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ABSTRACT OF THE DISSERTATION

Chemical Reactions at the Earth’s Core-Mantle Boundary

by

Leslie Insixiengmay

Doctor of Philosophy in Geology
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Professor Lars P. Stixrude, Chair

Earth’s evolution and structure depends heavily on the composition of its interior and the

processes occurring deep within. The main objective of this thesis is to better understand

the nature of the core-mantle boundary, which not only provides insight for the Earth’s

interior, but can also be related to other planetary body interiors as well. At the core-

mantle boundary, two major planet forming materials (rock and metal) are juxtaposed at

high temperatures where the interaction of the materials may occur. Characterizing this

interaction requires investigating any chemical reactions that may occur and the possible

transport of heat and mass between these two regions. The behavior of this boundary layer

can be directly related to understanding deep Earth dynamics, including the origin of the

early dynamo, observed seismic structures in the deep mantle, and the redox chemistry of

Earth. The work in this thesis outline the different aspects of my Ph.D. projects that work

to investigate the nature of the core-mantle boundary. This not only includes the possible

interaction of existing mantle and core, but also the behavior of materials introduced to

this region by tectonic activity originating from the Earth’s surface such as H2O, and the

interaction of this other important planetary component (ice) with rock and metal. I apply

ii



first principles molecular dynamics to investigate the chemical reactions of rock and metal

materials in the Earth’s mantle. I also investigate the material properties of two FeOOH

polymorphs, ε-FeOOH and pyrite-structured FeOOH, using first principles static simulations

that perform ground state calculations to determine phase stability, elasticity, and phonon

vibrational frequencies.
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CHAPTER 1

Introduction

1.1 The Earth’s Core-Mantle Boundary

At a depth of 2891 km beneath the Earth’s surface, the core-mantle boundary shows the

largest contrast in physical properties of any boundary in Earth, exceeding even the air-

rock interface in the contrast in density, seismic wave velocity, and electrical conductivity.

The contrast in material properties profoundly influences the dynamics of the deep Earth,

separating the rapidly convecting core, where the Earth’s magnetic field is produced, from

the much more viscous and more sluggishly convecting mantle.

The core-mantle boundary is seismically reflective and therefore sharp, a property origi-

nating in the immiscibility of the silicate and iron-rich material on either side of the boundary

at the temperature conditions prevalent in Earth today. Immediately above the core-mantle

boundary, seismology reveals rich structure in the lowermost 200 - 300 km of the man-

tle, a region known as the D′′ layer. This layer exhibits radial and lateral seismic velocity

heterogeneity, anomalous velocity gradients and shear wave discontinuities, and anisotropy

(Garnero and McNamara, 2008). The origin of many of these structures are unknown, such

as the large-low-shear-wave velocity provinces, of several hundred km vertical and several

thousand km lateral length scales, and the ultra-low-velocity zones, only a few km thick and

several hundred km across.

The core-mantle boundary region is likely to contain a thermal boundary layer, with a

temperature contrast of perhaps 1000 K, across which heat must be transported by conduc-
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Figure 1.1: A schematic of the core-mantle boundary region from Garnero and McNa-

mara (2008), showing the presence of large-low-shear-wave-velocity provinces (LLSVP) with

vertical length scale of several 100 km, and distinguished from their surroundings by larger

density (ρ), smaller shear wave velocity (VS), and seismically sharp lateral boundaries indi-

cating a distinct chemical composition from the rest of the mantle; ultra-low-velocity zones

(ULVZ) with thickness of several km and extremely low shear wave velocity (40% lower

than surrounding mantle); regions of stability of the post-perovskite phase (pPv), which

reflect seismic energy, and therefore help us observationally to constrain the properties of

the D′′ region, consisting of the bottom-most few 100 km of the mantle. Iron in the mantle

undergoes a high-spin to low-spin transition over the indicate range (spin transition zone:

STZ). The background colors indicated inferred temperature, showing a schematic upwelling

mantle plume and a subducting slab.
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tion (Lay et al., 2008). This boundary layer controls heat flow from the core, and thus the

strength of the magnetic field, and is the likely source of mantle plumes, such as the one

responsible for Hawaiian volcanism. The thickness of the thermal boundary layer is thought

to vary laterally: thicker in upwelling regions and thinner in regions of slab accumulation,

modulating heat flow out of the core, and influencing the geometry of the magnetic field and

its observable properties at the surface (Mound et al., 2019).

The D′′ layer has often been interpreted as a thermal boundary layer, which would exist if

there is a strong temperature contrast between the lower mantle and the outer core, leading

to heat flux out of the core (Young and Lay, 1987). The existence of a thermal boundary

layer has many implications such as providing an energy source for the general convection

of the mantle by heating from below as opposed to internal heating only. Such systems with

this type of heat transport may also have stronger upwelling plumes originating from the D′′

region (Jones, 1977; Jeanloz and Richter, 1979; Yuen and Peltier, 1980; Stacey and Loper,

1983; Whaler, 1986; Olson et al., 1987). The power available to drive the geodynamo through

convection in the core is controlled by the heat flow into the base of mantle; however, many

uncertainties estimating the heat flux exists due to the dependence on properties of iron

mixtures at high pressure and temperature conditions (Lay et al., 2008).

The core-mantle boundary and the D′′ region raise fundamental questions regarding the

nature of the deep Earth. Many of these could be encapsulated by the question: is the

core-mantle boundary in chemical equilibrium? The answer is not clear, primarily due to

a lack of knowledge of the relevant phase equilibria at the prevalent pressure, temperature

conditions (136 GPa, 4000 K), which are challenging to replicate in the laboratory. If chem-

ical disequilibrium prevails, which seems likely, at what rate and in which direction does

mass transport proceed: ongoing dissolution of the mantle in the core, or exsolution of core

components into the mantle? And what is the role of core-mantle chemical reaction at earlier

stages in Earth’s evolution when the temperature at the rock-iron interface was likely much

higher and chemical reaction may have been much more extensive.
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In this thesis, the main focus is to better understand the nature of chemical reactions

between rock and iron at high pressure and temperature. The primary focus is on Earth,

although as major planetary building blocks, my results may have important implications

for understanding other rock-iron planets in the galaxy as well. In the remainder of this

introductory chapter, I examine further our knowledge of the composition of core and mantle,

what the role of the earliest stages of Earth’s evolution may have been in setting their

compositions, and some possible consequences of rock-iron reaction for our understanding of

Earth’s evolution.

1.2 Core Formation and Composition

The formation of the core is a fundamental process in Earth’s history, shaping the internal

structure, thermal and chemical state, and evolution. The segregation of dense, iron-rich

material towards Earth’s center releases gravitational energy in an amount sufficient to melt

the entire Earth (Flasar and Birch, 1973; Solomon, 1979). Hf-W data suggests that core

formation is complete by 30 Myr (Yin et al., 2002), occurring well before the Moon-forming

impact at approximately 60 Myr (Touboul et al., 2007).

Element partitioning between metal and silicate at high pressure and temperature con-

ditions set the compositions of core and mantle. The Earth’s core is presumably made

primarily of iron, but it is known that it cannot be pure iron because the seismically con-

strained density of the core is too low for this to be the case (Figure 1.2). Elements lighter

than iron must therefore also be present, although their identity cannot be uniquely deter-

mined. Plausible candidate light elements in the core include S, Si, O, C, and H due to the

abundance of these elements in the Solar System and our still limited knowledge of their

partitioning between silicate and metal phases at extreme conditions.

Consideration of the extreme conditions of core-mantle equilibration force us to re-

examine the conventional categorization of the elements as lithophile, siderophile, or at-
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Figure 1.2: Core density mismatch between seismic observations and experimen-

tal/theoretical constraints on pure Fe density by Hirose et al. (2021).

mophile. Si and O are prototypical lithophile elements at low pressure, yet are plausible

candidates for the light element in the core. H is the prototypical atmophile, but at high

pressure becomes very soluble in iron. Higher temperatures in the early Earth, due to ac-

cretional energy and increased radioactive heat production, may have lead to much greater

lithophile element solubility in the core. While lithophile elements have very limited solu-

bility in the Earth’s core today, the chemical interaction between core and mantle may have

been more extensive in early Earth (Chidester et al., 2022a; Badro et al., 2016; Hirose et al.,

2017). Other lithophile elements may also have been present in the early core, such as Mg,

Ca, or Al. Lithophile elements may therefore serve as tracers of processes occurring during
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the hottest portions of Earth’s history.

The light element reduces the melting temperature of the core, thereby controlling the

temperature at which the inner core crystallizes. Seismology shows that the density contrast

between inner and outer core is too large to be explained by the solid-liquid density contrast

alone: the inner core must exclude light elements. The process of inner core growth provides

to important sources of energy for the generation of Earth’s magnetic field: the latent heat

of freezing, and release of gravitational energy as light elements are progressively excluded

form the deepest parts of the Earth (Verhoogen, 1961; Gubbins et al., 1977; Braginsky, 1963;

Loper, 1978). Thermal evolution models indicate the inner core nucleated at 0.7 to 1.5 Ga

(Labrosse et al., 2001)

1.3 Magma Ocean

It is likely that the Earth began in a completely molten state with super liquidus core and

mantle. This is because of the large sources of energy available to the early Earth, including

the kinetic energy of accretion, and the gravitational energy released by core formation. The

putative moon-forming giant impact is likely to have been sufficiently energetic by itself to

melt the entire mantle (Nakajima and Stevenson, 2015), although it is likely the mantle was

completely or mostly molten before the giant impact. The largely or completely molten state

of the early Earth facilitates rapid core formation. At the same time, the low viscosity of

a molten mantle points to very short, nearly free-fall times of iron blobs descending to the

core, raising the question of the size of these blobs and the extent to which mantle and core

could have been equilibrated during Earth’s accretion (Maller et al., 2024).

Evidence that mantle and core reacted during the early molten stage comes from observed

concentrations of moderately siderophile elements in the mantle today, and experiments that

determine the partitioning of these elements between liquid silicate and iron phases (Li and

Agee, 1996; Righter et al., 1997). Recent analyses indicate that paritioning must have
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occurred at predominantly high pressure (70 GPa) and temperature (4000 K) (Badro et al.,

2015).

Additional evidence of a magma ocean derives from Neodymium isotopes, which show

that the ratio of 142Nd/144Nd in chondritic meteorites are 20 ppm lower than from samples

derived from Earth (Boyet and Carlson, 2005) (Figure 1.3). In order to mass balance the

Earth’s Nd budget, a reservoir residing within the Earth’s mantle has been proposed. Boyet

and Carlson (2005) argue that because Nd is more incompatible than Sm, Nd selectively

partition into melts, and this partitioning explains the high 143Nd/144Nd (147Sm-143Nd decay)

ratios measured from samples collected from erupted magmas where the enriched reservoir

has never been sampled and is likely located at the base of the mantle.

The hypothesis of an enriched reservoir at great depths has been supported by some

magma ocean evolution models (Labrosse et al., 2007; Ballmer et al., 2017) and via simula-

tions (Deng and Stixrude, 2021), where crystallization of the magma ocean occurs from the

mid-lower-mantle outwards and results in a basal magma ocean that may still be present to-

day as a very thin layer at the core-mantle boundary that may explain ULVZ. Magma ocean

crystallization from the center outwards arises from a steep adiabatic gradient (Stixrude

et al., 2009) and shows that the mantle can crystallize from mid-mantle depths as opposed

to the base of the mantle (Figure 1.4). The deep enriched reservoir may explain LLSVP

structures as well.

Understanding the evolution of the magma ocean from a fully molten state to the almost

completely crystalline state that we see today is important for recognizing possible geologic,

geochemical, or seismological evidence of this early state of Earth’s evolution. An important

limitation of many previous studies of magma ocean evolution is that consideration of long-

term reaction with the core is generally not considered, although such reaction may be

important, largely due to a lack of knowledge of the relevant chemistry.
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Figure 1.3: 142Nd/144Nd ratios measured for chondrites and eucrites compared to the La

Jolla Nd terrestrial standard (ε142Nd) from Boyet and Carlson (2005). (Note: ε142Nd =

[(142Nd/144Nd)sample/(
142Nd/144Nd)standard − 1] × 104). The chondritic and eucritic samples

have negative ε142Nd values relative to the terrestrial standard.

1.4 Early Earth Dynamo

Without the Earth’s magnetic field, life on this planet may not exist. The presence of a

magnetic field shields planetary bodies from solar wind, preventing atmospheric erosion and

water loss (Tarduno et al., 2010). The Earth’s magnetic field is generated by the geodynamo:

the process in which the rotation and convection of an electrically-conductive liquid iron outer
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Figure 1.4: Figure from Stixrude et al. (2009) showing the gradient of isentropes in the

ancient magma ocean. The magma ocean adiabat (uppermost red line) is steeper than the

liquidus (grey envelope) requiring crystallization to begin in the mid-lower mantle upon

cooling.

core generates a magnetic field. Crystallization of the inner core is thought to provide an

essential source of energy to drive this process, via the release of latent heat and gravitational

energy.

Paleomagnetic observations show that the Earth’s magnetic field dates back at least 3.45

billion years (Bono et al., 2022) with some controversial measurements from inclusions in

ancient zircons dating the field to 4.2 Ga (Tarduno et al., 2020). However, thermal evolution

models suggest that the Earth’s inner core began to crystallize only one billion years ago

(Labrosse et al., 2001; Stevenson, 1981). Thus, while we have a convincing explanation for
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Figure 1.5: Schematic illustration from Labrosse et al. (2007) showing the formation and

evolution of a dense basal magma ocean, including domains of silicate crystal (light grey),

silicate liquid (yellow), enriched silicate crystal (dark grey), and metallic liquid (orange).

what has powered the magnetosphere for the last billion years, it is not clear what powered

it prior to solidification of the inner core.

One explanation for the early dynamo envisions exsolution of light elements from the core,

including lithophile elements such as Mg (O’Rourke and Stevenson, 2016). In this view, the

lithophile elements are incorporated in the core during an early very high temperature stage

of Earth’s evolution, possibly following the giant moon-forming impact (Canup and Asphaug,

2001). As the initially homogeneous core cools, it becomes thermodynamically unstable to

exsolution of separate phases of oxide-rich and metal-rich compositions. The compositional

differences result in convection: the exsolved, buoyant oxide mantle material rises in the core,

and the denser, liquid metal sinks. This movement drives convection that in this hypothesis

is sufficient to create the magnetosphere.

An alternative hypothesis for early geodynamo generation is the existence of a silicate

dynamo in the early Earth. The Earth’s core was surrounded by a molten silicate basal

magma ocean that may have survived for more than one billion years. In order to sustain

a silicate dynamo, the electrical conductivity must exceed 10,000 S/m according to studies

covering magnetohydrodynamic simulations, laboratory experiments, and planetary bodies
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Figure 1.6: Compilation of paleomagnetic measurements of the virtual axial dipole moment

(a measure of magnetic field strength) (Bono et al., 2022). The three panels sort the data

according to quality criteria, with the lowermost panel showing only the highest quality data.

that host magnetic fields (Christensen and Aubert, 2006; Léorat and Nore, 2008). First prin-

ciples simulations have shown that a silicate liquid, closely approximating the composition

of the bulk silicate Earth, can produce electrical conductivity values exceeding 10,000 S/m

at basal magma ocean conditions (Stixrude et al., 2020) (Figure 1.7).
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Figure 1.7: Electrical conductivity (red = electronic, blue = ionic, green = total) of a

silicate dynamo from Stixrude et al. (2020).

1.5 Overview of Systems: Fe-MgO, Fe-MgSiO3, and FeOOH

Because perovskite (MgSiO3) and periclase (MgO) make up a large portion of the major

constituent minerals in the Earth’s mantle, investigating the interaction of the two with liquid

Fe can provide insight on the interaction of the core-mantle boundary. The characterization

of Fe-MgO and Fe-MgSiO3 is poorly constrained due to the lack of a clear picture of the

chemical reactions involved. It is not clear whether lithophile cations should be viewed as

exchanging with Fe, a picture which is used to understand the partitioning of moderately

siderophile elements (Wood, 2008), or dissolving as an oxide in the metal (Badro et al., 2018).

These two pictures have contrasting implications for how we view the electronic structure

and bonding of lithophile elements in the metal. My simulations of the Fe-MgO system turn
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out to show unexpectedly simple symmetric regular solution behavior, and allows me to test

the hypothesis that the early dynamo was driven by exsolution. The Fe-MgSiO3 system is

a first order model of chemical reaction between core and mantle and shows much richer

behavior.

Figure 1.8: The proposed model for the evolution of Earth’s progenitor embryos from

Young et al. (2023). The figure illustrates the sequence of events leading to formation of

H2O and light elements in metal.

The stability of ε-FeOOH and pyrite-structured FeOOH raises the possibility of chemical

reactions between two major planetary forming components: metal and ice. But, very little

is known still about the water content in the lower mantle. The oxy-hydroxides MOOH,

including the FeOOH end-member have been proposed as important carriers of water in the

lower mantle. Water may have been introduced to core-mantle boundary by tectonic activity

originating from the Earth’s surface, or primordial hydrogen in the Earth’s mantle may have

existed and derived from a hydrogen-rich primary atmosphere where interactions of oxygen,
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iron, and hydrogen may have taken place early in Earth’s history (Young et al., 2023). The

physics of ε-FeOOH and pyrite-structured FeOOH show rich behavior, including high-spin

to low-spin transitions, and pressure-induced changes in hydrogen bonding at high pressure.
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CHAPTER 2

Density Functional Theory

In this chapter, I will cover a brief history of Density Functional Theory (DFT): the quantum

mechanical theory used to describe the ground-state energies of a many-body system. Many

Earth materials consists of elements containing multiple electrons, in addition to being solids

with more than 1023 atoms, therefore making DFT an essential basis for all work done in this

thesis. The history leading to the formation of DFT is rich and can be stemmed from the

work of many leading scientists discovering quantum mechanics. We will begin the overview

with Planck’s constant, which is arguably the most important constant in the formation of

quantum mechanics.

2.1 Planck’s Constant

The German physicist Max Karl Ernst Ludwig Planck (April 23, 1858 - October 4, 1947)

made many substantial contributions to theoretical physics and has been regarded as the

father of quantum theory through his theoretical work on black body radiation. In the

19th century, numerous experiments were conducted to understand radiation given off by

materials when heated. Observations showed that when a metal was heated, a shift in color

occurred from red to yellow to blue as the metal was continuously heated. In other words,

the radiation emitted from the metal showed transitions from a lower frequency to a higher

frequency with respect to temperature. The frequency spectrum emitted is dependent on

the material body itself, so one can consider an ideal body where all frequencies are emitted

and absorbed - otherwise known as black body radiation.
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The relationship observed experimentally between the intensity of black body radiation

and frequency proved difficult for theoretical physicists to derive consistent expressions. The

expression derived from 19th century physics is:

dρ(ν, T ) = ρν(T )dν =
8πkBT

c3
ν2dν (2.1)

where ρν(T)dν is the radiant energy density between frequencies ν and ν + dν, kB is the

Boltzmann constant, T is the temperature, and c is the speed of light. Equation 2.1 is known

as the Rayleigh-Jeans Law and reproduces the experimental data at low frequencies, but

predicts divergence of the radiant energy density at high frequencies - termed the ultraviolet

catastrophe.

Like Rayleigh and Jeans, Planck assumed that the black body radiation was due to

electron oscillations of the material body. However, Rayleigh and Jean assumed that the

energies of electronic oscillations could have any value. Planck then made a revolutionary

assumption that energies of oscillators were discrete and proportional to an integer multiple

of the frequency (Planck, 1901), or quantized energy, winning him the 1918 Nobel Prize in

physics and is now known as the Planck’s postulate:

E = nhν (2.2)

where n is an integer (n = 1, 2, 3, ...), h is a proportionality constant, and ν is the frequency

of radiation. Using Planck’s postulate and Ludwig Boltzmann’s statistical interpretation of

the second law of thermodynamics, Planck derived the equation

dρ(ν, T ) = ρν(T )dν =
8πh

c3
ν3dν

ehν/kBT − 1
(2.3)

where the previously labeled proportionality constant h in equation 2.2 has the value 6.626

x 10-34 Joule·seconds and is now a fundamental constant of physics: Planck’s constant. The
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value of Planck’s constant yields excellent agreement with the experimental data for all

frequencies and temperatures, and equation 2.3 is now known as the Planck’s distribution

for black body radiation (McQuarrie, 2008).

The Planck’s constant is of fundamental importance, and its notion forms the cornerstone

of quantum theory where quantized energy levels pin the stability and discrete nature of

electronic states within atoms. In 1913, Niels Bohr introduced the third quantized model of

the atom (Bohr, 1913) and solved the paradox where a classical electron orbiting a nucleus

would lose its energy due to electromagnetic radiation and spiral down into the nucleus.

Bohr solved this paradox with explicit reference to Planck’s work where the atom could only

have defined and discrete energies En:

En = −hcR∞

n2
(2.4)

where R∞ is the Rydberg constant. The electron cannot get closer to the nucleus once the

electron has reached the lowest energy (n = 1).

2.2 Wave-Particle Duality

The nature of light has always been difficult for scientists to describe because many exper-

iments show light displaying wave-like behavior, and many other experiments show light

behaving like discrete particles. This disparity of light is known as the wave-particle duality

of light. In 1924, the French Physicist Louis de Broglie (August 15, 1892 - March 19, 1987)

hypothesized that the reverse could be true for matter, which displays particle-like character-

istics and may also display wave-like characteristics (De Broglie, 1923). Einstein proposed

that light could be viewed in terms of photons with wavelength λ and the momentum p

related by (Einstein, 1905):
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λ =
h

p
. (2.5)

De Broglie thought that if light obeyed this relationship, then it must also be true that

matter obeys this relationship, leading to the de Broglie wavelength: λ = h/mv, where the

momentum of the particle matter is mv. If one calculates the de Broglie wavelength of an

electron traveling at 1.0% of the speed of light, the resultant de Broglie wavelength is 243

pm (where the mass of an electron is 9.109 x 10-31 kg), corresponding to the wavelength

of X-rays and predicting that electrons can be observed to act like X-rays. The wave-like

nature of matter was confirmed by the experiments of Davisson and Germer demonstrating

diffraction of electrons by a crystal lattice, much like x-ray diffraction (Davisson and Germer,

1927).

Interestingly, J.J. Thompson showed experimentally in 1895 that the electron was a

subatomic particle and his son, G.P. Thompson, showed in 1926 experimentally that the

electron could act as a wave. The father won the Nobel Prize in 1906 for showing that the

electron is a particle, and the son won a Nobel Prize in 1937 for showing that the electron

is a wave (McQuarrie, 2008).

If we take the momentum of a particle of mass m to be the mean value of an ideal gas of

that particle at temperature T , then Eq. 2.5 yields the de Brogile thermal wavelength

ΛTH =
h

2πmkBT
= 43 Å

(me

m

)1/2
(
300 K

T

)1/2

(2.6)

where kB is the Boltzmann constant and me is the mass of the electron. ΛTH is much larger

than the typical interparticle separation in planetary interiors (∼1 Å), and we must treat the

electron as a quantum object. For atomic nuclei, however, the de Brogile thermal wavelength

is much smaller (0.25 Å for an oxygen nucleus) and these can be treated as classical objects

for the temperatures of interest (T >> 300 K).
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2.3 Schrödinger Equation

Erwin Schrödinger (August 12, 1887 - January 4, 1961) was an Austrian-Irish theoretical

Physicist whose work with Paul Dirac won him the Nobel Prize in Physics in 1933 for the

”discovery of new productive forms of atomic theory.” The Schrödinger equation is the fun-

damental equation of quantum mechanics and is a linear partial differential equation for the

wave function of a particle (Schrödinger, 1926). It is regarded to be a fundamental postu-

late of quantum mechanics, just as Newton’s laws are fundamental postulates of classical

mechanics.

The time-dependent Schrödinger equation describes a system evolving with time and

takes the form:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩ (2.7)

where i is the imaginary unit, ℏ is the reduced Planck’s constant (ℏ = h/2π), ψ(t)⟩ is the

state vector of the quantum system: the wave function, t is time, and Ĥ is the observable,

or Hamiltonian operator. As an aside, the bracket notation used in equation 2.7 is the

standard notation ”Bra-ket” and is a standard notation for describing quantum states in

quantum mechanics. Bra-ket notation is a notation for linear algebra and linear operators

on complex vector spaces with their dual space. It is composed of angle brackets and vertical

bars and represents the dot product of two states denoted by a bracket: ⟨Φ|Ψ⟩.

More generally, the time-independent Schrödinger equation is used in this work. Going

from the time-dependent to time-independent Schrödinger equation is a fundamental ap-

proximation that is justified from the Born-Oppenheimer approximation (section 2.10) due

to the de-coupling of electronic and nuclear motions. The time-independent Schrödinter

equation with stationary state wave functions is:
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− ℏ2

2m
∇2ψ + V (r)ψ(r) = Eψ(r) (2.8)

whose solutions ψ(r) describes a particle with mass m with position r in a potential field

V (r). ∇2 is the Laplacian and E is the total energy of a particle:

E =
p2

2m
+ V (r) (2.9)

It is important to note that classical mechanics deals with dynamics variables, such as

position and momentum, and a measurable dynamical variable is called an observable.

A postulate of quantum mechanics states that a wave function ψ(r) completely specifies

the state of a quantum mechanical system. This is an incredibly powerful statement declar-

ing that knowledge of the wave function provides total information about the system in

question. However, in practice, the Schödinger equation becomes mathematically impossible

to solve exactly for systems with more than one electron. Therefore, various approaches to

approximating multi-electron systems have been formulated, seeking to find ways to solve

the many-body Schrödinger equation.

2.4 Slater Determinant

The Slater determinant is named after John C. Slater, introduced in 1929, and ensures the

anti-symmetry of a many-electron wave function (Slater, 1928, 1930). The anti-symmetric

wave function arises from satisfying the Pauli exclusion principle (Pauli, 1925a, 1940), where

two or more identical particles with half-integer spins (fermions) cannot occupy the same

quantum state simultaneously. The Slater determinant consequently changes sign upon

exchange of two electrons (recall that electrons are fermions).

We begin by approximating the wavefunction of a two particle system as the product of

the wavefunctions of the individual particles, the so-called Hartree product:
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Ψ(x1,x2) = ψ1(x1)ψ2(x2) (2.10)

where ψi(xj) is the wavefunction of particle i at position xj. However, this wave function

is not anti-symmetric under exchange of any two fermions, violating the Pauli exclusion

principle, which requires anti-symmetry upon exchange

Ψ(x1,x2) = −Ψ(x2,x1). (2.11)

A combination of the one-particle wavefunctions that does satisfy the anti-symmetry require-

ment is:

Ψ(x1,x2) =
1√
2
{ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)} (2.12)

=
1√
2

∣∣∣∣∣∣ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

∣∣∣∣∣∣ (2.13)

and becomes the determinant of the matrix, where the coefficient 1/
√
2 assures that the

wave function in equation 2.12 is normalized. The wave function in equation 2.12 is now

anti-symmetric and makes fermions indistinguishable, such that the indices are now inter-

changeable. Furthermore, the wave function vanishes if the two particles occupy the same

state at the same position, satisfying the Pauli exclusion principle.

