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George G. Judge1 and Ron C. Mittelhammer2 

University of California, Berkeley and Washington State University 

 

Abstract 

 
When there is uncertainty concerning the appropriate statistical model to use in representing the data 
sampling process and corresponding estimators, we consider a basis for optimally combining estimation 
problems.  In the context of the multivariate linear statistical model, we consider a semi-parametric 
Stein-like (SPSL) estimator, ( )�αβ , that shrinks to a random data-dependent vector and, under quadratic 
loss, has superior performance relative to the conventional least squares estimator. The relationship of 
the SPSL estimator to the family of Stein estimators is noted and risk dominance extensions between 
correlated estimators are demonstrated.  As an application we consider the problem of a possibly ill-
conditioned design matrix and devise a corresponding SPSL estimator.  Asymptotic and analytic finite 
sample risk properties of the estimator are demonstrated.  An extensive sampling experiment is used to 
investigate finite sample performance over a wide range of data sampling processes to illustrate the 
robustness of the estimator for an array of symmetric and skewed distributions. Bootstrapping 
procedures are used to develop confidence sets and a basis for inference. 
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1.  INTRODUCTION 

 In the social sciences much empirical research proceeds in the context of partial-incomplete 

subject matter theories and data based on experimental designs not devised by or known to the analyst.  

This leads to uncertainty concerning the statistical model that is appropriate for describing the data 

sampling process compatible with the observed sample of data.  Uncertainty regarding the appropriate 

statistical model in turn leads to uncertainty regarding appropriate estimation and inference methods.  In 

empirical practice test statistics, tuning parameters, and sometimes magic are invoked to identify a 

single statistical model on which to base estimation and inference.  Selecting one particular statistical 

model suffers from the possibility that a wrong choice may be made, resulting in a loss of estimation 

and inference accuracy.  Moreover, the validity of eliminating statistical model uncertainty through the 

specification of a particular parametric formulation depends on information that one generally does not 

possess.   

 As one basis for identifying model-estimator uncertainty, Stein (1955) demonstrated the 

inadmissibility of the conventional maximum likelihood estimator ML �( ) =yδ β  when estimating the 

multivariate normal mean β  under quadratic loss.  Following this result as a basis for coping with 

estimator uncertainty James and Stein (1961) and Baranchik (1964) combined the k variate estimator �β  

with a k dimensional fixed null vector and demonstrated, under the assumption of normality, risk 

dominating Stein Rule (SR) estimators such as 

  ( )2S � �( ) 1 a /= −yδ β β  , (1.1) 

when (k 2) a 2(k 2)− ≤ ≤ − .  A very general class of estimators that improves on �β  follows from Judge 

and Bock, (1978), Stein (1981) and Brandwein and Strawderman (1991).  For the general multivariate 

normal case the class of pseudo-Bayes-Stein rules having risk less than that of �β  is very large (see for 

example Judge and Bock (1978)).  Making use of Stein-like estimators, Sclove, et al. (1972) 
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demonstrated the non-optimality of preliminary test estimators as a basis for dealing with model 

uncertainty. 

 In an orthonormal k mean context, Lindley (1962) suggested shrinking �β  toward the grand 

mean estimator and demonstrated the risk dominance of the Stein estimator when 0 a 2(k 3)≤ ≤ − .  

Green and Strawderman (1991) considered a parametric statistical model setting where �β  and β!  are 

independent k -dimensional normally distributed data-based estimators with known covariance matrices 

2
kΙσ  and 2

kΙτ , and demonstrated that the best linear combination of the independent random vector-

estimators, under quadratic loss, yields the risk dominating estimator 

( ) ( )( )2 2� �, 1 2 / || ||= − − −δ β β β β! !GS k σ  ( )� − +β β β! ! .  Given this base, Kim and White (2001), provide an 

expression for the asymptotic risk and bias of Green and Strawderman (GS) Stein-type estimators when 

the estimators are correlated and demonstrated, for a particular application, shrinkage rules that have 

smaller asymptotic risk. 

Given the uncertainty underlying the model discovery, estimation and inference tasks, and Stein-

like possibilities for coping with it, we consider the statistical implications of combining related 

estimation problems, where the alternative estimators encompassed by alternative models exhibit 

distinct and dissimilar sampling properties.  In the context of the multivariate linear statistical model we 

demonstrate a data-based semi-parametric Stein-like (SPSL) estimator that combines estimation 

problems by shrinking a base estimator to a plausible alternative estimator. Asymptotic and finite 

sample risk results are demonstrated and the relationship of the SPSL estimator to the family of Stein 

Rule (SR) estimators is discussed along with risk dominance properties under normality.  As an 

application of the SPSL estimator we demonstrate the implications of combining two alternative linear 

statistical models whose associated estimators differ markedly in their bias and precision sampling 

characteristics. Sampling experiments are used to illustrate the superior finite sampling performance of 
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the SPSL estimator for a variety of normal and non-normal sampling distributions. Bootstrap procedures 

are used to define and illustrate confidence set performance and a basis for inference. 

