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MQF and buffered MQF: quotient filters 
for efficient storage of k‑mers with their counts 
and metadata
Moustafa Shokrof1, C. Titus Brown2 and Tamer A. Mansour2,3* 

Background
Online algorithms effectively support streaming analysis of large data sets, which is 
important for analyzing data sets with large volume and high velocity [1]. Approximate 
data structures are commonly used in online algorithms to provide better average space 
and time efficiency [2]. For example, the Bloom filter supports approximate set member-
ship queries with a predefined false positive rate (FPR) [3]. The count-min sketch (CMS) 
is similar to Bloom filters and can be used to count items with a tunable rate of overesti-
mation. However, there are a number of problems with Bloom filters and the CMS—in 
particular, they do not support data locality.

The counting quotient filter (CQF) is a more efficient data structure that serves similar 
purposes with better efficiency for skewed distributions and much better data locality 

Abstract 

Background: Specialized data structures are required for online algorithms to effi-
ciently handle large sequencing datasets. The counting quotient filter (CQF), a compact 
hashtable, can efficiently store k-mers with a skewed distribution.

Result: Here, we present the mixed-counters quotient filter (MQF) as a new variant of 
the CQF with novel counting and labeling systems. The new counting system adapts 
to a wider range of data distributions for increased space efficiency and is faster than 
the CQF for insertions and queries in most of the tested scenarios. A buffered version 
of the MQF can offload storage to disk, trading speed of insertions and queries for a 
significant memory reduction. The labeling system provides a flexible framework for 
assigning labels to member items while maintaining good data locality and a concise 
memory representation. These labels serve as a minimal perfect hash function but 
are ~ tenfold faster than BBhash, with no need to re-analyze the original data for further 
insertions or deletions.

Conclusions: The MQF is a flexible and efficient data structure that extends our ability 
to work with high throughput sequencing data.

Keywords: Compact hash tables, k-mers, Debruijn graphs, NGS, Inexact data 
structures
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[4]. The CQF is a recent variant of quotient filters that tracks the count of its items using 
a variable size counter. As a compact hashtable, CQF can perform in either probabilistic 
or exact modes and supports deletes, merges, and resizing.

Analysis of k-mers in biological sequencing data sets is an ongoing challenge [5]. 
K-mers in raw sequencing data often have a Zipfian distribution, and the CQF was built 
to minimize memory requirements for counting such items [4]. However, this advantage 
deteriorates in applications that require frequent random access to the data structure, 
and where the k-mer count distribution may change in response to different sampling 
approaches, library preparation and/or sequencing technologies. For example, k-mer 
frequency across 1000  thousands of RNAseq experiments shows different patterns of 
abundant k-mers [6].

Data structures like CMS [7] and CQF [4] also do not natively support associating 
k-mers with multiple values, which can be useful for coloring in De Bruijn graphs as well 
as other features [8–10]. Classical hash tables are designed to associate their keys with 
a generic data type but they are expensive memory-wise [11]. Tools like jellyfish [12] 
and CHTKC [13] use lock free hash tables in their k-mer counting algorithms. Minimal 
Perfect Hash Functions (MPHFs) can provide a more compact solution by mapping each 
k-mer into a unique integer. These integers can then be used as indices for the k-mers to 
label them in other data structures [14]. An implementation capable of handling large 
scale datasets with fast performance requires ~ 3 bits per element [15]. However, such a 
concise representation comes with a high false-positive rate on queries for non-existent 
items. Moreover, unlike hashtables, MPHF does not support insertions or deletions thus 
any change in the k-mer set would require rehashing of the original dataset.

In this paper, we introduce the mixed-counters quotient filter (MQF), a modified 
version of the CQF with a new encoding scheme and labeling system supporting high 
data locality. We further show how Buffered MQF can be used to scale MQF to solid-
state disks. We compare between MQF and the CQF, CMS, and MPHF data structures 
regarding memory efficiency, speed performance, and applicability to specific data anal-
ysis challenges. We further do a direct comparison of the CMS to MQF in the khmer 
software package for sequencing data analysis, to showcase the benefits of MQF is in 
real world applications.

