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Abstract. The Exponential Formula allows one to enumerate any class of combinatorial
objects built by choosing a set of connected components and placing a structure on each
connected component which depends only on its size. There are multiple variants of this
result, including Speicher’s result for noncrossing partitions, as well as analogues of the
Exponential Formula for series-reduced planar trees and forests. In this paper we use these
formulae to give generating functions for contracted Grassmannian trees and forests, certain
graphs whose vertices are decorated with a helicity. Along the way we enumerate bipartite
planar trees and forests, and we apply our results to enumerate various families of permuta-
tions: for example, bipartite planar trees are in bijection with separable permutations.

It is postulated by Livia Ferro, Tomasz Łukowski and Robert Moerman (2020) that
contracted Grassmannian forests are in bijection with boundary strata of the momentum
amplituhedron, an object encoding the tree-level S-matrix of maximally supersymmetric
Yang–Mills theory. With this assumption, our results give a rank generating function for
the boundary strata of the momentum amplituhedron, and imply that the Euler characteris-
tic of the momentum amplituhedron is 1.
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1. Introduction

In recent years, scattering amplitudes research has motivated the study of amplituhedra, which
can be viewed as generalizations of polytopes into Grassmannians. There are two amplituhedra
relevant to the physics of tree-level particle scattering in maximally supersymmetric Yang–Mills
theory: the (tree) amplituhedron An,k,m, introduced by Arkani-Hamed–Trnka in [AHT14], and
the momentum amplituhedron Mn,k,m, introduced for m = 4 by Damgaard–Ferro–Łukowski–
Parisi in [DFŁP19] and later generalized to any even m by Łukowski–Parisi–Williams
in [ŁPW20]. For m = 4, both the amplituhedron and the momentum amplituhedron encode
tree-level scattering amplitudes in this theory, but using different kinematic spaces: the ampli-
tuhedron uses momentum twistor space while the momentum amplituhedron uses momentum
space. Both objects are defined as the image of the totally nonnegative Grassmannian Gr⩾0

k,n

under a particular map, where Gr⩾0
k,n is the subset of the real Grassmannian where all Plücker

coordinates are nonnegative, first studied by Postnikov and Lusztig [Pos06, Lus94].
In addition to their physical significance whenm = 4, these amplituhedra are mathematically

interesting objects which have been studied in various examples. For k+m = n, the amplituhe-
dron is isomorphic to the totally nonnegative Grassmannian, whose rank generating function
was computed in [Wil05]. When k = 1, the amplituhedron is a cyclic polytope [AHT14], and
when m = 1, the amplituhedron is homeomorphic to the bounded complex of a cyclic hyper-
plane arrangement [KW19], which also has an explicit rank generating function. When m = 2,
the amplituhedron’s boundary strata were classified and enumerated in [Łuk19]. Less is known
about the momentum amplituhedron Mn,k,m, but for m = 4, a conjectural characterization of
the boundary strata of Mn,k,4 (also denoted by Mn,k) was given in [FŁM20]. The authors com-
puted the rank generating functions for Mn,k for some small values of k and n, and found in
those cases that the Euler characteristic was 1.

The goal of this paper is to enumerate the boundary strata of the m = 4 momentum ampli-
tuhedron Mn,k (for any k and n) according to their dimension. To do so, we begin by reformu-
lating the speculative description of boundary strata from [FŁM20] in terms of Grassmannian
forests, which are acyclic Grassmannian graphs. (Grassmannian graphs first appeared implicitly
in [AHBC+16] as a generalization of plabic graphs, and were subsequently studied in [Pos18].)
Having described the boundary strata in terms of Grassmannian forests, we proceed to enumerate
Grassmannian forests using two variations of the well-known Exponential Formula. The first is
Speicher’s analogue of the Exponential Formula for non-crossing partitions [Spe94]. The second
variation is an analogue for series-reduced planar trees; it can be viewed naturally in the theory
of species, and can also be viewed as a combinatorial interpretation of Lagrange Inversion, see
[BLL98, Ard15]. Putting together these two variations leads to an analogue of the Exponential
Formula for series-reduced planar forests, which we use to enumerate contracted Grassmannian
forests according to helicity and momentum amplituhedron dimension. Along the way, we also
enumerate contracted plabic trees and forests, which are in bijection with bipartite planar trees
and forests. And we can translate all of our results into enumerative results about various class of
permutations: for example, contracted plabic trees are in bijection with separable permutations.

The paper is structured as follows. In Section 2, we review the Lagrange Inversion formula
and Speicher’s noncrossing partition analogue of the Exponential Formula. We then give series-
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reduced planar tree and forest analogues of the Exponential Formula. In Section 3, we introduce
the totally nonnegative Grassmannian, as well as Grassmannian graphs, trees, and forests. We
enumerate contracted plabic trees and forests as a warmup, keeping track of their helicity k,
number of boundary vertices n, and their momentum amplituhedron dimension. We then enu-
merate contracted Grassmannian trees and forests according to the same statistics. In Section 4
we give applications to enumeration of permutations. In Section 5 we define the momentum
amplituhedron Mn,k and interpret our combinatorial results as enumerating the boundary strata
of Mn,k. By specializing q = −1 in our generating function, we also find that the Euler char-
acteristic equals 1. We emphasise that the results of Section 5 assume the characterization of
momentum amplituhedron boundaries conjectured in [FŁM20]. We end the paper with an ap-
pendix providing a table of rank generating functions for the momentum amplituhedron Mn,k

for various values of n and k.

2. Variations of the Exponential Formula

Many combinatorial objects can be built by choosing a set of connected components, then plac-
ing some structure on each connected component. In this case, if one understands how to enumer-
ate the ways of placing a structure on each connected component of a given size, then the well-
known Exponential Formula (see e.g. [Sta99, BLL98, Ard15]) allows one to enumerate the com-
binatorial objects. There is an analogue of the Exponential Formula, due to Speicher [Spe94], for
combinatorial objects which can be built by choosing a noncrossing partition and then placing a
structure on each block of the noncrossing partition. In this section we will provide background
on Lagrange Inversion and Speicher’s result, then give analogues of the Exponential Formula
for series-reduced planar trees and forests.

2.1. Lagrange Inversion

The set xK[[x]] of all formal power series a1x + a2x
2 + . . . with zero constant term over a

field K forms a monoid under the operation of functional composition. The identity element of
this monoid is the power series x.

Definition 2.1. If f(x) = a1x + a2x
2 + · · · ∈ K[[x]], then we call a power series g(x) a

compositional inverse of f if f(g(x)) = g(f(x)) = x, in which case we write g(x) = f ⟨−1⟩(x).

Theorem 2.2 (Lagrange inversion formula, [Sta99, Theorem 5.4.2]). Let K be a field with
char K = 0, and let C(x) ∈ xK[[x]] with [x]C(x) ̸= 0. Then for positive integers k, n we
have

n[xn]C⟨−1⟩(x)k = k[xn−k]

(
x

C(x)

)n

.

2.2. Speicher’s noncrossing partition analogue of the Exponential Formula

Definition 2.3. A noncrossing partition of [n] is a partition π of the set [n] = {1, 2, . . . , n} into
blocks B1, . . . , Bℓ satisfying the following condition: if a < b < c < d and B and B′ are blocks
of π such that a, c ∈ B and b, d ∈ B′, then B = B′.
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Equivalently, π is a noncrossing partition if after drawing the numbers 1, 2, . . . , n in order
around a circle, and replacing each block B with the convex hull of the corresponding points,
the resulting polygons do not overlap. See Figure 2.1.

Figure 2.1: The non-crossing partition {{1, 7, 8, 9}, {2}, {3}, {4, 5, 6}} of [9] with each block
drawn as a convex hull of the corresponding points.

Let NCn denote the lattice of noncrossing partitions of [n]. The following result says that if
a class HNC of combinatorial objects is built by choosing a noncrossing partition and putting a
structure on each block independently (encoded by the function f ), then the generating function
HNC(x) for HNC can be obtained from the generating function F (x) for f .

Theorem 2.4 ([Spe94], see also [Sta99, Exercise 5.35b]). Let K be a field. Given a function
f : Z+ → K, define a new function h : Z+ → K by

h(n) =
∑

π={B1,...,Bℓ}∈NCn

f(#B1)f(#B2) . . . f(#Bℓ),

where #Bi denotes the cardinality of block Bi. Let

F (x) = 1 +
∑
n⩾1

f(n)xn and HNC(x) = 1 +
∑
n⩾1

h(n)xn.