The Slater determinant can be generalized to a system of N fermions:

Ψ(x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)
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In this case, the Slater determinant vanishes if the set {ψi} is linearly dependent, which is

the case when two (or more) spin orbitals are the same thus violating the Pauli exclusion

principle. In other words, the fact is expressed by stating that no two electrons with the

same spin can occupy the same orbital.

2.5 Hartree-Fock

Soon after the discovery of the Schrödinger equation in 1926, Douglas Hartree introduced

a procedure to calculate the approximate wave function and energies for atoms and ions

from fundamental physical principles (ab initio), which he called the self-consistent field

method (Hartree, 1928a,b,c). However, in his proposed method known as the Hartree product

(mentioned in the Slater determinants section), the principle of anti-symmetry of the wave

function was not obeyed, and thus not satisfying the Pauli exclusion principle. Vladimir

Fock pointed this out and improved the algorithm by using Slater determinants (Fock, 1930),

leading to what is now known as the Hartree-Fock method.

To derive the Hartree-Fock method, we begin with the Hartree approximation:

Ψ(r1, r2, ..., rN) = ψ1(r1)ψ2(r2)...ψN(rN) (2.15)

making the initial assumption that the wave function of an N-body system can be written

this way, and the electrons are independent and interact only through a Coulomb potential.

This leads to the single-electron Schrödinger equation for state i:

[
− ℏ2

2m
∇2 + V (r)

]
ψi(r) = ϵiψi(r) (2.16)

and V(r) includes the contribution from nuclear-electron interaction:
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VNe(r) = −Ze2
∑
R

1

r −R
(2.17)

where e is the electron charge, R is the nucleus position, r is the electron location, and

Z is the atomic number. The potential V(r) also includes the potential due to the other

electrons: the Hartree potential

VH(r) = −e
∫

n(r′)

|r − r′|
dr (2.18)

with the electron charge density

n(r) =
∑
i

|ψi(r)|2 (2.19)

However, as mentioned earlier, the Hartree approximation disobeys the principle of anti-

symmetry, leading Fock to make modifications. The resulting Hartree-Fock theory assumes

that the N-body wave function can be approximated using the Slater determinant, accounting

for the anti-symmetry of electron wave functions:

ΨHF =
1√
N !

det(ψ1(r1)ψ2(r2)...ψN(rN)) (2.20)

where ψHF is the Hartree-Fock wave function. In deriving the Hartree-Fock theory, we carry

out a variational calculation for which we must minimize:

δ

δψi

E[ΨHF ] = δ⟨ΨHF |He|ΨHF ⟩ = 0 (2.21)

where He is the Hamiltonian. A requirement of the derivation is that the change of energy

with respect to the variation of orbitals vanishes as long as orbitals ψi remain orthogonal, or

⟨ψi|ψj⟩ = δij. (2.22)
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as represented by Kronecker delta notation, δij. Once the variation is performed, the follow-

ing equations are found:

F̂ (rk)ψi(rk) = εiψi(rk) (2.23)

where the eigenvalue is called the Hartree-Fock orbital energy and introduce the Fock oper-

ator F̂ (rk) with the form:

F̂ (rk) = ĥ(rk) +
N∑
j

[2Ĵj(rk)− K̂j(rk)] (2.24)

ĥ(rk) = −1

2
∇2 − Z

rk
(2.25)

where the first term is the kinetic energy and the second term is the nuclear-electron inter-

action potential. The Coulomb operator Ĵj(rk) is given by

Ĵj(rk)ψi(rk) = ψi(rk)

∫
drj

ψ∗
j (rj)ψj(rj)

|rj − rk|
(2.26)

and the exchange operator K̂j(rk) is given by

K̂j(rk)ψi(rk) = ψj(rk)

∫
drj

ψ∗
j (rj)ψk(rj)

|rj − rk|
. (2.27)

To obtain the total energy E of a system using Hartree-Fock, we use the expectation value

for a single determinant of spin orbitals

E = ⟨ΨHF |Ĥ|ΨHF ⟩ =
N∑
j=1

Ij +
1

2

∑
i,j

(Jij −Kij) (2.28)

with

Ij = ⟨j|ĥ|j⟩ =
∫
dr

(
ψ∗
j ĥj(r)ψj

)
(2.29)
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Jij =

∫ ∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψi(r)ψj(r
′)

|r′ − r|
(2.30)

Kij =

∫ ∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψi(r
′)ψj(r)

|r′ − r|
(2.31)

where Jij and Kij are called the Coulomb integrals and exchange integrals, respectively if

i ̸= j. Note that Kii = Jii, however. The Hartree-Fock equations must be solved by a

self-consistent procedure, where an initial guess of the ψi(r) is made to calculate F̂ (r) and

then the result is used for F̂ (r) to calculate a new set of ψi(r). The iteration is continued

until a self-consistent set of orbitals is obtained.

Because the exchange contribution is calculated exactly in Hartree-Fock theory, this

method is very accurate when electron correlation contributions are minimal and is still

widely used in quantum chemistry, and has been used to compute the high pressure prop-

erties of some Earth materials (Dovesi et al., 2017). However, the neglect of correlation

contribution can result in large deviations from experimental results. Moreover, the single

Slater determinant is inadequate in systems with un-paired electrons, as in metals or the

iron cation. DFT takes a different approach, including both exchange and correlation, albeit

approximately, which turns out to be a better choice for planetary materials.

2.6 Thomas-Fermi

The Thomas-Fermi model (Thomas, 1927; Fermi, 1927), developed independently and named

after Llewellyn Thomas and Enrico Fermi, is seen as a precursor to DFT due to it being

formulated in terms of the electronic density n(r) alone rather than from wave function

theory. The model treats the many-body electronic structure system as semi-classical, where

operations from classical mechanics is used, and its application of the uncertainty principle

and Fermi statistics stem from quantum mechanics. The Thomas-Fermi theory makes three
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assumptions for calculating the electric field of an atom: 1) All relativistic corrections are

ignored, 2) the potential field about a nucleus depends only on the distance from the nucleus

rn such that: V → 0 as r → ∞ and Vr → E (the nuclear charge) as r → 0, and 3) the

electrons are uniformly distributed spatially in phase space.

Variations in the de Broglie wavelength (eq. 2.5) must be small to satisfy the semi-

classical regime, resulting in the treatment of the momentum operator p as a spatial function

rather than a quantum mechanical operator. Now, we can derive the Thomas-Fermi model

starting with a small volume element ∆V and an atom in its ground state. We can fill up

the spherical momentum space volume VF up to the Fermi momentum pF

VF =
4

3
πp3F (r) (2.32)

where r is the position vector of a point in ∆V , the corresponding phase space volume is

∆Vph = VF∆V =
4

3
πp3F (r)∆V (2.33)

and the electrons in ∆Vph are uniformly distributed with two electrons per h3. The number

of electrons within this small volume phase space element is ∆N = n(r)∆V , or

n(r) =
8π

3h3
p3F (r) (2.34)

where n(r) is the electron density. Both the momentum and electron density are solely

functions of position r, still asserting the assumption that the potential field is dependent

only on distance from the nuclei. We now use the classical expression for the kinetic energy

per unit vollume of an electron with mass me

t(r) = n(r)

∫ pF (r)

0

p2

2me

4πp2

4
3
πp3F (r)

dp (2.35)
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= Ckin[n(r)]
5/3 (2.36)

where the relationship between n(r) and pF (r) from equation 2.34 has been utilized, and

Ckin =
3h2

40me

(
3

π

) 2
3

. (2.37)

The total kinetic energy of the electrons can be obtained by integrating the kinetic energy

per unit volume, resulting in

T = Ckin

∫
[n(r)]5/3d3r. (2.38)

Now we can consider the potential energy sources in the Thomas-Fermi model. We begin

with the potential energy due to the attraction between the negatively charged electrons and

positively charged nucleus

VNe =

∫
n(r)VN(r)d

3r (2.39)

where VN is the potential energy of an electron at r due to the electric field of nucleus, and

is expressed by

VN(r) = −Ze
2

r
(2.40)

where the nucleus is centered at r = 0 with charge Ze. Z is a positive integer (number

of protons within the nucleus) and e is the elementary charge, and r is the distance of the

electron from the nucleus.

We now consider the potential energy of the electrons due to their mutual repulsion

Vee =
1

2
e2

∫
n(r)n(r′)

|r− r′|
d3rd3r′ (2.41)
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where n(r) and n(r′) are the electron densities at positions r and r′, respectively.

The total energy of the electrons from the Thomas-Fermi model can be obtained through

the sum of their kinetic and potential energies E = T + VNe + Vee, resulting in

E = Ckin

∫
[n(r)]5/3d3r +

∫
n(r)VN(r)d

3r +
1

2
e2

∫
n(r)n(r′)

|r− r′|
d3rd3r′ (2.42)

The Thomas-Fermi model was an important step towards DFT through the use of the

electron density to calculate the total energy. However, the kinetic energy term is only

an approximation, the exchange energy is not representative of an atom obeying the Pauli

exclusion principle (anti-symmetry of electrons is neglected), and the electron correlation is

also neglected. The Thomas-Fermi model is still used to approximate material properties in

the stellar interior in the limit of infinite density, where it can be shown to become accurate.

2.7 Hohenberg-Kohn

The theoretical framework of DFT was first realized by Walter Kohn and Pierre Hohenberg

in the two Hohenberg-Kohn theorems (Hohenberg and Kohn, 1964). The first theorem

states that the total energy is a unique functional of the charge density: a scalar function

of three spatial coordinates. In other words, the electron density uniquely determines the

Hamiltonian operator and thus all system properties. The second theorem states that the

ground-state electron density minimizes the total energy.

Here, we will begin with the first Hohenberg-Kohn theory, which states (directly quoted):

”The external potential Vext(r) is (to within a constant) a unique functional of ρ(r); since,

in turn Vext(r) fixes Ĥ we see that the full many particle ground state is a unique function of

ρ(r)”. The proof requires a system with two different external potentials Vext that differ by

more than a constant, but give rise to the same electron density. The two external potentials

give rise to two Hamiltonians, Ĥ and Ĥ ′, that differ by the external potential and hence
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belong to two different ground state wave functions, ψ and ψ′, but have the same electron

density in the ground state n0(r). The two Hamiltonians take the form

Ĥ = T̂ + V̂ee + V̂ext (2.43)

Ĥ ′ = T̂ + V̂ee + V̂ ′
ext (2.44)

Because ψ′ is the wave function not associated with Ĥ, we can show

E = ⟨ψ|Ĥ|ψ⟩ < ⟨ψ′|Ĥ|ψ′⟩ (2.45)

With ψ and ψ′ being different, we can use ψ′ as a trial function for Ĥ, and by the variational

principle

E0 < ⟨ψ′|Ĥ|ψ′⟩ = ⟨ψ′|Ĥ ′|ψ′⟩+ ⟨ψ′|Ĥ − Ĥ ′|ψ′⟩ (2.46)

Because the two Hamiltonian operators only differ in the external potential, we can expand

and rewrite equation (2.46) as

E0 < E ′
0 + ⟨ψ′|T̂ + V̂ee + V̂ext − T̂ − V̂ee − V̂ ′

ext|ψ′⟩ (2.47)

E0 < E ′
0 +

∫
n0(r){Vext − V ′

ext}dr (2.48)

By repeating the steps above and interchanging the un-primed and primed quantities, we

obtain

E ′
0 < E0 −

∫
n0(r){Vext − V ′

ext}dr (2.49)
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and sum of the two inequalities leads us to the contradiction

E0 + E ′
0 < E ′

0 + E0 (2.50)

or that 0 < 0. This proof shows that there cannot be two different external potentials that

yield the same ground state electron density, or in other words Vext within some constant

value is a unique functional of n(r).

Next, we will discuss the second Hohenberg-Kohn theorem which states that the func-

tional of the ground-state energy gives the lowest energy only if the input density is the

true ground-state density. To prove this, we take a trial density ñ(r) that defines its own

Hamiltonian
˜̂
H and its own wave function ψ̃. This wave function can be taken to be the trial

wave function for the Hamiltonian generated from the true external potential Vext, leading

to

⟨ψ̃|Ĥ|ψ̃⟩ = T [ñ(r)] + Vee[ñ(r)] +

∫
ñ(r)Vextdr = E[ñ(r)] ≥ E0[ñ0(r)] = ⟨ψ0|Ĥ|ψ0⟩ (2.51)

and achieving our desired result, again, from the variational principle. We define the

Hohenberg-Kohn functional as

FHK [n(r)] ≡ ⟨ψ|T̂ + V̂ee|ψ⟩ (2.52)

which is valid for any number of particles and any external potential. Recall that all prop-

erties of a system are determined by the ground state density and is defined by an external

potential Vext. The ground state energy associated with n(r) is given through the functional

E[n(r)] =

∫
n(r)Vextdr + FHK [n(r)] (2.53)

and is minimized if the correct input density is the true ground state density.
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2.8 Kohn-Sham Equations

Walter Kohn and Lu Jeu Sham continued to develop the Hohenberg-Kohn and ultimately

produced the Kohn-Sham equations, or what is now known as the Kohn-Sham equations of

DFT (Kohn and Sham, 1965). This work, and previous development in DFT, won Kohn

and John Pople the 1998 Nobel Prize in Chemistry for the development of understanding

the electronic properties of materials.

The Kohn-Sham equations allowed a system to be treated as non-interacting particles

that yields the same electron density as an interacting system. This treatment assumes that

the ground-state of the non-interacting system is equal to the ground-state of the interacting

system. In practice, this involves solving the Schrödinger equation for each electron in the

system as opposed to solving the mathematically impossible differential equation that is a

function of all electrons. The derivation begins by consideration of the total energy of the

system:

E =

∫
n(r)vext(r) + TS[n(r)] + EH [n(r)] + EXC [n(r)]dr (2.54)

where TS[n(r)] is the Kohn-Sham kinetic energy, vext(r) is the external potential, EH [n(r)]

is the Hartree or Coulomb energy, and EXC [n(r)] is the exchange and correlation energy

effects (repulsive and attractive interactions). The terms are defined individually as:

TS[n(r)] =
N∑
i=1

∫
drφ∗

i (r)

(
− ℏ2

2m
∇2

)
φi(r), (2.55)

where the Kohn-Sham kinetic energy is expressed in terms of the Kohn-Sham orbitals. The

Hartree energy is expressed as:

EH [n(r)] =
e2

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′|
(2.56)
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and the exchange-correlation energy contribution is expressed within the Kohn-Sham poten-

tial, or effective potential,

veff (r) = vext(r) + e2
∫

n(r′)

|r − r′|
dr′ +

δEXC [n(r)]

δn(r)
(2.57)

where the last term is the exchange-correlation potential and is expressed by the functional

derivative:

vXC(r) ≡
δEXC [n(r)]

δn(r)
. (2.58)

As a result, we’re left with the Schrödinger equation for a one-electron system:

εiψi(r) =

[
− ℏ2

2m
∇2 + veff (r)

]
ψi(r) (2.59)

where εi is the orbital energy, or eigenvalue, of the ith electron of the corresponding Kohn-

Sham orbital φi, and the electron density for an N-particle system is

n(r) =
N∑
i

|φi(r)|2. (2.60)

The exchange-correlation potential and energy are the only unknown terms in the Kohn-

Sham equations, and thus the only unknowns of DFT. An exact form of the exchange-

correlation potential that includes the contributions from exchange and correlation could

be produced if the exchange-correlation energy were known exactly. As a result, the Kohn-

Sham equations must be solved self-consistently such that the electron density produces the

electronic potential used to construct the equations.
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2.9 Exchange-Correlation Approximations

The exact form of the exchange-correlation (XC) potential is not known and must be ap-

proximated. Approximations are guided by limits and sum rules (Perdew et al., 1996) that

the exchange-correlation potential must satisfy. In this section, I will discuss various XC

approximations used in DFT and begin with discussing exchange and correlation itself.

2.9.1 Exchange

Distinguishing electrons from their physical properties is difficult as they are all identical. In

order to distinguish electrons, their position and momentum must be defined. As discussed

previously, the position and momentum of an electron is described by their wavefunction -

probability of finding an electron at a particular position and time. In a system with two

electrons, the probability of locating one electron depends on the probability of locating the

second electron, in which the wavefunctions of the two electrons will intersect at some point.

Exchange is possible because each electron is indistinguishable at this point. In the case of

bosons, or integer spin particles, more than one boson may occupy the same quantum state,

allowing symmetric wavefunctions to exchange while remaining the same. However, in the

case of fermions, the wavefunction changes sign due to anti-symmetry because of the Pauli

exclusion principle (Pauli, 1925b).

In practice, the exchange interaction is approximated in most DFT functionals such as

the Local Density Approximation (LDA) (Kohn and Sham, 1965) and Generalized Gradient

Approximation (GGA) (Perdew et al., 1992). However, a hybrid functional exists where

DFT is combined with Hartree-Fock theory - incorporating a portion of exact exchange.

2.9.2 Correlation

The negative charge on electrons impart a repulsion on one another. Correlation is a measure

of how the position of one electron is affected by the presence of other electrons. In a
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system with thousands of atoms, calculating the dependence and influence of every other

electron becomes an expensive computational feat. Therefore, approximating the correlation

of electrons is necessary, as the full computation is not possible.

2.9.3 Local Density Approximation

The local density approximation (LDA) is the simplest method of describing the XC energy.

This method assumes that the XC potential at every position in space is the same as that of

a uniform electron gas (UEG, also known as ’Jellium’) having the same density as found at

that position. For a spin-unpolarized system, the LDA for the exchange-correlation energy

is written as

ELDA
xc [n(r)] =

∫
n(r)εxc[n(r)]dr (2.61)

where εxc is the XC energy per particle of the uniform electron gas of the electron density

n[(r)]. The exchange-correlation is simply a linear combination and can be decomposed into

εxc = Ex + Ec (2.62)

such that there are separate expressions for the exchange and correlation energy.

The XC potential is known analytically for the UEG and is defined by the Dirac Exchange

(Dirac, 1930) yielding

ELDA
x [n(r)] = −3

4

(
3

π

)1/3 ∫
n(r)4/3dr. (2.63)

A correlation term for all densities is difficult to formulate. However, analytic expres-

sions for the UEG correlation energy have been formluated for the high density (Gell-Mann

and Brueckner, 1957) and low density (Wigner and Huntington, 1935) limit, correspond-

ing to infinitely-weak and infinitely-strong correlations. The analytical expressions for the
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high-density (eq. 2.64) and low-density (eq. 2.65) limit of the correlation energy density,

respectively, are

Ec = A ln(rs) +B + rs(C ln(rs) +D) (2.64)

Ec =
1

2

(
g0
rs

+
g1

r
3/2
s

+ . . .

)
(2.65)

where the Wigner-Seitz parameter rs is dimensionless and is defined as the radius of a sphere

which encompasses exactly one electron, divided by the Bohr radius:

4

3
πr3s =

1

n
(2.66)

Several expressions for the UEG correlation energy spanning the full range of densities have

been obtained by fitting the results of accurate quantum Monte Carlo simulations (Ceperley

and Alder, 1980) and parameterized for a given analytic form (Perdew and Zunger, 1981).

These analytic expressions agree with the proposed from the many-body perturbation theory.

The LDA XC potential in a finite system decays asymptotically with an exponential form.

However, the true XC potential decays more in a Coulombic manner, and hence more slowly

than the rapid decay of the LDA XC potential. The rapid decay results in a preference to

overbind ions in close proximity and ultimately yields lower calculated volumes as compared

to other XC solutions. The LDA proves to be a poor approximation in applications of highly

inhomogeneous densities such as atoms and molecules. Despite the inaccuracies of atoms and

molecules, the LDA works remarkably well for a wide variety of condensed matter systems

and agrees with experimental results within 10% for cell parameter and bulk moduli from

well-converged calculations, to name a few. LDA still remains a popular method for solids

due to its low computational cost and predictable shortcomings.
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2.9.4 Generalized Gradient Approximation

An improvement in the over-binding inaccuracies by the LDA can be obtained by the Gen-

eralised Gradient Approximation (GGA) functionals. The electron density in GGA depend

not just on the value of the density at a point (as in the LDA case), but also on its gradient.

The XC functional for the GGA takes the form:

EGGA
xc [n(r)] =

∫
n(r)εxc[n(r),∇n(r)]dr (2.67)

where Exc is the integral of the electron density and the exchange-correlation has an addi-

tional fluctuation gradient term, ∇n(r).

Most GGA functionals are constructed by addition of a correction term to the LDA

functionals. The addition of the extra parameter ∇n(r) allows for the GGA functional to

be formulated in many various ways. Some GGA functionals contain empirical parame-

ters whose values have been fitted to reproduce experiments or more accurate calculations

(dubbed the ”Chemists’ functionals”) such as B88 (from Becke (Becke, 1988)), FT97 (Fi-

latov and Thiel, 1997), and LYP (Lee et al., 1988). Meanwhile, other functionals contain

no empirically determined parameters (dubbed the ”Physicists’ functionals”) such as PBE

(Perdew et al., 1996), PBEsol (Perdew et al., 2008), and PW91 (Perdew and Wang, 1992).

The physics community used PW91 as the dominant GGA functional for many years

until the PBE functional was developed by Perdew et al. (1996) and Perdew et al. (1998).

The PBE functional is equivalent to PW91 but the formulation is much simpler. The PBE

functional can be cast in terms of an enhancement factor that depends on the charge density

gradient

EPBE
xc [n(r)] =

∫
n(r)ex(n)Fxc(rs, ζ, t) (2.68)

where rs is the Wigner-Seitz radius, ζ is the relative spin polarization, and t is a dimensionless
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density gradient with t = |∇n|/2ϕksn (where ϕ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3/2 and is a

spin-scaling factor, and ks =
√
4kF/πa0 is the Thomas-Fermi screening wave number and

a0 = ℏ2/2me2). The enhancement factor form is specified by forcing EPBE
xc to obey within

well-known limits of t→ 0 and t→ ∞, which is a slowly varying limit and a rapidly varying

limit (making the correlation vanish), respectively. While GGA corrects for the over-binding

of LDA in condensed matter, PBE tends to under-bind by a larger amount such that PBE is

not an improvement for silicate and oxide systems of interests to geophysicists (Zhang et al.,

2013).

More recently, the PBEsol functional (Perdew et al., 2008) was developed for condensed

matter applications, with ”sol” standing for solid. The work from Perdew et al. (2008)

showcases the idea that making different non-empirical choices to the enhancement factor

that are more appropriate to smaller density gradients, as seen in condensed matter, produce

better agreement with material properties (Holmström and Stixrude, 2015). As a result, the

GGA functional PBEsol is the preferred functional of choice for the work within this thesis.

2.9.5 Hybrid Functionals

Hybrid functionals, also called Adiabatic Connection Method (ACM) functionals, include

fractions of exact Hartree-Fock exchange energy. They are calculated as a funtional of the

Kohn-Sham molecular orbitals rather than density, and are thus termed implicit density

functionals. The exchange part of the hybrid functional consists of a linear combination of

Hartree-Fock and semi-local exchange (e.g. GGA):

Ehybrid
xc = αEHF

x + (1− α)EGGA
x + EGGA

c (2.69)

where α determines the amount of Hartree-Fock and semi-local exchange. Hybrid functionals

can be split into families according to the inter-electronic range at which the Hartree-Fock

exchange is applied: at full range (un-screened hybrids) or at either short- or long-range
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(screened or range-separated hybrids). In the case of solids, short-range functionals may be

preferable for periodic solids because of faster convergence with respect to the size of the

unit cell.

One of the most successful (and accurate) examples of a hybrid functional is the B3LYP

3-parameter functional, which stands for: Becke (Becke, 1988), 3-parameter (Stephens et al.,

1994), and Lee-Yang-Parr (Lee et al., 1988) and incorporates the Becke 88 exchange func-

tional and the correlation functional of Lee, Yang, and Parr. The 3-parameters defining

B3LYP take the form:

EB3LY P
xc = (1− a)ELSDA

x + aEHF
x + b∆EB

x + (1− c)ELSDA
c + cELY P

c (2.70)

where a = 0.20, b = 0.72, c = 0.81, and ELSDA
c is the local spin density approximation

to the correlation functional. Other popular hybrid functionals look similar to the B3LYP

formalism where fractions of Hartree-Fock exchange is incorporated in various ratios to the

exchange-correlation energy such as PBE0 (Adamo and Barone, 1999) and HSE (Heyd et al.,

2003).

Meta-GGA (MGGA) functionals seek to improve accuracy by including the Laplacian

(second derivative) of the electron density gradient. Example of MGGA include TPSS (Tao

et al., 2003), M06L (Zhao and Truhlar, 2006), and SCAN (Strongly constrained and approx-

imately normed - considered a gold-standard for water in chemistry) (Sun et al., 2015).

2.9.6 DFT+U

One major problem with DFT is that it poorly accounts for strongly correlated electrons

in d and f orbitals. When using an XC-functional such as PBE or PBEsol, the Coulomb

repulsion between electrons is too small, and thus the spin transition of Fe-bearing Earth

materials occurs at a much lower pressure than observed in experiments. A formalism that

has been proposed to improve the description of systems with strongly correlated d and f

38



electrons is the DFT+U method, or also known as the Hubbard +U correction - a corrective

functional inspired by the Hubbard model (an approximate model used to describe the

transition between conducting and insulating systems). The +U is an additional term that

makes two electrons within the same sub-level energetically unfavorable. Note: often times

the +U method will be seen as LDA+U, where this indication denotes a correction to the

approximate DFT functional, such as LDA in this case. However, it can also be applied to

the Local Spin Density Approximation (LSDA) or GGA functional.

