, b) is mapped to the isometry class of

h1,�a,�b, abi.

Remark 2.3.1. The quaternionic structure associated to F , q
F

, is a quater-

nionic pairing that satisfies the linkage property.

Viewing these quadratic forms as n-tuples of G
F

elements, we can use the

prior notion of isometry for quadratic forms over fields to define isometry for

quadratic forms of a quaternionic pairing.

Definition 2.3.4. We say that two quadratic forms of dimension one and two

are isometric if the following condition is satisfied:

hai ⇠= hbi () a = b and ha, bi ⇠= hc, di () q(a, b) = q(c, d)

From the above, we can inductively define isometry for forms of dimension

n � 3:

ha1, . . . , ani ⇠= hb1, . . . , bni () 9a, b, c3, . . . , cn

such that the following conditions are met:

1. ha2, . . . , ani ⇠= ha, c3, . . . , cni

2. ha1, ai ⇠= hb1, bi

3. hb2, . . . , bni ⇠= hb, c3, . . . , cni

9



Proposition 2.3.1. Isometry is an equivalence relation on the set of quadratic

forms associated with a linked quaternionic pairing.

With this notion of isometry, we define the following operations:

Definition 2.3.5. Let f = ha1, . . . , ani, g = hb1, . . . , bmi be quadratic forms

with a
i

, b
j

2 G
F

. The direct sum of f and g, denoted �, is given by

f � g := ha1, . . . , an, b1, . . . , bmi

The tensor product of f and g, denoted ⌦, is given by

f ⌦ g := ha1b1, . . . , a1bm, . . . , anb1, . . . , anbmi

And we scale by some a 2 G
F

as follows:

af := haa1, . . . , aani

Given this definition of isometry along with the definitions of the direct sum

and tensor product operations, we may state the Witt Cancellation Theorem

in this setting. This is essential to constructing a Witt ring associated with a

linked quaternionic pairing.

Theorem 2.3.1 (Witt Cancellation Theorem, Marshall’s Abstract Version).

Let f, g, g0 be arbitrary forms over q : G ⇥ G �! Q. If f � g ⇠= f � g0, then

g ⇠= g0.
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2.4 The Abstract Witt Ring of a Linked Quaternionic

Pairing

Let R̃ be the set of isometry classes of quadratic forms over G
F

. R̃ equipped

with the two binary operations �,⌦, nearly satisfy all the algebraic axioms

for a ring. However, (R̃,�,⌦) fails to have additive inverses. So, in this

section, we remedy this flaw. Analogous to definition 2.2.3, we may define the

Witt-Grothendeick ring of a linked quaternionic pairing.

Definition 2.4.1. Let �
i

, 
i

be quadratic forms over G. Let (q,G,Q) be a

linked quaternionic pairing. Then we define the Witt-Grothendeick ring

of (q,G,Q), denoted Ŵ (q,G,Q), to be formal di↵erences of � �  with the

following notion of equivalence:

�1 �  1 ⇠ �2 �  2 () �1 �  2
⇠= �2 �  1

Remark 2.4.1. As in remark 2.21, we have Ŵ (q,G,Q) is well defined because

of Witt Cancellation Theorem.

With the definition of Ŵ (q,G,Q), we can define the Witt ring of an LQP.

Definition 2.4.2. The Witt ring of a (q,G,Q), denoted W (q,G,Q), is

given by W (q,G,Q) = Ŵ (q,G,Q)/(h1,�1i).

We note that the equivalence class of h1,�1i is the additive identity 0 in our

ring, and h1i is the multiplicative identity. Generally speaking, the additive

inverse of the class f = ha1, . . . , ani is �f = h�a1, . . . ,�a
n

i.

Remark 2.4.2. Let F be a field and let F • be the multiplicative group of F .

Let q : F •/F •2 �! I2F/I3F be the associated linked quaternionic pairing.

Then the WF and W (q, F •/F •2 , I2F/I3F ) are the same.

11



2.5 Elementary Type Conjecture

Definition 2.5.1. A direct sum of two Witt rings R1, R2 is defined by the fiber

product i.e.

R1 q
Z/2Z

R2 := {(a, b) | a 2 R1, b 2 R2, dim(a) ⌘ dim(b) mod 2}

where dim(a), dim(b) are the dimensions of a 2 R1, and b 2 R2 respectively.

Definition 2.5.2. Let �
n

= (Z/2Z)n, then a group extension of a Witt ring

R is R[�
n

], the usual group ring.

If the Witt ring of a quaternionic pairing can be built from direct sums and

group extensions by a finite iteration starting with basic Witt rings Z/2Z,Z,

and the (finite) Witt ring WK of a local fields K where [K,Q
p

] < 1, then we

say that the Witt ring is of elementary type. Murray Marshall (1980) proposed

the following conjecture:

Conjecture 2.5.1. The Witt ring of every finite linked quaternionic pairing

is of elementary type.

2.6 Previous Work on the Elementary Type Conjecture

Many people have worked on proving this conjecture. So far, it is still an

open problem to prove the Elementary Type Conjecture in its full general-

ity, but some have made progress adding di↵erent hypotheses to weaken the

conjecture. It is known that all known finitely generated Witt rings are of

elementary type. It was also proven by A. Carson and M. Marshall in De-

composition of Witt rings [8] that the Elementary Type Conjecture holds for

|G|  32. Another proof of this fact is given in Combinatorial Techniques and

12



Abstract Witt Rings III Fitzgerald [5]. This paper gives a four step outline

to proving the Elementary Type Conjecture. When the Witt ring , R, sat-

isfies a property called being “reduced,” it is verified by a theorem [4] given

in Marshall’s survey that states that if G is finite and “reduced”, then G is

of elementary type. Fitzgerald’s paper [5] uses the formulation of Witt rings

through linked quaternionic pairings and value sets to investigate the conjec-

ture. When R is reduced, it gives a simpler proof of Marshall’s result when

|G|  32.

In Marshall’s survey paper [4], he says that the reduced case was proven using

valuation theoretic techniques by L. Bröcker and T. Cavern [4], which shows

that people have been working with valuation theory to attack this problem.

We will see later that these techniques are relevant to the work done in this

thesis.

People also care about Witt rings because they can give us information on

field orderings and connections to Galois cohomology. In particular, if the

Elementary Type Conjecture is true, then we have a complete classification of

fields with |F •/F •2 | = 2n for any n � 0 up to quadratic equivalence.

In Marshall’s Classification of Finite Spaces of Orderings Marshall [9], he

solves in a�rmative Elementary Type Conjecture for one important class of

abstract Witt rings. Namely, this is the class of abstract Witt rings in which

the field is called Pythagorean. This means that |F •/F •2 | < 1 and �1 is not

the sum of squares, but the sum of squares is a square. This is the opposite

extreme to what we have been investigating, but it is particularly interesting

13



because it can give us information about abstract Witt rings of spaces of or-

derings.

More recent work (2016) on investigating the Elementary Type Conjecture

has been done in J.K. Arson’s The Witt group of a discretely valued field [3].

In this paper, Arson uses of filtrations in the study of Witt rings of Henselian

dyadic valued fields. In his paper, he argues that this is an important tool

in his description. In particular, Arason has recently used them in a recent

paper on the “wild part” of the Witt ring to work on the Elementary Type

conjecture. This is very closely related to the approach this thesis takes on

the exploration of the validity of the conjecture.

14



3 Valuations

In order to study the validity of the Elementary Type Conjecture, we will

explore some quaterninoic pairings over valued fields.

Valuations can be described in multiple ways. The two descriptions that we

work with can be formulated in the following two ways following the definitions

given by Efrat [2].

3.1 Valuations as Subrings

We begin with the first notion of a valuation as a subring. Let F be a field.

Definition 3.1.1. A valuation ring on F is a subring O of F such that for

every x 2 F •, at least one of x, x�1 2 O. The group of units is the group of

all x 2 F • with both x, x�1 2 O and is denoted O•.

Proposition 3.1.1. Every valuation ring is a local ring.

Note that this is a basic fundamental result of the subject. As the proof is

short, we will include it.

Proof. Let O be a valuation ring. In order to show that O is a local ring, we

must show that it has a unique maximal ideal. We claim that m = O \ O• is

the unique maximal ideal of O. By definition of m, every element outside of

m must be a unit. So, it su�ces to prove that m is an ideal of O because then

it must be maximal. It is clear that given any r 2 O and any a 2 m, that

ra 2 m. So, we just need to verify that if a, b 2 m, then a + b 2 m. Assume

that a, b 2 m are nonzero elements. Because O is a valuation ring, we have

that a/b or b/a must be an element of R. Moreover, this gives that either

15



a+ b = b(1+a/b) or a+ b = a(1+ b/a) is in m. Note that m is unique because

if it is was properly contained in another ideal I  O, it would contain a unit

which means that I = R. ⌅

The above proposition gives us that m is the unique maximal ideal of O. Using

this fact, consider the following definition:

Definition 3.1.2. The residue field of O is the field F̄ := O/m.

Example 3.1. Let F = Q and let p 2 Q be prime. Define the valuation ring

O = O
p

:= {p
rn

m
2 Q : r � 0, n,m 2 Z such that p - n, p - m} [ {0}

This is known as the p-adic valuation ring on Q. And we see that its unique

maximal ideal must be the elements of O with r � 1. In particular, F̄ = F
p

.

3.2 Valuations as Homomorphisms

The second formulation of a valuation is the notion of a valuation as a homo-

morphism from a group onto an ordered abelian group. Let F be a field and

let (�,) be an ordered abelian group.

