
UC Davis
UC Davis Previously Published Works

Title
Parametric Integer Programming Algorithm for Bilevel Mixed Integer
Programs

Permalink
https://escholarship.org/uc/item/8z48w3rw

Journal
Journal of Optimization Theory and Applications, 146(1)

ISSN
1573-2878

Authors
Köppe, M.
Queyranne, M.
Ryan, C. T.

Publication Date
2010-07-01

DOI
10.1007/s10957-010-9668-3

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z48w3rw
https://escholarship.org
http://www.cdlib.org/

J Optim Theory Appl (2010) 146: 137–150
DOI 10.1007/s10957-010-9668-3

Parametric Integer Programming Algorithm for Bilevel
Mixed Integer Programs

M. Köppe · M. Queyranne · C.T. Ryan

Published online: 18 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We consider discrete bilevel optimization problems where the follower
solves an integer program with a fixed number of variables. Using recent results in
parametric integer programming, we present polynomial time algorithms for pure
and mixed integer bilevel problems. For the mixed integer case where the leader’s
variables are continuous, our algorithm also detects whether the infimum cost fails
to be attained, a difficulty that has been identified but not directly addressed in the
literature. In this case, it yields a “better than fully polynomial time” approximation
scheme with running time polynomial in the logarithm of the absolute precision. For
the pure integer case where the leader’s variables are integer, and hence optimal solu-
tions are guaranteed to exist, we present an algorithm which runs in polynomial time
when the total number of variables is fixed.

Keywords Bilevel mixed integer linear programming · Parametric integer linear
programming · Computational complexity · Binary search

Communicated by P.M. Pardalos.

The research of the last two authors was supported in part by a Discovery Grant from the Natural
Sciences and Engineering Research Council (NSERC) of Canada to the second author.

M. Köppe
Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616, USA
e-mail: mkoeppe@math.ucdavis.edu

M. Queyranne
Centro de Modelamiento Matemático, Unité Mixte Internationale du CNRS (France),
Universidad de Chile, Av. Blanco Encalada, 2120 Santiago, Chile
e-mail: maurice.queyranne@sauder.ubc.ca

M. Queyranne · C.T. Ryan (�)
Sauder School of Business at the University of British Columbia, 2053 Main Mall, Vancouver, BC,
Canada, V6T 1Z2
e-mail: chris.ryan@sauder.ubc.ca

mailto:mkoeppe@math.ucdavis.edu
mailto:maurice.queyranne@sauder.ubc.ca
mailto:chris.ryan@sauder.ubc.ca

138 J Optim Theory Appl (2010) 146: 137–150

1 Introduction

Bilevel integer programs are two-stage decision problems in which two decision
makers act in sequence and where some or all of the decision variables are integer.
A leader first decides on some variables, denoted here by z (called the leader’s, or
upper-level, variables), which influence the decision of a follower, who then chooses
x (the follower’s, or lower-level, variables). The leader is interested in optimizing
over the joint decision (x, z) subject to joint resource and incentive compatibility
constraints. This setting has been used to model a large variety of applied problems,
including toll setting in transportation networks [1], revenue management [2], com-
petitive location planning [3], and vehicle routing [4] among many others.

To date the majority of literature has focused on the setting where all constraints
and objectives are linear and both the leader and follower’s variables are continuous
(this is evident in observing, for instance, the survey papers [5, 6], research mono-
graph [7] and journal special issue [8]). Significant work has also been undertaken
in nonlinear continuous settings (see for instance [9, 10]). Settings where some or all
variables are integer are less well-studied, but have nonetheless garnered interest in
recent years [11–15].

The main focus of this paper is the following bilevel mixed integer linear program
(BMILP), where the leader’s variables z ∈ R

d are continuous and the follower’s vari-
ables x ∈ Z

n are integer:

inf
x,z

c · x + e · z, (1)

s. t. Cx + Dz ≤ p, z ≥ 0, (2)

x ∈ argmin
x′

{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Z
n}, (3)

where all data are integer.
An interpretation of the problem is that the leader chooses z and as a result affects

the right-hand sides of the lower level (follower’s) problem

min
x′ {ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Z

n},

which is a parametric integer program with right-hand side parameterized by z. This
interpretation underscores the parametric nature of bilevel integer programs that will
be a major focus in this paper.

An important comment on the formulation is the implicit assertion of what is
known in the bilevel literature as the “optimistic assumption” (see for instance [6]).
It is possible for the lower level problem to have multiple optimal solutions for a
given z. The follower is indifferent amongst these alternate optima, but the leader
may prefer certain optima over others, and yet can exert no more direct influence
over the follower’s choice. How should the follower decide which of the alternate
optima to choose? To eliminate this difficulty we make the optimistic assumption:
whenever the follower faces alternate optima for a given z, the follower chooses an
optimum x that best suits the leader. Indeed, this is reflected in the formulation (1)–
(3) itself: the leader is modeled as choosing x within the argmin set of the lower level
problem.