Then

xHNC(x) =

(
x

F (x)

)⟨−1⟩

.

2.3. Series-reduced planar tree and forest analogues of the Exponential Formula

In this section we give Theorem 2.9 and Corollary 2.11 which can be viewed as analogues of Spe-
icher’s Theorem, but with series-reduced planar trees and planar forests replacing noncrossing
partitions. We note that the result on series-reduced planar trees can be viewed as an analogue
of Speicher’s Theorem for polygon dissections.
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Definition 2.5. A planar tree T (respectively, a planar forest F ) on n leaves is a tree (resp., a
forest) properly embedded in a disk with n boundary vertices (i.e. vertices of degree 1) on the
boundary of the disk (labelled in clockwise order). Let Vint(T ) and Vint(F ) denote the set of
internal vertices (i.e. vertices with degree at least 2) of T and F .

A planar tree or forest is called series-reduced if it has no internal vertices of degree 2.
Let Tn (resp., Fn) denote the set of series-reduced planar trees (resp., forests) on n leaves. (The
requirement on internal vertices implies that Tn and Fn are finite.) A series-reduced planar
tree T on n leaves is said to be of type r = (r3, . . . , rn) if it has ri internal vertices of degree i.
An example of a series-reduced planar tree on 9 leaves of type (2, 1, 1, 0, 0, 0, 0) is given in
Figure 2.2 (middle). Let Tn(r3, . . . , rn) denote the subset of Tn of type (r3, . . . , rn).

Definition 2.6. A plane tree on n−1 leaves is a rooted tree T̃ with n−1 boundary vertices (i.e.
vertices with no descendants) where each internal vertex of T̃ has at least 1 descendant.

A Schröder tree is a plane tree which is series-reduced, i.e. each internal vertex has at least
two descendants. A Schröder tree T̃ on n− 1 leaves is said to be of type (r3, . . . , rn) if it has ri
internal vertices with i − 1 descendants. An example of a Schröder tree on 8 leaves of type
(2, 1, 1, 0, 0, 0, 0) is given in Figure 2.2 (left). Let T̃n−1 denote the set of Schröder trees on n− 1
leaves, and let T̃n−1(r3, . . . , rn) denote the subset of T̃n−1 of type (r3, . . . , rn).

Remark 2.7. Given a series-reduced planar tree T ∈ Tn, let v∗ be the internal vertex incident to
the leaf labelled 1. If we remove leaf 1 and its incident edge, then the remaining tree T̃ can be
thought of as a Schröder tree with root vertex v∗. This map gives a bijection between the series-
reduced planar trees T ∈ Tn(r3, . . . , rn) and Schröder trees T̃ ∈ T̃n−1(r3, . . . , rn). Note that
an internal vertex of degree d in a series-reduced planar tree corresponds to an internal vertex
with d− 1 descendants in a Schröder tree.

Lemma 2.8. Let tn(r3, . . . , rn) = |Tn(r3, . . . , rn)| be the number of series-reduced planar trees
of type r = (r3, . . . , rn) and let |r| =

∑
i ri. Then

tn(r3, . . . , rn) =
(n+ |r| − 2)!

(n− 1)!r3! · · · rn!
.

Proof. From Remark 2.7, series-reduced planar trees of type (r3, . . . , rn) are in bijection with
the plane trees of type (n− 1, 0, r3, . . . , rn) considered in [Sta99, Section 5.3]. The formula in
the lemma now follows from [Sta99, Theorem 5.3.10].

The following result says that if a class Htree of combinatorial objects is built by choosing a
series-reduced planar tree in Tn and putting a structure on each internal vertex independently (de-
pending only on its degree and encoded by the function f ), then the generating function Htree(x)
for Htree can be obtained from the generating function F (x) for the function f . We note that
Theorem 2.9 has appeared in various references: for example, it fits naturally into the theory
of species and is closely related to [BLL98, page 168, Equation (18)]; it can also be reformu-
lated using Schröder trees and viewed as a combinatorial interpretation of Lagrange Inversion,
see [Ard15, Theorem 2.2.1]. It is similar in spirit to [JKM17, Proposition 5].
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Figure 2.2: A series-reduced planar tree on 9 leaves of type (2, 1, 1, 0, 0, 0, 0, 0) (middle), its
corresponding Schröder tree on 8 leaves with the root vertex depicted as a square (left), and its
dual polygon dissection of Q9 (right).

Theorem 2.9. Let K be a field. Given a function f : Z⩾3 → K, define a new function
h : Z⩾3 → K by

h(n) =
∑
T∈Tn

∏
v∈Vint(T )

f(deg(v)) . (2.1)

Let
F (x) =

∑
n⩾3

f(n)xn and Htree(x) = x2 +
∑
n⩾3

h(n)xn.

Then
1

x
Htree(x) =

(
x− 1

x
F (x)

)⟨−1⟩

. (2.2)

Remark 2.10. The appearance of the term x2 in Htree(x) reflects the fact that there is a unique
series-reduced planar tree on 2 leaves. If we want to account for the unique tree in T1 with 1 leaf
and 1 internal vertex, we can consider Ĥtree(x) = h(1)x +Htree(x), where h(1) = f(1) is the
number of structures that we can put on an internal vertex of degree 1.

Theorem 2.9 can be proved in several ways.

1. Using Lemma 2.8, one can give an argument analogous to the proof of Speicher’s Theorem
as presented in [Sta99, Exercise 5.35b]. We leave this as an exercise.

2. One can reformulate this result as a functional equation describing the recursive structure
of trees. This can be verified directly but also fits naturally into Joyal’s framework of
species as in [BLL98]. We thank Ira Gessel and Francois Bergeron for their comments
on this approach; see also [Ard15, Theorem 2.2.1]). For completeness, we include this
second proof below.

Proof of Theorem 2.9. Let

F̃ (x) =
1

x
F (x) =

∑
n⩾3

f(n)xn−1 and H̃(x) =
1

x
H(x) = x+

∑
n⩾3

h(n)xn−1.
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That is, the coefficient of xn−1 in F̃ (x) gives the number of ways of decorating an internal
vertex v in a Schröder tree where v has n− 1 descendants, and the coefficient of xn−1 in H̃(x)
enumerates the decorated Schröder trees on n− 1 leaves.

Schröder trees can be built by choosing a root vertex v∗ with degree d−1 (where d ⩾ 3) and
placing Schröder trees T̃1, . . . , T̃d−1 at each of the d− 1 vertices below v∗. Thus, it immediately
follows that

H̃(x) = x+
∑
n⩾3

f(n)H̃(x)n−1 = x+ F̃ (H̃(x)) ,

which is equivalent to H̃(x) = (x− F̃ (x))⟨−1⟩ or 1
x
H(x) = (x− 1

x
F (x))⟨−1⟩.

We now combine Theorem 2.9 and Theorem 2.4 to obtain Corollary 2.11 below. As be-
fore, we interpret this result as saying that if a class Hforest of combinatorial objects is built by
choosing a series-reduced planar forest in Fn and putting a structure on each internal vertex
independently (depending only on its degree and encoded by the function g), then the gener-
ating function Hforest(x) for Hforest can be obtained from the generating function G(x) for the
function g.

Corollary 2.11. Let K be a field. Given a function g : Z+ → K, define a new function
h : Z+ → K by

h(n) =
∑
F∈Fn

∏
v∈Vint(F )

g(deg(v)). (2.3)

(Note that h(1) = g(1), and that g(2) is irrelevant for series-rooted forests.)
Let

G(x) =
∑
n⩾3

g(n)xn and Hforest(x) = 1 +
∑
n⩾1

h(n)xn.

Then

xHforest(x) =

(
x

1 + Ĥtree(x)

)⟨−1⟩

=

 x

1 + h(1)x+ x
(
x− G(x)

x

)⟨−1⟩


⟨−1⟩

, (2.4)

where Ĥtree(x) is given by Remark 2.10 and (2.2).

Proof. The connected components of a planar forest embedded in a disk have the structure of a
noncrossing partition. So we can enumerate planar forests by applying Theorem 2.4,
with 1 + Ĥtree(x) playing the role of F (x) (which has constant term 1). The result now fol-
lows from Theorem 2.9.

