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Therapeutic targeting of prenatal pontine ID1 signaling 
in diffuse midline glioma
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Abstract
Background. Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years 
past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate 
upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in 
human tumors or therapeutically targeted.
Methods. Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-
assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-
knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor 
growth was assessed. Patient-reported CBD dosing information was collected.
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Results. Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is as-
sociated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions 
are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing 
astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from 
the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. 
Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor 
growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell 
proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, 
finding that a clinical trial to standardize dosing may be beneficial.
Conclusions. H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcrip-
tional program that is therapeutically targetable with CBD.

Key Points

• ID1 is found to be a novel therapeutic target in DMG.

• ID1 is found to be epigenetically upregulated in H3K27M-DMG.

• Preliminary data suggest that therapeutic targeting of ID1 decreases tumor cell 
invasion/migration and tumor growth in human and murine pHGG models.

Diffuse midline gliomas (DMG) are lethal pediatric brain 
tumors that originate in the midline brain structures, and 
have a median survival of 10–11  months.1 Standard of 
care consists of palliative radiation, and experimental 
chemotherapies have yet to demonstrate additional bene-
fits. Even with the advent of precision-based medicine, clin-
ical trials targeting specific molecular targets are lacking, 
highlighting the need to identify novel therapeutic targets.

As many as 80% of DMGs harbor a lysine-to-methionine 
substitution (H3K27M) in Histone H3.3 (H3.3A) or Histone 
H3.1 (H3C2).1,2 H3K27M now defines a distinct sub-
group in DMG and is associated with worse prognoses.3 
The H3K27M mutation represses the polycomb repres-
sive complex 2 (PRC2), resulting in global reduction of 
H3K27me3 (with focal gains),4 and global increases in acet-
ylation of H3K27 (H3K27ac) with focal losses, associated 
with upregulation of tumor-driving genes.5

Constitutive expression of Inhibitor of DNA binding (ID) 
proteins has been shown to inhibit the differentiation of 
multiple tissues.6 ID proteins dimerize with basic helix-loop-
helix (bHLH) transcription factors, preventing DNA binding.7 
bHLH transcription factors are key regulators of tissue and 
lineage-specific gene expression.8 Overexpression of the 
Inhibitor of DNA binding 1 (ID1) gene has been tied to the 

pathogenesis and invasiveness of multiple human can-
cers.8,9 ID1 is associated with downstream activin A  re-
ceptor type 1 (ACVR1) signaling, which itself is mutated/
activated in 25% of DMGs,10–12 indicating a potential role for 
ID1. Prior studies have shown H3K27M and ACVR-mutation 
upregulate ID1 in cultured human astrocytes and murine 
models of DMG.10,11 Invasion into normal brain tissue is a 
pathognomonic feature of DMG, but its regulation remains 
poorly understood. Further, analysis of ID1 in human DMG 
preclinical models, and its regulation and targetability, have 
not been previously investigated.

In the present study, we show that DMGs demonstrate 
epigenetic activation and increased expression of ID1, in-
fluenced most strongly by H3K27M mutational status and 
brain location. ID1-high DMG tumor cells most closely re-
semble developing human and murine prenatal pontine 
astrocyte precursors with an activated “migratory” tran-
scriptional program. Genetic and pharmacologic (CBD) 
suppression of ID1 decreases invasion, and to a greater ex-
tent, migration, and improves survival in multiple preclin-
ical DMG models. These findings represent an exciting new 
direction for understanding the regulation and targetability 
of invasion in DMG, with broad implications for thera-
peutic targeting of solid tumors with ID1 upregulation.

Importance of the Study

Diffuse midline gliomas (DMGs) are incurable pediatric 
brain tumors, and there is a need to identify novel ge-
netic targets that can be exploited therapeutically. We 
show that ID1 drives DMG cell invasion and migration. 
ID1-knockdown (genetic and pharmacologic) in human 
DMG cells reduces tumor growth and improves survival 
of mice. Taken together, our data demonstrate that CBD, 

which inhibits ID1, affects multiple malignant pheno-
types of DMG, including proliferation, invasion, and mi-
gration. The effects of CBD on DMG are mediated by 
both ID1-dependent and ID1-independent mechanisms. 
These results lay the groundwork for additional investi-
gations targeting ID1 and hold potentially major impli-
cations for future clinical trials.
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Fig. 1 Elevated expression of ID1 in DIPG population. (A) IUE-mediated H3K27M-tumor model. (B) PDGFRAMUT-p53MUT-H3WT (“PPW”) and 
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row). (E) ID1 expression by RNA-sequencing from PPK and PPW from IUE mouse tumors, *P < .01, Welch’s t-test. (F) Western blot (WB) of PPW 
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Materials and Methods