The DFT+U is one of the simplest approaches formulated to improve the description of

the ground state of correlated systems (Himmetoglu et al., 2014). It is based on describing

the strongly correlated electronic states using the Hubbard model (Hubbard, 1964a,b, 1965,

1967a,b) and treating the rest of the valence electrons at the standard approximation level

of DFT functionals. Within LDA+U, the total energy of the system is written as:

ELDA+U [n(r)] = ELDA[n(r)] + EHub[{ρσmm′}]− Edc[{nσ}] (2.71)

where m,m′ are the projection of the orbital momentum (m,m′ = −2,−1, ..., 2 in the case

of d electrons), ρij is the density matrix, which in the case of an isolated ion is diagonal with

eigenvalues equal to the occupation numbers of the orbitals, ELDA is the DFT total energy

functional being corrected, EHub contains the Hubbard Hamiltonian to model corrected

states, and Edc is the ”double-counting (dc)” which occurs from the additive nature of ELDA

and EHub. Edc models the contribution of correlated electrons to the DFT energy as a

mean field approximation of EHub, but the dc functional is not uniquely defined. As such,

different possible formulations have been implemented and used in various cases, but two

popular choices for the dc term have led to the so-called ”around mean-field” (AMF) and

”full localized limit” (FLL). As the names suggest, the first is suitable to treat fluctuations

of the local density in systems characterized by quasi-homogeneous distribution of electrons

(as in metals and weakly correlated systems), whereas the second is suitable for materials

whose electrons are more localized on specific orbitals.
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The flavor used in the majority of this dissertation work is the simplified (rotationally

invariant) approach introduced by Dudarev et al. (1998), taking the form (Dudarev et al.,

1998):

EDFT+U = ELSDA +
Ū − J̄

2

∑
σ

[(∑
m

ρσm,m

)
−
( ∑

m,m′

ρσm,m′ρσm′,m

)]
(2.72)

where Ū and J̄ are the spherically averaged matrix elements of the screen Coulomb electron-

electron interaction, and n̂σ = n̂σn̂σ which could be understood as adding a penalty func-

tional to the semi-local total energy expression that forces the on-site occupancy matrix in

the direction of idempotency (Dudarev et al., 1998).

The addition of the +U term results in a spin-transition pressure occurring at higher

pressures than when calculated without it. This leads to the low-spin phase being energet-

ically less favorable until much higher pressures are reached. The method primarily used

in this work to calibrate the spin-transition pressure and the U − J interaction term is by

comparison to experimental observations. Self-consistent methods of calculating the U − J

interaction term exists, as in the work published by Cococcioni and De Gironcoli (2005)

(Cococcioni and De Gironcoli, 2005). This method is not useful for our purposes because it

is not generalizable to the dynamical high-temperature state in which each atom would in

general have a different vale of U at each time step.

2.10 Born-Oppenheimer Approximation

The German physicist Max Born won the 1954 Nobel Prize in Physics for his ”fundamen-

tal research in quantum mechanics, especially in the statistical interpretation of the wave

function,” and J. Robert Oppenheimer never won the Nobel Prize, despite being nominated

three times. The work of Born and Oppenheimer in 1927 led to an approximation used in

molecular dynamics simulations (described in chapter 3). The Born-Oppenheimer approxi-
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mation is an assumption that the wave functions of nuclei and electrons in a molecule can

be treated separately due to the mass of the nuclei being substantially larger than the mass

of the electrons (Born and Oppenheimer, 1927). Due to the mass differences, the same mo-

mentum applied to the nuclei and electrons would result in the nuclei moving more slowly

than the electrons.

The total wave function of a molecule can be written as the product of the electronic and

nuclear (vibrational and rotational) wave functions:

Ψtotal = ΨelectronicΨnuclear (2.73)

which can be separated into an electronic and nuclear term in the Hamiltonian operator

of the system (cross-terms are neglected for efficiency). To begin the approximation, the

nuclear kinetic energy Tn is neglected by subtraction of the total molecular Hamiltonian

H = He + Tn. (2.74)

Tn = −
∑
A

1

2MA

∇2
A (2.75)

Nuclear positions are no longer variable in the remaining electronic Hamiltonian He, but

are constant. However, the electron-nucleus interactions are not removed. The electronic

Schrödinger equation now takes the form

He(r,R)χ(r,R) = Eeχ(r,R) (2.76)

where χ(r,R) is the electronic wave function for given positions of nuclei and R is fixed.

r represents all electronic coordinates, R represents all nuclear coordinates, and Ee is the

electronic energy eigenvalue (or potential energy surface).
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The second step of the Born-Oppenheimer Approximation reintroduces the nuclear kinetic

energy term Tn, and the Schrödinger equation for the nuclear motion is solved takes the

form:

[Tn + Ee(R)]ϕ(R) = Eϕ(R). (2.77)

This step involves separation of vibrational, translation, and rotational motion, which is

achieved by applying the Eckart conditions (Eckart, 1935; Sayvetz, 1939). The nuclear

position is an average over electronic configurations of the sum of the electron-nuclear and

internuclear electronic potentials according to the Hellmann-Feynman theorem

dEλ

dλ
=

〈
ψλ

∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣ψλ

〉
(2.78)

where λ is a continuous parameter.

2.11 Hellmann-Feynman Theorem

The Hellmann-Feynman theorem (Hellmann, 1937; Feynman, 1939) relates the total energy

of the system with respect to a parameter and the expectation value of the derivative of the

Hamiltonian with respect to the same parameter:

dEλ

dλ
=

〈
ψλ

∣∣∣∣dĤλ

dλ

∣∣∣∣ψλ

〉
(2.79)

where Ĥλ is a Hermitian operator depending on a continuous parameter λ, and Eλ is the

energy (eigenvalue) of the eigenstate |ψλ⟩, an eigenfunction of the Hamiltonian. We can

utilize this theorem to calculate the forces exerted on the ions from the derivative of the

total energy with respect to ri, the chosen λ parameter, where
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Fi = −∂E
∂ri

= −
〈
ψ

∣∣∣∣∂Ĥ∂ri
∣∣∣∣ψ〉 (2.80)

This theorem requires that the wavefunction be an eigenfunction of the Hamiltonian and

that the identity of normalized wavefunctions is employed, meaning that the derivatives of

the overlap of the wavefunction with itself must be equal to zero. These conditions can be

written out as

Ĥλ|ψλ⟩ = Eλ|ψλ⟩ (2.81)

⟨ψλ|ψλ⟩ = 1 ⇒ d

dλ
⟨ψλ|ψλ⟩ = 0 (2.82)

2.12 Mermin Functional

Solutions to the electronic structure in the Hohenberg-Kohn theory are treated as being in the

ground state, but the need to account for the finite temperature of electrons increases with

various applications of the theory. David Mermin, an American solid-state physicist, fur-

thered the work of Hohenberg and Kohn by including finite temperatures (non-zero) through

the Mermin functional (Mermin, 1965). His proof shows that in the grand canonical ensemble

at a given temperature and chemical potential, no two v(r) have the same equilibrium den-

sity, or that v(r) is uniquely determined by n(r). This fact enables one to define a functional

of the density F [n(r)] that is independent of v(r), such that Ω =
∫
v(r)n(r)dr + F [n(r)] is

at a minimum and equal to the grand potential when n(r) is the equilibrium density in the

grand canonical ensemble in the presence of v(r).

To begin this proof, we will work in the grand canonical ensemble at a fixed temperature

and chemical potential and show that no two v(r) give the same equilibrium density. We

begin with the grand potential analogous to that of the ground state energy. If
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Ω[ρ] = Trρ

(
H − µN +

1

β
ln[ρ]

)
, (2.83)

then the grand potential

Ω = − 1

β
lnTre−β(H−µN) (2.84)

is given by Ω[ρ0] where ρ0 is the grand canonical density matrix

ρ0 =
e−β(H−µN)

Tre−β(H−µN)
(2.85)

The functional satisfies Ω[ρ] > Ω[ρ0], ρ ̸= ρ0 for all density matrices ρ. We will now consider

a grand canonical ensemble of electrons in an external potential v(r) and recall that the

Hamiltonian is H = T + V + U where

T =
ℏ2

2m

∫
∇ψ∗(r)∇ψ(r)dr (2.86)

V =

∫
v(r)ψ∗(r)ψ(r)dr (2.87)

U =
1

2

∫
e2

|r − r′|
ψ∗(r)ψ∗(r′)ψ(r′)ψ(r)drdr′. (2.88)

The equilibrium electron density is then

n(r) = Trρ0ψ
∗(r)ψ(r) (2.89)

which appears to be a functional of v(r). However, Mermin proves that v(r) is uniquely

determined by n(r) through the variational principle. We consider another potential v′(r)

that gives rise to the same density n(r) and an associatedH ′, ρ′, and Ω′. Because v′(r) ̸= v(r)

and ρ′0 ̸= ρ0, we have
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Ω′ = Trρ′0

(
H ′ − µN +

1

β
ln[ρ′0]

)
< Trρ0

(
H ′ − µN +

1

β
ln[ρ0]

)
= Ω+ Trρ0(V

′ − V ) (2.90)

such that

Ω′ < Ω +

∫
dr[v′(r)− v(r)]n(r) (2.91)

When the primed and unprimed quantities are interchanged, the reasoning remains valid

and yields

Ω < Ω′ +

∫
dr[v(r)− v′(r)]n(r). (2.92)

The sum of the two equation leads to the contradiction

Ω′ + Ω < Ω + Ω′ (2.93)

proving that only one v(r) can result in a given n(r). We can see that this is similar to

the derivation of the first Hohenberg-Kohn theorem where the external potential is a unique

functional of n(r) and demonstrates that the extension of the Hohenberg-Kohn theory to

finite temperatures remains consistent.

45



CHAPTER 3

Methods

In this chapter, I will cover various methods used in my dissertation work. These methods

include solution of the electronic structure problem, generation of dynamical trajectories

of large sets of atoms responding to Hellman-Feynman forces under various statistical me-

chanical ensembles, and interpretation of these molecular dynamics simulations, including

analysis of time series, computation of thermodynamic properties, and analysis of dynamics.

3.1 Electronic Structure

The solution of the electronic structure problem is central to my work. It is the most

time-consuming part of my computations by far as it must be solved at every time step of

my dynamical trajectories. Efficiency is therefore an important consideration, and modern

density functional theory codes make use of a variety of fundamental physical concepts

to develop fast numerical strategies for solving the Kohn-Sham equations. These numerical

strategies have been developed over the last few decades and help account for the widespread

use of density functional theory to study material properties in virtually all fields of science.

Much of the development below is general and applies to most density functional theory

codes, although I make occasional reference to the particular one that I have used: the

Vienna ab initio Simulation Package (VASP) (Kresse and Furthmüller, 1996).
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3.1.1 Plane Wave Basis Set

All of my calculations employ periodic boundary conditions, these being the natural choice

for crystal lattices, but also useful for the study of materials lacking long-range order such

as liquids. In a periodic system, the Bloch theorem states that the wavefunction can be

represented by

ψk(r) = uk(r)e
ik·r (3.1)

where eik·r is a plane wave and uk(r) is a periodic function

uk(r) = uk(r+R). (3.2)

where R is a lattice vector. The Bloch theorem is also sometimes stated in the equivalent

form

ψk(r+R) = eik·Rψ(r) (3.3)

The Bloch wave vector k must be real by imposing an appropriate boundary condition on

the wave functions. The condition introduced is the Born-von Karman boundary condition,

named after Max Born and Theodore von Karman, which imposes the restriction that the

wave function must be periodic on a certain Bravais lattice. We can generalize the periodic

boundary condition to:

ψ(r+NiRi) = ψ(r) (3.4)

where Ni are integers.

Because uk(r) is periodic from equation 3.2, it can be represented as a wave in the form
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uk(r) =
∑
G

ck,Ge
iG·r (3.5)

where ck,G is a constant and G is a reciprocal lattice vector. The wave function can now be

represented in terms of a sum of plane waves

ψk(r) =
∑
G

ck+Ge
i(k+G)·r (3.6)

At first glance, the summation suggests an infinite series that requires an infinite number of

plane waves to solve the wave function accurately. In practice only a finite number of plane

waves are needed to demonstrate convergence to the infinite basis set size limit. The finite

size of the basis set is expressed in terms of the kinetic energy

ℏ2

2m
|k +G|2 (3.7)

so that all plane waves are included which satisfy

ℏ2

2m
|k +G|2< Ecutoff (3.8)

where Ecutoff is the cutoff energy. Testing must be performed for every system to determine

a value of the cutoff energy that yields accurate results. For much of the work done in this

thesis, an energy cut-off of 500 eV was sufficient. However, for unit cell systems containing

hydrogen, we found an energy cut-off of 1000 eV was required.

3.1.2 Brillouin Zone Sampling

Sampling the Brillouin zone is constrained by how one specifies the Bloch vectors k. Com-

puting the energy at many values of k (known as k-points) is necessary to compute the

potential energy and charge density in the Kohn-Sham equations. Obtaining accurate en-

ergy calculations can be done by either having a dense mesh of k-points within the Brillouin
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zone where electronic states are sampled at regular intervals, or one can increase the number

of atoms in the simulations. Having a larger system results in a smaller Brillouin zone in re-

ciprocal space, which requires fewer k-points to accurate sample the energies. The Brillouin

zone size is determined by

VBZ =
4π3

Vcell
(3.9)

where Vcell is the volume of the unit cell in real space. For static (ionic relaxation) simulations,

small systems containing only a few atoms typically need many k-points such as a 4 x 4 x 4

grid. In this example, the Brillouin zone is sampled at 64 regularly spaced points. Metallic

systems with small unit cells can require considerably more k-points to obtain accurate

results.

The calculation of the electronic density of states and very accurate calculations of the

total energy in the limit of zero temperature for semi-conductors and insulators can be done

using the tetrahedron method with Blöchl corrections (Blöchl, 1994). If the size of the cell

is large, a small k-point mesh such as a 2 x 2 x 2 grid is acceptable. In our semi-conductor

density of states calculations, our cell is small (ε-FeOOH unit cell), so we choose a 20 x 20

x 20 k-point mesh a result.

In molecular dynamics simulations containing hundreds of atoms, using just one k-point

[the Γ-point for which k = (0, 0, 0)] is reasonable. The size of the simulation cell reduces the

Brillouin zone in addition to saving on computational expense. For the majority of molecular

dynamics simulations done in this work, sampling the Γ-Point has proven to be sufficient for

energy convergence.

3.1.3 Pseudopotentials

A pseudopotential was first introduced by Hans Hellmann in 1934 (Schwerdtfeger, 2011). In

principle, DFT tells us how to calculate the electron orbitals and eigenvalues, but the prac-
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tical implementation is technically difficult. A problem that arises is that the core orbitals

are strongly localized around the nuclei and have very deep binding energies. However, the

valence orbitals are more weakly bound and extend throughout the material. The pseu-

dopotential theory exploits these difficulties and recognizes that the core electrons play very

little or no role in the material energetics, wihch instead depends almost entirely on the

valence electrons. The theory recognizes the manner in which valence electrons are scattered

by atomic cores and can be accurately mimicked by weak valence-core potentials (these are

the pseudopotentials). The theory also showcases this point by showing that the strong

potential attracting the valence electrons to the cores is largely cancelled out by the effects

of orthogonality between the valence and the core states, which have the effect of a repulsive

potential (Gillan et al., 2006).

As a result, the total energy of the material can be calculated by solving the Kohn-

Sham equations for the valence electrons alone, which interact with the atomic cores via

pseudopotentials (figure 3.1).

Two common forms of the pseudopotential used in modern codes are norm-conserving

and ultra-soft. Pseudopotentials with a larger cut-off radius are said to be softer, which are

considerably more efficient, but in practice are less transferable (where transferable means

less accurate to reproduce realistic features in different environments. i.e. when the atom is

transferred from one environment to another). A property of norm-conserving pseupotentials

is that they are transferable, and ultra-soft pseudopotentials are considerably more efficient

by requiring a lower energy cut-off to the plane waves when compared to norm-conserving

ones. In practice, they are at least as transferable, if not more so.

Closely related to the ultra-soft pseudopotential is an all-electron technique known as

the Augmented Plane Wave (APW) method The eigenfunctions of the Kohn-Sham equation

are represented within spheres surrounding the nuclei by spherical harmonics multiplied by

radial functions, and the region between the spheres by plane wave (Gillan et al., 2006). The

potential is assumed to be spherically symmetric in the muffin-tin region and constant in
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Figure 3.1: A schematic illustration of an all electron (solid lines) and pseudoelectron

(dashed lines) potential and their corresponding wave functions, taken from Payne et al.

(1992). The radius at which all-electron and pseudoelectron values match is designated as

rc.

the interstitial region: the so-called muffin-tin picture. Wave functions are constructed by

matching solutions of the Schrödinger equation within each sphere with plane-wave solutions

in the interstitial region. APW was used in the first density functional theory computations

of deep Earth materials, which were performed at UCLA (Bukowinski, 1977). APW has

been proven to be useful in calculating electrical properties such as band properties, super-

conductivity, and field gradients in complex systems (Mattheiss and Hamann, 1986; Blaha

et al., 1985). However, this method is computationally expensive and inefficient for large

or long duration calculations. The inefficiency is due to the non-linearity of the function

defining the core region, in which the energy is a function of and requires an iterative solving
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approach. While the linearized versions (LAPW) mitigates some of these challenges, and

continues to be used to explore the behavior of matter at extremely high pressure where

the pseudopotential approximation tends to fail (Stixrude et al., 1994) it is still much more

cumbersome to use than the methods I focus on in this thesis.

It goes without say that it would be impossible to use plane-wave basis sets without

pseudopotentials. The core orbitals vary rapidly on extremely short length scales, which

would require a large amount of plane waves to represent them. This representation of valence

and conduction orbitals would also be equally impossible because orthogonality requires

these too to vary rapidly in the region of atomic cores. Pseudopotentials solve both of these

problems because of the smoothness in the core region makes the pseudo-wavefunctions of

valence and conduction orbitals in these regions smooth as well.

3.1.4 Projector Augmented Wave Method

The projector augmented wave method (PAW) is a generalization of the pseudopotential

and LAPW methods, which allows DFT to be computed with greater efficiency (Blöchl,

1994; Kresse and Joubert, 1999). As mentioned earlier, the valence wave functions tend

to have rapid oscillations near the ion cores due to the demand of orthogonality to core

states. As a result, this becomes problematic because it requires many Fourier components

to accurately describe the wave function. The PAW method addresses this problem by

transforming the rapidly oscillating wave functions into smooth wave functions, making it

more computationally efficient and providing a way to calculate all-electron properties from

the smooth wave functions.

A linear transformation T transforms the fictitious pseudo wave function |ψ̃⟩ to the

all-electron wave function |ψ⟩:

|ψ⟩ = T |ψ̃⟩ (3.10)
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We let |ψ̃⟩ and |ψ⟩ differ only in the regions in the ion core by writing:

T = 1 +
∑
R

T̂R (3.11)

where T̂R is non-zero only within some spherical augmentation region ΩR enclosing atom R.

Around each atom, it is convenient to expand the pseudo wave function into pseudo partial

waves:

|ψ̃⟩ =
∑
i

|ϕ̃i⟩ci (3.12)

within ΩR. The coefficients ci can be written as an inner product with a set of ”projector”

functions |pi⟩ due to the operator T being linear:

ci = ⟨pi|ψ̃⟩ (3.13)

where ⟨pi|ϕ̃j⟩ = δij. The all-electron partial waves |ϕj⟩ = T |ϕ̃i are typically chosen to be

solutions to the Kohn-Sham equation for an isolated atom. As a result, the transformation

T is specified by three quantities:

1.) A set of all-electron partial waves, |ϕi⟩

2.) A set of pseudo partial waves, |ϕ̃i

3.) A set of projector functions, |pi

and can be explicitly written as:

T = 1 +
∑
i

(|ϕi⟩ − |ϕ̃i⟩)⟨pi| (3.14)

The pseudo partial waves are equal to the all-electron partial waves outside of the augmen-

tation regions, but they can be any smooth continuations (such as a linear combination of

polynomials or Bessel functions) inside of the spheres.
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The work in this dissertation uses the PAW method, and the valence properties for each

element used are given in table 3.1

Element Valence electrons Core Radius (Å)

Fe 14 1.164

Mg 8 1.058

Si 4 1.312

O 6 0.820

H 1 0.370

Table 3.1: Electronic properties of elements used in this dissertation. The core radius is

the Wigner-Seitz radius (in Å) for each atom type.

3.1.5 Convergence Energy

The break condition in the electronic self-consistency loop within most DFT codes can be

chosen. This value is the difference between the total energy change and the band-structure-

energy change between the current and previous electronic step. The convergence speed

decays exponentially in most cases, as long as the cost for a few iterations is small, and

values below 10−5 eV are not necessary. The bulk of this work uses an energy convergence

of 10−5 eV. However, this value is decreased to 10−8 eV for our finite difference calculations

(e.g. phonons and elastic tensor) to obtain very accurate and precise results.

3.1.6 Electronic Bands

Before talking about electronic bonds in solids, let us first consider the formation of a lithium-

row diatomic molecule. As the two atoms are brought together, the total number of electron

states is conserved with orbitals coupling to each other and forming simple bonding and

anti-bonding combinations (figure 3.2).
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Figure 3.2: Atomic orbital coupling in lithium-row diatomic molecules, and the resultant

bond designations on the right taken from Harrison (2012).

The formation of solids behave similarly to the formation of molecules. However, the

number of states in solids is far greater than that of molecules (on the order of Avogadro’s
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constant, NA, 10
23), and one must also consider that there is an atomic s- and p-orbital for

each atom (and d-orbitals for Fe in this thesis). The difficulty of solving a problem with

4 x 1023 equations can be circumvented by considering the simplicity of a crystalline solid

system where periodicity can be utilized. The atomic energy levels are now split into bands

when the atoms are brought together, analogously to the states in diatomic molecules and

in figure 3.3. Now, rather than splitting into single bonding and anti-bonding states, the

atomic levels are split into entire bands of states that are distributed between the extreme

bonding and anti-bonding limits (Harrison, 2012).

The choice in the number of electronic bands strongly depends on the system. In VASP,

the bands defines the number of Kohn-Sham orbitals in the calculation. The minimum

requirement for VASP requires all occupied states plus one empty band; However, by default,

VASP sets the number of bands equal to half the number of valence electrons plus half the

number of ions. Although the empty states do not contribute to the total energy in electronic

minimization calculations, empty states are required for better convergence due to its effect

on the matrix-diagonalization algorithm.

3.1.7 Parallelization

The computational time for a single VASP run varies with respect to the number of atoms

in the system, the number of valence electrons per atom, the number of k-points, and the

size of the basis set, in addition to the speed of the processing unit(s). Because a single core

cannot perform enough operations for complex problems, parallelization is necessary for

computational efficiency. Most of this work was carried out locally on an 8-core MacBook

Pro or through High Performance Computing (HPC) such as the Hoffman2 Shared Cluster

provided by UCLA Institute for Digital Research and Education’s Research Technology

Group.

Running VASP in parallel on CPUs requires proper usage of the INCAR flags, NPAR

or NCORE, which efficiently determines the number of bands that are treated in parallel.
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Figure 3.3: The molecular energy levels as a pair of lithium-row atoms is brought together

(Harrison, 2012). In this example, the π and σ notations represent π states and σ states.

π states result from py-orbital coupling and pz-orbital coupling in atom 1 and atom 2. σ

states result from the px-orbital and s-orbital coupling in atom 1 and atom 2. The notations

g and u stand for gerade and ungerade - German for ”even” and ”odd”, respectively - and

depend on whether the wave function of the orbital is even or odd when inverted through

the midpoint of the atoms.

For massively parallel systems and modern multi-core machines, VASP strongly recommends

setting the NPAR flag to

57



NPAR ≈
√

# of Cores (3.15)

or setting NCORE to

NCORE = # of cores per compute node (3.16)

resulting in performance improvement by a factor of four.

If a simulation requires more than the Γ-point sampling of k-points in the Brillioun zone,

the flag KPAR determines the number of k-points run in parallel. It is suggested that the

value of KPAR be an integer divisor of the total number of cores.

As of VASP 6.3.0 (the latest version of VASP used in this work), parallelization on a

GPU requires slight differences in INCAR setup. For performance reasons, the use of paral-

lel Fast Fourier Transforms (FFTs) of the wave functions (NCORE > 1) should be avoided,

and instead, the OpenACC GPU port of VASP will switch NCORE = 1 by default if a

value other than 1 is specified. GPU testing of VASP, performed through the Pittsburgh

Supercomputing Center Bridges-2, show that the flag NSIM is an important parameter for

increasing performance (Table 3.2). Others, such as researchers at NVIDIA and Peter Lars-

son at the National Supercomputer Centre at Linköping University, report similar findings

for VASP GPU performance and suggest that the GPU calculation will run faster with in-

creased values of NSIM. However, the drawback is that the memory consumption increases

with higher NSIM as well, so the user is encouraged to increase the number of NSIM until

the physical memory is run out. A general suggestion is

NSIM =
NBANDS

2 ∗# of cores
(3.17)

to fully utilize the GPUs.
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Number of GPUs NSIM mpirun -n Timesteps Runtime (min)

1 1 2 29 30

1 4 2 55 30

1 4 4 55 30

1 8 2 56 30

1 8 4 57 30

1 12 2 59 30

1 16 2 61 30

2 36 4 104 30

8 72 8 202 30

Table 3.2: VASP GPU convergence tests run on Pittsburgh Supercomputing Center

Bridges-2 GPU nodes. One node includes 8 NVIDIA Tesla V100 GPUs. The table lists

a small sample of convergence tests done on a system comprised of 55 Fe atoms where ab

initio Molecular Dynamics simulations were performed. Note: Performance tests were done

using VASP6 ported from CUDA-C between years 2021 - 2022. Recent work has found that

the OpenACC GPU port has significantly better performance with respect to increased NSIM

values.

3.2 Molecular Dynamics Simulations

All discussion of DFT thus far has been in regards to systems at static conditions, which

refers to absolute zero temperature (0 K) and in the absence of zero-point motion. In order to

investigate systems at high temperatures, we perform Molecular Dynamics (MD) simulations

where the temperature of interest may be specified. This temperature is then used to create

a Maxwell-Boltzmann distribution of velocities (Maxwell, 1860a,b; Boltzmann, 1872, 1877),

which are randomly assigned to the particles from the probability distribution
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f(v) =

[
m

2πkBT

]3/2
4πv2 exp

(
− mv2

2kBT

)
(3.18)

where m is the mass of the particle, v is the velocity, kB is Boltzmann’s constant, and T is

temperature.

Im the micro-canonical or NV E ensemble (constant number of atoms N , volume V ,

and internatl energy E) MD simulations propagate ionic trajectories according to Newton’s

equations of motion

Fi = miai (3.19)

where Fi is the force driving the acceleration ai of a particle with mass mi, and the forces

acting on the nuclei can be computed from the Hellman-Feynman theory.

