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Epsilon-Rational Consistent Equilibria and Decentralization
Steven M. Goldman and Kenneth M. Kletzer

1. Introduction

For a large class of strictly rational economic models, it is possi-
ble to describe equilibria wherein each agent is assigned a decision rule
and, under suitable assumptions regarding that agent’s conjectires about
the decilsion rules of others, has no incentive to depart from that assign-
ment. Yet the specification of this decision rule may require more than
mere market information and rationality by the agent. Since the agents
themselves have no guide to selecting from péssibly many rational conjec-
tures regarding the reactions of others, they have no means of inferring
the "equilibrium" decision rule from their observations alone. It is in
this sense that éuch equilibria cannot properly be termed "decentralized.™

We propose, in this paper, to examine the problem of decentralized
choice within the context of the problem of planning under intertemporally _
inconsistent preferences (Strotz (1956), Pollak (1968), Peleg and Yaari
(1973), Goldman (1980)). After an example illustrating the possible fail-
ure of existence for decentialiéed solutions with both pure aﬁd mixed
strategies, we will introduce a weaker conce?t of consistency requiring

that agents have "plausible'" beliefs regarding the pessibility of later

choices. This conjectural consistept equilibrium notion, though more
general than the‘mixed strategy'consistent equilibrium approach is still
insufficient to guarantee a decentralized solution. It can, however be
combined with the concept of "epsilon-rationality" (e.g. Radner (1979a,ﬁ)).

Such epsilon-rational consistent eguilibria will generally éxist

without the need for coordination among the agents.

*The authors gratefully ackmowledge the helpful comments of D). Freedman
and G. Debreu.
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The allocations described by these £500 conjectural equilibrium
concepts will be shown to be "close" when the behavior described
by "epsilon-rationality” is nearly rational - i.e. epsilon 1is small.
Thus, the centralized solutions may be viewed as an approximation to

those resulting from this type of bounded rational bhehavior.

2, Pure and Mixed Strategles in Consistent Plan Equilibria

Suppose a finite sequence of agents is to divide one unit of a
resource. BRach agent selects that portion of the unconsumed resource
for his own consumption and passes along the remain&er to the next.

The agents evaluate the outcome of this sequential game by preference
orderings over the entire inter-agent éonsumption space -- i.e. an
agent may "care' about the consumption levels of others. The consistent
(or Perfect Nash) equilibrium may Eoséiblz be obtained through backward
induction: the next to last agent cén choose so as to maximize his own
preference given the history of consumption prior to his own and the
knowledge that the last will consume what remains. The preyious agent
(second from the last) can then infer the decision rule for the next

to last and thereby choose his best level of consumption. The exten-
sion of this process backwards to the first agent would produce a
consistent solution in which each‘agent has chosen optimally given the
optima) responses of future agents.

Now as noted by Peleg and Yaari {1973), this procedure may fail
when agents are limited to pure strategies. As will be shown below,
it is simple to illustrate that the possibility of such failure is

not removed by allowing for mixed strategies as well.
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The difficulties arise in the following manneér: Suppose that
some agent has two equally desirable best levels of consumption. Then
the agent preceeding him cannot know which will be chosen and this
agenf needn't be indifferent between the two outcomes! In the follow-
ing example, almost all rules by which the indifferent agent would
resolve his ambiguity leave the preceeding agent without.a "best"
choice.

Example 1:

“Buppoese that there are fhree agents. The feasible inter-agent
consumption space is described by the face of the unit three-dimensional

simplex (c1 +c, +cq = 1) depicted in figure 1. Given a choice of

2
El by the first agent, the feasible allocations are limited to a line
such as aa' in figure 1 (El + c, + ey = 1. The sécond agent would
choose the "best" point on this line from his perspectiﬁe. The locus

of such points for all possible choices by agent one, describes a
reaction curve faced by the first-agent. This is illustrated in figure 1
by the curve bb' with an indifference curve for the second agent shown

a8 C.

The first agent's problem is then to select that level of cl

assoclated with his best point on the reaction curve.

a g a

2 b’ 3

Figure'1l




b=

Thus far} there is no problem, The first agent is presented with
é unique reaction to each of his possible choices. But suppose instead
that the second agent's reaction curve had looked instead like bb' b"b*
in figure 2. That ié, for some choice by the first agent,.El, the
second is indifferent between b' and b" as indicated by the indifference
curve ¢ for the second agent. (Note: convexity could have been

preserved in a four pérson example). Suppose further that the first

agent's best choice is at b",

Figure 2

Now if the first agent believes that if he chooses El the second
will choose at b" there is no problem. However, if inétead the first
believes that the seco#d will choose b' or some mixea strategy between
b' and b", then a "best" sclution for the first agent fails to exist.
His "best" points lie arbitrarily close to b" along b"b*.