Definition 3.2.1. A valuation of F is a group homomorphism v : F • �!

(�,) that satisfies the ultrametric inequality i.e. for any x, y 2 F • such

that x 6= y, we have that

v(x+ y) � min{v(x), v(y)}

Proposition 3.2.1. For a valuation v on F , we have the following conse-

quences:

16



1. v(�1) = 0

2. If x, y 2 F • such that v(x) < v(y), then v(x+ y) = v(x).

3. If x1, x2, . . . xn

2 F • with distinct valuations, then

v

 
nX

i=1

x
i

!
= min

1in

v(x
i

)

4. Let m 2 Z be greater than 1. If x, y 2 F • such that xm � x = y and

v(y) < 0, then v(y) = mv(x).

Example 3.2. Let p 2 Z be prime. Let r � 0 and q 2 Z such that gcd(p, q) =

1. Then the group homomorphism v
p

: Q �! Z given by v
p

(prq) = r is called

the p�adic valuation.

Note that this is clearly connected to the previous example given in the first

notion of valuation. The two notions are connected in the following sense:

Proposition 3.2.2. Let F be a field and (�,) be an ordered abelian group.

Let v : F • �! (�,) be a valuation on F , then

O = {x 2 F • : v(x) � 0}

is a valuation ring of F .

One particular type of valuation that is of interest is called a discrete

valuation.

Definition 3.2.2. A valuation v on a field F is called discrete if v(F •) ⇠= Z.

17



Note that the p-adic valuation on Q is a discrete valuation with residue field

F
p

. It is known that the only non-trivial valuations on Q up to equivalence

are the p-adic valuations.

3.3 The Completion of Q Under vp

The ability to uniquely extend such valuations depends on properties of our

field. In particular, one of the hypotheses needed to extend a valuation is the

idea of completeness.

Let p 2 Q be some fixed prime. Then, we will using the p-adic valuation

on Q, in order to define a notion of distance with respect to this valuation.

For a general set X, recall the following definition:

Definition 3.3.1. A metric on X is a function d : X ⇥X ! R�0 such that

for any x, y, z 2 X, d satisfies

1. d(x, y) � 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, y)  d(x, z) + d(y, z)

In our case, we use the p-adic valuation on Q to define the following metric:

Definition 3.3.2. For any q1, q2 2 Q, we define the p-adic metric as

d
p

(q1, q2) = p�vp(q1�q2).

Proposition 3.3.1. The p-adic metric on Q satisfies all the metric axioms.

18



Note that Q is a metric space with respect to the p-adic metric. Consider its

usual Cauchy completion with respect to the p-adic metric, which we denote

Q
p

. Since the operations on Q are continuous with respect to the metric, Q
p

becomes a field too by continuity.

This field has nice algebraic structure. Let Q•
p

be the multiplicative group

of Q
p

and let Q•2
p

be the subgroup of squares in Q•
p

. Observe the following

about the quotient group Q•
p

/Q•2
p

:

Proposition 3.3.2. If p > 2, then |Q•
p

/Q•2
p

| = 4. If p = 2, then |Q•
p

/Q•2
p

| = 8.

The idea of the proof will be sketched here. One can see this because when

p 6= 2, we can figure out if an element ↵ 2 Q•
p

is a square using Hensel’s Lemma

and Newton’s method on the polynomial f(x) = x2 � ↵.

Theorem 3.3.1. Hensel’s Lemma. Let K be a complete field with respect

to a discrete valuation v. Let O
K

be the valuation ring on K and let m
K

be its

unique maximal ideal. Let k be the residue field of O
K

given by k ⇠= O
K

/m
K

.

Assume that f 2 O
K

[x] be a polynomial. If f̄(x) 2 k[x] has a simple root (i.e.

there exists some k0 2 K such that f̄(k0) = 0 and f̄ 0(k0) 6= 0), then there

exists a unique a 2 O
K

such that f(a) = 0 and ā = k
o

2 k.

In the quadratic case, Hensel’s Lemma can be proved using Newton’s method.

Recall Newton’s method is a root-finding algorithm. The method starts with

a di↵erentiable function f and the function’s derivative f 0, and an initial guess

x0 for a zero of the f . Newton’s method gives a better approximation x1 given

19



by

x1 = x0 �
f(x0)

f 0(x0)

This process is repeated recursively for any n 2 N

x
n

= x
n�1 �

f(x
n�1)

f 0(x
n�1)

Note that in order to guarantee convergence of our series, we need x0 to be

“close enough” to our new root in question.

Next, we investigate the quotient Q•
5/Q•2

5 . First, we investigate ↵ 2 O5 such

that v5(↵) = 0. Note that since we can write any element in O5 as a power

series with coe�cients {0, 1, 2, 3, 4}, so if such an ↵ has 5-adic value 0, we know

that a0 2 {1, 2, 3, 4} (else the first nonzero coe�cient would be on a higher

power). Then, evaluating v5(f(�)/f 0(�)) and observing that it is greater than

0, we can apply Newton’s method.

Now, let � = 1 if a0 2 {1, 4} and let � = 2 if a0 2 {2, 3}. Apply New-

ton’s method to see that Q•
5/Q•2

5 = h2, 5i = Z2/Z⇥ Z2/Z ⇠= F5/F2
5.

Note that this process should generalize to any p � 2.

For the case of p = 2, recall that any element ↵ in O2 can be written as

a power series:

↵ =
1X

i=0

a
i

2i a
i

2 {0, 1}
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So, we look at the case where some square has a0 = 1, so we look at

(1+a1·2+a2·22+a3·23)2 = 1+4(a1+a21)+8a2+16(a1a2+a3+a22)+32a1a3+64a2a3

This implies that O2
2 ⇢ 1 + 8O2. Furthermore, this gives that Q•

2/(Q•
2)

2 =

h2, 3, 5i which implies that |Q•
2/(Q•

2)
2| = 8.

Corollary 3.3.1. From here, we may extend Q2 by adjoining i =
p
�1. Now,

we investigate the algebraic structure of quotient groups of Q2(
p
�1). We

claim that |Q2(
p
�1)•/(Q2(

p
�1)•)2| = 16.

We can apply information about the structure of Q2 to see this. Applying

Hensel’s lemma, given some polynomial, we can lift any factorization of the

polynomial to another factorization in a field extension.

To make this process more concrete, consider the following examples:

Example 3.3. As an example, we demonstrate that �1 2 Q•2
5 .

Firstly, we know that any element in O
p

can be expressed as a power series of

the form:

↵ =
1X

i=0

a
i

xi a
i

2 {0, 1, . . . , p� 1}
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So, we found that �1 can be expressed as follows:

�1 = 4� 5

= 4 + 4 · 5� 52

= 4 + 4 · 5 + 4 · 52 � 53

...

=
1X

i=0

4 · 5i

To see it’s a square, observe that

�1 = 4 + 4 · 5 + 4 · 52 + . . .

⇡ (2 + 1 · 5)2

= 4 + 4 · 5 + 52

⇡ (2 + 1 · 5 + 2 · 52)2

...

= (2 + 1 · 5 + 2 · 52 + 1 · 53 + 2 · 54 + . . . )2

We can also use Newton’s method on the polynomial f(x) = x2 + 1 using

a0 = 2. Note that Newton’s method requires that v
p

( f(an)
f

0(an)
) > 0 when p � 2.

Note that we compute a1, a2, . . . using this formula:

a1 = 2� 5

4
=

3

4

a2 =
3

4
�

25
16
3
2

=
�7

24

This approximation eventually gives that
p
�1 2 Q5.

22



Example 3.4. Consider x2+1 over F5. Factoring in the base field, we obtain

x2 + 1 = (x + 2)(x + 3) mod 5. So, there must exist u1, u2 2 O5 such that

x2 + 1 = (x+ u1)(x+ u2) such that u1 ⌘ 2 mod 5 and u2 ⌘ 3 mod 5.

This example motivates the idea of extending valuations.

3.4 Extending Valuations

Theorem 3.4.1. Let F be a field, let � be an ordered abelian group and let

v : F �! � be a valuation on F . Let L be a field extension of F . Then there

exists some �0 ◆ � and v0 : L �! �0 an extension of our valuation v. We

can only say that this is unique (up to isomorphism) when F is complete with

respect to the given valuation.

Corollary 3.4.1. The p-adic valuation extends uniquely to Q
p

(
p
�1).

Now, we look at Q2(
p
�1) and establish some notation. Let i =

p
�1. Let

⇡ = 1 + i. Note that it is advantageous to adjoin i as �1 /2 Q2
2. So, now look

at (1 + i)2. We see that (1 + i)2 = 1 + 2i � 1 = 2i. Now, we want to know

what the value of ⇡ is. Note that

⇡2 = 2i = 2(⇡ � 1)

So, we look at the values of this factorization coupled with the ultrametric

inequality:

v(2) = 1 v(�1) = 0 v(⇡ � 1) � 0

v(⇡) � 0 v(⇡) � 1 v(⇡2) � 0

v(⇡ � 1) = 0 v(⇡2) = v(2(⇡ � 1)) = 1
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This gives that v(⇡) = 1/2. So, in particular, we have that:

Q2(i)
1
2Z ⇢ Q

Q2 Z

v

v2

This gives that

OQ2(i) = {
1X

i=0

a
i

⇡i | a
i

2 {0, 1}}

After this extension of our valuation, we can further extend our valuation to

functions in some variable t.