3.2.1 Velocity Verlet Algorithm

While the forces are calculated quantum mechanically from the Hellman-Feynman theory,

the propagation of trajectories is calculated classically according to Newton’s equations of

motion. Stability of the propagation is an important numerical issue. Consider the Verlet

algorithm (Verlet, 1967): a particle with an initial position ri0 and velocity vi0 with a force

Fi for a time interval ∆t, results in a new position ri

ri = ri0 + (vi0∆t+
1

2
ai∆t

2) (3.20)

The acceleration of the particle ai is given by ai = Fi/mi, where mi is the mass of the

particle. If we assume that ri(t) is the particle’s current position at time t, then we can

compute the Taylor expansions of the position in different time directions ri(t±∆t):

ri(t+∆t) = ri(t) + vi(t)∆t+
ai(t)∆t

2

2
+
bi(t)∆t

3

6
+O(∆t4) (3.21)
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ri(t−∆t) = ri(t)− vi(t)∆t+
ai(t)∆t

2

2
− bi(t)∆t

3

6
+O(∆t4) (3.22)

where bi is the third derivative of the position with respect to time. Addition of equations

3.21 and 3.22 results in the velocity dropping out of the equation, giving us the position:

ri(t+∆t) = 2ri(t)− ri(t−∆t) + ai(t)∆t
2 +O(∆t4) (3.23)

and subtracting equation 3.22 from 3.21 results in the velocity:

vi(t) =
1

2∆t

[
ri(t+∆t)− ri(t−∆t)

]
+O(∆t3) (3.24)

A problem that arises with the Verlet algorithm is the requirement to know the positions

at a given time direction at t±∆t to determine the velocity at a given t. Additionally, the

velocity always lags a step behind the positions due to the discretization method, causing

problems with velocity-dependent quantities. Alternatively, if one simply integrates equation

3.20, this would lead to the following dynamical trajectory (Euler method):

ri(t+∆t) = ri0(t) + (vi0(t)∆t+
1

2
ai(t)∆t

2) (3.25)

vi(t+∆t) = vi(t) + ai(t)∆t (3.26)

and lead to unstable results depending on the step size chosen.

These problems are circumvented by the velocity Verlet algorithm, which is known

to be very stable. The velocity and position are calculated at the same value of the time

variable, based on central differences. In this method, the forces need to be determined at

the updated position:

Fi(t+∆t) = Fi(ri(t+∆t)) (3.27)
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in which the position and velocity are simultaneously determined at r(t+∆t) as:

ri(t) = ri(t+∆t)− vi(t+∆t)∆t+
Fi(t+∆t)

2mi

∆t2 (3.28)

vi(t+∆t) = vi(t) +
Fi(t) + Fi(t+∆t)

2mi

∆t (3.29)

3.2.2 Thermostat and Barostat

Most of the computational work done in this thesis was calculated in the canonical en-

semble (NVT ), with a few calculations performed in the NPT ensemble, rather then the

micro-canonical ensemble. Both of these ensembles require a thermostat to regulate the

temperature throughout the simulation. Though there are several methods developed for

thermostats, I have primarily chosen the Nosé-Hoover thermostat and Langevin thermostat

due to the rigorous demonstrations in reproducing the NVT and NPT ensembles, respec-

tively.

3.2.2.1 Nosé-Hoover Thermostat

The Nosé-Hoover thermostat was originally developed by Shuichi Nosé in 1984 (Nosé, 1984a)

and further improved by William Graham Hoover in 1985 (Hoover, 1985). It is commonly

used for maintaining constant temperature in the canonical ensemble NVT by means of

exchanging energy with an external heat bath. By fixing the number of particles N, the

volume V, and the temperature T, the three quantities do not fluctuate and the system

temperature is connected to the average kinetic energy via:

⟨Ekin⟩ =
3

2
NkBT (3.30)

with instantaneous kinetic energy (from particle velocities) fluctuating in time. In the ap-
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proach of Nosé, a Hamiltonian with an extra degree of freedom is introduced for the heat

bath, s, allowing the total energy of the physical system to fluctuate with an associated

potential energy (f + 1)kBTeq, where f is the number of degrees of freedom in the physical

system and Teq is the externally set temperature value. The interaction between the physical

system and s is expressed by the scaling of the particle velocities vi = sri and vi is the real

velocity of particle i and can be interpreted as an exchange of heat between the physical and

external (heat bath) system. The Hamiltonian of the extended system takes the form:

HNosé =
∑
i

p2
i

2mis2
+ Φ(r) +

p2s
2Q

+ fkBTeq ln(s) (3.31)

where ps is a conjugate momentum and Q is an imaginary mass relating ps and s by ṡ =

ps/Q with dimensions of energy · (time)2 and determines the time scale of the temperature

fluctuations. This defines the potential and kinetic energy of the heat bath, and the particle

momentum is now scaled by pi = mivis.

To prove that configurations in the canonical ensemble at temperature Teq is produced,

consider the partition function of this ensemble:

Z =
1

N !

∫
dps

∫
ds

∫
dp

∫
drδ

(∑
i

p2
i

2mis2
+ Φ(r) +

p2s
2Q

+ fkBTeq ln(s)− E

)
(3.32)

with δ denoting the Dirac delta function. By choosing f = 3N + 1, the partition function

of the external system is equivalent to the physical system in the canonical ensemble except

for a constant factor:

Z = C

∫
exp

[
−H(p, r)/kBTeq

]
dpdr (3.33)

In the formulation above, it is difficult to implement Nosé’s form to MD simulations

due to the time-scaling of the momentum ps. Hoover reformulated Nosé’s Hamiltonian by
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introducing a thermodynamic friction coefficient, ξ, and replacing the momentum of the heat

bath by ξ ≡ ps/Q, redefining pi ≡ midri/dt, and replacing Nosé’s (f + 1) by f , leading to :

H =
∑
i

p2
i

2mis2
+ Φ(r) +

ξ2Q

2
+ 3NkBTeq ln(s) (3.34)

The time evolution of equation 3.34 can be obtained and now takes the forms:

dri
dt

=
pi
mi

= vi (3.35)

dpi
dt

= F (ri)− ξpi ≡
dv

dt
= −∂Φ(r)

∂ri
− ξmivi (3.36)

dξ

dt
=

∑
p2i /m− 3NkBTeq

Q
=

∑
miv

2
i − 3NkBTeq
Q

(3.37)

d ln(s)

dt
= ξ (3.38)

and closely resemble Newton’s equations of motion with the additional thermodynamic fric-

tion coefficient included. The friction term is proportional to velocity (equation 3.38) and is

determined from the requirement that the total kinetic energy (temperature) is constant:

dEkin

dt
= 0 (3.39)

or

∑ pi
mi

dpi
dt

= 0 (3.40)

leading to
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ξ = −
∑ pi

mi

∂Φ(r)

∂ri

/∑ p2i
mi

(3.41)

which recovers the canonical distribution by this method of ”velocity scaling” (Hoover, 1985).

This is advantageous because the thermodynamic friction coefficient does not vary with time

like in Nosé’s formulation when ⟨Ekin⟩ = 3
2
NkBT .

In VASP, the choice of the imaginary mass, Q, bears importance in the Nosé-Hoover

thermostat and controls the frequency of the temperature oscillations. The chosen value in

this thesis corresponds to a period of 40 time steps, set by the flag ”SMASS = 0”, which

approximately shows the same frequencies as a typical ”phonon”-frequency for the system.

3.2.2.2 Parrinello-Rahman Barostat and Langevin Thermostat

In an NPT simulation, the pressure remains constant due to the volume of the cell varying

over time. The volume fluctuations are controlled using a barostat in addition to a thermostat

controlling temperature fluctuations. The barostat in all NPT simulations in this work

follow the Parrinello-Rahman barostat algorithm (Parrinello and Rahman, 1980, 1981) which

incorporates a time-dependent metric tensor, allowing the volume and shape of the MD cell

to vary with time.

The Parrinello-Rahman formalism allows the cell to have an arbitrary shape and volume

described by three lattice vectors a⃗, b⃗, c⃗ that span the edges of the MD cell. These lattice

vectors can also be described by a 3 x 3 matrix h⃗ with a volume Ω:

Ω = ||⃗h||= a⃗ · b⃗× c⃗ (3.42)

The position of the particle ri can be written in terms of h⃗ and vector s⃗ with components

ξi, ηi, ζi:
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ri = h⃗s⃗i = ξia⃗+ ηi⃗b+ ζic⃗ (3.43)

where 0 ≤ ξi, ηi, ζi ≤ 1 and i = 1, ..., N . The square distance of the particles i and j is:

r2ij = (s⃗i − s⃗j)
⊺G⃗(s⃗i − s⃗j) (3.44)

where the metric tensor, G⃗ = h⃗⊺h⃗. The size and shape of the cell varies by a set of 3N dynam-

ical variables that describe the positions of all particles N in addition to the 9 components

of h⃗, leading to 3N + 9 variables. The Lagrangian takes the form:

L =
1

2

∑
i

mi
⃗̇s⊺i G⃗⃗̇si −

N∑
i=N

N∑
j>i

ϕ(rij) +
1

2
W⃗̇h⊺⃗̇h− pΩ (3.45)

where p is the hydrostatic pressure imposed on the system, the variable W has dimensions

of mass, and the term ⃗̇h⊺⃗̇h can be physically understood as the rate of volume change

of the system. Because the system is not subject to time-dependent external forces, the

corresponding Hamiltonian can be constructed as:

H =
∑
i

1

2
miv

2
i +

N∑
i=N

N∑
j>i

ϕ(rij) +
1

2
W⃗̇h⊺⃗̇h− pΩ (3.46)

At equilibrium, the temperature T = 9/2kBT and is contributed by W and 3N/2kBT from

other kinetic terms, resulting in the constant of motion being equal to the enthalpy such

that

H = E + pΩ (3.47)

where E =
∑

i
1
2
miv

2
i +

∑N
i=N

∑N
j>i ϕ(rij) and the Lagrangian in equation 3.45 is in an NPH

(constant enthalpy) ensemble.
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Here, W determines the relaxation time for recovery between the external pressure and

internal stress, and the choice of W varies depending on the system and is set by the flag

”PMASS”. The value of W is chosen to be

1

W
=

4π2β

2τ 2pL
(3.48)

where β is the compressibility, L is the cell dimension, and τp is a time constant. We can

combine this with the suggestion of Andersen (Andersen, 1980) where W is on the same

order of magnitude as the time L/c, where c is the bulk sound velocity and

τp = L/c (3.49)

If we ignore the difference between isothermal and adiabatic compressibility, we have

c2 =
1

βρ
(3.50)

where ρ is the mass density and ρ = M/L3, with M being equal to the mass of the cell.

Combining all of the equations results in our determination of W :

W =
3M

4π2
(3.51)

The Parrinello-Rahman algorithm leads to an NPH ensemble, and a thermostat must

be added to recover the NPT ensemble. In VASP, the thermostat coupled to the Parrinello-

Rahman algorithm is a Langevin thermostat (Allen and Tildesley, 2017; Hoover et al.,

1982; Evans, 1983), which involves temperature control by introducing a friction term. The

Langvein thermostat maintains the temperature by adding the term to Newton’s equations

of motion:

ṙi = pi/mi (3.52)
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ṗi = Fi − γipi + fi (3.53)

where Fi is the force acting on the atom i by means of an interaction potential, γi is the

friction coefficient, and fi is a random force from particle collisions by the damping of

particles caused by friction. The random force is chosen from a Gaussian distribution with

a variance equal to:

σ2
i = 2miγikBT/∆t (3.54)

where ∆t is the MD time step.

By coupling the Parrinello-Rahman algorithm with the Langevin thermostat, we generate

an NPT ensemble in which the pressure and temperature are held constant while undergoing

volume fluctuations. A consequence of the volume fluctuations is the possibility of cell shape

fluctuations or shearing, which is particularly noticeable in liquid systems. This problem can

be mitigated by defining geometric parameters that constrain the volume and/or shape of

the simulation cell (specified in the file ”ICONST” in VASP). By utilizing these constraints,

we can fix the lattice angles and allow a cubic cell to have variable volume but fixed shape,

for example, which can be extremely helpful for two-phase simulation setups and calculations

(more in section 3.8).

3.3 Averages, Uncertainty, and Error Analysis

MD simulations typically produce finite time data sets that are correlated, where each point

in the simulation depends on the result from the previous time step. In order to investi-

gate stationary states, such as temperature and pressure, the first step is to calculate time

averages. However, the time averages are computed over finite times and are fluctuating

quantities, meaning another simulation of the same system may give a different value for the
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same quantity. Comparing the two simulations should give the same average values within

uncertainty; Therefore, estimating the variance of finite time averages is essential.

Before calculating averages and uncertainties, we first must determine when equilibrium

occurs and discard the transient portion of the simulation, which typically reaches equilib-

rium within 1 - 2 ps as shown in figure 3.4. Once discarded, we can calculate the averages

and uncertainties through the blocking method (Flyvbjerg and Petersen, 1989).
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Figure 3.4: Internal energy NV T time series data of MgSiO3 at 6000 K, 1137.89 Å3, and

58.6 GPa. The shaded area is the transient portion of the simulation that is discarded prior

to calculating averages and uncertainties.
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3.3.1 The Blocking Method

Although the blocking method was not invented by Flyvbjerg and Petersen, they proposed an

efficient algorithm that is now widely used. The blocking method involves a renormalization

group technique that is applied in the one-dimensional, discrete space of simulation time

(Flyvbjerg and Petersen, 1989). We begin by estimating the expectation value of some

fluctuation quantity by its time-average

m ≡ x̄ =
1

n

n∑
i=1

xi (3.55)

where n is the total number of time steps and xi is the value of the fluctuating quantity at

time step i. An estimator for the variance of m is

σ2(m) = ⟨m2⟩ − ⟨m⟩2 (3.56)

Inserting equation 3.55 into equation 3.56

σ2(m) =
1

n2

n∑
i,j=1

γi,j =
1

n

[
γ0 + 2

n−1∑
i=1

(
1− t

n

)
γi

]
(3.57)

where the correlated function γi,j ≡ ⟨xixj⟩−⟨xi⟩⟨xj⟩ is introduced, and the expression makes

use of it invariance under time translations to define γi ≡ γi,j and t = |i− j|.

While the mean is straightforward to determine, computing the uncertainty, σ2, takes

some consideration. The name ”blocking” in the blocking method suggests the approach

taken here, which involves repeated blocking of data. First, the data set x1, ..., xn is trans-

formed into a new data set x′1, ..., x
′
n that is half as large:

x′i =
1

2
(x2i−1 + x2i) (3.58)
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n′ =
1

2
n (3.59)

and m′ is defined as x̄′, the average of the n′ ”new” data set and m′ = m. The terms γ′i,j

and γ′i must also be defined, but from primed variable x′i. It can be shown that

γ′t =

 1
2
γ0 +

1
2
γ1, for t = 0

1
4
γ2t−1 +

1
2
γ2t +

1
4
γ2t+1, for t > 0

 (3.60)

and

σ2(m′) =
1

n′2

n′∑
i,j=1

γ′i,j = σ2(m) (3.61)

showing that m and σ2(m) are invariant under the blocking method transformation and no

information is lost. The advantage of the blocking method is revealed: the value of σ2(m)

is unraveled gradually from γt by repeating blocking transformations, and we know from

equation 3.57 that

σ2(m) >
γ0
n

(3.62)

Every time a blocking transformation is applied, γ0/n increases unless γ1 = 0, making γ0/n

invariant. Utilizing and manipulating a biased estimator:

⟨ct⟩ = γt − σ2(m) (3.63)

can eliminate γ0 altogether from the calculation, resulting in

σ2(m) >

〈
c0

n− 1

〉
(3.64)

where c0 is known from:

71



ct =
1

n− t

n−1∑
k=1

(xk − x̄)(xk+1 − x̄) (3.65)

Knowing this, one can proceed by starting with the data set x1, ..., xn, computing c0/(n− 1)

and using it as an estimate for ⟨c0/(n − 1)⟩. Then, the blocking transformation is applied

to the data set and c′0/(n
′ − 1) is computed as an estimate for ⟨c′0/(n′ − 1)⟩. We repeat

the process until n′ = 2, and the sequence of values from c0/(n − 1) will increase until a

fixed point is reached and it remains constant within fluctuations. The constant value is the

estimate for σ2(m)

We can estimate the standard deviation on the estimate for c′0/(n
′ − 1) for σ2(m) at the

fixed point, which is (
√

2/(n− 1c′0/(n
′ − 1):

σ2(m) ≈ ±
√

2

n′ − 1

c′0
n′ − 1

(3.66)

σ(m) ≈
√

c′0
n′ − 1

(
1± 1√

2(n′ − 1)

)
(3.67)

Knowing the error determines whether the fixed point has been reached or not. If the fixed

point isn’t reached before n′ = 2, it is signaled by c0/(n−1) not becoming constant, in which

the largest value for c0/(n− 1) is then a lower bound on σ2(m).

This method is the standard approach for the work in this thesis for calculating time

average quantities and their uncertainties such as internal energy, pressure, temperature,

and enthalpy.

3.3.2 Error Propagation

The average and uncertainty quantities can now be utilized for computing other properties of

interest, in which error propagation must be taken into consideration. The approach taken

here is (Bevington and Robinson, 2003):
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σ2
x ≈ σ2

u

(
∂x

∂u

)2

+ σ2
v

(
∂x

∂v

)2

+ ... (3.68)

where u and v are variables of the function of interest, and similar terms for additional vari-

ables. Error propagation for simple sums and differences is given by a relative uncertainty:

σx
x

=
σu
x

=
σu

u± a
(3.69)

where the dependent variable x is related to a measured quantity u by the relation x = u±a.

Error propagation proves to be extremely important when making use of averaged quan-

tities and their uncertainty to further compute other properties of the system such as the

enthalpy of the system, where H = U + PV . The average and uncertainty of the internal

energy and pressure must be considered when computing similar quantities for enthalpy.

Thus, proper error propagation is always considered in this thesis.

3.4 Thermodynamic Properties

3.4.1 Heat Capacity

Many thermodynamic quantities can be related to the magnitude of the fluctuations in time

variable quantities. For example, the magnitude of fluctuations in the internal energy in the

NV T ensemble are related to the isochoric heat capacity. Start by considering the partition

function

Z =
∑
i

e−Eiβ (3.70)

where i is the index for the microstates of the system, β = 1/kBT where kB is the Boltzmann

constant and T is the temperature, and Ei is the total energy of the system in the respective

microstate. The expectation value of the internal energy
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⟨E⟩ =
∑

iEie
−Eiβ

Z
= −∂ lnZ

∂β
(3.71)

which represents the sum of the microstate energies weighted by their probabilities. We also

have

⟨E2⟩ =
∑

iE
2
i e

−Eiβ

Z
(3.72)

and temperature derivative of equation 3.71 is:

Cv =
∂⟨E⟩
∂T

=
1

Z

∑
i

E2
i

kBT 2
e−Eiβ +

(∑
i

Eie
−Eiβ

)(
− 1

Z2

∂Z

∂β

)
=

1

kBT 2
⟨E2⟩ − ⟨E⟩∂ lnZ

∂β

=
1

kBT 2
(⟨E2⟩ − ⟨E⟩2)

(3.73)

where Cv is the isochoric heat capacity. While this method is convenient, the uncertainties

tend to be larger than those of the energy itself, requiring proportionately longer simulations

to obtain accurate values.

3.4.2 Bulk Modulus

The isothermal bulk modulus

KT = −V dP
dV

(3.74)

is related to the variance of the volume V in the NPT ensemble

⟨∆V 2⟩ = (⟨V 2⟩ − ⟨V ⟩2) (3.75)
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The derivation is similar to that for the heat capacity above, and we quote the final result

(Allen and Tildesley, 2017):

KT =
⟨V ⟩kBT

⟨V 2⟩ − ⟨V ⟩2
(3.76)

As for the heat capacity, the bulk modulus derived from volume fluctuations can be com-

pared, for example, with the value computed from the definition (Eq. 3.74) and the results

of simulations at two different pressure via finite difference.

3.4.3 Grüneisen Parameter

The Grüneisen parameter

γ ≡ V

(
∂P

∂E

)
V

=
V αKT

Cv

=
V αKS

CP

= −
(
∂ lnT

∂ lnV

)
S

(3.77)

is dimensionless, of order unity for many materials, and useful in many geophysical contexts,

including the understanding of the adiabatic temperature gradient in planetary interiors: V is

the volume, CP and Cv are the heat capacities at constant pressure and volume, respectively

E is internal energy, S is entropy, α is the isothermal expansion coefficient, KT and KS are

the isothermal and adiabatic bulk modulus, respectively. We can determine the value of γ

from fluctuations, using formulas already presented, and from cross-fluctuations of pressure

and energy, which yield the product αKT (Allen and Tildesley, 2017).

The Grüneisen parameter can also be related to the following quantities

γi = −V

ωi

∂ωi

∂V
(3.78)

where ωi is the frequency of vibrational mode i, and the negative sign appears in the defini-

tion because vibrational frequencies typically increase on compression. For example, in the

case of the Einstein model, in which we approximate the vibrational spectrum by a single
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characteristic frequency ωE, we have γ = γE.

3.5 Dynamic Properties

3.5.1 Mean Squared Displacement

Dynamical properties such as diffusion are of interest for geophysical and planetary evolution

processes. The diffusion coefficient can be extracted from an MD simulation through the

mean squared displacement (MSD) of the atoms:

MSD(τ) =

〈
|r⃗ − r⃗0|2

〉
=

1

N

N∑
i=1

|(r⃗i(t+ τ)− r⃗i(t))|2 (3.79)

where r⃗ is the position of the ith atom and N is the total number of atoms. The MSD

represents the average squared distance between a particle’s position and its new position

after a time-lag τ . At small times, the MSD shows a ballistic regime and a diffusive regime

at longer times. Summing over all time origins t significantly improves the statistics of the

MSD. We can relate the gradient of the MSD to the self-diffusion coefficient, Dα:

D = lim
t⇒∞

MSD(τ)

6t
(3.80)

In practice, we fit a straight line to the function MSD(τ) beyond the ballistic regime, and

relate the slope fo D.

3.5.2 Velocity Auto-correlation Function

The velocity auto-correlation function (VACF) measures the average correlation between the

particle velocity at different times. The function is normalized

Φi(τ) =
⟨v⃗i(t+ τ) · v⃗i(t)⟩
⟨v⃗i(t) · v⃗i(t)⟩

(3.81)
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where v⃗ is the velocity of particle i at time-lag τ compared to a time origin t, and the

angle brackets represent the average over time origins. The denominator represents the

mean-squared velocity, which normalizes the VACF to 1 when t = 0.

The diffusion coefficient can also be determined by taking the integral of the VACF:

D =
1

3

∫ t=∞

t=0

〈
v⃗i(τ) · v⃗i(0)

〉
dτ (3.82)

Like the MSD, the VACF can provide information for characterizing the material proper-

ties. A VACF typical of a solid shows oscillations that correspond to vibrational periods and

amplitudes that decay with time due to anharmonicity. The VACF of a liquid system tends

to decay more rapidly in time as compared with that of a solid due to greater anharmonicity

and the presence of diffusive modes. Because the uncertainty in the value of the VACF can

become large for long times, one typically convolves the VACF with a Gaussian filter before

computing integrals such as Eq. 3.82.

The VACF also yields the vibrational density of states

F (ν) =

∫ ∞

0

Φ(t) cos(2πνt)dt (3.83)

where ν is the vibrational frequency. The vibrational density of states for liquids and solids

look very similar, with differences arising in sharp peaks, or more structure, for solid phases,

and in the value at zero frequency. In the liquid, the vibrational density of states show a

finite value at zero frequency, which arises from diffusive modes that are not present in the

solid phase. The self-diffusion coefficient can be related to the liquid phase’s zero frequency

value:

D =
kBT

m
F (0) (3.84)

which also provides another method for calculating the self-diffusion coefficient.
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3.5.3 Ionic Conductivity

The ionic conductivity is a property that can be determined from the dynamics of an MD sim-

ulation. The ionic conductivity can be calculated from the electric current auto-correlation

J(t) =
∑
i,j

zizj⟨v⃗i(t+ t0) · v⃗j(t0)⟩ (3.85)

where z is the ionic charge of atom i or j. For example, the ionic charges of FeOOH would

be +3, -2, and +1 for Fe, O, and H, respectively. From the electric current auto-correlation

function, the ionic part of the electrical conductivity is computed as the integral:

σion =
q2

3kBTΩ

∫
J(t)dt (3.86)

where q and Ω represent the elementary charge and volume of the system.

Because it is widely used in the literature, we also record an approximate method for

estimating the ionic conductivity, which neglects correlated motion of the ions: the Nernst-

Einstein relation

σ =
Dxq2

kBTHR

(3.87)

where x is the number of electrical carriers per volume, q is the elementary charge, and HR

is the Haven ratio which empirically accounts for correlated motion and can be shown to

approach unity in the limit of small concentrations.

3.5.4 Radial Distribution Function

The radial distribution function (RDF) g(r) gives the probability of finding a pair of atoms a

distance r apart, relative to that of a random arrangement at the same density. The function

gives us a means of characterizing the structure of a liquid and demonstrates the presence
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of short-range order, combined with long-range disorder. The RDF for atoms types α and

β is defined

gαβ(r) =
V

NαNβ

Nα∑
i=1

Nβ∑
k ̸=i

〈
δ(r − |r⃗k − r⃗i|)

〉
(3.88)

where V is the volume, Ni is the total number of atoms of type i, and δ is the Dirac delta

function. The function is typically computed via binning: replacing the delta function with a

bin of finite width. An alternative method has recently been described which shows reduced

variance, and which, moreover, is independent of arbitrary choices such as the bin size (Coles

et al., 2021).

First, a general expression for combining estimators is proposed

Eλ(x) = (1− λ)E0(x) + λE1(x) = E0(x) + λ∆(x) (3.89)

where E0(x) and E1(x) are estimators of the same property that depend on some parameter

x (i.e., distance or position), ∆(x) = E1(x)−E0(x), and Eλ denotes another valid estimator

of the same property, where the expectation value of Eλ(x) is the same as that of E0(x)

and E1(x). However,the variance of Eλ is a quadratic function of λ, where var(Eλ(x)) =

⟨[Eλ(x) − ⟨Eλ(x)⟩]2⟩. Therefore, one can find for each x a combination that minimizes the

variance:

λ∗(x) = −cov(E0(x),∆(x))

var(∆(x))
= 1− cov(E1(x),∆(x))

var(∆(x))
(3.90)

which involves the covariances cov(A,B) = ⟨(A − ⟨A⟩)(B − ⟨B⟩)⟩ and provides an optimal

estimator E∗
λ(x) for each x. In practice, the expectation values ⟨En(x)⟩ and covariances

entering equation 3.90 are determined from two given estimators, which then leads to the

corresponding optimal estimator E∗
λ(x) from equation 3.89.

The two estimators chosen to calculate the RDF from the force-based method are:
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ĝλ=0(r) = 1 +
V

N2

β

4π

∑
i

∑
i ̸=j

f⃗j − f⃗i
2

· r⃗ij
r3ij

H(rij − r) (3.91)

ĝλ=1(r) =
V

N2

β

4π

∑
i

∑
i ̸=j

f⃗j − f⃗i
2

· r⃗ij
r3ij

H(r − rij) (3.92)

where f⃗i and f⃗j are the forces acting on atoms i and j, rij is the displacement vector, and H is

the Heaviside function. These expressions are derived by computing the density gradient in

the canonical ensemble; the force arises from the operation of the gradient on the Boltzmann

weight exp(−βU) (Rotenberg, 2020). The first expression integrates the density gradient

from the exact limiting value g → 1 as r → ∞, whereas the second matches the exact

value g = 0 at r = 0. This approach eliminates the need for binning due to the estimator’s

dependence on r and all values of the RDF can be obtained with arbitrary resolution (Figure

3.5).

