
UC Davis
UC Davis Previously Published Works

Title
A computational model of induced pluripotent stem‐cell derived cardiomyocytes 
incorporating experimental variability from multiple data sources

Permalink
https://escholarship.org/uc/item/8z49v0mc

Journal
The Journal of Physiology, 597(17)

ISSN
0022-3751

Authors
Kernik, Divya C
Morotti, Stefano
Wu, HaoDi
et al.

Publication Date
2019-09-01

DOI
10.1113/jp277724

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z49v0mc
https://escholarship.org/uc/item/8z49v0mc#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


J Physiol 597.17 (2019) pp 4533–4564 4533

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

A computational model of induced pluripotent stem-cell
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Key points

� Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific
genotype–phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity

� Computational modelling and simulation provide a high throughput approach to reconcile
multiple datasets describing physiological variability, and also identify vulnerable parameter
regimes

� We have developed a whole-cell model of iPSC-CMs, composed of single exponential
voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM
outputs

� We have utilized experimental data across multiple laboratories to model experimental
variability and investigate subcellular phenotypic mechanisms in iPSC-CMs

� This framework links molecular mechanisms to cellular-level outputs by revealing unique
subsets of model parameters linked to known iPSC-CM phenotypes

Abstract There is a profound need to develop a strategy for predicting patient-to-patient
vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address
patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived
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goal of incorporating human diversity throughout these efforts.

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society DOI: 10.1113/JP277724
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial
purposes.

https://orcid.org/0000-0001-8679-665X
https://orcid.org/0000-0002-9098-0908
https://orcid.org/0000-0002-4401-8857
https://orcid.org/0000-0001-6849-4885
https://doi.org/10.1113/JP278739


4534 D. C. Kernik and others J Physiol 597.17

cardiomyocytes (iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor
genetic information and therefore capture patient-specific genotype–phenotype relationships.
A cited detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We
postulated, however, that cell-to-cell variability may constitute a strength when appropriately
utilized in a computational framework to build cell populations that can be employed to identify
phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation
in experimental data across multiple laboratories to develop a computational framework for
investigating subcellular phenotypic mechanisms. We have developed a whole-cell model of
iPSC-CMs composed of simple model components comprising ion channel models with single
exponential voltage-dependent gating variable rate constants, parameterized to fit experimental
iPSC-CM data for all major ionic currents. By optimizing ionic current model parameters to
multiple experimental datasets, we incorporate experimentally-observed variability in the ionic
currents. The resulting population of cellular models predicts robust inter-subject variability
in iPSC-CMs. This approach links molecular mechanisms to known cellular-level iPSC-CM
phenotypes, as shown by comparing immature and mature subpopulations of models to analyse
the contributing factors underlying each phenotype. In the future, the presented models can be
readily expanded to include genetic mutations and pharmacological interventions for studying
the mechanisms of rare events, such as arrhythmia triggers.

(Received 18 January 2019; accepted after revision 5 July 2019; first published online 6 July 2019)
Corresponding authors E. Grandi: Department of Pharmacology, School of Medicine, University of California, Tupper
Hall, RM 2427, Davis, CA 95616-8636. Email: egrandi@ucdavis.edu and C. E. Clancy: Department of Physiology and
Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Tupper Hall,
RM 4303, Davis, CA 95616-8636. E-mail: ceclancy@ucdavis.edu

Introduction

Patient variability is one of the most daunting aspects
of forecasting arrhythmia vulnerability in response to
inherited disease or drug application. Considerable
differences in drug impacts are routinely observed from
patient to patient, with significant overlap between
normal and pathological variants (Leopold & Loscalzo,
2018). However, genotype, and even sex, have not been
sufficiently considered as a biological variable when
developing pharmacotherapy regimes (Schwartz et al.
1995; Schwartz et al. 2001; Shah & Carter, 2008; Jamshidi
et al. 2012; Kaab et al. 2012; Behr & Roden, 2013). There
is a profound need to develop a strategy to predict the
diverse mechanisms of arrhythmia vulnerability across
patient populations.

A promising emerging experimental method utilizes
induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CMs). iPSC-CMs are an increasingly utilized
patient-specific cardiac cell model because they
recapitulate cellular electrical properties of normal and
diseased phenotypes, preserve patient-specific genotype
and demonstrate expected pharmacological responses
of adult cardiomyocytes (Moretti et al. 2010; Itzhaki
et al. 2011; Terrenoire et al. 2013; Sallam et al. 2015).
iPSC-CMs derive from adult somatic cells reprogrammed
to the embryonic-like state and then differentiated
to cardiomyocytes (Takahashi & Yamanaka, 2006).
Cell-based models for multiple cardiac diseases have been

developed using iPSC-CMs and show the preservation of
patient-specific disease markers carried from the source
patient to the patient-derived iPSC-CMs (Moretti et al.
2010; Itzhaki et al. 2011; Lan et al. 2013; Garg et al.
2018). The retention of patient-specific disease markers
makes iPSC-CMs an ideal tool for investigating the
patient-specific disease and response. Indeed, iPSC-CMs
are currently being utilized in preclinical drug testing
and prediction of genotype–phenotype relationships (Sun
et al. 2012; Lan et al. 2013; Liang et al. 2013; Navarrete et al.
2013; Burridge et al. 2016).

One of the limitations of iPSC-CMs as a model of
adult cardiac behaviour is their immature phenotype,
which more closely resembles fetal cardiomyocytes.
The immature iPSC-CM phenotype is characterized by
spontaneous beating, significant differences in potassium
currents compared to adult cardiac cells and the pre-
sence of early-developmental currents (Bett et al. 2013;
Karakikes et al. 2014). Additionally, iPSC-CMs have
immature calcium handling as a result of their lack of
T-tubules and differences in sarcoplasmic reticulum (SR)
calcium handling (Yang et al. 2014). Recent experimental
developments have enhanced the maturation of iPSC-CMs
by mimicking the natural environment, which allows for
staged transitions of cardiomyocytes from the embryonic
to adult phenotype (Kamakura et al. 2013; Nunes et al.
2013; Herron et al. 2016; Tiburcy et al. 2017).

Another persistent concern with iPSC-CM technology
has been the vast diversity of phenotypes observed in

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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vitro. One reason for the variability between iPSC-CMs
undoubtedly arises from the differences in genetic
information of donors (DeBoever et al. 2017). Variation
as a result of genetic differences is a critical attribute
of iPSC-CMs because it allows for the observation of
a variety of naturally occurring phenotypes and reflects
patient-specific vulnerability to rare events, such as
arrhythmia. However, even iPSC-CMs derived from the
same donor with identical genetic information may
display persistently variable phenotypes as a result of
unknown sources of variation. There are a number of
potential sources of variability, not least of all the complex
process of generating and culturing iPSC-CMs and the
influence of precise maturation phases (Narsinh et al.
2011). Action potential (AP) morphologies and calcium
transients (CaTs) have been shown to vary both within
independent laboratories (Doss et al. 2012; Du et al. 2015)
and across laboratories (Hwang et al. 2015).

Although the iPSC-CMs that are utilized in vitro allow
for observation of a variety of responses to drugs and
other perturbations, a major drawback in the experimental
setting is the lack of a high throughput method to link
underlying genomic, proteomic, or ionic mechanisms
to the observed whole-cell behaviours. Population-based
computational modelling provides a powerful tool in
closing this gap via in silico analysis of variability in cardiac
electrophysiology (Muszkiewicz et al. 2016; Yang et al.
2016; Passini et al. 2017; Ni et al. 2018). Implementation
of these approaches in the modelling and simulation of
iPSC-CMs has the potential to reconcile multiple datasets,
define physiological ranges of variability and identify
vulnerable parameter regimes (Sarkar & Sobie, 2010; Yang
& Clancy, 2012; Britton et al. 2013; Yang et al. 2015; Morotti
& Grandi, 2017). With respect to using iPSC-CMs for
cardiotoxicity testing of pharmacological interventions,
the US Food and Drug Administration has outlined the
Comprehensive In Vitro Proarrhythmia Assay (CiPA)
protocol for combining cellular iPSC-CM outputs with
computational approaches (Fermini et al. 2016). These
efforts will be further strengthened by a high throughput
computational approach to study the mechanisms under-
lying phenotypic variability in iPSC-CMs.

Although prior studies have addressed computational
modelling of iPSC-CMs (Paci et al. 2013; Koivumaki
et al. 2018), there is a need for a computational
model which incorporates the wide-range of experimental
measurements from iPSC-CMs. Paci et al. (2013) have
developed a computational model of the iPSC-CM that
is based on a single iPSC-CM experimental electro-
physiology study. As a result of the lack of experimental
data available at the time, the model is largely based
on I–V curves measured in iPSC-CMs by Ma et al.
(2011). Model kinetics were largely retained from the
adult ventricular model of ten Tusscher et al. (2004),
with any additional changes based on experimental data

from animal or adult human cells (ten Tusscher et al.
2004; Paci et al. 2012). Although this model captures
the spontaneously beating iPSC-CM AP phenotype, it is
based on a limited description of iPSC-CM behaviour.
Later iterations of iPSC-CM models by Paci et al. (2018)
and Koivumaki et al. (2018) incorporated modifications
to improve calcium handling; however, these adaptations
were made with limited experimental data to define the
range of calcium transient behaviour during the AP. The
model presented in this study is constrained by several
calcium handling datasets that have not been utilized
in parameterizing prior models, including concentration
measurements of the iPSC-CM calcium transient during
the AP.

Other computational studies have adapted the
framework of Paci et al. (2018) to model specific
phenotypes and populations of iPSC-CMs (Lei et al. 2017;
Paci et al. 2017; Koivumaki et al. 2018; Paci et al. 2018;
Tveito et al. 2018); however, none of these efforts have
utilized in vitro kinetics data to implement experimentally
informed variation of iPSC-CMs. There is a wide range
iPSC-CM phenotypes that are not captured by previous
approaches to modelling iPSC-CMs. Because there is a
wide range of ‘normal’ iPSC-CM behaviours characterized
by distinct experimental laboratories, we present a
comprehensive computational model that captures this
experimental variability.

The goal of the present study is to extend the iPSC-CM
technology by developing an in silico complement: a high
throughput method for analysing phenotypic mechanisms
of emergent behaviours in normal control iPSC-CMs.
This is achieved by computationally modelling phenotypic
variability in control iPSC-CMs via simple models based
on source data from multiple laboratories. The use of
simplified models to describe ionic gating kinetics allows
us to fully parameterize a model to fit multiple individual
experimental datasets. This approach allowed for the rapid
construction of model populations from multiple data
sets, at the same time as setting the stage for future
expansion into patient specific electrophysiology models
by allowing reparameterization from data collected from
donor cells.

Additionally, this allows us to investigate whether
kinetic variability can explain whole-cell variation
observed in iPSC-CMs experimentally. Here, we show
that predicted experimental variability at the subcellular
level can recapitulate the full range of in vitro whole-cell
iPSC-CM behaviour in an in silico cellular population.
The population can further be used to identify sub-
populations of interest, including immature and mature
phenotypes, and clarify the underlying processes that
characterize the phenotypes. In the future, our approach
can also be used to examine mechanism of disease and
drug effects. The computational models of iPSC-CMs
will allow for identification of parameter regimes with

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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increased proclivity to arrhythmia in the presence of
genetic mutation or pharmacological intervention. The
tools may be applied for in silico screening and prediction
of drug effects on varied genetic backgrounds to predict
patient pharmacological responses.

Methods

All source code and instructions are freely available on
the GitHub (https://github.com/ClancyLabUCD/IPSC-
model).

