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The Pneumococcal Serine-Rich Repeat Protein Is an Intra-
Species Bacterial Adhesin That Promotes Bacterial
Aggregation In Vivo and in Biofilms
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Peter W. M. Hermans2, Carlos J. Orihuela1*
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Abstract

The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively
correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP
mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273–341 located in the
Basic Region (BR) domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction
that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in
continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants
with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (r)BR, Far Western blotting of
bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive
peptides, we determined that the BR domain, in particular amino acids 122–166 of PsrP, promoted bacterial aggregation
and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP
and GspB, the Serine-rich repeat proteins (SRRPs) of Staphylococcus aureus and Streptococcus gordonii, respectively, also
promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report
to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs
have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR
for S. pneumoniae) may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.
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Introduction

Streptococcus pneumoniae is a leading cause of otitis media (OM),

community-acquired pneumonia, sepsis and meningitis. Primarily

a commensal, S. pneumoniae typically colonizes the nasopharynx

asymptomatically, however in susceptible individuals such as

infants, the elderly, persons who are immunocompromised, and

those with sickle cell anemia, the pneumococcus is often able to

cause opportunistic diseases [1,2,3,4]. Worldwide, S. pneumoniae is

responsible for up to 14.5 million episodes of invasive pneumo-

coccal disease (IPD) and 11% of all deaths in children [5,6]. In the

elderly the mortality-rate associated with IPD can exceed 20% and

for those in nursing homes may be as high as 40% [7]. Thus, the

pneumococcus has been and remains a major cause of morbidity

and mortality.

psrP-secY2A2 is a S. pneumoniae pathogenicity island whose

presence has been positively correlated with the ability to cause

human disease [8]. Analyses of the published S. pneumoniae

genomes has demonstrated that psrP-secY2A2 is present and

conserved in a number of globally distributed invasive clones, in

particular those belonging to serotypes not covered by the

heptavalent conjugate vaccine [9]. To date, numerous studies

have shown that deletion of genes within psrP-secY2A2 attenuated

the ability of S. pneumoniae to cause disease in mice. psrP-secY2A2

mutants were shown to be unable to attach to lung cells, establish

lower respiratory tract infection, and were delayed in their ability

to enter the bloodstream from the lungs. Importantly, the same

studies found that psrP-secY2A2 did not play an important role

during nasopharyngeal colonization or during sepsis following

intraperitoneal challenge [10,11,12,13]. Thus psrP-secY2A2 is

currently understood to be a lung-specific virulence determinant.

In TIGR4, a virulent serotype 4 laboratory strain, psrP-secY2A2

is 37-kb in length and encodes 18 proteins. These include the

Pneumococcal serine-rich repeat protein (PsrP), which is a lung

cell adhesin, 10 putative glycosyltranferases, and 7 proteins

homologous to components of an accessory Sec translocase [14].

PLoS Pathogens | www.plospathogens.org 1 August 2010 | Volume 6 | Issue 8 | e1001044



To date, the latter 17 genes remain uncharacterized; however,

based on their homology to genes found within the Serine-rich

repeat protein (SRRP) locus of Streptococcus gordonii, the encoded

proteins are putatively responsible for the intracellular glycosyla-

tion of PsrP and for its transport to the bacterial surface

[8,15,16,17,18]. PsrP in TIGR4 is composed of 4,776 amino

acids, has been confirmed to be glycosylated, and separates at an

apparent molecular mass of 2,300 kDa on an agarose gel [13]. It is

one of the largest bacterial proteins known. PsrP is organized into

multiple domains including a cleavable N-terminal signal peptide,

a small serine-rich repeat region (SRR1), a unique non-repeat

region (NR), followed by a second extremely long serine-rich

region (SRR2), and a C-terminal cell wall anchor domain

containing an LPXTG motif (Figure 1A). The SRR1 and SRR2

domains of PsrP are composed of 8 and 539 serine-rich repeats

(SRR) of the amino acid sequence SAS[A/E/V]SAS[T/I],

respectively, and are the domains believed to be glycosylated.

The NR domain of PsrP has a predicted pI value of 9.9, for this

reason it is called the Basic Region (BR) domain.

S. pneumoniae is surrounded by a polysaccharide capsule that

protects the bacteria from phagocytosis but also inhibits adhesion

to epithelial cells [19]. Based on the size and domain organization

of PsrP we have previously hypothesized that the extremely long

SRR2 domain serves to extend the BR domain through the

capsular polysaccharide to mediate lung cell adhesion (Figure 1B)

[12,13]. Consistent with this model, we have previously shown that

PsrP is expressed on the bacterial surface, that the BR domain, in

particular amino acids 273–341, was responsible for PsrP-

mediated adhesion to Keratin 10 (K10) on lung cells, and that

complementation of psrP deficient mutants with a truncated

version of the protein (having only 33 SRRs in its SRR2 domain)

restored the ability of uncapsulated but not capsulated PsrP

mutants to adhere to A549 cells, a human type II pneumocyte cell

line [13].

It is now recognized that biofilms play an important role during

infectious diseases. Briefly, bacteria in biofilms are more resistant

to host-defense mechanisms including phagocytosis and serve as a

recalcitrant source of bacteria during antimicrobial therapy

[20,21]. For S. pneumoniae, pneumococcal biofilms have been

shown to occur in the middle ears of children with chronic otitis

media and is thought to contribute to its refractory nature [22].

Likewise, biofilms have been detected in the nasopharynx of

infected chinchillas [23]. However, until now biofilm structures

have not been described in the lungs during pneumococcal

pneumonia. This is in contrast to other respiratory tract

pathogens, such as Pseudomonas aeruginosa and Bordatella pertussis,

for which in vivo biofilm production is now recognized to be an

important pathogenic mechanism [21]. Herein, we demonstrate

for the first time that S. pneumoniae forms biofilm-like aggregates in

the lungs. We show that this phenomenon is PsrP-dependent and

mediated by its BR domain. Using recombinant protein and

SRRP mutants, we show that the SRRPs of S. gordonii and

Staphylococcus aureus, GspB and SraP, respectively, also promote

bacterial aggregation, thus describing a previously unrecognized

role for members of the SRRP family. Collectively, these findings

suggest an important dual role for PsrP and other SRRPs during

infection, host cell and intra-species bacterial adhesion, both of

which may be targeted for intervention with antibodies against

recombinant (r)NR.

Results

PsrP promotes pneumococcal aggregation in vivo
To test whether PsrP contributed to biofilm or microcolony

formation in vivo mice were infected with TIGR4 and its isogenic

psrP deficient mutant, T4 DpsrP, and whole lung sections were

examined using scanning electron microscopy (SEM). As would be

expected for both wild type and the mutant, the majority of

bacteria present were in the form of diplococci. However, for

TIGR4 we also observed the presence of large bacterial aggregates

attached to ciliated bronchial epithelial cells as well as to alveolar

epithelial cells (Figure 2). For quantitative analysis of this

phenomenon, nasal lavage fluid and bronchoalveolar lavage

(BAL) fluid from mice was collected two days post-challenge.

Aliquots from each biological sample were heat-fixed to glass

Figure 1. Hypothetical model of PsrP on the surface of S.
pneumoniae. A) Domain structure of PsrP: N-terminal signal peptide
(S); serine-rich repeat motif 1 (SAS[A/E/V]SAST X 11) (SRR1); basic region
(BR); serine-rich repeat motif 2 (SRR2); and the cell wall anchoring
domain (CW) at the C-terminus. B) Illustration of PsrP on the bacterial
surface. Based on the structural organization of PsrP and studies
demonstrating that the BR domain binds to K10 on lung cells [13], we
propose that the CWAD attaches the protein to the cell wall, while the
long glycosylated SRR2 domain serves to extend BR through the
capsular polysaccharide to mediate interactions.
doi:10.1371/journal.ppat.1001044.g001

Author Summary

Serine-rich repeat proteins (SRRPs) are a family of surface-
expressed proteins found in numerous Gram-positive
pathogens, including Staphylococcus aureus, Streptococcus
pneumoniae, Group B streptococci, and the oral strepto-
cocci that cause infective endocarditis. For all of these
bacteria, SRRPs have been demonstrated to play pivotal
roles in adhesion to tissues and the development of
invasive disease. It is now known that biofilm formation is
an important step for bacterial pathogenesis. Bacteria in
biofilms have been shown to have differences in
metabolism, gene expression, and protein production that
contribute to enhanced surface adhesion and the persis-
tence of an infection. Herein we describe a novel role for
PsrP, the S. pneumoniae SRRP, as an intra-species bacterial
adhesin that promotes bacterial aggregation in the lungs
of infected mice during pneumonia. In vitro we show that
the Basic Region domain of PsrP promotes self-interactions
that result in denser biofilms, greater biofilm biomass, and
altered architectures of surface grown cultures; these
interactions could be neutralized by antibodies to PsrP
that are protective against pneumococcal infection. We
also demonstrate that the SRRPs of S. aureus and
Streptococcus gordonii also function as intra-species
bacterial adhesins. Therefore we conclude that SRRPs have
dual roles as host-cell and intra-species bacterial adhesins.