Although we don’t need it for what follows, we note that the trees in Tn are in bijection with
dissections of a polygon.
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Definition 2.12. Let Qn denote a convex n-gon with vertices labelled 1, 2, . . . , n. A dissec-
tion of Qn is a subdivision ρ of Qn into smaller polygons {P1, . . . , Pℓ} obtained by drawing
diagonals that don’t intersect in their interiors. We say that a dissection of Qn has
type (m3, . . . ,mn) if it consists of mi i-gons. Figure 2.2 (right) gives an example of a dissection
of Q9 of type (2, 1, 1, 0, 0, 0, 0).

Clearly the series-reduced planar trees in Tn(m3, . . . ,mn) are also in bijection with the dis-
sections of Qn of type (m3, . . . ,mn). Both of these objects are in bijection with the faces of the
(n − 3)-dimensional associahedron as well as its normal fan. The latter is combinatorially the
Stanley–Pitman fan [SP02] or the tropical totally positive Grassmannian Trop+Gr2,n [SW05].

We can now translate Theorem 2.9 into the language of polygon dissections. Let Dn denote
the set of dissections of the n-gon Qn. The following theorem follows from the Implicit Species
Theorem of Joyal [BLL98] and also appeared in [SW16, Theorem 4.2].

Theorem 2.13. Let K be a field. Given a function f : Z⩾3 → K, define a new function
h : Z⩾3 → K by

h(n) =
∑

ρ={P1,...,Pℓ}∈Dn

f(#P1)f(#P2) . . . f(#Pℓ),

where #Pi denotes the number of vertices in the polygon Pi. Let

F (x) =
∑
n⩾3

f(n)xn and H(x) = x2 +
∑
n⩾3

h(n)xn.

Then
1

x
H(x) =

(
x− 1

x
F (x)

)⟨−1⟩

.

3. Grassmannian graphs, trees and forests

The totally nonnegative Grassmannian, a particular semi-algebraic subset of the real Grassman-
nian, was first introduced by Postnikov and Lusztig [Pos06, Lus94], and it has been a topic of
intense investigation by both mathematicians and physicists. In this section we introduce the
totally nonnegative Grassmannian together with (equivalence classes of) Grassmannian graphs,
which index its cells. We also introduce Grassmannian forests, which (conjecturally) enumerate
the boundary strata of a related object called the momentum amplituhedron. We then provide
explicit enumeration formulae for Grassmannian trees and forests.

3.1. The totally nonnegative Grassmannian and its positroid stratification

Fix integers k, n such that 0 ⩽ k ⩽ n. The Grassmannian Grk,n(F) over a field F is the variety
of all k-dimensional subspaces of Fn. Each element of Grk,n(F) may be represented by a full
rank k × n matrix, modulo row operations, whose rows span the k-dimensional subspace. We
denote the element of Grk,n(F) represented by the matrix C by [C].
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In what follows, let Grk,n = Grk,n(R) denote the real Grassmannian. Recall that
[n] := {1, 2, . . . , n}. Let

(
[n]
k

)
denote the set of all k-element subsets of [n]. Given an ele-

ment V = [C] ∈ Grk,n, the maximal minors ∆I(C) of C, where I ∈
(
[n]
k

)
, form projective

coordinates on Grk,n, called the Plücker coordinates of V . Consequently, we write ∆I(V ) to
denote ∆I(C).

Definition 3.1 ([Pos06, Section 3]). An element of Grk,n is said to be totally positive (resp.,
totally nonnegative) if all of its Plücker coordinates are positive (resp., nonnegative). The to-
tally positive Grassmannian Gr>0

k,n (resp., totally nonnegative Grassmannian Gr⩾0
k,n) is the semi-

algebraic subset of all totally positive (resp., totally nonnegative) elements of Grk,n. For
each M ⊂

(
[n]
k

)
, let SM be the subset of elements of Gr⩾0

k,n whose Plücker coordinates are all
strictly positive for I ∈ M and otherwise zero. If SM is non-empty, M is called a positroid
and SM its positroid cell.

Each positroid cell is indeed a topological cell [Pos06, Theorem 6.5], and moreover, the
positroid cells of Gr⩾0

k,n glue together to form a CW complex [PSW09].
It was shown in [Pos06] that positroid cells of Grk,n are in bijection with various combi-

natorial objects including (equivalence classes of) reduced plabic graphs G of type (k, n), and
decorated permutations σ on [n] with k anti-excedances (as will be defined in Section 4). Con-
sequently, these objects provide unambiguous labels for positroid cells; we will write SG or Sσ

to denote the positroid cell associated to G or σ, respectively.

3.2. Grassmannian graphs, trees, and forests

The following notion of Grassmannian graph implicitly appeared in [AHBC+16] as a general-
ization of plabic graphs; the definition below then formally appeared in [Pos18].

Definition 3.2 ([Pos18, Definition 4.1]). A Grassmannian graph1 is a finite planar graph G with
vertices V(G) and edges E(G), embedded in a disk, with n boundary vertices {b1, b2, . . . , bn} of
degree 1 on the boundary of the disk (labelled in clockwise order). We let
Vint(G) = V(G)\{b1, b2, . . . , bn} denote the vertices in the interior of the disk, each of which is
required to be connected by a path to the boundary of the disk. We require moreover that G has
no vertices of degree 2. Each v ∈ Vint(G) is given a nonnegative integral helicity h(v): if v is a
boundary leaf, i.e. an internal vertex of degree 1 connected to a boundary vertex, then h(v) = 0
or 1; otherwise, 1 ⩽ h(v) ⩽ deg(v) − 1, where deg(v) denotes the degree of v. We say that v
has type (k, d) when k = h(v) and d = deg(v). We refer to v as being white if h(v) = 1 and
black if h(v) = deg(v)− 1; otherwise we call it generic.

The helicity of a Grassmannian graph G with n boundary vertices is the number h(G) given
1Our definition differs from Postnikov’s [Pos18, Definition 4.1] in two ways: (1) we exclude vertices of degree

2 and (2) unless v is a boundary leaf, we do not allow the helicity of a vertex v to be 0 or deg(v). These further
restrictions guarantee that our Grassmannian graphs which are forests are always reduced in the sense of [Pos18,
Definition 4.5].
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by

h(G) :=
∑

v∈Vint(G)

(
h(v)− deg(v)

2

)
+

n

2
∈ {0, 1, . . . , n}. (3.1)

Such a Grassmannian graph G is said to be of type (k, n) where k = h(G).
A plabic graph is a Grassmannian graph in which each internal vertex is either white or

black; that is, there are no generic vertices.

In this article we will restrict our attention to Grassmannian graphs which are forests, in other
words, have no internal cycles.

Definition 3.3. A plabic forest is an acyclic plabic graph, and a plabic tree is a connected acyclic
plabic graph. Similarly, a Grassmannian forest is an acyclic Grassmannian graph, and a Grass-
mannian tree is a connected acyclic Grassmannian graph. If F is a Grassmannian forest, we
let Trees(F ) denote the Grassmannian trees in F .

Remark 3.4. Given a Grassmannian tree T with n boundary vertices,

n =
∑

v∈Vint(T )

deg(v)− 2(|Vint(T )| − 1) = 2 +
∑

v∈Vint(T )

(deg(v)− 2) , (3.2)

and substituting this into (3.1), we find that its helicity can be expressed as

h(T ) =
∑

v∈Vint(T )

h(v)− (|Vint(T )| − 1) = 1 +
∑

v∈Vint(T )

(h(v)− 1) . (3.3)

Remark 3.5. Every internal vertex of a Grassmannian tree T of type (1, n) (resp. (n − 1, n))
must be white (resp. black). The observation follows from (3.3) (and (3.2)) together with the
restriction that h(v) ⩾ 1 (resp. h(v) ⩽ deg(v)− 1) for every internal vertex v.

There is a natural partial order and equivalence relation which can be defined for Grassman-
nian forests.

Definition 3.6. Given Grassmannian forests F and F ′, we say that F ′ coarsens F (and that F
refines F ′) if F ′ can be obtained from F by applying a sequence of vertex contraction moves in
which two adjacent internal white vertices (or two adjacent internal black vertices) get contracted
into a single white (or black) vertex (see Figure 3.1). The refinement order on Grassmannian
forests is the partial order⩽ref whereF ⩽ref F

′ ifF ′ coarsensF . Grassmannian forestsF andF ′

are refinement-equivalent if one can be obtained from the other by a sequence of refinements and
coarsenings. A Grassmannian forest is said to be contracted or maximal if it is maximal with
respect to the refinement order.

