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Editor’s note:
Adversarial examples have emerged as a key threat for machine-learning-
based systems, especially the ones that employ deep neural networks. 
Unlike a large body of research in this area, this Keynote article accounts 
for the semantic, context, and specifications of the complete system with 
machine learning components in resource-constrained environments.

—Muhammad Shafique, Technische Universität Wien 

 Machine learning (ML) algorithms, fueled 
by massive amounts of data, are increasingly being 
utilized in several domains, including healthcare, 
finance, and transportation. Models produced by 
ML algorithms, especially deep neural networks 
(DNNs), are being deployed in domains where trust-
worthiness is a big concern, such as automotive 
systems [1], finance [2], healthcare [3], and cyber 
security [4]. Of particular concern is the use of ML 
(including deep learning) in cyber–physical systems 
(CPSs) [5], such as autonomous vehicles, where 
the presence of an adversary can cause serious con-
sequences. However, in designing and deploying 
these algorithms in critical CPSs, the presence of an 
active adversary is often ignored.

Adversarial ML (AML) [6] is a field concerned 
with the analysis of ML algorithms to adversarial 
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attacks, and the use of such analysis in 
making ML algorithms robust to attacks. 
It is part of a broader agenda for safe 
and verified ML-based systems [7]. 
The major focus has been on test-time 
adversarial attacks, in which adversar-
ial examples, inputs crafted by adding 
small, often imperceptible, perturba-
tions to existing data, force a trained ML 

model to misclassify. In this article, we contend that 
the work on AML, while important and useful, is not 
enough. In particular, we advocate for the increased 
use of semantics in adversarial analysis and design of 
ML algorithms. Semantic adversarial learning explores 
a space of semantic modifications to the data, uses 
system-level semantic specifications in the analysis, 
utilizes semantic adversarial examples in training, and 
produces not just output labels but also additional 
semantic information. Focusing on deep learning, we 
explore these ideas and provide initial experimental 
data to support them. Although the focus of much of 
our article is on DNNs, the idea of semantic adversarial 
learning is applicable to a broad class of ML systems.

Semantic AML can be particularly relevant for 
developing robust ML models and ML-based systems 
in resource-constrained environments. A semantic 
approach can show that traditional (e.g., pixel-level) 
adversarial robustness is not necessary when those 
adversarial inputs do not lead to system-level failures. 
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Amazon Search

KeynoteKeynote

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore.  Restrictions apply. 



9 March/April 2020 

By focusing efforts to make the ML model robust to 
only those adversarial inputs that are semantically 
meaningful and have system-level implications, a 
semantic adversarial approach makes more efficient 
use of resources that can be especially valuable in 
applications in embedded systems and Internet- 
of-Things (IoT) devices.

We begin in the “Background” section with some 
relevant background, and then present our proposal 
for semantic adversarial learning in the “Semantic 
adversarial analysis and training” section. Some 
directions for future work are sketched in the “Con-
clusion” section. An earlier version of this article 
appeared at CAV 2018 [8].

Background

Background on ML
We describe some general concepts in ML. We 

will consider the supervised learning setting. Con-
sider a sample space Z of the form X × Y and an 
ordered training set ​S = ​((​x​ i​​, ​y​ i​​))​ i =1​ m  ​​ (xi is the data and 
yi is the corresponding label). Let H be a hypothe-
sis space (e.g., weights corresponding to a logistic-
regression model or a neural network model). There 
is a loss function 𝓁: H × Z → R so that given a hypoth-
esis w ∈ H and a sample (x, y) ∈ Z, we obtain a loss 
𝓁(w,(x, y)). We consider the case where we want to 
minimize the loss over the training set S

	​​ L​ S​​ (w)  = ​  1 _ m ​ ​ ∑ 
i =1

​ 
m

 ​ ℓ​(w, (​x​ i​​, ​y​ i​​)) + λ(w).​�

In the above equation, λ > 0, and the term R(w) 
is called the regularizer and enforces “simplic-
ity” in w. Since S is fixed, we sometimes denote 
𝓁i(w) = 𝓁(w,(xi, yi)) as a function only of w. We 
wish to find a w that minimizes the loss LS(w) or, 
in other words, we wish to solve the following 
optimization problem:

	​​ min​ 
w ∈H

​ ​ ​L​ S​​ (w)​.�

Example: We will consider the example of the logistic 
regression.