Model construction

As in prior cardiomyocytes models (Rudy & Silva, 2006),
the iPSC-CM can be described by the differential equation:

dV

dt
= −I ion + I stim

Cm
(1)

where V is voltage, t is time, Cm is membrane capacitance,
Iion is the sum of transmembrane currents and Istim is the
stimulus current (Istim = 0 pA/pF in spontaneously beating
cells). The iPSC-CM model (schematic representation in
Fig. 1, left) includes 13 transmembrane currents, such
that:

I ion = INa + ICaL + IKr + IKs + IK1 + I to + I f + ICaT

+ INCX + IPMCA + INaK + IbCa + IbNa (2)

A schematic of the model cell containing all the ionic
processes and compartments in the model is shown in
Fig. 1. Seven key transmembrane currents (INa, ICaL, IKr,
IKs, IK1, Ito and If, indicated by red stars in Fig. 1),
were reformulated using Hodgkin–Huxley-type gating
formulations (Hodgkin & Huxley, 1952). For each of
these currents, single exponential rate-constants (Fig. 1,
right) were optimized to iPSC-CM experimental data
(Fig. 2, step 1a). The remaining currents shown in
Fig. 1 were modelled using formulations from previously
published cardiac models (Shannon et al. 2004; ten
Tusscher et al. 2004; Maltsev & Lakatta, 2009), and tuned
to recapitulate experimental data for whole-cell outputs
of iPSC-CMs. Details describing the experimental data
used and resulting model formulations are provided in
the Results.

The iPSC-CM ion dynamics were formulated as
performed previously (DiFrancesco & Noble, 1985; Luo
& Rudy, 1994; ten Tusscher et al. 2004), assuming rapid
equilibrium approximation for calcium buffers in various
compartments:

dCai

dt
= CaBuf,c

×
[
− ICaL ,Ca + ICaT + IPMCA + IbCa − 2INCX

2Vc F

+ J Rel − J up + J leak

]
(3)

Figure 1. A schematic of the computational iPSC-CM model
Red stars indicate individual currents (∗INa, ICaL, IKr, IKs, IK1, Ito and If), formulated using single-exponential
voltage-dependent rate constants. Parameters were optimized to experimental iPSC-CM kinetic data. The
mathematical formulation for an example current, INa, is shown on the right. All gating variables in the
starred currents were modelled using the example formula for gating variable x. Additional calcium-dependent
currents (INCX, IPMCA, ICaT and SR currents: ISERCA, IRyR and Ileak) were modelled using previously published model
formulations, optimized to calcium transient data from iPSC-CMs. Remaining currents (INaK, IbCa, IbNa) were
modelled using ten Tusscher 2004 formulations optimized to recapitulate iPSC-CM AP data.

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society

https://github.com/ClancyLabUCD/IPSC-model
https://github.com/ClancyLabUCD/IPSC-model


J Physiol 597.17 Computational model of experimental variability in iPSC-CMs 4537

Figure 2. Flow chart
Flow chart showing the methodology for building the iPSC-CM model populations.

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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dCaSR

dt
= CaBuf,SR ∗ Vc

VSR
(−J Rel + J Up − J leak) (4)

CaBuf,X = 1

1 + Buf x∗K Buf,X

([Ca]X+K Buf,X)2

,

for X = cytoplasm (C), sarcoplasmic reticulum (SR)

(5)

dNai

dt
= −INa + I f,Na + ICaL,Na + IbNa + 3INCX + 3INaK

VcF

(6)

dK i

dt
=

− IKr + IKs + IK1 + I to + I f,K + ICaL,K − 2INaK + I stim

VcF

(7)

where F is the Faraday constant, VC is the cytoplasmic
volume, VSR is the sarcoplasmic reticulum volume, BufX

is the total buffer concentration in a given compartment
and KBuf,X is the half-saturation constant of the buffer
in a given compartment. Total volume and cyto-
plasmic buffering constants in the iPSC-CM model were
set to experimental measurements in iPSC-CMs from
(Vtotal = VC + VSR = 3960 µm3, BufC = 0.06 mM and
KBuf,C = 0.0006 mM) (Hwang et al. 2015). Remaining
SR buffering parameters (BufSR, KBuf,SR) were optimized
in the whole-cell optimization (Fig. 2, Step 2). Relative
proportions of volumes (VC:VSR), were retained from the
adult human ventricular model by ten Tusscher et al.
(2004), referred to as the ten Tusscher 2004 model.
Capacitance of the cell was set to 60 pF, based on the
experimentally observed range in iPSC-CMs (18–89 pF)
(Ma et al. 2011; Hwang et al. 2015; Li et al. 2017).

The models were implemented in MATLAB, version
R2017a (MathWorks Inc., Natick, MA, USA) and solved
using ode15s.

AP morphology

APs in the baseline model and populations were evaluated
by computing a series of AP morphology markers.
Maximum diastolic potential (MDP) was the most
negative voltage during the AP. Maximal upstroke velocity
(dV/dtmax) was the maximal slope between two points
in the computed AP upstroke. AP amplitude (Amp) was
calculated as the difference in voltage between MDP and
the peak voltage during the AP. AP duration (APDx) was
the time between dV/dtmax and X% AP repolarization from
the peak voltage (e.g. For APD90, time from dV/dtmax to
Vm = Peak − 0.9∗Amp).

Parameter optimization of reformulated ionic channel
models (Fig. 2, step 1b)

For each of the reformulated currents, model parameters
were optimized to multiple experimental datasets,
resulting in dataset-specific parameterization instances of
the model. For each dataset-specific model, external ion
concentrations and voltage protocols were set to reflect
the corresponding experimental conditions. Experimental
conditions for each dataset are described in Table 1.
All of the experimental data used to optimize the
models were collected in iCell iPSC-CMs at physio-
logical temperature (37°C), unless otherwise specified
(in which cases, data were temperature-corrected with
appropriate Q10 values, as specified in the Results for the
corresponding ionic current). This process was used to
generate dataset-specific models. As an example, consider
three separate experimental iPSC-CM datasets for a given
current: datasets A, B and C. In the case of the sodium
current (Fig. 3), this would refer to (A) Ma et al. (B) Jalife
Immature, (C) Jalife Mature.

Considering gating variable x in Fig. 1, parameters
x1–5 were optimized to recapitulate the experimental
kinetics for gate x. In Fig. 2, this is shown as Step 1b
in the upper highlighted box indicating the optimization
routine. Parameter optimization minimized the error
between the model and experimental voltage-dependence
of the steady-state and time constants of a given gate.
The error function was the sum of the log squared
difference between the data and model fit, normalized to
the size of the dataset. The ‘fminsearch’ function was used
in MATLAB to implement Nelder–Mead minimization
of the error function. Random small perturbations
(<10%) were applied to resulting local minima, to
improve data fit. The parameter fit with the minimal
error function value after 100 perturbations was used
as the optimal model fit to the data. This is a relatively
simple approach which only requires standard MATLAB
functions, allowing for additional dataset-specific models
to be easily obtained and incorporated into the model
in the future. Additionally, this approach has been pre-
viously utilized for optimization of more complex ionic
current models and datasets (Moreno et al. 2016). The
ionic current models in the present study were chosen to
minimize the number of optimized parameters, thus this
approach was sufficient to successfully fit the models to
the datasets presented.

These simplified models also allow for a more physio-
logical understanding of model parameterizations. The
ionic current model parameters can be combined such
that:

x∞ = αx

αx + βx
= 1

1 + βx

αx

= 1

1 + x3eV/x4

x1eV/x2

= 1

1 + x6e
V
x7

(8)

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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where:

x6 = x3

x1
, x7 = 1(

1
x4

− 1
x2

) (9)

With this simplification, we can understand the parameter
effect on the voltage dependence of steady-state behaviour.
The x� function has a sigmoidal voltage-dependence
which is characterized by the slope and Vhalf, where
x�(Vhalf) = 0.5. Using the parameter combinations shown
in eqn (8), x6 and x7 are proportional to Vhalf and slope,
respectively.

Constructing the average parameter set for
reformulated currents (Fig. 2, step 1c)

Consider parameter x1 in any gating variable. The
value of x1 is determined via parameter optimization to
an experimental dataset. If three experimental datasets
(datasets A, B and C) are used, then each dataset
corresponds to a unique parameter value of x1 (x1A,
x1B, x1C) in each dataset-specific model. The baseline
model is composed of average parameters values for x1,
such that:

x1,avg = x1A + x1B + x1C

3
(10)

This is repeated for each parameter in the ionic
current model. These averaged parameters (x1–5,avg, gx,avg)
comprise an average model for each current. The baseline
model for each current was constructed using the average
model gating kinetics. The baseline model is the starting
point to implement variability.

Constructing the parameter distributions for
reformulated currents (Fig. 2, step 1d)

To create a population of models that capture variability
between the dataset-specific models, we created a
distribution for each parameter in the reformulated
currents. This distribution is centred at the baseline
ionic current model value. Similar to our approach in
selecting an optimization method (Fig. 2, step 1b), the
sampling method was chosen for simplicity and to allow
for variation in a large number of parameters. Although
the range of variability was determined by the range of
the experimental datasets used to in form the model,
there is still insufficient data to accurately determine to
distribution of data between these datasets (constructing
the distribution of experimental data would require more
data than the two to five datasets per ionic current used in
this study). For simplicity we used a normal distribution of
parameters, and randomly selected the parameter values
in building the population of models.

For example, for each cell in the population of models,
the value of x1 is randomly chosen from a normal
distribution around x1,avg. The normal distribution is
created using x1,avg and the SD of x1A, x1B and x1C, as
described above. This same process is used to create a
distribution for each parameter (x1–5) in each model gating
variable, and for the maximal conductance (gx).

Optimization of the baseline whole-cell model (Fig. 2,
step 2)

The pre-optimized whole cell model is composed of
average parameter sets for the reformulated currents
combined with non-reformulated currents from existing
models in the whole-cell model structure and geometry as
described above. To tune parameters in non-reformulated

Figure 3. Sodium current (INa) model
optimization
A, steady-state inactivation and activation
curves. Dataset-specific model fits (lines)
optimized to experimental data (points). The
sodium current model used in the baseline
whole-cell model is shown in black. Colours
represent distinct experimental iPSC-CM data
from Ma et al. (2011) and from immature and
mature cell preparations from the Jalife lab
(Herron et al. 2016). B, I–V curves for INa.
Dataset-specific models were simulated using
the experimental conditions of the
corresponding experimental data. C, INa

activation (m-gate) time constants. D, INa

fast-inactivation (h-gate) time constants. E, INa

slow-inactivation (j-gate) time constants. j-gate
time constant parameters for all INa models
were optimized to experimental iPSC-CM data
from the Kurokawa lab (Li et al. 2017).
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currents, as well as calcium handling parameters that were
not directly defined by experiments, we implemented an
optimization of the whole-cell model. This is shown in
Fig. 2, step 2, the second highlighted optimization routine
in the flowchart.

To optimize the whole-cell model, ‘fminsearchbnd’
function was used in MATLAB to implement
Nelder–Mead minimization of the error function. This
‘bound’ version of the Nelder–Mead algorithm was used
to maintain the reformulated maximal conductances
within a ±20% range of gx,avg from the pre-optimized
baseline model. The maximal conductance of the
reformulated currents, maximal conductances and fluxes
of the remaining currents, SR buffering constants,
calcium-dependent inactivation in ICaL, RYR rate
constants and NCX kinetic parameters were optimized
to fit whole-cell behaviour within the experimentally
observed range for iPSC-CMs. As in the optimization
of the ionic currents, the error function was defined
as the sum of the log squared difference between the
experimental data and whole-cell model output. The
targets for the optimization function considered the
experimentally observed range of AP morphology (MDP,
APD90, AP amplitude, maximal upstroke velocity), CaT
morphology (time constant of decay, time to peak, ratio
of time constant of decay and time to peak, CaT amplitude

and diastolic [Ca2+]), calcium handling response to
caffeine (peak calcium and decay, not shown) (Hwang
et al. 2015) and contribution of SERCA, NCX and PMCA
to calcium efflux from the cytosol.

The ionic current models shown as black lines in
Figs 3–9 are the final version of each current model,
including all tuning of maximal conductance in the
whole-cell optimization. The baseline model resulting
from this optimization was used as the starting point for
all subsequent populations. All parameters which were
not randomized in the model populations (remaining
currents, cell geometry, etc.) were kept at the baseline
model values.

