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Generating Functions in Neural Learning of Sequential Structures
Yanlong Sun (ysun@tamhsc.edu)

Hongbin Wang (hwang@tamhsc.edu)
Center for Biomedical Informatics, Texas A&M University Health Science Center

Houston, TX 77030 USA

Abstract
A cornerstone of human statistical learning is the ability to
extract abstract regularities from sequential events. Here we
present a unique method to derive the generating functions for
the waiting time of sequential patterns, then compare these
functions with the neural mechanisms for learning sequential
structures. We show that the way the neocortex integrates infor-
mation over time bears a striking resemblance to the way these
normative functions operate. They both operate by organizing
combinatorial objects into meaningful groups then compressing
the representations by discarding irrelevant information. As a
result, discrete-time signals are converted into frequency sig-
nals, and similarity-based structures are converted into abstract
relational structures. Our analyses not only reveal surprisingly
rich statistical structures embedded in the seemingly random
sequences, but also offer an explanation for how higher-order
cognitive biases may have emerged as a consequence of tempo-
ral integration.
Keywords: generating function; waiting time; statistical learn-
ing; temporal integration; compressed representation.

Introduction
The human mind has a unique capacity to find order in chaos
(Gazzaniga, 2008). From betting cards in casinos to investing
money in stocks, people constantly attempt to extract regulari-
ties from the seemingly random sequences. For theories deal-
ing with human statistical learning, there are always two types
of challenges: How is the implicit learning without instruc-
tion is connected with the explicitly structured rule learning?
How can heuristics and biases deviate systematically from
normative rules?

Consider the following situation. A fair coin is flipped
repeatedly in independent Bernoulli trials. Which of the two
patterns, two heads in a row (HH), or a head followed by a tail
(HT), is more likely to happen? To measure the frequency of a
pattern, let E[T ] denote the pattern’s mean time, which is the
expected number of coin flips between any two consecutive
occurrences of the pattern,

E[THH] = E[THT] = (1/2)−2 = 4,

which means that on average, HH and HT are equally likely,
each occurring once in every 4 flips.

This answer may sound simple. However, it appears to be
at odds with a gambler’s intuition. In a game of roulette at
the Monte Carlo casino in 1913, black repeated a record 26
times, people began extreme betting on red after about 15
repetitions (Huff, 1959). The gambler’s fallacy, which is often
attributed to the representativeness bias, reflects the belief that
chance is a self-correcting process such that it is more likely
to produce alternating patterns than repeating ones (Tversky
& Kahneman, 1974).

Now we take a different measure. Let E[T ∗] denote the
pattern’s waiting time, which is the expected number of flips
since the beginning of the process until the first occurrence of
the pattern, then,

E[T ∗HH] = (1/2)−1 +(1/2)−2 = 6,
E[T ∗HT] = (1/2)−1 +(1/2)−1 = 4.

That is, it actually takes longer to see the first HH (a repetition)
than the first HT (an alternation).

The example of coin flipping demonstrates some intricate
relations between our intuition about random sequences and
the normative predictions of probability theory. In terms of
statistical learning, implicit learning without instruction can be
rapid and robust, but it does not always agree with explicit and
structured rule learning (Aslin & Newport, 2012). Aiming at
possible reconciliations, many theories propose that the eval-
uation of the biases in human randomness perception should
consider other factors beyond a single normative measure,
for example, the difficulty of encoding complexity (Falk &
Konold, 1997), the limited short-term memory capacity (Hahn
& Warren, 2009; Kareev, 2000), and inferences with com-
peting generating processes (Nickerson, 2002; Tenenbaum,
Kemp, Griffiths, & Goodman, 2011). Based on the waiting
time statistics, we have argued that the alternation bias in
the gambler’s fallacy can be understood as a consequence of
time in that repeating patterns are “delayed” than alternating
patterns (Sun, Tweney, & Wang, 2010; Sun & Wang, 2010a,
2010b, 2012). However, these theories have been limited at the
behavioral level where one could only align the overall human
behavior with a certain normative measure in its abstract form.
It remains to be answered where the alternation bias has origi-
nated, and more critically, how the abstract representations in
the human mind have taken shape from the beginning.