In this case, X = Rn, Y = {+1, −1}, H = Rn, and the 
loss function 𝓁(w, (x, y)) is as follows (represents the 
dot product of two vectors):

	​ log ​(1 + ​e​​ −y(​w​​ T​⋅x)​)​​.�

If we use the L2 regularizer (i.e., R(w) = ǁ w ǁ2), 
then LS(w) becomes

	​ ​ 1 _ m ​ ​ ∑ 
i =1

​ 
m

 ​log​​(1 + ​e​​ −​y​ i​​(​w​​ T​⋅​x​ i​​)​)​ + λ‖w ​‖​ 2​​​.�

Classifiers: We focus on ML models that are clas-
sifiers, which are functions from Rn to C, where 
R denotes the set of reals and C is the set of class 
labels. To emphasize that a classifier depends on a 
hypothesis w ∈ H, which is the output of the learn-
ing algorithm described earlier, we will write it as Fw  

(if w is clear from the context, we will sometimes sim-
ply write F). For example, after training in the case of 
the logistic regression, we obtain a function from Rn 

to {−1, +1}. Vectors will be denoted in boldface, and 
the r th component of a vector x is denoted by x[r].

Throughout this article, we refer to the function 
s(Fw) as the softmax layer corresponding to the classi-
fier Fw. In the case of the logistic regression, s(Fw) (x) 
is the following tuple (the first element is the probabil-
ity of −1 and the second one is the probability of +1):

	​ ​<​  1 _ 
1 + ​e​​ ​w​​ T​⋅x​

 ​,  ​  1 _ 
1 + ​e​​ −​w​​ T​⋅x​

 ​>​​.�

Formally, let c = |C | and Fw be a classifier. We 
let s(Fw) be the function that maps Rn to ​​R​ +​ c ​​ such 
that ǁs(Fw)(x)ǁ1 = 1 for any x [i.e., s(Fw) computes 
a probability vector]. We denote s(Fw)(x)[l ] to be 
the probability of s(Fw)(x) at label l. Recall that the 
softmax function from Rk to a probability distribu-
tion over {1, . . . ,k} = [k] such that the probability of 
j ∈ [k] for a vector x ∈ Rk is

	​​   ​e​​ x[j]​ _ 
​ ∑ 
r =1

​ 
k
  ​​e​​ x[r]​​

 ​​. �

Some classifiers Fw(x) are of the form argmaxl 

s(Fw)(x)[l ] (i.e., the classifier Fw outputs the label 
with the maximum probability according to the 
“softmax layer”). For example, in several DNN archi-
tectures, the last layer is the softmax layer. We are 
assuming that the reader is familiar with the basics 
of DNNs. For readers not familiar with DNNs, we can 
refer to the excellent book by Goodfellow et al. [9].

Background on logic
Temporal logics are commonly used for specify-

ing desired and undesired properties of systems. For 
CPSs, it is common to use temporal logics that can 
specify properties of real-valued signals over real 
time, such as signal temporal logic (STL) [10] or 
metric temporal logic (MTL) [11].

A signal is a function s : D → S, with D ⊆ R≥0 

being an interval, and either S ⊆ B or S ⊆ R, where  
B = {⊤, ⊥} and R is the set of reals. Signals defined 
on B are called Booleans, whereas those on R are 
said real valued. A trace w = {s1, . . . , sn} is a finite set 
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of signals defined over the same interval D. We use 
variable xi to denote the value of a real-valued signal 
at a particular time instant.