2.  STATISTICAL MODEL AND SEMI-PARAMETRIC STEIN-LIKE ESTIMATOR 

 Consider the problem of estimating the k  dimensional location parameter vector β  when one 

observes an n dimensional sample vector y  such that  

  = +y Χβ ε  (2.1) 

where Χ  is an ( )n k×  matrix of rank k , and ε  is an n  dimensional random vector such that 

2
nE[ ]=  and cov( )=σ .0 Iε ε   The scale parameter 2σ  may either be known or unknown and no error 

distribution assumption need be made other than the existence of second order moments.  The objective 

is to estimate the unknown location vector by some estimator ( )yδ  when performance is evaluated by a 

squared error loss measure ( )( ) ( ) 2, || ||L = −β δ y β yd .  Assuming the usual regularity conditions 

underlying the linear model, the conventional least squares (LS) estimator is distributed with a mean of 

β  and covariance matrix of ( ) 12 −′ΧΧσ  as ( ) ( ) ( )( )1 1LS 2� ~ ,− −′ ′ ′= =y β Χ Χ Χ y β Χ Χδ σ , and under 

quadratic loss, is a minimax estimator with constant risk ( ) ( ) 12�, tr −′=β β Χ Χρ σ .  

 Assume that in addition to �β , an alternative statistical model and corresponding possibly biased 

data based competing estimator is available, 

  ~ ( , )+β β γ Φ! , (2.1) 

where γ  is a ( 1)k ×  bias vector and Φ  is a positive definite covariance matrix. We allow the estimators 

to be correlated and let the covariance matrix of � ′ ′ β β!"  be defined by 

  
( ) 12�

cov
−   ′σ

=    ′      

X X Σβ
Σ Φβ!

. (2.2) 
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Our objective is to identify a weighted linear combination of the two estimators with smaller expected 

quadratic risk than the LS estimator �β .  Toward this end, define a new estimator as  

  ( ) ( )� 1α = α + − αβ β β! . (2.3) 

The quadratic risk or mean square error (MSE) of ( )αβ is given by  

  
( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )1 22 2

� �1 1

1 2 1

MSE E

tr tr tr−

 ′   α = α − + − α − α − + − α −     

′ ′= α σ + − α + + α − α  X X

! !β β β β β β β β β

Φ γ γ Σ

 (2.4) 

In order to minimize ( )( )MSE αβ , the first order necessary condition for α implies  

  
( ) ( )

( ) ( ) ( )

12

* 12
1

2
tr tr

tr tr tr

−

−

′σ −
α = −

′ ′+ σ + −

X X
X X

Σ

γ γ Φ Σ
 (2.5)  

Because ( )( )2 2/ 0∂ α ∂α >βMSE  whenever � andβ β!  are not perfectly correlated, the optimal weighted 

linear combination estimator, ( ) ( )* * *
� 1α = α + − αβ β β!  will, under quadratic loss, be superior to LS.   

2.1.   Estimating the Optimal α  

 Since relative to the theoretically optimal α  defined in (2.5),  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )12

� � � � �2

+ 2

E E E E

tr tr tr−

       ′ ′ ′ ′= + −             
 ′ ′= σ + −       X X

! ! ! ! !β − β β − β β − β β − β β − β β − β β − β β − β

γ γ Φ Σ
 (2.6) 

and 

 ( ) ( ) ( ) ( )12� �E tr tr− ′ ′=σ − 
 

X Xβ − β β − β Σ! , (2.7) 

it follows that 
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( ) ( )
( ) ( )

*

� �

1
� �

E

E

 ′
 
 α = −
 ′
 
 

β − β β − β

β − β β − β

!

! !
. (2.8) 

It is apparent that ( ) ( )� �′β − β β − β! !  is an unbiased estimator of the expectation term appearing in the 

denominator of the *α  expression, and it is also consistent under the usual regularity conditions. 

Regarding the numerator expectation in the expression for *α  in (2.8), substituting the usual unbiased 

and consistent estimator ( )
212 �S n k −= − −Y Xβ for 2σ and an unbiased and/or consistent estimator, �Σ , 

for Σ , defines an estimator of the optimal α  weight in the form 

  
( ) ( )

( ) ( )

12

*

�
� 1

� �

S tr tr−′ −
α = −

′

X X Σ

β − β β − β! !
 (2.9) 

which yields the SPSL estimator 

  ( ) ( )2

�� ��
�

aα = −β β β − β
β − β

!
!

 . (2.10) 

where ( ) ( )12 ��a S tr tr−′= −X X Σ acts as an estimate of ( ) ( )12a tr tr−′= σ −X X Σ . The estimator, �( )αβ , 

is in the general form of the Stein-rule family of estimators, where shrinkage of the base estimator �β  is 

toward the alternative estimator β! . The estimator is drawn towards the alternative estimator when the 

variance of the least squares estimator is higher, and drawn towards the least squares estimator when the 

alternative estimator has higher variance, higher bias, or is more highly correlated with the LS estimator 

2.2.  First Order Asymptotics 

 Based on regularity conditions no more stringent than the typical types of conditions assumed 

for establishing asymptotic properties of the LS estimator, the SPSL estimator also achieves consistency 

and asymptotic normality. Assume the familiar regularity conditions  
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  ( ) 12 1 2 1
p

S n
−− −′ →σX X Q  and  ( )

d
1/ 2 2,n N− ′ → σX 0 Qε  (2.11) 

so that ( )�β − β  is ( )1/ 2
pO n−  and ( ) ( )1/ 2 2 -1� 0,

d
n N→ σ Qβ − β , where 1n− ′ →X X Q . Also assume analog 

conditions on the alternative estimator β!  so that, allowing the bias term to change with n, ( )nβ − β − γ!  

is ( )1/ 2
pO n− , 

p

0
�n →Φ Φ  and 

p

0
�n →Σ Σ  where 0Φ  and 0Σ  are finite limiting covariance matrices, and 

( ) ( )1/ 2
0,

d

nn N→ 0β − β − γ Φ! . Given that 0n →γ γ , so that ( ) 0
�

p
→β − β γ! , consistency follows from 

Slutsky�s theorems, as3 

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )
12 �

� ��lim lim lim lim 1 .
� �

p

S tr tr
p p p p o

−  ′ −  α = + = = ′ 
 

X X Σ
β β β − β β + β

β − β β − β

!
! !