In the present paper, we present a unique method to derive
the generating functions for the waiting time statistics of se-
quential patterns. This method was first introduced by Graham,
Knuth, and Patashnik (1994). Here we extend this method
and elaborate on the procedures where combinatorial objects
are perceptually organized then compressed into abstract and
closed-form representations. We then discuss a neural network
model that can actually capture the waiting time statistics with
unsupervised learning (Sun et al., 2015). By comparing the
generating functions with the neural learning mechanisms, we
offer an explanation for how human randomness perception
can take shape through mere exposure to the input stimuli
without instruction, and how object representation can lead to
probability induction.
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Generating Functions for Waiting Times
Following the notations by Graham et al. (1994), a generating
function, A(z), is the sum of a power series that “organizes” an
infinite sequence 〈a0,a1,a2, . . .〉 with an auxiliary variable z,

A(z) = a0 +a1z+a2z2 + · · ·= ∑
k>0

akzk , (1)

and, a probability generating function, GX (z), where X is a
random variable that takes only nonnegative integer values, is
the sum of the probability distribution,

GX (z) = ∑
k>0

Pr(X = k)zk . (2)

The coefficients of GX (z) sum to 1, which can be written as
GX (1) = ∑k>0 Pr(X = k) = 1. The function GX (z) contains
the information of all cumulants in the distribution of X . For
example, the first and the second cumulants, namely, the mean
and variance, are given by

E[X ] = G′X (1),

Var(X) = G′′X (1)+G′X (1)−G′X (1)
2.

(3)

In the following, we use these definitions to derive the wait-
ing time for patterns in binary sequences. We first introduce
the solution by Graham et al. (1994) to the pattern HH’s wait-
ing time in independent Bernoulli trials. Then, we extend the
method to the pattern HT and the waiting time in first-order
dependent Markov trials.

Waiting Time in Bernoulli Trials
Assuming that a coin, with probability of heads, p, and proba-
bility of tails, q = 1− p, is flipped repeatedly in independent
Bernoulli trials. In waiting for the pattern HH, we consider the
probability space consisting of all sequences that end with the
first occurrence of HH:

Ω = {HH,THH,TTHH,HTHH,TTTHH,THTHH, · · ·}.

Letting SHH be the generating function that sums up all mem-
bers of Ω:

SHH = HH+THH+TTHH+HTHH+TTTHH+THTHH+ · · · ,

and by the expansion of the power series,

1+ z+ z2 + z3 + · · ·= ∑
n>0

zn =
1

1− z
,

we can write SHH in a “closed-form”:

SHH = ∑
n>0

(T+HT)nHH =
HH

1− (T+HT)
. (4)

We can then obtain the probability generating function for
the waiting time of HH by replacing each H with pz and each T
with qz:

GHH(z) =
p2z2

1−qz− pqz2 . (5)

Letting z = 1, we have GHH(1) = 1, which means that the
pattern HH eventually will happen with probability 1.

Then, from Equation 3, the pattern HH’s waiting time is:

E[T ∗HH] =
1
p
+

1
p2 . (6)

For example, at p = 1/2, we have E[T ∗HH] = 6. (Hereafter we
omit the calculation of the variance.)

Without losing any mathematical rigor, this method of de-
riving generating functions is remarkably simple. To recapture
the critical steps, first of all, the generating function SHH in
Equation 4 partitions the probability space Ω with a “juxtapo-
sition” (i.e., multiplication) of two terms: the binomial term
(T+HT)n and the pattern HH itself. The binomial term orga-
nizes all possible sequences where the pattern HH has failed
to occur (such that the waiting has to start all over), into the
power groups by the number of failures, n. For example, the
sequence TTHT belongs to the group (T+ HT)3, since it is
obtained by stacking either T or HT 3 times. Then, the right-
hand side of Equation 4 is simply the sum of a power series.
Next, in Equation 5, the z-transformation from SHH to GHH(z)
compresses the representation further by discarding the exact
order of H’s and T’s. As a result, GHH(z) only preserves the
exact number of flips in each sequence, which is indexed by
the power of z. Finally, averaging all sequence lengths with
G′HH(z = 1), which effectively removes the index z, we have
the waiting time for the pattern HH.