Let Σ = {σ1, . . . , σk} be a finite set of predicates 
σi : Rn → B, with σi ≡ pi(x1, . . . , xn) ⊲ 0, ⊲ ∈ {<, ≤}, 
and pi : Rn → R a function in the variables x1, . . . , xn. 
An STL formula is defined as follows:

	​ ϕ : =  σ | ¬ϕ | ϕ ∧ ϕ | ϕ   ​U​ I​​ ϕ​� (1)

where σ ∈ Σ is a predicate and I ⊂ R≥ 0 is a closed 
nonsingular interval. Other common temporal oper-
ators can be defined as syntactic abbreviations in the 
usual way, like for instance ϕ1 ∨ ϕ 2 := ¬(¬ϕ1 ∧ ¬ϕ2),  
FI  ϕ := ⊤ UI ϕ, or GI ϕ := ¬FI ¬ϕ. Given t ∈ R≥ 0, a 
shifted interval I is defined as t + I = {t + t′ | t′ ∈ I }. 
Let w be a trace, t ∈ R≥ 0, and ϕ be an STL formula. 
The qualitative (Boolean) semantics of ϕ is induc-
tively defined as follows: 

	​ w, t  σ  iff σ(w (t ))   is   true​�

	​ w, t  ¬ϕ  iff w, t  ϕ​�

	​ w, t  ​ϕ​ 1​​ ∧ ​ϕ​ 2​​  iff w, t  ​ϕ​ 1​​  and w, t  ​ϕ​ 2​​​� (2)

	​ w, t  ​ϕ​ 1​​ ​U​ I​​ ​ϕ​ 2​​  iff ∃ ​t​​ ′​  ∈  t + I  s.t. w, ​t​​ ′​  ​ϕ​ 2​​  and​�

	​ ∀ ​t​​ ′′​∈  [t, ​t​​ ′​] , w, ​t​​ ′′​  ​ϕ​ 1​​​.�

A trace w satisfies a formula ϕ if and only if  
w, 0 ​​ ϕ, in short w ​​ ϕ. STL also admits a quantitative 
or robust semantics, which we omit for brevity. This 
provides quantitative information on the formula, 
telling how strongly the specification is satisfied or 
violated for a given trace.

Adversarial robustness
The field of AML has grown rapidly in recent 

years, and a full survey is beyond the scope of this 
article; we refer the reader to other papers on this 
topic [6], [8]. Instead, in this section, we present a 
general formulation of adversarial robustness [12] to 
test-time attacks that captures all the formulations in 
the literature that we are aware of.

In such adversarial attacks, the adversary starts 
with a given example x ∈ X and perturbs it so as 
to produce “wrong” output. Formally, let ​​X  ̃ ​​ ⊆ X be 
a set of allowed perturbed inputs, µ : X × X → R≥0 

be a quantitative function (such as a distance, risk, 
or divergence function), D : (X ×X) × R → B be 
a constraint defined over µ, A : X × X × R → B 
be a target behavior constraint, and α, β ∈ R be the 
parameters. Then, the problem of finding a set of 

inputs that falsifies the ML model can be cast as a 
decision problem as follows.
Definition 1: Given x ∈ X, find x∗ ∈ X such that the 
following constraints hold:

1) admissibility constraint: x∗ ∈ ​​X  ̃ ​​;
2) distance constraint: D (µ(x, x∗), α); 
3) target behavior constraint: A(x, x∗, β ).

The admissibility constraint (1) ensures that the 
adversarial input x∗ belongs to the space of admissi-
ble perturbed inputs. The distance constraint (2) con-
strains x∗ to be no more distant from x than α. Finally, 
the target behavior constraint (3) captures the target 
behavior of the adversary as a predicate A(x, x∗, β ) 
which is true iff the adversary changes the behavior 
of the ML model by at least β modifying x to x∗. If the 
three constraints hold, then we say that the ML model 
has failed for input x. We note that this is a so-called 
“local” robustness property for a specific input x, as 
opposed to other notions of “global” robustness to 
changes to a population of inputs [8], [13].

Typically, the problem of finding an adversarial 
example x∗ for a model f at a given input x ∈ X, as 
formulated above, is formulated as an optimization 
problem in one of two ways.

•	 Minimizing perturbation: Find the closest x∗ that 
alters f ’s prediction. This can be encoded in con-
straint (2) as µ(x, x∗) ≤ α.

•	 Maximizing the loss: Find x∗ that maximizes false 
classification. This can be encoded in the con-
straint (3) as L(f (x), f (x∗)) ≥ β.

Definition 2: The optimization version of Definition 1 
is to find an input x∗ such that either x∗ = argminx*∈X α 
or x∗ = argmaxx*∈X β, subject to the constraints in  
Definition 1.