In a refinement to the work of Peleg and Yaari (1973) by Goldman
(1980) it is proven that a perfect Nash equilibrium will always exist

to such problems but that it will require the presumption (here) by
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the first agent that when he selects c., the second will select at b".

1°
But what is the first agent's justification for fhis presumption?
Let us now proceed to a formal statement of the existence problem.
Consider a storage economy with one unit of a single consumption
good which 1s to be divided among a sequence of agents t =1,...,T.

Letting cs denote the consumption of an arbitrary agent s, we

shall define the history of consumption prior to t by the vector

t-1

c = (C e 204 C vee
(l! » s’ 3

t—l)'

The feasible inter-agent consumption space is then described by the

face of the T dimensional unit simplex, or

' T
S = {cT]cT 20, zc_ =1}
s=1 ©

Glven a history Et_l, the feasible choices for the t-th agent
are described by those levels which do not more than exhaust the

remaining stock, or

t-1_
l) ={el0Z2c¢c 21- Zc1},

.
Ct(c tl t g=1 8

and the feasible final consumption vectors are limited to
s = {c']cres, FTF =Yy
Al, Suppose now that each agent t has a bounded, continuous,

real valued utility function Ut(cT) defined over S and, in the presence

of uncertainty, receives the expected level of utility.

AZ. A strategy for the t-—th agent is a function which assigns

to every feasible history a conditional distribution function over the
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agent's feasible choices, or Ft(ct;ct-l) is a ¢.d.f. with support over

t-1

ct(ct“l) and is defined for all feasible c

A3. Given a vector of such strategies for all agents, the

expected utility from a choice of Et by the t-th agent is given by:

t+1 -t
e+l l—cs)dF (ct+l,c )

t,-t
voEh = ... fUt(Et, c 1

-t _t
Cr1 €01 ey msopy) Cppg €0 @D

...dFT(cT;(Et,c ).

TR

Ab. A mixed strategy consistent equilibrium is described by a
vector of'strategies F = (Fl( ),...,FT( )) where, for each t, Ft( )

maximizes'vt( ) given ct_l and F°( ) for all s > t, and, dFt(Et;Et_l) =0

unless Vt(Etﬁl,Et) 2 Vt(Et_l,ct) for all ctrect(Et_l).

The equilibrium allocations are described as
E = {c'|¥ s,dF%c_3¢%h) # 0} .

Since pure strategy eguilibria exist in general for this problem
(Goldman (1980)) and since pure strategies are also mixed ones, then
clearly the set of mixed strategies isn't null. We shall argue below
that by considering mi#ed strategies, we may increase the set of
equilibria beyond those of pure ones alone.

But first, it is noteworthy that our definition of mixed strategy
equilibrium requires that all agents prior to t have the same presumption
regarding t's strategy. Thus, the mixed strategy equilibria are no
less in need of coordination than the pure ones. Further, as is clear

from the example in figure 2, not every rational strategy by agent 2
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will result ip ap equilibrium -- only the strategy assigning b" when

El is selected.

In the following example, we shall display a mixed strategy

consistent equilibrium which is not a pure strategy omne.

Example 2:

Consilder a sequence of four agents. After the first agent has
chosen some s the consﬁmption space remaining for the other agents

1s typlcally depicted in figure 3 below —- the simplex c2+c +c 1-2¢

370 T
Suppose now, that the indifference map for the third agent is as

1

shown by the dotted line in figure 3. Then the reaction set faced by -
the second agent is described by the heavy border xyz. That is, if

the second agent selects any positive level of consumption, the third
will consume the remainder. If the seéond agent comnsumes nothing, then

the third is indifferent as to his level of consumption.

Figure 3

We shall first examine a possible mixed strategy equilibrium.
Now consider the strategy by the third agent as follows:

Whenever Cy is positive, consume whatever remains;



Figure 4

We have yet to address the problem of findiﬁg a decentralized
solution for our problem. Indeed, so long as.we require that all agents
prior to t have the same perception of t's strategy, we cannot escape
the need for cen;ralization since there is no way of inferring t's
strategy from strict rationality alone.

| Let us now remove this restriction and suppose merely that each
agent has a prior belief about the choices of later ones which are
among those selections which are maximal for those agents. That is,
an agent needn’t be "correct” in his supposition about the strategy of
a later agent; rather he expects choices which that agent "might" make.