PsrP Mediates Biofilm-Like Aggregates in the Lungs
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slides, Gram-stained, and examined with a microscope (Figure 3A).

In all, the number of bacterial aggregates composed of 2–9, and

$10 diplococci were significantly greater for mice infected with

TIGR4 than T4 DpsrP in both the nasopharyngeal and BAL elute

fluids (Figure 3B,C). Moreover, the largest aggregates, those

composed of .100 bacteria, were observed only in mice infected

with TIGR4. Fluorescent imaging of bacteria in frozen lung

sections confirmed this phenotype; large bacterial aggregates were

only detected in the lungs of TIGR4 infected mice (Figure S1).

Thus we determined that PsrP promoted the formation of biofilm-

like aggregates in vivo, including in the nasopharynx, a site

previously shown not to require PsrP for bacterial colonization

[12].

PsrP affects intimate bacteria to bacteria interactions
Given the previous results, moreover to develop an in vitro model

that was amendable to manipulation, the ability of TIGR4 and T4

DpsrP to form early biofilms was tested using microtiter plates [24].

As shown in Figure 4A, no differences were observed between wild

type and the mutant, suggesting that PsrP does not play a role in

pneumococcal attachment to polystyrene or the formation of early

biofilm structures, in particular the bacteria lawn. The role of PsrP

was next tested in 3-day old mature biofilms using the once-

through continuous flow cells as described previously by Allegrucci

et al. [25]. In this system, a stark difference in the architecture of

TIGR4 and T4 DpsrP biofilms was observed (Figure 4B). Wild type

biofilms displayed a dense cloud-like morphology with extremely

large aggregates that covered the glass surface. Closer inspection

revealed that these aggregates were composed of tightly clustered

pneumococci. In contrast, T4 DpsrP biofilms displayed a less

intimate phenotype characterized by smaller aggregates, gaps, and

the formation of columns, resulting in an overall patchier

phenotype. Quantitative analysis of the biofilm structures using

COMSTAT software confirmed that TIGR4 biofilms had

significantly greater total biomass and average thickness than

those formed by the T4 DpsrP (Figure 4C). No differences in either

the maximum thickness of the biofilms or the roughness coefficient

(a measure of biofilm heterogeneity) were observed (Figure 4C;

data not shown, respectively), indicating that T4 DpsrP could still

form biofilms, although with distinct architecture. Importantly, T4

VpsrP-secY2A2, a mutant deficient in the entire psrP-secY2A2

pathogenicity island, behaved identically to T4 DpsrP, forming

patchy biofilms with small aggregates and less intimate associated

bacteria (Figure S2).

Bacterial biofilms were also grown under once through

conditions in silicone tubing. After a designated time, the biofilms

Figure 2. PsrP promotes the formation of bacterial aggregates in vivo. SEM images of bronchial and alveolar epithelial cells following
infection with TIGR4 (WT) and T4 DpsrP (DpsrP). White arrows point at attached bacteria. Note the presence of WT bacteria in large aggregates of
various sizes.
doi:10.1371/journal.ppat.1001044.g002

PsrP Mediates Biofilm-Like Aggregates in the Lungs
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were extruded from the line and examined for biomass both

visually and quantitatively. After 3 days of growth, differences

between TIGR4 and T4 DpsrP in opacity of the exudates were

visible to the eye (Figure 5A) and could be confirmed using a

spectrophotometer which showed a .3-fold difference in optical

density (Figure 5B). Microscopic visualization of the line exudates

following crystal violet (CV) staining revealed that TIGR4 had

formed large aggregates whereas T4 DpsrP exudates were

composed of small clusters or of individual diplococci

(Figure 5C). Increased biofilm biomass was supported by

measurement of total protein concentrations that showed TIGR4

biofilm exudates had 2–3 fold more protein than those

corresponding to T4 DpsrP (Figure 5D).

Of note, during planktonic growth TIGR4, T4 DpsrP, and T4

VpsrP-secy2A2 were indistinguishable, growing either as short

chains or diplococci with a marked absence of aggregates (data not

shown). This led us to examine psrP transcription using Real-Time

PCR and the finding that TIGR4 expressed psrP at levels 47-fold

greater during biofilm versus planktonic culture (P = 0.04 using a

Student’s t-test). Thus low expression of psrP may be one reason

TIGR4 did not form aggregates during liquid culture.

The BR domain mediates intra-species bacterial
interactions

To date a number of groups, including our own, have shown

that SRRPs mediate bacterial adhesion to host cells primarily

through their NR domain [13,26,27]. For this reason we sought to

test whether the BR domain of PsrP was also involved in biofilm/

bacterial aggregation. To do this we first utilized a pre-existing

collection (described in Figure S3) of encapsulated (T4 VpsrP) and

unencapsulated (T4R VpsrP) S. pneumoniae mutants deficient in

PsrP that either expressed a truncated version of PsrP with 33

SRRs in its SRR2 domain (PsrPSRR2(33)), a similar truncated

version lacking the BR domain (PsrPSRR2(33)-BR), or carried the

empty expression vector pNE1 [13]. These strains were tested for

Figure 3. Frequency of bacterial aggregates in the nasopharynx and lungs. A) Micrographs of TIGR4 (WT) and T4 DpsrP (DpsrP) Gram-
stained bacteria from either BAL or nasal lavage (IN) elutes. Images were taken at 4006 magnification. Images are not representative of the total
bacteria population, but instead are shown to demonstrate the typical pneumococcal aggregate containing at least 10 or more individual diplococci
(10+). B) Actual percentages of pneumococcal aggregate based on size in the nasopharynx and C) lungs following counting of .100 randomly
selected CFUs per biological replicate. Note that TIGR4 had significantly greater levels of 2–9 and 10+ aggregates compared to T4 DpsrP. Furthermore,
while 10+ aggregates were observed in mice infected with T4 DpsrP, albeit infrequently, the largest of these aggregates were not comparable in size
to those formed by TIGR4. Statistical analyses were performed using a Student’s t-test.
doi:10.1371/journal.ppat.1001044.g003

PsrP Mediates Biofilm-Like Aggregates in the Lungs
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their ability to form biofilms in silicone lines under once through

conditions.

Complementation of T4 VpsrP with PsrPSRR2(33), but not

PsrPSRR2(33)-BR or the empty pNE1 vector, partially restored the

ability of T4 VpsrP to form large aggregates in the lines when

examined microscopically (Figure 6A). However, measurement of

other biofilm markers such as optical density and total protein

concentration showed no differences between any of the

complemented mutants and the negative controls (Figure 6B–C).

Complementation of T4R VpsrP with PsrPSRR2(33), also partially

restored the ability of T4R VpsrP to form aggregates (Figure 6A).

In this instance, line exudates from T4R VpsrP with PsrPSRR2(33)

had significant more biofilm biomass than the negative controls

(Figure 6B–C). Importantly, the truncated version of PsrP lacking

the BR domain failed to restore, even partially, T4 VpsrP or T4R

VpsrP suggesting that the BR domain was responsible for the intra-

species aggregation. This was subsequently confirmed by Far-

Western blot analyses that showed that Gst-tagged recombinant

BR (Gst-BR) bound only to S. pneumoniae cell lysates that contained

a truncated PsrP with the BR domain (Figure 6D) and a control

experiment showing that a Gst-tagged Chlamydia trachomatis protein

did not interact with these lysates (Figure S4).

To further explore the role of the BR domain in the observed

bacteria to bacteria interactions, the ability of His-tagged BR

constructs (rBR; Figure 7A), purified from Escherichia coli and Cy3

labeled, were tested for their ability to bind to the surface of

TIGR4 and T4 DpsrP. Full-length rBR interacted with TIGR4 but

not with T4 DpsrP (Figure 7B), confirming not only that PsrP

bound to pneumococci, but also suggesting that its ligand was

another PsrP. Furthermore, only rBR.A retained the ability to

attach to PsrP on the pneumococcal surface. This suggested that

the binding domain of PsrP was possibly located within AA 122–

166, the section not shared between rBR.A and rBR.B.