What is even more remarkable about this method is that it
may also shed light on how human randomness perception
might have taken shape in a similar fashion. Particularly, this
method directly operates on object representations. It illus-
trates how combinatorial objects, namely, sequences unfolding
over time, can be organized into meaningful groups then com-
pressed into an abstract and closed-form representation. We
will elaborate further on this point in the next section.

Partitioning by Auxiliary Sum
The example above shows one way to partition the probability
space. It should be noted that the way to organize the com-
binatorial objects can be rather flexible. One simple method
is to use an auxiliary sum, which is the sum of all sequences
that do not contain any occurrences of the expected pattern.
In the following, we use this method to derive the generating
functions for the pattern HT’s waiting time in Bernoulli trials.

In waiting for the first occurrence of HT, we consider two
sets of sequences: SHT represents the sum of all sequences that
end with the first HT, and M represents the auxiliary sum of all
sequences that do not contain any HT.1 We can then write two
linear equations:

SHT +M = M(H+T)+H+T,

SHT = MHT+HT,

1Note that different from the method by (Graham et al., 1994),
our auxiliary sum here does not include the empty sequence. This
is to emphasize the idea that all members in the sum are directly
observable.
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where the first equation partitions the entire probability space
into either SHT or M, and the second equation states that any
member of SHT is obtained either by extending a member of
M with HT at the end or directly from the first two coin flips.

Solving for SHT, we have

SHT =
HT

(H−1)(T−1)
.

Replace each H with pz and each T with qz, we have the
probability generating function for the pattern HT’s waiting
time in Bernoulli trials:

GHT(z) =
pqz2

(pz−1)(qz−1)
.

Then, from Equation 3, we have

E[T ∗HT] =
1
p
+

1
1− p

, (7)

For example, at p = 1/2, we have E[T ∗HT] = 4, which is 2 flips
short of the HH’s waiting time (cf., Equation 6).

First-order Dependent Markov Trials
In studies on human randomness perception, another widely
used model is the first-order dependent Markov trials, parame-
terized by the probability of alternation between consecutive
trials (e.g., Budescu, 1987; Falk & Konold, 1997; Lopes &
Oden, 1987; Nickerson, 2002; Oskarsson, Van Boven, McClel-
land, & Hastie, 2009; Sun & Wang, 2012). In the following,
we derive the generating functions for both patterns HH and HT
in such a process.

We first assume that the process is H-T symmetrical (i.e.,
exchangeable) with stationary probabilities,

πH = πT = 1/2,

which means that in the long run, heads and tails are equally
likely. Then, we use the probability of alternation, pA, to
simplify the transition probabilities,

pA = pH,T = pT,H = 1− pH,H = 1− pT,T .

In waiting for the pattern HH, we first consider the sum SHH
for all sequences that end with the first occurrence of HH. We
then split the auxiliary sequences that do not contain the pat-
tern into two parts, MH for all sequences that end with H and MT
for all sequences that end with T. This partitioning is plotted
as a Markov chain in Figure 1A, which shows that extending
any member of MH with a repetition (R) produces a member
of SHH, extending any member of MH with an alternation (A)
produces a member of MT, and so on.

According to Figure 1A, we can write three equations,

MH = H+MTA ,

MT = T+MTR+MHA ,

SHH = MHR .

∅

MH

MT

SHH
H

T

R

AA

R

A

∅

MH

MT

SHT
H

T

A

R

A

R

B

Figure 1: Markov chains for generating the first occurrence of
the patterns HH (figure A) and HT (figure B). States SHH and SHT
represent all sequences that end with the first occurrence of the
expected pattern. States MH and MT represent all sequences
that end with either an H or a T but do not contain the expected
pattern. After the first transition out of the initial empty state
(∅), later transitions are characterized by either a repetition
(R) or an alternation (A).

Solving for SHH, we have the generating function

SHH = HR+
T+HA

1−R−AA
AR .