Sensitivity analysis

To further analyse the baseline models (Figs 11E and 15C),
parameter sensitivity was conducted using multivariable
linear regression (Sobie, 2009). Sensitivity analysis was
conducted based on variation of the maximal conductance
and maximal ion transport rates of the transmembrane
currents (INa, ICaL, ICaT, IKr, IKs, IK1, Ito, If, INCX, INaK,
IPMCA, IbNa and IbCa) and SR fluxes (JUp, JRel and
Jleak). The remaining parameters, including all parameters
describing model kinetics, were held at the baseline
model values. Random scaling factors were chosen from

Figure 4. Calcium current model optimization
A, L-type calcium current (ICaL) steady-state inactivation and activation curves with dataset-specific model fits
(lines) optimized to experimental data (points). The L-type calcium model used in the baseline cellular model is
shown in black. Coloured symbols represent experimental iPSC-CM data from Ma et al. (2011), Veerman et al.
(2016) and Es-Salah-Lamoureux et al. (2016). B, I–V curves for ICaL. Calcium-dependent gating model formulation
retained from ten Tusscher 2004 adult cardiomyocyte model with parameter optimization to fit whole cell iPSC-CM
outputs. C, time constants of ICaL activation gate. Time constant parameters for all ICaL models were optimized to
experimental iPSC-CM data from Ma et al. (2011). D, time constants of ICaL inactivation gate. E, optimization of
peak T-type calcium current (ICaT) to experimental iPSC-CM data from the Kurokawa lab (Li et al. 2017). Model
formulation of ICaT was retained from the Maltsev and Lakatta sinoatrial node model.
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a log-normal distribution with a median value of 1, SD
of 0.1. In total, 5000 randomly parameterized models
were run for each sensitivity analysis shown. For the
baseline population (Fig. 11E; immature in Fig. 15C)
only spontaneously beating, AP generating, models were
analysed. This resulted in 89.3% model retention rate.
For the mature population, only stimulated beating,
AP generating, models were analysed. This resulted in
67.2% model retention rate. For each analysis shown,
50 randomly determined subpopulations of 1000 models
were analysed, resulting in a SD of less than 0.025 for all
regression bars shown. Each cell simulation was run until
there was a <1% change in minimum ion concentration
(for Cai, CaSR, Nai and Ki) between the first and last beat
during a 50 s simulation run. Once the steady-state criteria

were met (ranging from 60 to 600 s), the final AP was saved
for regression analysis.

Development of population-based models based on
experimental variability (Fig. 2, step 3)

To create a population of models (as shown in Figs 12,
13 and 16), the parameters of the varied currents were
randomly determined using the parameter distributions
created from the dataset-specific models. Each parameter
was chosen from a distribution centered at the base-
line model value. For example, for each cell in the
population of models the value of x1 is randomly chosen
from a normal distribution around x1,avg. The normal

Figure 5. Rapid delayed rectifier potassium
current (IKr) model optimization
A, steady-state activation with dataset-specific model
fits (lines) optimized to experimental data (points). The
IKr model used in the baseline cellular model is shown
in black. Coloured symbols represent experimental
iPSC-CM data from Ma et al. (2011), the Wu lab (Garg
et al. 2018), Es-Salah-Lamoureux et al. (2016) and
Bellin et al. (2013). For IKr inactivation gating, existing
ten Tusscher 2004 model components were
reformulated to single exponential forms. B, I–V curves
for IKr.C, time constants of the IKr activation gate.
Activation time constants for the models of Ma et al.
(2011), the Wu lab (Garg et al. 2018) and
Es-Salah-Lamoureux et al. (2016) were optimized to
experimental iPSC-CM data from Ma et al. (2011). D,
time constants of IKr inactivation gate using the ten
Tusscher 2004 model reformulated to single
exponential forms.

Figure 6. Transient outward potassium current
(Ito) model optimization
A, steady-state activation and inactivation curves
with dataset-specific model fits (lines) optimized to
experimental data (points). The Ito model used in the
baseline cellular model is shown in black. Coloured
symbols represent experimental iPSC-CM data from
Veerman et al. (2016), Ma et al. (2011) and Cordeiro
et al. (2013). B, I–V curves for Ito. C, time constants
of Ito activation gate. For activation time constants in
all Ito models, the ten Tusscher 2004 Ito activation
time constants were reformulated to single
exponential forms. D, time constants of Ito
inactivation gate. Model time constant parameters of
Veerman et al. (2016) were optimized to iPSC-CM
experimental data from Ma et al. (2011).
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distribution is created using x1,avg and the SD of x1A,
x1B and x1C, as described above (Fig. 2, step 1c). This
same process is used to create a distribution for each
parameter (x1–5) in each model gating variable, as well
as for the maximal conductance (gx). The populations
are constructed by randomly selecting each parameter
from these distributions. In the single-current variation
populations, all parameters for the chosen current are
randomly determined and the remaining model currents
retain the baseline model formulation. In the final
population, parameters for all five varied currents (INa,
ICaL, IKr, IK1 and If) are randomly selected from the
constructed distributions.

Experimental calcium imaging (Wu Lab)

iPSC-CMs were disassociated by Accutase and seeded in
Matrigel-coated (Becton-Dickinson Biosciences, Franklin
Lakes, NJ, USA) coverslips at a density of 20 000
cells well–1. After recovery, cells were loaded with 5 µM

Fura-2 AM in Tyrode’s solution (140 mM NaCl, 5.4 mM

KCl, 1 mM MgCl2, 10 mM glucose, 1.8 mM CaCl2 and
10 mM Hepes, pH 7.4, with NaOH at room temperature)
for 10 min in incubator, and were then washed with
pre-warmed Tyrode’s solution three times. Cells were

paced at 0.5 Hz during recording. For Fura-2 AM imaging,
calcium signals were sampled using a custom-made Eclipse
Ti-E inverted microscope (Nikon, Tokyo, Japan) with a
40× oil immersion objective (NA 0.95) and a Lambda
DG-4 ultra-high speed wavelength switching light source
(Sutter Instruments, Novato, CA, USA). Signals were
collected with iXon Ultra 897 EMCCD (Andor Technology
Ltd, Belfast, UK) as high-frame-rate video (512 × 512,
50 frames s–1). Custom-made IDL (interactive digital
language) script was used for data analysis. Calcium signal
intensity was expressed F340/380 in Fura-2 AM recording.
For each cell line, we recorded at least 30 cells from two
batches of differentiation.

Experimental electrophysiology recordings
(Kurokawa Lab)

The methods for IK1, INa and If experimental data used
to optimize the model are as described previously in Li
et al. (2017). The methodology for the ICaT recordings is
described here.

Cell culture (Kurokawa Lab). We used commercially
available human iPS cell (hiPSC)-derived cardiomyocytes,
iCell-cardiomyocytes (Cellular Dynamics International

Figure 7. Slow delayed rectifier potassium current (IKs) model optimization
A, steady-state activation with dataset-specific model fits (lines) optimized to experimental data (points). The IKs

model used in the baseline cellular model is shown in black. Coloured symbols represent experimental iPSC-CM
data from Ma et al. (2011) and two separate iPSC-CM cell-line datasets in Ma et al. (2015). B, time constants of
the IKs activation gate. Time constants for all IKs models were optimized to experimental iPSC-CM data from Ma
et al. (2011). C, I–V curves for IKs.

Figure 8. Pacemaker/funny current (If) model optimization
A, steady-state activation with dataset-specific model fits (lines) optimized to experimental data (points). The If
model used in the baseline cellular model is shown in black. Coloured symbols represent experimental iPSC-CM
data from the Kurokawa lab (Li et al. 2017) and Ma et al. (2011). B, time constants of the If inactivation gate. C,
I–V curves for If.
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Japan, Tokyo, Japan). Pre-cultured iCell-cardiomyocytes
obtained according to the company manual were
dissociated enzymatically and were cultured onto laminin/
poly-D/L-lysine-coated glass bottom dishes. These
re-plated cells started to beat within 48 h. Electro-
physiological experiments were performed within 2 weeks
after thawing because the distributing company (Cellular
Dynamics International Japan) warrants preservation of a
high purity in the user’s guide.

Electrophysiology (Kurokawa Lab). Membrane currents
were recorded with the perforated configuration of the
patch clamp technique using an Axopatch 200B amplifier
(Molecular Devices, Sunnyvale, CA, USA). Signals were
low-pass filtered at 5 kHz, and sampled at 2–5 kHz.
No correction for the liquid junction potential was
made. pCLAMP, version 9.2 or 10.02 (Molecular Devices,
Sunnyvale, CA, USA) was used to generate voltage-pulse
protocols, as well as for acquisition and analysis of data.

Cultured cells were placed on the stage of the inverted
microscope (IX-71; Olympus, Tokyo, Japan) and the
culture medium was replaced by a Tyrode’s solution
(135 mM NaCl/0.33 mM NaH2PO4/5.4 mM KCl/1.8 mM

CaCl2/0.53 mM MgCl2/5.5 mM glucose/5 mM Hepes, pH
7.4). After the giga-ohm seal formation, the Tyrode’s
solution was used to replace the external recording
solution for each membrane current using a rapid
perfusion system (time constant; >20 ms) (Kurokawa
et al. 2001). Each of the patch clamp data samples was
obtained from an individual culture dish. Experiments
were performed at 36 ± 1 °C.

During the recordings of ICa,T, external Na+ ions and all
K+ ions were replaced by tetraethyl ammonium (TEA)+
and Cs+ ions to suppress both Na+ currents and K+
currents. Pipette solution contained (130 mM CsCl/20 mM

Figure 9. Inward rectifier potassium current (IK1) model
optimization
I–V curves for IK1 with dataset-specific model fits (lines) optimized to
experimental data (points). The IK1 model used in baseline cellular
model is shown in black. Coloured symbols represent experimental
iPSC-CM data from Ma et al. (2011), the Kurokawa lab (Li et al.
2017) and immature and mature cell preparations from the Jalife lab
(Herron et al. 2016).

TEACl/2 mM MgCl2/5 mM ATP-2Na/10 mM Hepes/10 mM

EGTA, pH 7.25), supplemented with amphotericin B. To
achieve patch perforation, we front-filled patch pipettes by
dipping them into the internal solution, and back-filled
with the internal solution containing amphotericin B.
Adequate series resistances (less than five-fold of the
pipette resistances) were usually attained within 10 min
after the gigaohm seal formation. Each current component
was determined in each single cell by subtracting the traces
after application of channel blocker. Our rapid perfusion
system enables us to exchange the bath solution almost
immediately, which minimizes the risk of contamination
of time-dependent leak currents.

After achieving membrane perforation, the Tyrode’s
solution was replaced by a Na+-free K+-free solution
(135 mM TEACl/5.4 mM CsCl/2 mM CaCl2/0.53 mM

MgCl2/11 mM glucose, 5 mM Hepes, pH 7.4). TTX at 10µM

was added to the solution to abolish contamination with
low-threshold activating TTX-sensitive Ca2+ currents
(Vassort et al. 2006). According to a comparison of
current-voltage (I–V) relationships from −100 mV and
−50 mV, ICa,T currents were elicited by 150 ms test pulses
to −30 mV (VH of −100 mV, 0.1 Hz). The obtained
inward currents were completely blocked with 0.5 mM

NiCl2 (data not shown), representing most of the ICa,T

component. Two representative data points were referred
to for optimization of the model.

Results

We set out to develop a computational model that can
recapitulate the varied electrophysiological responses of
iPSC-CMs. A schematic of the model cell containing
all the ionic processes and compartments in the model
is shown in Fig. 1. The process for determining all
ionic current models is described by the flow chart in
Fig. 2. All major ionic currents (indicated by red stars in
Fig. 1) were formulated and parameterized to fit iPSC-CM
experimental kinetic data, as detailed in Table 1.