Figure 3.5: Radial distribution function comparing the binning method (left) versus the

force estimator method (right) of NV T MgSiO3 at 6000 K, 1137.89 Å3, and 58.6 GPa.

We also obtain from the RDF the coordination number
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Cαβ = 4πρβ

∫ rmin

0

r2gαβ(r)dr (3.93)

where ρβ is the number density of atom type β and rmin is the distance to the first minimum

in gαβ. The coordination number provides insight on the number of atoms bonded to species

of interest, for example, the Si-O coordination number in silicate liquids increases from 4 to 6

over the pressure regime of Earth’s mantle, producing more efficiently packed configurations

(Stixrude and Karki, 2005).

3.5.5 Bond Auto-correlation Function

In liquids, interatomic bonds constantly break and reform. This quantity gives us an estimate

of typical bond lifetimes

Bx(t) =

〈
bij(t0) · bij(t0 + t)

bij(t0)2

〉
(3.94)

where bij(t) = 1 if atoms i and j are bonded, that is are separated by a distance less than

rmin, and bij(t) = 0 otherwise.

The mean bond lifetime is then

τx =

∫ ∞

0

Bx(t)dt
′. (3.95)

The subscript x has to do with the details of how bonds are counted. At least two choices

are possible. The continuous choice counts bonds until they break and then ignores them for

all subsequent time, whereas the intermittent choice allows the bond to break and reform.
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3.6 Entropy

3.6.1 Vibrational Entropy - The Two-Phase Thermodynamic (2PT) Method

Calculation of the entropy from ab initio MD simulations is a fundamentally difficult problem

because, unlike energy or pressure, the entropy is not defined for any given snapshot of

the trajectory, it can only be defined from the ensemble of configurations. The entropy

is important, for example, for computing the Gibbs free energy, which determines phase

equilibria

G = E + PV − TS (3.96)

where all the quantities on the right hand side are readily available except for the entropy.

The method for calculating the entropy directly in this thesis follows the work of Desjarlais

(2013) and Wilson and Stixrude (2021) (Desjarlais, 2013; Wilson and Stixrude, 2021) and is

known as the two-phase thermodynamic (2PT) method.

The 2PT method involves the decomposition of the vibrational density of states into

solid- and gas-like portions

Fα(ν) = (1− fα)F
s
α(ν) + fαF

g
α(ν) (3.97)

where α refers to atom type and F g
α and F s

α are the gas-like and solid-like contributions that

need to be determined, and the normalization is

∫ ∞

0

12Fα(ν)dν = 3 (3.98)

satisfying the total density of states sum rule. The total entropy of the system
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S(V, T ) = Sel(V, T ) + kB
∑
α

(
xα

∫ ∞

0

dν

[
fαF

g
α(ν)W

g
α + (1− fα)F s

α(ν)W
s(ν)

]
− xα lnxα

)
(3.99)

where theW g
α andW s are the gas-like and solid-like kernels and Sel is the electronic entropy.

The solid-like kernel is the Bose-Einstein expression for a collection of harmonic oscillators

(Born and Huang, 1996):

W s(ν) = 3

(
hν/kBT

exp (hν/kBT )− 1
− ln

[
1− exp (−hν/kBT

])
(3.100)

and is independent of atom type. The gas-like kernel is given by the entropy of a hard-sphere

fluid and is independent of frequency

W g
α =

SIGα

kB
+ ln

[
1 + γα + γ2α − γ3α

(1− γα)3

]
+

3γ2α − 4γα
(1− γα)2

(3.101)

where γα is the hard-sphere packing fraction, which is found numerically by solving:

γ2/5α ∆3/5 =
2(1− γα)

3

2− γα
(3.102)

where ∆α is a parameter related to the self-diffusion coefficient:

∆α =
8

3
Fα(0)

√
πkBT

mα

V̄ −1/3
α

(
6

π

)2/3

(3.103)

and V̄α is the partial molar volume of atom type α. The ideal gas contribution of the entropy,

SIGα is:

SIGα

kB
=

5

2
+ ln

(
V̄α

Λ3
αfα

)
(3.104)

and the de Broglie wavelength is Λα = h/
√
2πmαkBT .
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We can express the VACF as an infinite MacLaurin series:

Φα(t) =
∞∑
n=0

(−1)n
M2n

(2n)!
t2n (3.105)

with the coefficients given by the even moments of the vibrational density of states

Mk = ⟨νk⟩ =
∫∞
0
νkF (ν)dν∫∞

0
F (ν)dν

(3.106)

Computing the moments in this way can be numerically unstable because of its sensitivity

to the high-frequency, low-amplitude portion of the vibrational density of states. An alter-

native means of computation of the moments follows from the exact relation (Isbister and

McQuarrie, 1972):

M2n =
⟨v⃗i(n)(t) · v⃗i(n)(t)⟩

3kBT
m

(3.107)

where v⃗(n) is the nth time derivative of the velocity.

To further develope the gas-like portion of the vibrational density of state, introduce the

memory function, which is defined by

dΦα

dt
= −

∫ t

0

Kα(τ)Φα(t− τ)dτ (3.108)

The memory function is known to be short-ranged: it decays much more rapidly in time than

the VACF, and serves as a useful starting point for further approximation. The proposed

functional form specifying the gas-like vibrational density of states is a Gaussian (Desjarlais,

2013):

Kg
α(τ) = Aα exp(−Bατ

2) (3.109)

with the Laplace transform:
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K̂g
α(s) = K0αw(−η) (3.110)

where K0α = Aα

√
π/4Bα, η = s/2

√
Bα, and w is the Faddeeva function

w(z) = e−z2erfc(−iz) (3.111)

where i is the imaginary unit.

The gas-like portion of the vibraitonal density of states is then

F g
α(ν) =

1

2

[
1

K̂g
α(i2πν) + i2πν

+
1

K̂g
α(−i2πν)− i2πν

]
(3.112)

Combining all of the relations completes the definition of F g
α by determining the values of

fα, Aα, and Bα:

fα =
Fα(0)

F g
α(0)

=
AαFα(0)

2

√
Bα

π
(3.113)

4Bα

Aα

= 2 +

√
π

(
1 +

4BαF 2
α(0)

γ
4/5
α ∆

6/5
α

)
(3.114)

Bα =
fα(2M2Aα −M4 − A2

α) +M4 −M2
2

2fα(1− fα)Aα

(3.115)

Equation 3.113 ensures that the gas-like portion accounts for the DC limit of the VACF.

Equation 3.114 arises from demanding the agreement of the low frequency portion of the

vibrational density of states derived from the Gaussian and delta (simplest functional form)

memory functions. Equation 3.115 guarantees that the first two even moments of the VACF

are matched.
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With the 2PT method, we can compute the total entropy of the system except for the

electronic entropy Sel. The electronic entropy of the system is easily calculated from elec-

tronic structure of the system by summing over the bands:

Sel =
bands∑

i

fi ln fi + (1− fi) ln(1− fi) (3.116)

and considers the occupation fi of band i. With this formulation, it is easily recognizable

that an insulating system with a finite band gap will have zero electronic entropy due to the

occupation of the bands being either 1 or 0. However, a conducting system with no band

gap and partial occupation near the Fermi level will result in a non-zero electronic entropy.

3.7 Raman and Infrared Spectroscopy

From DFT, the phonon vibrational frequencies can be determined via density functional

perturbation theory (DFPT). Phonon frequencies and eigenvectors are computed in the

harmonic limit from the second-order force constant matrix Φαβ(jl, j
′l′), the elements of

which are the change in force in the α Cartesian direction acting on atom j in unit cell l,

in response to the displacement of atom j′ in unit cell l′ in the β direction. The phonon

frequencies are the eigenvalues of the dynamical matrix at a given wavevector q :

Djj′

αβ(q) =
1

√
mjmj′

∑
l′

Φαβ(jl, jl
′) exp[iq · (r(j′, l′)− r(j, l))] (3.117)

where mj are the atomic masses and l and l′ are the unit cells of the two atoms.

The long-ranged Coulomb interactions lead to non-analytic corrections in the limit q →

0, that cause splitting of longitudinal optic (LO) and transverse optic (TO) modes (Pick

et al., 1970; Gonze and Lee, 1997):
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Djj′

αβ(q → 0) = Djj′

αβ(q = 0) +
1

√
mjmj′

4π

Ω0

[∑
γ qγZ

j
γα

] [∑
γ′ qγ′Zj′

γ′β

]
∑

αβ qαε
∞
αβqβ

(3.118)

where Zαβ
j is the Born effective tensor, ε∞ is the macroscopic dielectric tensor, and Ω0 is the

volume of the cell.

Because DFPT does not compute the intensities, we utilize the open source python

package Phonopy (Togo et al., 2023; Togo, 2023). The package uses an interface that includes

VASP input files and require the converged unit-cell structure, calculation of force constants

from DFPT, the Born effective tensor, and dielectric tensor. Phonopy efficiently produces

all eigen-displacements around the Γ-point in the form of separate POSCAR files, in which

the ground state energies of each eigen-displacement are computed to determine the Born

effective tensor and dielectric of the respective eigen-displacement. The number of files

produces is dependent on the number of atoms and the unit cell space group symmetry.

The Infrared (IR) intensities are computed from eigen-displacements around the Γ-point,

where the atom’s change in polarizability with respect to atomic displacement is captured

by the Born effective-charge tensors (Giannozzi and Baroni, 1994):

IIR(s) =
∑
α

∣∣∣∣∣∑
jβ

Zj
αβ

W(s, j)
√
mj

∣∣∣∣∣
2

(3.119)

where W(s,j) is the eigenvector of the dynamical matrix corresponding to mode s.

The Raman intensities are computed from the change in the polarizability tensor α along

the mode eigenvectors in terms of the macroscopic high-frequency dielectric constant (Skelton

et al., 2017), via a central finite-difference scheme:

IRaman ∝ ∂α

∂Q(s)
≡ ∂ε∞

∂Q(s)
≈ ∆ε∞

∆Q(s)
(3.120)

IRaman,αβ(s) =
Ω

4π

[
−1

2

ε∞αβ(−s)
∆Q(s)

+
1

2

ε∞αβ(+s)

∆Q(s)

]
(3.121)
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whereQ is the normal-mode coordinate at the Γ-point and is defined by u(s, j) = Q(s)W(s, j)/
√
mj,

where u(s, j) is the atomic displacement. The un-polarized Raman intensity takes the form:

IRaman = 45

[
1

3
(Ixx + Iyy + Izz

]2
+

7

2

[
(Ixx − Iyy)

2 + (Ixx − Izz)
2 + (Iyy − Izz)

2 + 6(I2xy + I2xz + I2yz)
]
.

(3.122)

with subscripts representing the directions in Cartesian coordinates.

3.8 Electronic Spin Transition

Here, I will be discussing the electronic spin transition of Fe in the framework of crystal field

theory where the geometry of the ligands plays a large role. It is important to note here

that crystal field theory is typically used to discuss breaking of degenerate electron orbital

states for molecular physics purposes. For simplicity, it is the model I will be using to discuss

electronic spin transitions in this work.

In crystalline ε-FeOOH and pyrite-FeOOH, the Fe3+ ion assumes an octahedral envi-

ronment with 6 surrounding O2- ligands (Figure 3.6). The negatively charged ligands are

aligned with the 3dz2 and 3dx2−y2 orbitals (eg states) of the Fe atoms and thus an increased

repulsion occurs relative to the other d -orbitals (t2g states), causing an energy separation or

splitting, ∆0.

The distribution of the 3d electrons in Fe3+ is controlled by two opposing tendencies

(Burns, 1993): (1) The repulsion and exchange interactions between the electrons causes

distribution over as many of the 3d -orbitals as possible with parallel spins. Otherwise known

as Hund’s rule of spin multiplicity and the Pauli exclusion principle (Pauli, 1925a), where

empty sub-shells will be preferentially filled and must each contain one electron of opposite

spin before other orbitals in the same sub-shell are filled. (2) The Aufbau principle. Following

the Aufbau principle, the electrons in Fe3+ will fill the sub-shells of the lowest available
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Figure 3.6: Orientation of ligands and d -orbitals of a Fe3+ ion in an octahedral environment,

modified from (Burns, 1993). Oxygen atoms (ligands) shown in red. (Left): Octahedral

environment with respect to Cartesian coordinates. (Right) The x-y plane of an Fe3+ ion

in an octahedral crystal field. The dxy-orbital is in blue and the dx2−y2-orbital is shown in

violet.

energy first and then subsequently filling the higher energy sub-shells. These two opposing

tendencies lead to a high-spin and low-spin electronic configuration in Fe3+ ions.

In the high-spin state of an Fe3+ ion, all five valence electrons will singly occupy each d -

orbital due to the energy separation ∆0 being low enough. As pressure increases, compression

drives the physical distance between the ligands to decrease, resulting in a greater repulsion

and a larger energy separation between the eg and t2g states. As a consequence, the electrons

disobey Hund’s rule and preferentially occupy and pair up in the t2g states first before

occupying the eg states (Figure 3.7). This configuration is known as the low-spin state and

is seen experimentally in the form of a volume collapse in many published studies.
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Figure 3.7: The high-spin and low-spin electronic configuration of an Fe3+ ion driven by

compression.

3.9 Two-Phase Systems

A large portion of the work in this thesis involves investigating the chemical reactions at the

interface of the Earth’s core and mantle. To do this, we set up a two-phase system where

we juxtapose two homogeneous phases and allow them to react with one another. In this

section, I will describe the set up of the simulations, quantify reaction that occurs in the

simulation, and review the corresponding thermodynamics to construct a phase diagram.

3.9.1 Initial Conditions

The two-phase simulations are initiated as domains of pure core material and pure mantle

material joined at planar interfaces. We choose to represent the core with an Fe-liquid and

the mantle with a pure MgO-liquid phase or pure MgSiO3-liquid phase. For simplicity, I will
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choose MgO as the mantle phase to describe the interface set up.

We prepare the initial condition by first performing homogeneous simulations to ensure

that the Fe-liquid and the MgO-liquid initially have the same pressure, temperature, and

volume. In these homogeneous simulations, we first form a liquid phase by melting at 10,000

K for 5-10 ps before cooling to 6000 K and equilibrating for another 10 ps. We examined two

different regimes for which we chose the number density such that the equilibrated pressure

was 60 GPa at 6000 K. During the course of the two phase simulations the system responds

by establishing a dynamic equilibrium in which the composition of the two coexisting phases

is stationary.

3.9.2 Two-Phase Interfaces

We quantify the compositions of the two coexisting phases in two ways following the work of

Xiao and Stixrude (2018): (1) A 1D density profile normal to the interface (Widom, 1982)

and (2) A coarse grained density field (Willard and Chandler, 2010).

3.9.2.1 Widom Hyperbolic Tangent Method

We define the one-dimensional density profile of an atom type (Mg, Fe, O) in the direction

normal to the interface (z)

ρ(z) = ⟨ρ(z, t)⟩ (3.123)

where the angle brackets represent the time-average and

ρ(z, t) =
∑
i

δ(z − zi(t)) (3.124)

where zi(t) is the i
th particle’s position at time t along the z axis.

We find that the one-dimensional density profile follows the expected hyperbolic tangent

form:
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ρ(z) = ρ2 +
ρ1 − ρ2

2

2∑
j=1

(−1)j tanh
(z − z1)− nint(z − z1) + (−1)jw

δ
(3.125)

where ρ1 is the number density of an atom type (Fe, Mg, or O) in the phase whose center of

mass is located at scaled coordinate z1, w is the half-width of the phase, ρ2 is the number

density of that atom type in the other phase, δ is the width of the interface, the nint

function accounts for periodic boundary conditions, and the sum accounts for the presence

of two interfaces. An example of a fit of this form to our results is shown in Figure 3.8.

Determination of the density profile (Eq. 3.123, 3.124) requires binning and can lead

to relatively poor statistics for feasible run duration. I have therefore also explored an

alternative method for computing the density profile, which uses the interatomic forces.

Recalling the force-based estimators from the RDF, we can apply a similar methodology to

the 1D density profile (Coles et al., 2021). To compute the 1D density from the force field

method, consider the force density:

∇ρ(r) = β

〈∑
i

δ(r− ri)fi

〉
(3.126)

where ∇ is the gradient operator, ri is the position of the particle i, δ is the Dirac delta

function, β = 1/kBT , and fi is the force acting on atom i. The density can be obtained

by integrating the force density from either side of the simulation cell, leading to the two

estimators:

∆ρ0(z) = ⟨∆ρ̂λ=0(z)⟩ =
〈
1

S

∑
i

H(z − zi)βfz,i

〉
(3.127)

∆ρ1(z) = ⟨∆ρ̂λ=1(z)⟩ =
〈
1

S

∑
i

H(zi − z)βfz,i

〉
(3.128)

where H is the Heaviside function. The integration constant is determined from the average

density ρ0
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ρα(z) = ∆ρα(z)−
∫
∆ρα(z)dz

L
+
Nα

V
(3.129)

where L is the length along the z axis, Nα is the total number atom type α, and V is

the volume of the system. Following the general expression for combining estimators from

equations 3.89 and 3.90, we can obtain the optimal expression for the 1D density profile

without the need for any binning (Figure 3.8).

Figure 3.8: Comparison of number density calculation methods for discrete binning from

equation 3.124 (left) versus the force field method from equation 3.89 (right) of Fe-MgSiO3

at 5000 K, 57 GPa, and 1356.79 Å3. The dotted lines are best fits determined by fitting

equation 3.125.

Once the density of each atom types in each phase (Fe-rich or Fe-poor) has been deter-

mined, computing the respective concentrations in mol % and/or wt % is straightforward.

For example, the mol % of MgO species in the Fe-rich or Fe-poor phase follows:

xMgO =
1
2
(ρMg + ρO)

1
2
(ρMg + ρO) + ρFe

× 100% (3.130)

from which then the compositions of each phase can be determined.
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3.9.2.2 Willard and Chandler Method

In the second approach following Willard and Chandler (2010), we first define a coarse-

grained density field by convolving atomic positions with a Gaussian:

ρ̄(r⃗, t) =
∑
i

(2πξ2)−3/2 exp
[
− (r⃗ − r⃗i)

2 /2ξ2
]
, (3.131)

where r⃗i is the position of atom i, the sum is over the Fe atoms, and ξ is the coarse-graining

length, which we take to be 2.4 Å. The interface, s, is located at every time step such that:

ρ̄(s, t) = c (3.132)

where the density of the interface c is set to approximately 1/2 the bulk density of the

Fe atoms. The interfaces determined in this way are shown in Figure (show figure). The

time-averaged interface is planar and represents the Gibbs dividing surface.

With this definition of the interface, we can now assign each atom to one of the two

phases. The proximity of each atom to the interface is:

ai(t) = {[s− ri(t)] · n(t)}|s(t)=s∗i (t)
(3.133)

where s∗i (t) is the point on s(t) nearest to ri(t) and n(t) is the unit vector normal to the

interface in the direction of the local density gradient ∇ρ̄(r, t) r=s∗(t). For definiteness and

without loss of generality, we take the value of ai to be positive if atom i is on the Fe-poor

side of the interface and negative if on the Fe-rich side. We can then count how many

atoms of each type exist in each of the two phases at every time step of the simulation. In

performing this count, we exclude those atoms in the interfacial region, for which |ai|< δ.

Then, similarly to the density profile determined by the (Widom, 1982) method, we can

determine the compositions of each phase.
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3.9.3 Two-Phase Phase Diagrams

A phase diagram of the two co-existing phases can be constructed independently from two-

phase interface methods discussed above. We can relate the compositions of the two coexist-

ing phases by setting the chemical potentials of each phase, µA and µB, equal to each other

such that:

µA = µB ≡ W (1− xA)
2 +RT lnxA = Wx2A +RT ln(1− xA) (3.134)

whereW is an interaction parameter (to be discussed below), R is the universal gas constant,

and xA + xB = 1. Note: I will refer to phase A as the MgO phase. Equation 3.134 can be

rearranged such that:

xMgO

1− xMgO

= exp

[
−W (P, T )(1− 2xMgO)

RT

]
(3.135)

in which a root finding algorithm is implemented to solve for xMgO. To computed the

interaction parameter W , homogeneous MD simulations at intermediate compositions on

the phase A and B join are performed. The enthalpy H, the volume V , and the entropy S

using the 2PT method are determined. We find that the results are well represented by a

symmetric regular solution with excess quantities:

∆Hex = WHxMgO(1− xMgO) (3.136)

∆Sex = WSxMgO(1− xMgO) (3.137)

∆Vex = WV xMgO(1− xMgO) (3.138)
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and are the excess enthalpy, entropy, and volume of mixing. Wi are the interaction param-

eters, and xMgO is the composition. Combining the three interaction parameters leads us

to:

W (P, T ) = WH − TWS + PWV (3.139)

which can be substituted into equation 4.5. The critical temperature, above which a single

phase exists is:

TC =
WH + PWV

2R +WS

(3.140)

so that dTC/dP = WV /(2R +WS).

We find that determining the solvus closure temperature from the homogeneous MD

simulations agrees very well with the results from the two-phase simulations, and leads to

an independent method of determining the coexistence of two-phases by from the energetics

of mixing.
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CHAPTER 4

Miscibility of MgO in Liquid Iron

4.1 Introduction

Lithophile elements have very limited solubility in Earth’s core today. However, the chem-

ical interaction between core and mantle in the early Earth may have been more extensive

(Chidester et al., 2022a; Badro et al., 2016; Hirose et al., 2017). Higher temperatures in

the early Earth, due to accretional energy, and increased radioactive heat production, may

have lead to much greater lithophile element solubility in the core. Lithophile elements may

therefore serve as tracers of processes occurring during the hottest portions of Earth’s his-

tory. Super-Earths are expected to have much higher temperatures in their interiors than

Earth and it is possible that lithophile element solubility in the Fe-rich cores of such bodies

is more extensive than in Earth (Stixrude, 2014). The temperature in the interiors of ter-

restrial planets early may be sufficiently high that oxide and metals are completely miscible,

forming a single homogeneous liquid (Walker et al., 1993; Wahl and Militzer, 2015). Such a

situation may have existed in portions of the earliest Earth, and may exist in the interiors

of super-Earths.

Hindering our knowledge of lithophile element solubility in metallic cores is the lack of a

clear picture of the chemical reactions involved. For example, it is not clear whether lithophile

cations should be viewed as exchanging with Fe, a picture which is used to understand the

partitioning of moderately siderophile elements (Wood, 2008), or dissolving as an oxide in

the metal (Badro et al., 2018). These two pictures have contrasting implications for how we
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view the electronic structure and bonding of lithophile elements in the metal.

A better understanding of lithophile solubility in the core is also important for testing

a model of the generation of Earth’s earliest magnetic field. Paleomagnetic evidence shows

that the existence of Earth’s field extends back to at least 3.5 Ga (Biggin et al., 2009) and

possibly earlier (Tarduno et al., 2015), but how this field was produced prior to onset of

inner core growth at 0.5-1.0 Ga (Labrosse, 2003), is unclear. It has been proposed that

exsolution of lithophiles upon cooling of the core, and in particular Mg, may have driven

the early dynamo (O’Rourke and Stevenson, 2016; O’Rourke et al., 2017; Badro et al., 2018;

Wilson et al., 2022). However, the rate of exsolution of lithophiles on cooling is still poorly

constrained.

To address these issues, we explore the interaction between the most abundant lithophile

component (MgO) and Fe metal over a wide range of pressure and temperature that encom-

passes their complete miscibility and the conditions expected during the lithophile exsolution

that may have driven the early magnetic field. We perform two-phase simulations, which

allow us to determine the way in which lithophile elements are incorporated in the metal,

to quantify the composition of the two coexisting phases (Fe-rich and oxide-rich), their

structure, and bonding. To provide additional constraints on the phase diagram and to

gain additional insight core-mantle reaction, we also perform a series of homogeneous phase

calculations to quantify the energetics of mixing, which confirm that the MgO-Fe system

displays remarkably simple, symmetric regular solution behavior.

4.2 Theory

Our two-phase simulations are initiated as domains of pure Fe liquid and pure MgO liquid

joined at planar interfaces (Fig. 4.1 left). During the course of the two phase simulations the

system responds by establishing a dynamic equilibrium in which the composition of the two

coexisting phases is stationary (Fig. 4.1 center). We quantify the compositions of the two
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coexisting phases in two ways (Xiao and Stixrude, 2018). First, we use the one-dimensional

density profile normal to the interface, which we find follows the expected hyperbolic tangent

form (Widom, 1982):

ρ(z) = ρ2 +
ρ1 − ρ2

2

2∑
j=1

(−1)j tanh
(z − z1)− nint(z − z1) + (−1)jw

δ
(4.1)

where ρ1 is the number density of an atom type (Fe, Mg, or O) in the phase whose center of

mass is located at scaled coordinate z1, w is the half-width of the phase, ρ2 is the number

density of that atom type in the other phase, δ is the width of the interface, the nint

function accounts for periodic boundary conditions, and the sum accounts for the presence

of two interfaces. An example of a fit of this form to our results is shown in Figure 4.1

(right).

Second, we use the approach of (Willard and Chandler, 2010). Define a coarse-grained

density field by convolving atomic positions with a Gaussian

ρ̄(r, t) =
∑
i

(2πξ2)−3/2 exp
[
− (r− ri)

2 /2ξ2
]
, (4.2)

where ri is the position of atom i, the sum is over the Fe atoms, and ξ is the coarse-graining

length, which we take to be 2.4 Å. We locate the interface s at every time step such that

ρ̄(s, t) = c (4.3)

where we set the density of the interface c to approximately 1/2 the bulk density of the Fe

atoms. The interfaces determined in this way are shown in Figure 4.1 (left, center). The

interface remains quasi-planar throughout the course of the simulation, with the magnitude

of fluctuations of the interface related to the surface tension (Buff et al., 1965). The time-

averaged interface is planar and represents the Gibbs dividing surface.
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With this definition of the interface, we can now assign each atom to one of the two

phases. The proximity of each atom to the interface is

ai(t) = {[s− ri(t)] · n(t)}|s(t)=s∗i (t)
(4.4)

where s∗i (t) is the point on s(t) nearest to ri(t) and n(t) is the unit vector normal to

the interface in the direction of the local density gradient ∇ρ̄(r, t) r=s∗(t). For definiteness

and without loss of generality, we take the value of ai to be positive if atom i is on the

Fe-poor side of the interface and negative if on the Fe-rich side. We can then count how

many atoms of each type exist in each of the two phases at every time step of the simulation.

In performing this count, we exclude those atoms in the interfacial region, for which |ai|< δ.