This generalization, of course, will still inelude all of the

mixed strategies described previously but adds still other possibilities.
In fact, we shall demonstrate below that there will exist such conjectural

consistent equilibria which are not mixed strategy consistent equilibria.

The generalization of the concept of equilibrium is still not enough

to provide for the existence of a decentralized equilibrium, however.
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The example illustrated in figure 2 still suffices for this point ——
let the first agent ascribe to the second a strategy of choosing b'
and b" with equal probability. The reaction set seen by the first
agent remains open at b".

Formally the definition of a conjectural consistent equilibrium

(or C.C.E.) is given by the following:

Define
T, T-1 -1
Z(c” ) = {c lc =1- I ¢} .
T T g=1 S
T CT-1 T-1
. - < -
and F (CT’ c ) 0 for Cp 1 SEl Cg
T-1
=1forc, =1~ T ¢ ..
T S+l s |
Zt(ct_l) and Ft(ct; ct_l) are defined recursively by induction

t, t-1

+F(e t t-1

)y = {F (ct; et Yy [ e { Ut(ctﬁl,ct,ct+l,...,cT)

- T™-1
c ect(c ) CITECT(C )

t t-1 t+1 ‘ t T =1, ,
4F (ct,c )46 (ct+1,c )...4G (cT,c } is maximal

1

given some vector of c.d.f.'s Gt+ ,...,GT where G- has

suUpport over Zs(cs-l) for all s and F- is a c.d.f.}
- - t -1
25" = e, [3F° (e (T hs.tdr (e 3¢5 # 0}

A4t A conjectural consistent equilibrium is described by a set

| t-
of strategles Fl,...,FT where, for all ¢, and feasible S L
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t t-1,, &, t-1
F (ct;c YEF(c ). The equilibrium allocations are given by

E = {CTIVS,‘CSEZS(CS“l)}

In the following example, we shall show that a CCE equilibrium

needn't be an MS equilibrium.

Example 3:

Let us consider a small modification to Example 2, Taking the pre-

feréncés of the firsfjéﬁd third agents as before, let us suppose that

the second agent has a utility function given by Uz(ca) = c Thus’

2-!-(:4.
for any choice of ¢y by the first agent, the second would receive maximum
satisfaction along the line xz.

Now, suppose the folloﬁing.conjectures and CCE equilibrium:

1. The first agent believes that the third will choose l--cl with
probability one if ¢, = 0. (That is, along yé the third agent will
choose at y).

2, The first agent believes that the second agent believes that the third
agent will choose zero with probability omne if ¢y = 0. (That is along
yz the third agent will choose at z).

These beliefs are, of course contradictory in that the third agent can-
not choose both ways, but it is not contradictory_for the first agent to
believe that the second will differ with him in.guessing the actions of
the ﬁhird!

2

probability one. This choice would be rational given the first agent's

3. The first agent believes that the second will choose ¢, = 0 with

belief in the second's conjecture about the third. (That is, accord~-
ing to the first agent, the second would expect to receive U2(c4) =

¢, = l—cl.)
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4. Therefore the first agent expects the final result to be c3 = l—cl,
Cy =€, = 0 and thus choosges ¢y to maximize Ul(c4) =cy + {1.9(l~c1)}2.
So e, = 0}

Alternatively, let's examine the MS equilibria.

1. If three's strategy puts any positive probability on ¢, > 0, then the

3

second agent chooses c, = l-c and the first agent maximizes his

2 1

utility by choosing ¢y = 1.

2. If the third agent chooses c, = (0 with probability one, then a rational

3

strategy for the second agent chooses c, = 1 with some probability, p

and ¢, = 0 with probability l-p. Either way the first agent receives

utility equal to ¢, and his best choice is again c, = 1!

1 1

Therefore, a CEE equilibrivm needn’'t be an MS equilibrium.

We shall now turn our attention to a weakening of the rationality
assumption in order to exhibit the general existence of a consgistent

equilibrium.