Sodium current (INa)

The sodium current model contains three
Hodgkin–Huxley type gating variables: activation
(m), fast-inactivation (h) and slow-inactivation (j), as
described previously (Beeler & Reuter, 1977). The model
formulation for the sodium current is shown as the
example current in Fig. 1. For each gating variable,
experimental data from iPSC-CMs were used to optimize
model parameters (x1–5). Three distinct dataset-specific
models of the sodium current were optimized, based on
three independent experimental datasets. One sodium
dataset was from Ma et al. (2011) and two independent
datasets were from the Jalife Lab (Herron et al. 2016).
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The immature dataset from the Jalife Lab was collected
in iPSC-CMs plated on glass coverslips (conventional cell
preparation). The mature dataset from the Jalife Lab was
collected in iPSC-CMs plated on polydimethylsiloxane
(PDMS) coverslips, which were shown to promote mature
electrophysiological function in iPSC-CMs (Herron
et al. 2016). The Jalife Lab data were collected at room
temperature. Before optimizing the model parameters,
the Jalife Lab experimental data were converted to
physiological temperature using Q10 = 2.79 for time
constants (ten Tusscher et al. 2004) and Q10 = 1.5 for
conductance (Correa et al. 1991). Experimental data
shown in Fig. 3C–D comprise adjusted data with respect
to physiological temperature. Experimental iPSC-CM
voltage dependence of steady-state inactivation and
activation data were used to optimized parameters for
h�∗j� and m�

3, respectively. The experimental data used
for parameterization, as well as the resulting models, are
shown in Fig. 3A.

Several experimentally published datasets from
iPSC-CMs do not contain explicit information for the
time constants of gating processes. However, current
recording traces were published. To extract time constants
of gating kinetics, normalized current recordings from
published data were fit to single-exponential functions

(e−t/τ; t = time, τ = time constant) for activation and/or
inactivation at each voltage step. These extracted time
constant values were used to optimize model parameters.
In the sodium current, this technique was used to extract
activation and fast-inactivation time constants from
sodium current recordings in Ma et al. (2011) and Herron
et al. (2016). The resulting time constant values (corrected
to physiological temperature) and respective model fits are
shown in Fig. 3C and D. All three dataset-specific models
were optimized to data from the Kurokawa Lab for time
constants of slow-inactivation, as shown in Fig. 3E. The
maximal conductance for each model was tuned to fit the
I–V relationship for the corresponding dataset, as shown
in Fig. 3B. The sodium current kinetics in the baseline
iPSC-CM model are shown in black (Fig. 3).

L-type calcium current (ICaL)

The model L-type calcium current contains
voltage-dependent activation and inactivation gating
variables (xact, xinact). Both gates were modelled using
the formulation shown for example gate x in Fig. 1. The
model also includes a calcium-dependent inactivation
gate (xinact,Ca) from the ten Tusccher 2004 model. The

Figure 10. Optimization of calcium handling in the iPSC-CM baseline model
A, experimental iPSC-CM CaT traces from the Wu lab (grey) (Garg et al. 2018) with baseline model CaT (red).
Experimental data were reported as the normalized Ca2+ florescence (Fratio). Separately, average iPSC-CM peak and
diastolic Ca2+ concentrations were measured by the Wu lab. The two y-axes are plotted so that the average Fratio

peak and diastolic values of the experimental dataset shown correspond to the average experimental concentration
of peak and diastolic Ca2+ (B). The baseline model CaT output is nM. B, comparison of baseline model CaT
morphology markers with experimental iPSC-CM data from the Wu lab. C, relative contribution of calcium from
ISERCA, INCX and IPMCA to the CaT during a single AP in the baseline model. D, comparison of experimental (black
and white) and baseline model (coloured) relative contribution of calcium flux from ISERCA, INCX and IPMCA during
the CaT. Experimental data from Hwang et al. (2015).
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Table 2. Details for experimental action potential datasets

Reference Cell-line n = Cell-type

Wu Lab (A) (Garg et al. 2018) IHC 14 Ventricular-like
Wu Lab (B) (Garg et al. 2018) IHC 12 Ventricular-like
Herron et al. (2016) (PDMS – Mature) iCell 24 Mixed morphologies
Herron et al. (2016) (Glass – Immature) iCell 37 Mixed morphologies
Ma et al. (2011) iCell 32 Ventricular-like
Doss et al. (2012) (Group A) iCell 63 Ventricular-like
Doss et al. (2012) (Group B) iCell 23 Ventricular-like
Cordeiro et al. (2013) iCell 149 Mixed morphologies
Es-Salah-Lamoureux et al. (2016) IHC 9 Ventricular-like
Ma et al. (2015) IHC 17 Ventricular-like

∗IHC, in-house control cell-line.

model L-type calcium current is described by:

ICaL,y = p CaL,y ∗ xact ∗ xinact ∗ xinact,Ca ∗ z2
y

∗ VF 2

RT
γy

[Y]ie
zyVF/RT − [Y]o

ezyVF/RT − 1
(11)

where y is Ca2+, Na+ or K+, pCaL,y indicates the
permeability to ion y, R is the gas constant, zy is the valence
of ion y, and γy is to activity coefficient for ion y as in the
Shannon–Bers model. The total current is the sum of the
Ca2+, Na+ and K+ currents.

ICaL = ICaL,Ca + ICaL, Na + ICaL, K (12)

Parameters for the voltage-dependent inactivation and
activation gates (xinact and xact) were optimized to
iPSC-CM experimental steady-state inactivation and
activation curves, as well as voltage-dependent time
constants of inactivation and activation. The four
dataset-specific models were optimized to experimental
data from Ma et al. (2011), Es-Salah-Lamoureux et al.
(2016) and two independent datasets from Veerman
et al. (2016). Es-Salah-Lamoureux et al. (2016) and
Veerman et al. (2016) used an in-house iPSC-CM line
for experimental results shown. ICaL recordings by Ma
et al. (2011) and Es-Salah-Lamoureux et al. (2016) were

Figure 11. Characterization of the baseline model AP
A, time course of the spontaneously beating APs in the baseline model. B–D, comparison of AP morphology
in the baseline model (red) and experimental iPSC-CM data (black). Experimental data from the Wu Lab (Garg
et al. 2018), the Jalife Lab (Herron et al. 2016), Ma et al. (2011), Doss et al. (2012), Cordeiro et al. (2013),
Es-Salah-Lamoureux et al. (2016) and Ma et al. (2015). E, sensitivity analysis using multivariable regression in the
baseline model. Only parameters with regression coefficients >0.3 are shown.
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Table 3. Model parameter details for pumps, exchangers, and SR currents

Parameter Value Units Definition

kNCX 1100 pA pF−1 Maximal INCX

γ 0.7 – Voltage-dependence parameter (INCX)
KmCa 1.38 mM Cai half-saturation parameter (INCX)
KmNa 87.5 mM Nai half-saturation parameter (INCX)
ksat 0.1 – Saturation factor (INCX)
α 2.75 – Outward enhancing factor (INCX)
PNaK 2.48 pA pF−1 Maximal INaK

KmK 1.0 mM Ko half-saturation parameter (INaK)
KmNa 40.0 mM Nai half-saturation parameter (INaK)
gPMCA 0.2625 nS pF−1 Maximal IPMCA conductance
KPMCA 0.0005 mM Cai half-saturation parameter (IPMCA)
ks 12.5 ms−1 SR release rate constant (IRel)
koCa 643 750 mM−2 ms−1 Non-SR-dependent transition rate constant (JRel)
kom 0.2143 ms−1 JRel rate constant
kiCa 18.495 mM−1 ms−1 Non-SR-dependent transition rate constant (JRel)
kim 0.00056 ms−1 JRel rate constant
EC50-SR 0.45 – Parameters for [Ca]SR-dependent activation of SR release (JRel)
MaxSR 15 –
MinSR 1 –
kCaSR MaxSR − (MaxSR−MinSR )

1+(
E C50−SR

[Ca]SR
)
2.5 [Ca]SR-dependent RyR activation coefficient (JRel)

koSRCa
koCa
kCaSR

JRel rate constant

kiSRCa kiCa ∗ kCaSR JRel rate constant
Vmax,up 1.105 × 10–4 mM ms−1 Maximal Jup

Kup 1.755 × 10–4 mM Half-saturation constant
Vleak 1.6 × 10–6 ms−1 Maximal Jleak

conducted at room temperature and converted to physio-
logical temperature using Q10 = 2.1 for time constants
(ten Tusscher et al. 2004) and Q10 = 2.3 for conductance
(Kiyosue et al. 1993).

Steady-state inactivation and activation iPSC-CM
experimental data, as well as optimized dataset-specific
models for each dataset, are shown in Fig. 4A. As
a result of a lack of explicitly reported experimental
iPSC-CM data for the time constants of voltage-dependent
L-type calcium gating, time constants were extracted from
current recordings by Ma et al. (2011) (as described
above for the sodium current). The time constants in
Ma et al. (2011), corrected to physiological temperature,
were used to optimize all models. The experimental
conditions for calcium buffering during the ICaL current
recordings by Ma et al. (2011) (5 mM EGTA), may result in
some calcium-dependent inactivation contribution to the
time constants of inactivation derived from these current
recordings. Because this calcium-dependent inactivation
contribution was not quantified experimentally, the
time constants of inactivation derived from the current
recordings were assumed to be entirely voltage-dependent
inactivation for model parameterization. The time
constant data used for model optimization, and the
resulting models, are shown in Fig. 4C and D.

The calcium-dependent inactivation gate (xinact,Ca)
formulation in the ten Tusscher 2004 model was retained
in this model as a result of a lack of experimental
data characterizing calcium-dependent inactivation in
iPSC-CMs. A single scaling factor for [Ca]i in xinact,Ca,∞
was optimized in the final whole-cell parameter
optimization to recapitulate iPSC-CM calcium handling.
This was required to accommodate the lower [Ca]i

throughout the iPSC-CM AP compared to the adult
ventricular cell model in the ten Tusscher 2004 model.
Figure 4 shows all of the ICaL models with the final
optimized calcium-dependent inactivation gate.

Values for γCa, γNa and γK, and the relative
proportions of pCaL,Ca:pCaL,Na:pCaL,K were retained from
the Shannon–Bers model (Shannon et al. 2004). The total
permeability (pCaL = pCaL,Ca + pCaL,Na + pCaL,K) of each
dataset-specific model was tuned using the experimental
I–V curves and the resulting I–V relationships are shown
in Fig. 4B. The baseline model for ICaL is shown in black
in Fig. 4.

T-type calcium current (ICaT)

The T-type calcium current was introduced to the
iPSC-CM model because it is experimentally found
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in iPSC-CMs. T-type calcium is typically found in
embryonic hearts and its expression is dependent on the
developmental stage of the heart (Ono & Iijima, 2010).
T-type calcium is also found experimentally in iPSC-CMs
(Ivashchenko et al. 2013; Karakikes et al. 2015), as is

expected as a result of the iPSC-CMs immature cardiac
phenotype. The T-type calcium current was modelled as in
the previously published sinoatrial node model by Maltsev
& Lakatta (2009). Peak ICaT was tuned to the I–V curves for
ICaT provided by the Kurokawa Lab, as shown in Fig. 4E.

Figure 12. Kinetic variability generated by varying individual current model parameters
Steady-state and time constant curves for each gate in (A) INa, (B) ICaL, (C) IKr and (D) If. E, I–V curves for IK1.
Dataset-specific model fits (black lines, also shown in Figs 3–10), randomly-parameterized models resulting in
spontaneous AP generation in the cell models (coloured lines) and randomly-parameterized models resulting in
non-spontaneous or non-AP generating model cells (grey lines) are all shown.
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Rapid delayed rectifier potassium current (IKr)

The rapid delayed rectifier potassium current was
modelled as:

IKr = g Kr ∗
√

K 0

5.4
∗ xact ∗ xinact ∗ (Vm − E K) (13)

The voltage-dependent activation and inactivation gating
variables (xact, xinact) were modelled using the formulation
shown for the exemplar gate x in Fig. 1. The Ko dependence
of the current (

√
K o/5.4) and the voltage-dependent

inactivation gate was retained from the ten Tusscher
2004 formulation of IKr. To utilize the simplified gating
model formulation for the IKr inactivation gate (xinact), the

single-exponential voltage-dependent rate constant model
(Fig. 1, right) was optimized to fit the voltage-dependence
of IKr inactivation in the ten Tusscher 2004 model. The
resulting model of inactivation gating is shown in Fig. 5A
and D.