PPK-IUE Model of pHGG (Pediatric High-grade 
Gliomas)

All animal studies were conducted according to guidelines 
approved by the University Committee on Use and Care of 
Animals (UCUCA) at the University of Michigan. In-utero elec-
troporation (IUE) was performed using sterile technique on 
isoflurane/oxygen anesthetized pregnant CD1 females at em-
bryonic stage E13.5, using established methodology.13,14 In this 
study, we injected the following four plasmids together: [1] 
PBase, [2] PB-CAG-DNp53-Ires-Luciferase (dominant negative 
TP53 or TP53 hereafter), [3] PB-CAG-PdgfraD842V (PDGFRA 
D842V), and [4] PB-CAG-H3.3 K27M- (H3K27M), referred to as 
the “PPK”-IUE pHGG model15 (Supplementary Material).

Whole Exome and Transcriptome Sequencing 
(Sick Kids, Toronto)

Use of patient tissues was approved by the Hospital for Sick 
Children (Toronto) Research Ethics Board. WES/WGS (accession 
EGAS00001000575) from 34 DMG samples plus 18 matched 
normal brains were used. The total RNA Library Prep with Ribo-
Zero Gold Kit (Illumina, CA, USA) was used and paired end 
sequencing generated with Illumina HiSeq 2500 machines (acces-
sion EGAD00001006450)16 (Supplementary Material).

MiNT-ChIP-sequencing of Tumor Tissue

Analyses for the two classical histone modifications 
H3K27ac and H3K27me3, representing accessible and 
repressed chromatin states, respectively, were per-
formed as part of a MiNT-ChIP analysis for 9 tumor sam-
ples of DMG patients in comparison to a control tissue 
sample of healthy pons according to the protocol pub-
lished by Buenstro et al. (Supplementary Material).

Single-cell RNA Sequencing (scRNA-
seq) Analysis from Developing Brain and 
H3K27M-mutant DMGs

Single-cell gene expression data and their clusters in the 
developing brain were obtained from GSE133531 (mouse 
pons), GSE120046 (human pons, gestational week 8–28), 
and GSE144462 (human cortex, gestational week 21–26) 
(Supplementary Material).

Native ChIP-qPCR

Native ChIP-qPCR was performed on post-mortem tissue 
using antibodies against H3K27ac (2  μl, Cat#07360, 
Millipore Sigma), H3K27me3 (1  μg, Cat#07449, Millipore 
Sigma), and control IgG (2 μg Cat#12370, Millipore Sigma) 
(Supplementary Material).

Invasion Assay

Invasion assays were performed using growth factor-reduced 
Matrigel invasion chambers with 8  μm pores (Cat#354483, 
Corning) as described in previously published work.17

Migration (Scratch) Assay

Migration assays were performed following a previously 
published protocol with slight modifications.18 Cells were 
seeded in 6-well plates and grown to approximately 80% 
confluence. Scratches were made using a 200 μl pipette tip 
and migration was then monitored using the IncuCyte® 
live-cell analysis system.

CBD Treatment Studies In In Vivo PPK-IUE and 
DIPGXIIIP* Mouse Model

Mice harboring IUE-generated PPK HGG tumors were treated 
with cannabidiol (CBD) when tumors reached logarithmic 
growth phase (minimum 2 × 106 photons/s via bioluminescent 
imaging). Mice litters from each experimental group were 
randomized to treatment with: (A) 15 mg/kg CBD (10% CBD 
suspended in Ethanol, 80% DPBS, 10% Tween-80) and (B) con-
trol treatment (10% Ethanol, 80% DPBS, 10% Tween-80). Mice 
were treated via intraperitoneal injection 5  days/week until 
morbidity all control mice (Supplementary Material).