Hereafter, BR to BR interactions were tested for by Far

Western and co-immunoprecipitation. Far Western blot experi-

ments using assorted E. coli cell lysates from bacteria expressing

assorted rBR constructs, confirmed that only lysates containing

PsrP constructs with AA 122–166 bound successfully to Gst-BR

(Figure 7C). This was also observed in co-immunoprecipitation

experiments, whereby Gst-BR was tested for its ability to bind

whole cell lysates from E. coli expressing versions of PsrP

(Figure 7D). Far Western blots using purified proteins showed

that Gst-BR had affinity to purified rBR, rBR.A, and a synthesized

peptide corresponding to AA 122–166, but not rBR.B, BR.C, or

µ
µ µ µ

Figure 4. Deletion of psrP alters bacterial interactions in mature biofilms but not during early biofilm attachment. A) Attachment of
TIGR4 (WT) and T4 DpsrP (DpsrP) to the bottom of 96-well polystyrene microtiter plate in an early biofilm model. Biofilm biomass was determined
using crystal violet (CV540) stain as described in the methods. B) Micrographs of mature TIGR4 and T4 DpsrP biofilms grown in a flow cell under once-
through flow conditions for 3 days. Bacteria were visualized with Live/Dead BacLight stain using an inverted confocal laser scanning microscope at
4006magnification. C) Quantitative analysis of the biofilms was performed using COMSTAT image analysis software. All experiments were performed
in triplicate. Statistical analyses were performed using a two-tailed Student’s t-test. For panel C error bars denote standard error.
doi:10.1371/journal.ppat.1001044.g004

PsrP Mediates Biofilm-Like Aggregates in the Lungs
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the control his-tagged Streptolysin O (Figure 7E). Hence, using

numerous assays it was determined that the BR domain, most

likely AA 122–166, had self-interacting properties that might be

responsible for the observed bacterial aggregation.

Of note, because the BR constructs were purified from E. coli and

PsrP is normally glycosylated, the above observations may have

been an artifact of the unglycosylated constructs used. To address

this possibility a glycosyated truncated PsrP construct was purified

from S. pneumoniae (PsrPSRR2(33)-HIS; Figure S5) and tested for its

ability to bind S. pneumoniae cell lysates containing either native PsrP

or assorted constructs. As shown in Figure 7F, it was determined

that a glycosylated PsrP probe maintained specificity for the BR

domain even in the context of glycosylated recipient protein. A

finding that supports the notion that PsrP to PsrP interactions occur

in natural setting when PsrP is always glycosylated.

The aggregation and K10-binding subdomains of BR are
independent

To determine whether the BR aggregation (AA 122–167) and

the K10 binding subdomains (AA 273–341) of BR had

functionally independent roles, competitive inhibition assays were

performed using rBR constructs. Bacterial adhesion to A549 cells

was tested following incubation of cells with the AA 122–166

peptide, rBR, and rBR.C (Figure 8A). Pre-treatment of A549 cells

with AA 122–167 had no impact on adhesion. In contrast and

consistent with the location of the K10 binding domain within

BR.C: 1) TIGR4 adhered significantly less to cells treated with

rBR or rBR.C, 2) TIGR4 adhered to BSA treated cells better than

T4 DpsrP. In complementary biofilm experiments the opposite

result was observed. Addition of 1 mM peptide AA 122–167 to

media reduced the aggregation phenotype observed for TIGR4

(Figure 8B) and modestly lowered the optical density of the biofilm

exudate and the total biomass collected from the continuous flow

lines versus addition of BR.C (Figure 8C–D). Thus these findings

suggested that the aggregation and K10 subdomains of PsrP had

distinct roles that did not overlap during host cell adhesion or

biofilm formation.

Finally we sought to determine a biological effect for the

aggregation phenotype. We observed that after 1 hour, 6962% of

J477 macrophages incubated with planktonically grown TIGR4

were associated with FITC-labeled bacteria whereas only 5165%

of macrophages mixed with biofilm grown TIGR4 were positive

(P = 0.024). Macrophages exposed to biofilm grown TIGR4 also

took up less bacteria than macrophages mixed with planktonic

(7461%; P = ,0.001) and biofilm (6061%; P = ,0.001) cultures

of T4 DpsrP. Interestingly, a 10% reduction in macrophage uptake

was observed for the biofilm versus planktonic grown T4 DpsrP

cultures (P = 0.077); and no difference was observed between

macrophage uptake of TIGR4 and T4 DpsrP when taken from

planktonic cultures. These findings suggest, that in addition to

PsrP, other bacterial factors expressed during growth in a biofilm

also affect opsonophagoyctosis.

Antibodies to the BR domain, but not to the SASASAST
motif, block bacterial aggregation

Previously we had shown that antibodies against the SRR1-BR

domains of PsrP neutralized the ability of S. pneumoniae to attach to

lung cells and that vaccination with rBR protected mice against

pneumococcal challenge [12,13]. For this reason we tested the

ability of polyclonal antiserum against rBR and against a SRR

motif peptide to block bacterial aggregation in the biofilm line

model. Todd Hewitt Broth (THB) supplemented with a 1:1000

dilution of antiserum against the BR domain inhibited the

formation of bacterial aggregates as observed by microscopic

visualization of the biofilm line exudates. In contrast, bacteria in

media supplemented with antiserum to the SRR motif peptide or

that from naı̈ve animals, formed aggregates similar to wild type

bacteria grown under serum free conditions (Figure 9A). Biofilm

exudate optical density and protein concentrations supported these

microscopic observations (Figure 9B–C). To determine whether

the effect of the BR antiserum on biofilm formation was specific

for TIGR4, we tested the ability of antibodies to the BR domain to

block biofilm formation in unrelated clinical isolates (Figure S6).

Antiserum against rBR from TIGR4 inhibited biofilm formation

in two unrelated clinical isolates that carried PsrP. The same sera

had no effect on biofilm formation by an invasive serotype 14

isolate that lacked PsrP. Therefore these studies confirmed

previous observations that increased bacteria aggregation in

biofilm models can occur independently of PsrP, but that if

present, antiserum against BR can block the contribution of PsrP

to these processes.

SRRPs mediate intra-species adhesion in pathogenic
bacteria

To determine whether other SRRPs also mediated intra-species

aggregation we tested the effect of gspB and sraP deletion on S.

Figure 5. PsrP promotes bacterial aggregation in a line biofilm
model. Mid-logarithmic growth phase TIGR4 (WT) and T4 DpsrP (DpsrP)
were used to inoculate 1 meter of a 0.8 mm diameter silicone-lined
plastic tubing. After 3 days, biofilms within the lines were extruded. A)
Representative photograph of the exudate suspension immediately
following its collection. B) Optical density (OD540) of bacterial exudates.
C). Microscopic images of CV stained bacteria extracted from the lines.
Note the formation of aggregates by TIGR4 but not T4 DpsrP. D) Levels
of protein in bacteria line exudates as determined by bicinchoninic acid
assay (BCA) following detergent lysis of the bacteria. Images are
representative of at least 3 experiments. Statistical analyses were
performed using a two-tailed Student’s t-test. Error bars denote
standard error.
doi:10.1371/journal.ppat.1001044.g005

PsrP Mediates Biofilm-Like Aggregates in the Lungs
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gordonii and S. aureus biofilm architecture, respectively. Deletion of

gspB and sraP negatively impacted biofilm formation in the

microtiter biofilm model at 24 hours (Figure 10A,B). Growth of

wild type and mutant bacteria in the line models also

demonstrated that both proteins contributed to the formation of

large aggregates during surface attached growth; although this

property was much more dramatic for S. gordonii than for S. aureus

which did not show a significant difference in the optical densities

of the exudates (Figure 10C,D). Of note, S. aureus biofilm

experiments were stopped after 1 day due to bacteria overgrowth

and blockage of the lines.

Subsequent Far Western analysis using Gst-BR from S.

pneumoniae as well as recombinant SRR1-NR from SraP and

recombinant NR from GspB showed that these proteins have

affinity for cell lysates from their parent strain but not for cell

lysates from isogenic SRRP deficient mutants (Figure 10E). This

supports the notion that these proteins might be involved in intra-

species aggregation. For PsrP BR from S. pneumoniae, no affinity

was observed for cell lysates from either S. gordonii or S. aureus

suggesting that PsrP does not play a role as an inter-species

adhesin (Figure 10E). In contrast, the NR constructs from S. aureus

and S. gordonii bound to cell lysates from the other bacteria, even in

the absence of the SRRP (Figure 10E). The discrepancy between

PsrP and the other SRRPs might be explained by the fact that

certain SRRPs have been described to have lectin activity [26,27].

In contrast PsrP adhesion has been shown to be independent of

lectin-activity [13].