3.5 Extending the Valuation to Rational Functions

Let t be a variable and and define v(t) = 0. Consider a polynomial in Q2(i)[t].

f(t) =
NX

i=0

a
i

t
i

where a
i

2 Q2(i)

We define v(f(t)) = min{v(a
i

)} 2 Z. Note that if v(a
i

) � 0, then f(t) 2 O
F

.

We extend the valuation to rational functions with coe�cients in Q2(i) by

defining

v(f(t)/g(t)) := v(f(t))� v(g(t))

Now, we have a well-defined valuation on Q2(i)(t). Given this, we can better

understand the residue field of F under the valuation. Recall that the residue

field of F is given by the quotient of the valuation ring O
F

= {x 2 F : v(x) �

0} by the unique maximal ideal m
F

= {x 2 F : v(x) > 0}. In particular, we

see that since Q2(i) = F2. So when we adjoin the variable t, we obtain that

the residue of F is given by F̄ = F2(t).
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4 Exploring the Quotient Group F •/F •2

Let F0 = Q2(i)(t) and let v be the extension of the 2-adic valuation on Q

where v(t) = 0. Let F be the completion of F0 with respect to the metric

induced by v in which Hensel’s lemma will hold.

We are now going to study substructures of our quaternionic pairing q :

F •/F •2 ⇥ F •/F •2 �! Q, where Q is some elementary abelian 2-group that

satisfy a Poincare duality-like condition.

Definition 4.0.1. Let G1, G2 be groups. A perfect pairing is a map G1 ⇥

G2 �! Z/2Z where whenever nonzero g1 2 G1, we have that

(g1, ⇤) : G1 �! Hom(G2,F2)

is a group isomorphism. Or equivalently, for all nonzero g1 2 G1, there exists

g2 2 G2 such that (g1, g2) = 1 and for all nonzero g2 2 G2, there exists a

g1 2 G1 such that (g1, g2) = 1.

Example 4.1. Let L be a local field of characteristic not equal to 2. For

convenience, assume that
p
�1 2 L. Then

L•/L•2 ⇥ L•/L•2 �! Q ⇠= Z/2Z

is a perfect pairing. In particular, L•/L•2 is even-dimensional and the pair-

ing has a symplectic base which means that there exists a basis for L•/L•2 =

{e1f1, . . . , enfn} such that for all i, j 2 {1, . . . , n}, we have that (e
i

, e
j

) =

(f
i

, f
j

) = 0, (e
i

, f
i

) = 1 and for i, j 2 {1, . . . , n} distinct, (e
i

, f
j

) = 0.
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Example 4.2. In the example studied below, we will have that I3F ⇠= Z/2Z

and that F •/F •2 ⇥ I2/I3 �! I3/I4 ⇠= Z/2Z is a perfect pairing.

4.1 Quaternionic Pairing of Q2(i)

Now, we investigate a specific symplectic base in order to try to figure out a

way to iteratively “fix” linkage problems by adding new group elements into

our basis in order to correct the linkage errors in the previous submatrices.

Definition 4.1.1. (Field Case:) Let F be an arbitrary field. We define the

representation set of a binary form as follows:

D
F

h[a], [b]i := {[ax2 + by2] | x, y 2 F}

Remark 4.1.1. It follows from the representation theory that (a, b) = 0 2 Q

if and only if [�b] 2 D
F

h[1], [a]i.

This motives the following abstract definition:

Definition 4.1.2. Define [�b] 2 Dh[1], [a]i if and only if (a, b) = 0 in the

quaternionic pairing.

(Case of Q2(i)) : We saw that order of the quotient group Q2(i)/Q2(i)2 is 16.

Using valuation theory, one can see that we can represent the square classes

in Q2(i)/Q2(i)2 with the following set

Q2(i)

Q2(i)2
= {[1], [1+⇡], [1+⇡3], [1+⇡4], [1+⇡+⇡3], [1+⇡�4], [1+⇡+⇡3�4], [1+⇡3�4],

[⇡], [⇡][1+⇡], [⇡][1+⇡3], [⇡][1+⇡4], [⇡][1+⇡+⇡3], [⇡][1+⇡�4], [⇡][1+⇡+⇡3�4], [⇡][1+⇡3�4]}.
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We will consider these generators of Q2(i)/Q2(i)2 in our next computation as

a linear combination of the following ordered basis:

�0 = {u1, u2, u3, u4} = {[1 + ⇡], [1 + ⇡3], [1 + ⇡4], [⇡]}.

We want to determine the subgroups of Q2(i)/Q2(i)2 by computing Dh[1], [a]i

for a 2 Q2(i)/Q2(i)2. Since the pairing was perfect, these correspond to

computing hyperplanes, we can accomplish this computation via a matrix

S 2 SL4(Z2) where

s
i,j

=

8
>><

>>:

0 if [i] /2 Dh[1], [j]i

1 if [i] 2 Dh[1], [j]i
.

Firstly, we note that S must be symmetric as we have that condition that

[x] 2 Dh[1], [y]i () [y] 2 Dh[1], [x]i.

This gives the (symplectic) matrix:

S0 =

0

BBBBBBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

CCCCCCCA

as we noted must occur in example 4.1 at the beginning of this chapter. With
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this matrix, we have the following representation sets:

Dh[1], [1 + ⇡]i = spanh[1 + ⇡], [⇡], [1 + ⇡4]i

Dh[1], [1 + ⇡3]i = spanh[1 + ⇡3], [⇡], [1 + ⇡4]i

Dh[1], [1 + ⇡4]i = spanh[1 + ⇡4], [1 + ⇡], [1 + ⇡3]i

Dh[1], [⇡]i = spanh[⇡], [1 + ⇡], [1 + ⇡3]i.

To demonstrate the arithmetic in this field, notice that the class of [1+⇡2] 62 �0

as it can be generated by:

1 + ⇡2 ⌘ (1 + ⇡2)(1 + ⇡)2 congruent via multiplication by a square

⌘ (1 + ⇡2)(1 + ⇡2 + 2⇡) by expansion of (1 + ⇡)2

⌘ 1 + ⇡2 + 2⇡ + ⇡2 + ⇡4 + 2⇡3

⌘ 1 + ⇡4 + 2(⇡ + ⇡2 + ⇡3)

⌘ 1 + 2⇡ mod 1 + ⇡5 using the ⇡-adic expansion for 2

⌘ (1� ⇡3 � ⇡4) using the ⇡-adic expansion for -1

⌘ (1 + ⇡3)(1 + ⇡4).

Moreover, after exploring this example, we want to explore the larger quater-

nionic pairing q : (F •/F •2 ⇥ F •/F •2) �! Q where Q is some elementary

abelian 2-group that is yet to be determined. In order to understand this com-

plicated pairing, we will look at the structure of our domain and codomain as

well as the pairings between such substructures to obtain information about

the pairing as a whole.
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4.2 Using Filtration to Investigate F •/F •2

Now, for i � 1, define U
i

:= {1 + ⇡ig : g 2 O
F

}. We also identify U0 with

O•
F

. These subgroups of F • will give us a filtration of our group. Recall that

Definition 4.2.1. Given a group G, we say that a sequence {G
n

}
n2N of nested

normal subgroups of G is a filtration given that for any n 2 N, we have that

G
n+1 ◆ G

n

.

Note that F • is abelian which gives that any subgroup is certainly normal.

Then, note that we have a filtration of F •, namely:

F • � U0 = O•
F

� U1 � U2 � U3 � . . . (1)

and a filtration of F •/F •2 :

F •

F •2 � U0

F 2 \ U0
� U1

F 2 \ U1
� U2

F 2 \ U2
(2)

We want to understand U
i

/U
i+1 for any i � 0 and the quotients of the form:

U0/(F 2 \ U0)

U1/(F 2 \ U1)
⇠=

U0

(F 2 \ U0) · U1

U1/(F 2 \ U1)

U2/(F 2 \ U2)
⇠=

U1

(F 2 \ U1) · U2

U2/(F 2 \ U2)

U3/(F 2 \ U3)
⇠=

U2

(F 2 \ U2) · U3

To understand the structure of these quotients, we use the following isomor-

phisms. By basic valuation theory, we have

F •/U0
⇠= Z (the value group of F ) (4.2.1a)
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This makes sense as we quotient out by elements of value 0.

Also, we have that

U0/U1
⇠= F̄ • (4.2.1b)

This can be seen as we know that O•
F

= U0 ⇣ F̄ •. Moreover, the kernel of this

surjection must necessarily be U1 = {1 + ⇡y : y 2 O
F

} as these are elements

of value 1 plus something from the ideal m
F

.

Next, for any fixed i 2 N, then

 : U
i

/U
i+1 �! (F̄ ,+) given by 1 + ⇡ix 7! x̄ (4.2.1c)

is a group isomorphism. Note that any element in the quotient U
i

/U
i+1 can

be represented by 1 + ⇡ix for x 2 O
F

. We outline the proof that  is an

isomorphism.

Proof. (Sketch.) Let x, y 2 O•
F

such that 1 + ⇡ix ⌘ 1 + ⇡iy mod U
i+1. This

implies that for some z 2 O•
F

, we can express 1 + ⇡ix as

1 + ⇡ix = (1 + ⇡iy)(1 + ⇡i+1z) = 1 + ⇡iy + ⇡i+1z + ⇡2i+1yz

= 1 + ⇡i(y + ⇡y + ⇡i+1yz)

This implies that x = y + ⇡y + ⇡i+1yz. But since v(⇡y + ⇡i+1yz) > 0, we

have that ⇡y + ⇡i+1yz 2 m
F

. So, we obtain that x̄ = ȳ which gives the well

definition of  .
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To see that  is a group homomorphism, let 1 + ⇡ix, 1 + ⇡iy 2 U
i

/u
i+1. Then

observe that

 ((1 + ⇡ix)(1 + ⇡iy)) =  (1 + ⇡i(x+ y)) = x+ y

 (1 + ⇡ix) (1 + ⇡iy) = x̄+ ȳ

Note that these two expressions are the same simply because the residue is an

additive homomorphism from O
F

to O
F

/m
F

giving that  is a homomorphism.