Results

ID1 Elevated in DMG and PPK-IUE pHGG with 
H3K27M Mutation

We first sought to confirm whether ID1 expression is af-
fected by H3K27M. We adopted a PPK-IUE model of pHGG, 
as previously described.15 Mice developed tumors [mu-
tant TP53, mutant PDGFRA (D842V) with H3.3A K27M mu-
tation (“PPK”) or H3.3A wildtype (“PPW”)] via plasmid 
injection into the lateral ventricles of E13.5 embryonic 

and PPK primary neurospheres for assessment of H3K27M, H3K27ac, and ID1 expression by H3-K27M mutational status. (G) ID1 expression of 
DIPG tissue (n = 34) compared to matched normal brain tissue (n = 18) from SickKids cohort; ***P < .001, unpaired parametric t-test. (H) ID1 ex-
pression by scRNA-seq from DFCI cohort, including brainstem, thalamus, and cortex; ****P< .0001, one-way ANOVA t-test. (I) ID1 expression of 
DMG tissue compared to hemispheric pHGG tissue from ICR cohort; ****P < .0001, unpaired t-test. (J) Kaplan–Meier survival curve of DIPG pa-
tients (n = 66) grouped by high and low ID1 expression. *P = .0282, Mantel–Cox test. (K) ID1 expression across H3.1 (H3C2) K27M (n = 12), H3.3 
(H3.3A) K27M (n = 71), H3WT (n = 118), and H3.3 (H3.3A) G34R/V (n = 19) DIPG tumors from ICR cohort, presented in Mackay et al.; *P < .05, **P < 
.01, ***P < .001, ****P < .0001, one-way ANOVA t-test. (L) ID1 expression of pHGG tissue by ACVR1 mutational status (n = 15 ACVR1MUT; n = 205 
ACVR1WT). Data from ICR cohort; **P < .01, unpaired parametric t-test. (M) ID1 expression of pHGG tumors with H3K27M only (n = 72), H3K27M, 
and ACVR1 mutations (n = 11) and neither mutation (H3WT/ACVR1 WT; n = 114) from ICR cohort; *P < .05, **P < .01, one-way ANOVA t-test. 
(N–O) WB showing removal of H3K27M in two human DIPG cell lines (DIPGXIIIP* and BT-245) decrease ID1 expression.
  

Fig. 1  Continued

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
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CD1 mice (Figure 1A–B). Primary neurosphere cell cul-
tures were generated by tumor dissociation (Figure 1B). 
Survival analysis revealed that H3.3A K27M-mutant PPK 
tumor bearing mice (n = 15) had significantly reduced sur-
vival compared to PPW (n = 10) (Figure 1C). Additionally, 
immunohistochemistry (IHC) analyses of murine tumors 
showed tumor-specific expression of H3K27M and global 
loss of H3K27me3 expression, a salient feature of H3K27M-
DMG (Figure 1D).19 RNA-sequencing of PPK and PPW 
showed elevated ID1 expression in PPK tumors (Figure 1E). 
Further, western blot analysis confirmed increased ID1 ex-
pression in a PPK tumor-derived cell line (Figure 1F).

ID1 Expression is Influenced by H3 Mutational 
Status and Associated with Lower Overall 
Survival in DMG

In whole transcriptome sequencing from 34 DMG and 18 
normal brain samples (cortex), DMG tissue showed sig-
nificantly higher ID1 expression (Figure 1G). ScRNA-seq 
data from H3K27M-mutant DMGs [Dana-Farber Cancer 
Institute (DFCI) cohort20] confirmed that malignant cells 
display significantly higher ID1 expression compared 
to nonmalignant cells within these tumors (Fig. S1A-B). 
ScRNA-seq data from H3K27M-DMG patients (n  =  4) re-
vealed higher ID1 expression in brainstem H3K27M-DMG 
cells compared to thalamic and cortical tumor cells (Figure 
1H), although the number of thalamic tumors (n = 2) is very 
low. Further analysis of bulk RNA-seq [ICR cohort (Institute 
for Cancer Research), n = 22121], in which both brainstem 
and thalamic DMG tumors showed significantly higher 
ID1 expression than cortical pHGGs (Figure 1I). Further, 
H3K27M-DMG patients with higher ID1 expression (ICR co-
hort) have lower OS22 (Figure 1J).