More generally, there is a notion of refinement order for Grassmannian graphs [Pos18, Def-
inition 4.7] which coincides with the above definition when restricted to Grassmannian forests.
Positroid cells of Gr⩾0

k,n are also in bijection with refinement-equivalence classes of reduced
Grassmannian graphs of type (k, n).
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→ →

Figure 3.1: Examples of vertex contraction moves.

Remark 3.7. Each refinement-equivalence class of Grassmannian trees (resp., forests) contains
a unique contracted Grassmannian tree (resp., forest). This contracted tree (or forest) provides
a canonical choice of representative for the equivalence class. Note that a Grassmannian forest
is contracted if and only if it has no adjacent white vertices and no adjacent black vertices.
Similarly a plabic forest is contracted if and only if it is bipartite.
Remark 3.8. Every refinement-equivalence class of Grassmannian trees with three or fewer
boundary vertices contains a single element. Given a single boundary vertex, one can construct
precisely two Grassmannian trees. They consist of a single white or black boundary leaf. The
only Grassmannian tree with two boundary vertices contains no internal vertices and one edge
connecting the two boundary vertices. There are two Grassmannian trees with three boundary
vertices, containing a single white or black trivalent vertex.

Figure 3.2 depicts two refinement-equivalent Grassmannian trees with 9 boundary vertices.

⩽

Figure 3.2: Two refinement-equivalent Grassmannian trees with 9 boundary vertices. The left
tree is a refinement of the right one, and the right tree is contracted. The helicity of each vertex
is printed inside the vertex.

We next define a natural dimension statistic associated to each refinement-equivalence class
of Grassmannian forests; this will capture the dimension of the image of this positroid cell in the
momentum amplituhedron.
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Definition 3.9. For every internal vertex v in a Grassmannian forest, define

m(v) :=

{
2 deg(v)− 4, v is generic,
deg(v)− 1, otherwise. (3.4)

The momentum amplituhedron dimension (or mom-dimension) of a Grassmannian tree T with n
boundary vertices, denoted by dimM(T ), is defined as

dimM(T ) :=

{
n− 1, n ⩽ 2,
1 +

∑
v∈Vint(T )(m(v)− 1), otherwise. (3.5)

The momentum amplituhedron dimension of a Grassmannian forest F , denoted by dimM(F ), is
the sum of the mom-dimensions of the Grassmannian trees in F :

dimM(F ) :=
∑

T∈Trees(F )

dimM(T ) . (3.6)

Remark 3.10. Given a Grassmannian tree T of type (k, n), if we replace each internal vertex v
by a vertex of helicity deg(v) − h(v), we obtain a Grassmannian tree of type (n − k, n). By
Definition 3.9, (3.3) and (3.2), this map gives a dimension-preserving bijection between the
Grassmannian trees of type (k, n) and the Grassmannian trees of type (n− k, n).

By [Pos18], the helicity is an invariant of refinement-equivalence classes of Grassmannian
graphs. The following gives an analogue of this statement for the mom-dimension.

Lemma 3.11. The mom-dimension is an invariant of refinement-equivalence classes of Grass-
mannian forests.

Proof. It is sufficient to prove that the mom-dimension for refinement-equivalent Grassmannian
trees is the same. Without loss of generality, letT andT ′ be refinement-equivalent Grassmannian
trees where T is obtained from T ′ by applying a single vertex uncontraction move to some non-
generic internal vertex v∗ ∈ Vint(T

′). Let Vint(T ) \ Vint(T
′) = {v1, v2} be the two non-generic

internal vertices resulting from the uncontraction of v∗. Clearly deg(v∗) = deg(v1)+deg(v2)−2.
Then

1 + (m(v1)− 1) + (m(v2)− 1) = m(v1) +m(v2)− 1

= (deg(v1)− 1) + (deg(v2)− 1)− 1

= (deg(v1) + deg(v2)− 2)− 1

= deg(v∗)− 1 = m(v∗) = 1 + (m(v∗)− 1) ,

from which it follows that dimM(T ) = dimM(T ′).

Remark 3.12. For an internal vertex v of type (k, d) in a Grassmannian forest, we have
that m(v) is at most k(d − k), the dimension of Gr⩾0

k,d. We have m(v) = k(d − k) precisely
when k = 1, 2, d − 2, d − 1. Moreover, for a Grassmannian forest F of type (k, n), the mom-
dimension of F is at most the dimension of the positroid cell SF in Gr⩾0

k,n, and these dimensions
coincide when k = 0, 1, 2, n− 2, n− 1, n.
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As a warmup for proving our main result enumerating Grassmannian trees and forests (The-
orem 3.18), we first consider the simpler problem of enumerating contracted plabic trees and
forests. Recall that a contracted plabic tree (respectively, forest) is simply a bipartite planar tree
(respectively, forest).

Theorem 3.13. The number of contracted plabic trees (equivalently, bipartite planar trees) of
type (k, n) with mom-dimension r is equal to the coefficient [xnykqr]Ptree(x, y, q), where

Ptree(x, y, q) = x
(
1 + y + yq C⟨−1⟩(x, y, q)

)
, with (3.7)

C(x, y, q) =
x(1− q2x2y)

(1 + xq)(1 + xyq)
, (3.8)

and the compositional inverse is with respect to the variable x.
The number of contracted plabic forests of type (k, n) with mom-dimension r is given

by [xnykqr]Pforest(x, y, q), where

xPforest(x, y, q) =

(
x

1 + Ptree(x, y, q)

)⟨−1⟩

, (3.9)

and the compositional inverse is with respect to the variable x. Equivalently,

[xn]Pforest(x, y, q) =
1

n+ 1
[xn] (1 + Ptree(x, y, q))

n+1 . (3.10)

Remark 3.14. The numbers of contracted plabic trees of type (k, n) refine the large Schroeder
numbers, and appear as [SI22, A175124]. By [PSBW21, Section 12], these are also equinumer-
ous with the separable permutations on [n−1] with k−1 descents. C⟨−1⟩(x, y, q) coincides with
the generating function given in [Dra08, Example 1.6.7] with (α, β) = (q, yq) or (yq, q). The
polynomial enumerating separable permutations according to their descents was also studied
in [FLZ18].
Remark 3.15. Theorem 3.13 implies that Ptree(x, y, q) and Pforest(x, y, q) are algebraic generat-
ing functions of degree 3 and 4, respectively, satisfy the following relations:

0 = P3
tree + x(y(qx− 3)− 3)P2

tree + x2(3− y(qx(y + 1)− 3y − 5))Ptree

− x3(1 + y(y(−qx+ y + 2) + 2)) , (3.11)
0 = q(x− 1)x2y(xy − 1)P4

forest

+ (x(x(−x(y + 1)(−qy + y2 + y + 1) + y(−2q + 3y + 5) + 3)− 3(y + 1)) + 1)P3
forest

+ (x2(y(q − 3y − 5)− 3) + 6x(y + 1)− 3)P2
forest − 3(xy + x− 1)Pforest − 1 . (3.12)

Remark 3.16. We may as well set q to 1 in (3.7) and (3.8) because dimM(T ) = n − 1 for any
contracted plabic tree T on n-leaves and so [xnykqr]Ptree(x, y, q) = δr,n−1[x

nyk]Ptree(x, y, 1).
Special care is required to enumerate the contracted plabic trees, as defined in Definition 3.6.

In particular, we need to ensure that the set of all subtrees with a fixed set of boundary vertices
and with all internal vertices white, count as a single contribution; similarly for the set of all
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subtrees with a fixed set of boundary vertices and all internal vertices black. Note that any
tree with n boundary vertices and all internal vertices white (respectively, black) has helicity 1
(respectively, n − 1). To this end, we define a statistic e : Z⩾3 → R on internal vertices of a
tree which depends only on their degree. It is defined so that the sum over all trees (with a fixed
number of boundary vertices) weighted by e(deg(v)) for each internal vertex v equals 1.

Lemma 3.17. Let e : Z⩾3 → R be the function where e(n) = (−1)n−1 for each n ∈ Z⩾3. Then
the function h : Z⩾3 → R given by

h(n) =
∑
T∈Tn

∏
v∈Vint(T )

e(deg(v)) , (3.13)

has the property that h(n) = 1.