Discussion

To date, SRRPs have been described in at least 9 Gram-positive

bacteria and have been shown to function as adhesins that

contribute to virulence. For example, deletion of sraP and gspB in

S. aureus and S. gordonii, respectively, decreased the ability of these

bacteria to bind to platelets and form vegetative plaques on heart

valves of catheterized rats [27,28]. Similarly, Srr-1 of Streptococcus

agalactiae has been shown to bind human Keratin 4, mediate

adherence to mucosal epithelial cells, and promote invasion of

bacteria through human brain microvasculature endothelial cells

[29,30]. SRRPs also mediate acellular attachment, a role

Figure 6. The BR domain of PsrP mediates intra-species bacterial interactions. Encapsulated and unencapsulated mutants of TIGR4, lacking
PsrP (T4 VpsrP, T4R VpsrP, respectively), were complemented with plasmids expressing: a truncated version of PsrP having only 33 SRR2 repeats
(PsrP(33)), the truncated version of PsrP missing the BR domain (PsrP(33)-BR), or with the empty expression vector (pNE1). A) Microscopic images of CV
stained bacteria isolated from the line biofilm model. B) Optical density (OD620) of biofilm line exudates. C) Biomass of the biofilms as determined by
protein levels using the BCA assay. D) Far Western analyses of recombinant BR interactions with membrane-bound truncated versions of PsrP
expressed in S. pneumoniae. All images are representative of at least 3 independent experiments. Statistical analyses were performed using 1-Way
ANOVA analysis. Error bars denote standard error. For panel B and C asterisks denote statistical significance versus WT; hash sign denotes statistical
significance versus the empty vector control.
doi:10.1371/journal.ppat.1001044.g006
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important for colonization of the dental surface by oral

streptococci. Froelinger and Fives-Taylor showed that Streptococcus

parasanguis containing mutations of Fap1 failed to attach to saliva-

coated hydroxyapatite [31]. Likewise, deletion of srpA significantly

diminished the ability of Streptococcus cristatus to attach to glass slides

[32]. Thus, while it was well established that SRRPs play an

important role in bacterial attachment to cells or surfaces, until this

report their role as intra-species adhesins remained unrecognized.

A dual role, host and bacterial adhesin for bacterial surface

proteins is not unprecedented. For example, in Streptococcus pyogenes

and S. agalactiae, the pilus proteins mediate adhesion to epithelial

cells and promote microtiter biofilm formation [33,34]. Likewise,

for Neisseria meningitidis, PilX, also a pilus-associated protein,

mediates adhesion to epithelial cells and facilitates bacterial

aggregation [35]. For the pneumococcus, some evidence existed

that bacterial adhesins may also have dual roles. In 2008, Munoz-

Elias et al. found that the pneumococcal adhesins Choline binding

protein A and the pilus protein RrgA were both required for

robust biofilm formation on microtiter plates and efficient

nasopharyngeal colonization [36]. However, the attenuated

biofilm phenotype was observed only with unencapsulated

bacteria and encapsulated mutants formed biofilms normally.

Other pneumococcal proteins shown to affect biofilm formation in

vitro include Neuraminidase A, which possibly alters the extracel-

lular matrix [37,38,39], competence proteins, which suggest an

altered protein profile [40,41], and capsule synthesis enzymes,

which were determined to be down regulated in biofilms

[36,42,43]. Unlike PsrP, which would be expected to bridge cells

directly, these proteins most likely act indirectly by altering gene

expression, the extracellular milieu, or the surface availability of

other adhesins, including possibly RrgA and CbpA.

Our studies determined that the self-aggregating subdomain of

PsrP was located in the BR domain and involves amino acids 122–

166. Recombinant BR constructs containing these amino acids

were able to bind S. pneumoniae carrying PsrP, had an affinity for

the BR domain in other PsrP constructs, and could modestly

inhibit biofilm formation when added to media. Importantly,

adhesion assays using pretreated cells and biofilm assays with

AA 122-395 

AA 122-304 

AA 167-350 

AA 214-395 

+ Cy3 rBR.A + Cy3 rBR.B + Cy3 BR.C + Cy3 rBR 

Figure 7. Recombinant BR interacts with pneumococci that carry amino acids 122–166 of PsrP. A) The designated recombinant PsrP
constructs were expressed and purified from E. coli. B) Micrographs of FITC-labeled bacteria following their incubation with CY3-labeled rBR or the
designated truncated versions. Note that only Cy3-labeled rBR and rBR.A bound to TIGR4. Moreover, neither bound to T4 DpsrP. This suggests that
recombinant BR binds to PsrP on the bacteria surface. C) Far Western blot examining the interaction of Gst-BR with cell lysates from E. coli expressing
assorted rBR constructs spotted on a membrane. D) Co-immunoprecipitation of Gst-BR (65 kDa) from spiked E. coli lysates expressing His-tagged rBR
constructs. E) Far Western blot examining the interaction of Gst-BR with purified rBR constructs and a synthesized peptide corresponding to AA 122–
166. F) Far Western blot examining the interaction of a glycosylated PsrP construct purified from S. pneumoniae, PsrPSRR2(33)-HIS with glycosylated PsrP
constructs expressed in TIGR4.
doi:10.1371/journal.ppat.1001044.g007
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rBR.C showed that the AA 122–166 was not responsible for

adhesion to lung cells and that the K10 binding subdomain (AA

273–341) was not involved in bacterial aggregation. Thus these

subdomains appeared to have independent roles during the

conditions tested. Further studies are warranted to delineate the

specific AAs responsible for these adhesive properties, also to

determine the structure of the BR domain and clarify how these

subdomains interact with PsrP on other pneumococci and K10 on

lung cells.

GspB and SraP have been previously shown to bind platelets

[27,28]. While the ligand for SraP is unknown, it has been

determined that GspB binds to Sialyl T-antigen on platelet

membrane glycoprotein Iba [26,27]. The observation that the NR

domains of GspB and SraP bound to cell lysates containing their

respective SRRPs but not to their mutants and that the mutants

had diminished aggregative properties suggests that SRRPs in

other bacteria might also mediate aggregation in vivo. One could

imagine that SraP on S. aureus or GspB on S. gordonii mediating

attachment to platelets and cells in an endocarditic lesion while at

the same time mediating adhesion of individual bacteria to each

other. Similarly, one could envision a microcolony of the

pneumococcus in the lungs with some bacteria attached to host

cells via PsrP/K10 interactions and other bacteria attached to

these bacteria through PsrP/PsrP interactions. Presumably, this is

what was observed in the lungs of the infected mice. Interestingly,

the finding that GspB and SraP NRs bound to cell lysates from

other bacteria suggests that these proteins may also mediate inter-

species biofilm formation. For S. gordonii, this would be relevant as

the dental plaque is now recognized to be a multi-species biofilm.

Importantly, neutralization of pneumococcal aggregation in

biofilms with BR antiserum suggests that SRRPs might have

utility as vaccine antigens. One caveat is that SRRPs would have

to be one-component of a multi-valent vaccine because not all

strains of S. pneumoniae, S. aureus, or the oral streptococci carry these

proteins.

In previous studies we had found that the length of the SRR2

domain was important for adhesion to K10 when capsule was

present. Consistent with these findings, the inability of truncated

PsrP to fully complement capsulated mutants supports our

hypothetical model that the SRR2 domain serves to extend the

BR domain away from the cell to mediate bacterial interactions.

This model is also indirectly supported by Munoz-Elias et al., who

showed that down-regulation of capsule allowed CbpA and RrgA

to contribute to biofilm production [36]. It is also noteworthy to

state that Munoz-Elias et al. did not identify PsrP in their screen for

biofilm mutants although they used TIGR4 which carries PsrP.

Figure 8. Incubation of bacteria with AA 122–166 impairs bacterial aggregation but not adhesion to cells. A) Adhesion of TIGR4
following pre-incubation of A549 cells with media containing 1.0 mM of the designated rBR constructs. All values were normalized against cells
incubated with BSA (16364 bacteria/106 cells). TIGR4 in media containing 1 mM BR.C or the synthesized peptide 122–126 was used to inoculate and
grow biofilms in the line biofilm model. After 3 days, biofilms within the lines were extruded. B) Representative photograph of the exudate
suspension immediately following its collection and staining with CV. Images are representative of at least 3 experiments. C) Optical density (OD540)
of bacterial exudates. D) Levels of protein in bacteria line exudates. Statistical analyses were performed using a Student’s t-test. Error bars denote
standard error.
doi:10.1371/journal.ppat.1001044.g008
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This can be explained by the fact that we observed no contribution

for PsrP in the microtiter plate early biofilm model.

We observed that PsrP-mediated bacterial aggregation occurred

in the nasopharynx, despite earlier studies demonstrating that K10

was absent from this site and that PsrP was not required for

nasopharyngeal colonization. Aggregation of S. pneumoniae in the

nasopharynx may serve as a mechanism to resist opsonophago-

cytosis as shown herein, or we speculate a way to resist desiccation

during transmission of infectious particles. The observation that

aggregates were present at an anatomical site that lacked K10,

further supports an independent role for these PsrP subdomains.

In regards to opsonophagoyctosis, one important consideration is

that the pneumococcus most likely has different gene expression

profiles in vivo as an aggregate attached to a cell versus in vitro as

a biofilm [44]. Thus caution is warranted in applying our vitro

observations, such as resistance to opsonophagoyctosis or

enhanced PsrP expression during biofilm growth, with events that

occur in vivo.