We gain additional insight into our system by performing homogeneous molecular dy-

namics simulations at intermediate compositions on the MgO-Fe join. From these simula-

tions, we determine the enthalpy H, the volume V , and the entropy S using the two-phase

thermodynamic (2PT) method (Desjarlais, 2013; Wilson et al., 2021). We find that our

results are well represented by a symmetric regular solution, for which the excess quantities

∆Hex = WHxMgO(1− xMgO), ∆Sex = WSxMgO(1− xMgO), and ∆Vex = WV xMgO(1− xMgO)

are the excess enthalpy, entropy, and volume of mixing, Wi are the interaction parameters,

and xMgO is the composition, which we take to be xMgO = [MgO]/([MgO] + [Fe]). The

compositions of the two coexisting phases are then related by

xMgO

1− xMgO

= exp

[
−W (P, T )(1− 2xMgO)

RT

]
(4.5)

where W (P, T ) = WH–TWS + PWV , and R is the universal gas constant. The critical

temperature, above which a single phase exists is

TC =
WH + PWV

2R +WS

(4.6)
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Figure 4.1: Simulation snapshots of the two-phase system at 6000 K and 60 GPa. Fe

atoms are represented by tan spheres, Mg atoms by green spheres, and O by red spheres.

The interface is illustrated by the blue surface, separating Fe-rich and oxide-rich phases.

The initial configuration is on the left and an equilibrated snapshot at 16 ps in the center.

The rightmost figure shows the one-dimensional density determined from the equilibrated

portion of the simulation (16-18 ps) and the lines are fits to Eq. 5.1.

so that dTC/dP = WV /(2R +WS). The exsolution rate of MgO is then simply related

to the temperature derivative of equation 4.5.

While our focus is on liquid-liquid phase equilibria, and all of our simulations are in the

liquid state, for completeness, we can also use our results to estimate solid-liquid equilibria

as well. The MgO content of liquid coexisting with (pure) MgO crystal is governed by

W (1− 2xMgO) +RT lnxMgO +GMgO
liq = GMgO

xtl (4.7)

where GMgO
liq and GMgO

sol are the Gibbs free energy of pure liquid and solid MgO, respectively,
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and GMgO
xtl −GMgO

liq = ∆S(T −Tmelt). For the purpose of this calculation, we adopt values of

the temperature Tmelt and entropy ∆S of melting from the study of (Alfe, 2005).

We also use one phase simulations to derive additional insight into the structure of oxide-

metal fluids on the MgO-Fe join by computing the radial distribution function (McQuarrie,

1975), ionic charges, and bond lifetimes. We compute ionic charges according to the Bader

analysis (Tang et al., 2009; Sanville et al., 2007; Henkelman et al., 2006; Yu and Trinkle,

2011). The lifetime of each atom-pair is estimated from

τ =

∫ ∞

0

β(t)dt′. (4.8)

with bond auto-correlation function

β(t) =

〈
bij(t0) · bij(t0 + t)

bij(t0)2

〉
(4.9)

where bij(t) = 1 if a bond between atoms i and j exist at time t, and bij(t) = 0 otherwise.

We take the bond cutoff criteria to be the distance to the first minimum in the corresponding

radial distribution function.

4.3 Computation

All simulations are based on density functional theory, using the projector augmented wave

(PAW) method (Kresse and Joubert, 1999) as implemented in the Vienna ab initio Sim-

ulation Package (VASP) (Kresse and Furthmüller, 1996). We use the PBEsol generalized

gradient approximation (Perdew et al., 2008), which we have previously shown to yield ex-

cellent agreement with experiment in Fe-bearing oxides (Holmström and Stixrude, 2015).

To account for strong correlation, we use the +U method (Anisimov et al., 1997) with

U − J =2.5 eV (Holmström and Stixrude, 2015). We use PAW potentials of 14, 8, and 6

valence electrons of Fe, Mg, and O with core radii of 1.16, 1.06, and 0.82 Å, respectively.
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Our simulations are spin-polarized. In order to compare with previous results, which were

non-spin polarized, we also perform non-spin polarized simulations. We sample the Brillouin

zone at the Gamma point and use a plane-wave cutoff of 500 eV, which we find yields pres-

sure and energy convergence to within 0.5 GPa and 3 meV/atom, respectively. We assume

thermal equilibrium between ions and electrons via the Mermin functional (Mermin, 1965),

and thermodynamic averages are computed after discarding 20 % of the time steps to allow

for transients; uncertainties are computed via the blocking method (Flyvbjerg and Petersen,

1989).

We perform two-phase simulations in the canonical ensemble (constant NV T ) using a

Nóse-Hoover thermostat (Nosé, 1984b, 1991; Hoover, 1985; Frenkel and Smit, 2001) with a

time step of 1 fs for a duration of 10-25 ps. We prepare the initial condition by first performing

homogeneous simulations to ensure that the Fe liquid and the MgO liquid initially have the

same pressure, temperature, and volume. In the lower pressure regime, the volume of the

cell is 1162.83 Å3 and contains 31 MgO units and 55 Fe atoms, while in the higher pressure

regime, the volume of the cell is 910.12 Å3. In these isochoric simulations the pressure

increases linearly on heating: the pressure of equilibrated systems range from 55 GPa (5000

K) to 68 GPa (7000 K) in the lower pressure regime and from 135 GPa (5000 K) to 171 GPa

(9000 K) in the higher pressure regime.

For the homogeneous systems our simulations are in the NPT ensemble (Parrinello and

Rahman, 1980, 1981), with a Langevin thermostat (Allen and Tildesley, 2017; Hoover et al.,

1982; Evans, 1983), and a time step of 1 fs for 15 ps. These simulations were run at 60 GPa

and 10,000 K and consisted of 64 atoms comprising several compositions across the MgO-Fe

join. We derive the enthalpy and the volume from these NPT simulations. For the entropy,

we found that the NPT simulations were not appropriate as the Langevin thermostat biases

the velocity auto-correlation function. Therefore, once we determine the equilibrium volume

at a given pressure, we continue at that volume in the canonical ensemble for an additional

15 ps, from which we derive the absolute entropy using the two-phase thermodynamic (2PT)
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method (Desjarlais, 2013; Wilson and Stixrude, 2021).

4.4 Results

We find two coexisting phases in dynamic equilibrium each with a stationary composition:

one Fe-rich and one oxide-rich. In both phases, the concentration of Mg and O are equal

to each other, i.e. MgO behaves as a component at all pressure-temperature conditions

we investigated. Figure 4.1 shows the result of a typical simulation at 60 GPa and 6000

K, showing small, non-zero concentration of MgO in the Fe-rich phase and a nearly equal

concentration of Fe in the MgO-rich phase.

The concentration of MgO in the Fe-rich phase and the concentration of Fe in the MgO-

rich phase increase on heating (Fig. 4.2). The two phases become completely miscible at

a critical temperature of 7000 K at 68 GPa, and at 9000 K at 171 GPa. Our results are

consistent with symmetric regular solution behavior. We find good agreement with previous

experiments (Badro et al., 2018), but disagree with a previous theoretical study, which

found a significantly lower critical temperature (Wahl and Militzer, 2015). We attribute

the latter disagreement to the neglect of spin-polarization in the previous study. To test

the significance of spin-polarization, we also determined the phase diagram with non spin-

polarized simulations and find a significantly lower critical temperature, in better agreement

with (Wahl and Militzer, 2015).

We compute the phase diagram independently, from our determinations of the energetics

of mixing, and find excellent agreement with our two-phase simulations (Fig. 4.2). The

energetics of mixing show that immiscibility originates in a positive enthalpy of mixing, and

that the increase of the critical temperature with increasing pressure originates in a positive

volume of mixing (Fig. 4.3). The excess entropy of mixing is also positive and similar in

magnitude to the ideal entropy of mixing of MgO and Fe components. We confirm that

the Gibbs free energy of mixing is negative across the join at super-critical temperature,
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Figure 4.2: Phase diagrams in the low (bottom) and high (top) pressure regimes. Com-

position determined from equation 5.1 are in circles (orange = spin-polarized and blue =

non-spin polarized), and from the (Willard and Chandler, 2010) method in X’s. White sym-

bols represent previous studies: theoretical results from (Wahl and Militzer, 2015) in circles

and experimental data from (Badro et al., 2018) in triangles. The orange curve is the regular

symmetric solvus computed from equation 4.5. The gray lines represent the computed phase

diagram including the stability of crystalline MgO. The figures are labelled by the pressure

at 6000 K.
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consistent with our finding of a single homogeneous fluid in our two-phase simulations.

Figure 4.3: Energetics of mixing at 60 GPa and 10,000 K, showing the results of our

simulations (symbols) and symmetric regular solution fits (lines) for the enthalpy (green),

the entropy (red), and the volume (purple). We also compute the excess Gibbs free energy

of mixing ∆Gex = ∆Hex−T∆Sex+PVex (orange). The symmetric regular solution fits yield

WH = 240 ± 12.01 kJ/mol, WS = 26 ± 0.10 J/(K · mol), and WV = 1.3 ± 0.07 Å3/mol.

We compare with the ideal entropy of mixing assuming Fe and MgO as components (blue

solid line) and assuming Fe, Mg, and O as components (blue dashed line).

The exsolution rate increases with increasing temperature and decreases with increasing

pressure (Fig. 4.4). The exsolution rate is less than 2 x 10−5 K−1 at all temperatures

less than 5500 K. Our results at 60 GPa are similar in magnitude to previous experimental

results (Du et al., 2017; Badro et al., 2018). The study of (Badro et al., 2018) also find that

the exsolution rate increases with increasing temperature, albeit more gradually than what
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we find, while the study of (Du et al., 2017) find that the exsolution rate decreases with

increasing temperature.

The radial distribution function gives us additional insight into the microscopic inter-

actions between components. The radial distribution function of the mixed homogeneous

fluid (xMgO=0.6) at 10,000 K and 60 GPa, shows distinct peaks for Mg-O, Fe-O, and Fe-Fe

interactions. We compare these with the radial distribution functions computed for pure

Fe, and pure MgO fluids at the same conditions. We find that gMg−O and gFe−Fe are very

similar in the mixed and the pure fluids: in the mixed fluid, the first coordination shell is

slightly less distinct: the height of the first maximum in g(r) is slightly less and the first

minimum occurs at larger distances. The Mg-O coordination number in the mixed fluid is

much greater than that of the Fe-O coordination number (5.95 vs. 3.07). We find that bonds

within the first coordination shell have very short lifetimes: for example, in the mixed fluid,

the lifetime of Mg-O bonds is 155 fs, as compared with 60 fs for the vibrational period of

the TO mode in periclase at a similar pressure.

Ionic charges are similar in oxide-rich and Fe-rich phases (Fig. 4.6). The ionic charge

of Mg and Fe are the same within standard deviation in MgO-rich and Fe-rich phases,

while in the case of oxygen, the charge is slightly less negative in the Fe-rich phase (by 0.3).

Moreover, the ionic charges of the atoms are very similar to their values in the corresponding

pure phases (pure MgO or pure Fe).

4.5 Discussion

Previous studies leave uncertain the nature of the interaction between MgO and Fe, as

epitomized by the chemical reactions (Badro et al., 2018)

Dissolution: MgOoxide ⇌MgOmetal (4.10)
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Figure 4.4: Exsolution rate of MgO from the Fe-rich fluid at 60 GPa (orange) and 145 GPa

(red). Exsolution rates are compared with previous experimental studies from (Du et al.,

2017) (gray) and (Badro et al., 2018) (green). The dashed line represents the exsolution rate

that must be exceeded in order to produce a dynamo according to (O’Rourke et al., 2017).
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Figure 4.5: Radial distribution functions of the homogeneous fluid with xMgO=0.6 at 10000

K and 60 GPa (solid lines) compared with the same pair distributions in the pure phases

(dashed lines).

Dissociation: MgOoxide ⇌Mgmetal +Ometal (4.11)

Exchange: MgOoxide + Femetal ⇌ FeOoxide +Mgmetal (4.12)

The first views MgO as dissolving as a component in the metal phase. The second also in-

volves dissolution, but views Mg and O as separate, dissociated components once dissolved in

the metal. The third has also been widely used to understand the partitioning of moderately

siderophile elements between oxide and metal ((Wood et al., 2008; Wood, 2008)). Previous

experimental studies disagree on whether the exchange reaction, or the other two, can best

represent experimental measurements (Du et al., 2017; Badro et al., 2018; Chidester et al.,
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Figure 4.6: Mean values of the ionic charge for each atom type (Mg: green, O: red, Fe:

tan) in each of the two phases (closed: Fe-rich phase, open: MgO-rich phase) from our

two-phase simulation at 60 GPa, 6000 K, compared with their values in the corresponding

pure phases (pure MgO or pure Fe liquid) at the same conditions. Error bars indicate the

standard deviation in the value.

2022b). Previous theoretical studies have assumed that MgO is incorporated in Fe-rich liquid

as a component (Wahl and Militzer, 2015; Wilson et al., 2022).

Our results point towards the dissolution mechanism as the best representation of MgO-Fe

reaction. We find that MgO behaves as a component, with Mg and O concentrations equal

to each other in both oxide-rich and Fe-rich phases over the entire range of pressure and

temperature that we have considered, excluding the exchange mechanism. Our results favor

the dissolution mechanism over the dissociation mechanism. In the dissociation mechanism,

Mg and O are viewed as separate components, with implications for the ideal entropy of
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mixing. Whereas we find that the phase diagram is symmetric, consistent with mixing

between MgO and Fe components and the dissolution mechanism, ideal mixing among Mg,

O, and Fe, introduces asymmetry to the ideal entropy of mixing on the MgO-Fe join that is

inconsistent with our results (Fig. 4.3).

The dissolution mechanism does not imply covalent bonding between Mg and O, as

argued by (Badro et al., 2018). Indeed, we find no such bonding, with ionic Mg-O bonds

surviving for no more than two vibrational periods, and O atoms rapidly exchanging within

the first coordination shell of the Mg cation. Moreover, the ionic charges of Mg and O are

very similar in the metal and the oxide phases, indicating that Mg and O are still ionically,

rather than covalently bonded in the metal phase.

We find that the rate of MgO exsolution from the metal phase is insufficient to drive a

dynamo. Previous studies have argued that an exsolution rate of at least 2 x 10−5 K−1 is

required (O’Rourke et al., 2017). We find that the exsolution rate does not exceed this value

for temperature less than 5500 K. It is possible that the core produced a magnetic field when

the core temperature was as high as 5500 K, but cooling from this state would likely have

been very rapid and such a magnetic field very short-lived. We have investigated a simplified

chemical system and it is possible that the rate of exsolution of MgO in a multi-component

system may differ from what we find. However, experiments show that the activity of Mg

in the metal phase depends little on the presence of other elements. For example (Chidester

et al., 2022b) find ϵiMg = 0 for all elements i except for i = O, for which they find a

negative value, in accord with our finding of strong affinity Mg and O. On the other hand,

the same study found that the activity of MgO in the oxide phase does depend on the silica

concentration in the oxide phase, with a value of the interaction parameter WMgO−SiO2 that

is in excellent agreement with previous theoretical studies (de Koker et al., 2013).

An important issue related to exsolution of light elements that has received relatively

little attention is the pressure dependence of exsolution. The exsolution-driven dynamo

scenario envisions exsolution first occurring at the top of the core, and this is in accord
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with experimental findings that the pressure-dependence of exsolution is either weak or

undetectable (O’Rourke and Stevenson, 2016; Badro et al., 2018; Chidester et al., 2022b).

However, we find significant pressure dependence: dTC/dP = 24 K/GPa, which is much

greater than the expected adiabatic gradient in the core Γ = 7 K/GPa. If dTc/dP > Γ as we

find, then exsolution begins at the bottom of the core, the exsolution of light elements leads

to a stable stratification, and does not contribute to producing a dynamo (Landeau et al.,

2022). The origin of the apparent discrepancy between our results and experiment is not

clear. It is possible that experimental detection of pressure dependence is confounded by co-

variance with other experimental parameters together with pressure, such as temperature,

and bulk composition. It is also possible that the pressure dependence of exsolution is

diminished in systems that are more chemically rich than the simplified system that we have

focused on.

4.6 Conclusions

Lithophile element solubility in the core may have been much more extensive in the early

Earth when temperatures were hotter, or in Super-Earths, where the larger planetary size

may lead to much higher interior temperatures. The critical temperature that we find (7000

K at 60 GPa) means that complete miscibility of Fe and MgO cannot be excluded. By

examining the entire MgO-Fe join in the liquid state, we find remarkably simple behavior:

a symmetric regular solution between the two end-members. Our simulations favor the

dissolution picture of lithophile-Fe interaction, in which MgO is viewed as a component that

is not dissociated. Mg and O remain ions of near nominal charge in the metal liquid and

Mg-O bonds last for only a short time.

Our results do not support the notion that the early magnetic field was generated by

exsolution of MgO from the core. The rate of exsolution on cooling that we find is too small.

Moreover, we find that exsolution likely initiated at the bottom of the core, rather than the
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top, in which case exsolution would not have provided a driving force for fluid motions. Other

mechanisms for producing the Earth’s earliest field should be further explored, including the

exsolution of lithophiles other than Mg from the core, or a silicate dynamo (Stixrude et al.,

2020).
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CHAPTER 5

Complete Solubility of Rock and Iron at High Pressure

and Temperature

5.1 Introduction

The chemical interaction of the major planetary building blocks: rock and iron, set the first

order separation of terrestrial bodies into mantle and core. This interaction may be much

more extensive in the earlier, hotter portions of planetary evolution, and may impact our

understanding of the early generation of the magnetic field through subsequent exsolution

of lithophiles from the core, the origin of the light element in the core, and the partitioning

of iron, oxygen, and other major elements between mantle and core.

The partitioning of major siderophile and lithophile elements between metal and silicate

phases within the Earth is likely influenced by its accretionary and core formation history.

Moderately siderophile elements are commonly used to better understand the accretionary

stages of Earth’s history (Wood, 2008). However, recent studies suggest that the partitioning

of lithophile elements that typically occur in the silicate phases may be affected by core

formation processes at very high temperature and pressure conditions, causing them to also

partition in metal phases. High temperature and pressure partitioning in the early Earth

may lead to geochemical behavior that is very different from what is observed in the current

Earth. The amount of lithophile elements partitioned into the core may provide crucial

insights into the process of core formation for both terrestrial planets and exoplanets.

The composition of the Earth’s core can have a significant impact on important dynamic
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processes, such as the generation of an early dynamo. One proposed explanation of this

dynamo involves extensive chemical reactions between mantle and core materials, which

occur at high temperatures after the process of accretion. As the initially homogeneous

solution cools, an lithophile-rich phase exsolves providing a buoyancy force for the core

dynamo (O’Rourke and Stevenson, 2016; O’Rourke et al., 2017).

The interaction between molten rock and metal at the conditions of the early Earth are

still only incompletely known. While experiments have explored reactions between crystalline

bridgmanite and liquid iron, and between molten iron and silicate liquids, these experiments

have not explored the entire range of pressure and temperature conditions relevant (to 136

GPa, and > 4000 K) (Takafuji et al., 2005; Fischer et al., 2015; Chidester et al., 2022a).

Thus the solubility in the core of Si and O , which have been proposed as the predominant

light elements, and Mg, which has been proposed as the crucial constituent of an exsolution-

driven dynamo are poorly known. Crucially, the temperature at which rock and iron become

completely miscible is unknown.

Here, we advance our understanding of the chemical interaction between rock and iron

with ab initio molecular dynamics simulations of the MgSiO3-Fe system. This system rep-

resents a first order chemical model of the core-mantle boundary, capturing more than 80

% of the constituents of planetary rock and iron, respectively. We examine the equilibrium

compositions of the two phases as well as energetics of mixing and speciation. We explore the

solubility of the components of MgSiO3 in liquid iron at higher pressure up to the core-mantle

boundary and up to temperatures of complete miscibility.

5.2 Theory

Our two-phase simulations are initiated as domains of pure Fe liquid and pure MgSiO3

liquid joined at a planar interface. During the course of the two-phase simulations the

system responds by establishing a dynamic equilibrium in which the compositions of the two
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coexisting phases are stationary. We first quantify the compositions of the two co-existing

phases through a 1D density profile which follows the expected hyperbolic tangent form

(Widom, 1982):

ρ(z) = ρ2 +
ρ1 − ρ2

2

2∑
j=1

(−1)j tanh
(z − z1)− nint(z − z1) + (−1)jw1

δ
(5.1)

where ρ1 is the number density of an atom type (Fe, Mg, Si, or O) in the phase whose

center of mass is located at scaled coordinate z1, w1 is the half-width of the phase, ρ2 is the

number density of that atom type in the other phase, δ is the width of the interface, the nint

function accounts for periodic boundary conditions, and the sum accounts for the presence

of two interfaces. An example of a fit of this form to our results is shown in Figure 5.1.

In this definition of the interface, the functional form is fit to the 1D discrete density

profile:

ρ(z, t) =
∑
i

δ(z − zi(t)) (5.2)

where zi(t) is the i
th particle’s position at time t along the z axis. However, a problem with

the method from equation 5.2 requires binning to compute the Dirac delta function, which

can result in poor statistical sampling along the 1D density profile. I have therefore explored

a method by Coles et al. (2021) as an alternative way to calculate the 1D density profile,

which involves force-based estimators with a reduced variance (Coles et al., 2021). First, a

general expression for combining estimators is proposed as:

Eλ(x) = (1− λ)E0(x) + λE1(x) = E0(x) + λ∆(x) (5.3)

where E0(x) and E1(x) are estimators of the same property that depend on some parameter

x (i.e., distance or position), ∆(x) = E1(x)−E0(x), and Eλ denotes another valid estimator

of the same property, where the expectation value of Eλ(x) is the same as that of E0(x)
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and E1(x). However,the variance of Eλ is a quadratic function of λ, where var(Eλ(x)) =

⟨[Eλ(x) − ⟨Eλ(x)⟩]2⟩. Therefore, one can find for each x a combination that minimizes the

variance:

λ∗(x) = −cov(E0(x),∆(x))

var(∆(x))
= 1− cov(E1(x),∆(x))

var(∆(x))
(5.4)

which involves the covariances cov(A,B) = ⟨(A − ⟨A⟩)(B − ⟨B⟩)⟩ and provides an optimal

estimator E∗
λ(x) for each x. In practice, the expectation values ⟨En(x)⟩ and covariances

entering equation 5.4 are determined from two given estimators, which then leads to the

corresponding optimal estimator E∗
λ(x) from equation 5.3.

To compute the 1D density from the force field method, consider the force density:

∇ρ(r) = β

〈∑
i

δ(r− ri)fi

〉
(5.5)

where ∇ is the gradient operator, ri is the position of the particle i, δ is the Dirac delta

function, β = 1/kBT , and fi is the force acting on atom i. The density can be obtained

by integrating the force density from either side of the simulation cell, leading to the two

estimators:

∆ρ0(z) = ⟨∆ρ̂λ=0(z)⟩ =
〈
1

S

∑
i

H(z − zi)βfz,i

〉
(5.6)

∆ρL(z) = ⟨∆ρ̂λ=1(z)⟩ =
〈
1

S

∑
i

H(zi − z)βfz,i

〉
(5.7)

where H is the Heaviside function. The integration constant is determined from the average

density

ρα(z) = ∆ρα(z)−
∫
∆ρα(z)dz

L
+
Nα

V
(5.8)
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where L is the length along the z axis, Nα is the total number atom type α, and V is

the volume of the system. Following the general expression for combining estimators from

equations 5.3 and 5.4, we can obtain the optimal expression for the 1D density profile without

the need for any binning (Figure 5.1).

Figure 5.1: Comparison of number density calculation methods for discrete binning from

equation 5.2 (left) versus the force field method from equation 5.3 (right) at 5000 K, 57 GPa,

and 1356.79 Å3. Tanh fits to both distributions shown in dotted lines.

In the second approach following Willard and Chandler (2010), we first define a coarse-

grained density field by convolving atomic positions with a Gaussian:

ρ̄(r, t) =
∑
i

(2πξ2)−3/2 exp
[
− (r− ri)

2 /2ξ2
]
, (5.9)

where ri is the position of atom i, the sum is over the Fe atoms, and ξ is the coarse-graining

length, which we take to be 2.4 Å. The interface, s, is located at every time step such that:

ρ̄(s, t) = c (5.10)

where the density of the interface c is set to approximately 1/2 the bulk density of the Fe
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atoms. The interfaces determined in this way are shown in Figure 5.2. The time-averaged

interface is planar and represents the Gibbs dividing surface.

With this definition of the interface, we can now assign each atom to one of the two

phases. The proximity of each atom to the interface is:

ai(t) = {[s− ri(t)] · n(t)}|s(t)=s∗i (t)
(5.11)

where s∗i (t) is the point on s(t) nearest to ri(t) and n(t) is the unit vector normal to the

interface in the direction of the local density gradient ∇ρ̄(r, t) r=s∗(t). For definiteness and

without loss of generality, we take the value of ai to be positive if atom i is on the Fe-poor

side of the interface and negative if on the Fe-rich side. We can then count how many

atoms of each type exist in each of the two phases at every time step of the simulation. In

performing this count, we exclude those atoms in the interfacial region, for which |ai|< δ.

Then, similarly to the density profile determined by the (Widom, 1982) method, we can

determine the compositions of each phase.

5.3 Computation

All simulations are based on density functional theory, using the projector augmented wave

(PAW) method (Kresse and Joubert, 1999) as implemented in the Vienna ab initio Sim-

ulation Package (VASP) (Kresse and Furthmüller, 1996). We use the PBEsol generalized

gradient approximation (Perdew et al., 2008), which we have previously shown to yield ex-

cellent agreement with experiment in Fe-bearing oxides (Holmström and Stixrude, 2015;

Insixiengmay and Stixrude, 2023). To account for strong correlation, we use the +U method

(Anisimov et al., 1997) with U −J = 2.5 eV (Holmström and Stixrude, 2015). We use PAW

potentials of 14, 8, 4, and 6 valence electrons of Fe, Mg, Si, and O with core radii of 1.16,

1.06, 1.312, and 0.82 Å, respectively. Our simulations are spin-polarized. We sample the

Brillouin zone at the Gamma point and use a plane-wave cutoff of 500 eV, which we find
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yields pressure and energy convergence to within 1 GPa and 5 meV/atom, respectively. We

assume thermal equilibrium between ions and electrons via the Mermin functional (Mermin,

1965), and thermodynamic averages are computed after discarding 20 % of the time steps

to allow for transients; uncertainties are computed via the blocking method (Flyvbjerg and

Petersen, 1989).

We perform two-phase simulations in the canonical ensemble (constant NV T ) using a

Nóse-Hoover thermostat (Nosé, 1984b, 1991; Hoover, 1985; Frenkel and Smit, 2001) with

a time step of 1 fs for a duration of 15-30 ps. We prepare the initial condition by first

performing homogeneous simulations to ensure that the Fe liquid and the MgSiO3 liquid

initially have the same pressure, temperature, and volume. In the lower pressure regime, the

volume of the cell is 1162.83 Å3 and contains 16 MgSiO3 units and 68 Fe atoms. In these

isochoric simulations the pressure increases linearly on heating: the pressure of equilibrated

systems range from 48 GPa (4000 K) to 77 GPa (7000 K).