Proof of Lemma 3.17. Notice that (3.13) in Lemma 3.17 is precisely (2.1) in Theorem 2.9
with f = e. If we let H(x) = x2 +

∑
n⩾3 h(n)x

n and F (x) =
∑

n⩾3 e(n)x
n = x3

1+x
, then

by Theorem 2.9 we have that

1

x
H(x) =

(
x− 1

x
F (x)

)⟨−1⟩

=

(
x

1 + x

)⟨−1⟩

=
x

1− x
,

which means that H(x) = x2

1−x
= x2 +

∑
n⩾3 x

n and h(n) = 1.

Proof of Theorem 3.18. To simplify notation, we will suppress any functional dependence on
the variables y and q, and write Ptree(x) for Ptree(x, y, q).

Given a plabic tree T of type (k, n) with n ⩾ 3 and mom-dimension r, we can express
xnykqr using (3.3) and (3.5) as

xnykqr = xnyq
∏

v∈Vint(T )

yh(v)−1qm(v)−1 , (3.14)

where qm(v)−1 = qdeg(v)−2 for internal vertices. Comparing the right hand side of the equality
in (3.14) with (2.1) motivates the following definition of the function f , whose value f(d) en-
codes the two ways of coloring an internal vertex of degree d (while keeping track of both h(v)
and m(v)).

We define f : Z⩾3 → Q(y, q) by

f(d) = qd−2e(d)(1 + yd−2) ,

where e(d) = (−1)d−1 is the statistic introduced in Lemma 3.17. Note that the prefactor e(d)
is included so that all refinement-equivalent plabic (sub-)trees with only white vertices (or with
only black vertices), are counted as a single contribution.

Let h : Z⩾3 → Q(y, q) be defined in terms of f as in Theorem 2.9. LetF (x) =
∑

d⩾3 f(d)x
d

and H(x) = x2 +
∑

n⩾3 h(n)x
n. Then we can concretely compute

F (x) = x3q

(
1

1 + xq
+

y

1 + xyq

)
, (3.15)
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and H(x) may be computed in terms of F (x) using Theorem 2.9. Finally, Ptree(x) is given by

Ptree(x) = x(1 + y) + yqH(x) .

We add the term x(1 + y) so that [x1]Ptree(x) = (1 + y) accounts for the two plabic trees with
a single boundary vertex. Setting C(x) = x− 1

x
F (x), the result for Ptree(x, y, q) follows.

The first statement about Pforest(x, y, q) now follows from Corollary 2.11. The second state-
ment (3.10) follows from (3.9) by applying Lagrange Inversion (Theorem 2.2). Explicitly, if we
write R(x) = x

1+Gtree(x,y,q)
, then

(n+ 1)[xn+1]R⟨−1⟩(x) = [xn]

(
x

R(x)

)n+1

= [xn](1 + Ptree(x, y, q))
n+1.

We now return to the case of contracted Grassmannian trees and forests.

Theorem 3.18. The number of contracted Grassmannian trees of type (k, n) with mom-dimen-
sion r is given by [xnykqr]Gtree(x, y, q) where

Gtree(x, y, q) = x
(
1 + y + yq C⟨−1⟩(x, y, q)

)
, with (3.16)

C(x, y, q) =
x(1− x(1 + y)q2 − x2yq2(1 + q − q2)− x4y2q5(1 + q))

(1 + xq)(1 + xyq)(1− xq2)(1− xyq2)
, (3.17)

and the compositional inverse is with respect to the variable x.
The number of contracted Grassmannian forests of type (k, n)with mom-dimension r is given

by [xnykqr]Gforest(x, y, q) where

xGforest(x, y, q) =

(
x

1 + Gtree(x, y, q)

)⟨−1⟩

, (3.18)

and the compositional inverse is with respect to the variable x. Equivalently,

[xn]Gforest(x, y, q) =
1

n+ 1
[xn] (1 + Gtree(x, y, q))

n+1 . (3.19)

Our proof is quite analogous to the previous one.

Proof of Theorem 3.18. As before, given a Grassmannian tree T of type (k, n) with n ⩾ 3 and
mom-dimension r, we can express xnykqr using (3.3) and (3.5) as

xnykqr = xnyq
∏

v∈Vint(T )

yh(v)−1qm(v)−1 , (3.20)

where qm(v)−1 = q2 deg(v)−5 for generic vertices, while qm(v)−1 = qdeg(v)−2 for non-generic ver-
tices. Comparing the right hand side of the equality in (3.20) with (2.1) motivates the following
definition of the function f , whose value f(d) encodes the different ways to decorate an internal
vertex of degree d (while keeping track of both h(v) and m(v)).
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We define f : Z⩾3 → Q(y, q) by

f(d) = q2d−5

d−2∑
k=2

yk−1 + qd−2e(d)(1 + yd−2) ,

where e(d) = (−1)d−1. Note that the expression q2d−5
∑d−2

k=2 y
k−1 in f(d) enumerates the d− 3

choices of helicities for a generic internal degree d vertex v, while the expression
qd−2e(d)(1 + yd−2) enumerates the remaining two non-generic choices. The prefactor e(d) is
included so that all refinement-equivalent Grassmannian trees with only white vertices (or with
only black vertices), are counted as a single contribution.

Let h : Z⩾3 → Q(y, q) be defined in terms of f as in Theorem 2.9. LetF (x) =
∑

d⩾3 f(d)x
d

and H(x) = x2 +
∑

n⩾3 h(n)x
n. Then we can concretely compute

F (x) = x3q

(
1

1 + xq
+

y

1 + xyq
+

xyq2

(1− xq2)(1− xyq2)

)
, (3.21)

and H(x) may be computed in terms of F (x) using Theorem 2.9. Finally, Gtree(x) is given
by Gtree(x) = x(1 + y) + yqH(x). Note that we added the term x(1 + y) to account for the
two Grassmannian trees with a single boundary vertex. Setting C(x) = x − 1

x
F (x), the result

for Gtree(x, y, q) follows. The proofs of the statements about Gforest(x, y, q) are exactly the same
as in the previous proof.

See Table A.1 for examples of [xnyk]Gforest(x, y, q) for n = 4 through 12 and for 2⩽k⩽⌊n
2
⌋.

Remark 3.19. It follows from Theorem 3.18 that Gtree(x, y, q) (resp., Gforest(x, y, q)) is an alge-
braic generating function of degree 5 (resp., 6) satisfying (B.1) (resp., (B.2)).

4. Separable permutations and Grassmannian tree permutations

In this section we explain how the results of the previous section are related to the enumeration
of permutations. We start by defining the decorated trip permutation associated to a reduced
Grassmannian graph [Pos18, Definition 4.5]. Decorated trip permutations are in bijection with
refinement-equivalence classes of reduced Grassmannian graphs. We also note that the Grass-
mannian graphs that we are interested in in this paper (Grassmannian forests) are automatically
reduced.

Definition 4.1 ([Pos18, Definition 4.5]). A one-way trip α in a Grassmannian graph G is a
directed walk along edges of G that starts and ends at some boundary vertices, satisfying the
following rules-of-the-road: For each internal vertex v ∈ Vint(G) with adjacent edges labelled
a1, . . . , ad in the clockwise order, where d = deg(v), if α enters v through the edge ai, it leaves v
through the edge aj , where j = i+ h(v) (mod d).

A decorated permutation on n letters is a permutation w : [n] → [n] in which fixed points
are coloured either black or white (and consequently denoted w(i) = i and w(i) = i).

The decorated permutation wG of a reduced Grassmannian graph is defined as follows:
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1. If the trip starting at the boundary vertex bi ends at the boundary vertex bj for j ̸= i, then
wG(i) = j.

2. If the trip starting at boundary vertex bi ends at bi, then either wG(i) = i or wG(i) = i,
based on whether the leaf v incident to bi has h(v) = 0 or h(v) = 1.

We define an antiexcedance of a decorated permutation w : [n] → [n] is an element i ∈ [n] such
that either w−1(i) > i or w(i) = i.

The helicity h(G) of a reduced Grassmannian graph is equal to the number of antiexcedances
of the decorated trip permutation wG [Pos18]. Therefore we will also denote the number of
antiexcedances of this permutation as h(wG) := h(G).

As an example, the decorated trip permutation associated to both graphs in Figure 3.2
is (2, 3, 5, 6, 8, 1, 9, 4, 7), which has three antiexcedances; this corresponds to the fact that the
graphs have helicity 3.

Since each refinement-equivalence class of Grassmannian forests has a uniquely associ-
ated decorated trip permutation, Lemma 3.11 allows us to define the mom-dimension of each
decorated permutation wF associated to a Grassmannian forest F , that is, we define
dimM(wF ) := dimM(F ).