Analysis of bulk tumor RNA-seq (ICR cohort) revealed that 
ID1 expression is significantly increased in DMGs harboring 
H3K27M (H3.3A or H3C2) compared to H3.3WT and H3.3G34R/V 
(Figure 1K).21 ACVR1-mutant tumors have significantly higher 
ID1 expression compared to WT tumors (Figure 1L), but the ad-
dition of mutated ACVR1 to H3 doesn’t significantly increase 
ID1 expression (Figure 1M). Further, western blot analysis of 
two isogenic cell lines DIPGXIIIP K27M-KO vs DIPGXIIIP and 
BT245 K27M-KO vs K27M shows that ID1 expression de-
creases when H3K27M is knocked out (Figure 1N–O).

Epigenetic State of ID1 Loci in DMG Tumor Cells 
by H3 Mutational Status

As DMGs are driven by epigenetic dysregulation, we 
sought to assess H3K27ac and H3K27me3 marks at 

regulatory regions of the ID1 gene in human DMG tumors. 
ChIP-sequencing on normal pediatric pontine tissue (n = 1), 
H3WT DMG (n = 1), and H3K27M DMG (n = 4) tumor sam-
ples revealed a marked increase in H3K27ac deposition at 
ID1 gene body elements in H3K27M DMG tissue (Figure 
2A). Subsequent ChIP-qPCR analysis confirmed signifi-
cantly elevated H3K27ac at predicted promotor and gene 
body regions of the ID1 locus compared to H3WT/ACVR1WT 
DMG samples (Figure 2B–C) (Supplementary Table 1). 
Changes in H3K27me3 were less notable (Figure 2D). 
Further, qPCR of tumor tissue demonstrated ID1 expres-
sion to be highest in H3K27M tumors (n = 4 sites) regard-
less of ACVR1 status (Figure 2E and Fig. S2A-C). We noted 
differences in ID1 expression (qPCR) between multi-focal 
autopsy samples, leading us to analyze multi-focal (n = 6) 
bulk RNA-sequencing of a single H3K27M/ACVR1-mutant 
DMG patient (UMPED12), which revealed varying levels 
of ID1 expression across different regions of the tumor 
(Figure 2F). Assessment of ID1 expression across all malig-
nant cell types in scRNA-seq performed on four DMG pa-
tients showed that ID1 is most highly expressed in DMG 
cells with an astrocytic differentiation program [“AC-like 
cells” 20], followed by oligodendrocyte precursor cell-like 
(“OPC-like”) cells (Figure 2G and Fig. S3A). We observed 
higher levels of ID1 expression in cycling compared to 
noncycling malignant cells (Fig. S3B).

ID1+ Malignant DMG Cells Share Transcriptional 
Program with OAPC-like Cells in Developing 
Human Brain

We next assessed ID1 expression and deposition of 
H3K27ac at the ID1 gene locus across pre and postnatal 
mouse brain developmental stages. RNA in-situ hybridi-
zation data (Allen Brain Atlas) demonstrated that ID1 RNA 
was higher in the developing prenatal mouse hindbrain 
(including developing pons) compared to forebrain or mid-
brain, and postnatal mouse brain (Figure 3A–B and Fig. 
S4). ChIP-sequencing in E15.5 mouse brains revealed ele-
vated H3K27ac in the hindbrain compared to midbrain and 
forebrain,23 including at ID1 enhancer sites (Fig. S5A-B).

Analysis of developing human24 and mouse25 brain 
scRNA-seq data showed that ID1 expression peaks at ges-
tational week (GW) 12–22 in the human pons (Figure 3C) 
and early postnatal mouse pons (P0; Fig. S6A-D), and is 
most highly expressed in astrocytes. IHC analyses of pre 
and postnatal brains confirmed elevated ID1 in the mu-
rine embryonic brain (E18; Figure 3D) and human GW20.5 
brain (Figure 3E) in subventricular regions lining the 4th 
ventricle.