J Optim Theory Appl (2010) 146: 137–150 139

An important object studied throughout is the set of bilevel feasible solutions

F = {(x, z) ∈ R
n+d : (2), (3)}. (4)

We assume that this bilevel feasible set F is bounded (though possibly empty).
Much of the complication associated with bilevel integer programming is captured in
the properties of this set. Firstly, F is known to be nonconvex in general, and difficult
to describe directly [6]. Secondly, given z is continuous it is possible that F is not
closed [15]. This possibility is reflected in our definition of BMILP in (1)–(3) where
the leader’s optimization is expressed as an infimum and not a minimum. When z is
also integer and the instance is feasible, then an optimal solution always exists and
“inf” can be replaced with “min” [15].

Example 1.1 To demonstrate this complication, consider the following simple exam-
ple:

inf
x,z

−x + z,

s. t. 0 ≤ z ≤ 1,

x ∈ argmin
x′

{x′ : x′ ≥ z, 0 ≤ x′ ≤ 1, x′ ∈ Z}.

The “argmin” then simply requires that x = �z� and thus the problem reduces to

inf
z

{z − �z� : 0 ≤ z ≤ 1}.

Clearly, the infimum is −1 and cannot be attained. Observe that the set of bilevel
feasible solutions

F = {(0,0)} ∪ ({1} × (0,1])
is neither convex nor closed.

The approaches to problem (1)–(3) in the literature use traditional ideas from inte-
ger optimization, such as branch-and-bound enumeration [16] or cutting planes [13],
all based on continuous relaxations. It is well documented that there are numerous
pitfalls when applying standard ideas of branch-and-bound or cutting plane methods
to a bilevel setting (see [13] for a discussion). Moreover, the algorithm introduced
by Moore and Bard in [16] applies only to the case that both x and z are integer, or
otherwise where it is known that an optimum solution exists. Thus, in general, this
method cannot solve (1)–(3), in the sense that it cannot distinguish when an infimum
is attained or not. The algorithm of DeNegre and Ralphs [13] deals exclusively with
the pure integer setting. In addition, these two papers give no run-time guarantees.

Our paper makes the following contributions:

(i) We present (Theorem 3.1) an algorithm which solves BMILP (1)–(3) in full
generality (under our boundedness and integral data assumptions) by identifying
when the infimum is attained and finding an optimal solution if one exists. No
previously proposed algorithm is capable of this.

140 J Optim Theory Appl (2010) 146: 137–150

(ii) Our algorithms runs in polynomial time when the follower’s dimension n is
fixed for the mixed integer case (i.e., z is continuous), and when the total di-
mension n + d is fixed in the pure integer case (i.e., when z is integer). To the
authors’ knowledge, these are the first polynomial run-time guarantees of this
type for discrete bilevel optimization. These results can be seen as a common
extension of two important results on optimization in fixed dimension. The first
is due to Lenstra [17], who establishes a polynomial time algorithm for integer
programming with a fixed number of variables. The second is due to Deng [18],
who develops a polynomial time algorithm for bilevel linear programs when
the number of decision variables of the follower is fixed. Our result extends
Lenstra’s result to a bilevel setting and Deng’s result to an integer setting. For
further discussion of complexity issues in bilevel optimization see [5].

(iii) When no optimal solution to BMILP exists, we find, for any given ε > 0 and in
time polynomial in the input size and log(1/ε), a solution with objective value
no more than 1 + ε times the infimum.

In Sect. 2, we introduce formal definitions and prove our first key result: when an
instance of BMILP is feasible its infimum value is a rational number with polynomi-
ally bounded binary encoding size. In Sect. 3, we apply recent results from the study
of parametric integer programming by Eisenbrand and Shmonin [19], based on the
work of Kannan [20]. These references provide polynomial time algorithms for deci-
sion versions of parametric integer programs. We apply these algorithms in the mixed
integer bilevel setting and, using binary search, derive our main result (Theorem 3.1):
a polynomial time algorithm for the mixed integer case where z is continuous and
the follower’s dimension n is fixed. Finally, in Sect. 4 we present two algorithms to
find optimal solutions to the pure integer case; that is, BMILP under the further re-
striction that z is integer. Both of these algorithms run in polynomial time when the
total dimension n + d is fixed. The first algorithm is similar to those discussed in the
previous section, whereas the second is based on an approach similar to that found in
[21] which is based on a theory of rational generating functions.

2 Definition and Preliminary Results

An instance of the bilevel mixed integer linear program (BMILP) (1)–(3) is defined
by the leader’s and follower’s dimensions d and n; the numbers h and m of linear
inequality constraints in (2) and in the feasible set of the follower’s subproblem (3);
integer matrices A ∈ Z

m×n, B ∈ Z
m×d , C ∈ Z

h×n and D ∈ Z
h×d ; integer objective

coefficient vectors c ∈ Z
n, e ∈ Z

d and ψ ∈ Z
n; and integer right-hand side vectors

u ∈ Z
m and p ∈ Z

h. The binary encoding input size of an instance is the total number
of bits needed to input all the data defining the instance.