To gain further insight into our results, we also perform a series of homogeneous simula-

tions in theNPT ensemble (Parrinello and Rahman, 1980, 1981), with a Langevin thermostat

(Allen and Tildesley, 2017; Hoover et al., 1982; Evans, 1983), and a time step of 1 fs for 15

ps. We explore properties of homogeneous fluids on the joins Fe-MgO, Fe-SiO2, MgO-SiO2,

and Fe-MgSiO3. These simulations were run at 60 GPa and 5000-7000 K depending on the

join. We derive the enthalpy and the volume from these NPT simulations. For the entropy,

we found that the NPT simulations were not appropriate as the Langevin thermostat biases

the velocity auto-correlation function. Therefore, once we determine the equilibrium volume

at a given pressure, we continue at that volume in the canonical ensemble for an additional

15 ps, from which we derive the absolute entropy using the two-phase thermodynamic (2PT)

method (Desjarlais, 2013; Wilson and Stixrude, 2021).
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5.4 Results

We find two coexisting phases in dynamic equilibrium each with stationary compositions:

one Fe-rich and one oxide-rich. Figure 5.2 shows the result of a typical simulation at 60 GPa

and 5000 K, showing small, non-zero concentration of Si, O and Mg in the Fe-rich phase. At

low temperatures, we find few Mg atoms in the Fe-rich region, whereas most of the Si and

O atoms readily go into the Fe-rich phase with few remaining in the oxide-rich region.

The concentration of Si, O and Mg in the Fe-rich phase increase on heating (Figure 5.3).

At the lowest temperatures, Si is much more soluble in the metal phase than either Mg or O.

With increasing temperature, increasing amounts of O, and finally Mg enter the metal phase

until the two phases become completely miscible at a temperature of 7000 K and 60 GPa.

The critical temperature in the silicate-iron system is very similar to that in the MgO-Fe

system.

We compute the energetics of mixing from our one-phase homogeneous simulations and

show that immiscibility originates in a positive enthalpy of mixing (Figure 5.4). We find that

the lowest enthalpy of mixing occurs for the Fe-SiO2 join, the highest enthalpy of mixing

occurs for the Fe-MgO join, and the Fe-MgSiO3 join placing in between. The lower enthalpy

of mixing for Fe-SiO2 agrees with our finding that Si and O are more miscible in the metal

phase than Mg.

5.5 Discussion

Our results show that Si and O are readily dissolved into the metal phase at all temperatures,

and initially enter the metal-rich portion as a component of nearly SiO composition at low

temperatures. At low temperatures, the composition of the oxides in the metal-rich region

is comprised of approximately 10 mol % Mg. On heating, Mg begins to go into the metal

phase with increasing amounts of Si and O. Comparison to our Fe-MgO simulations and
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Figure 5.2: Simulation snapshots of the two-phase system at 5000 K and 60 GPa. Fe atoms

are represented by tan spheres, Mg atoms by green spheres, O atoms by red spheres, and

Si atoms by blue spheres. The interface is illustrated by the blue surface, separating Fe-rich

and oxide-rich phases. The initial configuration is on the left and an equilibrated snapshot

at 15 ps in the center. The rightmost figure shows the one-dimensional density determined

from the equilibrated portion of the simulation (10 - 20 ps) and the lines are fits to equation

5.1.

experimental results at similar pressure and temperature conditions show that the amount

of Mg in the metal-rich region consists of only a few mol % (Badro et al., 2016, 2018). Thus,

the differing results point towards the possibility of increased Mg in the metal-rich regime

due to the presence and interactions with SiO.

We compute the interaction parameters from one-phase homogeneous simulations to com-

pare differing Fe-oxide joins. Comparing the enthalpy of mixing of Fe-SiO2, Fe-MgO, and
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Figure 5.3: Mg-Si-O ternary phase diagram in mol % determined by the two-phase simu-

lations. Circles represent the species in the Fe-rich region, squares represent species in the

Fe-poor region, and the yellow star represents MgSiO3 composition. The color bar indicates

temperatures at which the two-phase simulations are performed at.

Fe-MgSiO3 reveals that Fe-SiO2 is more readily dissolved in the metal phase at high temper-

atures, followed by Fe-MgSiO3 and Fe-MgO. Our homogeneous and two-phase simulations

thus support the notion that Si and O are important light elements in the core. As in my

study of the Fe-MgO system, we find that MgO is soluble in the metal phase, but only in

small amounts at temperatures below 5000 K. The amount of MgO dissolved in the metal

phase and the temperature deendence of the solubility are too small too allow for MgO to
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by our one phase homogeneous simulations.
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be a primary driver of an exsolution dynamo.

From our 1D density profiles, we find small amounts of Fe, and a depletion of Si and O,

in the oxide-rich phase, pointing towards a depletion of the mantle. In this context, we note

that silica-depleted compositions have been suggested as the origin of the unusual properties

of ULVZ (Wicks et al., 2010), and our results suggest that depletion may be a consequence

of core-mantle reaction.

5.6 Conclusion

We find that complete miscibility of Fe-MgSiO3 at 60 GPa occurs at 7000 K. Temperatures as

high as this may have been present in the earliest Earth, for example immediately following

the giant impact. The possibility of complete miscibility between rock and metal should be

considered in models of the early thermal and chemical evolution of terrestrial planets.
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CHAPTER 6

Hydrogen Bond Symmetrization and High-Spin to

Low-Spin Transition of ε-FeOOH at the Pressure of

Earth’s Lower Mantle

6.1 Introduction

Water is an important component in the mantle, which even in small concentrations can

have a large effect on properties such as the melting temperature and viscosity, and thus on

thermal evolution. The amount of water stored in the largest part of the mantle, the lower

mantle, is still uncertain. This is partly due to the relative inaccessibility of this region, for

example few physical samples from the lower mantle are known, in contrast to the increasing

number of diamond inclusions and other samples from the transition zone (Pearson et al.,

2014; Tschauner et al., 2018). Our uncertainty about the water content in the lower mantle

is also due to a comparative lack of understanding of hydrogen bonding at high pressure: in

what phases is water crystallographically stored, and what is the effect of water on physical

properties at high pressure?

Water storage may be fundamentally different in the lower mantle than in the transition

zone. In the transition zone, copious amounts of water may be stored in nominally anhydrous

minerals, including wadsleyite and ringwoodite, which have water storage capacities exceed-

ing 1 wt.% (Hirschmann, 2006). In the lower mantle, however, the water storage capacity

of the major phases (bridgmanite, ferropericalse, davemaoite), while still uncertain, appears
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not to exceed 1200 ppm (Litasov and Ohtani, 2007; Fu et al., 2019; Chen et al., 2020; Liu

et al., 2021). If the lower mantle has a water concentration much higher than this, the water

must be stored in hydrous phases, i.e. phases in which water is a stoichiometric component.

Phase H is the hydrous phase that is found to be stable in mantle-like whole rock compo-

sitions with excess H2O (Walter et al., 2015) over most of the lower mantle pressure regime

(55-125 GPa). These experiments were limited in not containing iron oxide as a component,

but other studies have found stable solid solution of phase H encompassing essentially the

entire ternary (Mg,Fe,Al)(Si,Fe,Al)(OOH)2 (Nishi et al., 2019), complementing studies of

binary joins in this compositional space (Ohira et al., 2019, 2021; Satta et al., 2021).

Our focus here is on the ferric end-member of phase H: ε-FeOOH. ε-FeOOH has an

orthorhombic structure with P21nm space group that is stable on its own composition from

7 GPa (where it transforms from the lower pressure, goethite phase) to 70 GPa, where it

transforms to a pyrite-structured phase (Gleason et al., 2008; Nishi et al., 2017; Suzuki,

2017; Hu and Liu, 2021b). The structure is an orthorhombically distorted rutile derivative

with edge- and corner-sharing FeO6 octahedra linked by hydrogen bonds (O-H···O) that are

asymmetric at low pressure (Pernet et al., 1975; Bolotina et al., 2008). The anhydrous sub-

lattice (arrangement of Fe and O atoms) is identical to the CaCl2 high-pressure polymorph

of stishovite.

Under pressure ε-FeOOH displays rich behavior undergoing two transitions: hydrogen

bond symmetrization and a high-spin to low-spin transition. The ε-FeOOH phase thus

serves as a model system for studying two transitions that are thought to be important in

many mantle phases at high pressure. Hydrogen bond symmetrization occurs in a variety

of materials at high pressure, including phase H (Tsuchiya and Mookherjee, 2015), phase

D (Tsuchiya et al., 2005), and H2O (Holzapfel, 1972; Aoki et al., 1996; Meier et al., 2018).

The high-spin to low-spin transition occurs in a wide variety of ferrous and ferric oxides

and silicates (Lin et al., 2005; Tsuchiya et al., 2006; Gleason et al., 2008; Badro, 2014; Liu

et al., 2014; Holmström and Stixrude, 2015). A unique feature of ε-FeOOH is that the
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two transitions (hydrogen bond symmetrization and high-spin to low-spin transition) are

thought to occur at similar pressures, and the nature of possible interaction between these

two transitions, i.e. whether one drives the other, is still uncertain (Gleason et al., 2013; Xu

et al., 2013; Thompson et al., 2020).

Hydrogen bond symmetrization occurs as the O-O distance of O-H···O decreases, while

the O-H bond length increases, leading to a linear symmetric O-H-O configuration and

promotion of the space group symmetry to Pnnm. The symmetrization transition has been

widely studied in the Al-end member of phase H (δ-AlOOH) (Tsuchiya et al., 2008b; Tsuchiya

and Tsuchiya, 2009; Sano-Furukawa et al., 2018) and has been predicted to occur in the

MgSi- end-member (Tsuchiya and Mookherjee, 2015; Solomatova et al., 2022). The pressure

at which symmetrization occurs in ε-FeOOH is uncertain as neutron diffraction studies have

not yet been performed on this phase at high pressure, and previous theoretical studies

focused on the symmetrically bonded structure (Thompson et al., 2017).

The high-spin to low-spin transition occurs as increasing crystal field splitting on com-

pression causes d-electrons in the eg manifold to pair up with those in the t2g manifold,

yielding a change in the magnetic moment of the Fe3+ cation from 5µB to 1 µB, and a

collapse in volume. The high-spin to low-spin transition has been found to occur between 40

and 60 GPa in experimental studies (Gleason et al., 2013; Xu et al., 2013; Thompson et al.,

2020). The high-spin to low-spin transition in ε-FeOOH has not yet been studied theoreti-

cally; part of the reason is that transition metal oxides present a challenge to conventional

density functional theory, which tends to underestimate the strong correlation among the d

electrons.

Here we explore the behavior of ε-FeOOH at high pressure with density functional theory

augmented by local electron repulsion that captures the strong correlation (DFT+U). We

study both transitions (hydrogen bond symmetrization and high-spin to low-spin) and ex-

plore the changes in properties that occur across them. We focus on physical properties that

have been previously measured experimentally in this system, including the structure, equa-
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tion of state, and vibrational frequencies, and on those that may be relevant to geophysical

detection of phase H in the lower mantle, including elasticity, and electronic properties.

6.2 Methods

Our calculations are based on density functional theory (DFT), using the projector aug-

mented wave (PAW) method (Kresse and Joubert, 1999) as implemented in the Vienna ab

initio Simulation Package (VASP) (Kresse and Furthmüller, 1996). We use the PBEsol gen-

eralized gradient approximation (Perdew et al., 2008), which we have previously shown to

yield excellent agreement with experiment in iron-bearing oxides (Holmström and Stixrude,

2015). To account for strong correlation, we use the +U method (Anisimov et al., 1997). On

the basis of our calculations of the dependence of the spin transition pressure and optical

properties on U-J, our previous results for the value of U-J for divalent iron (Holmström

and Stixrude, 2015), and expected trends with respect to iron valence state (Mosey et al.,

2008), we settled on a value of U-J = 3.2 eV. We use PAW potentials of 14, 1, and 6 va-

lence electrons for Fe, H, and O with core radii of 1.16, 0.37, and 0.82, respectively. We

perform spin-polarized simulations where the difference in the number of up-spin and down-

spin electrons on each Fe atom is set to the high-spin (5) or low-spin (1) value for both

anti-ferromagnetic and ferromagnetic arrangements (Fig. 1a and Fig. 1b). We also explored

a mixed-spin arrangement in which half of the Fe are high-spin and the other half are low-

spin (Fig. 1c). We found that sampling the Brillouin zone using a 4 x 4 x 4 k-point mesh

and a basis-set energy cutoff of 1000 eV was sufficient to converge energy and pressure to

within 3 meV/atom and 0.1 GPa, respectively. For calculation of the electronic density of

states we use the tetrahedron method (Blochl et al., 1994) and a 20 x 20 x 20 k-point mesh.

For phonon calculations, we use a 2 x 2 x 2 supercell and a 2 x 2 x 2 k-point mesh.

We calculate the elastic constants by applying finite strains εkl to the lattice and comput-

ing the resultant stresses σij , yielding the components of the elastic constant tensor as σij =
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Figure 6.1: The structure of the P21nm ε-FeOOH phase in an (a) AFM HS state, (b) FM

HS state, and (c) an AFM mixed-spin state. The solid black lines indicate unit cells, oxygen

atoms are red spheres, hydrogen atoms are pink spheres, and iron atoms are gold spheres.

Blue arrows represent the magnetic moment µ of the iron atoms. The arrow magnitude is

related to the spin state (longer = high-spin; shorter = low-spin) and the arrow direction is

related to the up/down-spin of valence electrons (up = +µ; down = -µ). Image generated

using the software VESTA (Momma and Izumi, 2008)

cijklεkl . We choose a strain magnitude of 0.005 and strains (in Voigt notation): ε1 , ε2 , ε3 , and

ε4 + ε5 + ε6 appropriate for the orthorhombic case (Le Page and Saxe, 2002). The isotropic

bulk and shear moduli are determined using the Voigt-Reuss-Hill (Hill, 1952) measure. We

compute single crystal elastic wave velocities via the Christoffel equation ∥cijkl njnl - ρv
2δik∥

= 0 where cijkl is the single-crystal elastic tensor, n is the propagation direction, ρ is the

density, v is the velocity, and δik is the Kronecker delta (Musgrave, 1970). The eigenvalues

yield the elastic wave velocities, and eigenvectors the polarization directions. We fit our

theoretical results to the Eulerian finite strain expansion (Stixrude and Lithgow-Bertelloni,

2005):

cijkl = (1 + 2f)5/2
{
cijkl0 + (3K0c

′
ijkl0 − 5cijkl0)f+[

6K0c
′
ijkl0 − 14cijkl0 −

3

2
K0δ

ij
kl − 16

]
f 2

} (6.1)
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where f = 1/2 [(V/V0 )
-2/3-1], cijkl is the elastic tensor, the subscript 0 refers to the reference

state (P = 0 GPa, T0 = 300 K), and δijkl = -δijδkl - δilδjk - δjlδik.

We calculate the phonon vibrational frequencies via density functional perturbation the-

ory (DFPT) (Gajdoš et al., 2006). Phonon frequencies and eigenvectors are computed in

the harmonic limit from the second-order force constant matrix Φαβ(jl,j’l’ ), the elements

of which are the change in the force in the α Cartesian direction acting on atom j in unit

cell l, in response to the displacement of atom j’ in unit cell l’ in the β direction (Wilson

et al., 1980). The phonon frequencies are the eigenvalues of the dynamical matrix at a given

wavevector q :

Djj′

αβ(q) =
1

√
mjmj′

∑
l′

Φαβ(jl, jl
′) exp[iq · (r(j′, l′)− r(j, l))] (6.2)

where mj are the atomic masses and l and l’ are the unit cells of the two atoms.

The long-ranged Coulomb interactions lead to non-analytic corrections in the limit q →

0, that cause splitting of longitudinal optic (LO) and transverse optic (TO) modes (Pick

et al., 1970; Gonze and Lee, 1997):

Djj′

αβ(q → 0) = Djj′

αβ(q = 0) +
1

√
mjmj′

4π

Ω0

[∑
γ qγZ

j
γα

] [∑
γ′ qγ′Zj′

γ′β

]
∑

αβ qαε
∞
αβqβ

(6.3)

where Zαβ
j is the Born effective tensor, ε∞ is the macroscopic dielectric tensor, and Ω0 is the

volume of the cell.

We compute infrared (IR) intensities from the eigen-displacements around the gamma-

point, where the atom’s change in polarizability with respect to atomic displacement is

captured by the Born effective-charge tensors (Giannozzi and Baroni, 1994):

IIR(s) =
∑
α

∣∣∣∣∣∑
jβ

Zj
αβ

W(s, j)
√
mj

∣∣∣∣∣
2

(6.4)
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where W(s,j) is the eigenvector of the dynamical matrix corresponding to mode s.

We compute Raman intensities from the change in the polarizability tensor α along the

mode eigenvectors in terms of the macroscopic high-frequency dielectric constant (Skelton

et al., 2017), via a central finite-difference scheme:

IRaman ∝ ∂α

∂Q(s)
≡ ∂ε∞

∂Q(s)
≈ ∆ε∞

∆Q(s)
(6.5)

IRaman,αβ(s) =
Ω

4π

[
−1

2

ε∞αβ(−s)
∆Q(s)

+
1

2

ε∞αβ(+s)

∆Q(s)

]
(6.6)

where Q is the normal-mode coordinate at the Γ-point and is defined by u(s,j) = Q(s)

W(s,j)/
√
mj, where u(s,j) is the atomic displacement. The unpolarized Raman intensity

takes the form:

IRaman = 45

[
1

3
(Ixx + Iyy + Izz

]2
+

7

2

[
(Ixx − Iyy)

2 + (Ixx − Izz)
2 + (Iyy − Izz)

2 + 6(I2xy + I2xz + I2yz)
]
.

(6.7)

To compute phonon frequencies and IR and Raman intensities, we use Phonopy and Phonopy-

Spectroscopy (Togo and Tanaka, 2015; Skelton et al., 2017).

We find the pressure of the high-spin to low-spin transition as the point at which the

Gibbs free energies of the two phases are equal:

G(P, T ) = H(P, static) + FTH(V, T ) + P (V, T )V, (6.8)

where H is the enthalpy at static (athermal) conditions, G is the Gibbs free energy as a

function of pressure P and temperature T, V is the volume, and FTH is the Helmholtz free

energy derived from the (quasi-)harmonic phonon energy. The pressure

132



P (V, T ) = P (V, static) + PTH(V, T ) (6.9)

where PTH = -(∂FTH/∂V)T and

FTH =
1

2

∑
qj

ℏωqj + kBT
∑
qj

ln

[
1− exp

(
−ℏωqj

kBT

)]
(6.10)

where ω is the phonon frequency. We have found that the thermal free energy of the asym-

metrically bonded phase is nearly independent of volume, yielding essentially zero thermal

pressure. This result is inconsistent with experimental measurements of positive thermal ex-

pansivity (Suzuki, 2016), indicating that anharmonicity, which is not included at our level of

theory, is important in the asymmetric phase. We hypothesize that the thermal free energy

of the asymmetric phase can be approximated by that of the symmetric phase at the same

volume. Our hypothesis could be tested by performing molecular dynamics simulations,

which are beyond the scope of this study because of the much greater computational cost.

6.3 Results

At static conditions, we find that the ground state is high-spin anti-ferromagnetic (AFM),

in agreement with a neutron diffraction study at ambient pressure (Pernet et al., 1975) (Fig.

6.2). The AFM state is more stable than the ferromagnetic (FM) state by 0.5 eV per unit

cell (0.25 eV /formula unit) at zero pressure and 0.8 eV at 40 GPa. At 40 GPa, the lowest

energy state becomes low-spin AFM. In the low-spin state, AFM is more stable than FM by

0.02 eV at 40 GPa, to 0.01 eV at 100 GPa. We also find that the mixed-spin state is less

stable than the high-spin state at 40 GPa by 0.4 eV. Because AFM is the most stable, all

subsequent results refer to the AFM arrangement.

We find hydrogen bond symmetrization to occur within the stability field of the high-spin

state (Fig. 6.3). The transition occurs at a static pressure of 34 GPa. The symmetrization
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Figure 6.2: Enthalpy of FM and AFM states at static condition with respect to the AFM

low-spin enthalpy. The arrow marks the pressure at which hydrogen bond symmetrization

occurs, and x marks the AFM mixed spin enthalpy.

transition occurs without discontinuity in structure or volume and is therefore not first order.

We also show results for the (metastable) symmetrization transition in the low spin state,

which occurs at a static pressure of 5 GPa.

We find excellent agreement with experimental measurements of the equation of state

of the high-spin and low-spin states and the pressure of the high-spin to low-spin transition

(Suzuki, 2010, 2016; Gleason et al., 2013; Ikeda et al., 2019; Thompson et al., 2020) (Fig.

4). We find that the high-spin to low-spin transition occurs at 45 GPa at 300 K. We find

disagreement with some previous experiments, including those of Gleason et al. (2013), at

pressures greater than 50 GPa, which may be due to the lack of a pressure medium in this

experiment, resulting in deviatoric stress and systematic overestimation of volumes (Meng
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Figure 6.3: O-H vs O-O bond distance in high-spin (circles) and low-spin (squares) states

with pressure indicated by the color bar. The 2:1 line is shown in black.

et al., 1993). The symmetrization transition has only a subtle effect on the equation of state:

the symmetric and asymmetric equations of state are nearly coincident within the symmetric

high spin stability field and there is no discontinuity in volume at the symmetrization tran-

sition. At 300 K, the symmetrization transition occurs at 37 GPa. All subsequent results

are referred to the pressure at 300 K.

Our computed crystal structures agree well with ambient structure determinations and

with high pressure measurements of the lattice parameters (Fig. 6.5, Table 1). We find a

change in relative axial compressibilities with increasing pressure: b is the most compressible

direction near ambient pressure, but the stiffest at pressures exceeding 30 GPa. This change

in relative compressibility is reflected in extrema in the variation of lattice parameter ratios

versus pressure, which occur at 13 GPa (b/c) and 33 GPa (a/b). The largest deviation
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Figure 6.4: Pressure-volume equation of state for static and 300 K isotherms. Symbols

in red, orange, and plum represent the asymmetric high-spin phase, the symmetric high-

spin phase, and the symmetric low-spin phase at 300 K conditions. Dashed lines and solid

lines represent the static and 300 K equations of state for each respective color. The blue

line follows the stable phases. The vertical black dashed lines represent the hydrogen bond

symmetrization and spin transition at 37 GPa and 45 GPa, respectively, at 300 K. Equation

of state fit parameters V0, K0, and K’0 are 65.68 Å3, 168.55 ± 0.30 GPa, and 3.72 ± 0.01

for asymmetric high-spin, 64.48 Å3, 193.42 ± 0.43 GPa, and 3.51 ± 0.02 for symmetric

high-spin, and 56.65 Å3, 236.56 ± 0.42 GPa, and 3.91 ± 0.01 for the symmetric low-spin at

300 K.

in atomic coordinates between our results and experiment occurs for the position of the H

atom, corresponding to an OH bond length of 1.02 Åfor our results as compared with 0.85

Åfor experiment (Bolotina et al., 2008). Overestimation of OH bond length is expected at
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our level of theory (Santra et al., 2009).

Figure 6.5: Lattice parameter ratios with respect to pressure. Red and plum represents the

AFM high-spin and AFM low-spin states, respectively, and are compared to experimental

results (white symbols). The vertical dashed lines represent the predicted 300 K pressure

of the symmetrization transition (lower pressure) and the high-spin to low-spin transition

(higher pressure).

The elastic moduli change discontinuously at the high-spin to low-spin transition and

continuously at the symmetrization transition (Fig. 6.6). Because the hydrogen bonds lie

within the xy-plane, the difference between asymmetric and symmetric structures is reflected

more strongly in c11 and c22 than in c33, and more strongly in c66 than in c44 or c55. Values of

cijkl0 and c’ijkl0 show that the elastic moduli are softer and vary more rapidly with pressure

in the asymmetric state as compared with the symmetric state: while the elastic moduli

of the asymmetric and symmetric states become identical at the symmetrization transition,

the pressure-dependence of the elastic moduli changes discontinuously at the transition. The

elastic moduli are all stiffer in the low-spin state as compared with the high-spin state (Table

2). The c44 and c55 elastic moduli show a non-monotonic pressure dependence.

The bulk and shear moduli increase monotonically with increasing pressure from 0 to

90 GPa and both undergo an increase of 18% at the spin transition (Fig. 6.7). In the
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a(Bolotina et al., 2008). Fe(x) = Fe(z) = H(z) = O1(z) = O2(z) = 0

Pressure

(static)

Pressure

(300 K)

a

(Å)

b

(Å)

c

(Å)

Fe

(y)

H

(x)

H

(y)

O1

(x)

O1

(y)

O2

(x)

O2

(y)

P21nm

0a 4.958 4.461 3.005 0.219 0.46 0.35 0.352 0.497 0.658 0.005

-5.88 -2.36 5.005 4.483 3.025 0.223 0.485 0.317 0.359 0.497 0.660 0.011

0 3.44 4.936 4.403 2.987 0.227 0.486 0.303 0.357 0.490 0.656 0.014

10 13.38 4.852 4.312 2.929 0.234 0.488 0.288 0.356 0.484 0.653 0.018

20 23.34 4.788 4.247 2.878 0.240 0.492 0.275 0.355 0.480 0.651 0.021

30 33.30 4.736 4.197 2.832 0.248 0.498 0.258 0.353 0.478 0.649 0.024

Pnnm

40 44.19 4.692 4.164 2.792 0.25 0.5 0.25 0.351 0.476 0.648 0.024

50 52.24 4.518 3.983 2.666 0.25 0.5 0.25 0.348 0.485 0.651 0.015

60 64.29 4.493 3.965 2.635 0.25 0.5 0.25 0.347 0.484 0.652 0.016

70 74.33 4.471 3.948 2.605 0.25 0.5 0.25 0.347 0.483 0.653 0.017

80 84.37 4.450 3.933 2.576 0.25 0.5 0.25 0.346 0.483 0.654 0.017

90 94.41 4.432 3.920 2.549 0.25 0.5 0.25 0.345 0.482 0.654 0.018

100 104.44 4.414 8 3.908 2.523 0.25 0.5 0.25 0.345 0.481 0.655 0.019

Table 6.1: Crystal structures of the P21nm and Pnnm phase with respect to pressure.