(C–D) ChIP-qPCR quantification of deposited (C) H3K27ac, and (D) H3K27me3 marks at gene body elements identified in part A for ID1. Data 
represent samples from patients in (B), mean ± SEM; *P < .05, **P < .01, ****P < .0001, one-way ANOVA t-test. (E) ID1 expression (qPCR) for mul-
tifocal samples collected from patients in (B) showed highest ID1 expression in H3K27M tumors. Data represent mean ± SEM; **P < .01, ****P 
< .0001, one-way ANOVA t-test. (F) MRI of H3K27M/ACVR1MUT DIPG patient with circles representing regions where samples were obtained at 
autopsy. Color scale on right displays relative level of ID1 expression by qPCR (orange = higher ID1 expression; blue = lower ID1 expression). (G) 
ScRNA-seq data (DFCI, n = 4 DIPGs) of malignant DIPG cells plotted to show ID1 expression across varying subtypes of cells [oligodendrocyte-
like (OC-like); OPC-like; AC-like]. AC-like vs OPC-like: p = 1.1e-3; AC-like vs OC-like: p = 7.9e-4; OC-like vs OPC-like: p = 1.5e-2, Mann–Whitney U 
(MWU) test.
  

Fig. 2  Continued
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We next sought to assess whether ID1+ sub-
populations of malignant DMG cells share a tran-
scriptional program with ID1+ developing brain cells. 
Interestingly, AC-like cells from all four DMG tumors 
show the strongest overlap with the transcriptional 
program of the recently defined OAPC cell population 
in the developing human brain (Figure 3F). OAPCs ex-
press both astrocyte (GFAP) and oligodendrocyte 
(OLIG1, OLIG2) marker genes as well as SPARCL1, 
which is involved in regulation of cell adhesion/migra-
tion. We found ID1 to be a marker gene for both AC-like 
DMG cells and OAPCs. Immunofluorescence and IHC of 
human H3K27M-DMG samples revealed colocalization 
of ID1 and SPARCL1 expression in cell sub-populations 
(Figure 3G).

In vitro ID1-knockdown Decreases Invasion and 
Migration of DMG Cells

Single cell RNA-seq analysis of ID1-expressing AC-like 
DMG cells from human tumors and analysis of bulk 
RNA-seq from mouse IUE-PPK tumors revealed elevated 
SPARCL1 expression (Fig. S7A-B), and enrichment of gene 
sets involved in regulation of cell adhesion and migration 
(Fig. S7C). To explore ID1’s role in DMG cell migration and 
invasion, we pursued genetic (shRNA) and pharmaco-
logic knockdown of ID1 in patient-derived H3K27M-mutant 
DMG cells. CBD (the nonpsychoactive compound found 
in Cannabis sativa26–28) has been shown to reduce ID1 ex-
pression in multiple preclinical solid tumor models,9,29 po-
tentially through increased intracellular levels of reactive 
oxygen species (ROS).30 Genetic knockdown (shID1) in 
DIPG007 resulted in significant ID1 reduction (Figure 4A). 
CBD reduced ID1 protein levels in two K27M-DMG cell cul-
tures (Figure 4B) and murine H3.3-PPK cell culture (Fig. 
S8A), but not in two control [NHA (normal human astro-
cytes) and KNS42 (hemispheric HGG)] cell lines without 
K27M mutation (Fig. S8B). ID1 knockdown resulted in 
SPARCL1 reduction in DIPG007 cells (Figure 4C), further 
indicating that SPARCL1 functions downstream of ID1. CBD 
treatment increased ROS levels in DIPG007 cells treated 
with 2.5 or 5.0 μM of CBD (Figure 4D). Additional treatment 
with Vitamin E [α-tocopherol (TOC)], an established ROS 
scavenger,29,30 consistently rescued the downregulation of 
ID1 expression seen with CBD treatment (Figure 4E).

Genetic- (Sh-ID1) and CBD-mediated ID1-inhibition sig-
nificantly reduced invasion of multiple DMG cell lines in-
cluding DIPG007 (Figure 4F and Fig. S9A-B), PBT-29 (Figure 
4G), and JUMP4 (Fig. S11A-B) but CBD did not reduce in-
vasion of control cell line (NHA and KNS42) to the same 