. (2.12) 

 Asymptotic normality follows when 0 ≠γ 0  by first rewriting the SPSL estimator as 

( )( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( )
( ) ( ) ( ) ( )

12

1/ 2 1/ 2 1/ 2

1/ 2
1/ 2 1/ 2

�
� ��

� �

� �1 1 .
1

p
p p

p

S tr tr
n n n

O n
n O n o

O

−

−

  ′ −  α − = − +  ′ 
 

 
 = − + = − +
  

X X Σ
β β β β β − β

β − β β − β

β β β β

!
! !

 (2.13) 

Thus ( )( ) ( )1/ 2 1/ 2 ��n and nα − −β β β β  have the same ( )2 1,N −σ0 Q limiting distribution. If 0 =γ 0 , the 

limiting distribution of ( )( )1/ 2 �n α −β β  will be dependent on the joint limiting distribution of 

                                                 
3 Consistency is immediate if 0 0≠γ , because ( )( ) ( ) 0

0 0

0��lim lim .p pα = + =
′

 
 
 

β β γ β
γ γ

 If 0 =γ 0 , then 

( )( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

12 1

1/ 2 1/ 2

�
� ��lim lim lim lim 1 1

� � p p

S tr n tr n
p p p p o

n n
O

−− ′ −
α = + = ⋅ =

′

   
  

 
 

X X Σ
β β β − β β + β

β − β β − β
!

! !
 given that 

( )1/ 2 �n β − β! is ( )1pO . 
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( )1/ 2 �n −β β and ( )1/ 2 �n β − β!  through the relation 

( )( ) ( ) ( ) ( )

( ) ( )
( )

12

1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

� ��
� �

d tr tr
n n n

n n

−  σ −  α − → − +  ′ 
 

Q Σ
β β β β β − β

β − β β − β

!
! !

. 

3.  ASYMPTOTIC AND FINITE SAMPLE RISK PERFORMANCES 

 In order to indicate the potential finite and asymptotic risk performance of the semi-parametric 

estimator (2.10), we prove a general risk dominance theorem and identify an important relationship 

between the SPSL estimator and a risk-dominating SR estimator.  In particular the result encompasses:  

i) shrinkage toward an estimator that may be asymptotically biased, ii) the case where the joint 

distribution of the estimators may be singular and, iii) a result that applies to finite samples, and can be 

extended to asymptotic results.  

3.1.  SR Sampling Characteristics and Dominance 

 Relating to the SPSL estimator (2.10), let the distribution of the estimators �β  and β!  be  

  1

2

�
~ N( , ) N ,

      −= = =         ′−         

U 0
U

U
Α Σβ β ξ Ψ Σ Φγβ β!

 (3.1) 

where U is a 2k 1× random vector and Α and Φ  are positive definite matrices.  Let [ ]≡ −J I I" , and 

define  

  1 2 ~ N( , ) N( , ),′ ′= = − − = − − − +V JU U U J Jγ Ψ γ Α Σ Σ Φ  (3.2) 

where we assume that ′− − +Α Σ Σ Φ  is positive definite.  Using these definitions we define an SR-type 

estimator, which is akin to the SPSL estimator in (2.10), as 

  2

c� � � �( , ;c) ( )
�

= − −
−

δ β β β β β
β β

! !
!

. (3.3) 
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Let ′≡ J JΞ Ψ , represent Ξ  in terms of Cholesky factors as ′= PPΞ  and define 

1
1 2 k( ) ~ N( , )−= −Z P U U Iµ  where 1( )−= −Pµ γ  and ′=R P P . It follows that 

  1 1 2 1 22 2
1 2

c c� � � � �( , ;c) ( ) ( ) ( , ;c)
�

− = − − − = − − =
−

U U U U U
U U

δ β β β β β β β δ
β − β

! !
!

 (3.4) 

Based on the representation in (3.4), the mean squared error (MSE) of � �( , ;c)δ β β!  is  

  

1 2 1 2

21

2

2

� � � � � � � �MSE( ( , ;c)) E( ( , ;c) ) ( ( , ;c) ) E( ( , ;c) ( , ;c))
1tr( ) 2c E c E

1tr( ) 2c E c E

tr( ) 2c c .
ωη

′ ′= − − =
′   = − +   ′ ′  
′   = − +   ′ ′  

= − η + ω

1

U U U U
U VA
V V V V
U PZA
Z RZ Z RZ

A

δ β β δ β β β δ β β β δ δ! ! !