To see that  is injective, let x̄ = ȳ 2 F̄+. Then, we have that x̄ � ȳ =

0 2 F̄+. Then, we have that 1 + ⇡i(x � y) 2 U
i+1 as x� y 2 m

F

. So, since

1+⇡i(x�y) = (1+⇡ix)(1+⇡iy) this implies that 1+⇡ix ⇠= 1+⇡iy mod U
i+1

giving the injectivity of  .

Lastly,  must be surjective because any element in F̄+ can be expressed

as some g +m
F

for some g 2 O
F

. So, we see that 1 + ⇡ix 7! x̄ is a surjection.

Therefore,  is a well-defined group isomorphism ⌅

We discuss the squares in the field. By valuation theory, U5 ✓ F 2 as 1+⇡5⇤ 2

F 2 and we can view the quotient group of the residue mod squares as follows:

F •/F •2 ⇠= O•
F

/O•2
F

� h⇡i (4.2.2a)

To see this, note that we automatically have that

O•
F

/O•2
F

� h⇡i/F •2 ,! F •/F •2
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via subgroup inclusion. So, it su�ces to verify is that this is also a surjection.

Consider some x 2 F •. Then, we consider the case where x has even or odd

value. Firstly, suppose that v(x) is even. Then, there exists some y 2 O
F

such that v(y2) = v(y) + v(y) = v(x). Working mod squares, we have that

v(x) = v(xy�2) = 0 which implies that the coset x+F̄ •2 is the image of O•
F

/O•2
F

since xy�2 2 O•
F

. Now, suppose that v(x) is odd. Then there exists some

y 2 O
F

such that v(y2) � 1 = v(x). So, we have that v(x) = v(⇡�1xy2) = 0

which implies that the coset x+ F̄ •2 is the image of ⇡ ·O•
F

/O•2
F

since x+F •2 is

⇡· some unit. Thus, we see that this map is surjective and moreover a group

isomorphism giving 4.2.2a.

Another basic result using the definition of U1 and basic valuation theory

is

O•
F

/(O•2
F

· U1) ⇠= F̄ •/F̄ •2 via f mod O•2
F

· U1 7! f̄ mod F̄ •2 (4.2.2b.)

From here, we want to examine the behavior of these quotient groups modulo

the squares of the field. We go through levels of the filtration to accomplish

this. We begin at U1. In particular, observe

U1/((U1 \ F̄ •2) · U2) ⇠= U1/U2
⇠= (F̄ ,+) (4.2.3a)

This can be seen as U1\ F̄ •2 ⇢ U2. Note that we have this inclusion as for any

1 + ⇡x = f 2, we have that f̄ = 1 as f 2 2 U1. Because charF = 2, this implies

that we can express f = 1+⇡y. Therefore, we see that f 2 = 1+⇡2y2+2⇡y 2 U2.
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On the next level, consider U2. This behaves di↵erently than the previous

level because U2 \ F̄ 2 6✓ U3 since

(1 + ⇡s)2 = 1 + ⇡2s2 + 2⇡s

⌘ 1 + ⇡2s2 mod U3

So, in this case, we have

U2/((U2 \ F̄ •2) · U3) ⇠= (F̄+/F̄+2
) (4.2.3b)

On the next level, consider U3. Notice this is the same case as in U1 i.e.

U3/((U3 \ F̄ •2) · U4) ⇠= (F̄ ,+) (4.2.3c)

because U3\F 2 ✓ U4. Note that any element of U3 is some 1+⇡3g for g 2 O
F

and F̄ •2 must have an even power of ⇡.

The last level we consider is U4. Since U5 ✓ F 2, it is redundant to multi-

ply that subgroup in the denominator of the quotient, giving

U4/((U4 \ F̄ •2) · U5) ⇠= U4/(U4 \ F̄ •2)

But in the case where we are looking at U4 \ F 2, we see that the squares

(1 + 2s)2 = 1 + 4(s2 + s) will be of the form x2 + x. We define }(F ) =

hx2 + x : x 2 F i and see that

U4/(U4 \ F̄ •2) ⇠= F+/}(F )+ (4.2.3d)
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because if we consider the surjection U4/(U4 \ F̄ •2) ⇣ F̄+, it has kernel gen-

erated by x2 + x which is }(F ).

The obtained isomorphisms can help us break down the structure of the ele-

ments in F •/F •2 . In particular, we can see that we can generate F •/F •2 will

the following:

F •/F •2 ⇠= hZ/2Z⇥ F̄ •/F̄ •2 ⇥ F̄+ ⇥ tF̄+2 ⇥ F̄+ ⇥ F̄+

}(F )+
i (4.2.4)

in other words, we can generate anything in F •/F •2 by a product of:

{(⇡i)
i2{0,1}, f 2 O•

F

/(O•2
F

·U1), (1+⇡f), (1+⇡
2tf), (1+⇡3f), ((1+⇡4f) mod }(F ))}

This gives us a way that we can approximate fixing linkage issues by the layers

in the filtration. But in order to investigate any sort of linkage, we need to also

understand how these filtrations are a↵ecting the codomain of our pairing.

4.3 Using Filtration to Understand Quotient Subgroups

of Q

Now, we want to look on the other side of our quaternionic pairing. Define

V0 := (⇡, O•
F

)

8i 2 N V
i

:= (⇡, U
i

) = (⇡, 1 + ⇡if) f 2 O•
F
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This gave us the following filtration:

(⇡, F •) ◆ V0 ◆ V1 ◆ V2 ◆ V3 ◆ V4

Using this filtration, we aim to understand V
i

/V
i+1. In general, we will be able

to see the following isomorphisms by looking at kernels of the following set of

surjections:

'
i

: V
i

⇣ F̄+ via (⇡, 1 + ⇡if) 7! f̄

First, note that

(⇡, F •)/(⇡, O•
F

) ⇠= {0}

because F • = ⇡ ·O•
F

as (⇡, ⇡iu) = (⇡, u) for any u 2 O•
F

.

We want to understand V
i

/V
i+1. In particular, we want to use the infor-

mation obtained by U
i

/U
i+1 to give us information on the other side of the

quaternionic pairing. Note that

F̄ • = O•
F

/U1 �! V0/V1 via u 7! (⇡, u)

will induce a map

F̄ •/F̄ •2 �! V0/V1

as for any x, we have that (⇡, x2) = 0. This gives us that this map must be

well-defined. Moreover, it gives us a group isomorphism

V0/V1
⇠= F̄ •/F̄ •2 (4.3.0)
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Next, we consider i > 0. We claim that

V1/V2
⇠= F̄+/F̄+2

(4.3.1a)

We look at ker'1. We claim that ker'1 = F̄+2
. Note that a quaternionic

pairing evaluates to 0 if and only if the quadratic form is 0 i.e.

(⇡, V
i

) = 0 () hh⇡, V
i

ii = 0

Observe that

1 + ⇡f = x2 + ⇡y2 mod ⇡2

= (1 + ⇡g)2 + ⇡y2 (v(y) > 0)

= 1 + ⇡2g2 (as v(2⇡g) � 3)

=) f 2 F̄+2

In the next layer, we claim that

V2/V3
⇠= F̄+/F̄+2

(4.3.1b)

We look at ker'2. We claim that ker'2 = F̄+2
. Observe that

1 + ⇡2f = x2 + ⇡y2 mod ⇡3

= (1 + ⇡g)2 + ⇡y2 (v(y) > 0)

= 1 + ⇡2g2 (as v(2⇡g) � 3)

=) f 2 F̄+2
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In the next layer, we have

V3/V4
⇠= F̄+/F̄+2

(4.3.1c)

We look at ker'3. We claim that ker'3 = F̄+2
. Observe that

1 + ⇡3f = 1 + ⇡(⇡g2)

= 1 + ⇡3g2 mod ⇡4

=) f 2 F̄+2

In the last level, we have

V4/V5
⇠= F̄+/}(F̄ )+ (4.3.1f)

We look at ker'4 to see that ker'4 = }(F̄ )+. Observe that

1 + ⇡4f = x2 + ⇡y2

= (1 + ⇡2g)2 + ⇡y2 (where v(y) > 0)

= 1 + ⇡4(g2 + g) mod ⇡5

Thus, we see that ker'4 is generated by the polynomials of the form g2 + g

which is precisely saying that ker'4 = }(F̄ )+.

Remark 4.3.1. In a generalized form, these quotients are computed by Arason

in theorem 2 of [3]. These quotients are called the wild part of WF . Note that

in his computations it does not require the field to be complete.
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5 Linkage Within Our Specific Pairing

Using the notation from the previous section, let G = h⇡i � U1/U
2
1 and let

Q = (G,G). The quaternionic pairing under consideration q : G ⇥ G ! Q =

V0 = (⇡, U). In order to show this is linked, we first classify all the possible

g
i

2 G such that q(g1, g2) = q(g3, g4) = q 2 Q. Via the filtration, we can look

layer by layer to see the possible g
i

combinations:

5.1 Possibilities for Needing a Linking Element

• V4 = (⇡,1+ ⇡4f) Layer: The equation we want to satisfy is

q(g1, g2) = q(g3, g4) = (⇡, 1 + ⇡4f) 2 V4

The question is for which g1 2 G, does there exist a g2 2 G such that

q(g1, g2) = (⇡, 1 + ⇡4f)? Recall that G is generated by

{(⇡i)
i2{0,1}, f 2 O•

F

/(O•2
F

·U1), (1+⇡f), (1+⇡
2tf), (1+⇡3f), ((1+⇡4f) mod }(F ))}

Our options for g1 are generators of G. Below is a list of the possible

pairs (g1, g2) 2 G⇥G such that q(g1, g2) = (⇡, 1 + ⇡4f):

1. g1 = ⇡u
i

. For i � 1, then g2 will exist. Namely, take g2 = 1 + ⇡4f .