Results
MQF has a lower load factor than CQF

The load factor is defined as the actual space utilized divided by the total space assigned 
for the data structure, and is an important measure of data structure performance. To 
compare load factors between the CQF and MQF data structures, instances of both 
structures were created using the same number of slots ( 227 ). Chunks of items from thir-
teen datasets with different distributions of item frequencies were inserted iteratively to 
be counted in both data-structures while recording the load factor after the insertion 
of each chunk. After the insertion of each chunk, both data structures were checked to 
confirm having the exact same hashes. The experiments stopped when MQF’s load fac-
tor reached 90%. MQF had lower loading factors for all tested datasets but the difference 
was minimal for the dataset with the highest Zipfian distribution (Z = 5). The lower the 
tested Zipfian distribution the lower the loading factor of MQF.
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A lower loading factor enabled MQF to exceed the double CQF capacity with uniform 
distribution. Analysis of real k-mers from 8 sequencing datasets showed ~ 40% increase 
on average in the capacity of MQF in comparison to the matching CQF (Fig. 1, Addi-
tional file 1: Figure S1 and Table S1).

MQF is usually more memory efficient than CQF

Progressively increasing numbers of items were sampled from the real and Zipfian-simu-
lated datasets. The smallest CQF and MQF to store the same number of items from each 
dataset were created. To do that, the q parameter of CQF versus the q and  Fsize param-
eters of MQF were calculated empirically. Starting with a small q, CQF and MQF were 
tested to count the items. The q was incremented to find the smallest value that enables 
the structure to hold the items. MQF was more memory efficient for most real k-mers 
and Zipfian-simulated distributions (Fig. 2, Additional file 1: Figure S2). The tuning of 
the  Fsize enabled MQF to grow in size gradually compared to CQF which has to double 
in size to fit the minimal increase in items beyond the capacity of a given q value (Addi-
tional file 1: Figure S3). Therefore, comparing the optimum parameters used to generate 
both data structures (Additional file 2: Table S2) shows that MQF is always more mem-
ory efficient if  Fsize > 1, while CQF could be slightly more memory efficient if  Fsize = 1. 

Fig. 1 MQF has a lower load factor compared to CQF. Chunks of items, from different frequency distributions, 
were inserted iteratively to matching CQF and MQF structures. MQF had lower loading factors for all tested 
datasets with better performance with more uniform distributions (The further from the 45° line the better 
the MQF). Real k-mers used here is generated from the ERR1050075 experiment to represent real sequencing. 
Additional file 1: Figure S1 shows the comparisons between 8 real datasets
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This is more likely to happen if sequencing datasets are highly erroneous or very poly-
morphic (e.g. mitochondrial genome sequencing in SRR12989394). Also, if sequencing 
has a very low coverage causing most of the k-mers to appear once (e.g. smalls subsets 
of whole genome sequencing data in ERR992657). MQF comes with a utility file (https ://
githu b.com/dib-lab/MQF/blob/maste r/inclu de/utils .h) to allow predicting the optimum 
MQF parameters.

MQF is faster than CQF and low‑FPR CMS

The in-memory and buffered MQFs were evaluated for speed of insertion and query in 
comparison to three in-memory counting structures: CQF, the original CMS [7], and 
khmer’s CMS [16]. To test the effect of FPR on the performance, the experiment was 
repeated for 4 different FPRs (0.1, 0.01, 0.001, 0.0001). All tested structures were con-
structed to have approximately the same memory space except for buffered MQF which 
used only one-third of this memory for buffering while the full-size filter is on the disk. 
MQF is guaranteed to hold the same number of items as a CQF having the same number 
of slots. The number of slots in CQF was chosen so that the load factor was more than 
85% and the MQFs were created with an equal number of slots. Items were sampled to 
be counted from the real and Zipfian-simulated datasets. After finishing the insertion, 
to assess the query rate, 5 M items from the same distribution as the insertion datasets 
were queried. Half of the query items did not exist in the insertion datasets.

MQF has slightly yet persistent faster insertion and query rates compared to CQF with 
minimal, if any, effect of the FPR on either structure. The performance of CMS is bet-
ter with higher FPR and Khmer’s implementation of CMS doubles the query rate of the 
original one. However, MQF is always faster than both CMS unless the FPR is more than 
0.01 (Fig. 3, Additional file 1: Figures S4, S5).