#$%$&#$%$&

 (3.5) 

 There is a range of c-values for which � �( , ;c)δ β β!  dominates �β  in MSE, where ( )�MSE tr( )=β Α , 

iff there exist nonzero values of c such that 22c c 0− η + ω < . Assuming the existence, and hence 

positivity, of ω  and assuming that ηexists and is nonzero, the MSE-dominating range of c is given by  

  { } { }( )0, 2 / , 0, 2 /c min max∈ η ω η ω . (3.6) 

It is clear from (3.5) that the MSE-minimizing choice of the constant c, and the associated minimum 

MSE of the SPSL estimator, is given by 

  ( ) ( )2
* *

� �/ ( , ;c ) ( ) /c MSE tr= η ω ⇒ = − η ωδ β β Α! . (3.7) 

 We emphasize, subject to the aforementioned existence conditions, that both (3.6) and (3.7) 

apply whether or not the data sampling process is normally distributed. In effect, so long as the MSE of 

the estimator *
� �( , ;c )δ β β! exists, the estimator is never worse than the base estimator in MSE and will 

represent a MSE improvement, as is generally the case, when 0η ≠ . Adding the normality assumption 
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(3.1) allows sufficient conditions for the existence of the MSE components andω η  to be stated and 

proved as follows: 

Theorem:  Under normality, 3 0k ≥ ⇒ < ω < ∞  and 5k ≥ ⇒ η < ∞ . 

MSE Existence Proof:  

• 3 0k ≥ ⇒ < ω < ∞  

L S

1 1 1 1 1 1E E E , E
 ′         ω = = ∈         ′ ′ ′ ′ ′λ λ           

Z Z
Z RZ Z RZ Z Z Z Z Z Z

 

where L S and λ λ  are the positive and finite largest and smallest eigenvalues of the positive definite 

matrix R.  Note that 2~ (k, )′ χ λZ Z , where the noncentrality / 2,′λ = µ µ  and thus 

  2 2
L S

1 1 1 1E , E .
(k, ) (k, )

    
ω∈    λ χ λ λ χ λ    

 

Note that 2 10 E[( (k, )) ]  if k 3−< χ λ < ∞ ≥  because the expectation is a Poisson(λ)-weighted sum of 

reciprocal expectations defined by 2 1
k 2 jE ( )−

+ χ  , for j 0≥ , and 2 1
k 2 jE ( ) 1 (k 2 2j)−

+ χ = − +   (Judge 

and Bock, p. 315, Theorems A.2.18 and A.2.21). Thus, ω  is positive and finite. 

• 5k ≥ ⇒ η < ∞  

Note that 2 2 2 1E ( ) E (( ) )−′ ′   η ≤    1U PZ Z RZ  by the Cauchy-Schwarz inequality.  Because  and1U Z  

are both normally distributed and P is fixed and finite, E ( .′  < ∞ 
2

1U PZ)  Along the lines of the 

preceding proof,  

  2 2 2 2 2
L S

1 1 1 1 1E E E
( ) ( ) ( )
     

≤ ≤     ′ ′ ′λ λ     Z Z Z RZ Z Z
 

where 2 2 2( ) ~ ( (k, ))′ χ λZ Z  and L S and λ λ  are the positive and finite largest and smallest eigenvalues 

of the positive definite matrix R. Note further that ( ) 12 20 E (k, )  if k 5
− < χ λ < ∞ ≥  

 because the 
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expectation is a Poisson(λ)-weighted sum of the values of 2 2
k 2 j

1 1E
( ) (k 2 2j)(k 4 2j)+

 
= χ − + − +  

 for 

j 0≥  (Judge and Bock, p. 315, Theorems A.2.20 and A.2.21). Thus η is finite. '    

3.2.  Feasible Optimal SR Estimation 

 The optimal SR-type estimator *
� �( , ;c )δ β β! is empirically infeasible since it depends on the 

unknown value of *c  in (3.7). An estimator of *c  can be defined, in the absence of parametric 

assumptions, by substituting a consistent estimator for the unknown ratio of expectations that defines 

*c .4 Expanding both η  and ω  in a Taylor series around the expectations of their numerator and 

denominator components as defined in (3.5), and then suppressing second order and higher terms 

obtains 

 ( ) ( ) ( ) ( )121
*

1 � �/c E E E tr tr a−′  ′    ′= η ω = ≈ − − = σ − =    ′ ′    

U V X X
V V V V

β β β β Σ! . (3.8) 

Given the regularity conditions assumed in section 2.2, a consistent estimator of *c  is given by 

( ) ( )12
*

��c S tr tr−′= −X X Σ , resulting in the feasible optimal SR estimator *
� � �( , ;c )δ β β! . 

3.3.  Remarks on SPSL-SR Relationships  

Remark 1 

 The SPSL estimator can now be motivated as an approximate semiparametric optimal SR 

estimator, *
� � �( , ;c )δ β β! .  In particular, in its estimated form (2.10), the original SPSL estimator objective 

of defining a weighted linear combination minimum MSE estimator leads to a first order semiparametric 

optimal SR estimator. This is apparent upon comparing the first order representation of *c  in (3.8) with 

                                                 
4 Kim and White (2001) demonstrate a consistent estimator of c* under the specific parametric assumption of a normally 
distributed data sampling process.  Exploiting specific functional representations of c* derived from specific parametric 
distribution assumptions, if actually known to hold, could suggest more efficient estimators of c* than would be possible 
in a purely semiparametric context. 
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the representation of the SPSL estimator given in (2.10) and noting that the SPSL equals the feasible 

optimal SR, *
� � �( , ;c )δ β β! , where *� �c a= .  