2. g1 = u1 = 1 + ⇡h. Take g2 = 1 + ⇡3h0 with the constraint that

h 2 F •2 and h0 = (f + }(g))h�1.

3. g1 = 1 + ⇡2h. Take g2 = 1 + ⇡2h0. Need condition for this case.

4. g1 = 1 + ⇡3h. Take g2 = 1 + ⇡h0 with the constraint that h0 2 F •2

and h = (f + }(g))h0�1.

38



• V3/V4 = (⇡,1+ ⇡3tf2) Layer: The equation we want to satisfy is

q(g1, g2) = q(g3, g4) = (⇡, 1 + ⇡3tf 2) 2 V3/V4

The question is for which g1 2 G, does there exist a g2 2 G such that

q(g1, g2) = (⇡, 1 + ⇡3tf 2)? Below is a list of the possible pairs (g1, g2) 2

G⇥G such that q(g1, g2) = (⇡, 1 + ⇡3tf 2):

1. g1 = ⇡u
i

. For i � 2, then g2 will exist. Namely, take g2 = 1+⇡3tf 2.

2. g1 = u1 = 1 + ⇡h. Take g2 = 1 + ⇡2h0 with the constraint that

h 2 F •2 and h0 2 tF •2 .

3. g1 = 1 + ⇡2h. Take g2 = 1 + ⇡h0 with the constraint that h 2 tF •2

and h0 2 F •2 .

4. g1 = 1+ ⇡3h. Take g2 = ⇡u
i

for i � 2 and with the constraint that

h 2 tF •2 .

• V2/V3 = (⇡,1+ ⇡2tf2) Layer: The equation we want to satisfy is

q(g1, g2) = q(g3, g4) = (⇡, 1 + ⇡2tf 2) 2 V2/V3

The question is for which g1 2 G, does there exist a g2 2 G such that

q(g1, g2) = (⇡, 1 + ⇡2tf 2)? Below is a list of the possible pairs (g1, g2) 2

G⇥G such that q(g1, g2) = (⇡, 1 + ⇡2tf 2):

1. g1 = ⇡u
i

. For i � 3, then g2 will exist. Namely, take g2 = 1+⇡2tf 2.

2. g1 = u1 = 1 + ⇡h. Take g2 = 1 + ⇡2h0 with the possible constraint

that h 2 F •2 and h0 2 tF •2 .

39



3. g1 = 1 + ⇡2h. Take g2 = ⇡u
i

with i � 3 and h 2 tF •2 .

4. g1 = 1 + ⇡3h. Then no g2 will exist as ⇡, 1 + ⇡3h) 2 V3.

• V1/V2 = (⇡,1+ ⇡tf2) Layer: The equation we want to satisfy is

q(g1, g2) = q(g3, g4) = (⇡, 1 + ⇡tf 2) 2 V1/V2

The question is for which g1 2 G, does there exist a g2 2 G such that

q(g1, g2) = (⇡, 1 + ⇡tf 2)? Below is a list of the possible pairs (g1, g2) 2

G⇥G such that q(g1, g2) = (⇡, 1 + ⇡tf 2):

1. g1 = ⇡u
i

. For i � 4, then g2 will exist. Namely, take g2 = 1+ ⇡tf 2.

2. g1 = u1 = 1 + ⇡h. Take g2 = ⇡u
i

with i � 4 and h 2 tF •2 .

5.2 Linking These Elements

With this classification of the possible pairs that will get us into each layer,

we now aim to look at all possible combinations of these pairs and identify

the field element that can link each. In other words, whenever we have that

q(a, b) = q(c, d) = q 2 V
i

/V
i+1, we must find and ` 2 G such that q(a, `) =

q(c, `) = q. So, we look at all the possible g
i

combinations and will find an

` 2 G that links them.

• V4 = (⇡,1+ ⇡4f) Layer: The g
i

possibilities are

(⇡u
i

, 1 + ⇡4f) = (1 + ⇡h, 1 + ⇡3h0)

that we identify with

(↵1,↵2) = (↵3,↵4)
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This gives 6 cases to link:

1. (↵1, `) = (↵2, `)

2. (↵1, `) = (↵3, `)

3. (↵1, `) = (↵4, `)

4. (↵2, `) = (↵3, `)

5. (↵2, `) = (↵4, `)

6. (↵3, `) = (↵4, `)

One example of linking such a possibility is case 2. With methods that

we discussed in fuller detail in a later section, note that if we choose

` = (1 + ⇡3f 2h�1)(1 + ⇡4h), we obtain that indeed

(↵1, (1+⇡
3f 2h�1)(1+⇡4h)) = (↵3, (1+⇡

3f 2h�1)(1+⇡4h)) = (⇡, 1+⇡4f)

because

(↵1, (1 + ⇡3f 2h�1)(1 + ⇡4h))

= (⇡u
i

, 1 + ⇡3f 2h�1)(1 + ⇡4h))

= (⇡, 1 + ⇡3f 2h�1) + (⇡, 1 + ⇡4h) + (u
i

, 1 + ⇡3f 2h�1) + (u
i

, 1 + ⇡4f)

⌘ (⇡, 1 + ⇡4h) mod V5

where we get various cancellations with formulae that will be given in a
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later section. Also observe that

(↵3, (1 + ⇡3f 2h�1)(1 + ⇡4h))

= (1 + ⇡h, (1 + ⇡3f 2h�1)(1 + ⇡4h))

= (1 + ⇡h, 1 + ⇡3f 2h�1) + (1 + ⇡h, 1 + ⇡4h)

= (1 + ⇡h, 1 + ⇡3f 2h�1)

⌘ (⇡, 1 + ⇡4h) mod V5

• V3/V4 = (⇡,1+ ⇡3tf2) Layer: The g
i

possibilities are

(⇡u
i

, 1 + ⇡3tf 2) = (1 + ⇡h, 1 + ⇡2h0)

that we identify with

(↵1,↵2) = (↵3,↵4)

This gives 6 cases to link:

1. (↵1, `) = (↵2, `)

2. (↵1, `) = (↵3, `)

3. (↵1, `) = (↵4, `)

4. (↵2, `) = (↵3, `)

5. (↵2, `) = (↵4, `)

6. (↵3, `) = (↵4, `)

An example of finding linking elements in this case can be seen in case
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6. Consider ` = (1 + ⇡h)(1 + ⇡2h0). Then observe that

(↵3, (1 + ⇡h)(1 + ⇡2h0)) = (↵4, (1 + ⇡h)(1 + ⇡2h0))

as

(↵3, (1 + ⇡h)(1 + ⇡2h0))

= (1 + ⇡h, (1 + ⇡h)(1 + ⇡2h0))

= (1 + ⇡h, 1 + ⇡h) + (1 + ⇡h, 1 + ⇡2h0)

= (1 + ⇡h, 1 + ⇡2h0)

⌘ (⇡, 1 + ⇡3tf 2) mod V4

also

(↵4, (1 + ⇡h)(1 + ⇡2h0))

= (1 + ⇡2h0h, (1 + ⇡h)(1 + ⇡2h0))

= (1 + ⇡2h0, 1 + ⇡h) + (1 + ⇡2h0, 1 + ⇡2h0)

= (1 + ⇡2h0, 1 + ⇡h)

⌘ (⇡, 1 + ⇡3tf 2) mod V4

Note that this layer is particularly interesting because it comes up in a

later section which breaks linkage of a quaternionic pairing with many

linked subpairings.
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• V2/V3 = (⇡,1+ ⇡2tf2) Layer: The g
i

possibilities are

(⇡u
i

, 1 + ⇡2tf 2) = (1 + ⇡h, 1 + ⇡h0)

that we identify with

(↵1,↵2) = (↵3,↵4)

This gives 6 cases to link:

1. (↵1, `) = (↵2, `)

2. (↵1, `) = (↵3, `)

3. (↵1, `) = (↵4, `)

4. (↵2, `) = (↵3, `)

5. (↵2, `) = (↵4, `)

6. (↵3, `) = (↵4, `)

On example of finding linking elements in this layer, consider linking

case case 3. Consider ` = (1 + ⇡h)(1 + ⇡2tf 2). Then, observe that

(↵1, (1 + ⇡h)(1 + ⇡2tf 2) = (↵4, (1 + ⇡h)(1 + ⇡2tf 2) = (⇡, 1 + ⇡2tf 2)

because

(↵1, (1 + ⇡h)(1 + ⇡2tf 2))

= (⇡u
i

, (1 + ⇡h)(1 + ⇡2tf 2))

= (⇡, 1 + ⇡h) + (⇡, 1 + ⇡2tf 2) + (u
i

, 1 + ⇡h) + (u
i

, 1 + ⇡2tf 2)

⌘ (⇡, 1 + ⇡2tf 2) mod V3
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as well as

(↵4, (1 + ⇡h)(1 + ⇡2tf 2))

= (1 + ⇡h0, (1 + ⇡h)(1 + ⇡2tf 2))

= (1 + ⇡h0, 1 + ⇡h) + (1 + ⇡h0, 1 + ⇡2tf 2)

⌘ (⇡, 1 + ⇡2tf 2) mod V3

• For the case of V1/V2, we have trivial linkage as (⇡ui

, 1+⇡h0) is the only

possibility.