Dataset-specific models of steady-state activation were
fit to four independent iPSC-CM experimental datasets
from the Wu Lab (Garg et al. 2018), as well as from Ma et al.
(2011), Bellin et al. (2013) and Es-Salah-Lamoureux et al.
(2016). The data by Es-Salah-Lamoureux et al. (2016) were
collected from an in-house iPSC-CM line and the data by
Bellin et al. (2013) were collected from a patient-specific
cell line. Voltage-dependent time constants of activation

Figure 13. Variation of action potential morphology in model iPSC-CM populations
A, APs of spontaneously beating cells (n = 25,434) generated by varying one current at a time (INa, ICaL, IKr, If and
IK1). B, APs of spontaneously beating cells (n = 17,139) generated by varying the same five currents simultaneously.
C, representative AP time courses of spontaneously beating cells at various pacing frequencies. D–F, comparison
of AP morphology in the populations of models (colour) and experimental iPSC-CM data (black). Each coloured
point represents a spontaneously beating cell created by varying a single current (A), or by varying all five currents
simultaneously (B). G, mean ± SD of AP morphology measures for each population, normalized to the baseline
model AP.
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were extracted from current recordings published in Ma
et al. (2011). The time constants of activation in Ma et al.
(2011) were used to optimize parameters in the optimized
models of Ma et al. (2011), the Wu Lab (Garg et al. 2018)
and Es-Salah-Lamoureux et al. (2016). Experimental time
constants of activation were published in Bellin et al.
(2013) and used in the corresponding model, as shown
in green in Fig. 5C. Finally, the maximal conductance
(gKr) of each dataset-specific model was tuned to the
I–V relationship data for each dataset, shown in Fig. 5B.
Bellin et al. (2013) published a single data point for
the experimental I–V relationship (at Vm = 60 mV,
not shown), which was used to optimize the maximal
conductance of the corresponding model.

Transient outward potassium current (Ito)

The transient outward potassium current was modelled
as:

I to = g to ∗ xact ∗ xinact ∗ (Vm − E K) (14)

The voltage-dependent activation and inactivation gating
variables (xact, xinact) were modelled using the formulation
of example gate x in Fig. 1. iPSC-CM experimental data
from Ma et al. (2011), Cordeiro et al. (2013) and Veerman
et al. (2016) were used to optimize dataset-specific models.
Experimental results in Veerman et al. (2016) were
recorded in an in-house iPSC-CM cell-line. Steady-state
activation and time constants of inactivation were
extrapolated from Ito current recordings published in Ma

et al. (2011). Time constants of inactivation from Ma
et al. (2011) were used to optimize the inactivation time
constant parameters of the model by Veerman et al. (2016).
Steady-state activation data from Ma et al. (2011) were
used to optimize the model of Cordeiro et al. (2013) and
steady-state inactivation data from Cordeiro et al. (2013)
were used to optimize the model of Ma et al. (2011) because
neither dataset included both steady-state activation and
inactivation data.

Time constants for activation of Ito were not available
in iPSC-CMs; thus, model parameters were optimized
to retain the ten Tusscher 2004 voltage-dependence for
time constants of activation. The resulting model for time
constants of Ito activation are shown in Fig. 6C. Finally,
maximal conductance (gto) was tuned to experimental
iPSC-CM I–V relationships for each dataset, as shown
in Fig. 6B.

Slow delayed rectifier potassium current (IKs)

The slow delayed rectifier potassium current was modelled
as:

IKs = g Ks ∗ x2
act ∗ (Vm − E K) (15)

The voltage-dependent activation gating variable (xact)
was modelled using the formulation of example gate
x in Fig. 1. Dataset-specific models were optimized
to experimental data from Ma et al. (2011) and two
independent datasets from Ma et al. (2015), shown in
Fig. 7A (Ma et al. 2011; Ma et al. 2015). Ma et al.

Figure 14. Sample APs showing the effect of ion channel blockers within the model population
Showing the same cellular models in the control (solid lines) and drugged (dashed lines) conditions. Three cells are
shown for each drug, representing a cell with a change in the given AP parameter near the population mean (cell
2) (± 1 SD). The mean ± SD for the full population are described in Table 4. Drug effects are shown for (A) TTX,
(B) nifedipine and (C) E-4031.
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(2015) recorded one IKs dataset in a patient-specific
iPSC-CM cell-line, and another dataset in iCell iPSC-CMs.
Parameters for x2

act,∞ were optimized to steady-state
activation data, as shown in Fig. 7A. As a result of a
lack of available experimental data for the time constants
of IKs activation, time constants extracted from current
recordings published in Ma et al. (2011) were used to
optimize parameters in all models, as shown in Fig. 7B.
Finally, the maximal conductance (gKs) was tuned to I–V
data, as shown in Fig. 7C. For both models built on datasets
of Ma et al. (2015) (Fig. 7, patient-specific in orange, iCell
in purple), the maximal conductance was tuned to the
I–V relationship in iCells of Ma et al. (2015), as shown by
purple points in Fig. 7C.

Pacemaker/funny current (If)

The pacemaker current was incorporated into the
iPSC-CM model, as it is experimentally found in
iPSC-CMs (Karakikes et al. 2015; Kim et al. 2015). The
current was formulated as:

I f = g F ∗ xact ∗ (Vm − E f ) (16)

where Ef and gf are calculated as a balance of the sodium
and potassium Nernst potentials (Verkerk & Wilders,
2013), such that:

g f (Vm − E f ) = g f,Na(Vm − E Na) + g f,K(Vm − E K) (17)

where the ratio of gf,Na:gf,K = 0.491, based on prior models
of If in rabbit sinoatrial node (Verkerk & Wilders, 2013).
The activation gate (xact) is modelled using the same
formulation as example gate x in Fig. 1. Experimental data
in iPSC-CMs from Ma et al. (2011) and the Kurokawa
Lab (Li et al. 2017) were used to optimize dataset-specific
models. Model parameters for the activation gate (xact)
were optimized to experimental data for steady-state
activation and time constants of activation, as shown
in Fig. 8A and B. Maximal conductances (gf) for each
dataset-specific model were fit to I–V relationships of
the corresponding experimental dataset. The experimental
data and resulting models are shown in Fig. 8C.

Inward rectifier potassium current (IK1)

The slow delayed rectifier potassium current was modelled
as:

IK1 = g K1

√
K 0

5.4
∗ xact,∞ ∗ (Vm − E K) (18)

The Ko dependence of the current (
√

K o/5.4) is retained
from the ten Tusscher 2004 formulation of IK1. To

recapitulate the behaviour of IK1, the activation gate was
formulated as:

αx = x1e(V+x3)/x2 (19)

βx = e(V+x5)/x4 (20)

Dataset-specific models were created by optimizing
parameters x1–5 and gK1 to the I–V relationships recorded
in iPSC-CMs from Ma et al. (2011), the Kurokawa Lab
(Li et al. 2017) and the Jalife Lab (Herron et al. 2016).
Experimental data from the Jalife Lab were collected
at room temperature. The Jalife Lab I–V curves were
corrected to physiological temperature using Q10 = 1.5
(Kiyosue et al. 1993). The experimental data used to
optimize the models, and the resulting models are shown
in Fig. 9.

Pump and exchanger currents (INCX, INaK, IPMCA)

To model the remaining membrane currents which are
not characterized in iPSC-CMs, we utilized previous
models. The sodium-calcium exchanger (INCX), sodium
potassium pump (INaK) and sarcolemma pump (IPMCA)
currents were modelled using formulations from prior
ventricular cell models (Luo & Rudy, 1994; ten Tusscher
et al. 2004). Kinetics of these currents were retained from
existing ventricular cell models because these currents
have not been characterized experimentally in iPSC-CMs.
Maximal values of all three currents were included in the
whole-cell optimization routine (Fig. 2, step 2) and the
final parameterizations are detailed in Table 3.

INCX = kNCX ∗
(
eγVF/RT ∗ [Na]i

3 ∗ [Ca]o

) −
(

e
(γ−1)VF

RT ∗ [Na]o
3 ∗ [Ca]i ∗ α

)

(
K mNa

3 + [Na]o
3
) ∗ (K mCa + [Ca]o) ∗

(
1 + ksat ∗ e

(γ−1)VF
RT

)

(21)

INaK

= PNaK ∗ [K ]o ∗ [Na]i

([K ]o + K mK) ∗ ([Na]i + K mNa) ∗ (1 + 0.1245 ∗ e
−0.1∗VF

RT + 0.0353 ∗ e
−VF
RT )

(22)

IPMCA = g PMCA ∗ [Ca]i

([Ca]i + K PMCA)
(23)

SR currents (JRel, Jup, Jleak)

The calcium handling in iPSC-CMs has not been fully
characterized experimentally. Thus, the calcium handling
in the present model is based on prior formulations
of SR currents. Parameters for the RYR (Jrel) were
adapted from the Shannon–Bers model to maintain
physiological SR function during the beating cycle. The
Shannon–Bers RYR formulation is dependent on the high
calcium concentration in the cleft compartment described
in the Shannon–Bers cellular geometry. However, the
geometry used in the present model does not include
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this cleft compartment (as shown schematically in Fig. 1).
Given these differences in cellular geometry, the original
Shannon–Bers JRel parameters do not produced a SR
release during the AP in the simplified cellular geometry
used in this model. To implement the Shannon–Bers RYR
Markov model formulation within the cellular geometry
described above, RYR transition rates were determined
by our whole-cell optimization routine (Fig. 2, Step 2).
Maximal values of Jup and Jleak were also included in the
whole-cell optimization. Final parameterizations of all SR
currents are detailed in Table 3.

J up = Vmax,up(
1 + K up

2

[Ca]i
2

) (24)

J leak = Vleak ∗ ([Ca]SR − [Ca]i) (25)

For closed (C), open (O), inactivated (I) and
closed-inactivated (CI) states of JRel:

CI = 1 − C − O − I (26)

dC

dt
= (kim ∗ CI − kiSRCa ∗ [Ca]i ∗ C)

− (
koSRCa ∗ [Ca]i

2 ∗ C − kom ∗ O
)

(27)

dO

dt
= (

koSRCa ∗ [Ca]i
2 ∗ C − kom ∗ O

)
− (kiSRCa ∗ [Ca]i ∗ O − kim ∗ I ) (28)

dI

dt
= (kiSRCa ∗ [Ca]i ∗ O − kim ∗ I )

− (
kom ∗ I − koSRCa ∗ [Ca]i

2 ∗ CI
)

(29)

J Rel = ks ∗ O ∗ ([Ca]SR − [Ca]i) ∗ VSR

VC
(30)

Model development: intracellular Ca2+ dynamics

Figure 10A shows the baseline model (red) calcium
transient compared to experimental CaTs from the Wu
Lab (grey). Experimental CaTs shown are reported as
a florescence ratio (Fratio), as plotted in Fig. 10A on
the right y-axis. The average peak Fratio value of the
dataset shown (Peak Fratio = 4.25) corresponds to the
independently measured iPSC-CM average peak CaT
concentration (Fig. 10B) on the left y-axis. Similarly, the
diastolic Fratio value (Diastolic Fratio = 0) also corresponds
to the independently measured iPSC-CM average diastolic
CaT concentration (Fig. 10B).

To reproduce the CaT data described above, SR
currents (JUp, JRel and Jleak) and calcium-dependent
transmembrane currents that were not previously

parameterized to fit iPSC-CM data (INCX, IPMCA) were
optimized to recapitulate the experimentally observed
iPSC-CM CaT morphology shown in Fig. 10B. The
baseline model parameters were optimized to produce
CaT outputs within 1 SD of the experimental Ca2+
transient markers shown. Additionally, the optimization
considered the ratio of time to peak and time constant
of decay of the CaT. The baseline model has a faster
spontaneous beating rate (62.0 beats min–1) than the
average spontaneous beating rate in the CaT dataset from
the Wu Lab (30.2 ± 13.2 beats min–1). To normalize the
experimental data and account for this difference in pacing
rate, we included the ratio of the CaT time to peak and
CaT time constant of decay as a target in our optimization
error function. The ratio of the time to peak and time
constant of decay of the experimental CaT was 0.83, and
the resulting baseline model CaT ratio is 0.77. Thus, the
model recapitulates the relative portion a single AP cycle
spent at each phase of the CaT.