Remark 2 

 In a multivariate normal case, and in the application illustrated in section 4 ahead, the data 

sampling process can be such that the estimators of 2σ  and Σ , and thus *c , are independent of the base 

and alternative estimators.  In these cases the finite sample MSE of the SPSL estimator (2.10) is  

  ( )( ) ( ) 22 2 �� �( ) 2 ( )MSE tr a E a tr a E  α = − η + ω ≈ −   
A Aβ β − β! . (3.9) 

The approximation indicated in (3.9) is based on the analogous type of first order approximation 

underlying (3.8). In this case the SPSL estimator acts like a SR-type estimator that achieves dominance 

of the base estimator �β  at least to the first order of approximation. 

Remark 3 

The SPSL estimator is based on an MSE-minimizing estimation objective that is designed to provide 

MSE improvements over the base estimator in semiparametric contexts in which the data sampling 

distribution is unspecified and unknown.  The SPSL estimation objective is applicable to non-normal 

data sampling cases, where the SR estimator is not known to provide MSE improvement guarantees. In 

this sense, the SPSL is an extension of the SR methodology to semiparametric sampling contexts.   

Remark 4  

We note that in the Green and Strawderman (1991) orthonormal statistical model under normality with 

covariance matrix assumptions 2= σ IΑ ,  2= τ IΦ , and Σ = 0  inserted in (3.1), it follows that 

( ) 22kη = − σ ω , and thus the condition k 3≥  is sufficient for a risk dominating choices of c to exist, 

with the optimal c given by ( ) 2/ 2kη ω = − σ . However, in the more general context of nonzero 

correlation between the base and alternative estimators, the value of /η ω  remains a function of the 
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degree of correlation, and moreover k 3≥  is no longer sufficient to guarantee risk dominance of the SR 

estimator relative to the base estimator. 

4.   AN APPLICATION 

 The estimator proposed in section 3 is applicable in a wide variety of data sampling contexts. 

Situations involving a structural equation and a potential violation of the orthogonality condition, as 

well as possible violations in the standard assumptions relating to the noise process itself, are but two 

examples. To illustrate an application of the SPSL estimator, we focus on generating mean square error 

improvements relative to the conventional least squares estimator for the linear statistical model in cases 

that may involve the possibility of ill-conditioned design matrices. In this context, consider as a 

provisional alternative the polar case of a linear statistical model in which the columns of X are 

orthogonal. This results in a corresponding coordinate-by-coordinate set of LS estimators of the 

parameters and represents a data dependent alternative estimator that can be combined with the base LS 

estimator.  This alternative estimator differs significantly from the conventional estimator in terms of 

sampling attributes.  For example, when the design matrix is actually nonorthogonal, the coordinate-

wise least squares (CLS) estimator is biased, but it has the smallest variances of all subset least squares 

estimator possibilities. 

 The CLS estimator can be defined as ( ) 1
diag

−′ ′=   X X X yβ! , where ( )diag ′X X denotes a 

( )k k× diagonal matrix. It is straightforward to show that the covariance matrix of the CLS estimator is 

given by ( ) ( ) ( )1 12cov diag diag
− −′ ′ ′= σ =      β X X X X X X Φ! , the bias vector of the CLS estimator is 

( ) ( ) 1
kbias diag

− ′ ′= − =   
X X X X Iβ β γ! , and ( ) ( ) 12�cov diag

−′= σ =  X Xβ,β Σ! . It follows that 

the CLS estimator is superior to the LS estimator in MSE iff ′ σ2γ γ/  < ( ) ( ) 11tr tr diag
−−  ′ ′−    

X X X X . 
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 Upon substituting the preceding definitions of , , and Φ Σ γ  into (2.5), the optimal weight for 

combining the estimators �β  and β!  is 

  
( ) ( )

( ) ( ) ( ) ( )

112

* 112
1

k k

tr diag

tr diag

−−

−−

 ′ ′σ −    α = −
′ ′ ′ ′σ − + − −           

X X X X

X X X X A X I A X Iβ β
 (4.1) 

where ( ) ( ) 1
diag

−′ ′≡   A X X X X X . 

4.1 On Estimating the Optimal α  

 The SPSL estimator in the current application is a special case of (2.10) in which 

( ) 1
diag

−′σ   X X2Σ = , which can be unbiasedly and consistently estimated by ( ) 1� S diag
−′  X X2Σ = .    

This leads to the following estimator of the optimal combining weight, 

    
( ) ( ) 112

* 2
� 1

�

S tr diag
−− ′ ′−    α = −

−

X X X X

β β!
, (4.2) 

and the estimated optimal combination (convex in this case) of �β  and β!  given by 

( )
( ) ( )

( )
112

* 2
� ��

�

S tr diag
−−  ′ ′−     α = − − 

− 
 

X X X X
b β β β

β β
!

!
 (4.3)

  
which is a SPSL estimator of the type identified in (2.10) and (3.9).  