extent (Fig. S10A-B). ID1 knockdown decreased the effi-
cacy of CBD-mediated invasion reduction (Fig. S9C-E). 
Proliferation rates were unchanged by shID1, but CBD did 
impact cell proliferation of multiple human DMG (DIPG007, 
PBT-29, DIPGXIIIP*, and JUMP4) and mouse PPK cells (Fig. 
S8C-E and S11A,C,E). Rescue of ID1 with the addition of 
TOC blunted the CBD-induced invasion reduction (Figure 
4H). ID1-knockdown significantly reduced DIPG007 migra-
tion using a “scratch assay,” (Figure 4I) and CBD treatment 
significantly reduced migration in three DMG cell lines 
(Figure 4J, Fig. S11D,F,G) when compared to control cells 
(NHA and KNS42) (Fig. S10C). Similar to CBD-induced in-
vasion reduction, rescue of ID1 with TOC also blunted the 
CBD-induced migration reduction (Figure 4J). Genetic 
knockdown of ID1 (shID1) in DIPG007 cells decreased 
sensitivity to CBD treatment in a scratch assay (Figure 
4K–L), indicating that CBD, in part, mediates cell migration 
through ID1.

In vivo Genetic Knockdown of ID1 Increase 
Survival of Mice with pHGG in IUE Model

To assess whether ID1 suppression would impede in vivo 
tumor growth in PPK tumor mice, we knocked down ID1 
expression in our both H3.3-PPK and H3.1-PPK-IUE tumor 
model using PiggyBac transposon ID1-shRNA plasmids 
and scrambled short hairpins (“Sh-control”). Both H3.3-
PPK-ShID1 and H3.1-PPK mice exhibited significantly pro-
longed survival and reduced luminescent tumor signals 
when compared to PPK-control (Figure 5A–C and 5G-H 
and Fig. S13C). H3.3-PPK-Sh-ID1 tumors demonstrated re-
ductions in ID1 and Ki67 expression by IHC (Fig. S12A-B). 
In a human patient-derived intracranial xenograft in vivo 
mouse model, orthotopic implantation of DIPG007 cells 
with ID1-knockdown into the brainstem of NSG mice 
also demonstrated reduced tumor growth compared to 
DIPG007-Sh-control cells, as shown by bioluminescent im-
aging (Fig. S12C-D) and demonstrated reductions in ID1 
and Ki67 expression by IHC (Fig. S12E-F). Orthotopic im-
plantation of human DIPGXIIIP* cells showed increased 
survival in ID1 KD tumor bearing mice when compared to 
controls (Fig. S12G).

We then assessed the impact of CBD treatment on in vivo 
tumor growth using our H3.3- and H3.1-PPK-IUE model. 
Both PPK-IUE mice received daily treatment with CBD 
(15 mg/kg) or vehicle control. CBD treatment significantly 
improved median survival compared to vehicle control 
(Figure 5D and G–H). Further Moribund PPK tumors treated 
with CBD showed reductions in ID1 and Ki67 expression by 
IHC (Figure 5E) and more distinct tumor borders, indicating 

[Allen Developing Mouse Brain Atlas. Available from: http://developingmouse.brain-map.org/]. (C) Heatmap of ID1 expression across varying cell 
types during normal human pontine development [data from Fan et al.24]. Circle size indicates percentage of cells that express ID1 and color indi-
cates expression level in ID1+ cells (red = high expression; blue = low expression). (D) ID1 IHC staining of normal human pontine tissue across de-
velopment. (E) ID1 IHC of normal murine pontine tissue across development. Magnification = 10× (top row); 40× (bottom row). (F) Overlap of genes 
expressed by cell types in the developing human pons [Fu et al.] in DIPG tumor cell subsets. (Red = cell type marker genes enriched in DIPG cells; 
blue = cell type marker genes not enriched in DIPG cells). (G) Immunostaining of SPARCL1 (green) and ID1 (red) in human DIPG tissue showing 
colocalization of ID1 and SPARCL1 in a subset of cells (white arrow). Scale bar, 20 μm. Tumor nuclei stained with DAPI (blue). IHC staining of 
SPARCL1in human DIPG tissue (black arrow) (representative of n = 3 human DIPG tumors).
  

Fig. 3  Continued
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reduced invasion into normal brain (Figure 5F and Fig. 
S13A-B). ID1-KD, H3.1-PPK tumor mice (H3.1-PPK-shID1) 
showed no further improvement in survival when treated 
with CBD (Figure 5G–H and Fig. S13C), consistent with the 
majority of CBD impact on survival being ID1-mediated in 
this model. Further, CBD treatment showed significantly 
improved survival of NSG mice with human patient-
derived DIPGXIIIP* cells orthotopically implanted into the 
brainstem (Figure 5I).