MQF outperforms CMS in real‑world problems

Khmer is a software package deploying a new implementation of CMS for k-mer count-
ing, error trimming and digital normalization [16]. To test MQF in real-life applications, 
we assessed the performance of the Khmer software package using CMS versus our new 
implementation using MQF (https ://githu b.com/dib-lab/khmer /tree/MQFIn tegra tion2 

Fig. 2 Memory consumption comparison between CQF and MQF. The graph compares the memory 
consumption of the smallest CQF and MQF that fits different datasets. The bigger the value on the y-axes, 
the more memory the MQF saved. Real k-mers used here is generated from the ERR1050075 experiment to 
represent real sequencing. Additional file 1: Figure S2 shows the comparisons between 8 real datasets

https://github.com/dib-lab/MQF/blob/master/include/utils.h
https://github.com/dib-lab/MQF/blob/master/include/utils.h
https://github.com/dib-lab/khmer/tree/MQFIntegration2
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). A real RNA seq dataset with 51 million reads from the Genome in a Bottle project 
[17] was used for error trimming and digital normalization; two real-world applica-
tions that involve both k-mer insertions and queries. An exact MQF was used to create 
a benchmark for the approximate data structures. It took 5 Gb RAM to create the data 
structure and 45 and 43 min to perform trimming and digital normalization respectively. 
The optimal memory for MQF and the optimal number of hash functions for CMS were 
calculated to achieve the specified false-positive rates. The CMS was constructed with 
the same size as the corresponding MQFs. The CMS and MQF versions of Khmer were 
compared regarding the speed and accuracy (Table 1).

MQF is faster than MPHF

MPHF is constructed by default to fit the input k-mers while MQF would have different 
load factor that might affect its performance. To address this question, four growing sub-
sets of real k-mers were inserted into MQFs of size 255 MB to achieve 60%, 70%, 80%, 
and 90% load factors. For labeling, the order of the 1st k-mer in each block was stored 
in the external labeling space (See the methods section). MPHFs were constructed with 
sizes ranging from 15 to 22 MB to fit the four datasets. All data structures were queried 

Fig. 3 Performance comparison of four data-structures: MQF, CQF, buffered MQF (using 1/3 the size of other 
structures), Khmer implementation of CMS, and original implementation of CMS: Insertions rate (left panel) 
and query rate (right panel). The performance is plotted as a bar graph where the pattern of each bar shows 
the cumulative increase in insertions or queries for different false positive rates. Real k-mers used here is 
generated from the ERR1050075 experiment to represent real sequencing. Additional file 1: Figures S4 and S5 
show the comparisons between 8 real datasets

Table 1 Khmer performance in  error trimming and  digital normalization using MQF 
and CMS

a Percentages of wrong decisions made by CMS at FPR = 0.1 in error trimming and digital normalization are 0.8% and 0.13% 
of the total number of decisions versus 0.02% and 0.01% made by MQF

FPR Memory in GB Error trimming Digital normalization Error 
Bound 
in CMS

Hash 
func. In 
CMS

Time 
in min

Missed reads 
with errors

Time 
in min

Reads kept 
by error

MQF CMS MQF CMS MQF CMS MQF CMS

10–1 1.8 42 39 11,011 445,817a 39 37 3253 31,143a 13,11 3

10–2 2.6 43 48 1304 404,354 41 45 416 24,987 14 5

10–3 3.4 44 61 130 311,464 42 54 58 21,000 15 7

10–4 4.5 44 75 3 292,746 42 68 4 18,449 16 10

Exact 5 45 – 0 – 43 – 0 – – –
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with 35 M existing k-mers and the query times were reported. The MQFs were ~ 10 folds 
faster than the MPHFs. The query time of the MQF was invariable over the different 
load factors (Additional file 1: Figure S6).

Discussion
MQF is a new variant of counting quotient filters with novel counting and labeling sys-
tems. The new counting system increases memory efficiency as well as the speed of 
insertions and queries for a wide range of data distributions. The labeling system pro-
vides a flexible framework for labeling the member items while maintaining good data 
locality and a concise memory representation.

MQF is built on the foundation of CQF. MQF has the same ability to behave as an 
exact or approximate membership query data structure while tracking the count of 
its members. The insertion/query algorithm developed for CQF enables this family of 
compact hashtables to perform fast under high load factor (up to 95%) [4]. CQFs are 
designed to work best for data from high Zipfian distributions. However, previous k-mer 
spectral analysis of RNAseq datasets showed substantial deviations from a Zipfian dis-
tribution in thousands of samples [6]. Such variations in distribution are expected given 
the variety of biosamples, the broad spectrum of sequencing techniques, and different 
approaches to data preprocessing.