4.2 Sampling Properties in a Semiparametric Context 

 Noting that ( )� �
k−  A X Iβ − β = β! , it follows from the definition of the SPSL estimator in (4.3) 

that the bias of the SPSL estimator is defined by  

 ( )( )
( ) ( )

( ) ( )
( )

112

*
��

� �
k

k k

S tr diag
bias E

−−   ′ ′−      α = −    ′ ′ − −         

X X X X
b A X I

A X I A X I
β

β β
 (4.4) 



SPSL-JASA-4-25-2003.doc 14

The bias is a highly nonlinear function of the data, and the expectation defining the bias cannot be 

calculated in the absence of knowledge about the probability distribution underlying the data sampling 

process. The covariance matrix, and thus also the representation of the finite sample MSE, presents a 

similar problem. An estimate of both the bias and covariance matrix can be based on Efron�s bootstrap, 

and as we demonstrate in Section 5 that this estimate can be used to good effect for defining SPSL 

estimator-based testing and confidence interval generating procedures.  

 Since this is a special case of the general case demonstrated in Section 2.2, and because the CLS 

estimator is biased for all n, and in the limit, if X is not orthogonal, it follows directly that the SPSL 

estimator is a consistent estimator of β .  Furthermore the SPSL estimator has a first order asymptotic 

normal limiting distribution that is identical to the limiting distribution of the �β  estimator, 

( )( ) ( )1/ 2 2 1
*� ,

d
n N −α − → σb 0 Qβ . 

4.3 Finite Sample Characteristics Under Normality 

 The MSE of the estimated optimal SPSL in the current application is defined by (3.9), with 

( ) ( )( ) 112�a S tr diag
−− ′ ′= −

 
X X X X and ( ) ( )( ) 112a tr diag

−− ′ ′= σ −
 

X X X X .  Assuming that a 

multivariate normal data sampling process underlies the linear model specification, so that 

( )( )12� ,N −′σ X Xβ ∼ β , ( ) ( )( )2 2~ / 2, /S Gamma n k n k− σ − , and �β  and 2S  are independent, the 

MSE can be represented as 

  ( )( ) ( ) 12 2
*

2� 2 n kMSE tr a a
n k

− − + ′α = σ − η + ω − 
b X X  (4.5) 

where 

 ( ) ( )
1

� �
k kE

−  ′′ω = − −          
A X I A X Iβ β  and 

( ) ( )

( ) ( )

� �

� �
k

k k

E
 ′ −   η =  ′′ − −        

A X I

A X I A X I

β − β β

β β
. (4.6) 
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It is then apparent that the estimated SPSL estimator will be MSE superior to the base estimator �β  iff 

  
( )2

1
2

n k
n k a

−  η  >  − + ω  
.  (4.7) 

While the evaluation of (4.7) depends on the unknown value of ( )/ aη ω , the first order approximation 

of  / aη ω =  derived from applying (3.8) results in the MSE superiority condition 
( )2

1
2

n k
n k

− 
> − + 

. 

Thus, so long as 3n ≥ , and given that the MSE exists (a sufficient condition for which is 5k ≥ , as 

noted in section 3), the SPSL will be superior to at least the first order of approximation.  

5.   SAMPLING EXPERIMENTS 

The definition of the data sampling process begins with the general linear model form  

  [ ] [ ]5

1
,. ,i i j ij

Y i X i j
=

= + = +∑X β ε β ε , for i = 1, �, n. (5.1) 

The five-element vector of unknown parameters, β , is arbitrarily set equal to the vector 

[ ].1 .1 .2 .2 .3 ′− − . The first column of the 5n×  matrix X is a column of unit values and the 

remaining columns of the [ ],. 'i sX  are generated independently from a four-dimensional normal 

distribution having a mean vector of ones, standard deviations all equal to one, and various levels of 

pairwise intercorrelation. The outcomes of the 'i sε were generated independently based on various 

normal, uniform, beta, and exponential probability distributions, all defined to have zero means over a 

range of standard deviations.  The possible choices for each of the data sampling process characteristics 

are summarized in Table 5.1.  Each of the 800 experiments was repeated   m=50,000 times for purposes 

of calculating stable empirical quadratic risk estimates. The estimated α weights identified in (4.2) were 

used in the definition of the SPSL estimator. 
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Table 5.1.  Monte Carlo Data Sampling Characteristics 

Sampling Characteristic Possibility Set 
n  { }15,25,50,100  

( ),i jCorr x x  { }0,.25,.5,.6,.7,.8,.85,.9,.95,.99  

( ) 1
2

iVar ε  { }.1, .25, 1, 5, 10  

( )f ε  
Normal, Uniform, Beta, Exponential 

β  [ ].1, -.1,.2, -.2,.3 ′  
 

5.1  MSE Sampling Results 

The relative empirical quadratic risks of the SPSL, true ideal convex *( )αb  and LS estimators 

are displayed graphically for the Normal and Exponential distributed data sampling processes in Figures 

1 and 2.  In the figures, the scenarios are displayed in successive blocks of 10 increasing X-correlation 

levels, each block successively interacted with 5 increasing standard deviation values, and each of the 

resulting 50 correlation-standard deviation combinations interacted with 4 increasing sample sizes.  This 

resulted in 200 scenarios for each of the sampling distributions.  The abscissa values provide a coding 

for the scenario numbers. The actual numerical MSE results by scenario number for all 800 experiments 

are presented for all of the sampling distributions in a table that is available from the authors. 