5.3 Strategies for Finding Linking Elements

In order to find such ` 2 G, we used the following relations that we can derive

using the arithmetic of the field, the theory of quadratic forms and our knowl-

edge of valuations.

In the theory of quadratic forms, a four dimensional quadratic form h1, a, b, abi :=

hha, bii is called a two-fold Pfister form. This forms determine the quater-

nionic structure of a field. Namely, note that h1, a, b, abi = h1, c, d, cdi if and

only if ha, b, abi = hc, d, cdi and that for all x, y hx, yi = hx+y, (x+y)xyi. Note

that this is where the linkage axiom comes from because if ha, b, abi = hc, d, cdi,

then ha, b, abi � hc, d, cdi is a hyperbolic 6-dimensional form. Moreover, its

3-dimensional totally isotropic subspace must intersect the supporting space

of the four dimensional subform hb, abi � hd, cdi. But note that if ` is rep-

resented by both hb, abi and hd, cdi (such exists by the isotropic vector) we

find that hb, abi = h`,mi and hd, cdi = h`, ni. This ultimately gives that
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hha, bii = hha, `ii = hhc, `ii = hhc, dii furthermore giving linkage!

With this as motivation, we return to the structure of quadratic forms over

Q2(i). Consider the representation set of h1 + ⇡a, 1 + ⇡b, 1 + ⇡(a+ b) + ⇡2abi

which is the “pure part” of hh1 + ⇡a, 1 + ⇡bii. Note that we have

h1 + ⇡a, 1 + ⇡bi = h2 + ⇡(a+ b), (1 + ⇡a)(1 + ⇡b)(2 + ⇡(a+ b))i

from which we find (using �1 2 Q2(i)•
2
) h1+⇡a, 1+⇡b, 1+⇡(a+ b)+⇡2abi =

= h2 + ⇡(a+ b), (1 + ⇡a)(1 + ⇡b)(2 + ⇡(a+ b)),�(1 + ⇡(a+ b) + ⇡2ab)i

= h1 + ⇡2ab, (1 + ⇡a)(1 + ⇡b)(2 + ⇡(a+ b)), ⇤i

for some value ⇤. In terms of quaternions, this means

hh1 + ⇡a, 1 + ⇡bii = hh1 + ⇡2ab, (1 + ⇡a)(1 + ⇡b)(2 + ⇡(a+ b))ii

which can be used to study the quaternionic structure. Note that if a = 1, ⇡

and b = ⇡3 which arises in considering hh1 + ⇡, 1 + ⇡4ii and hh1 + ⇡3, 1 + ⇡4ii

,we have that a 1 + ⇡5, 1 = ⇡6 in the new forms which are squares. This gives

the vanishing relations. From this, we find the other relation where we set

a = 1 and b = ⇡2 to obtain hh1 + ⇡, 1 + ⇡3ii = hh1 + ⇡4, ⇡ii. This can be seen

using the multiplicative property of Pfister forms in the Quternionic group

and can say that 2 + ⇡(1 + ⇡2) = ⇡ + 2 + ⇡4 = ⇡(1 +m) where m 2 ⇡Z2[i] so

hh1 + ⇡4, (1 +m)ii = 0.

Now that we have some control over the arithmetic in Q2(i), we can turn to the
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fields F
n

with Q2(i) ⇢ F
n

with that complete discrete valuation extending the

one on Q2(i). Note that this has residue field F
m

= F2(t1, . . . , tn) instead of F2.

Even when n = 1, the field F1 will have infinite square class group; but this

group is generated by five types of generators:

multiplicative lifts [a] of elements a 2 F1
•
/F •2

1

elements 1 + ⇡a where a 2 F1
+

elements 1 + ⇡2a where a 2 F1
+ � (F1

2
)+

elements 1 + ⇡3a where a 2 F1
+

elements 1 + ⇡4a where a 2 F1
+
/}(F1

+
)

Here }(x) = x2+x is the Artin-Schreier operator (which is additive and there-

fore its image is a subgroup of F1
+
.)

Finally, one has to check that in F1, if x, y are units i.e. v(x) = v(y) = 0. Note

that one has

hhx+y, 1�⇡ii ⌘ hhx, 1�⇡( x

x+ y
)ii+hhy, 1�⇡( y

x+ y
)ii mod hhG, 1+⇡2⇤ii.

with this generators for Q will have have t slots once 1+⇡⇤ terms are reached.

We note as 1 + ⇡(a + b) ⌘ (1 + ⇡a)(1 + ⇡b) mod 1 + ⇡2⇤, so that by the

bilinearity of Pfister forms, we have

hh1 + ⇡(a+ b), cii ⌘ hh1 + ⇡a, cii+ hh1 + ⇡b, cii mod hhG, 1 + ⇡2⇤ii.
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Next, using x

x+y

+ y

x+y

= 1, we know by earlier relations that

hhx+y, 1�⇡ii ⌘ hhx+y, 1�⇡( x

x+ y
)ii+hhx+y, 1�⇡( y

x+ y
)ii mod hhG, 1+⇡2⇤ii.

This latter sum is equal to

hh⇡x, 1� ⇡(
x

x+ y
)ii+ hh⇡y, 1� ⇡(

y

x+ y
)ii

using the fact that hha, 1� bii ⇠= hhab, 1� bii. Using the bilinearity of Pfister

forms, we conclude that

hh⇡, 1�⇡( x

x+ y
)ii+hh⇡, 1�⇡( y

x+ y
)ii ⌘ hh⇡, 1�⇡ii = 0 mod hhG, 1+⇡2⇤ii.

5.4 Deriving Linking Formulae

Let [x] denote the square class of x over any field F of characteristic not two

with �1 2 F •2 . Whenever x, y 2 F •, we have

(1 + x, 1 + y) = (x(1 + y), 1 + x) = (y(1 + x), 1 + y)

We develop a strategy to find ` such that (x(1+y), `) = (y(1+x), `) = (1+x, 1+

y). For this, we have to find a common value of the forms h1+x, x(1+x)(1+y)i

and h1+y, y(1+x)(1+y)i. The first form represents (multiplying x(1+x)(1+y)
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by the square 1
(1+y)2 ).

(1 + x) +
x(1 + x)

1 + y
=

(1 + x+ y + xy) + (x+ x2)

1 + y

=
(1 + x)2 + y(1 + x)

1 + y

=
(1 + x)2

⇣
1 + y

(1+x)

⌘

(1 + y)

= (1 + x)2
1 + x+ y

(1 + x)(1 + y)
.

The same argument shows the second form represents (multiplying y(1+x)(1+

y) by the square 1
(1+x)2 .

(1 + y) +
y(1 + y)

1 + x
=

(1 + x+ y + xy) + (y + y2)

1 + x

=
(1 + y)2 + x(1 + y)

1 + x

=
(1 + y)2

⇣
1 + x

(1+y)

⌘

(1 + x)

= (1 + y)2
1 + x+ y

(1 + x)(1 + y)
.

This solves the generic linkage problem for these elements with

` =
1 + x+ y

(1 + x)(1 + y)

which is symmetric in x and y.

49



Checking this calculation directly we see that

(x(1 + y), `) =

✓
x(1 + y), (1 + x)

1 + x+ y

1 + y

◆

=

✓
x(1 + y), (1 + x)

✓
1 +

x

1 + y

◆◆

= (x(1 + y), 1 + x) = (1 + y, 1 + x)

which by symmetry is a check on what we require, namely that

(1 + x, 1 + y) = (x(1 + y), `) = (y(1 + x), `).

Example 5.1. As an example, we see what happens in our special case where

x = t and y = ⇡. We find, using the arithmetic of our field the appropriate

ell is:

` =
1 + t+ ⇡

(1 + t)(1 + ⇡)
=

1

(1 + ⇡)
+

⇡

(1 + t)(1 + ⇡)
=

✓
1 + ⇡

1

(1 + t)

◆
1

(1 + ⇡)
.

Using the power series 1
(1+⇡) = 1 � ⇡ + ⇡2 � ⇡3 + ⇡4 � · · · and using �1 =
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1 + ⇡2 + ⇡3 + ⇡4 we find mod F •2

` =

✓
1 + ⇡

1

(1 + t)

◆
(1� ⇡ + ⇡2 � ⇡3 + ⇡4)

= 1 + ⇡

✓
�1 +

1

(1 + t)

◆
+ ⇡2

✓
1� 1

(1 + t)

◆
+ ⇡3

✓
�1 +

1

(1 + t)

◆
+ ⇡4

= 1� ⇡

✓
t

(1 + t)

◆
+ ⇡2

✓
t

(1 + t)

◆
� ⇡3

✓
t

(1 + t)

◆
+ ⇡4

= 1 + ⇡

✓
t

(1 + t)

◆
+ ⇡2

✓
t

(1 + t)

◆
+ ⇡4

✓
1 +

t

(1 + t)

◆

=

✓
1 + ⇡

t

(1 + t)

◆✓
1 + ⇡2 t

(1 + t)

◆✓
1 + ⇡3 t2

(1 + t)2

◆
·

✓
1 + ⇡4(1 +

t

(1 + t)
+

t3

(1 + t)3
)

◆
.