Polyclonal antibodies against the BR domain, but not the SRR

motif, neutralized the ability of TIGR4 and clinical isolates

carrying PsrP to form aggregates in the line model. These findings

were consistent with previous studies showing that antibodies

against BR also neutralized its ability to mediate adhesion to host

cells and protected mice against pneumonia [12,13]. One possible

reason that antibodies against the SRR motif peptide failed to

have a neutralizing effect is that PsrP is glycosylated and antibodies

against the peptide failed to recognize the native version of the

protein. Alternatively, antibodies to the SRR motif may bind away

from the BR domain and therefore do not inhibit the ability of the

BR domain to self-interact. Interestingly, polyclonal antibodies to

surface proteins often promote aggregation. This did not occur for

unknown reasons. Finally, our finding that antibodies against rBR

neutralized bacterial aggregation in the biofilm line model suggests

that the same antibodies might also neutralize bacterial aggrega-

tion in vivo. This remains to be tested, however, the protection that

was observed in mice following immunization with rBR [13], may

have been in part due to inhibition of bacterial aggregation in

addition to blocking interactions with K10.

Importantly, because rNR domains produced in E. coli are not

glycosylated, yet for the tested SRRPs were able to aggregate,

immunoprecipitate, and bind to native protein in cell lysates, it

seems that the BR domain does not require glycosylation to

function as a self-adhesin. This is supported by the observation

that addition of antibodies against unglycosylated rBR and that

synthetic peptide AA 122–166 both inhibited bacterial aggregation

in the biofilm line. In contrast to the latter concept, Wu et al.

demonstrated that monoclonal antibodies specific for the glycan

motifs of the serine-rich repeat motifs of Fap1 were capable of

blocking attachment to saliva coated hydroxyapatite by Streptococcus

parasanguis [45]. Importantly, Fap1 is the most divergent of the

SRRPs and has 2 NR domains. Fap1 adhesion to saliva coated

hydroxyapatite is mediated by glyconjugates on the serine-rich

repeat domain [46]; as evidenced by the fact that inactivation of

one of the glycosyltranferases known to modify the glycan moieties

of Fap1, drastically altered the ability of S. parasanguis to form

biofilms [45]. Thus Fap1 is interesting because it suggests an NR-

independent mechanism for SRRP adhesion, which is distinct

from those discussed for GspB, SraP, or PsrP. Future studies need

to further examine the differences between these diverse SRRPs

and to determine if the two NRs of Fap1 play a role in bacterial

aggregation. This is especially true given that the NR domain of

SraP has a pI of 5.6, in contrast to the basic NRs of GspB (9.5 pI)

and PsrP (9.9 pI) [47].

In summary, we have described for the first time the presence

of a pneumococcal biofilm-like structure in the lungs of infected

mice. We have determined that PsrP mediates a more intimate

bacterium to bacterium interaction that contributes to the

presence of large bacteria aggregates in vivo and increased biofilm

biomass and aggregates in vitro. This property appears to be

shared among other SRRPs including those of medically relevant

bacteria such as S. aureus and S. gordonii, suggesting that it is a

conserved function for this class of proteins. How these

interactions contribute to pathogenesis remains to be fully

determined, however, studies with other bacteria indicate that

biofilms serve to inhibit phagocytosis, protect against defensin-

mediated killing, and serve as a focal point of infection during

early stages of disease. Future experiments will be required to

determine the extent to which this may apply for SRRP-mediated

aggregates in vivo.

Methods

Bacterial strains and media
Wild type strains used in this study included S. pneumoniae strain

TIGR4 and the previously described clinical isolates IPD-5,

TNE-6012, and TBE-6050 [8,12,14]. T4R is an unencapsulated

derivative of TIGR4 [48]. S. aureus ISP479C and S. gordonii M99

and their corresponding isogenic mutants ISP479C DsraP, and

Figure 9. Antibodies to the BR domain but not the serine-rich
motif block intra-species bacterial interactions. THB was
supplemented with either a 1:1000 dilution of naı̈ve rabbit serum
(control), rabbit antiserum from rabbits immunized with a SASASAST-
SASASAST peptide designed after the SRR motif, or rabbit antiserum to
recombinant BR. A) Micrographs of CV stained bacteria extruded from
the biofilm lines. B) Optical density of bacterial exudates. C) Levels of
protein in bacterial line exudates as determined by BCA analysis. Images
are representative of at least 3 independent experiments. Statistical
analyses were performed using a two-tailed Student’s t-test. Number
sign denotes statistical significance versus whole serum. Asterisks
denote statistical significance versus anti-SRR serum. Error bars denote
standard error.
doi:10.1371/journal.ppat.1001044.g009
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M99 DgspB have also been previously described [17,27]. All of

the S. pneumoniae mutants used in this study including T4 DpsrP,

T4 VpsrP-secY2A2, T4 VpsrP, and T4R VpsrP have been shown

not to have polar effects on upstream and downstream gene

transcription [12,13]. S. pneumoniae and S. gordonii were grown in

Todd-Hewitt broth (THB) or on blood agar plates at 37uC in 5%

CO2. S. aureus were grown in Tryptic-Soy Broth (TSB) or on

blood agar plates at 37uC. Stocks for the PsrP mutants were

grown in media supplemented with 1 mg/mL of erythromycin,

those complemented with the expression vector pNE1 were

grown on media supplemented with 250 mg/mL of spectinomy-

cin. SraP and GspB mutant stocks were grown in media

supplemented with either 15 mg/mL of erythromycin or 5 mg/

mL chloramphenicol respectively. E. coli strain DH5a (Invitrogen,

Carlsbad CA) expressing recombinant PsrP constructs were

grown with 50 mg/mL of kanamycin. Recombinant proteins

were purified as previously described [13,26]. To avoid stress

effects on the bacteria, no antibiotics were added to the media

during any of the experiments.

Infection of mice and collection of tissues
Female BALB/cJ mice, 5–6 weeks old, were obtained from The

Jackson Laboratory (Bar Harbor, ME). Mice were anesthetized with

2.5% vaporized isoflurane prior to challenge. Exponential phase

cultures of S. pneumoniae were centrifuged, washed, and suspended in

sterile phosphate buffered saline (PBS). For each experimental cohort

at least 6 mice were instilled with either 107 cfu of TIGR4 or T4 DpsrP

in 20 mL of PBS into the left nostril. After two days mice were

sacrificed for tissue collection. For imaging experiments the intact

lungs were collected and processed as described below. For

enumeration of bacterial aggregates, nasal lavage fluid was collected

from anesthetized mice by instillation and retraction of 20 ml PBS.

The same mice were subsequently asphyxiated with compressed CO2,

and BAL fluid collected by flushing the lungs twice with 0.5 ml of PBS

using a sterile catheter. All animal experimentation was conducted

following the National Institutes for Health guidelines for housing and

care of laboratory animals. Animal experiments were reviewed and

approved by the Institutional Animal Care and Use Committee at

The University of Texas Health Science Center at San Antonio.

Figure 10. The SRRPs of S. gordonii and S. aureus promote bacterial aggregation. Light microscopic images of CV stained A) S. gordonii M99
and B) S. aureus ISP479C and their respective isogenic SRRP mutants following 24 hours of growth in a 96-well polystyrene microtiter plate early
biofilm model. B) Average biomass of early biofilms as determined by CV540 analyses. Error bars denote standard deviation. C) Microscopic images of
bacteria extruded from the biofilm lines after 3 days for S. gordonii and 1 day for S. aureus. D) Measurement of optical density of bacterial exudates
collected from the biofilm lines. Error bars denote standard deviation. E) Far-western examining the intra- and inter-species specificity of the NR
domains of S. pneumoniae, S. gordonii and S. aureus. Whole cell lysates from S. gordonii, S. aureus, and their respective isogenic SRRP mutants were
spotted onto nitrocellulose membranes and probed with these GST-tagged proteins. Images are representative of three individual experiments. For
panels B) and D) statistical analyses were performed using a Student’s t-test.
doi:10.1371/journal.ppat.1001044.g010
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Scanning electron microscopy (SEM)
Lungs were cut in a sagital orientation, fixed for 2 hours with

2.5% glutaraldehyde in PBS, and then rinsed twice for 3 min in

0.1 M phosphate buffer (pH 7.4). Lungs were submerged in 1%

osmium diluted in Zetterquist’s Buffer for 30 minutes then washed

with the same buffer for 2 minutes [49]. This was followed by step-

wise dehydration with ethanol (i.e. 70%, 95%, and 100%); the first

two steps for 15 minutes, the last for 30 minutes. Samples were

treated with hexamethyldisilizane for 5 minutes prior to drying in

a desiccator overnight. The next day samples were sputter coated

with gold palladium and viewed with a JEOL-6610 scanning

electron microscope.

Visualization of bacterial aggregates ex vivo
From each mouse BAL and 1:10 PBS diluted nasopharyngeal

lavage elutes were smeared onto glass slides, heat fixed, and Gram-

stained. Since the nasopharyngeal samples were mucoid, dilution

of the samples was warranted. Bacteria were visualized using a

CKX41 Olympus microscope at 2006 magnification. For each

biological sample 100 CFU were randomly selected, taking note of

the approximate number of diplococci composing each CFU,

either 1, 2–10, or .10. Images of the bacteria were acquired at

4006 magnification to better show the multiple bacteria

composing the aggregates.