We refer the reader to [12] for a description of 
how the variants of adversarial robustness published 
in the literature can all be captured by the defini-
tions above.

Semantic adversarial analysis and 
training

A central tenet of this article is that the analysis of 
DNNs (and ML components, in general) must be more 
semantic. In particular, we advocate for the increased 
use of semantics in several aspects of adversarial anal-
ysis and training, including the following.

•	 Semantic modification space: Recall that the 
goal of adversarial attacks is to modify an input 
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vector x with an adversarial modification δ so as 
to achieve a target misclassification. Such modifi-
cations typically do not incorporate the applica-
tion-level semantics or the context within which 
the neural network is deployed. We argue that it 
is essential to incorporate more application-level, 
contextual semantics into the modification space. 
Such semantic modifications correspond to modi-
fications that may arise more naturally within the 
context of the target application. For example, for 
a DNN used for perception in an autonomous vehi-
cle, the semantic space would be the 3-D scene 
around the vehicle, including the location and 
characteristics of vehicles and other agents. We 
view this approach not as ignoring arbitrary modifi-
cations (which are indeed worth considering with 
a security mind set), but as prioritizing the design 
and analysis of DNNs toward semantic adversarial 
modifications. The “Compositional falsification” 
section discusses this point in more detail.

•	 System-level specifications: The goal of much of 
the work in adversarial attacks has been to gen-
erate misclassifications. However, not all mis-
classifications are made equal. We contend that 
it is important to find misclassifications that lead 
to violations of desired properties of the system 
within which the DNN is used. Therefore, one 
must identify such system-level specifications 
and devise analysis methods to verify whether 
an erroneous behavior of the DNN component 
can lead to the violation of a system-level spec-
ification. System-level counterexamples can be 
valuable aids to repair and re-design ML models. 
See the “Compositional falsification” section for 
a more detailed discussion of this point.

•	 Semantic loss functions for training: Most ML mod-
els are trained with the main goal of reducing mis-
classifications as measured by a suitably crafted 
loss function. We contend that it is also important 
to train the model to avoid undesirable behaviors 
at the system level. For this, we advocate using 
methods for semantic training, where a semantic 
loss function is used that incorporates semantic 
properties including system-level specifications 
and confidence levels in the training process. 
The “Semantic training” section explores a few 
ideas along these lines.

•	 Semantic data set augmentation: An important 
way to (re)design ML models is to augment the 
data set with carefully generated or selected data 

so as to improve the dependability of the model 
without losing much accuracy on the original data 
set.  We advocate for the use of data generated  
via semantic adversarial analysis for such augmen-
tation. In particular, counterexample-guided data 
augmentation, in which counterexamples gener-
ated via semantic adversarial analysis are utilized 
for training and testing, shows a great deal of prom-
ise in improving ML models. We present some 
ideas and results in the “Semantic training” section.

Compositional falsification
We discuss the problem of performing the 

system-level analysis of a deep learning component, 
using recent work by Dreossi et al. [14], [15] to illus-
trate the main points. The material in this section is 
mainly based on [16].

We begin with some basic notation. Let S denote 
the model of the full system under verification, E 
denote a model of its environment, and Φ denote 
the specification to be verified. C is an ML model 
(e.g., DNN) that is part of S. Let x be an input to C. 
We assume that Φ is a trace property—a set of behav-
iors of the closed system obtained by composing 
S with E, denoted as S ǁE. The goal of falsification is 
to find one or more counterexamples showing how 
the composite system S ǁE violates Φ. In this context, 
the semantic analysis of C is about finding a modi-
fication δ from a space of semantic modifications Δ 
such that C, on x + δ, produces a misclassification 
that causes S ǁE to violate Φ.