Moreover, we see that

✓
1 + ⇡2 t

(1 + t)

◆
=

✓
1 + ⇡2(

t2

(1 + t)2
+ t

1

(1 + t)2
)

◆

⌘
✓
1 + ⇡2t

1

(1 + t)2

◆

⌘
✓
1 + ⇡2(

1

(1 + t)2
+ t(

1

(1 + t)2
)

◆
mod (1� ⇡2O

F

)

=

✓
1 + ⇡2 1

(1 + t)

◆
.

Finally, we can rewrite

✓
1 + ⇡4(1 +

t

(1 + t)
+

t3

(1 + t)3
)

◆
=

✓
1 + ⇡4(

1 + t2 + t3

(1 + t)3
)

◆

=

✓
1 + ⇡4(

t

(1 + t)3
)

◆
.

Recall the relations used in calculating values of the pairing on generators for
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G. Firstly, we have (this much (mod 1 + ⇡3O
F

)):
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(x+ y, 1 + ⇡) =

=

✓
x+ y, (1 + ⇡

x

x+ y
)(1 + ⇡

y

x+ y
)(1 + ⇡2 xy

(x+ y)2
)(1 + ⇡3e)

◆

= (x⇡, 1 + ⇡
x

x+ y
) + (y⇡, 1 + ⇡

y

x+ y
)

+(x+ y, 1 + ⇡2 xy

(x+ y)2
) + (x+ y, 1 + ⇡3e)

= (x, 1 + ⇡
x

x+ y
) + (y, 1 + ⇡

y

x+ y
) + (x+ y, 1 + ⇡3e)

+

✓
x+ y, (1 + ⇡2 xy

(x+ y)2
x

x+ y
)(1 + ⇡2 xy

(x+ y)2
y

x+ y
)(1 + ⇡4e0)

◆

= (x, 1 + ⇡
x

x+ y
) + (y, 1 + ⇡

y

x+ y
) + (x+ y, 1 + ⇡3e)

+(x, 1 + ⇡2 x2y

(x+ y)3
) + (y, 1 + ⇡2 xy2

(x+ y)3
) + (x+ y, 1 + ⇡4e0)

where we note in the third line we use (⇡, 1+⇡ x

x+y

)+(⇡, 1+⇡ y

x+y

) = (⇡, 1+⇡) =

0.

5.5 General Formulae

Using similar techniques as in the previous section, we have the following

general linking formulae:

Formula A1. Whenever x, y 2 F • and

(1 + x, 1 + y) = (x(1 + y), 1 + x) = (y(1 + x), 1 + y)

Then the linking element `1 for which (x(1 + y), `1) = (y(1 + x), `1) = (1 +

x, 1 + y) is given by

`1 = (1 + x)(1 + y)(1 + x+ y).
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Formula A2. Whenever x, y 2 F • and

(1 + x, 1 + y) = (y(1 + x), 1 + y) = (x(1 + x)(1 + y), 1 + x)

Then the linking `2 for which (y(1+x), `2) = (x(1+x)(1+y), `2) = (1+x, 1+y)

is given by

`2 = (1 + y)(1 + y + xy).

Formula A3. Whenever x, y 2 F • and

(1 + x, 1 + y) = (x(1 + x)(1 + y), 1 + x) = (y(1 + x)(1 + y), 1 + y)

Then the linking `3 for which (x(1 + x)(1 + y), `3) = (y(1 + x)(1 + y), `3) =

(1 + x, 1 + y) is given by

`3 = 1� xy.

Formula B1. Whenever x, y 2 F • and

(x, y) = (x(1 + y), y) = (y(1 + x), x)

Then the linking element `
B1 for which (x(1+y), `

B1) = (y(1+x), `
B1) = (x, y)

comes as a common slot from

hy, xy(1 + y)i and hx, xy(1 + x)i

and is given by

`
B1 = yx2 + (xy + xy2) = xy2 + (xy + yx2).
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Formula B2. Whenever x, y 2 F • and

(x, y) = (x(1 + y), y) = (xy(1 + x), x)

Then the linking `
B2 for which (x(1+y), `

B2) = (xy(1+x), `
B2) = (x, y) comes

as a common slot from

hy, xy(1 + y)i and hx, y(1 + x)i

and is given by

`
B2 = y + (xy + xy2) = xy2 + (y + xy).

Formula B3. Whenever x, y 2 F • and

(x, y) = (xy(1 + y), y) = (xy(1 + x), x)

Then the linking `
B3 for which (xy(1 + y), `

B3) = (xy(1 + x), `
B3) = (x, y)

comes as a common slot from

hy, x(1 + y)i and hx, y(1 + x)i

and is given by

`
B3 = x+ y + xy.

Formula C1. Whenever x, y 2 F • and

(1 + x, y) = (xy, 1 + x) = ((1 + x)(1 + y), y)
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Then the linking element `
C1 for which (xy, `

C1) = ((1 + x)(1 + y), `
C1) =

(1 + x, y) comes as a common slot from

h1 + x, xy(1 + x)i and hy, y(1 + x)(1 + x)i

and is given by

`
C1 = (1 + x)y2 � (xy + x2y) = �y(1 + x)2 + (y + xy + y2 + xy2).

Formula C2. Whenever x, y 2 F • and

(1 + x, y) = (xy, 1 + x) = (y(1 + x)(1 + y), y)

Then the linking `
C2 for which (xy, `

C2) = (y(1 + x)(1 + y), `
C2) = (1 + x, y)

comes as a common slot from

h1 + x, xy(1 + x)i and hy, (1 + x)(1 + y)i

and is given by

`
C2 = (1 + x)� (xy + yx2) = �y(1 + x)2 + (1 + x+ y + xy).

Formula C3. Whenever x, y 2 F • and

(1 + x, y) = (xy(1 + x), 1 + x) = (y(1 + x)(1 + y), y)
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Then the linking `
C3 for which (xy(1 + x), `

C3) = (y(1 + x)(1 + y), `
C3) =

(1 + x, y) comes as a common slot from

h1 + x, xyi and hy, (1 + x)(1 + y)i

and is given by

`
C3 = 1 + x+ xy = �y + (1 + x+ y + xy).

5.5.1 Verifying These Formulae

To check these formulae in Case A, recall we have the following:

(x(1 + y), `
A1) =

✓
x(1 + y), (1 + x)

1 + x+ y

1 + y

◆

=

✓
x(1 + y), (1 + x)

✓
1 +

x

1 + y

◆◆

= (x(1 + y), 1 + x) = (1 + y, 1 + x)

which by symmetry is a check on what we require, namely that

(1 + x, 1 + y) = (x(1 + y), `
A1) = (y(1 + x), `

A1).

In the second case, we check that

(y(1 + x), `
A2) = (y(1 + x), (1 + y)(1 + y + xy))

= (y(1 + x), 1 + y) + (y + xy, 1 + y + xy)

= (1 + x, 1 + y)
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while also

(y(1 + x), `
A2) = (y(1 + x), (1 + y)(1 + y + xy))

=

✓
y(1 + x), 1 +

xy

1 + y

◆

=

✓
x(1 + x)

1 + y
, 1 +

xy

1 + y

◆

= (x(1 + x)(1 + y), `
A2)

where by the preceding we know (y(1 + x), `
A2) = (1 + x, 1 + y) which gives

formula 2.

For the third case, we check that

(x(1 + x)(1 + y), `
A3) = (x(1 + x)(1 + y), 1� xy)

= (x(1 + x)(1 + y), 1 + x� x(1 + y)

= (x(1 + x)(1 + y), (1 + x)(1� x(1 + y)

1 + x
)

= (x(1 + x)(1 + y), 1 + x)

= (1 + y, 1 + x)

and by symmetry we have

((1 + x)(1 + y), `
A3) = (x(1 + x)(1 + y), 1� xy) = (1 + x, 1 + y)

as required, checking the three formulas for arbitrary fields containing a square

root of �1.

58



6 Investigating Substructures of the Pairing

In this section, we will be investigating di↵erent layers of our filtration in the

quaternionic pairing in question. Let G = F •/F •2 and recall the quaternionic

pairing we seek to understand is q : G⇥G �! Q. When restricting our maps to

subgroups of G, we can obtain linked quaternionic subpairings. In particular,

we see that they are elementary type when we break down the structure into

direct sums and group extensions of the associated abstract Witt rings.

6.1 Examples of Linked Quaternionic Subpairings

In order to establish the idea of elementary type with these sub-quaternionic

pairings, we give the following definitions for quaternionic pairings which give

the same objects we defined before for Witt rings.

Recall that given an abstract Witt ring, R, and an elementary abelian 2-group,

�, the group extension of R is the group ring R[�]. In terms of quaternionic

pairings, we have the following corresponding definition:

Definition 6.1.1. Let q : G⇥G �! Q be a quaternionic pairing and let � be

an elementary abelian 2-group. The group extension of q is the quaternionic

pairing

q� : (G⇥�)⇥ (G⇥�) �! Q� (G⌦�)� ^2�

given by ((g1, �1), (g2, �2)) 7! (q(g1, g2), (g1 ⌦ �2 + g2 ⌦ �1), �1 ^ �2)

Next, we define the other elementary type decomposition. Recall for R1, R2

abstract Witt rings, we defined the direct sum of R1 and R2 to be the fiber

product over Z/2Z i.e. R1

`
Z/2Z R2 = {(r1, r2) 2 R1 � R2 : d1(r1) = d2(r2)}
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which is also given by

R1

`
Z/2Z R2 R1

R1 Z/2Z

⇡2

⇡1 d2

d1

where d
i

are maps that compute the parity of the dimension of R
i

.