Replacing each H and each T with z/2 (since πH = πT = 1/2),
each R with (1− pA)z, and each A with pAz, we have the
probability generating function for the pattern HH’s waiting
time,

GHH(z) =
(pA−1)(2pAz− z+1)z2

2(p2
Az2− pAz+ z−1)

.

Therefore, from Equation 3,

E[T ∗HH] = 1+
1

2pA
+

2
1− pA

. (8)

For example, when pA = 1/2, we have E[T ∗HH] = 6, which is
the same result from Equation 6. When pA = 1/3, we have
E[T ∗HH] = 5.5.

Similarly, according to Figure 1B, the waiting time for the
pattern HT can be solved from the following equations:

MH = H+MHR+MTA ,

MT = T+MTR ,

SHT = MHA ,

resulting in the generating function,

SHT =
HA−HRA+TAA

(1−R)2 ,

and the probability generating function,

GHT(z) =
pA(2pAz− z+1)z2

2(pAz− z+1)2 .

Therefore,

E[T ∗HT] = 1+
1

2pA
+

1
pA

. (9)

For example, when pA = 1/2, we have E[T ∗HT] = 4, which is
the same result from Equation 7. When pA = 1/3, we have
E[T ∗HT] = E[T ∗HH] = 5.5. That is, alternations have to be this
much less frequent than repetitions to make the patterns HH
and HT have the same waiting time.
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Asymmetry in the Additional Time
The Markov chains in Figure 1 depict a structural asymmetry
in the trajectories of different patterns. This asymmetry can
be more obvious if we only look at a portion of the waiting
time. Whereas the waiting time E[T ∗] is always counted from
the beginning of the process (i.e., the initial state ∅ is empty),
we can define the additional time, denoted by E[Tj|i], as the
expected number of transitions from any initial state i until
the first arrival of the state j. For example, E[T ∗HH] and E[T ∗HT]
in Equations 8 and 9 share the same component E[T ∗H ] =
E[TH|∅] = 1+ 1/2pA. Cancelling the common terms, we have

E[THH|H] =
2

1− pA
, E[THT|H] =

1
pA

. (10)

The difference between E[THH|H] and E[THT|H] is illustrated in
Figure 1. Before reaching SHH, an alternation after state MH
leads the process to state MT thus “delays” the transition to
the destination. In contrast, before reaching SHT, a repetition
after state MH makes the process stay in the same state thus
the distance to the destination is unchanged. Together, when
repetitions and alternations are equally likely, pA = 1/2, the
temporal distance from MH to SHH is greater than that from MH
to SHT: E[THH|H] = 4, and E[THT|H] = 2.

Similarly for independent Bernoulli trials, canceling the
common terms in Equations 6 and 7, we have

E[THH|H] =
1
p2 , E[THT|H] =

1
1− p

.

By extending Figure 1 to longer sequences, we can show that
the difference increases exponentially as the pattern length
increases. When p = 1/2, given an existing streak of k heads,
despite that the next flip can be equally likely a head or a tail,
the additional time until a streak of (k + 1) heads is much
longer than that for the pattern of k heads followed by a tail:

E[T(k+1)H|kH] =
1

pk+1 , E[TkHT|kH] =
1

1− p
.

Neural Learning of Sequential Structures
The generating functions reveal a great deal about the rich sta-
tistical structures embedded in random sequences. A question
that immediately follows then is whether these structures can
be implicitly captured by the human mind. We have argued
before that at the behavioral level, people’s preference for
alternating patterns (e.g., HT) over repeating ones (e.g., HH)
appears to be driven by the patterns’ waiting time statistics
(Sun & Wang, 2010a, 2010b, 2012). Considering the way the
generating functions for waiting times are derived, here we
argue that the alternation bias might have actually emerged at
the neural level.