1) Example problem: As an illustrative example, con-
sider a simple model of an automatic emergency brak-
ing system (AEBS) that attempts to detect objects in 
front of a vehicle and actuate the brakes when needed 
to avert a collision. Figure 1 shows the AEBS as a sys-
tem composed of a controller (automatic braking), 
a plant (vehicle subsystem under control, including 

Figure 1. AEBS in closed loop. An image 
classifier based on DNNs is used to perceive 
objects in the ego vehicle’s frame of view.
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transmission), and an advanced sensor (camera 
along with an obstacle detector based on deep learn-
ing). The AEBS, when combined with the vehicle’s 
environment, forms a closed-loop control system. The 
controller regulates the acceleration and braking of 
the plant using the velocity of the subject (ego) vehi-
cle and the distance between it and an obstacle. The 
sensor used to detect the obstacle includes a camera 
along with an image classifier based on DNNs. In gen-
eral, this sensor can provide noisy measurements due 
to incorrect image classifications, which in turn can 
affect the correctness of the overall system.

Suppose we want to verify whether the distance 
between the ego vehicle and a preceding obstacle 
is always larger than 2 m. In STL, this requirement 
Φ can be written as G0,T( ǁxego − xobs ǁ2 ≥ 2). Such 
verification requires the exploration of a very large 
input space comprising of the control inputs (e.g., 
acceleration and braking pedal angles) and the 
ML component’s feature space (e.g., all the possi-
ble pictures observable by the camera). The latter 
space is particularly large—for example, note that 
the feature space of RGB images of dimension 
1000 × 600 pixels (for an image classifier) contains  
2561000 × 600 × 3 elements.

This case study has been implemented in MAT-
LAB /Simulink1 in two versions that use two different 
convolutional neural networks (CNNs): the Caffe 
[17] version of AlexNet [18] and the Inception-v3 
model created with Tensorflow [19], both trained on 
the ImageNet database [20]. Further details about 
this example can be obtained from [14].

2) Approach: A key idea in our approach is to 
have a system-level verifier that abstracts away the 
component C while verifying Φ on the resulting 

abstraction. This system-level verifier communicates 
with a component-level analyzer that searches for 
semantic modifications δ to the input x of C that 
could lead to violations of the system-level specifica-
tion Φ. Figure 2 illustrates this approach.

We formalize this approach while trying to 
emphasize the intuition. Let T denote the set of all 
possible traces of the composition of the system with 
its environment, S ǁE. Given a specification Φ, let 
TΦ denote the set of traces in T satisfying Φ. Let UΦ 

denote the projection of these traces onto the state 
and interface variables of the environment E. UΦ is 
termed as the validity domain of Φ, i.e., the set of 
environment behaviors for which Φ is satisfied. Sim-
ilarly, the complement set U¬Φ is the set of environ-
ment behaviors for which Φ is violated.

Our approach works as follows:

1)	 The system-level verifier initially performs two 
analyses with two extreme abstractions of 
the ML component. First, it performs an opti-
mistic analysis, wherein the ML component 
is assumed to be a “perfect classifier,” i.e., all 
feature vectors are correctly classified. In situa-
tions where ML is used for perception/sensing, 
this abstraction assumes perfect perception/
sensing. Using this abstraction, we compute 
the validity domain for this abstract model of 
the system, denoted as ​​U​ Φ​  +​​. Next, it performs a 
pessimistic analysis where the ML component 
is abstracted by a “completely-wrong classi-
fier,” i.e., all feature vectors are misclassified. 
Denote the resulting validity domain as ​​U​ Φ​  −​​. It is 
expected that ​​U​ Φ​  +​  ⊇ ​ U​ Φ​  −​​.

Abstraction permits the system-level verifier 
to operate on a lower-dimensional search space 
and identify a region in this space that may be 
affected by the malfunctioning of component 
C—a so-called “region of uncertainty” (ROU). 
This region, ​​U​ ROU​ C  ​​ is computed as ​​U​ Φ​  +​ \ ​U​ Φ​  − ​​.

In other words, it comprises all environment 
behaviors that could lead to a system-level failure 
when component C malfunctions. This region  
​​U​ ROU​ C  ​​, projected onto the inputs of C, is commu-
nicated to the ML analyzer. (Concretely, in the 
context of our example of the “Example problem” 
section, this corresponds to finding a subspace of 
images that corresponds to ​​U​ ROU​ C  ​​.)

2)	 The component-level analyzer, also termed as 
an ML analyzer, performs a detailed analysis of 

Figure 2. Compositional verification approach. 
A system-level verifier cooperates with a component-
level analysis procedure (e.g., adversarial analysis of 
a ML component to find misclassifications).