We assume that the upper level polyhedron

P = {(x, z) ∈ R
n+d : (2)} (5)

is bounded (but possibly empty). We also assume that, for every z ∈ projz P , where

projz P = {z ∈ R
d : (x, z) ∈ P for some x ∈ R

n},

J Optim Theory Appl (2010) 146: 137–150 141

the lower level feasible set {(x, z) ∈ R
n+d : Ax ≤ Bz + u} is also bounded (and pos-

sibly empty). (For example, by Farkas’s Lemma, if lower bounds x ≥ x and z ≥ z are
part of or implied by the constraints defining P , and also by those defining the lower
level feasible set, then the boundedness assumptions are satisfied if and only if the
(n + d)-row vector of all 1’s is a nonnegative combination of the rows of the con-
straint matrix (C,D), and also a nonnegative combination of the rows of the matrix
(A,−B).)

Under these boundedness assumptions, an instance of BMILP is either infeasible
or else must have a bounded infimum value. Feasibility can be decided in polynomial
time by applying Lenstra’s (mixed) integer programming algorithm [17] to decide if
{(x, z) ∈ P : Ax ≤ Bz + u, x ∈ Z

n} 	= ∅. A key result used in the sequel is that,
when the instance of BMILP is feasible, its infimum value is a rational number with
polynomially-bounded binary encoding size.

Proposition 2.1 Assume that a given instance of problem (1)–(3) is feasible and has
a bounded optimum (infimum) value. Then the infimum is a rational number with
denominator bounded above by the maximum absolute value of a sub-determinant of
the matrix (D,B)T .

Proof Let (x̄, z̄) ∈ F be a bilevel feasible solution to (1)–(3) and define

Q(x̄, z̄) = {z ∈ R
d : Dz ≤ p − Cx̄; βi(z̄) ≤ Biz + ui < βi(z̄) + 1 ∀i ∈ M},

where M = {1, . . . ,m}, Bi is the i-th row of B , and βi(z̄) = �Biz̄+ui
. Note that z̄ ∈
Q(x̄, z̄), so Q(x̄, z̄) is a nonempty, bounded quasipolyhedral set, i.e., its topological
closure is

clQ(x̄, z̄) = {z ∈ R
d : Dz ≤ p − Cx̄; βi(z̄) ≤ Biz + ui ≤ βi(z̄) + 1 ∀i ∈ M}, (6)

a nonempty polytope. Every z ∈ Q(x̄, z̄) satisfies �Biz + ui
 = �Biz̄ + ui
 for all
i = 1, . . . ,m and, since A is integer,

∀x ∈ Z
n: Ax ≤ Bz + u ⇐⇒ Ax ≤ Bz̄ + u,

implying that x̄ ∈ argmin{ψ · x : Ax ≤ Bz + u, x ∈ Z
n} for all z ∈ Q(x̄, z̄), that is,

∀z ∈ Q(x̄, z̄), (x̄, z) ∈ F . (7)

Now let v∗ denote the infimum value in BMILP (1)–(3). There is a sequence
(x̂k, ẑk)k∈N of bilevel feasible solutions with objective value c · x̂k + e · ẑk con-
verging to v∗. Since P is a polytope, its projection projx P = {x ∈ R

n : (x, z) ∈
P for some z ∈ R

d} contains a finite number of integer points x ∈ P ∩ Z
n. There-

fore there is a subsequence (x̃k, z̃k)k∈N with all x̃k = x̃0. For every i ∈ M there is
also a finite number of possible integer values βi(z) = �Biz + ui
 when z ∈ projz P .
Thus there exists a subsequence (x̃0, z̆k)k∈N in F with all β(z̆k) = β(z̆0), i.e.,
(x̃0, z̆k) ∈ Q(x̃0, z̆0), and c · x̃0 + e · z̆k converging to v∗. From (7) it follows that
v∗ = c · x̃0 + infz{e ·z : z ∈ Q(x̃0, z̆0)}. By continuity of the objective e ·z, v∗−c · x̃0 is
the optimum value of the linear programming problem minz{e · z : z ∈ clQ(x̃0, z̆0)}.

142 J Optim Theory Appl (2010) 146: 137–150

By (6), for every i ∈ M at most one of the two constraints βi(z̆
0) ≤ Biz + ui or

Biz + ui ≤ βi(z̆
0) + 1 is binding at the LP optimum, hence v∗ − c · x̃0 must also be

the optimum value of a linear programming problem

min e · z,
s. t. Dz ≤ p − Cx̃0,

−Biz ≤ ui − βi(z̆
0), ∀i ∈ I,

Bj z ≤ −uj + βj (z̆
0) + 1, ∀j ∈ J (8)

for some disjoint I, J ⊆ M . It is well known that the optimal value of a bounded lin-
ear program with integer data occurs at a basic feasible solution, the denominators of
which are bounded by the maximum absolute value of a sub-determinant of its con-
straint matrix. By simple properties of determinants the stated result then follows. �

Note that, in the pure integer case, where the leader’s variables are also required
to be integer, the bilevel feasible set is

F ′ =
{
(x, z) ∈ P : z ∈ Z

d, x ∈ argmin{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Z
n}

}
. (9)

When it is nonempty, F ′ is a finite set, and then the infimum in (1) is attained. Since
c and e are integral, this optimum value is integral, providing a trivial strengthening
of Proposition 2.1 in the pure integer case.