The model was also tuned to recapitulate the relative
contribution of three fluxes (INCX, JUp and IPMCA)
to the calcium removal pathways (Fig. 10C and D)
(Hwang et al. 2015). Experimentally, the contribution of
NCX (INCX), SERCA (JUp) and the sarcolemma pump
(IPMCA) is calculated using the time constant of the
CaT during a normal AP, the caffeine-induced CaT and
the caffeine-induced CaT in a sodium and calcium-free
solution (Bers, 2000). Hwang et al. (2015) provided a
comparison of the relative contributions INCX, JUp and
IPMCA to the calcium flux balance from six independent
iPSC- CM datasets across three laboratories. Maximal
INCX, JUp and IPMCA in the baseline model were optimized
to fit the relative contributions of each current. The
relative contribution to the calcium flux in the model was
calculated based on the integral of each current during
a single CaT. This integral, normalized to total calcium
contribution from all three sources, is shown in Fig. 10C
for a single beat in the baseline model, obtained after
achieving steady-state. The resulting relative contributions
to calcium flux pathways in the model are comparable to
the experimentally observed ranges (Fig. 10D).

Model prediction: whole cell simulations

The baseline model that was developed via the steps
described above recapitulates the phenotype of typical
iPSC-CMs (Fig. 11A). The AP and CaT outputs fall within
the experimental range of behaviours (Figs 10 and 11).
Experimental details of the AP datasets used are described
in Table 2. The baseline model was optimized to reproduce
these key features of the immature iPSC-CM phenotype,
including spontaneous beating (Fig. 11A and C), a
reduced AP amplitude (Fig. 11B), a low maximal upstroke
velocity (Fig. 11C) and a depolarized maximum diastolic

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 597.17 Computational model of experimental variability in iPSC-CMs 4553

potential (MDP) (Fig. 11D). For precise definitions of
AP morphology markers, see the Methods. The baseline
model also spontaneously beats during total INa and If

block, showing that the mechanism of automaticity in
the baseline model is consistent with the experimentally
observed mechanism (Guo et al. 2011; Itzhaki et al. 2011;
Sheng et al. 2012; Kim et al. 2015). Sensitivity analysis on
the baseline model was conducted using a multivariable
regression model (Fig. 11E) (Sobie, 2009). The sensitivity
analysis shows several expected results for cardiac cells
such as increased upstroke velocity with increased sodium
current, APD shortening with increased IKr and APD
lengthening with increased ICaL. Additionally, increased
IK1 is experimentally shown to hyperpolarize iPSC-CM
MDP (Bett et al. 2013; Vaidyanathan et al. 2016), which
is consistent with the results of this sensitivity analysis
(Fig. 11E) showing that increased IK1 hyperpolarizes the
cells (indicated by a positive regression coefficient for IK1

related to the absolute value of MDP).
Although Fig. 11B–D shows that the baseline model

falls within the experimental range, the compilation of
experimental data sources also serves to illustrate the vast
range of AP behaviour in ‘normal’ iPSC-CMs. This range
of experimentally observed behaviours reveals that a single
‘average’ iPSC-CM model is insufficient to describe the
behaviour of iPSC-CMs, and that variability may be the
defining characteristic.

Model prediction: inter-subject variability

To model heterogeneity in kinetic behaviour in healthy
iPSC-CMs, a population-based approach was utilized.
The goal of this approach was to harness the range of
experimentally observed kinetics in each ionic current and
create an in silico population of model cells that captured
the full range of iPSC-CM kinetic behaviour.

A population of models was developed to incorporate
experimentally measured kinetic variability in five of
the reformulated ionic currents that were identified in
the multivariable regression sensitivity analysis as most
important to AP behaviour (Fig. 11E). The five currents
were INa, ICaL, IKr, If and IK1. The regression coefficients
for If were below the threshold for Fig. 11E, although If

did impact MDP and BPM in the model but at a lower
level than the other currents shown in Fig. 11E. INaK was
identified by the sensitivity analysis but, as a result of
the lack of experimental iPSC-CM data characterizing the
range of kinetic behaviour in INaK, it was not included in
the population-based variability.

In total, six populations were developed. In five of those
populations, model parameters for a single current were
varied and all the other currents were kept at the baseline
values. The populations capture inter-subject variability
observed in the measured electrophysiology data. In the

final population, the parameters were simultaneously
varied for all five of the identified currents.

To simulate model cell variability, ionic current models
were randomly parameterized within the experimentally
observed ranges from multiple data sets for steady-state
gating, time constants of gating and I–V relationships.
Using the mean ± SD of each parameter value across
the independent dataset-specific models, a normal
distribution was created for each parameter value, as
described in further detail in the Methods and Fig. 2.
For each model cell within the population, parameters
were randomly chosen from this distribution. Thus, every
model cell in the population has a unique parameter-set
chosen from the normal distribution of underlying
parameters composing a single current. The range of
kinetic behaviours are shown for populations with single
current variation in INa (Fig. 12A), ICaL (Fig. 12B), IKr

(Fig. 12C), If (Fig. 12D) and IK1 (Fig. 12E). Steady-state
and time constant values functions shown in Fig. 12 are the
results of random variation in the parameter values of each
of the selected five currents. These randomly determined
kinetics result in the whole-cell behaviour shown in Fig. 13.

A final population was built using the same
methodology but by varying the kinetics of the five
specified currents simultaneously (shown as effects on
the AP in blue in Fig. 13). The outputs of the
spontaneously beating AP models from the single-current
variation populations are shown in Fig. 13A and the
spontaneously beating AP generating models from the
five-current simultaneously varied population are shown
in Fig. 13B. Each cell in the resulting populations can
be categorized into one of three groups: spontaneously
beating cells, stimulated beating cells or cells excluded
from analysis. ‘Spontaneously beating cells’ maintain
automaticity with a viable AP and are most representative
of the experimentally observed iPSC-CMs. The baseline
model would be categorized in the spontaneous beating
subpopulation. ‘Stimulated beating cells’ are model cells
that result in a viable AP with the application of a
stimulus current but are non-spontaneously beating (not
shown). Cells were not analysed if they did not fully
repolarize (MDP > −40 mV, AP amplitude <70 mV)
or exhibited non-control/non-healthy AP morphology
(e.g. alternans). Additionally, cells with non-physiological
calcium handling (determined as CaT amplitude greater
than 3 SDs of the experimental average in Fig. 10B) were
excluded from the analysis.

For the cell population subject to single-current
variation, only the IK1 variation population produced
a stimulated beating subpopulation that required an
external stimulus. A random selection of models from
the spontaneously beating AP generating populations
is shown in Fig. 13C to illustrate the range of
beating rates and AP morphologies observed. All sub-
sequent analyses were conducted in the subpopulation
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generating spontaneously beating APs. Variation in AP
morphology markers within each population of models
is shown in Fig. 13D–G. Individual coloured points
in Fig. 13D–F represent a single model in the given
population. Additionally, these outputs are compared
w2ith experimentally measured iPSC-CM outputs shown
as black dots and lines (Ma et al. 2011; Doss et al. 2012;
Cordeiro et al. 2013; Ma et al. 2015; Es-Salah-Lamoureux
et al. 2016; Herron et al. 2016), as was performed
for the baseline model in Fig. 11. It should be noted
that the plots show the SE for the experimental data,
meaning that the full range of experimental behaviour
is larger than represented by the black points. The
range of individual models in the single-current variation
populations can serve as a form of sensitivity analysis: for a
given morphology marker, the widest spread of models is
indicative of increased sensitivity to the varied current. For
example, the maximal upstroke velocity is sensitive to INa

and thus the models from the INa varied population show
the largest range of upstroke velocity values (Fig. 13F,
distribution of green points along the y-axis). Finally,
the population with simultaneous variation of five ionic
currents shows the largest range of variability in all
AP morphology markers and is the population most
representative of the full experimentally observed space.
This serves as a first step in modelling known variability of
iPSC-CMs at the ionic level, resulting in the recapitulation
of observed variability in iPSC-CMs at the whole-cell level.

Model prediction: ionic current block

To further validate the model population, we pre-
dicted the effect of ionic current blockers on the model
population. We simulated the effect of drugs that have been
experimentally studied in iPSC-CMs: TTX (INa block),
E-4031 (IKr block) and nifedipine (ICaL block). For each
drug, we simulated a concentration that had been studied
across several experimental datasets. We modelled drug
effects as a simple pore block. IC50 values for each cell
in the population were randomly selected within the
range of experimentally observed IC50 values in stem
cell-derived cardiomyocytes (Peng et al. 2010; Ma et al.
2011; Harris et al. 2013; Gibson et al. 2014; Moreau
et al. 2017). The ranges of IC50 values, and corresponding
percentage ionic current block, are described in Table 4.
For example, when modelling 10 µM TTX, each model cell
had a randomly determined IC50 within the experimental
range, resulting in 88%–94% INa block. Beginning at
the previously determined control steady-state initial
conditions, each simulation was run for 200 s with drug
applied, and the final AP was analysed. All simulated
results shown are in spontaneously beating model cells.
The percentage change in the AP parameter associated
with the blocked current is described in Table 4, and
sample APs for each drug are shown in Fig. 14. Only the

subpopulations of models that resulted in spontaneous
beating and normal repolarization after drug application
were analysed. Additionally, the TTX response was only
analysed in the subpopulation of model cells with more
than −10 pA pF−1 peak INa during the control (non-drug)
AP. The size and results of the analysed model sub-
populations are reported in Table 4. It should be noted that
the baseline model has a peak INa of −29.2 pA pF−1 during
the AP. Models without substantial INa during the AP are
unaffected by TTX and were omitted for clarity. A highly
variable iPSC-CM response to TTX and other sodium
channel blockers has also been observed experimentally
(Sheng et al. 2012).

The drug-induced changes to AP morphology predicted
by our model population falls within the experimentally
observed range, as characterized in Table 4 (Peng et al.
2010; Ma et al. 2011; Jonsson et al. 2012; Gibson
et al. 2014; Scheel et al. 2014; Hortigon-Vinagre et al.
2016). It should be noted that there is a large range of
experimentally observed variation in the effects of each of
these drugs. Experimental data shown in Table 4 include
data from paced and spontaneously beating cells, which
may contribute to this variability. However, for TTX,
Jonsson et al. (2012) shows a similar range of change
in upstroke velocity in paced and spontaneously beating
cells treated with TTX. Additionally, Hortigon-Vinagre
et al. (2016) show that cell line differences have an
impact on the observed response to nifedpine and E-4031
in spontaneously beating APs. Hortigon-Vinagre et al.
(2016) and Jonsson et al. (2012) reported AP outputs
in spontaneously beating cells, whereas the other studies
reported AP outputs at 1 Hz pacing. Qualitatively,
experimental results across these experimental protocols
show a similar response to each ionic channel blocking
drug. Our comparison of model outputs with the
experimental range reported in Table 4 serves to show
that our model population can replicate this qualitative
response to simple pore block.

Table 4 shows the range of the mean behaviour amongst
the datasets cited, although the full range of behaviour
in individual cells between these datasets is even larger.
As discussed previously when characterizing the base-
line AP morphology, it is impossible to pinpoint ‘normal’
iPSC-CM response. There is a wide range of variability
in the ionic currents regulating iPSC-CM APs, and this is
reflected in the range of responses to a particular drug.