1https://github.com/dreossi/analyzeNN
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the projected ROU ​​U​ ROU​ C  ​​. A key aspect of the ML 
analyzer is to explore the semantic modification 
space efficiently. Several options are available for 
such an analysis, including the various adversar-
ial analysis techniques surveyed earlier (applied 
to the semantic space), as well as systematic sam-
pling methods [14]. Even though a component-
level formal specification may not be available, 
each of these adversarial analyses has an implicit 
notion of “misclassification.” We will refer to these 
as component-level errors. The working of the ML 
analyzer from [14] is shown in Figure 3.

3)	 When the component-level (ML) analyzer finds 
component-level errors (e.g., those that trigger 
misclassifications of inputs whose labels are 
easily inferred), it communicates that infor-
mation back to the system-level verifier, which 
checks whether the ML misclassification can 
lead to a violation of the system-level prop-
erty Φ. If yes, we have found a system-level 

counterexample. If no, component-level errors 
are found, and the system-level verification can 
prove the absence of counterexamples, then 
it can conclude that  Φ is satisfied. Otherwise, if 
the ML misclassification cannot be extended 
to a system-level counterexample, the ROU is 
updated and the revised ROU passed back to the 
component-level analyzer.

The communication between the system-level 
verifier and the component-level (ML) analyzer thus 
continues until we either prove or disprove Φ, or we 
run out of resources.

3) Sample results: We have applied the above 
approach to the problem of compositional falsifi-
cation of CPSs with ML components [14]. For this 
class of CPS, including those with highly nonlin-
ear dynamics and even black-box components, 
simulation-based falsification of temporal logic 
properties is an approach that has proven effective 

Figure 3. ML analyzer: searching the semantic modification space. A concrete semantic 
modification space (top left) is mapped into a discrete abstract space. Systematic sampling, 
using low-discrepancy methods, yields points in the abstract space. These points are 
concretized and the NN is evaluated on them to ascertain if they are correctly or wrongly 
classified. The misclassifications are fed back for system-level analysis.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore.  Restrictions apply. 
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in industrial practice [21], [22]. We present here a 
sample of results on the AEBS example from [14], 
referring the reader to more detailed descriptions in 
the other papers on the topic [14], [15].

In Figure 4, we show one result of our analysis for 
the Inception-v3 DNN. This figure shows both cor-
rectly classified and misclassified images on a range 
of synthesized images where: 1) the environment 
vehicle is moved away from or toward the ego vehi-
cle (along the z-axis); 2) it is moved sideways along 
the road (along the x-axis); or 3) the brightness of 
the image is modified. These modifications consti-
tute the three axes of the figure. Our approach finds 
misclassifications that do not lead to system-level 
property violations and also misclassifications that 
do lead to such violations. For example, Figure 4 
shows two misclassified images: one with an envi-
ronment vehicle that is too far away to be a safety 
hazard, and another image showing an environment 
vehicle driving slightly on the wrong side of the road, 
which is close enough to potentially cause a viola-
tion of the system-level safety property (of maintain-
ing a safe distance from the ego vehicle).

For further details about this and other results with 
our approach, we refer the reader to [14] and [15].

Semantic training
In this section, we discuss two ideas for semantic 

training and retraining of DNNs. We first discuss the 

use of hinge loss as a way of incorporating confidence 
levels into the training process. Next, we discuss how 
system-level counterexamples and associated mis-
classifications can be used in the retraining process 
to both improve the accuracy of ML models and to 
gain more assurance in the overall system contain-
ing the ML component. A more detailed study of 
using misclassifications (ML component-level coun-
terexamples) to improve the accuracy of the neural 
network, termed counterexample-guided data aug-
mentation, is presented in [23].

1)  Experimental setup: As in the preceding sec-
tion, we consider an AEBS using a DNN-based object 
detector. However, in these experiments, we use an 
AEBS deployed within Udacity’s self-driving car sim-
ulator, as reported in our previous work [15].2 We 
modified the Udacity simulator to focus exclusively 
on braking. In our case studies, the car follows some 
predefined way points, while accelerating and brak-
ing are controlled by the AEBS connected to a CNN. 
In particular, whenever the CNN detects an obstacle 
in the images provided by the onboard camera, the 
AEBS triggers a braking action that slows the vehicle 
down and avoids the collision against the obstacle.