3 Algorithm for Bilevel Mixed Integer Linear Programming

In this section, we prove the main result of this paper:

Theorem 3.1 There exists an algorithm which solves the BMILP problem (1)–(3) in
the following sense: the algorithm

(i) decides if the instance is feasible;
(ii) if it is feasible, decides if an optimal solution exists (that is, if the infimum is

attained); and
(iii) if the infimum is attained, finds an optimal solution.

The algorithm runs in polynomial time when the follower’s dimension n is fixed.

To prove this theorem, we use results on parametric integer programs with pa-
rameterized right-hand sides. Parametric integer programming is well-studied, the
particular approach we discuss builds on geometric and algorithmic number theory
and has it roots in the work of Lenstra [17] on integer linear programming in fixed di-
mension. We draw mainly on the recent work of Eisenbrand and Shmonin [19], which
itself builds on earlier results by Kannan [20]. These two related works solve a deci-
sion version of parametric integer programming (defined below) in polynomial time
when certain parameters are fixed. As discussed in Sect. 1, we can view the lower

J Optim Theory Appl (2010) 146: 137–150 143

level problem as a parametric integer program. But the connection between paramet-
ric integer programming and bilevel integer programming in fact goes deeper, as we
now discuss.

The integer projection of a polyhedron Q ⊆ R
m+p is the set

Q/Z
p = {b ∈ R

m : (b,w) ∈ Q, for some w ∈ Z
p}. (10)

The feasibility version of parametric integer linear programming is the following
decision problem:

PILP: Given a rational matrix R ∈ Q
m×n and a rational polyhedron

Q ∈ R
m+p , decide if the linear system Ry ≤ b has an integer solution for all

b ∈ Q/Z
p .

Letting

Pb = {y ∈ R
n : Ry ≤ b},

this problem is equivalent, by negation, to deciding the sentence

∃b ∈ Q/Z
p Pb ∩ Z

n = ∅. (11)

Eisenbrand and Shmonin [19] prove the following theorem.

Theorem 3.2 (Theorem 4.2 in [19]) There is an algorithm that, given a rational
matrix R ∈ Q

m×n and a rational polyhedron Q ⊂ R
m+p , decides the sentence (11).

The algorithm runs in polynomial time if p and n are fixed.

Our goal is to establish a connection between PILP and BMILP so this result can
be used in solving BMILP. First, we define a decision version as follows:

BMILPα : Given integer matrices A ∈ Z
m×n, B ∈ Z

m×d , C ∈ Z
h×n and

D ∈ Z
h×d ; integer vectors c ∈ Z

n, e ∈ Z
d , ψ ∈ Z

n, u ∈ Z
m and p ∈ Z

h; and
rational scalar α ∈ Q, decide if there exists a vector (x, z) ∈ R

n+d such that
(2), (3) and c · x + e · z ≤ α.

Proposition 3.1 There exists an algorithm that decides BMILPα . The algorithm runs
in polynomial time when the follower’s dimension n is fixed.

Proof Since ψ is integral, we can express (3) as the fact that

{x′ ∈ R
n : ψ · x′ ≤ ψ · x − 1, Ax′ ≤ Bz + u} ∩ Z

n = ∅. (12)

Let R = (ψ,A,0d×n)
T where 0d×n is a d ×n matrix of zeroes; b = (b(1), b(2), b(3))

T

with b(1) = ψ · x − 1, b(2) = Bz + u and b(3) = z. Then (3) and z ≥ 0 together are
equivalent to P ′

b ∩ Z
n = ∅ where P ′

b = {x′ ∈ R
n : Rx′ ≤ b}. Letting

Qα = {(b, x) : c · x + e · b(3) ≤ α, Cx + Db(3) ≤ p, b(3) ≥ 0,

Ax ≤ b(2), b(1) = ψ · x − 1, b(2) = Bb(3) + u}, (13)

144 J Optim Theory Appl (2010) 146: 137–150

deciding BMILPα reduces to deciding an instance of (11) with p = n, w = x,
Q = Qα and Pb = P ′

b . The result now follows from Theorem 3.2. �

Our approach to the proof of Theorem 3.1 is to use binary searches on the target
value α in BMILPα and related decision problems, so as to find the infimum value of
problem BMILP and an optimal solution if one exists.

The following result from Kwek and Mehlhorn [22] yields the binary search algo-
rithm used in proving our results:

Theorem 3.3 (Theorem 1 in [22]) There exists a θ(logL)-time algorithm that de-
termines an unknown rational number r which lies in the set QL = {p

q
: p,q ∈

{1, . . . ,L}} by asking at most 2 log2 L + O(1) queries of the form “is r ≤ α?”.