MQF implements a new counting system that allows the data structure to work effi-
ciently with a broader range of data distributions. The counting system adopts a sim-
ple encoding scheme that uses a fixed small space alone or with a variable number of 
the filter’s slots to record the count of member items (Fig. 4). Items with small counts 
utilize the small fixed-size counters. Therefore, slots, used to be consumed by CQF as 
counters for these items, are freed to accommodate more items in the filter. The MQF’s 
load factor grows slower than CQF with all distributions except the extreme Zipfian case 
(Z = 5) where the load factor is almost the same (Fig. 1). This is why the memory require-
ment for MQFs is usually smaller compared to CQFs under most distributions despite 
the extra space taken by the fixed counters (Fig. 2). The size of the fixed-size counter is 
constant independent of the slot size, therefore the memory requirement for this coun-
ter will be trivial with big slots for smaller FPRs and almost negligible in the exact mode. 
However, this fixed-size counter comes with an additional advantage for MQF. Tuning 
the size of the fixed-size counter enables the filter to accommodate more items with a 
slightly larger slot size. This allows the memory requirement for MQF to grow gradually 
instead of the obligatory size doubling seen in CQF (Fig.  2 and Additional file  1: Fig-
ures S2, S3).

Moreover, the new counting scheme in MQF is simplified compared to that of the 
CQF. MQF defines the required memory for any item based solely on its count (Addi-
tional file 1: Figures S7, S8). Therefore, an accurate estimation of the required memory 
for any dataset can be done extremely quickly by an approximate estimation of data dis-
tribution [18, 19]. This is unlike CQF which needs to add a safety margin to account for 
the special slots used by the counter encoding technique since it is impossible to esti-
mate the number of these slots.

Regarding the speed of insertions and queries, MQF is slightly faster than CQF 
(Fig.  3). This could be explained partially by the lower load factor of MQF and 
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partially by the simplicity of the coding/decoding scheme of its counting system. Both 
MQF and CQF are faster than CMS unless the target FPR is really high (e.g. FPR > 0.1) 
(Fig. 3). CMS controls its FPR by increasing the number of its hash tables requiring 
more time for insertions and queries to happen. In comparison, quotient filters use 
always one function but with more hash-bits to control the FPR, with a minimal effect 
on the insertion/query performance (Fig.  3). With high FPR (e.g. FPR = 0.1), CMS 
uses fewer hash functions and is better performing than MQF. A quotient filter or 
CMS with a FPR = δ should have the same probability of item collisions. However, the 
quotient filter will be more accurate because CMS has another type of error with a 
probability ( 1− δ ), which incorrectly increases the count of its items. This error is a 
“bounded error” with a threshold that inversely correlates with the width of the CMS 
[7]. In another sense, some applications might deploy CMS with a smaller table’s 
width to be more memory efficient than MQF if the application can tolerate a high 
bounded error.

Buffered MQF can trade some of the speed of insertions and queries for significant 
memory reduction by storing data on disk. The buffered structure was developed to 
make use of the optimized sequential read and write on SSD. The buffered structure 
processes most of the insertion operations using the bufferMQF that resides in mem-
ory, thereby limiting the number of access requests to the MQF stored on the SSD 
hard drive. Sequential disk access happens when the bufferMQF needs to be merged 
to the disk. This approach is very efficient for insertions but not for random queries 
which require more frequent SSD data access. Therefore, bufferMQF is best used for 
the applications where insertions represent the performance bottleneck e.g. k-mer 
counting applications [5] and sequencing dataset indexing [20]. Moreover, in k-mer 
analysis of huge raw datasets, buffered MQF can be used initially to filter out the low 
abundant k-mers (i.e. likely erroneous k-mers), then an in-memory MQF holding the 
filtered list of k-mers could be used for subsequent application requiring frequent 

Fig. 4 MQF block structure. Each MQF block contains 64 slots with their metadata, a one-byte block offset, 
and configurable size space to hold the number of items inserted in the filter before the current block. The 
metadata of each slot consumes r bits, one bit for each isOccupied and isRunEnd metadata, and configurable 
f-bits and t-bits for the fixed counter and the slot-specific label respectively
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random queries. This allows multistage analyses where a first pass eliminates likely 
errors to minimize the memory requirements of computationally demanding applica-
tions like in the case of widely used graph-based algorithms [21, 22].