Fluorescent microscopy of tissue sections
Lung tissues were excised and frozen in Tissue Tek O.C.T

solution (Miles Scientific). 5 mm thick lung sections were cut at the

University of Texas at San Antonio Histopathology Core and

stored at 280u C. Bacteria in the lung sections were detected by

immunofluorescence using antibody against the capsular polysac-

charide. Sections were thawed, fixed with ice-cold acetone for

20 minutes, and then rehydrated with 70% ethyl alcohol and then

PBS. Samples were permeabilized with 0.1% Triton-X-100 for

5 minutes then blocked with 10% fetal bovine serum (FBS) in F12

media for 1 hour. Sections were incubated with 1:1,000 rabbit

anti-serotype 4 pneumococcus antiserum (Statens Serum Institut,

Denmark) overnight at 4uC. After washing for three times with

0.5% Tween-PBS, sections were covered with FBS-F12 containing

goat anti-rabbit FITC conjugated antibody (Invitrogen) at 1:2,000

and DAPI (5 mg/ml; for DNA) and the sections incubated for

1 hour at room temperature. Tissue sections were washed and

mounted with FluorSave (Merck Biosciences). Images were

acquired at 1,0006using a Nikon AX-70 fluorescent Microscope

and images processed with SimplePCI software.

Visualization of early and mature biofilms
Early biofilm formation was examined by measuring the ability

of cells to adhere and accumulate biomass on the bottom of a 96-

well (flat-bottom) polystyrene plates (Costar, Corning Incorporat-

ed, Lowell MA) [24]. Microtiter wells with 200 ml THB were

inoculated with 106 CFU of S. pneumoniae taken from cultures at

mid-logarithmic phase growth (OD620 = 0.5). Plates were incubat-

ed at 37u C in 5% CO2. S. aureus and S. gordonii biofilm formation

on microtiter plates was done in a similar manner, with the

exception that TSB was used for S. aureus [50,51]. Bacteria were

grown for 2, 4, 6, 8, 18, and 24 h, after which the biofilms were

washed gently with PBS and stained with 100 mL of 0.1% CV.

Biofilm biomass was subsequently quantified by image capture

using an inverted microscope at 156and 1006magnification and

measuring the corresponding optical density (A540) of the

supernatant following washing of the bacteria and solubilization

of CV in 200 mL of 95% ethanol.

Mature S. pneumoniae biofilms were grown under once through

conditions in a glass slide chamber using a continuous-flow

through reactor [25]. The flow cell was constructed of anodized

aluminum containing a chamber (4.0 mm by 1.3 cm by 5.0 cm)

having two glass surfaces, one being a microscope slide and the

other being a glass coverslip serving as the substratum. S.

pneumoniae cells grown to mid-logarithmic phase served as the

inoculum and were injected into a septum 4 cm upstream from the

flow cell. Bacteria were allowed to attach to the glass substratum

for 2 hours prior to initiating flow. The flow rate of the system was

adjusted to 0.014 ml/min. Flow through the chamber was

laminar, with a Reynolds number of ,0.5, having a fluid

residence time of 180 min. Biofilms were grown at 37uC in 5%

CO2 for 3 days under once through conditions. Biofilms were then

visualized by confocal laser microscopy as described below.

Biofilms were also grown on the interior surface of a 1-meter

long, size 16 Masterflex silicone tubing (0.89mm Internal

Diameter, Cole Parmer Inc.) using once-through continuous flow

conditions. The line was inoculated with 5 mL of a mid-

logarithmic culture and the bacteria were allowed to attach for

2 hours. The flow rate of the system was adjusted to 0.035 ml/min

and bacteria were grown for 3 days at 37uC in 5% CO2. Bacterial

cells were harvested from the interior surface by pinching the tube

along its entire length, resulting in removal of the cell material

from the lumen of the tubing. Following extraction, exudates were

gently suspended in 1 ml of PBS and the optical density (OD620)

was measured. For light microscopy pictures, 50 ml of line exudate

in saline was stained by the addition of 50 mL of 1% CV. A

volume of 5 ml of stained line exudates was applied to glass slides,

coverslipped, and images taken at 2006 magnification using a

light microscope. Viable cell counts were determined by plating

serial dilutions of exudates following the disruption of each sample

by vortexing. Biofilm biomass was determined by measuring the

total protein concentration of the exudates by BCA following the

complete lysis of S. pneumoniae with saline containing 0.1%

deoxycholate and 0.1% sodium-dodecyl sulfate, which activates

the murein hydrolase autolysin, or use of French press for S.

gordonii and S. aureus cultures. For studies testing whether

antibodies or recombinant protein inhibited bacteria aggregation

media was supplemented with BR antiserum at 1:1,000 or spiked

with recombinant protein at a final concentration of 1.0 mM.

Confocal scanning laser microscopy and image
acquisition

Confocal scanning laser microscopy was performed with an

LSM 510 Meta inverted microscope (Zeiss, Heidelberg, Ger-

many). Images were obtained with an LD-Apochrome 406/0.6

lens and the LSM 510 Meta image acquisition software (Zeiss). To

visualize the biofilm architecture of 3-day-old biofilms, biofilms

were stained using the Live/Dead BacLight stain from Invitrogen

(Carlsbad, CA). Quantitative analysis of epifluorescence micro-

scopic images obtained from flow cell-grown biofilms at the 6-day

time point was performed with COMSTAT image analysis

software [52].

Far Western analysis of BR interactions
Recombinant full-length BR and truncated versions (BR.A,

BR.B, BR.C) were expressed and purified from E. coli as previously

described [13]. Glycosylated PsrPSRR2(33)-HIS was purified in the

same manner from TIGR4 (Figure S3), with the exception that

cultures were induced with 1% fucose and lysed with 1% SDS in

PBS. Far Western analysis was carried out as described by

Takamatsu et al. with minor modifications [53]. Nitrocellulose

membranes were spotted with either 1 mg of whole cell lysate of S.
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pneumoniae, S. gordonii, S. aureus or E. coli expressing various PsrP

constructs or with purified recombinant proteins in PBS.

Membranes were incubated overnight in PBS with 4% bovine

serum albumin and 0.1% Tween 20 (T-PBS) at room temperature.

The next day, membranes were washed with T-PBS three times

for 5 minutes, and incubated overnight at 4uC on an orbital

platform rocker with T-PBS containing 1% bovine serum albumin

(TB-PBS) with 1 mg/mL of Gst-BR, PsrPSRR2(33)-HIS, or the

designated NR constructs from S. gordonii and S. aureus.

Membranes were washed and incubated with monoclonal mouse

anti-Gst antibody (1:5,000 dilution) (Proto-Tech) overnight at 4uC
in TB-PBS. Antibody binding was detected by incubating the

membranes for 1 h with HRP-conjugated anti-mouse IgG

(1:10,000 dilution) (Sigma), followed by development with the

Super Signal chemiluminescent detection system (Thermo Scien-

tific). As a control for inadvertent interactions with the Gst tag, Far

Western blots were also performed using an unrelated Gst-tagged

Chlamydia trachomatis protein (TC0109; Figure S4). No interactions

were observed.

Co-immunoprecipitation of Gst-BR with rBR
Co-immunoprecipitation of Gst-BR with the truncated versions

of rPsrP was carried out as previously described by Shivshankar et

al. [13]. Protein G Sepharose beads (Amersham) were incubated

overnight at 4uC with mouse monoclonal penta-His antibody

(1:50; Qiagen) in 500 ml of F12 media supplemented with 10%

fetal bovine serum. Beads were incubated with 400 ml of whole

bacterial lysates from E. coli expressing penta-His tagged

recombinant versions of PsrP spiked with 200 mg of recombinant

Gst-BR full length and incubated overnight at 4uC with gentle

agitation. Beads were washed with RIPA buffer, then boiled in

sample buffer for 10 min [54]. Samples were separated on 12%

SDS-PAGE gels and electrophoretically transferred to nitrocellu-

lose membranes. Membranes were blocked with T-PBS containing

4% bovine serum for 30 min at room temperature. Membranes

were then incubated overnight at 4uC with mouse anti-Gst

(1:7500; Proto-tech) in blocking buffer. Following incubation,

membranes were washed with T-PBS three times for 5 minutes.

HRP-conjugated goat anti-rabbit Immunoglobulin G (1:10 000;

Sigma) was used as the secondary antibody, followed by

development with the Super Signal chemiluminescent detection

system (Thermo Scientific).