Figure 6.6: Elastic modulus with respect to pressure. Red and plum represent the AFM

high-spin and AFM low-spin states, where closed and open symbols represent the asymmetric

and symmetric states, respectively. Symbols representing stable phases are outlined in black.
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low spin state, the shear modulus is nearly independent of pressure, reflecting, in part, the

non-monotonic dependence of c44 and c55 on pressure, while c66 increases with increasing

pressure. Our elastic constants for the low spin state are in good agreement with previ-

ous calculations (Thompson et al., 2017) with differences (<7%) reflecting the difference in

exchange-correlation functional used in the two studies (PBE vs. PBEsol in our study). We

find that ε-FeOOH is highly anisotropic in both longitudinal- and shear-wave velocities at all

pressures, with the shear wave velocity varying with propagation and polarization direction

by as much as 24% at zero pressure and 43% at 46 GPa.

c11 c12 c13 c22 c23 c33 c44 c55 c66

Asymmetric HS 280(4) 78(5) 76(4) 234(6) 77(4) 272(3) 88(3) 73(1) 121(2)

Symmetric HS 333(3) 128(2) 97(1) 335(2) 120(2) 295(1) 95(1) 74(1) 135(1)

Symmetric LS 392(7) 147(1) 148(3) 384(2) 177(3) 319(3) 134(2) 99(2) 183(1)

c′11 c′12 c′13 c′22 c′23 c′33 c′44 c′55 c′66

Asymmetric HS 6.65(8) 4.5(1) 3.01(8) 6.6(1) 3.83(8) 4.64(6) 0.67(6) 0.59(1) 2.06(5)

Symmetric HS 5.75(6) 3.85(5) 2.74(2) 4.99(5) 3.23(4) 4.19(2) 0.48(2) 0.51(1) 1.74(2)

Symmetric LS 5.92(1) 4.34(1) 3.27(3) 5.22(2) 3.53(4) 4.20(4) 0.24(3) 0.62(2) 2.24(2)

Table 6.2: Elastic moduli cijkl0 and c′ijkl0 with reference state of P = 0 GPa and T = 300

K.

The evolution of the hydrogen bond on compression is clearly reflected in the vibrational

frequencies (Fig. 6.8). The frequencies of the A1 and B2 OH stretching modes decrease

rapidly with pressure and the bending modes increase more gradually with pressure so that

the frequencies of these two branches approach each other. In the symmetrically-bonded

phase the OH stretching mode frequencies increase with increasing pressure while the bend-

ing mode frequencies initially continue to increase slightly with increasing pressure. These

trends are also seen in δ-AlOOH (Tsuchiya et al., 2008b). The OH stretching and bending

mode frequencies change little at the high-spin to low-spin transition; in the low spin state

some of the bending mode frequencies decrease with increasing pressure. Agreement is ex-
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Figure 6.7: Left: Elastic properties of ε-FeOOH with respect to pressure compared with

experimental measurements from Ikeda et al. (2019) (white circles and squares correspond

to bulk and shear modulus, respectively). Dotted plum lines are maximum and minimum

values of shear modulus from single crystal wave velocities from our results. Right: vp and vs

dependence on propagation direction at 3.4 GPa (solid), 23.3 GPa (dashed), and 94.4 GPa

(dotted).

cellent between our bending mode frequencies and experiment (Thompson et al., 2020) and

our stretching mode frequencies are 1.4% smaller than the positions of peaks apparent in the

experimentally reported spectrum in the OH stretching region at ambient conditions. Un-

derestimation of OH stretching frequencies is expected at our level of theory (Santra et al.,

2009).

The predicted absolute intensities of the IR- and Raman-active modes show large changes

in the vibrational spectra with increasing pressure (Fig. 9). Factor group analysis for the

P21nm and Pnnm structure shows that the irreducible representation of the zone center

optic vibrations are ΓP21nm = 7A1(IR,R) + 4A2(R) + 3B1(IR,R) +7 B2(IR,R) and ΓPnnm

= 2B1u(IR) + 5B2u(IR) + 5B3u (IR) + 3Au + 2Ag(R) + 2B1g(R) + 1B2g(R) + 1B3g(R),

where IR and R denote infrared and Raman active modes. In the IR spectrum, the high-

est frequency peak initially increases in intensity with increasing pressure, then splits as
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Figure 6.8: Pressure dependence of optical mode frequencies compared to experimental

data in white circles (Thompson et al., 2020).

symmetrization is approached. At a pressure that nearly coincides with symmetrization (33

GPa), the most intense peaks are no longer the highest frequency peaks, reflecting mixing of

stretching and bending modes. In the low-spin state, the peak at the highest frequency be-

come the one with the highest intensity again. The Raman spectrum also shows splitting of

the OH highest frequency as symmetrization is approached, as well as a vanishing intensity.

This decrease in intensity is expected on symmetry grounds, and is also seen, for example,

in H2O (Goncharov et al., 1999).

The electronic density of states shows a finite band gap at all pressures in high-spin and

low-spin states (Fig. 6.10). The band gap decreases with increasing pressure in both phases

and increases by 0.15 eV at the high-spin to low-spin transition. The band gap is narrow

and comparable to that typically seen in semiconductors: 1.9 eV at ambient pressure and

1.3 eV at the highest pressure explored in this study. Consideration of +U in our study is

crucial to obtaining agreement with experiment: if we assume that U-J=0 eV, we find that

there is no band gap at any pressure.
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Figure 6.9: Computed IR intensities (left) and Raman intensities (right) with respect to

pressure.

6.4 Discussion

We find two distinct phase transitions: the symmetrization transition and the high-spin to

low-spin transition, which do not coincide, but are well separated in pressure, with the high

spin symmetric phase stable over a finite pressure interval (8 GPa). Our results therefore do

not support the arguments of some earlier studies that symmetrization drives the high-spin

to low-spin transition (Gleason et al., 2013).

Our value for the pressure of the symmetrization transition (37 GPa), is much higher

than the value of 18 GPa, argued for by Thompson et al. (2020). However, Thompson et

al. (2020) were not able to measure hydrogen positions and relied on other lines of evidence

to argue for the pressure of symmetrization. These included the location of inflection points

in the variation of lattice parameter ratios with pressure. However, we do not see inflection

points but instead find local extrema (a local minimum in b/c at 13 GPa, and a local

maximum in a/b at 33 GPa) neither of which correspond precisely with the pressure of

hydrogen bond symmetrization. We find that the lattice parameters begin to vary nearly

linearly with pressure at the symmetrization transition, behavior also seen in a previous
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Figure 6.10: Electronic density of states at 3.4 GPa (top) and 94 GPa (bottom) with

respect to s, p, and d orbitals. Inset shows the band gap dependence on pressure.

theoretical study of δ-AlOOH (Tsuchiya and Tsuchiya, 2009).

The asymmetric to symmetric transition is continuous. The volume and bulk modulus

(and all the elastic moduli) are continuous across the transition, so the transition is neither

first order nor second order. Elastic wave velocities are also continuous across the sym-

metrization transition, so that no seismological signature of the symmetrization transition is

expected. Our computed vibrational spectra indicate that symmetrization might be detected

via IR or Raman spectroscopy: according to our results, the symmetrization transition is

characterized by changes in the pressure dependence of several modes, as well as splitting,

and changes in intensity. Neutron diffraction of deuterated samples, as recently done for

AlOOH (Sano-Furukawa et al., 2018), could also lend further insight into symmetrization in
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ε-FeOOH.

Our predictions of the shear and bulk modulus of ε-FeOOH do not agree with the exper-

imental measurements of Ikeda et al. (2019). The contrast in the pressure dependence of

the shear modulus (G’=dG/dP) is particularly notable (G’=1.2 from our results vs. G’=4.6

from experiment). The reason for this discrepancy is unclear. It is possible that approxima-

tions to the exchange-correlation functional in our study are the cause of the discrepancy,

but this seems unlikely, because previous studies have found good agreement between den-

sity functional theory and experiment for the elastic moduli of δ-AlOOH (Tsuchiya and

Tsuchiya, 2009). The value of G’ found for δ-AlOOH (1.33) is very similar to what we find

for ε-FeOOH. Another possibility is that the experimental sample is textured or that the

degree of texture of the sample varied with increasing pressure. Texturing of the sample

could change the shear modulus substantially because ε-FeOOH is very anisotropic, with

the shear modulus varying by 24% to 43% with propagation and polarization direction at 0

and 43 GPa, respectively. ε-FeOOH is much more anisotropic than δ-AlOOH (Tsuchiya and

Tsuchiya, 2009).

The high spin state is likely to be remain magnetically ordered at room temperature

throughout its stability field. This conclusion is based on the large enthalpy difference that

we find between AFM and FM ordering. The enthalpy difference grows with increasing

pressure and is similar in magnitude to the difference between the AFM and FM ordering

states of hematite (0.25 eV/Fe; (Rollmann et al., 2004)), which has a Neel temperature of

950 K. We would therefore expect ε-FeOOH to have a Neel temperature of similar magnitude

based on our results, in agreement with neutron diffraction experiments that show that AFM

ordering exists in ε-FeOOH to at least 423 K (Pernet et al., 1975) and an estimated Neel

temperature of 570 K (Pernet et al., 1973). The low spin state is likely to be magnetically

disordered at room temperature, as the difference in energy between AFM and FM ordering

is much smaller than in the high spin state (by a factor of 25).

Our results suggest possible explanations for the sharpness of the high-spin to low-spin
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transition as seen experimentally. The experiments of Thompson et al. (2020), show that the

transition interval is irresolvably sharp and no greater than 2 GPa. This is much less than the

width of the high-spin to low-spin transition at room temperature seen in other systems: for

example, 10 GPa in MgSiO3-Fe2O3 (Liu et al., 2018), or 18 GPa in Mg0.5Fe0.5O (Solomatova

et al., 2016). We hypothesize that the width of the high spin to low spin transition in ε-

FeOOH is limited by two factors. First is the presence of non-ideal interactions between

high-spin and low-spin Fe cations. We find that the mixed-spin state is much higher in

energy than the high-spin or low-spin states. This unfavorable energy of interaction is not

included in the widely used ideal model of the spin transition (Tsuchiya et al., 2006) and has

the effect of limiting the pressure interval of coexistence of high-spin and low-spin cations.

Second is the presence of magnetic order. The ideal solution model, as typically applied,

assumes the high temperature limit of magnetic entropy. But this limit may not be valid in

the case of ε-FeOOH because the Neel temperature of the high-spin state is likely to exceed

room temperature at all pressures.

Our calculations are quasiharmonic and we are therefore not able explore the possibility

of H disorder in ε-FeOOH. Consideration of H disorder is motivated by neutron diffraction

experiments on δ-AlOOH, which have been interpreted to show disorder of H between two

symmetrically equivalent positions along the O···O line (Sano-Furukawa et al., 2018). On the

other hand, another recent study based on static structural relaxations in density functional

theory and nuclear magnetic resonance experiments argues against H disorder in δ-AlOOH

(Trybel et al., 2021). We suggest that molecular dynamics simulations could be used to

explore the possibility of H disorder in ε-FeOOH.

6.5 Implications

The presence of ε-FeOOH in Earth’s mantle could have significant effects on material proper-

ties due to the iron spin-transition and hydrogen bond symmetrization. The shear modulus
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shows a large increase at the high-spin to low-spin transition in ε-FeOOH (an 18% increase

in shear modulus, or 3% increase in shear wave velocity); behavior that contrasts with other

systems. For example, in ferropericlase, the shear modulus is continuous across the high-spin

to low-spin transition (Yang et al., 2015; Marquardt et al., 2018). Possible seismic detection

of the high-spin to low-spin transition in the mantle has therefore focused on the effect of the

transition on the bulk modulus, and therefore the P-wave velocity (or bulk sound velocity)

(Shephard et al., 2021). Our results show that the S-wave velocity may also be significantly

affected by the spin transition in lower mantle phases other than ferropericlase. The bulk

modulus anomaly associated with the high-spin to low-spin transition is caused by the vol-

ume collapse across the pressure interval of the transition. We have assumed in the case

of ε-FeOOH, that the high-spin to low-spin transition is sharp, consistent with experiment,

and therefore does not show any bulk modulus anomaly at room temperature, although it is

possible that a narrow transition interval exists over which the bulk modulus anomaly would

also exist.

Based on our results, the seismic signature of the spin transition in phase H may be more

distinct than that in other systems undergoing spin transitions, including ferropericlase. In

ferropericlase, the width of the transition is broader than the ideal case at all temperatures

because of favorable interaction between high-spin and low-spin Fe (Holmström and Stixrude,

2015), tending to mute the elastic signature of the transition. The width of the spin transition

in ε-FeOOH is likely to increase with temperature. However, the unfavorable interaction

between unlike spins in ε-FeOOH is likely to limit the width of the transition as seen in

phase H as compared with expectations based on ideal mixing of spin states.

Our prediction of a narrow band gap in ε-FeOOH raises the possibility that phase H

may contribute to the electrical conductivity of the lower mantle as seen in electromagnetic

sounding (Püthe et al., 2015). The narrow gap that we find is consistent with experimental

observations of non-zero infrared transmission at all pressures measured from 23-72 GPa

(Thompson et al., 2020). Moreover, the experiments show increasing absorption with in-

146



creasing pressure, in agreement with the decreasing band gap with increasing pressure that

we find. Our results are also consistent with experimental measurements showing that the

electrical conductivity increases with increasing pressure and is small in value, typical of

semi-conductors (Wang and Yoshino, 2021; Zhuang et al., 2022). On the other hand, the

experiments show a rapid drop in transmission and a rapid increase in electrical conduc-

tivity at the high-spin to low-spin transition, whereas we find a slight increase in the band

gap at the transition. Further study of the relationship between the band structure, optical

absorption, and electrical conductivity is therefore warranted.
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CHAPTER 7

Physical Properties of Pyrite-FeOOH in the Earth’s

Lower Mantle

7.1 Introduction

The amount of hydrogen present and its incorporation in the Earth’s deep interior remains

unknown despite hydrogen being the most abundant element in the solar system. Hydrogen

may be transported to the lower mantle by subduction of cold oceanic plates, in which

hydrogen takes the form of hydrous minerals at low pressure. As oceanic slabs descend into

the Earth’s interior, hydrogen exchange with the surrounding mantle may significantly affect

its transport properties, melting temperature, and other physical properties.

An alternative hypothesis for the origin of hydrogen in the Earth’s deep mantle is a

hydrogen-rich primordial atmosphere (Young et al., 2023). In this view, water in the mantle

is a remnant of Earth’s formation. Hydrogen derived from the primordial atmosphere could

also have a significant influence on the density of the core and the oxidation state of lower

mantle materials, thus shaping our understanding of Earth’s planetary evolution

A number of experimental and theoretical studies have explored the stability of oxy-

hydroxides MOOH to conditions of the lowermost mantle with M=Al, Fe, (Mg,Si). These

studies find a phase transition to a pyrite-structured phase at lower mantle coditions, which

has been proposed to be a possible carrier and reservoir of water (Tsuchiya et al., 2008b;

Thompson et al., 2021; Tsuchiya et al., 2020). The pyrite-structure is known to be stable

in SiO2 and GeO2 above 250 GPa and 90 GPa (Kuwayama et al., 2005; Ono et al., 2003),
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respectively, and was found to be experimentally stable in GaOOH and InOOH compositions

(Tsuchiya et al., 2008a; Sano et al., 2008).

Figure 7.1: Pa3̄ pyrite-structured FeOOH. Iron atoms are represented by gold spheres,

oxygen atoms by red spheres, and hydrogen atoms by pink spheres. The FeO6 octahedra are

depicted in transparent gold and bonding by gray bars.

Recent experimental studies (Hu et al., 2017; Hu and Liu, 2021a; Nishi et al., 2017; Mao

et al., 2017) report evidence for the stability of pyrite-structured FeOOH in the Earth’s

lowermost mantle. The stability of this material at high pressures suggests the existence

of another possible water carrier, either as a separate phase or in solid solution with other

MOOH end-members, and may provide a pathway for investigating the interaction of core

material with hydrogen-bearing mantle material at the core-mantle boundary.

Our focus here is the ferric end-member of the pyrite-structured dense-oxyhydroxide:
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pyrite-phased FeOOH (p-FeOOH) (Fig. 7.1). P-FeOOH has the pyrite structure with a Pa3̄

space group that is stable in the lowermost mantle (Gleason et al., 2013; Nishi et al., 2017;

Suzuki, 2010; Hu et al., 2017; Hu and Liu, 2021a), although its stability field is uncertain. The

structure is cubic with FeO6 octahedra linked by symmetric hydrogen bonds. The anhydrous

sub-lattice (arrangement of Fe and O atoms) is identical to the FeS2 pyrite structure.

P-FeOOH has been proposed to undergo partial dehydrogenation upon its formation from

lower pressure polymorphs during subduction (Hu et al., 2016, 2017; Mao et al., 2017) and

decompose to form FeOOHx+(1− x)/2 H2, with 0 < x < 1. Hydrogen loss from p-FeOOHx

raises an interesting possibility of the first phase with partial hydrogen occupation in a solid

phase, where the hydrogen exchange may alter the valence and spin states of iron atoms

with important implications for our understanding of oxygen fugacity and water circulation

in the Earth’s interior. However, the value of x is poorly constrained experimentally, in part

because the H are not visible in typical x-ray diffraction experiments.

Here, we explore the behavior of p-FeOOH at high pressure with density functional theory

augmented by local electron-electron repulsion that captures the strong correlation within

the 3d manifold (DFT+U). We study the stability of p-FeOOH and its high-spin to low-spin

transition. We explore the possible values of x in this phase by comparison with experimental

measurements of the unit cell volume. We also explore other properties that may hold clues

to the nature of this phase at high pressure, including the internal structural parameters,

vibrational frequencies, and band structure.

7.2 Methods

Our calculations are based on density functional theory (DFT), using the projector aug-

mented wave (PAW) method (Kresse and Furthmüller, 1996; Kresse and Joubert, 1999).

We use the PBEsol generalized gradient approximation Perdew et al. (2008), which we have

previously shown to yield excellent agreement with iron-bearing oxides. To account for the
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strong correlation, we use the +U method. On the basis of our previous results for the value

of U-J for trivalent iron Insixiengmay and Stixrude (2023), we settled on a value of U-J =

3.2 eV. We use PAW potentials of 14, 1, and 6 valence electrons for Fe, H, and O with core

radii of 1.16, 0.37, and 0.82 Å, respectively. We perform spin-polarized simulations where

the difference in the number of up-spin and down-spin electrons on each Fe atom is set to the

high-spin (5) or low-spin (1) value for both anti-ferromagnetic and ferromagnetic arrange-

ments. We also explored a mixed-spin arrangement in which half of the Fe are high-spin and

the other half are low-spin. We found that sampling the Brilliouin zone using a 4 × 4 × 4

k-point mesh and a basis-set energy cutoff of 1000 eV was sufficient to converge energy and

pressure to within 3 meV/atom and 0.5 GPa, respectively. For phonon calculations, we use

a 2× 2× 2 supercell and a 2× 2× 2 k-point mesh.

We calculate the vibrational frequencies via density functional perturbation theory (DFPT)

(Gajdoš et al., 2006). We follow similar methods in Insixiengmay and Stixrude (2023) to

compute infrared (IR) intensities with Phonopy and Phonopy-Spectroscopy (Togo et al.,

2023; Togo, 2023; Skelton et al., 2017). We find the pressure of the high-spin to low-spin

transition as the point at which the Gibbs free energies of the two phases are equal:

G(P, T ) = H(P, static) + FTH(V, T )P (V, T )V (7.1)

where H is the enthalpy at static (athermal) conditions, G is the Gibbs free energy as a

function of pressure P and temperature T , V is the volume, and FTH is the Helmholtz free

energy derived from the (quasi-)harmonic phonon energy. The pressure

P (V, T ) = P (V, static) + PTH(V, T ) (7.2)

where the thermal pressure PTH = −(∂FTH/∂V )T (Figure 7.2) and
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FTH =
1

2

∑
qj

ℏωqj + kBT
∑
qj

ln

[
1− exp

(
ℏωqj

kBT

)]
(7.3)

where ωqj is the phonon frequency of mode j at Brillouin zone point q.
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Figure 7.2: Thermal Helmholtz free energy at 300 K versus volume of LS AFM p-FeOOH.

The derivative of the curve yields the thermal pressure of p-FeOOH.

7.3 Results

At static conditions, we find that the lowest energy spin arrangement is anti-ferromagnetic

(AFM) at all pressures (Figure 7.3). The AFM state is more stable than the ferromagnetic

(FM) state by 0.5 eV per unit cell at 90 GPa. At 45 GPa, we find a transition from high-
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spin to low-spin AFM, in agreement with experimental studies (Liu et al., 2019). We also

explored a mixed high-spin, low-spin state, and found that it is less stable than the high-spin

state at 40 GPa by 0.25 eV. Because AFM is the most stable, all subsequent results refer to

the AFM arrangement. We find the transition from the ε-FeOOH to the p-FeOOH phase at

90 GPa.
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Figure 7.3: Enthalpy of FM and AFM states at static condition with respect to p-FeOOH

AFM low-spin enthlapy. Circles represent AFM pyrite-structured FeOOH with space group

Pa3̄, triangles represent ε-FeOOH, and X marks the FM Pa3̄ LS state.

Our equation of state is in reasonable agreement with the experimental study of Nishi

et al. (2017) (Fig. 7.4). These authors argued that x = 1 in their experiments and that de-

hydrogenation did not occur. Their measured values of the volume are systematically larger
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than our predictions, which may be the result of non-hydrostatic stress in their diamond

anvil cell experiments, which is known to cause systematic over-estimation of the volume.

The results of Yuan et al. (2018) are more scattered, and show even larger values of the

volume as compared with those of Nishi et al. (2017). The larger volume in the experiments

of Yuan et al. (2018) may also be attributable to deviatoric stress, and also suggest that

x = 1 in their experiments. The results of other experiments (Hu et al., 2017; Mao et al.,

2017) are more difficult to interpret. Both studies find volumes that are both larger and

smaller than our predicted values. Whereas the larger volumes could also be attributed to

deviatoric stress, the smaller volumes suggest x < 1, as also suggested by the authors.

We find that the IR active OH stretching mode has a frequency near 2000 cm−1 at

90 GPa, increasing with increasing pressure, behavior typical of symmetric hydrogen bonds

(Fig. 7.5).

7.4 Discussion

While previous studies assumed that p-FeOOH had a low-spin configuration, based on be-

havior of the ε-FeOOH phase, we confirm that this is the case and locate the (metastable)

high-spin to low-spin transition at 40 GPa, well within the stability field of the ε phase

(Thompson et al., 2021). We find that the most stable magnetic configuration is AFM,

in contrast to an earlier study which considered only the ferromagnetic spin arrangement

(Thompson et al., 2021).

Our predicted phase transition pressure from ε-FeOOH to p-FeOOH at 90 GPa is consis-

tent with previous experimental findings that the transition takes place at pressures greater

than 75 GPa (Thompson et al., 2021; Gleason et al., 2013; Hu et al., 2017; Hu and Liu,

2021a; Nishi et al., 2017; Zhuang et al., 2022). The transition pressure that we calculate

is somewhat larger than that found in previous theoretical studies (by 10-20 GPa) (Nishi

et al., 2017; Thompson et al., 2021; Hu et al., 2017). The difference may be due to the
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Figure 7.4: Pressure-volume equation of state for fully hydrated low-spin AFM p-FeOOH

at static (dotted blue line) and 300 K (solid blue line) conditions. Symbols in blue represent

the low-spin phase at 300 K. White symbols represent reported experimental values for p-

FeOOH. Equation of state fit parameters V0, K0, and K
′
0 are 109.43 Å, 226.33 ± 0.04 GPa,

and 4.34 ± 0.001 for AFM Pa3̄ low-spin at 300 K.

assumed exchange-correlation potential: whereas we assume PBEsol, previous studies have

used PBE. In this context we note that PBEsol has been shown to yield excellent agreement

with experiment (Insixiengmay and Stixrude, 2023; Holmström and Stixrude, 2015; Cortona,

2017).

The comparison of our equation of state with that experimentally measured highlights

important sources of experimental uncertainty. We expect our results to be an accurate

155



Figure 7.5: Pressure dependence of the IR O-H stretching vibrational mode frequencies

with respect to pressure.

prediction of the equation of state of the x = 1 structure because of the excellent agreement

that we find with the experimentally measured equation of state and structure of the ε phase,

for which the composition is known to be FeOOH. Agreement with the study of Nishi et al.

(2017) is reasonably good. This study was unique in reverting the p-phase to the ε phase

upon reduction of pressure, providing strong evidence that x = 1 in these experiments. Using

our results as a baseline, we find that it may be possible to explain some other experimental

results, those with volumes less than ours, by dehydrogenation, and values of x less than 1

(Hu et al., 2017; Mao et al., 2017). It is more difficult to explain experimentally measured

volumes that are larger than ours, except possibly by the influence of deviatoric stress.

The IR spectrum of p-FeOOH has not yet been measured, and our prediction of the
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frequency of the IR active OH stretching mode (Fig. 7.5) could be used to further test

our preictions. A Raman spectroscopic study found a mode near 3500 cm−1 (Hou et al.,

2021), which decreases slightly in frequency with increasing pressure. The origin of the

discrepancy with experiment is not clear. The experimental results are puzzling because both

the measured frequency and its pressure dependence are typical of assymmetric hydrogen

bonds, rather than the symmetric hydrogen bonds of the p-FeOOH phase. Moreover, the

hydrogen-stretch in a symmetrically bonded configuration is Raman inactive. It is possible

that the observed Raman mode originates in another, otherwise undetected phase, within

the sample chamber, or could conceivably originate in adsorbed water at some point on the

laser path.

7.5 Conclusions

Pyrite-structure FeOOH may be an important host of water in the deep lower mantle. We

find that this phase is stable at pressures greater than 90 GPa, corresponding to 2000 km

depth in the mantle. The phase is low-spin anti-ferromagnetic and is denser than the ε phase.

We find good agreement with some experimental measurements of this phase, particularly in

those experiments where the composition can be confidently ascertained to be FeOOH (i.e.

x=1). Comparison with experiment also reveals many remaining uncertainties, including

the possibility of dehydrogenation, which is difficult to detect experimentally. We make

predictions that may lead to better characterization of p-FeOOHx, including the IR active

vibrational mode frequencies, and the atomic coorinates, that could be tested against the

results of future experimental studies.
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CHAPTER 8

Conclusions

The projects in this thesis set out to push the forefront of understanding the interactions

of major planet-forming materials at extreme pressure-temperature conditions such as those

that prevail at the Earth’s core-mantle boundary. Using first principles molecular dynamics

simulations, I have determined the partitioning of nominally lithophile elements (Mg, Si, and

O) in the Earth’s core (Fe), finding substantial inter-solubility, and complete miscibility at

temperatures exceeding 7000 K. I have also placed fundamental energetic constraints on the

interaction of metal and ice components by exploring the physics of the FeOOH system, and

making predictions its behavior, including solid-solid phase transitions, high-spin to low-spin

transitions, insulator-metal transitions, and hydrogen-bond symmetrization.
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