CMS is commonly used for online or streaming applications as long as their high error 
rate can be tolerated [23]. MQF has a better memory footprint in the approximate mode 
for lower error rates and thus can compute with CMS for online applications. A major 
advantage of quotient filters compared to CMS is the dynamic resizing ability in response 
to the growing input dataset [4]. The buffered version of MQF can be very useful when 
the required memory is still bigger than the available RAM. We should, however, note that 
online applications on MQF cannot make use of the memory optimization that could be 
achieved with an initial estimation of the filter parameters. A new version of the Khmer 
software that replaces CMS with MQF proves that the new data structure is more efficient 
in real-life applications. The MQF version is faster than the one with CMS unless the target 
FPR is high. Also, MQF is always more accurate than CMS although both structures have 
the same FPR. This behavior of CMS is due to the high error bound of its counts.

Unlike CQF, MQF is designed to be a more comprehensive associative data structure. 
MQF comes with a novel labeling system that supports associating each k-mer with multi-
ple values to avoid redundant duplication of k-mers’ keys in separate data structures. There 
are two types of labels: Internal labels adjacent to each item to achieve the best cache local-
ity by storing labels next to the k-mer. However, it has a fixed size and thus practically useful 
when a small size label is needed. The second labeling system is to label the k-mers with 
one or more labels stored in external arrays while using the k-mer order in the MQF as an 
index. External labeling is very memory efficient mimicking the idea of the minimal perfect 
hash function (MPHF) [14, 15]. MPHF undoubtedly has the lowest memory requirement 
of all the associative data structures [15]. However, MQF has better performance in both 
the construction and query phases. For construction, both structures require initial k-mer 
counting. MQF needs just an extra O(N) operation to update the block labels where N is 
the number of its unique k-mers. MPHF has to read then rehash the list of unique k-mers 
possibly more than once which makes it slower than MQF. For query operations, MQF is 
10 × faster regardless of the load factor of MQF (Additional file 1: Figure S6).

Furthermore, MQF offers more functionality and has fewer limitations than MPHF. MQF 
is capable of labeling a subset of its items which saves significant space for many applica-
tions. For example, k-mer analysis applications may want to only label the frequent k-mers, 
as an intermediate solution between pruning all the infrequent k-mers and labeling all the 
k-mers. Moreover, MQF allows online insertions and deletions of items as well as merging 
of multiple labeled MQFs (See the methods) while MPHF—which doesn’t store the items—
needs to be rebuilt over the whole dataset, which requires reading and rehashing the data-
sets. Furthermore, MQF can be exact, while MPHF has false positives when queried with 
novel items that don’t belong to the indexed dataset.

Conclusions
MQF is a new counting quotient filter with a simplified encoding scheme and an efficient 
labeling system. MQF adapts well to a wide range of k-mer datasets to be more memory 
and time-efficient than its predecessor in many situations. A buffered version of MQF 
has a fast insertion algorithm while storing most of the structure on external memory. 
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MQF combines a fast access labeling system with MPHF-like associative functionality. 
MQF performance, features, and extensibility make it a good fit for many online algo-
rithms of sequence analysis.

Methods
MQF data structure

MQF has a similar structure to CQF with a different scheme of metadata that ena-
bles different counting and labeling systems (Fig.  4). Like the CQF, the MQF requires 
2 parameters, r and q, and creates an array of 2q slots; each slot has r-bits. In MQF, Qi 
is the slot at position i where i = 1 … 2q . The MQF maintains the block design of CQF 
where each block has 64 slots with their metadata and one extra byte of metadata called 
Offset to enhance the query of items [4]. Both MQF and CQF have two metadata bits to 
accompany each slot: isRunEndi and isOccupiedi. In the MQF, each slot i has extra meta-
data, a fixed-size counter with a value ( Fi ) and a configurable size  (Fsize). There are also 
two optional fixed-size parts of metadata allocated to allow different styles of labeling. 
Every slot has specific labeling (STi) with a configurable size (STsize ≥ 0), and every block 
(j) has an optional space of a configurable size designed to store the number of items in 
the previous blocks.