We designed and implemented a CNN to predict 
the presence of a cow on the road. Given an image 
taken by the onboard camera, the CNN classifies the 
picture in either “cow” or “not cow” category. The 
CNN architecture is shown in Figure 5. It consists of 
eight layers: the first six are alternations of convolu-
tions and max-pools with rectified linear unit (ReLU) 
activations, the last two are a fully connected layer 
and a softmax that outputs the network prediction 
(confidence level for each label).

We generated a data set of 1,000 road images 
with and without cows. We split the data set into 
80% training and 20% validation data. Our model 
was implemented and trained using the Tensor-
flow library with crossentropy cost function and the 
Adam algorithm optimizer (learning rate 10−4). The 
model reached 95% accuracy on the test set. Finally, 
the resulting CNN is connected to the Unity simu-
lator via the Socket.IO protocol.3 Figure 6 depicts a 

Figure 4. Misclassified images for Inception-v3 
neural network (trained on ImageNet with 
TensorFlow). Red crosses are misclassified 
images and green circles are correctly classified. 
Our system-level analysis finds a corner-case 
image that could lead to a system-level safety 
violation.

2Udacity’s self-driving car simulator: https://github.com/udacity/self-driving-car-sim
3Socket.IO protocol: https://github.com/socketio
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screenshot of the simulator with the AEBS in action 
in proximity of a cow.

2)  Hinge loss: In this section, we investigate the 
relationship between multiclass hinge loss functions 
and adversarial examples. Hinge loss is defined 
as follows:

	​ l (​y ̂ ​)  =  max (0, k + ​max​ 
i ≠l

​  ​ ( ​​y ̂ ​​ i​​ )  − ​​y ̂ ​​ l​​ )​� (3)

where (x, y) is a training sample, ​​y ̂ ​​ = F(x) is a predic-
tion, and l is the ground truth label of x. For this sec-

tion, the output ​​y ̂ ​​ is a numerical value that indicates 
the confidence level of the network for each class. For 

example, ​​y  ̂ ​​ can be the output of a softmax layer as 
described in the “Background” section.

Consider what happens when we vary k. Suppose 
there is an i ≠ l s.t. ​​y ̂ ​​i > ​​y ̂ ​​l. Pick the largest such i, call 
it  i∗. For k = 0, we will incur a loss of ​​y ̂ ​​i∗ − ​​y ̂ ​​l for the 
example (x, y). However, as we make k more negative,  
we increase the tolerance for “misclassifications” 
produced by the DNN F. Specifically, we incur no 
penalty for a misclassification as long as the asso-
ciated  confidence level deviates from that of  the 
ground truth label by no more than |k|. The larger 
the absolute value of k, the greater the tolerance. 
Intuitively, this biases the training process toward 
avoiding “high confidence misclassifications.”

In this experiment, we investigate the role of k and 
explore different parameter values. At training time, 
we want to minimize the mean hinge loss across 
all training samples. We trained the CNN described 
above with different values of k and evaluated its 
precision on both the original test set and a set of 
counterexamples generated for the original model, 
i.e., the network trained with crossentropy loss.

Table 1 reports accuracy and log loss for different 
values of k on both original and counterexamples 
test sets (Toriginal and Tcountex, respectively).

Table 1 shows interesting results. We note that 
a negative k increases the accuracy of the model 
on counterexamples. In other words, biasing the 
training process by penalizing high-confidence 
misclassifications improves accuracy on counter-
examples! However, the price to pay is a reduction 
of accuracy on the original test set. This is still a 

Figure 5. CNN architecture.

Figure 6. Udacity simulator with a CNN-based AEBS 
in action.

 
Table 1. Hinge loss with different k values.
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preliminary result and further experimentation and 
analysis is necessary.