We first establish the following lemma.

Lemma 3.1 Consider a feasible instance to BMILP problem (1)–(3). Its infimum
value can be determined in polynomial time when the dimension n is fixed.

Proof We first determine polynomial-sized lower and upper bounds v and v̄ on the
infimum value v∗ by solving in polynomial time the linear programs v = min{c · x +
e · z : (x, z) ∈ P } and v̄ = max{c · x + e · z : (x, z) ∈ P }. We then perform ordinary
binary search for v∗ in successive intervals [v′, v′′] satisfying v′ < v∗ ≤ v′′, where
the search query “is v∗ ≤ α” is the decision problem BMILPα , and the initial interval
[v′, v′′] = [v − 1, v̄]. We stop, after a polynomial number of queries, as soon as v′′ −
v′ < 1. If there exists an integer β such that v′ < β < v′′ then we perform one more
query “is v∗ ≤ β” and set the current interval to [β −1, β] if the response was positive
(i.e., if v∗ ≤ β), and to [β,v′′] otherwise. If there is no such integer β then we set the
current interval to [�v′
, v′′]. In any case we obtain an interval [v̄′, v̄′′] such that v̄′ <
v∗ ≤ v̄′′, v̄′′ − v̄′ ≤ 1 and v̄′ is integer. We now invoke the binary search algorithm of
Theorem 3.3 for the rational number r = v∗ − v̄′ ∈ QL where L is the upper bound
on the denominator of v∗ from Proposition 2.1. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1
(i) As indicated in Sect. 2, feasibility can be decided in polynomial time by apply-

ing Lenstra’s (mixed) integer programming algorithm [17] to decide if {(x, z) ∈ P :
Ax ≤ Bz + u, x ∈ Z

n} 	= ∅.
(ii) Assume the instance is feasible. By Lemma 3.1 we can find the infimum value

v∗ in polynomial time. This infimum is attained if and only if there exists a bilevel
feasible (x, z) ∈ F such that c ·x + e ·z = v∗. This can be decided in polynomial time
as in the proof of Proposition 3.1 by replacing the first constraint in the definition of
Qα in (13) with c · x + e · b(3) = v∗.

(iii) Finally, assume that the infimum value is attained. We extend to bilevel mixed
integer programming a standard method used in (ordinary) mixed integer program-
ming to successively determine an optimum solution given an optimum objective

J Optim Theory Appl (2010) 146: 137–150 145

value oracle (see for instance [23], page 260). In this method, we first find the opti-
mum value of related instances of BMILP to successively determine each component
of an optimal solution (x∗, z∗) with lexicographically smallest integer component x∗.
By induction, assume that all components x∗

k for k = 1, . . . , j − 1 have already been
determined. Then, x∗

j is the optimum value of the BMILP

min
x,z

xj ,

s. t. Cx + Dz ≤ p; z ≥ 0; c · x + e · z = v∗;
xk = x∗

k , for k = 1, . . . , j − 1; (3).

Since this problem is feasible and its objective is integer valued and bounded, its
optimum value is attained, and is determined in polynomial time by Lemma 3.1.
(Note that, since this optimal value x∗

j is integer, we only need to use ordinary binary
search and stop when the width of the current interval is less than one.)

Having determined x∗, we next determine the continuous component z∗. Note
that, even though x∗ has now been fixed, z∗ cannot be directly found by solving a
simple linear program, because we still need to enforce the (nonconvex) incentive
compatibility constraint (3). Using ideas from the proof of Proposition 2.1, we con-
struct an “integer RHS vector” r = (�Biz + ui
)i=1,...,m which is lexicographically
minimum among all those defined by optimum BMILP solutions (x∗, z). Thus by
induction assume that for k = 1, . . . , i − 1 we have determined integers rk such that
the set

Ri−1 =
{
(x, z) ∈ R

n+d : Cx∗ + Dz ≤ p; z ≥ 0; c · x∗ + e · z = v∗;
rk ≤ Bk z + uk < rk + 1 for all k < i; x = x∗; (3)

}

is nonempty. As in the proof of Proposition 2.1, note that the closure clRi−1 is deter-
mined by replacing each strict inequality Bkz + uk < rk + 1 with Bkz + uk ≤ rk + 1,
and is thus a nonempty polytope. We then compute the infimum value of the BMILP

ρi = inf
x,z

{Bi z + ui : z ∈ clRi−1}, (14)

in polynomial time by Lemma 3.1. Let ri = �ρi
. We claim that Ri 	= ∅. To
prove this claim, let ((x∗, z̄j) ∈ Ri−1)j∈N be a sequence of points in clRi−1 with
limj→∞(Bi z̄

j + ui) = ρi . By continuity of the linear function (x∗, z) �→ Bi z + ui ,
there exists a sequence ((x∗, zj) ∈ Ri−1)j∈N of points in Ri−1 with limj→∞(Bi z

j +
ui) = ρi < �ρi
 + 1. This implies that �ρi
 ≤ Bi z

j + ui < �ρi
 + 1 for some j ∈ N,
and therefore (x∗, zj) ∈ Ri , showing that Ri 	= ∅.