3. On the Existence of Epsilon—Ratiohal Conjectural Equilibria

The weakening from M5 to CCE has relievéd part of the decentrali-
zation problem at the expense of ascribing to each ageﬁt some- expectation
of the strategy of each later one. Yet, even.ﬁith this introduction
of "beliefs," there is still no assurance that an equilibrium will result.
Thegdifficulty here lies in the strictness of the rationality condition.
It may happen, as indeed the first example illustrates, that an agent's
best choice lies on the boundary of an open set. Now this particular
type of equilibrium failure seems more the consequence of the mathematical
convenlence of continuity or divisibility, than of economi# signifi-

cance. If we believe that agents are satisfied to come close ~ within
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epsilon - of their maxima, then we shall always be abie to find equili-
bria. Below, we define an epsilon-rational conjectural consistent
equilibrium (or €-CCE) and prove its existence and decentralized nature
for the consistent choice problem, |

Define Ft(ct;ct-l,s), gf(ct—l,e) and Zt&t_l,e) as follows:

T, T-1 B ‘ _ T-1
Z7(c ,E) = {cT| cp =1 - sEl e}
T T-1 -1
. = <1 _
F (CT,C s ) 0 for Co 1 | SEI g
T-1

et
H
Q
[
2]
]
et
!
e}
(¢]

F ey = (F et ey,

T’
L, =1 O S L R I £, t-1
B'(C 98) i {F (Ctsc ;E)IV (E ) - [ .. u (C ,ct’ct“‘l’...’cT)
t=-1 T-1
ctE Ct(c ) cT-G CT(_C )
t, . t-1 £+ t T T-1
daF (ct;c ,E}dG (ct+l;c }...dG (cT;c ) dis within £, of

=41

its supremum given some vector of c.d.f.'s G ,...,GT where

G° has support over Zs(cs—l',e) for all s and F- is a c.d.f.}

Zttct_l,a) = {ct[:HFt(.;ct_1,€)€§§(ct_l,e), dFt(ct;ct_l) # 0}

AL An epsilon-rational conjectural equilibrium is described by
a vector of tolerances, £ = (El,...,ET); and a vector of strategles
F = (Fl,...,FT) where, for all t, Ft(.;ct"l,e)egg(ct_l,e).

The equilibrium allocations are given by E(g) = {cTIVs,cS GZS(cs_l,e)}

We note in passingpthat E(0) = E, that is, that the set of €CCE for € = 0

is simply the set of CCE.



—14—

Loosely, eéch agent selects an action that results in an outcome
within Et of the best he could hope to achieve given his subjective
beliefs about how future agents will select from theéir satisfactory
sets.

Theorem 1: TUnder Al, A2, A3 and A4" above, for any strictly positive

vector of tolerances, an epsilon-rational conjectural equilibrium

exists,

Proof: We shall proceed through inductive recursion to demonstrate

that the support for members of each SF is not null.

T-1
The last agent simply consumes ¢_ =1 - X c .
T s=1 8

Suppose that for all s > t and feasible cs_l that the support for
members of Eg(cs_l,s) is non-null.

Therefore, since Vt is bounded, sup ~Vc(ctfljgt) exists

t-1
céECt(c

)

for all feasible ct"l and feasible conjectures about the strategies of

later agents. So {cél sup vt(ct"l,c

. t-1
ctGCt(c )

_ b, t=-1 ' < ' -1
t) V(e ,ct) < Et,ctQS(c )}

is non-empty for feasible strategies by the later agents., A feasible
strategy for t is then a c.d.f. with this set for its support..
Q.E.D.

When the tolerance vector 1s zero, then the definition of an
€-CCE and CCE colincide. The proof of existence however:fails since
sup vt needn't actually be achievable. Indeed, without permitting
inexact maximization behavior, we have the same type of problems

as with pure strategy equilibria. After all, the agent could conjecture
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the pure stretegies for later agents ﬁhich would result in b' in the

first example.

4, The Relationship Between Epsilon-Equilibria

We wish now to address the relationship between the sets of
epsilon equilibria for different values of epsilon and, in particular,
the relationship between the CCE and £-CCE as epsilon converges to
zero. The results will indicate that the CCE (which may need central
coordination) may be viewed as . approximations to the £-CCE (which
never require centralization) for sﬁall epsilon.

The procedure to be followed entaills:

A description of the set of epsilon-rational conjectural consistent
equilibrium allocations along the lines of Goldman (1980) for the pure
strategy consisfent equilibria. We shall draw heavily on these eariler
results.,

In oxrder fo view the CCE as approximations to the £~CCE for small
epsilon, we need to establish‘the continuity of E(g) at & = 0. Then,
every CCE is "close” to some e-CCE aqd the limit of any convergent sequence
of e-CCE as g+0) is some CCE.

Define XT(CT,E) = {cT} where L is any allocation in $, and

Te) =5 .
Proceeding recursively,

sup min Ut+l(ET)}

. ~T t+l,t
() c € X {t ,c t+1’€)

c!