Immature and mature phenotypes

We next compared representative immature and mature
model phenotypes. The previously described baseline
model was used as the representative immature model. The
representative mature model was created using the base-
line model with a 100% increase in maximal conductance
of IK1 and a 45% increase in maximal conductance of INa.
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Table 4. Simulation specifics and model population outputs for response to ionic current blockers

TTX Nifedipine E-4031

Concentration 10 µM 30 nM 10 nM

Ionic current blocked INa ICaL IKr

Range of IC50 values (nM) 640–13 551,2 30–391,3,4 7–173,4,5

% Current block 88–94% 72–77% 47–59%
Output measured Maximum upstroke velocity APD90 APD90

Experimental output w/drug (range of dataset means) 16.7–60%1,6,7 67.7–88.9%1,3,4,8 113–160%1,3,4,8

Output w/drug in model subpopulation 48.6 ± 27.5% 89.8 ± 5.1% 121.8 ± 10.4%
Model subpopulation (n) 1057 11 894 8398

1, Ma et al. 2011; 2, Moreau et al. 2017; 3, Peng et al. 2010; 4, Gibson et al. 2014; 5, Harris et al. 2013; 6, Scheel et al. 2014; 7, Jonsson
et al. 2012; 8, Hortigon-Vinagre et al. 2016.

These changes represent the relative increase in IK1 and INa

from the immature to mature phenotype, as characterized
experimentally by the Jalife Lab (Figs 3B and 9). These
increases in IK1 and INa are proportional to the increase
in IK1 and INa peak current between iPSC-CMs cultured
on glass (immature) and PDMS (mature) reported in
Herron et al. (2016). The behaviour of the immature and
mature models is compared in Fig. 15. The APs of the
immature and mature models are shown in Fig. 15A,
and the AP morphology markers for each model are
compared with experimentally measured APs from the

Figure 15. Comparison of immature and mature cellular
models
A, AP for the immature (baseline) cellular model compared to AP for
a representative mature cellular model. Immature and mature
cellular models determined by scaling gK1 and gNa based on peak
currents reported in iPSC-CMs with control (immature) and
maturation-promoting cell preparations (Herron et al. 2016). B,
comparison of models and experimental AP morphology for mature
and immature cell-types. Experimental data are from the Jalife Lab
(Herron et al. 2016). All of the model and experimental data were
normalized to the Jalife Lab mature experimental dataset average. C,
comparison of sensitivity analysis immature and mature models
using multivariable regression. Only parameters with regression
coefficients >0.3 are shown.

Jalife Lab in Fig. 15B. Cell outputs (experimental and
computational) were normalized to the average value of
the experimental iPSC-CMs cultured on PDMS (Fig. 15B,
black). Finally a multivariable regression model, created
using the same methodology as described for the baseline
model (Sobie, 2009) and shown in Fig. 11E, was used to
conduct sensitivity analysis on both the mature and base-
line/immature models, and a comparison of the results is
shown in Fig. 15C.

For all four AP morphology markers (MDP, AP
amplitude, APD90 and maximal upstroke velocity),
the mature model (Fig. 15B, red dots) is within the
experimental range for mature cells (shown as black
points in Fig. 15B). The experimental AP data, which
was not utilized in fitting the mature model, serves to
validate that the mature model is representative of the
experimentally matured iPSC-CMs. The resulting mature
model diastolic membrane potential (MDPMature, Model =
−77.4 mV) is representative of the average experimentally
matured cells (MDPMature, Exp =−77.5 mV) and has a more
hyperpolarized diastolic membrane potential than the
immature model (MDPImmature, Model = −75.6 mV). The
AP amplitude of the mature model population is larger
than the immature model population (AmpMature,Model =
108 ± 6 mV, AmpImmature,Model = 90 ± 9 mV), which is
consistent with the experimentally observed trend of a
larger AP amplitude in mature cells (AmpMature,Exp = 117
± 6 mV, AmpImmature,Exp = 105 ± 16 mV). Similarly, the
APD in the mature population is slightly longer than the
immature population (APD90,Mature,Model = 347 ± 77 ms,
APD90,Immature,Model = 340 ± 74 ms), which is consistent
with the experimental results (APD90,Mature,Exp = 453 ±
113 ms, APD90,Immature,Exp = 437 ± 173 ms). Finally, for
maximal upstroke velocity (dV/dt), the mature model
value (dV/dtMature,Model = 199 mV ms−1) is within the
experimentally measured range (dV/dtMature,Exp = 147 ±
87 mV ms−1) and has a much higher upstroke velocity
than the immature model value (dV/dtImmature,Model =
33 mV ms−1), as would be expected in a more mature
cell.
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Maturation: population-based insights

Notably, experimentally recorded mature iPSC-CMs
retained spontaneous beating, although our mature model
cells required stimulation to beat. This indicates that
there was either an excess of IK1 in our representative
mature model, or that other currents compensate for the
increased IK1, allowing the mature experimental cells to
retain spontaneous beating at more negative maximum
diastolic potentials. This led us to analyse our population
of spontaneous beating cells and explore a computational
subpopulation of cells that exhibited a mature phenotype,
at the same time as retaining spontaneous beating.
One of the advantages of a population-based modelling
approach is the ability to utilize a component dissection
approach to identify plausible ionic mechanisms of
known phenotypes. As a test case, we examined the
immature and mature phenotypes in our model iPSC-CM

population. We formed two subpopulations of cells from
the five-current variation population (Fig. 13B), based
on phenotype. Based on the experimental data from
the Jalife Lab, we determined ranges of cellular MDP
and maximal upstroke velocity outputs that defined our
immature and mature model subpopulations. The cut-off
regions for MDP and upstroke velocity were determined
based on the experimental outputs for matured cells
(black points, Fig. 16A) compared to control cells, which
exhibit a more immature phenotype (Fig. 16A, open
circles). We categorized mature cells as those with hyper-
polarized diastolic potentials and high upstroke velocity
(MDP <−75 mV, dv/dtmax >85 mV ms−1) ( Fig. 16A, red)
and immature cells as those with depolarized diastolic
potentials and low upstroke velocity (MDP >−75 mV,
dv/dtmax <85 mV ms−1) (Fig. 16A, blue). A third group
of cellular models that did not meet either the immature

Figure 16. Comparison of mature and immature iPSC-CM model subpopulations
A, division of model population into mature and immature phenotypes (using five-current variation population
with simultaneous variation in INa, ICaL, IKr, IF and IK1 parameters). Experimental data are from the Jalife Lab (Herron
et al. 2016). Model subpopulation shown in red (n = 325) represents mature phenotypes with MDP <−75 mV
and maximal upstroke velocity >85 V s−1. The model subpopulation shown in blue (n = 13 759) represents
immature phenotypes with MDP >−75 mV and maximal upstroke velocity <85 V s−1. The model subpopulation
shown in grey was not analysed in this comparison. B, the four model parameters with the largest difference
between the mature and immature model subpopulations. For each subpopulation, parameter averages and SDs
are shown as the percentage change from the baseline model parameter value. C, steady-state inactivation for
INa in the mature and immature model subpopulations. Individual cells (light colours) and subpopulation average
parameter values (darker colored lines) are shown. D, peak IK1 and INa for the I–V relationship of each cell in the
model subpopulations were compared with data reported in Herron et al. (2016). Model and experimental values
are shown as the percentage change from the immature to mature phenotype.
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or mature phenotype criteria (Fig. 16A, grey) were not
analysed.

To compare mature and immature populations, we
looked at the underlying model parameters that had
the largest difference between the two populations. To
normalize parameter values, the population analysis was
conducted using percentage change in parameter value
from the baseline model parameter value, shown in
Fig. 16B. The three currents identified in this analysis
were IK1, INa and If. Maximal conductance parameters
for all three currents were identified, with lower maximal
conductance of IK1 and INa found in the immature
cells, which is consistent with the findings in Herron
et al. (2016). Both currents are directly related to the
defining characteristics of mature and immature sub-
populations because increased IK1 hyperpolarized the
MDP and increased INa increased the maximal upstroke
velocity. In addition to gK1 and gNa, the immature
population also exhibited increased gf, which is consistent
with an immature cardiomyocyte phenotype (Karakikes
et al. 2015; Kim et al. 2015).

In additional to maximal conductances, x6 in the
formulation of the INa inactivation gate was also identified.
The decrease in the x6 parameter impacts the shift in
the INa inactivation (h and j) steady-state curves, as
described in the Methods; see eqns (8)–(9). A decrease
in x6 in the mature models corresponds to increased
INa in the physiological voltage range by shifting the
steady-state inactivation curve toward the physiological
range, as shown for the model populations in Fig. 16C
(individual models in light colours, population averages
in dark colours). Similarly, x6 shifts the negatively sloped
portion of the time constant of decay curve, causing an
increased time constant of inactivation in the relevant
range for the upstroke of the AP (−70 to −50 mV). An
increase in time constant slows the inactivation of INa.
Collectively, this change in x6 results in more INa during
the upstroke of the AP, demonstrating a combined impact
with the increase in gNa in mature cells, which all contribute
to the increased maximal upstroke velocity. Additionally,
Fig. 16C shows that there are immature cells (Fig. 16C,
blue) with steady-state inactivation curves resulting in
Vhalf in the mature range (−85 to −50 mV) but no mature
cells (Fig. 16C, pink) with Vhalf <–85 mV. This suggests
that, to reach a maximal upstroke velocity >85 mV ms−1,
our cut-off for mature cells, the cellular INa model needs
to fall within a smaller range of steady-state inactivation
behaviours. This positive shift in the inactivation curve,
and a corresponding increase in gNa (Fig. 16B), allows for
a large influx of INa during the AP upstroke, resulting in
a more mature phenotype with a high upstroke velocity.
Immature cells with low maximal upstroke velocity have
a much wider range of steady-state inactivation curves
that are compensated by a wide range of maximal INa

conductance values to keep the upstroke velocity within

the immature range. It should be noted that the baseline
model can maintain spontaneous beating with complete
INa block, as has been shown experimentally in iPSC-CMs
(Guo et al. 2011; Sheng et al. 2012). Thus, some cells in
immature population may have INa parameterizations that
result in a miniscule INa during spontaneous beating.

The population-based approach identified three
currents (INa, IK1 and If) that are appreciably different
between the immature and mature subpopulations
(Fig. 16B). Two of these currents have been experimentally
validated by the Jalife Lab, as shown in Fig. 16D.
Experimental measurements in matured iPSC-CMs show
enhanced INa and IK1 compared to the control cells. The
experimental and in silico results are shown in Fig. 16D
for the mature cells. The mature cellular outputs were
normalized to the respective average experimental or in
silico immature outputs. In the model subpopulations, the
peak current from the I–V curve for each cell in the mature
population was normalized to the mean value of the peak
current in the immature population. For IK1, we analysed
the outward portion IK1, which occurs in the physiological
voltage range (Vm >85 mV) for iPSC-CMs.

Although the MDP and upstroke velocity are known to
be directly linked to the maximal conductance of IK1 and
INa, respectively, this methodology also identified gf and
the kinetics of INa that contribute to the mature phenotype.
In the future, this approach can also be expanded to
identify mechanisms of disease states. The data used
to construct this model were from presumed healthy
iPSC-CMs, although a similar approach could be used
to identify molecular mechanisms of increased proclivity
to arrhythmia or susceptibility to proarrhythmic drugs in
a diseased population model.

Discussion

In the present study, we present a modelling approach
for in silico representation of iPSC-CMs. We used a
‘bottom-up’ approach by developing models of sub-
cellular components, namely individual ionic currents
and Ca2+ handling proteins. The study was conducted in
collaboration with a number of experimental laboratories
who generously provided data recorded from iPSC-CMs
in their respective laboratories. These data allowed us to
consider measured variability in ionic currents and their
underlying processes. To minimize the number of model
parameters, as well as to prevent overfitting, we utilized
a simple formulation of the ionic currents with fewer
parameters than other commonly used cardiomyocyte or
ionic current models (ten Tusscher et al. 2004; Moreno
et al. 2011; O’Hara et al. 2011).

To gain a complete representation of the behaviour
of iPSC-CMs, a single average behaviour is insufficient.
There is no experimental consensus on which iPSC-CM
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recording might represent average or representative
behaviour. We aimed to determine whether variability at
the subcellular level was sufficient to replicate this wide
range of whole-cell iPSC-CM phenotypes. Figure 13D–F
shows that our in silico population, informed purely by the
distribution of experimentally observed kinetic behaviour,
reproduces the range of whole-cell behaviours observed
experimentally. Within this population, each individual
model, including the baseline model, is presumed to be an
equally valid representation of an iPSC-CM.