The MQF uses the same insertion/query algorithm of CQF [4]. In brief, suppose item 
I, repeated c times, is to be inserted into Q. A hash function H is applied to I to generate 
a p-bit fingerprint (H(I)). H(I) value is split into two parts, a quotient and remainder. The 
quotient ( qi ) is the most significant q bits while the remainder ( ri ) is the remaining least 
significant r bits. The filters store ri in a slot Qj where j is determined by linear probing 
stating from qi . One or more slots can be used to store the count of the same item. If the 
required slots for the item or its count are not free, all the consecutive occupied slots 
starting from this position will be shifted to free the required space. All items having 
the same q are stored into consecutive slots and are called a run. Items in the run are 
sorted by ri , and isRunEnd of the last slot in the run is set to one. isOccupied (qi) is set to 
one if and only if there is a run for qi . Therefore, there is one bit set to one in each isOc-
cupied and isRunEnd for each run. To query item I, a Rank and Select method is applied 
on the metadata arrays to get the run start and end for qi . Then all the items in the run 
are searched linearly for the slot containing ri . The subsequent one or more slots can be 
decoded to get the count of item I. CQF uses a special encoding scheme to recognize 
these counting slots but MQF utilizes the fixed-counter metadata element (see below).

Counting scheme

MQF uses variable-length integers to encode the k-mers count as shown in Fig. 5. It uses 
as many slots as required to encode the count while using the fixed-size space of the 
slots to mark the last slot. To do so, each fixed-size space in all slots before last is 
assigned its max value ( Fmax ), while the fixed-size space of the last slot stores the most 
significant bits of the count ( Fi ) where ( Fi < Fmax ). If the value of the most significant 
bits is equal to Fmax , an extra slot with zero bits will be added (see example 3 in Fig. 5). 
For an item with count c, the fixed-size space of the item’s slot is enough for counting 
until c ≥ Fmax where the number of required slots for counting can be calculated as 
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CEILING
(

abs(log2(c−Fmax)−Fsize)
r

)

+ FLOOR
(

cs
Fmax

)

 where cs represents the decimal value 

of the most significant bits. In comparison to the CQF, the MQF does not use special 
slots to resolve ambiguities, which is more memory efficient (Additional file 1: Figures S7 
and S8). The counter encoding algorithm is described in Additional file 1: Figure S9.

Parameter estimation

For offline counting applications, the MQF parameters (q, r,  Fsize) can be even more opti-
mized for each dataset to create the most memory-efficient filter that has enough slots 
to fit all unique items and their counts. The q parameter defines the number of slots 
(N) in MQF where q = log2(N ) . The required numbers of slots for items and their count 
can be estimated from the cardinality of the target dataset, as with CQF. The r param-
eter is calculated from the equation r = p-q where p is the total number of hash-bits 
used to represent each item. In the exact mode, p equals the exact output of a reversible 
hash function. In the inexact mode, p is controlled by the target FPR ( δ ) according to 
the equation p = log2

N
δ

 described before [4]. The  Fsize parameter defines the size of the 
fixed-size counter. This is critical because if a given MQF has too few slots for items in a 
dataset, the bigger MQF would have to double the number of slots causing a big jump in 
the memory requirement. To avoid that jump, MQF can use larger fixed size counters to 
decrease the number of slots required in counting on the expense of a slight increase in 
the slot size. MQF comes with a utility file (https ://githu b.com/dib-lab/MQF/blob/maste 
r/inclu de/utils .h) to enable the calculation of the optimum parameters.

Labeling system

MQF can map each item to its count as well as other values, which we call “labels”. Labels 
in MQF have two different systems. An internal labeling system stores the associated 

Fig. 5 MQF counters encoding scheme. Items and their counts are stored in n slots and n fixed counter as 
shown in the general rule. Each example stores the same item but different count (count = 3, 4864, or 466)

https://github.com/dib-lab/MQF/blob/master/include/utils.h
https://github.com/dib-lab/MQF/blob/master/include/utils.h
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value for every key in the data structure, like a hash table. This label has a fixed size 
defined at the initialization of the MQF and is practically useful when a small size label 
is needed (e.g. one or two bits). The second labeling system labels the block. We use this 
label to store the number of items inserted in the MQF before each block. This enables 
labeling the items of the filter by separate arrays matching the order of the items in the 
filter, a behavior that can act as a minimal perfect hash function [15]. The naive way to 
compute the items’ order is to find the item in the MQF and iterate backward until the 
beginning of the filter to count the number of the preceding items, which is an O(N) 
operation. The MQF stores the number of items that exist before each block; therefore, 
the MQF iterates only to the beginning of each block, which is an O(1) operation. The 
number of previous items for each block is computed after the MQF is constructed. Any 
additional insertions or deletions of items would only require re-calculation of the block 
label values with no need to re-analyze the original data. Moreover, labeled MQFs can be 
updated by merging multiple labeled MQFs and their external labeling arrays. External 
label arrays need to be merged after merging the labeled MQFs. To do so, the new items’ 
order is recomputed in the final MQF. Then, labels in the input external arrays can be 
copied into a new external array according to the new item order. Such a function has to 
consider resolving the conflicts of items happening in multiple-input MQF and labeled 
by different external labels (Fig. 6).