CBD Dose Reporting in DMG Patients

CBD is a supplemental nonprescribed therapy gaining use 
among patients with pHGG.31 We gathered patient-reported 
CBD alongside tetrahydrocannabinol (THC) dosing from 
families of DMG patients at two institutions (n = 14 total, 
n = 11, DMG with K27M, n = 3, H3WT), including a med-
ical marijuana therapy registry study (NCT03052738) at 
Children’s Hospital of Colorado and retrospective inter-
views with families of patients who underwent research 
autopsy at the University of Michigan. CBD was given 
orally in all but one case (suppository) one to three times 
per day with a wide range of dosing (0.07 mg/kg to 25 mg/
kg/day) (Fig. S14). This CBD dosing data represents feasi-
bility of CBD treatment in DMG, with the clear need for fur-
ther investigation and prospective therapeutic clinical trial.

Discussion

Overexpression of the Inhibitor of DNA binding 1 (ID1) gene 
has been tied to the pathogenesis of multiple human can-
cers.32–34 A role for ID1 in DMG has been proposed, based 
on its association with activating mutations in ACVR1, 
which increase ID1 expression through the activation of 
the BMP signaling pathway.10,12,13 Our data show that in 
DMG tissue, ID1 expression is increased with H3K27M 
mutation with minimal additional impact from concurrent 
ACVR1 mutation. This raises the possibility that the epige-
netic activation of the ID1 locus may be the primary driver 
of ID1 signaling in human DMG tumors. Additionally, our 
data support that ID1+/SPARCL1+ expressing AC-like DMG 
cells share a migratory expression transcriptional profile 
with a subset of developing brain cells, the recently iden-
tified OAPCs. This may indicate new and exciting develop-
mental origins for this subset of DMG cells. Further, our 
data indicate that ID1 promotes migration and invasion 
in DMG cells, which are disease-defining features of this 
infiltrative tumor.

We propose a model by which ID1 is upregulated through 
multiple mechanisms to “re-activate” prenatal brain devel-
opmental signaling (Figure 6, upper panel). Further, our 
data suggest that CBD inhibits DMG cell proliferation, in-
vasion, and migration, through both ID1-dependent and 
ID1-independent mechanisms, with inhibition of migra-
tion being the most ID1-dependent and inhibition of pro-
liferation being the most ID1-independent (Figure 6, lower 
panel). Our studies implicate an active epigenetic state at 
the ID1 locus shared between H3K27M tumor cells and 
prenatal precursor brain cells. This is consistent with prior 
studies focused on H3K27M mutations that have associated 
changes in H3K27ac/H3K27me3 with differential regulation 
of key DMG-associated genes.35,36 Additionally, we provide 
evidence that postnatal activation of ID1 in tumor cells rep-
licates a prenatal “migratory” transcriptional state seen 
in a recently discovered subset of developing OAPC brain 
cells. These OAPCs (Olig2+ SPARCL1+ glial progenitor cells) 
were identified as astrocyte-like at the molecular and tran-
scriptional levels. In line with this, we found AC-like DMG 
cells to transcriptionally mimic the program of OAPCs, with 
the OAPC-marker SPARCL1 and ID1 colocalizing in a subset 
of H3K27M tumor cells. Interestingly, previous work has 
suggested a role for SPARCL1 in promoting DMG cell inva-
sion into the subventricular zone (SVZ).37 Our data demon-
strate that ID1 is most highly expressed by cycling AC-like 
cells in DMG tumors and SPARCL1 is one of the strongest 
expression markers of these cells.

Our data show that ID1-knockdown has the potential to 
severely impede DMG tumor cell migration and invasion 
in preclinical models. These phenotypes are consistent 
with the inherent invasion into normal brainstem tissue 
that is observed histologically in DMGs, and with the role 
of ID1 in other cancers.8,34 In our experiments involving 
both genetically-engineered and intracranial implantation 
models, H3K27M-mutant tumor cells with ID1 reduction 
show decreased tumor growth and invasion. Our data raise 
important insights into the mechanisms underlying one of 
the most critical and problematic features of DMG tumors.