On the quaternionic pairing side, we can formulate the following corresponding

definition:

Definition 6.1.2. Let q1 : G1 ⇥ G1 �! Q1 and q2 : G2 ⇥ G2 �! Q2 be

quaternionic pairings. The direct sum of q1, q2 is given by

q1 � q2 : (G1 �G2)⇥ (G1 �G2) �! Q1 �Q2

given by ((g1, g2), (g3, g4)) 7! (q1(g1, g3), q2(g2, g4))

Now that we have formulated these definitions, we investigate restrictions of

the quaternionic pairing in question.

Example 6.1. Consider the associated abstract Witt ring R0 given by the

quaternionic pairing q0 : Ui

⇥ U
i

�! Q for i � 3. Note that this is a “totally

radical pairing” as for any f, g 2 O
F

, we have that q0(1 + ⇡if, 1 + ⇡ig) = 0.

This means that the pairing is identically 0 which gives trivial linkage.

Building o↵ of the previous example, we look at the associated abstract Witt

ring R1 given by the quaternionic pairing q1 : (h⇡i ⇥ U4)⇥ (h⇡i ⇥ U4) �! Q.
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Notice that the map given by

(⇡, ⇤) : U4 ,! Q

is an injection as (⇡, 1 + 4(x2 + x)) = 0 and we know that 1 + 4(x2 + x) 2 F 2

for any x 2 O
F

. Therefore, the quaternionic pairing is a group extension of

R0 which means that R1 = R0 ⇥ h⇡i.

Example 6.2. Now consider the associated abstract Witt ring R2 given by the

quaternionic pairing q2 : (h⇡i ⇥ U3) ⇥ (h⇡i ⇥ U3) �! Q. This is a bit more

complicated to deal with as

(⇡, ⇤) : U4 ,! Q

has nontrivial kernel; namely, we have that (⇡, 1 + ⇡3x2) = 0 for all x 2 O
F

.

In order to examine q2, decompose U3 as follows:

U3 = U31 � U32 � U4

where U31 = h1 + ⇡3x2i and U32 = h1 + ⇡3ty2i. Now, we can say that

(⇡, ⇤) : U32 � U4 ,! Q

is an injection and q2(⇡, U31) = 0. Let S2 be the associated abstract Witt

ring to the totally radical pairing U32 � U4 �! 0, and let S1 be the associated

abstract Witt ring to the totally radical pairing of U31. Then, we see that the

quaternionic pairing is R2 = S1

`
Z/2Z(S2 ⇥ h⇡i).

Example 6.3. Consider the associated abstract Witt ring R3 given by the
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quaternionic pairing q3 : (h⇡, ti ⇥ U4) ⇥ (h⇡, ti ⇥ U4) �! Q. Decompose U4

into U4 = U41 � U42 where U41 = h1 + ⇡4zi where z is independent from the

subgroup }(F̄ ) + tF̄ 2 and U42 = h1 + ⇡4tx2i. Now, notice that (t, U42) = 0,

(⇡, ⇤) : hti ⇥ U4 ,! Q

is an injection, and

(t, ⇤) : U41 ,! Q

is also an injection. With these observations, if we let S4 be the associated

abstract Witt ring to the radical generated by U42 and S3 be the associated

abstract Witt ring to the radical generated by U41, then we have that

R3 =

0

@(S3 ⇥ hti)
a

Z/2Z

S4

1

A⇥ h⇡i

6.2 Looking for a Counterexample to Elementary Type

Conjecture

Thus far, we have considered examples of subpairings that can be built from

an iterated process of group extensions and direct sums of smaller linked sub-

structures. However, not all the subpairings of q are linked. Consider the

following subpairing:

Example 6.4. Consider the associated abstract Witt ring R4 given by the

quaternionic pairing q4 : (h⇡, ti ⇥ U3) ⇥ (h⇡, ti ⇥ U3) �! Q. In order to de-

compose this into a sequence of direct sums and group extensions, observe the

following conditions that must be satisfied:
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Decompose U3, U4 into the same way from Examples 6.2 and 6.3 i.e. U3 =

U31�U32�U41�U42. Then, because we have the following interaction between

(⇡, 1 + ⇡3ty2) = (t, 1 + ⇡3x2), we would need

0 = q4(t, U42)

= q4(⇡, U31)

= q4(t⇡, U32)

We also would need the following maps to be injective:

(⇡, ⇤) : hti ⇥ U32 ⇥ U4 ,! Q

(t, ⇤) : h⇡i ⇥ U31 � U32 � U41 ,! Q

It turns out that this is our first example of a substructure of our pairing that

fails to be linked. This can be seen via the following example. Consider

q4(t, u32) = q4(⇡, u32) = q4(t, u32u42) = q4(⇡, u32u31)

where u
ij

2 U
ij

represent any element in these subgroups. Then, there does

not exist an ` 2 h⇡, ti ⇥ U3 such that

q4(`, u32u42) = q4(`, u32u31) = q4(t, u32). (*)

Proof. In order to show that no such ` can exist, we consider the possibilities

of `, namely ` = u, ` = ⇡u, ` = tu or ` = t⇡u where u 2 U3. We aim to solve

(`, u32u42) = (`, u32u31) = (t, u32) = (⇡, u32).
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We know that (⇡t, u32) = 0, (⇡, U31) = 0 and (t, U42) = 0. Moreover, we know

the maps

(⇡, ⇤) : hti ⇥ U32 ⇥ U4 ,! Q

(t, ⇤) : h⇡i ⇥ U31 ⇥ U32 ⇥ U41 ,! Q

are injective as stated above. Since (U3, U3) = 0, it follows that the three

remaining cases to consider, namely ` = ⇡, t, ⇡t. Notice that if ` = ⇡ then

(`, u32u42) = (⇡, u32u42) = (⇡, u32) + (⇡, u42) 6= (⇡, u32)

where the inequality follows from the injectivity of the (⇡, ⇤) map. If ` = t

then

(`, u32u31) = (t, u32u31) = (t, u32) + (t, u31) 6= (t, u32)

where the inequality follows from the injectivity of the (t, ⇤) map. Finally if

` = ⇡t then

(`, u32u42) = (⇡t, u32u42) = (⇡t, u32u42) + (⇡t, u42) = (⇡t, u42) 6= (⇡, u32)

where the inequality follows as (⇡, u32) 62 V4 by formula (4.3.1c) since u32 =

1 + ⇡3t and t 62 F
2
. Thus, no linking element exists. ⌅

As we have found an a linking problem in the previous pairing, we should try

to view this problem in a di↵erent light to see how the other substructures

within Example 6.4 i.e. Examples 6.2 and 6.3 are twisting together to create

a pairing that fails to be linked. More specifically, we need to investigate why

linkage fails at this level. Recall that we can represent these pairings via ma-

trices as discussed in section 4.1. This representation can potentially help us
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see what exactly is failing in the last example.

We can represent the pairing from Example 6.2 as the following matrix:

M2 =

2

666666666666664

u31 u32 u41 u42 ⇡

u31 0 0 0 0 0

u32 0 0 0 0 �1

u41 0 0 0 0 �1

u42 0 0 0 0 �2

⇡ 0 �1 �1 �2 0

3

777777777777775

where we see that �1 = (u32, ⇡) and �1 = (u41, ⇡), �2 = (u42, ⇡) are all indepen-

dent classes in Q. Viewing this pairing as a matrix makes it very clear that

this is a group extension by ⇡ as all the elements in the last row/column are

distinct.

We can represent the pairing from Example 6.3 as the following matrix:

M3 =

2

666666666664

u41 u42 t ⇡

u41 0 0 �3 �1

u42 0 0 0 �2

t �3 0 0 ↵

⇡ �1 �2 ↵ 0

3

777777777775

where ↵ = (⇡, t) and �1 = (u41, ⇡), �2 = (u41, t), �3 = (u42, ⇡ are all indepen-

dent classes in Q.
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Now, we look at the matrix representation of the pairing from Example 6.4:

M4 =

2

666666666666666664

u31 u32 u41 u42 ⇡ t

u31 0 0 0 0 0 �2

u32 0 0 0 0 �1 �1

u41 0 0 0 0 �1 �3

u42 0 0 0 0 �2 0

⇡ 0 �1 �1 �2 0 ↵

t �2 �1 �3 0 ↵ 0

3

777777777777777775

We see that with this basis, it is neither a group extension nor a direct sum of

the previous two matrices associated to the pairings in Example 6.2, 6.3. In

particular, the asymmetry between the �
i

and �
i

seems to be a main contrib-

utor for this pairing not being of elementary type.

In order to remedy the linkage failure stated in (⇤), we must find an element

` 2 F (that notably must exist in the bigger field as we know the Witt ring of

the entire field must be linked) to link equation (⇤). If we then consider the

extension q5 : (h⇡, ti ⇥ U3 � h`i)⇥ (h⇡, ti ⇥ U3 � h`i) �! Q, is this subpairing

linked? Does adjoining this ` solve all the linking problems with this pairing?

What linking problems can it create?

Moreover, if adjoining this ` creates more linking problems outside of the

subpairing q4, can we repeat this process of adjoining linking elements finitely

many times to obtain a finite substructure that is linked? I believe this process

can be be terminated with adjoining finitely many elements without getting
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the whole field. Since we know that the pairing will eventually be linked if

we adjoin everything (as it would correspond to a Witt ring of a field), but I

am convinced we do not need everything. This is potentially where I believe

a counterexample to the Elementary Type Conjecture lies.
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