Let us first interpret Theorem 3.13 in terms of permutations. One option is to interpret
Theorem 3.13 as counting the trip permutations of plabic trees, enumerating them according
to n, number of antiexcedances k, and mom-dimension. Another option is to use the results of
[PSBW21, Section 12] that the contracted plabic trees of type (k, n) are in bijection with the
separable permutations on n− 1 letters with k− 1 descents, where a separable permutation can
be defined as a permutation which avoids the patterns 2413 and 3142 [BBL98, Kit11]. Therefore
if we specialize q = 1 in Theorem 3.13, we have the following.

Corollary 4.2. The number of separable permutations on n − 1 letters with k − 1 descents is
given by

[xnyk]Ptree(x, y, q = 1) = [xnyk]

(
x+ xy + xy

(
x(1− x2y)

(1 + x)(1 + xy)

)⟨−1⟩
)
.

We note that the generating function above is essentially the same one that appears in [Dra08,
Example 1.6.7].

One can also define separable permutations as the permutations that can be built by apply-
ing direct sums and skew sums, starting from the trivial permutation 1, where the direct sum
operation is defined as follows.

Definition 4.3. The direct sum of two permutations σ on nσ letters and τ on nτ letters is a
permutation σ ⊕ τ on nσ + nτ letters defined as follows:

(σ ⊕ τ)(i) :=

{
σ(i) if 1 ⩽ i ⩽ nσ,
τ(i− nτ ) + nτ if nσ + 1 ⩽ i ⩽ nσ + nτ .

(4.1)

This operation is illustrated in Figure 4.1 (left).
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Figure 4.1: Direct sum (left) and amalgamation (right) of two permutations σ on nσ letters and τ
on nτ letters.

Let us now interpret Theorem 3.18 in terms of permutations. We first need to describe the
decorated permutations that arise from contracted Grassmannian trees and graphs.

For n ⩾ 2 and 1 ⩽ k ⩽ n− 1, let

πk,n := (k + 1, . . . , n, 1, 2, . . . , k) =

 1 2 · · · n− k n− k + 1 · · · n
↓ ↓ ↓ ↓ ↓

k + 1 k + 2 · · · n 1 · · · k

 ,

and for n = 1, let π0,1 := (1) and π1,1 := (1) be the two decorated permutations on one letter
decorated black and white, respectively.

Definition 4.4. Given permutations σ on nσ letters and τ on nτ letters, where nσ, nτ ⩾ 2, the
amalgamation σ ⋆ τ is a permutation on nσ + nτ − 2 letters defined as follows:

(σ ⋆ τ)(i) :=


σ(i) if 1 ⩽ i ⩽ nσ − 1 and σ(i) ̸= nσ,
τ(1) if 1 ⩽ i ⩽ nσ − 1 and σ(i) = nσ,
τ(i− nσ + 2) if nσ ⩽ i ⩽ nσ + nτ − 2 and τ(i− nσ + 2) ̸= 1,
σ(nσ) if nσ ⩽ i ⩽ nσ + nτ − 2 and τ(i− nσ + 2) = 1.

(4.2)

This operation is illustrated in Figure 4.1 (right).

Definition 4.5. The cyclic rotation of a permutation π = (π1, . . . , πn−1, πn) is the permuta-
tion cyc(π) defined by (cyc(π))(i) := π(i− 1)+1, i.e. cyc(π) = (πn+1, π1+1, . . . , πn−1+1)
(modulo n).

The above operation corresponds to taking a decorated permutation arising from a Grass-
mannian graph on vertices 1, 2, . . . , n, then adding 1 (modulo n) to each boundary vertex and
computing the new decorated permutation.

Definition 4.6. A Grassmannian tree permutation is a permutation built by amalgamating per-
mutations of the form πk,n (for n ⩾ 3) and possibly applying cyclic rotations. We also consider
the permutations (1) and (2, 1) on one and two letters, respectively, to be Grassmannian tree
permutations.
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The following statement is easy to verify from the definitions.

Proposition 4.7. Grassmannian tree permutations are precisely the decorated permutations
obtained from Grassmannian trees by applying the map from Definition 4.1.

Now we obtain from Theorem 3.18 the following corollary.

Corollary 4.8. The number of Grassmannian tree permutations on n letters with k antiex-
cedances and momentum amplituhedron r is given by [xnykqr]Gtree(x, y, q) where Gtree(x, y, q)
is as in Theorem 3.18.

One can also interpret Theorem 3.18 as enumerating “Grassmannian forest permutations,”
which are built from Grassmannian tree permutations by using the direct sum and cyclic rotation
operations.

5. The Momentum Amplituhedron

Remarkably, the totally nonnegative Grassmannian underpins the structure of scattering ampli-
tudes in planar N = 4 supersymmetric Yang–Mills (SYM) theory [AHBC+16]. In 2013, the
(tree) amplituhedron An,k,m was introduced as a geometric object which encodes tree-level scat-
tering amplitudes for N = 4 SYM in momentum twistor space [AHT14]. It is defined as the
image of the totally nonnegative Grassmannian under a linear map induced by a positive matrix.
Then in 2019, the momentum amplituhedron Mn,k = Mn,k,4 was discovered as an analogue of
the amplituhedron but defined in momentum space [DFŁP19]. Like the amplituhedron, the mo-
mentum amplituhedron is defined as the image of the totally nonnegative Grassmannian under
a particular map. Its boundary stratification was extensively studied in [FŁM20] and a (conjec-
tural) description for its boundaries was given in terms of Grassmannian forests, although these
objects were not known to the authors then. Moreover, each instance of the momentum ampli-
tuhedron computed in [FŁM20] was shown to have Euler characteristic 1. In this section, we use
the results of the previous section to construct the full generating function for the momentum
amplituhedron and we prove that its Euler characteristic is 1.

5.1. The momentum amplituhedron and its boundary stratification

Definition 5.1. Define the twisted nonnegative part of Grk,n to be:

Gr⩾0,τ
k,n = {V ∈ Grk,n : (−1)inv(I,[n]\I)∆[n]\I(V ) ⩾ 0 for all I ∈

(
[n]

n− k

)
} , (5.1)

where inv(A,B) = #{a ∈ A, b ∈ B|a > b} denotes the inversion number.

One can verify as in [Kar17, Lemma 1.11] that if {∆I(V )} are the Plücker coordinates of a
point V in Grk,n, then the orthogonal complement V ⊥ ∈ Grn−k,n is represented by a point with
Plücker coordinates ∆J(V

⊥) = (−1)inv(J,[n]\J)∆[n]\J(V ) for J ∈
(

[n]
n−k

)
.
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Definition 5.2. For n, p with n ⩾ p, define Mat>0
n,p to be the set of real n × p matrices whose

maximal minors (Plücker coordinates) are all positive and its twisted totally positive part as

Mat>0,τ
n,p = {A ∈ Matn,p : (−1)inv(I,[n]\I)∆[n]\I(A) > 0 for all I ∈

(
[n]

n− p

)
} . (5.2)

Definition 5.3. A subset I of [n] is said to be cyclically consecutive if its elements, or the ele-
ments of its complement in [n], are consecutive.

Definition 5.4 ([DFŁP19, Section 2.2]). Let k, n be integers with 2 ⩽ k ⩽ n − 2. Let
Λ̃ ∈ Mat>0

n,k+2 and Λ ∈ Mat>0,τ
n,n−k+2 be a pair of matrices, called the kinematic data. Given

an element [C] ∈ Gr⩾0
k,n, with orthogonal complement [C⊥] ∈ Grn−k,n, let Ỹ = CΛ̃ and

Y = C⊥Λ. The momentum amplituhedron map ΦΛ̃,Λ : Gr⩾0
k,n → Grk,k+2 ×Grn−k,n−k+2 is

defined by ΦΛ̃,Λ(C) := (Ỹ , Y ) and the momentum amplituhedron Mn,k(Λ̃,Λ) is the image of
Gr⩾0

k,n under ΦΛ̃,Λ.
For i, j ∈ [n], we define [Ỹ ij] = det(Ỹ1, . . . , Ỹk, Λ̃i, Λ̃j) to be the determinant of the (k+2)×

(k + 2) matrix with rows Ỹ1, . . . , Ỹk, Λ̃i, Λ̃j , and we define ⟨Y ij⟩ = det(Y1, . . . , Yn−k,Λi,Λj)
to be the determinant of the (n − k + 2) × (n − k + 2) matrix with rows Y1, . . . , Yn−k,Λi,Λj .
We require that the kinematic data satisfy

∑
i<j∈I [Ỹ ij]⟨Y ij⟩ > 0 on Gr>0

k,n for every cyclically
consecutive subset I of [n] with |I| ⩾ 2; this is a necessary condition for the codimension-
one boundaries of the momentum amplituhedron to correspond to factorization channels of the
scattering amplitude [DFŁP19, Section 2.3].