In developing a collection of in silico iPSC-CMs
that reflect phenotypic cellular variability, we explored
populations with single current variation, as well as
simultaneous variation in five key currents. Although
the five-current variation population provides the most
complete coverage of the experimentally observed
parameter space, comparing the different populations
developed can provide additional insight (Fig. 13). For
each of the single-current variation populations, there
is a relatively narrow range of variability in whole-cell
AP morphology. Additionally, almost all of the models
created through single current variation resulted in a
viable and spontaneously beating cellular model. However,
when variation in multiple currents was included in the
cell representation, there was a much larger range of AP
morphologies including ‘non-viable’ in silico iPSC-CMs
that were not possible to excite or did not repolarize.

The results described above are not surprising and may
stem from physiologically relevant regulatory phenomena
that require correlation and co-ordination of ionic
currents within individual cells. For example, to have
sufficient net repolarizing current during the AP, there
must be a mechanism of coregulation for repolarizing
currents (Xiao et al. 2008; Varro & Baczko, 2011). In
iPSC-CMs, and other fetal-like cell types, there is a
particularly low density of IK1 compared to adult cardio-
myocytes (Bett et al. 2013; Meijer van Putten et al.
2015; Vaidyanathan et al. 2016). Although our cellular
populations include a large range of variation in IK1, there
is much lower IK1 density throughout these populations
than there would be in an adult ventricular cardiomyocyte
(Karakikes et al. 2015). In particular, the lack of IK1 plays a
key role in the spontaneously beating phenotype, which is
characteristic of these cells (Kim et al. 2015). Thus, there is
a balance of repolarizing currents in iPSC-CMs that allow
for spontaneous beating, at the same time as maintaining
the cells ability to fully repolarize. Because every cell in our
a populations maintains spontaneous beating (Fig. 13),
every cell also requires the coregulation of ionic current
density that maintains a unique balance of repolarizing
currents to accommodate the relatively low IK1.

Coregulation has been shown experimentally in
numerous studies of cardiac cells (Deschenes et al. 2008;
Xiao et al. 2008; Milstein et al. 2012). For example, Liu
et al. (2016) showed that there is cotranslation of protein

subunits, leading to functional regulation of cellular ionic
currents within a single cell. Cotranslation may also serve
as a mechanism to maintain the balance of ionic currents
within a single cell. Banyasz et al. (2011) showed that
there is a mechanism by which individual cells regulate net
ionic current, despite a wide range of variability in density
of individual currents. Specifically, there was a linear
relationship between the inward and outward currents
measured via AP dissection, indicating a mechanism of
cellular co-ordination between key inward and outward
currents. The results of our population-based studies
suggest a similar co-ordination in the ionic currents of
iPSC-CMs, allowing for a wide range of variation in sub-
cellular mechanisms at the same time as maintaining
functional AP dynamics. Intriguingly, a recent combined
computational and experimental study revealed that
variable inward calcium and outward potassium currents
in mouse ventricular myocytes compensate for each
other to generate normal calcium transients and contra-
ctile responses (Rees et al. 2018). This suggests that a
feedback mechanism sensing global cytosolic calcium
levels might be sufficient to regulate ionic conductances.
Clinically, genetic modifiers have been seen to modify
the severity of long QT syndrome type 2. Patients with
the same hERG mutations have differential severity in
QT prolongation, depending on the presence of other
mutations that coregulate cellular repolarization (Chai
et al. 2018). The present study provides a framework
that can be expanded to elucidate these types of feed-
back and coregulation mechanisms in iPSC-CMs, which
directly relate to mechanisms of adult human cardio-
myocyte behaviour.

Sources of cellular variation are often unclear,
although experimental manipulation allows us to directly
compare known sources of variation. Using data from
experimentally manipulated cells, we were able to validate
our framework for determining sources of variation
leading to known phenotypes. The use of data from
maturation promoted iPSC-CMs allowed us to conduct
a two-pronged analysis of cell maturation. Beginning with
a bottom-up approach, we showed that a single cell model
can accurately predict a more mature phenotype based
on known sources of variation, as shown in Fig. 15.
Additionally, we used a top-down approach to test whether
the parameter space used to randomly generate our model
populations covered the subcellular range of maturation
behaviour. As hypothesized, the whole-cell behaviour
within the population predicts a range of maturation, as
shown in Fig. 16A. Additionally, our population-based
approach identified the same changes in key currents (INa

and IK1) (Fig. 16D) when stratifying subpopulations of
mature and immature cellular models.

This same top-down approach can be used to compare
other subpopulations. We also used this approach to
compare atrial and ventricular-like subpopulations. To
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define atrial and ventricular-like subpopulations, we
used a metric used experimentally to classify iPSC-CMs:
APDr = (APD40 − APD30)/(APD80 – APD70) (Ma et al.
2011). Ventricular-like cells are defined as APDr > 1.5,
and atrial-like cells are defined as APDr < 1.5. Using the
atrial and ventricular-like subpopulations, we conducted
the same analysis shown in Fig. 16B. Our analysis on
the atrial and ventricular-like populations identified the
maximal conductance parameters for IKr and ICaL as having
the largest differences between the two subpopulations.
This is consistent with experimental works by Lieu et al.
(2013) in embryonic stem cell-derived cardiomyocytes
(ESC-CMs), which identified the increased IKr and ICaL in
ventricular-like compared to atrial-like ESC-CMs. They
additionally showed decreased If in atrial-like ESC-CMs,
which our analysis did not identify. The APDr criterion
was used to define the atrial and ventricular-like sub-
populations to be consistent with the experimental
methodology, and to show that our model captures these
experimental results. However, there is debate over the pre-
cision of this definition of atrial vs. ventricular cells (Du
et al. 2015; Giles & Noble, 2016). This criterion considers
only the AP morphology with repsect to determining the
chamber specificity of the cells, which ignores many other
key physiological differences between the two cell types.

The large range of experimentally observed variability in
iPSC-CMs, which is recapitulated within the populations
of models described in the present study, allows us to
examine the mechanistic origin of phenotypic differences
(Sarkar & Sobie, 2011; Yang et al. 2015; Morotti &
Grandi, 2017; Passini et al. 2017). Properly utilized, the
phenotypic variation in iPSC-CMs can be a strength
of this experimental approach, allowing us to better
understand the mechanistic underpinnings of phenotypic
diversity, which is of course also observed in patients.
iPSC-CMs in conjunction with computational approaches
provide a unique opportunity to conduct high throughput
component dissection of phenotypes of interest, which
ultimately can be linked to patient-specific phenotypes.

The present study can also serve as a basis to
‘translate’ the patient-specific iPSC-CM behaviours from
the immature fetal-like phenotype to a predictive
model of adult cardiomyocyte behaviour. As has been
noted experimentally, our model population reflects the
differences in AP morphology between iPSC-CMs and
adult ventricular cells. On average, our model population
has a more positive resting membrane potential, slower
AP upstroke velocity, slower CaT time to peak and
reduced CaT amplitude compared to adult ventricular cell
models (ten Tusscher et al. 2004; O’Hara et al. 2011).
Understanding the mechanisms of these differences is
the first step to translating between iPSC-CM and the
adult cardiac response. Critical differences between ionic
currents in adult and iPSC-CM have been noted in
computational and experimental studies (Karakikes et al.

2015; Paci et al. 2015). Translation between iPSC-CM
and adult phenotypes will be critical with respect to
the use of iPSC-CMs for drug safety and discovery
in the human population. Gong & Sobie (2018) have
developed a cross-cell type regression model that trans-
lates response to ionic current perturbations in an
iPSC-CM model to the predicted the response in an adult
ventricular cardiomyocyte model. Additionally, Tveito
et al. (2018) have developed a method of utilizing optically
obtained experimental whole-cell drug-response data
from immature iPSC-CMs to computationally predict the
effect in a mature iPSC-CM phenotype, which serves as
a more representative model of adult cardiomyocytes. In
the future, these computational translation approaches
can be coupled with our utilization of experimental
data from multiple sources to further reconcile the
phenotypic variability observed across iPSC-CM datasets
with patient-specific adult cardiac phenotypes.

Limitations

In part, the goal of this modelling approach was to
fully parameterize a model from experimental data with
the fewest parameters possible and still recapitulate
complex behaviour that has been characterized in
iPSC-CMs. However, it should be noted that there is
no complete experimental characterization of calcium
handling, sodium handling or E-C coupling in iPSC-CMs.
This a critical point of concern with respect to the
adaptation of iPSC-CMs in the study of drug and disease
mechanisms. Furthermore, pumps and exchangers also
lack experimental characterization in iPSC-CMs. We
have modelled the iPSC-CM calcium handling based
on all of the available experimental data, resulting in a
more experimentally-based iPSC-CM calcium handling
than prior modelling efforts. Our model captures the
physiological reality for SR-calcium release dependent
on cytosolic concentration, faithfully reproduces the
experimentally measured contribution of various calcium
removal processes, and utilizes experimentally-based
calcium buffering parameters. Moreover, we are confident
in the validity of adopting earlier model formulations
of pumps and exchangers because these mechanisms
maintain intrinsic transport stoichiometry and kinetics
across various cells. Nonetheless, the implementation of
phenomena that are not fully experimentally characterized
in iPSC-CMs remains a limitation of our model.

Additionally, an essential gap in knowledge remains
related to the source of observed experimental variation.
Because some of this variation may come from the
cell-culture process or the cell-type, in future work, it
would be beneficial to collect a full kinetic characterization
of individual cells. A necessary next step is to fully
parameterize a cellular model based on the kinetics
of individual cells. This future goal will be required
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utilization of iPSC-CMs for the pursuit of patient-specific
models.

Conclusions

We have utilized multiple iPSC-CM ion channel data
sources to construct a range of ion channel models
for key iPSC-CM currents. We then utilized random
selection of parameters from within the model ranges
to inform development of a population of cellular level
iPSC-CM models. Several conclusions can be drawn: (i)
variation in the underlying model parameters within
the experimentally measured ranges were sufficient to
encapsulate the complete diverse range of whole-cell
iPSC-CM phenotypes that are observed experimentally;
(ii) this method of deriving a population of model cells
obviated the need for ‘calibration’ or selecting models
that exhibit physiologically relevant electrical behaviour,
beyond excluding non-excitable or non-repolarizing cells;
and (iii) mature and immature iPSC-CM phenotypes
naturally emerge as subsets of the population.

The construction described in the presented study
has many potential future applications that can aid our
understanding of cardiac disease and drug testing. In
conjunction with the existing CiPA protocol (Cavero &
Holzgrefe, 2014), the iPSC-CM computational model in
the present study can be applied to provide a better
understanding of the parameter combinations that lead to
proarrhythmic behaviours. This in silico population-based
framework for analysing the iPSC-CM phenotype has the
added advantage of being a high throughput analysis tool.
Additionally, the models that we present can be readily
expanded to include genetic mutations, pharmacological
interventions, sex-based differences and a variety of
perturbations. Future studies could utilize coupled sheets
of in silico tissue to test higher dimension arrhythmia
proclivity and sustainability.
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Translational perspective

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have been developed as a promising in vitro
method for addressing patient-specific proclivity to cardiac disease and drug response. A well-known limitation
of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We hypothesize that, when captured in
a computational framework, cell-to-cell variability may constitute a useful systems property that can allow the
identification of a variety of phenotypic mechanisms and underlying causal components. We have developed a
whole-cell model of iPSC-CMs comprising simple model components built on experimental data from multiple
laboratories. By including a wide range of input data into the model, we built a population of cellular models
to predict robust inter-subject variability in iPSC-CMs. This approach allows for a link between molecular
mechanisms and the emergent cellular-level iPSC-CM phenotypes to be revealed. The mechanisms underlying
immature and mature subpopulations are predicted and are consistent with the experimental data. In the future,
the models presented may prove to be essential for integrating experimental and clinical data from a variety
of sources, scales and modalities, allowing high throughput prediction of the link between patient phenotype
and patient specific electrophysiology. The tools presented here can be readily expanded and applied for in silico
screening and the prediction of drug effects on varied genetic backgrounds to predict patient pharmacological
responses and even to guide therapy for specific patient therapy.
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