Thus, after determining x∗ and computing the infimum value ρi of m BMILPs
(14), we obtain the polynomial-sized, integer vector r = (�ρi
)i=1,...,m such that there
exists an optimal solution (x∗, z) to the original BMILP (1)–(3) satisfying

z ∈ projz Rm ⊆ Q :=
{
z ∈ R

d : Cx∗ + Dz ≤ p, z ≥ 0, c · x∗ + e · z = v∗
r ≤ Bz + u < r + 1

}
,

where 1 is the all-ones vector in Z
m. As in the proof of Proposition 2.1 we note

that every z ∈ Q gives rise to an optimal solution (x∗, z). We now show how to find

146 J Optim Theory Appl (2010) 146: 137–150

one such optimal solution whose binary encoding length is polynomial in the input
size. Let k = 1 + dimQ. Find k affinely independent vertices z1, . . . , zk of clQ. This
can be done in polynomial time since clQ is a polytope (see, e.g., [23], page 186).
By standard results in linear optimization, the vertices z1, . . . , zk can be written as
rational numbers in 1

�
Z

d where � is the least common multiple of the determinants
of the bases of the constraint submatrix associated with the basic feasible solutions
z1, . . . , zk . Note that � has encoding length polynomial in the input size. It is possible
that none of the zj lie in Q, since Q is not closed, but nonetheless their barycenter
z∗ = ∑k

j=1
1
k

zj is guaranteed to be in Q and also in the set 1
k�

Z
d . Thus it has a

binary encoding length polynomial in the input size.
It follows that (x∗, z∗) is an optimal solution to (1)–(3) and can be found in poly-

nomial time. �

We note, in particular, that this theorem provides a polynomial-time algorithm to
decide if a BMILP instance has an optimal solution. To the authors’ knowledge, this
is the first algorithm to achieve this in the literature on discrete bilevel optimization.
The existence of solutions in the case where z is continuous has long been known
not to be guaranteed (see for instance [16]) but little is known in terms of necessary
and sufficient conditions for existence. Dempe and Richter [12] explore the setting
where the lower level problem is a knapsack problem, and they provide necessary
and sufficient conditions for existence of solutions, but there have been no studies of
this kind in a more general setting. An efficient algorithm to decide the existence of
solutions, such as the one in Theorem 3.1, may be helpful in investigations of this
kind.

A final question remains: what can we say about the BMILP problem (1)–(3) when
the infimum is not attained? In such a case it may be desirable to find ε-optimal solu-
tions whose objective values approximate the infimum. The following result demon-
strates how we can adjust our arguments to find ε-optimal solutions.

Corollary 3.1 Let ε > 0 be given in binary encoding. Given a feasible instance of
the BMILP problem (1)–(3) with infimum value v∗, there exists an algorithm to find
a feasible solution (x, z) that satisfies c · x + e · z ≤ (1 + ε)v∗. The algorithm runs in
polynomial time when the follower’s dimension n is fixed.

Proof By Theorem 3.1 part (ii) we can decide in polynomial time if the infimum is
attained. If so, by using part (iii) of the same theorem we can find an optimal solution
(x∗, z∗) that satisfies c · x∗ + e · z∗ = v∗ ≤ (1 + ε)v∗.

If we find that the infimum is not attained we apply a similar procedure as in the
proof of Theorem 3.1 part (iii). By replacing the condition c · x∗ + e · z = v∗ with the
condition c · x + e · z ≤ (1 + ε)v∗, the result follows immediately. �

It should be noted that this algorithm achieves a stronger form of efficiency than
a fully polynomial time approximation scheme (FPTAS). In an FPTAS, the error
ε is given in unary encoding, whereas in our algorithm ε enters as input in binary
encoding, since its value only plays a role in the constraint c · x + e · z ≤ (1 + ε)v∗+.
In this sense, we have obtained a “better than fully polynomial time” approximation
scheme to yield solutions with objective value ε-close to the infimum.

J Optim Theory Appl (2010) 146: 137–150 147

A distinguishing feature of our main result, Theorem 3.1, is that the dimension
d of the leader’s variable need not be fixed in order to assure a polynomial running
time. Note, however, that this result in no way conflicts with the fact that bilevel
linear programming, in which both x and z are continuous and the dimension of both
x and z are allowed to vary, is an NP-hard problem. In our setting it is the leader’s
variable only which is allowed to be continuous and have varying dimension, and an
important ingredient in our proof is that there are only finitely many integer right-
hand sides βi(z) = �Biz + u
 to consider when the matrix A and decision variables
x are integer.