While Grk,k+2 ×Grn−k,n−k+2 has dimension 2n, Mn,k has dimension 2n− 4.
Remark 5.5. The combinatorial properties of Mn,k(Λ̃,Λ) are conjectured to be independent of
the choice of (Λ̃,Λ). Consequently, we will omit our choice and simply write Mn,k.

Definition 5.6. Given a positroid cell Sσ (resp., SG) of Gr⩾0
k,n, we write Φ◦

σ = Φ(Sσ) (resp.,
Φ◦

G = Φ(SG)) and Φσ = Φ(Sσ) (resp., ΦG = Φ(SG)), omitting our choice of kinematic data
following Remark 5.5. We refer to Φ◦

σ (resp., Φ◦
G) as a stratum of Mn,k and we denote its

dimension by dimΦ◦
σ (resp., dimΦ◦

G).

The following definition first appeared in [Łuk19, Section 2.4].

Definition 5.7. Let Sσk,n
denote the unique top-dimensional positroid cell of Gr⩾0

k,n which is the
interior of Gr⩾0

k,n. Given a positroid cell Sσ of Gr⩾0
k,n, we say that Φ◦

σ is a boundary stratum (or
simply boundary) of Mn,k if

• Φ◦
σ ∩ Φ◦

σk,n
= ∅, and

• for any positroid cell Sσ′ whose closure contains Sσ, we have dimΦ◦
σ′ > dimΦ◦

σ.

The boundary stratification of the momentum amplituhedron was extensively studied in
[FŁM20] using amplituhedronBoundaries.m [ŁM21], a Mathematica package. The pack-
age employs a recursive routine, initially developed for the m = 2 amplituhedron in [Łuk19],
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which exploits the positroid stratification2 of Gr⩾0
k,n. The algorithm in [Łuk19] (conjecturally)

generates all boundaries as per the above definition.
Let Sn,k denote the set of decorated permutations σ such that Φ◦

σ is a boundary stratum
of Mn,k, together with σk,n. Based on poset data generated in [FŁM20], we are emboldened to
conjecture the following.

Conjecture 5.8. We have a regular CW decomposition

Mn,k = ⊔σ∈Sn,k
Φ◦

σ

of the momentum amplituhedron. In particular, each boundary stratum Φ◦
σ is homeomorphic to

an open ball.

The authors of [FŁM20] synthesised the boundary stratification of Mn,k for 4 ⩽ n ⩽ 8 and
2 ⩽ k ⩽ n− 2. From this data, they observed that positroid cells corresponding to momentum
amplituhedron boundaries are labelled by Grassmannian forests. Combining their observations
with knowledge about the singularity structure of tree-level amplitudes in N = 4 SYM, they
hypothesised a bijection between boundaries and the aforementioned pictorial labels. This hy-
pothesis is summarised below.

Conjecture 5.9 ([FŁM20, Section 3.3]). Φ◦
G is a boundary of Mn,k if and only if G is a Grass-

mannian forest of type (k, n). Moreover, given a Grassmannian forest F , dimΦ◦
F = dimM(F ).

Remark 5.10. It is immediate from the definition that the momentum amplituhedron Mn,2 is
isomorphic to Gr⩾0

2,n, and the boundary stratification of Mn,2 coincides with the boundary strat-
ification of Gr⩾0

2,n.

5.2. Enumerating the boundaries of the momentum amplituhedron

From Conjecture 5.9, the boundaries of the momentum amplituhedron Mn,k of dimension r
are in bijection with the contracted Grassmannian forests of type (k, n) with mom-dimension r,
whose generating function was given in Theorem 3.18. We summarise this result below.

Corollary 5.11. The number of boundaries of the momentum amplituhedron Mn,k of dimen-
sion r is given by [xnykqr]Gforest(x, y, q) where

xGforest(x, y, q) =

(
x

1 + Gtree(x, y, q)

)⟨−1⟩

,

was computed in Theorem 3.18 and the compositional inverse is with respect to the variable x.
Equivalently,

[xn]Gforest(x, y, q) =
1

n+ 1
[xn] (1 + Gtree(x, y, q))

n+1 .

2The package positroids.m [Bou12] implements the positroid stratification in Mathematica.
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In the above expressions, we have from Theorem 3.18 that

Gtree(x, y, q) = x
(
1 + y + yq C⟨−1⟩(x, y, q)

)
, with

C(x, y, q) =
x(1− x(1 + y)q2 − x2yq2(1 + q − q2)− x4y2q5(1 + q))

(1 + xq)(1 + xyq)(1− xq2)(1− xyq2)
.

We have checked that this formula reproduces all results for [xnyk]Gforest(x, y, q) listed in
Tables 1 and 2 of [FŁM20]. Their results include as high as (n, k) = (12, 2). In Table A.1 we
present [xnyk]Gforest(x, y, q) for n = 4 through 12 and for all 2 ⩽ k ⩽ ⌊n

2
⌋.

The following corollaries are predicated upon Conjecture 5.9. Corollary 5.13 additionally
requires Conjecture 5.8.
Corollary 5.12. The number of 0-dimensional boundary strata of Mn,k is

(
n
k

)
, that is,

[xnykq0]Gforest(x, y, q) =

(
n

k

)
.

Corollary 5.13. The Euler characteristic of the momentum amplituhedron is 1.

Proof of Corollary 5.13. Recall that for a CW complex, the Euler characteristic is defined as the
alternating sum χ = n0−n1+n2−n3+ . . . where nr denotes the number of cells of dimension r
in the complex. The Euler characteristic of Mn,k can be computed as [xnyk]Gforest(x, y,−1).
To this end, let us specialize to q = −1 for Gtree(x, y, q) given in the expression (3.16) from
Theorem 3.18. One can easily verify that

C(x, y,−1) =
x

(1− x)(1− xy)
, (5.3)

and that its compositional inverse with respect to the variable x is given by

C⟨−1⟩(x, y,−1) =
1 + x(1 + y)−

√
∆

2xy
, (5.4)

where ∆ = (1 + x(1 + y))2 − 4x2y. Therefore we have that

Gforest(x, y,−1) =
1

x

(
x

1 + Gtree(x, y,−1)

)⟨−1⟩

=
1

x

(
x

1 + x(1 + y)− 1
2
(1 + x(1 + y)−

√
∆)

)⟨−1⟩

=
1

x

(
2x

1 + x(1 + y) +
√
∆

)⟨−1⟩

=
1

x

(
1 + x(1 + y)−

√
∆

2xy

)⟨−1⟩

=
1

x
C(x, y,−1) =

1

(1− x)(1− xy)
=
∑
0⩽n

xn
∑

0⩽k⩽n

yk,

with every coefficient equal to 1.
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A. Data

In Table A.1 we give expressions for [xnyk]Gforest(x, y, q) for 4 ⩽ n ⩽ 12, which extends
the range of data presented in Tables 1 and 2 of [FŁM20]. Since the number of contracted
Grassmannian forests of type (k, n) equals those of type (n−k, n) (see Remark 3.10) we restrict
k to 2 ⩽ k ⩽ ⌊n

2
⌋.