In the present study, CBD reduced ID1 expression in 
DMG cells at concentrations that are likely clinically achiev-
able in the human brain. CBD is an often-unregulated 
supplemental therapy already being used for palliative 
treatment in pediatric oncology. It is commonly taken 
alongside THC, though the effects of coadministration are 
unknown in DMG patients. Our data show that CBD treat-
ment reduces ID1 expression and DMG cell invasion and 
migration through increasing intracellular levels of ROS. 
Additionally, CBD increases expression of ATF3 (data not 
shown), which could be another possible mechanism by 
which CBD inhibits ID1 expression in DMG cells.38

measured by 2′,7′-Dichlorodihydrofluorescein (DCF) using flow cytometry. (E) WB of DIPG007 cells treated with vehicle (control) or 10 μM of CBD 
for 14 h in the absence or presence of 50 μM TOC. (F–G) Effect of ID1 knockdown on invasion as measured by Matrigel-coated Boyden chamber 
assay. shRNA ID1-knockdown in DIPG007 or CBD-mediated ID1 knockdown in PBT-29 showed reduced invasion, **P < .01, unpaired parametric 
t-test. (H) Effect of CBD and α-tocopherol (TOC) (50 μM) on DIPG007 invasion. DIPG007 cells were treated for 2 days with DMSO (control) and 
5 μM or 7.5 μM CBD ± TOC (50 μM). Invasion was measured by Matrigel-coated Boyden chamber. **P < .01, unpaired parametric t-test. (I) 
Effect of ID1-knockdown on DIPG007 migration and (J) Effect of CBD and TOC (50 μM) on DIPG007 migration. (K–L) Effect of CBD on migration of 
DIPG007-sh-control and DIPG007-sh-ID1, as measured by scratch assay and quantified as percent wound closure. Experiments were conducted 
in triplicate; data points represent mean ±- SEM, **P < .01; images taken with Incucyte; area measured by ImageJ.
  

Fig. 4  Continued

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac141#supplementary-data
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The present study makes significant strides in 
establishing the mechanism of this controversial and pop-
ular off-trial supplemental compound in high-risk brain 
tumor patients. Given that patients currently take a variety 
of doses, it may be important to standardize both dosage 

and treatment length, as well as looking into potential 
toxicities in a future clinical trial. A  recent CBD formula-
tion (Epidiolex) is FDA-approved for epilepsy treatment,39 
opening the door to a future clinical trial in DMG (and other 
ID1-driven tumors).

(representative from n = 8) 49 days post-IUE injection. (C) H3.3-PPK bioluminescence tumor growth for H3.3-PPK-Sh-control and H3.3-PPK-
Sh-ID1 mice 49 days post-IUE injection. *P < .05, one-way ANOVA t-test. (D) Survival analysis of mice bearing H3.3-PPK tumor treated with CBD. 
Median survival for control condition was 45 days post-IUE injection and 55 days for CBD condition (15 mg/kg). **P < .005, Log-rank test. (E) IHC 
analysis of tumor images for ID1 and Ki67 expression (representative of n = 3 tumors); N = 3 animals/treatment group and 4 images/animal. Data 
represent mean ± SEM. Magnification = 10×. (F) Analysis of tumor invasion in tumor-bearing mice (n = 3 mice/group) with genetic (H3.3-PPK-
Sh-ID1) or pharmacologic (CBD) ID1 knockdown. Invasion was defined as tumor infiltration into the contralateral hippocampus. (G) Survival 
analysis of mice bearing H3.1-PPK tumor with ID1 genetic KD (H3.1-PPK-ShID) or treated with CBD. Median survival for control = 45 days, 
CBD = 66 days, for Sh-ID183 days, and for Sh-ID1 + CBD = 76.5 days, respectively **P < .005, Log-rank test. (H) H3.1-PPK tumor bearing mice 
bioluminescence tumor growth for control, CBD, Sh-ID1, and for Sh-ID1 + CBD. *P < .05, one-way ANOVA t-test. (I) Survival analysis of NSG 
mice bearing human DIPGXIIIP* xenograft tumor treated with CBD. Median survival for control condition was 22 and 26 days for CBD condition 
(15 mg/kg). **P < 0.005, Log-rank test.
  

Fig. 5  Continued
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Our data support a model in which multifactorial ge-
netic and epigenetic processes promote ID1-driven pre-
natal development transcriptional programs, which also 
promote the invasive features of DMG. These results im-
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mors and provide a strong argument for the inclusion of 
ID1-targeting therapies into future treatments.
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