4 Algorithm for Bilevel Integer Linear Programming

We can also extend our results to the pure integer setting, where z is further restricted
to be integer. We refer to this problem as the bilevel integer linear programming
(BILP) problem, an instance of which is specified by the same data as BMILP and
the same constraints (1)–(3) with the additional integrality condition

z ∈ Z
d . (15)

As above, we assume that the feasible set F ′ defined in (9) is bounded.

Theorem 4.1 There exists an algorithm that solves the BILP problem (1)–(3) and
(15) in the following sense: the algorithm

(i) decides if a given instance is feasible;
(ii) if it is feasible, finds an optimal solution.

The algorithm runs in polynomial time when the total dimension d + n is fixed.

Proof
(i) Feasibility can be established in polynomial time by applying Lenstra’s in-

teger programming algorithm [17] to decide if {(x, z) ∈ P : Ax ≤ Bz + u, (x, z) ∈
Z

n+d} 	= ∅.
(ii) Assume the instance is feasible. The idea of how to determine an optimal

solution is similar to, but simpler than, the mixed integer case, as we use binary
search to directly find the lexicographically minimal optimal solution (x∗, z∗). To
begin, consider the decision problem BILPα , which is identical to BMILPα with the
additional integrality condition (15).

Problem BILPα can be decided in polynomial time using an algorithm similar to
that in Proposition 3.1. Indeed, if we simply redefine

Qα = {(b, x, b) : c · x + e · b(3) ≤ α, Cx + Db(3) ≤ p, b(3) ≥ 0,

Ax ≤ b(2), b(1) = ψ · x − 1, b(2) = Bb(3) + u},

and let p = n + d , the algorithm in the proof of Proposition 3.1 decides BILPα .

148 J Optim Theory Appl (2010) 146: 137–150

It is then straightforward to find the optimal value v∗ of the given BILP instance
using binary search as in the proof of Lemma 3.1 and stopping when the search
interval has length less than one.

Given the optimal value v∗ we again use binary search to determine the lexico-
graphically minimal optimal solution (x∗, z∗). The procedure to find x∗ is identical
to that described in the proof of Theorem 3.1. The procedure to find z∗ is also similar.
We successively determine each component of z∗ as follows: assume that all compo-
nents z∗

k for k = 1, . . . , j − 1 have already been determined. Then z∗
j is the optimal

value of the BILP

min
z

zj ,

s. t. Cx∗ + Dz ≤ p; z ≥ 0; z ∈ Z
d , c · x∗ + e · z = v∗;

zk = z∗
k, for k = 1, . . . , j − 1;

x∗ ∈ argmin
x′

{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Z
n}.

Since this problem is feasible and its objective is integer valued and bounded, its
optimum value is attained, and can be determined as in the previous paragraph.

The result then follows. �

We point out that an alternate algorithm satisfying the conditions of the previous
theorem can be obtained by applying a rational generating function technique similar
to that found in [21]. The algorithm is very similar to that in the Stackelberg–Nash
setting of Sect. 6 in that paper. The differences are: (i) there is only a single follower
as opposed to a group of followers (hence any follower’s optimal decision is trivially
a “Nash equilibrium”); (ii) the payoffs are linear instead of piecewise linear; and
(iii) the set constraining the leader’s actions is more complicated and depends on
the action of the follower, see (2), whereas in the Stackelberg–Nash setting of [21]
the leader’s choice set is independent of the actions of the followers. Nonetheless,
these differences are minor and easily handled by the rational generating function
technique described in [21]. Details are thus omitted.

How do these two algorithms to solve BILP—the one based on parametric inte-
ger programming versus the one based on rational generating function techniques—
compare in terms of efficiency? It is accurate to say that the algorithm using paramet-
ric integer programming is more direct and simpler. Indeed, the rational generating
function approach relies on a strong result called the “Projection Theorem” (Theo-
rem 1.7 in [24]) which, although it has polynomial running time (in fixed dimension),
was until recently thought to be virtually unimplementable in practice. Only recently
has the Projection Theorem been implemented in the library barvinok developed
by Sven Verdoolaege [25]. Moreover, the current implementation appeals to the re-
sults in [19], some of the very same results that we use more directly in the develop-
ment of our first approach (see [26] for more details). Future work would be required
to improve implementations of the Projection Theorem to yield a practical solution
method for bilevel integer programs.

J Optim Theory Appl (2010) 146: 137–150 149

As for computational comparisons, in the pure integer setting, between the our two
algorithms of Theorem 4.1 herein and those of Moore and Bard [16] and DeNegre
and Ralphs [13], this is also a direction for future work.

5 Conclusions

In this paper we have detailed an algorithm which solves the BMILP problem (1)–(3)
in polynomial time when the dimension of the follower’s integer decision variable
is fixed. It solves BMILP in the following strong sense: under our boundedness and
integral data assumptions, it decides if the problem is feasible, and if so determines
its infimum; if the infimum is attained, it finds an optimal solution, else it finds an
ε-optimal solution for any ε > 0 given as input in binary encoding.