In particular, the way these generating functions operate
is to organize combinatorial objects into smaller groups then
compress the representation into a closed form where irrele-
vant information is discarded. By doing so, discrete-time sig-
nals (e.g., sequences encountered over time) are transformed

into frequency signals (e.g., as a power series), and similarity-
based structures (e.g., sequences that end with the same ele-
ments) are transformed into abstract relational structures (e.g.,
given an H, the first HT arrives earlier than the first HH). Such
transformations bear a striking resemblance to the currently
proposed learning mechanisms in the human brain, for exam-
ple, perceptual processing (Marr, 1982), temporal integration
(Elman, 1990; O’Reilly, Munakata, Frank, Hazy, & Contribu-
tors, 2012; O’Reilly, Wyatte, & Rohrlich, 2014), neural pop-
ulation encoding (Pouget, Beck, Ma, & Latham, 2013), and
Bayesian abstraction (Tenenbaum et al., 2011). Then, it would
be a plausible conjecture that processes similar to these gener-
ating functions may also take place in the human brain. That is,
by merely observing random sequences unfolding over time,
the mind should be able to naturally capture abstract structures
summarized by the waiting time statistics.

Indeed, we have recently reported a biologically-motivated
neural model that did just that (Sun et al., 2015). In the light of
the generating functions developed above, here we recapture
some of the major findings from the model.
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· · · H T H H T· · ·Data
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A B

Figure 2: A neural network model of temporal integration
(figures adopted from Sun et al., 2015). A. Architecture of the
neural model. A single input layer scans a sequence of binary
digits one digit at a time (input at time t−1 is for illustration
only). An internal prediction layer, with its temporal context
representation, attempts to predict the next input. B. Neural
model behavior depicted by the ratio between the numbers of
repetition and alternation detectors in response to the actual
probability of alternation (pA) in the input sequence. Error bars
(±SEM) represent the variability of model predictions. The
dotted line is the squared total time ratio between alternation
and repetition patterns (Equation 11).

A Neural Model of Temporal Integration

Our neural model is extremely simple (Figure 2A). It employs
a recently-developed neural algorithm for temporal integra-
tion (O’Reilly et al., 2014). At the sensory level, a 2-unit
input layer scans non-overlapping signals of heads (H) versus
tails (T) one digit at a time from sequences generated by the
first-order dependent Markov trials. Then, a 100-unit internal
prediction layer attempts to predict the next input, with the
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benefit of a prior temporal context representation. The bidi-
rectional activation dynamics between the input layer and the
internal prediction layer allow us to use a single input layer
for both providing inputs and receiving predictions.

By unsupervised learning, the model was trained with bi-
nary sequences generated at various levels of probability of
alternation (pA), each sequence consisting of 10,000 trials.
After training, the model was tested with a sequence of 1,000
trials generated at the same pA level. Through an activation-
based receptive field analysis, we decoded the representations
on the internal prediction layer and classified its units as either
repetition detectors (sensitive to either HH or TT) or alternation
detectors (sensitive to either HT or TH). We then counted the
numbers of detectors and used the ratio (R/A, repetition over
alternation) to measure the model’s performance (Figure 2B).

We found that the model’s behavior can be mostly replicated
by a simple equation that averages the effects of the mean time
and waiting time statistics (the dotted line in Figure 2B):

R
A
≈
(

E[TA]+E[T ∗A ]
E[TR]+E[T ∗R ]

)2

, (11)

where E[T ] is the mean time, E[T ∗] is the waiting time,
and subscripts R and A represent repetition (either HH or TT)
and alternation (either HT or TH), respectively. For example,
at pA = 3/7, E[THH] +E[T ∗HH] = E[THT] + E[T ∗HT], the model
showed about the same numbers of repetition and alternation
detectors, R/A≈ 1.

Most interestingly, at pA = 1/2 (i.e., flipping a fair coin
independently), despite the same training frequency of the pat-
terns (e.g., E[THH] = E[THT] but E[T ∗HH] > E[T ∗HT]), the model
consistently produced fewer repetition detectors than alter-
nation detectors at a ratio of R/A ≈ .70. We then used this
R/A ratio to compute the subjective probability of alterna-
tion, p′A, as the model’s internal representation of its actually
experienced pA,

p′A =
A

R+A
=

1
1+R/A

≈ 0.59.