When comparing like scenarios, the empirical MSE results were remarkably stable across the 

different sampling distributions. Figures 1 and 2 depict what were most often the largest differences 

between results of the four sampling distributions, with the Beta and Uniform distribution results 

generally more similar to the Normal than the Exponential distribution results. However differences in 

relative expected quadratic risk were generally very small across the sampling distributions, and 

dissipated to negligible levels as the data sample size increased.  

There are some distinct sampling behavioral patterns that are quite apparent from the empirical 

sampling results. First of all, except for negligible violations in a few cases of sampling from the 

Exponential distribution when there was high model fit and small sample sizes, the SPSL estimator 
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empirically dominates the LS estimator in terms of MSE. Given the finite sampling results of Section 4, 

this was expected when sampling from the normal distribution.  What was not expected was the general 

nature of the superior sampling performance of the SPSL estimator over a wide range of data sampling 

processes.   In cases where model fit was low and/or condition numbers are high, the quadratic risk 

improvements afforded by SPSL estimator relative to the LS estimator are very substantial.  

When model fit decreases, improvements of the SPSL estimator risk relative to LS risk 

increased monotonically.  As data sample sizes increase, the MSE gap between the SPSL and LS 

estimators decreases, although for many cases the relative risk gains of the SPSL estimator remain 

substantial.  The SPSL estimator exhibits its greatest risk gains over LS risk when the correlations 

between the X�s are at their highest levels.  

Comparing the sampling behavior of the ( )*αb and SPSL estimators provides an indication of 

the cost of not knowing the true value of *α in (4.2) and having to estimate its value from the sample 

data. The sampling results indicate that the efficiency gap is considerable when estimates of �β , β!  and 

2S , used in the construction of the estimator of *α , are highly variable. The gap narrows as sample size 

increases. The observed size of the efficiency gap provides motivation for additional work to improve 

the accuracy of the *α estimate.   

Overall, the SPSL estimator yields substantial risk improvements over the traditional LS 

estimator in models plagued by poorly conditioned data and poorly fitting models.  Moreover, the 

estimator appears robust to the form of the data sampling distribution, and acts effectively as a semi-

parametric variant of Stein-rule type methods. 

5.2 Risk versus Parameter and Bias Norms 

 Another view of the estimation performance of the SPSL estimator is provided by examining 

relative (to LS) risk performance as a function of the parameter norm ( ′β β ) and bias norm ( ′γ γ ), as 

displayed in Figures 3 and 4, for samples of size n = 15.  As expected, the graphs have many of the 
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characteristics of the risk function for the traditional Stein-like estimator. As either of the norms ′β β  or 

′γ γ  increase, the risk of the SPSL estimator increases and approaches the risk of the LS estimator.  It is 

also interesting to note that as the correlation among the X-variables increases the performance of the 

SPSL estimator improves substantially relative to the LS estimator.  Qualitatively, these results were 

stable over the range of distribution functions examined. 

5.3.  Testing and Confidence Interval Performance 

 Even in the absence of specific distributional assumptions, somewhere in the asymptotic 

sequence, tests and confidence estimation procedures based on the SPSL estimator will begin behaving 

correctly in terms of size and coverage.  We find that if a bias correction is applied, and if a T-

distribution is used for establishing critical values, then target size and coverage probabilities, and 

reasonably good test power, can be achieved even for sample sizes as low as n 25= .  When the 

condition number of the design matrix is low and model fit is reasonably good, inference is defensible 

even for sample sizes of n = 15. In other cases for the smallest sample size, we find that a more 

computationally intensive nested bootstrap, which calculates critical values of the test statistic from its 

bootstrapped distribution rather than basing tests on the critical value of the t-distribution, represents a 

useful testing procedure. We use balanced bootstrapping resampling methods (Efron, 1979; Efron and 

Tibshirani, 1993; Graham, et. al., 1990) to calculate asymptotically valid variances, covariances, and 

bias measures (based on a bootstrapped expectation of (4.4)) for calculating outcomes of the �t-statistic�  

  
( ) ( ( )( )
( ( )( )( )
* *

1/ 2

*

� �

�

r
T

 − − =
′

c b bias b

c Cov b c

α α

α
 (5.1) 

for testing hypotheses of the form :oH r=cβ . The bootstrapped LS-estimated residuals are inflated both 

to account for the inherent over-fitting caused by the least squares fit and to transform the estimated 

residuals to homoscedastic form (Shao and Tu, 1995), as   

  ( )( ) -1/2
� �diag ′ ′= −

 
-1

* LSe I X X X X e . (5.2) 
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 In sampling experiments based on 10,000 data sample replications, 1000 bootstrap resamples to 

calculate the bias correction terms and SPSL estimator covariance matrix were used to examine the size 

and power behavior of tests based on the bias-corrected T-statistic and the T-distribution. Representative 

Q-Q plots displayed in Figures 5 and 6 imply that the use of the tails of the T-distribution to form 

critical values of tests and to form confidence intervals should perform reasonably well in practice. 

These results are typical of the sampling results obtained in the case of sampling from a normal error 

distribution, with the Q-Q plots emulating the T-distribution ever more closely as the sample size 

increased, as expected.  Moreover, the results were similar and robust, qualitatively, when the 

alternative error distributions (including Exponential, Beta, and Uniform, and additionally examining a 

T(3) distribution)  were simulated.  We also tracked the coverage probabilities of upper confidence 

bounds based on the bias-adjusted T-statistic and found they were quite accurate across all scenarios, 

especially for 95% and 99% target levels.  