This algorithm is based on recent results in parametric integer programming due
to Eisenbrand and Shmonin [19] combined with binary search to find the infimum
objective value and an optimal or ε-optimal solution. A simplified version of our
algorithm also solves the pure integer problem BILP (1)–(3) and (15) in polynomial
time when the total number of decision variables is fixed.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Labbe, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway
pricing. Manag. Sci. 44(12), 1608–1622 (1998)

2. Cote, J.-P., Marcotte, P., Savard, G.: A bilevel modelling approach to pricing and fare optimization in
the airline industry. J. Revenue Pricing Manag. 2(1), 23–47 (2003)

3. Fischer, K.: Sequential discrete p-facility models for competitive location planning. Ann. Oper. Res.
111, 253–270 (2004)

4. Marinakis, Y., Migdalas, A., Pardalos, P.M.: A new bilevel formulation for the vehicle routing problem
and a solution method using a genetic algorithm. J. Glob. Optim. 38(4), 555–580 (2007)

5. Chinchuluun, A., Pardalos, P.M., Huang, H.X.: Multilevel (hierarchical) optimization: complexity
issues, optimality conditions, algorithms. In: Advances in Applied Mathematics and Global Opti-
mization in Honor of Gilbert Strang. Advances in Mechanics and Mathematics Series, vol. 17, pp.
197–222. Springer, Berlin (2009)

6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1),
235–256 (2007)

7. Dempe, S.: Foundations of bilevel programming. Nonconvex Optimization and Its Applications,
vol. 61. Kluwer, Dordrecht (2002)

8. Migdalas, A., Pardalos, P.M. (eds.): Hierarchical and bilevel programming [Special Issue]. J. Glob.
Optim. 8(3), 209–322 (1996)

9. Al-Khayyal, F.A., Horst, R., Pardalos, P.M.: Global optimization of concave functions subject to
quadratic constraints: an application in nonlinear bilevel programming. Ann. Oper. Res. 34(1), 125–
147 (1992)

10. Migdalas, A., Pardalos, P.M.: Nonlinear bilevel problems with convex second level problem: Heuris-
tics and descent methods. In: Du, D.Z., Zhang, X.S., Chuan, K. (eds.) Operations Research and Its
Applications, pp. 194–204. World Publishing, Singapore (1995)

11. Dempe, S.: Discrete bilevel optimization problems. Preprint, can be accessed at
http://citeseer.ist.psu.edu/dempe01discrete.html, October 2001

http://citeseer.ist.psu.edu/dempe01discrete.html

150 J Optim Theory Appl (2010) 146: 137–150

12. Dempe, S., Richter, K.: Bilevel programming with knapsack constraints. Cent. Eur. J. Oper. Res. 8,
93–107 (2000)

13. DeNegre, S.T., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. Oper.
Res. Cyber-Infrastruct. 65 (2008)

14. Gumus, Z.H., Floudas, C.A.: Global optimization of mixed-integer bilevel programming problems.
Comput. Manag. Sci. 2(3), 181–212 (2005)

15. Vicente, L., Savard, G., Judice, J.: Discrete linear bilevel programming problem. J. Optim. Theory
Appl. 89(3), 597–614 (1996)

16. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper. Res. 38, 911–921
(1990)

17. Lenstra, Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983)

18. Deng, X.: Complexity issues in bilevel linear programming. In: Migdalas, A., Pardalos, P.M., Var-
brand, V. (eds.) Multilevel Optimization: Algorithms and Applications. Nonconvex Optimization and
Its Applications, vol. 20, pp. 149–164. Springer, Berlin (1998)

19. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension. Math. Oper. Res.
33(4), 839–850 (2008)

20. Kannan, R.: Lattice translates of a polytope and the Frobenius problem. Combinatorica 12(2), 161–
177 (1992)

21. Köppe, M., Ryan, C.T., Queyranne, M.: Rational Generating Functions and Integer Programming
Games (2008). Arxiv preprint arXiv:0809.0689

22. Kwek, S., Melhorn, K.: Optimal search for rationals. Inf. Process. Lett. 86(1), 23–26 (2003)
23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Math-

ematics and Optimization. Wiley, Chichester (1986)
24. Barvinok, A., Woods, K.M.: Short rational generating functions for lattice point problems. J. Am.

Math. Soc. 16, 957–979 (2003)
25. Verdoolaege, S.: barvinok. Available from URL http://freshmeat.net/projects/barvinok/ (2006)
26. Köppe, M., Verdoolaege, S., Woods, K.M.: An implementation of the Barvinok-Woods integer pro-

jection algorithm. In: International Conference on Information Theory and Statistical Learning (June
2008) pp. 53–59 (2008)

http://arxiv.org/abs/arXiv:0809.0689
http://freshmeat.net/projects/barvinok/

	Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs
	Abstract
	Introduction
	Definition and Preliminary Results
	Algorithm for Bilevel Mixed Integer Linear Programming
	Algorithm for Bilevel Integer Linear Programming
	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