1 4
€
£+l Ct+J.
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and

t
) = U X(che) where 8% = {c%] £ ¢ S 1} .
t t s=1 S
c &5

It is quite straightforward to show that Yt(s) 1s compact and non-—
empty for all t. The proof is virtually ideutical tQ the Lemma in
Goldman (1980) p. 535, and is deleted-hefe. Consequently, the xt's
are non-empty.

We will now argue that XO(E) is identical to the set of possible

g~CCE allocations, or E{g). The reasoning closely follows that of the

Theorem in Goldman (1980) and is sketched below:

t+l

X (ct+l

,€) describes the outcomes which might occur after the

+
first t+l agents have selected ct 1, The t+]l st agent can guarantee an

outcome arbitrarily close in value (to him) to the sup min described
in thé_definition of Xt(ct,e). Thus he will most certainly not select

any level of consumption which results in outcomes all of which .are more

than ¢ worse than the sup min!

t+l

"
Further, if some level of consumption ¢

o+l does result .in possible outcomes

better in value than the sup min minus ¢ then by expecting the worst

t+1’°

outcomes for other levels of his consumption and the best outcome for this

% - ,
level, ct+l becomes within €t+l of the utility of his best choice under these

expectations.

___Therefore, these levels of c which may result in outcomes at least as

t+1

t+l, t
(

.are identical to the Z ¢ ,€) previously des-

good'as the sup min minus €l

cribed in the definition of g-CCE. In this manner, Xt(ct,e) becomes the possible
. t
outcomes given ¢ .

Extending this procedure backwards XD(E) = E(e) for all €20 and

E{0) = E, the CCE allocaticns.
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Theorem lim E(g) = E
g0

Proof: (by induction)

1. X el,e) = (D) Ve Z 0, Ve feasible.

2. Suppose
x%(c®,e) 2 X5(c%) Ve 20, ¥c® feasible, s >t
lim Xs(cs,e) = XS(CS) B feasible, s >t
>0 :

Show A: X (b, e) 2 x5 we 20, wt féasible

B: 1im X (%, e) = x%(®)  we' feasible
0

Recall the definition of Xt(ct,e)

t+1 T >

x5(ct,e) = {gh)et = ¢, eTex™ ™ ey, vt D ¥ ey 2

c = c,

: o ) t+1 . T T, t+1 ,<t+1
sup .. ®in _ U7 " (e™), c€&X™ " (c ,€)}
i —t S L e
S0 (8D X ’°t+1’€)
A. Since sup min Ut+l(ET) < sup

(Et) ETEXt+l(Et

1 (23 ”n
Cer1SCn 1Cea17 8 Cea1€Ch ¢

beéause Xt+1

=t n 2
(c¢”, e4128) 2 X, t+l)
then, for any T where
~ t+1
Ut+l(cT) z sup min U
n -t ~T_ T+l -t .
ct+lECt+l(c ) -c.EX (c ,ct+1)

min U

@5

t+l ,~T
(c™)

b dlextiEber

t+l
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t+1, T
=T “{c) + €41 Z sup min Ut+1(ET)
" T ~T T+ &,
Cear Cen (B EEXTTE e )00)

and therefora,

Xt(ct,e) > Xt(ct) .

B. Consider a convergent sequence { &}, where lim “g = 0.
0>,

Let {"x} be any sequence nxﬁxt(ct,nej‘where lim %% = x. We must
n-ee

establish that x‘EXt(ct) .

By the definition of Xt(ct,e) there exlsts a sequence {nﬁ}, where

nat+l 0 t+l
c = 'x , and

+ A 3
Ut 1(nc) + £ 2 sup min

t+l
t+1 v

~T
c

(c™)

t+l.n £

e, €C nt ETEX ("x ’Ct+l’n€)

t+1 t+1( x7)

-~ :
{"¢} must have a convergent subsequence as n + @, say, w.l.o.g.,

n
lim ¢ = ¢ .
n>w

Ut+1(c) = lim Ut+1(n3) - lim sup min : Ut+l(ET

firves fires t. T _t+l, t
" n ~ - " n
€0 (XD ceX” T(xT,ell . )

)

Ut+l ET

= gup min (c™)

) t AT t+L, t "
ct+1§0t+l(x ) ¢ €X =, ct+l)
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So, by this inequality and ct+1

and therefore ¥ EXt(Xt) !

Extending backwards,

EE) = x0(e) 2 x° =

and 1lim E(e) = E.
e+

X

t+1,

>

X, c&X

£+l

Q.E.D.

(

Xt+l

)
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