3) System-level counterexamples: Counterexample-
guided data augmentation [23] is a technique for 
augmenting an existing data set with carefully cho-
sen semantic adversarial examples that produce 
incorrect output at the ML component level. In 
this work, we show that a combination of seman-
tic modifications and analysis of the generated 
counterexamples can improve the accuracy of a 
state-of-the-art DNN for object detection and classifi-
cation in autonomous vehicles by around 10% over 
the original accuracy and in comparison with other 
state-of-the-art augmentation methods. The question 
we consider in this article is: Can we use such an 
approach at the system level to completely eliminate 
counterexamples?

By using the composition falsification framework 
presented in the “Compositional falsification” sec-
tion, we identify orientations, displacements on the 
x-axis, and color of an obstacle that leads to a colli-
sion of the vehicle with the obstacle. Figure 7 depicts 
configurations of the obstacle that lead to specifica-
tion violations, and hence, to collisions.

In an experiment, we augment the original train-
ing set with the elements of Tcountex, i.e., images of 
the original test set Toriginal that are misclassified by 
the original model (see the “Hinge loss” section).

We trained the model with both crossentropy and 
hinge loss for 20 epochs. Both models achieve a high 
accuracy on the validation set (≈92%). However, 
when plugged into the AEBS, neither of these models 

prevents the vehicle from colliding against the obsta-
cle with an adversarial configuration. This seems to 
indicate that simply retraining with some semantic 
(system-level) counterexamples generated by analyz-
ing the system containing the ML model may not be 
sufficient to eliminate all semantic counterexamples.

Interestingly, though, it appears that in both cases 
the impact of the vehicle with the obstacle happens 
at a slower speed than the one with the original 
model. In other words, the AEBS system starts detect-
ing the obstacle earlier than the original model, and 
therefore starts braking earlier as well. This means 
that despite the specification violations, the coun-
terexample retraining procedure seems to help with 
limiting the damage in case of a collision. Coupled 
with a run-time assurance framework [24], semantic 
retraining could help mitigate the impact of misclas-
sifications on the system-level behavior.

This article introduced the idea of semantic 
adversarial machine (deep) learning, where adver-
sarial analysis and training of ML models are per-
formed using the semantics and context of the over-
all system within which the ML models are utilized. 
We identified several ideas for integrating semantics 
into adversarial learning, including using a semantic 
modification space, system-level formal specifica-
tions, and semantic training using counterexamples 
and more semantic loss functions. Initial results 
not only show the promise of these ideas, but also 
indicate that much remains to be done. We outline 
below some of the interesting directions for further 
research; see [7] for more details.

Programmatic modeling of the semantic feature 
space: High-dimensional semantic feature spaces 
require more structured representations. A promis-
ing approach is to design domain-specific program-
ming languages to represent the semantic feature 
space in a way that is easy to understand, modify, 
and use to guide semantic adversarial learning. In 
particular, probabilistic programming languages 
such as Scenic [25] provide this capability while 
also permitting a way to represent distributional 
assumptions and enable tasks such as data genera-
tion, inference, and verification.

Efficient algorithms to search semantic space: In 
addition to devising suitable representations of the 
semantic space, we need efficient algorithms to 
search the resulting high-dimensional space. The 
VerifAI toolkit [26] is an initial step to develop such 
algorithmic methods for the design and analysis  

Figure 7. Semantic counterexamples: 
obstacle configurations leading to 
property violations (in red).
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of artificial intelligence (AI)/ML-based systems. 
Another promising direction is the combination of 
“standard” AML methods with differentiable render-
ers/simulators [27].

Formal specification for ML and deep learning: An 
important direction is to develop formalisms to cap-
ture properties of the ML model and the ML-based 
system that enable semantic adversarial analysis. 
Although some initial progress has been made in this 
regard [13], [12], much more remains to be done.

Exploring tradeoffs between semantic robust-
ness and resource-efficient implementation: As dis-
cussed in the “Introduction” section, a semantic 
approach can help make an ML model robust in 
a resource-efficient manner. In fact, evidence from 
past work on error-resilient system design [28] 
suggests that using semantic/system-level specifi-
cations can enable targeting scarce resources to 
exactly those components that need to be made 
robust. This offers a fruitful direction for further 
research on robust ML implementations.

In summary, the field of semantic adversarial learn-
ing promises to be a rich domain for research at the 
intersection of ML, formal methods, design automa-
tion, programming languages, and related areas.� 
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