(n, k) [xnyk]Gforest(x, y, q)

(4, 2) q4 + 4q3 + 10q2 + 12q + 6

(5, 2) q6 + 5q5 + 15q4 + 30q3 + 40q2 + 30q + 10

(6, 2) q8 + 6q7 + 21q6 + 50q5 + 90q4 + 120q3 + 110q2 + 60q + 15
(6, 3) q8 + 15q7 + 54q6 + 114q5 + 180q4 + 215q3 + 180q2 + 90q + 20

(7, 2) q10 + 7q9 + 28q8 + 77q7 + 161q6 + 266q5 + 350q4 + 350q3 + 245q2 + 105q + 21
(7, 3) q10+21q9+119q8+350q7+665q6+938q5+1050q4+910q3+560q2+210q+35

(8, 2) q12+8q11+36q10+112q9+266q8+504q7+784q6+1008q5+1050q4+840q3+
476q2 + 168q + 28

(8, 3) q12 + 28q11 + 188q10 + 720q9 + 1820q8 + 3262q7 + 4424q6 + 4788q5 + 4200q4 +
2870q3 + 1400q2 + 420q + 56

(8, 4) q12 + 32q11 + 300q10 + 1280q9 + 3264q8 + 5696q7 + 7420q6 + 7672q5 + 6426q4 +
4200q3 + 1960q2 + 560q + 70

(9, 2) q14+9q13+45q12+156q11+414q10+882q9+1554q8+2304q7+2898q6+3066q5+
2646q4 + 1764q3 + 840q2 + 252q + 36

(9, 3) q14+36q13+279q12+1227q11+3726q10+8370q9+14322q8+19152q7+20622q6+
18270q5 + 13230q4 + 7476q3 + 3024q2 + 756q + 84

(9, 4) q14 + 45q13 + 540q12 + 3003q11 + 10089q10 + 23049q9 + 38298q8 + 48618q7 +
49140q6 + 40656q5 + 27468q4 + 14490q3 + 5460q2 + 1260q + 126

(10, 2) q16 + 10q15 + 55q14 + 210q13 + 615q12 + 1452q11 + 2850q10 + 4740q9 + 6765q8 +
8340q7 + 8862q6 + 7980q5 + 5880q4 + 3360q3 + 1380q2 + 360q + 45

(10, 3) q16 + 45q15 + 395q14 + 1955q13 + 6705q12 + 17412q11 + 35640q10 + 58440q9 +
77490q8+84120q7+75852q6+57120q5+35280q4+17010q3+5880q2+1260q+120

(10, 4) q16 +60q15 +880q14 +5780q13 +23385q12 +65990q11 +137835q10 +220662q9 +
277890q8 + 281940q7 + 235410q6 + 163380q5 + 92862q4 + 41160q3 + 13020q2 +
2520q + 210

(10, 5) q16+65q15+1045q14+7915q13+34740q12+101240q11+212285q10+336220q9+
415890q8 +412980q7 +336840q6 +228102q5 +126420q4 +54600q3 +16800q2 +
3150q + 252

(11, 2) q18+11q17+66q16+275q15+880q14+2277q13+4917q12+9042q11+14355q10+
19855q9+24057q8+25542q7+23562q6+18480q5+11880q4+5940q3+2145q2+
495q + 55
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(11, 3) q18 +55q17 +539q16 +2959q15 +11275q14 +32692q13 +75735q12 +143913q11 +
226908q10+297990q9+326997q8+301620q7+235158q6+154308q5+83160q4+
34980q3 + 10560q2 + 1980q + 165

(11, 4) q18+77q17+1342q16+10109q15+46849q14+153527q13+380402q12+738067q11+
1143780q10 + 1435005q9 + 1475562q8 + 1259412q7 + 901362q6 + 540540q5 +
265650q4 + 101640q3 + 27720q2 + 4620q + 330

(11, 5) q18+88q17+1782q16+16522q15+88924q14+318197q13+820512q12+1602986q11+
2450437q10 + 2996972q9 + 2984520q8 + 2457840q7 + 1693230q6 + 975744q5 +
460152q4 + 168630q3 + 43890q2 + 6930q + 462

(12, 2) q20+12q19+78q18+352q17+1221q16+3432q15+8074q14+16236q13+28314q12+
43252q11 + 58278q10 + 69564q9 + 73656q8 + 68904q7 + 56232q6 + 39072q5 +
22275q4 + 9900q3 + 3190q2 + 660q + 66

(12, 3) q20+66q19+714q18+4300q17+17985q16+57420q15+147202q14+312378q13+
558855q12 + 850575q11 + 1104048q10 + 1221682q9 + 1152888q8 + 929610q7 +
640200q6 + 372636q5 + 178200q4 + 66495q3 + 17820q2 + 2970q + 220

(12, 4) q20+96q19+1950q18+16532q17+85875q16+316728q15+892496q14+2000988q13+
3651945q12+5494500q11+6864858q10+7162452q9+6278283q8+4653000q7+
2924460q6 + 1546776q5 + 670230q4 + 225720q3 + 54120q2 + 7920q + 495

(12, 5) q20 + 114q19 + 2808q18 + 30694q17 + 192327q16 + 805833q15 + 2456976q14 +
5730414q13 + 10553631q12 + 15676199q11 + 19057434q10 + 19172604q9 +
16115616q8 + 11412324q7 + 6835752q6 + 3438204q5 + 1413720q4 + 450450q3 +
101640q2 + 13860q + 792

(12, 6) q20 + 120q19 + 3120q18 + 36312q17 + 245007q16 + 1084332q15 + 3412852q14 +
8072064q13 + 14897368q12 + 22010536q11 + 26499066q10 + 26335804q9 +
21837585q8 + 15242040q7 + 8992236q6 + 4451832q5 + 1800414q4 + 563640q3 +
124740q2 + 16632q + 924

Table A.1: Expressions for [xnyk]Gforest(x, y, q) for
4 ⩽ n ⩽ 12 and 2 ⩽ k ⩽ ⌊n

2
⌋.
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B. Algebraic Relations

The rank-generating functions for contracted Grassmannian trees and forests presented in The-
orem 3.18 satisfy the following algebraic relations:

0 = q(q + 1)G5
tree + qx(q2xy − 5q(y + 1)− 5(y + 1))G4

tree + x2(q(−3q2xy(y + 1) + q(10

− y((x− 10)y + x− 19)) + y(10y + 21) + 10) + y)G3
tree + x3(q3xy(y(3y + 7) + 3) + q2(y

+ 1)(y(2(x− 5)y + 2x− 17)− 10)− q(y(y(−x+ 10y + 32) + 32) + 10)− 3y(y

+ 1))G2
tree − x4(q3xy(y + 1)(y(y + 4) + 1) + q2(y + 1)(y((x− 5)y2 + 3(x− 4)y + x

− 12)− 5)− q(y + 1)(y(y(−x+ 5y + 16) + 16) + 5)− y(y(3y + 5) + 3))Gtree

+ x5(q3xy2(y + 1)2 − q2(y + 1)2(y(y(−x+ y + 2) + 2) + 1)− q(y(y(y(−x+ y(y + 5)

+ 10) + 10) + 5) + 1)− y(y + 1)(y2 + y + 1)) , (B.1)
0 = q(x− 1)x2y(xy − 1)(q(xy + x− 1) + x)(q(xy + x− 1) + xy)G6

forest + (q3x2y(xy + x

− 1)(x(xy(y + 4) + x− 5(y + 1)) + 4) + q2(x(x(−(x3(y + 1)(y(y + 2)(y2 + 1) + 1))

+ x2(y + 1)2(y(5y + 3) + 5)− 2x(y + 1)(y(5y + 7) + 5) + y(10y + 19) + 10)− 5(y + 1))

+ 1)− q(x2(y2 + y + 1)− 2x(y + 1) + 1)(x(x(x(y + 1)(y(y + 3) + 1)− y(3y + 8)− 3)

+ 3(y + 1))− 1)− x2y(xy + x− 1)(x2(y2 + y + 1)− 2x(y + 1) + 1))G5
forest

+ (q3x2y(x2(y(3y + 7) + 3)− 9x(y + 1) + 6)− q2(x(x(5x2(y + 1)2(y2 + y + 1)− x(y

+ 1)(y(20y + 31) + 20) + 30y2 + 57y + 30)− 20(y + 1)) + 5)− q(x(x(x2(y(y(y(5y

+ 21) + 31) + 21) + 5)− 4x(y + 1)(y(5y + 11) + 5) + 30y2 + 63y + 30)− 20(y + 1))

+ 5)− x2y(x2(y(3y + 5) + 3)− 6x(y + 1) + 3))G4
forest + (−10q(q + 1)x3y3 + (q

+ 1)x2y2((q(3q − 29)− 3)x+ 30q) + xy((q + 1)(q(3q − 29)− 3)x2 + (q(q(57− 4q)

+ 63) + 3)x− 30q(q + 1))− 10q(q + 1)(x− 1)3)G3
forest + (q + 1)(q2x2y − 10q(xy + x

− 1)2 − x2y)G2
forest − 5q(q + 1)(xy + x− 1)Gforest − q(q + 1) . (B.2)
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