Buffered MQF

The Buffered MQF is composed of two MQF structures: a big structure stored on SSD 
called onDiskMQF, and an insertion buffer stored in the main memory called buffer-
MQF. OnDiskMQF uses stxxl vectors [24] because of the performance of their asynchro-
nous IO. The bufferMQF is used to limit the number of accesses on the OnDiskMQF 
and change the access pattern to the on-disk structure from random to sequential. As 
shown in the insertion algorithm in Fig. 7, all the insertions are done first on bufferMQF; 
when it is full, the items are copied from bufferMQF to OnDiskMQF, and bufferMQF is 
cleared. The copy operation edits the onDiskMQF in a serial pattern which is preferred 
while working on SSD because many edits will be grouped together in one read/write 
operation. Figure 8 shows the query algorithm. The queried items are inserted first to 
temporary MQF and sequential access is done to query the items from the OnDiskMQF. 
The final count is the sum of the bufferMQF and the ondiskMQF.

Experimental setup of benchmarking

A total of 13 datasets (5 simulated and 8 real sequence data) were used in the experi-
ments to cover a broad spectrum of fragment selection approaches and sequencing 
platforms. Three datasets called z2, z3, and z5 were simulated to follow Zipfian distribu-
tion using three different coefficients: 2, 3, and 5 respectively. The bigger the coefficient 
the more singletons in the dataset [25]. A fourth dataset was simulated from a uniform 
distribution with a frequency equal to 10. Another dataset was simulated to mimic 
single-end 100 bp DNA Illumina sequencing from human chromosome 20 using ART 
simulator [26]. The remaining 8 datasets represent k-mers sampled from real sequenc-
ing datasets (ERR1050075, SRR11551346, SRR12801265, SRR12924365, SRR12937177, 
ERR992657, SRR12873993, SRR12989394). Throughout the manuscript, each dataset is 
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referred to by its accession number. Additional file  1: Table  S3 enlists all the datasets 
with their description. A k-mer size of 25 nucleotides was used in all experiments.

Experiments were conducted to compare the performance, memory, and accuracy 
of MQF with the state-of-the-art counting structures CQF, CMS, and MPHF. Unless 
stated otherwise, CQF and MQF used the same number of slots, and the same slot 
size while the fixed counter of MQF was set to two. The slot size was calculated to 
achieve the target FPR as described in the parameter estimation section (see Meth-
ods). To create comparable CMS, the number of the tables in the sketches was calcu-
lated using ln 1

δ
 as described before [7]. The table width was calculated by dividing the 

Fig. 6 Merging MQFs with external labels.  Ri is the remaining part of item i, and  Ti is the external label of the 
item. Merging the input MQF produces a final MQF with a new order of its member items. All labels in the 
input external arrays are copied into a new external array according to this new order of the items. However, 
the implementation of the merge function has to resolve the conflict of R3 labels which exist in both input 
structures with two labels

Fig. 7 Buffered MQF insertion algorithm. Insertion Algorithm for inserting items in the Buffered MQF. It 
inserts the item in the in-memory data structure. The on-memory structure is merged into the on-disk 
structure when it is filled



Page 13 of 14Shokrof et al. BMC Bioinformatics           (2021) 22:71  

MQF size by the number of tables. The MPHF was created using the default options 
in the BBhash repo (https ://githu b.com/rizkg /BBHas h). An Amazon AWS t3.large 
machine with Ubuntu Server 18.04 was used to run all the experiments. The instance 
had 2 VCPUS and 8 GB RAM with a 100 GB provisioned IOPS SSD attached for stor-
age. All codes used in the experiments can be accessed through the MQF GitHub 
repository (https ://githu b.com/dib-lab/2020-paper -mqf-bench marks ).
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