 Overall, the simulated inference results suggest that the T-type statistic utilizing a bootstrapped 

bias correction and covariance matrix, and using critical values based on the usual Student-T 

distribution, exhibits reasonably accurate size and coverage behavior. Moreover, it is competitive with 

the usual T-type tests based on the LS estimator in terms of power, as illustrated in Figures 7 and 8.  The 

SPSL estimator-based tests exhibit somewhat higher power than LS-based tests and confidence intervals 

of somewhat smaller length.  This is especially true when sample sizes are small and the condition 

number of the design matrix is high. 

 We note that selected experimentation with the use of a more computationally intensive nested 

bootstrap procedure for conducting the �T-test� based on bootstrapped critical values of the test statistic 

suggested that size accuracy might be improved further for the smaller sample sizes. For example, based 

on 500 sample repetitions of n = 15, a primary bootstrap sample size of 500, and a nested bootstrap 

sample size of 200,  the .90, .95, and .99 target level quantiles of the nested bootstrapped testing 

procedure�s null distribution actually achieved levels of { }.894,.942, .992  for testing the significance 
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of the 2β , while comparable observed quantiles based on the T-distribution were { }.869,.927, .983 . 

Additional work on improving the accuracy of the bootstrap approximation may lead to further increases 

in the accuracy of inference for small sample sizes, whereas the Monte Carlo evidence suggests that for 

moderate and larger size samples, the less computationally intensive T-distribution approach may 

suffice.    

6.  SUMMARY AND IMPLICATIONS 

 In this paper, we continue the search started four decades ago by Lindley (1962) for new ways to 

think about combining data based estimators and thus the possibility of combining estimation problems.  

In the context of a multivariate linear statistical model, we consider methods for optimally combining, 

under quadratic loss, estimation problems involving data dependent estimators that have different 

sampling characteristics.  The mean squared error minimizing weighted linear combination estimator 

that results is a natural basis for specifying a semiparametric estimator that is in the form of, and 

behaves much like, a Stein-type estimator.  In seeking an optimally combined minimum risk estimator, 

the estimators may be correlated and in general the required set of regularity conditions are no more 

stringent than those assumed for the traditional LS estimator.  Finite sample risk dominance results for 

the SPSL estimator are demonstrated and the relationship of these results with related Stein estimators is 

discussed.  The general applicability of the SPSL estimator to a range of statistical models and data 

dependent estimators is emphasized.   

 As one application possibility we examined the problem of an estimator that combines, in an 

optimum quadratic loss sense, the LS estimator and the biased, low variance coordinate-wise LS 

estimator.  Analytical finite sample results and sampling experiments provide evidence that the SPSL 

estimator performs well in both a finite and asymptotic sampling context, and over a range of normal 

and non-normal data sampling situations.  Bootstrapping procedures provide bias-corrected tests and 

confidence set estimators that appears to work well in practice. In particular we suggest how �T-ratios,� 
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based on the SPSL estimator can be bias corrected and the covariance matrix can be estimated, so that 

inference can proceed in the usual way. 

 Although the estimation and inference implications of these semiparametric estimators are 

encouraging, some interesting questions remain.  For example, we have used unbiased estimators of the 

numerator and denominator of the shrinkage parameter α  in our application.  Using a biased estimator 

of the shrinkage parameter, as would be the case upon using a minimum quadratic risk estimator of the 

unknown scale parameter, or requiring positivity, and hence convexity, of the combining weights may 

produce risk gains.  In terms of inference, other alternatives such as nesting the bootstrap to generate 

data dependent critical values for test and confidence interval construction, rather than using critical 

values based on the Student T distribution, might produce more accurate size, coverage probabilities, 

and higher power.  We have developed our formulations and evaluations in a two estimation problem 

context.  The formulations can be extended to multiple estimation problems.  Research on the statistical 

implications of these and other estimators combining possibilities for a range of statistical models and 

distance measures, is ongoing. 
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Figure 1.  MSE Relative to LS: Normal DSP
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Figure 2. MSE Relative to LS: Exponential DSP
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Figure 3. MSE Relative to LS,  n = 15,  for rho = 0,  .75, .95, and .99 
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Figure 4. MSE Relative to LS vs Norm of CLS BIAS, n = 15
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Figure 5. Q-Q Plot for B[2], stde = .1
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Figure 6. Q-Q Plot for B[5], stde = .25
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Figure 7.  SPSL vs OLS Power for Ho: B[3] = r, n = 15, stde = .25
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Figure 8. SPSL vs OLS Power for Ho: B[3] = r, n = 50, stde = .25
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Figure Captions 
Figure 1.  MSE Relative to LS: Normal DSP 

Figure 2.  MSE Relative to LS:  Exponential DSP 

Figure 3.  MSE Relative to LS, n=15, for rho = 0, .75, .95, and .99 

Figure 4.  MSE Relative to LS vs Norm of CLS Bias, n=15 

Figure 5.  Q-Q Plot for B[2], stde = .1 

Figure 6.  Q-Q Plot for B[5], stde = .25 

Figure 7.  SPSL estimator vs OLS Power for Ho: B[3] = r, n = 15, stde = .25 

Figure 8.  SPSL estimator vs OLS Power for Ho:B[3] = r, n = 50,  stde = .25 

 

 

  

 

  

 

  