Visualization of recombinant BR bound to TIGR4
For labeling of bacteria, TIGR4 and T4 DpsrP were pelleted

and suspended in 1 ml of carbonate buffer (pH 9.0) containing

FITC (1 mg/ml) and incubated in the dark at room temperature

with constant end-to-end tumbling. FITC-labeled bacteria were

washed with PBS (pH 7.4) and centrifuged, until the supernatant

became clear. rBR fragments were labeled using a FluorLink-Ab

Cy3 labeling kit (Amersham) using the instructions provided by the

manufacturer. Labeled bacteria were suspended in serum-free F12

media containing the labeled constructs for 1 hour and gently

mixed. Subsequently, pneumococci were washed and suspended in

F12 medium. Labeled bacteria and bound recombinant protein

were visualized using an AX-70 fluorescent microscope and the

images were captured at 0.1112–0.8886 ms exposure time for Cy2

and Cy3 filters. The magnification used for capture of digital

images was 10006. Captured images were processed using Simple

PCI software.

Adhesion assays
A549 cells (human alveolar type II pneumocytes; ATCC CRL-

185), were grown to 90% confluence on 24-well plates (,106 cells/

well). Prior to use, cells were washed with cell F12 media to

remove serum. For competitive inhibition binding assays, A549

cells were incubated with 1mM of either rBR, rBR.C, a synthesized

peptide corresponding to AA 122–167, or BSA for 1 HR.

Following incubation, cells were exposed to media that contained

107 cfu/mL of bacteria and incubated for 1 h at 37uC in 5% CO2.

Nonadhering bacteria were removed by washing the cells 3 times

with T-PBS and the number of adhering bacteria was determined

by lysis of the monolayer with 0.1% Triton X-100 and plating

wells per experiment.

Opsonophagocytosis assay
Bacterial cultures were centrifuged and suspended in 0.1M

sodium carbonate buffer (pH 8.0) at an OD620 of 0.2. Care was

taken to cause minimal disruption of the biofilm aggregates. The

diluted cultures were labeled with fluorescent isothiocyanate

(1mg/ml) for 30 min at room temperature in the dark. Following

labeling, cultures were gently washed three times with sterile PBS

to remove free FITC and suspended in PBS. FITC-labeled

bacteria were opsonized with 3% control rabbit serum for

30 minutes at 37uC with mild periodical tapping. Mouse J774.1,

macrophage cultures maintained in 10% FBS containing DMEM

were used for phagocytosis of the opsonized pneumococci.

Macrophages were harvested, washed and diluted with opsono-

phagocytosis buffer (PBS containing 0.2% BSA). FITC-labeled

bacteria in 100 ml were added to 106 macrophage cells in 400 ml

and incubated for 1 hour at 37uC with periodic shaking.

Afterwards, the macrophages were pelleted and washed twice in

the assay buffer. Cells were suspended in 400ml of 2%

paraformaldehyde until flow cytometric analysis. A2-Laser BD

FACSCaliber Analyzer (Becton Dickinson, NJ; Institutional Flow

Cytometry Core Facility at the Health Science Center) was

employed to analyze percent phagocytic uptake of the labeled

bacteria by the macrophages. A minimum of 20,000 events were

counted for each sample at 480 nm excitation and 530nm

detection wavelengths. Background fluorescence was nullified by

subjecting negative control macrophages in assay buffer without

any fluorescent bacteria to FACS analysis. Data were processed

using CellQuest software.

Statistical analysis
For pair-wise comparisons of groups statistical analyses were

performed using a Student’s t-test. For multivariate analyses a 1-

Way ANOVA followed by a post-priori test using Sigma Stat

software was used.

Supporting Information

Figure S1 Immunofluorescent imaging of S. pneumoniae in the

alveolar space. Frozen lung sections from TIGR4 and T4 DpsrP

infected mice were processed for imaging using anti-serotype 4

capsular antiserum (Statens Serum Institute; Denmark). Images

were taken at 6006and are representative. Note the detection of a

large bacterial aggregate (green) for TIGR4 infected animals,

whereas for mice infected with T4 DpsrP smaller clusters are

evident.

Found at: doi:10.1371/journal.ppat.1001044.s001 (0.12 MB PDF)

Figure S2 Deletion of psrP-secY2A2 alters bacteria interactions in

mature biofilms. A) Micrographs of mature TIGR4 and T4 VpsrP-

secY2A2 biofilms. Bacteria were grown in THB at 37u C in 5%

CO2 on glass slides within a flow cell under once-through flow

conditions for 3 days. For visualization, bacteria were stained with

Live/Dead BacLight stain. Biofilms were viewed at 4006
magnification using an inverted confocal laser scanning micro-
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scope. B) Quantitative analysis of biofilms was performed using

COMSTAT image analysis software. Flow cell experiments were

performed in triplicate. Statistical analyses were performed using a

two-tailed Student’s t-test. For panel C error bars denote standard

error.

Found at: doi:10.1371/journal.ppat.1001044.s002 (0.26 MB PDF)

Figure S3 Illustration of the psrP loci in TIGR4 & T4R, T4

VpsrP & T4R VpsrP, and assorted pNE1 plasmids encoding

truncated versions of psrP.

Found at: doi:10.1371/journal.ppat.1001044.s003 (0.08 MB PDF)

Figure S4 Far Western analyses using a GST tagged protein

(TC0109) from Chlamydia trachomatis as a probe for non-specific

interactions due to the Gst-tag. Membranes were spotted with

either A) lysates from S. pneumoniae expressing truncated versions of

PsrP; B) truncated versions of His tagged rBR expressed and

purified from E. coli; or C) whole cell lysates from S. gordonii, S.

aureus, S. pneumoniae and their respective isogenic SRRP mutants.

Found at: doi:10.1371/journal.ppat.1001044.s004 (0.22 MB PDF)

Figure S5 Purification of a glycosylated PsrP construct. A)

Illustration of the psrPSRR2(33)-HIS locus in the expression vector

pNE1. The plasmid was used to express and purify glycosylated

PsrP from S. pneumoniae, strain TIGR4 cell lysates. Note the

presence of fcsRK, a pneumococcal fucose-inducible promoter, also

that the cell wall anchor domain has been replaced with a 66
histidine tag. B) Western blot of glycosylated PsrPSRR2(33)-HIS in

TIGR4 following induction with 1% fucose. Despite having a

predicted mass of 66 kDa PsrPSRR2(33)-HIS separates at an

apparent molecular mass of 200 kDa. This is due to glycosylation

and these findings are consistent with earlier work by Shivshankar

et al. [13].

Found at: doi:10.1371/journal.ppat.1001044.s005 (0.08 MB PDF)

Figure S6 Antiserum against TIGR4 BR inhibits biofilm

formation of unrelated clinical isolates that carry PsrP. Low

passage clinical isolates of S. pneumoniae carrying PsrP (TNE-6050,

TNE 6012) or without (IPD-5), were grown in silicone coated lines

under once-through conditions at 37uC in 5% CO2 for 3 days.

THB was supplemented with either naı̈ve rabbit serum (control) or

antiserum to recombinant TIGR4 BR at a dilution of 1:1000.

Following incubation, biofilms were extruded and analyzed. A)

Micrographs of CV stained bacteria extruded from the biofilm

lines. B) Optical density (OD540) of bacterial exudates. C) Levels of

protein in bacteria line exudates as determined by BCA analysis.

Note that antiserum against BR did not affect biofilm formation by

IPD-5, the PsrP deficient clinical isolate. Images are representative

of at least 3 independent experiments. Statistical analyses were

performed using a two-tailed Student’s t-test. Error bars denote

standard error. Asterisks denote statistical significance versus

whole sera.

Found at: doi:10.1371/journal.ppat.1001044.s006 (0.26 MB

PDF)

Acknowledgments

We would like to thank Jim Jorgenson for the gift of low-passage clinical

isolates. Angela R. Boyd is acknowledged for her technical assistance with

the animal experiments and protein purification.

Author Contributions

Conceived and designed the experiments: C. Orihuela. Performed the

experiments: C. Sanchez, P. Shivshankar, K. Stol, S. Trakhtenbroit, K.

Sauer. Contributed reagents/materials/analysis tools: P. Sullam, K. Sauer,

P. Hermans. Wrote the paper: C. Sanchez, K. Stol, C. Orihuela.

References

1. (1999) Pneumococcal vaccines. WHO position paper. Wkly Epidemiol Rec 74:

177–183.

2. Lexau CA, Lynfield R, Danila R, Pilishvili T, Facklam R, et al. (2005) Changing
epidemiology of invasive pneumococcal disease among older adults in the era of

pediatric pneumococcal conjugate vaccine. JAMA 294: 2043–2051.

3. Overturf G, Powars D (1980) Infections in sickle cell anemia: pathogenesis and
control. Tex Rep Biol Med 40: 283–292.

4. Wong WY, Overturf GD, Powars DR (1992) Infection caused by Streptococcus

pneumoniae in children with sickle cell disease: epidemiology, immunologic
mechanisms, prophylaxis, and vaccination. Clin Infect Dis 14: 1124–1136.

5. Roush SW, Murphy TV (2007) Historical comparisons of morbidity and

mortality for vaccine-preventable diseases in the United States. JAMA 298:

2155–2163.

6. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, et al. (2009)

Burden of disease caused by Streptococcus pneumoniae in children younger than 5

years: global estimates. Lancet 374: 893–902.

7. Maruyama T, Gabazza EC, Morser J, Takagi T, D’Alessandro-Gabazza C, et
al. (2010) Community-acquired pneumonia and nursing home-acquired

pneumonia in the very elderly patients. Respir Med 104: 584–592.

8. Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, et al. (2006) Identification
of a candidate Streptococcus pneumoniae core genome and regions of diversity

correlated with invasive pneumococcal disease. Infect Immun 74: 4766–4777.

9. Orihuela CJ (2009) Role played by psrP-secY2A2 (accessory region 34) in the
invasive disease potential of Streptococcus pneumoniae. J Infect Dis 200: 1180–1181;

author reply 1181–1182.

10. Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus

pneumoniae virulence factors. Mol Microbiol 45: 1389–1406.

11. Embry A, Hinojosa E, Orihuela CJ (2007) Regions of Diversity 8, 9 and 13
contribute to Streptococcus pneumoniae virulence. BMC Microbiol 7: 80.

12. Rose L, Shivshankar P, Hinojosa E, Rodriguez A, Sanchez CJ, et al. (2008)

Antibodies against PsrP, a novel Streptococcus pneumoniae adhesin, block adhesion
and protect mice against pneumococcal challenge. J Infect Dis 198: 375–383.

13. Shivshankar P, Sanchez C, Rose LF, Orihuela CJ (2009) The Streptococcus

pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 73:
663–679.

14. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, et al. (2001) Complete

genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:
498–506.

15. Takamatsu D, Bensing BA, Sullam PM (2005) Two additional components of

the accessory Sec system mediating export of the Streptococcus gordonii platelet-
binding protein GspB. J Bacteriol 187: 3878–3883.

16. Takamatsu D, Bensing BA, Sullam PM (2004) Four proteins encoded in the
gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation

of the platelet-binding protein GspB. J Bacteriol 186: 7100–7111.

17. Bensing BA, Gibson BW, Sullam PM (2004) The Streptococcus gordonii platelet
binding protein GspB undergoes glycosylation independently of export.

J Bacteriol 186: 638–645.

18. Takamatsu D, Bensing BA, Sullam PM (2004) Genes in the accessory Sec locus

of Streptococcus gordonii have three functionally distinct effects on the expression of
the platelet-binding protein GspB. Mol Microbiol 52: 189–203.

19. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, et al. (2005)
Illustration of pneumococcal polysaccharide capsule during adherence and

invasion of epithelial cells. Infect Immun 73: 4653–4667.

20. Moscoso M, Garcia E, Lopez R (2009) Pneumococcal biofilms. Int Microbiol 12:

77–85.

21. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell

Microbiol 11: 1034–1043.

22. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, et al. (2006) Direct
detection of bacterial biofilms on the middle-ear mucosa of children with chronic

otitis media. JAMA 296: 202–211.

23. Reid SD, Hong W, Dew KE, Winn DR, Pang B, et al. (2009) Streptococcus

pneumoniae forms surface-attached communities in the middle ear of experimen-
tally infected chinchillas. J Infect Dis 199: 786–794.

24. Lizcano A, Chin T, Sauer K, Tuomanen EI, Orihuela CJ (2010) Early biofilm
formation on microtiter plates is not correlated with the invasive disease

potential of Streptococcus pneumoniae. Microb Pathog 48: 124–130.

25. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, et al. (2006) Phenotypic

characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188:

2325–2335.

26. Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, et al. (2005) Binding

of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific
carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol

Microbiol 58: 380–392.

27. Siboo IR, Chambers HF, Sullam PM (2005) Role of SraP, a Serine-Rich Surface

Protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73:
2273–2280.

PsrP Mediates Biofilm-Like Aggregates in the Lungs

PLoS Pathogens | www.plospathogens.org 14 August 2010 | Volume 6 | Issue 8 | e1001044



28. Xiong YQ, Bensing BA, Bayer AS, Chambers HF, Sullam PM (2008) Role of

the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the

pathogenesis of infective endocarditis. Microb Pathog 45: 297–301.

29. Samen U, Eikmanns BJ, Reinscheid DJ, Borges F (2007) The surface protein

Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to

epithelial HEp-2 cells. Infect Immun 75: 5405–5414.

30. van Sorge NM, Quach D, Gurney MA, Sullam PM, Nizet V, et al. (2009) The

Group B Streptococcal serine-rich repeat 1 glycoprotein mediates penetration of

the blood-brain barrier. J Infect Dis 199: 1479–1487.

31. Froeliger EH, Fives-Taylor P (2001) Streptococcus parasanguis fimbria-associated

adhesin Fap1 is required for biofilm formation. Infect Immun 69: 2512–2519.

32. Handley PS, Correia FF, Russell K, Rosan B, DiRienzo JM (2005) Association

of a novel high molecular weight, serine-rich protein (SrpA) with fibril-mediated

adhesion of the oral biofilm bacterium Streptococcus cristatus. Oral Microbiol

Immunol 20: 131–140.

33. Konto-Ghiorghi Y, Mairey E, Mallet A, Dumenil G, Caliot E, et al. (2009) Dual

role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus

agalactiae. PLoS Pathog 5: e1000422.

34. Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, et al. (2007)

Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation.

Mol Microbiol 64: 968–983.

35. Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, et al. (2005) PilX,

a pilus-associated protein essential for bacterial aggregation, is a key to pilus-

facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55:

65–77.

36. Munoz-Elias EJ, Marcano J, Camilli A (2008) Isolation of Streptococcus pneumoniae

biofilm mutants and their characterization during nasopharyngeal colonization.

Infect Immun 76: 5049–5061.

37. Parker D, Soong G, Planet P, Brower J, Ratner AJ, et al. (2009) The NanA

neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect

Immun 77: 3722–3730.

38. Trappetti C, Kadioglu A, Carter M, Hayre J, Iannelli F, et al. (2009) Sialic acid:

a preventable signal for pneumococcal biofilm formation, colonization, and

invasion of the host. J Infect Dis 199: 1497–1505.

39. Soong G, Muir A, Gomez MI, Waks J, Reddy B, et al. (2006) Bacterial

neuraminidase facilitates mucosal infection by participating in biofilm

production. J Clin Invest 116: 2297–2305.

40. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, et al. (2006)

Switch from planktonic to sessile life: a major event in pneumococcal

pathogenesis. Mol Microbiol 61: 1196–1210.

41. Aspiras MB, Ellen RP, Cvitkovitch DG (2004) ComX activity of Streptococcus

mutans growing in biofilms. FEMS Microbiol Lett 238: 167–174.
42. Allegrucci M, Sauer K (2007) Characterization of colony morphology variants

isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189: 2030–2038.

43. Moscoso M, Garcia E, Lopez R (2006) Biofilm formation by Streptococcus

pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in

microbial accretion. J Bacteriol 188: 7785–7795.
44. Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, et al. (2004) Microarray

analysis of pneumococcal gene expression during invasive disease. Infect Immun

72: 5582–5596.
45. Wu H, Zeng M, Fives-Taylor P (2007) The glycan moieties and the N-terminal

polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in
the biofilm development of Streptococcus parasanguinis. Infect Immun 75:

2181–2188.
46. Stephenson AE, Wu H, Novak J, Tomana M, Mintz K, et al. (2002) The Fap1

fimbrial adhesin is a glycoprotein: Antibodies specific for the glycan moiety block

the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol Microbiol
43: 147–157.

47. Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich
bacterial adhesins. Microbiology 155: 317–327.

48. Mann B, Orihuela C, Antikainen J, Gao G, Sublett J, et al. (2006)

Multifunctional role of Choline binding protein G in pneumococcal pathogen-
esis. Infect Immun 74: 821–829.

49. Sheldon H, Zetterquist H (1955) Internal ultrastructure in granules of white
blood cells of the mouse; a preliminary note. Bull Johns Hopkins Hosp 96:

135–139.
50. Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-

N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylo-

coccus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:
470–476.

51. Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm
formation: identification of genes that code for biofilm phenotypes. J Bacteriol

182: 1374–1382.

52. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, et al. (2000)
Quantification of biofilm structures by the novel computer program COM-

STAT. Microbiology 146 (Pt 10): 2395–2407.
53. Takamatsu D, Bensing BA, Prakobphol A, Fisher SJ, Sullam PM (2006) Binding

of the Streptococcal surface glycoproteins GspB and Hsa to human salivary
proteins. Infect Immun 74: 1933–1940.

54. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al., eds (2008)

Current Protocols in Molecular Biology. Hoboken, NJ: John Wiley & Sons, Inc.

PsrP Mediates Biofilm-Like Aggregates in the Lungs

PLoS Pathogens | www.plospathogens.org 15 August 2010 | Volume 6 | Issue 8 | e1001044