This p′A value was consistent with the value from empirical
findings. From a comprehensive review of previous studies
(Falk & Konold, 1997), a unanimous finding was that people
perceived or generated random sequences with a p′A value
around 0.58∼ 0.63 .

Generating Functions in the Human Brain
It should be noted that our neural model was not specifically
tasked to capture the waiting time statistics. Rather, it was
built on the well-established sensitivity in the neural learning
of sequential structures (Elman, 1990) and implemented with
biologically realistic algorithms that aim to explain the neu-
ral basis of cognition in a wide range of different domains
(O’Reilly et al., 2012, 2014). Nevertheless, given that the neu-
ral model’s behavior was systematically biased by sequential
patterns’ waiting time, here we offer an interpretation through
the lens of the generating functions.

First of all, we argue that the alternation bias in human
randomness perception is the consequence of temporally dis-
tributed learning. While neurons in the neocortex integrates in-
formation over time through different contributions of the deep
versus superficial layers (e.g., layers 5b and 6, see, O’Reilly et
al., 2014), they act in the same way as the generating functions
by transforming discrete-time signals into representations of
frequency. For example, Figure 1 and Equation 10 show that
at pA = 1/2, the additional time travelling from MH to SHT is
shorter than that from MH to SHH. This means that the neu-
rons monitoring the (H→ HT) transitions are more likely to
sustain their activations over time than those monitoring the
(H→ HH) transitions. By the principles of self-organizing
learning (Hebb, 1949), more neurons would be tuned to tem-
porally associating an existing H with a future HT instead of
a future HH. In a certain sense, in the process of maximiz-
ing the temporal correlation, these neurons have incidentally
committed themselves to the gambler’s fallacy.

Second, as we have seen in the generating functions, a
critical step towards a compressed representation is to discard
irrelevant information (e.g., in the z-transformation). Then,
the structures based on perceptual similarity are transformed
into the abstract and relational structures. In the same way,
for neurons to maximize the correlation between temporally
adjacent events, information such as the exact order of the
past events has to be discarded. There are many reasons to
believe that a primary function of the cortical processing is to
actively discard massive amounts of information so that only
the most relevant signals are retained and processed further
(for a review, see, O’Reilly et al., 2014). For neurons that
can only monitor sequential events unfolding over time, what
is relevant in the past is determined by what happens in the
future (i.e., following the arrow of time, see Figure 1).

Third, the generating functions we derived above are not
meant to predict random sequences. Rather, they are built to
capture the statistical structures embedded in time. Likewise,
our neural model would generally fail to predict each coin flip.
The predictions made by the model are rather implicit than
explicit. This feature relieves the network from the burden of
predicting every last detail of the input, and merely requires
that the internal network state learn to be compatible with the
new inputs. As a result, learning is distributed across popula-
tions of neurons and spanned over time, therefore allows the
network to be more adaptive to the statistical structures of the
learning environment.

Lastly, the generating functions can operate from both direc-
tions as either the summation of discrete-time objects or the
expansion of a closed form (e.g., Equation 4). Mapped onto
the bidirectional activation dynamics in our neural model, this
corresponds to the integration of sensory inputs (bottom-up)
and the prediction from more abstract internal representations
(top-down). Different from a standard simple recurrent net-
work that implements separate input and output layers (Elman,
1990), the bidirectional activation dynamics in our model al-
low flexible encoding and inferring of relational structures,
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thus provide a more natural mechanism for predictive learning
in the brain (George & Hawkins, 2009).

Conclusion
The generating functions presented in this paper provide a nor-
mative measure for the sequential structures embedded in time.
By organizing combinatorial objects with a simple “juxtapo-
sition” arithmetic, they break down the process of extracting
statistical regularities into a set of summation and multiplica-
tion operations. In this aspect, these functions may help us
understand the neural learning mechanisms in the process of
extracting sequential relational structures, by revealing how
object representations can build up to a compressed probabilis-
tic representation, and vice versa, how a learned structure may
bias predictions on discrete-time events. Overall, these func-
tions can be a powerful tool to bridge the gap between implicit
statistical learning without instruction and explicitly structured
rule learning, and to reconcile the deviation of heuristics and
biases from normative rules.
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