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ABSTRACT

Current traffic travel time estimates are largely based on road sensors embedded in the pavement.
Today technical developments in cellular positioning and the spread of wireless phones provides
the opportunity to  track cell phone equipped drivers as traffic probes. The Federal
Communication Commission Phase II mandate for Enhanced-911 (E-911) requires that wireless
carriers must provide the location of a 911 wireless call by October 1, 2001 to the Public Safety
Answering Point (PSAP), within approximately 125 meters, or under one-tenth of a mile in the
majority of situations.

The motivation of this research is to evaluate the feasibility of using cell phones as traffic probes
for the Bay Area network. A review of cellular positioning techniques, an analytical model, as
well as a simulation model show that accurate travel times estimates can be obtained. Assuming
that at least 5% of freeways travelers are equipped with a cell phone, one can predict a 95%
accuracy in freeway link travel time estimates.

The E-911 mandate will be the driving force to implement such cellular positioning. However,
the production, or adaptation, and warehousing of traffic information from the cell-phones-as-
probes can be tailored for the requirements of traffic authorities and information service providers
and may become an important business opportunity.

 The report also advocates the joint field evaluation of GPS,  cellular and conventional systems,
to allow the identification of the best mix of technology for future implementations.  The possible
institutional role of the PATH organization to foster a quicker deployment of these technologies
in California is also presented in this report.
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Executive Summary

Travel time estimates can be used to improve the management of the road network as well as
providing useful information to travelers, or those considering using the road network.
Traditionally travel time estimates have been gathered using expensive roadside infrastructure.
This report explores the possibility of gathering travel time data using cellular positioning
systems.

Many of the vehicles in the Bay Area already make their trips equipped with cellular telephone.
A number of different organizations are developing the technology to allow the measurement of
cellular telephones to an accuracy of approximately 100 meters.   By carefully processing such
measurements from many vehicles, we hypothesize that it will be possible to accurately estimate
travel time on the road network.

In order to analyze the feasibility of using cellular telephones to measure location, this discussion
paper first discusses the institutional environment.  We conclude that there are a number of
developments that are likely to facilitate the usage of cellular telephones as traffic probes.   The
foremost of these is the Federal Communications Commission E-911 (Phase II) mandate.  This
requires that all cellular telephones be located to an accuracy of about 125 meters by October,
2001.   This means that cellular positioning systems are very likely to be implemented in most
areas of the United States within the next few years.

Our paper then provides an overview of cellular positioning, explaining some of the basic
concepts.  We then discuss the actual developments that are taking place.  We conclude that this
is a very active area of research and development with a number of different solutions being
developed.  The prospects appear to be strong that a solution offering an accuracy of about 100
meters will be developed in close to the time frame demanded by the FCC.

We then present the results of a number of analytical and simulation models. The analytical
model allow insight into the various parameters that will affect the performance of cellular
positioning systems whilst the simulation model allow a more precise evaluation.  Our general
conclusion is that accurate travel time estimates will be possible provided around 5% of the
vehicles are equipped with live (i.e. switched on) cellular telephones.   We present evidence that
suggest that at least this proportion of vehicles on the Bay Area network will be equipped with
live cellular telephones.

We next consider the business issues to provide an indication of the reasoning that will need to be
made when deciding between some different alternatives.   This analysis provides some
suggestive evidence that cellular telephone positioning could be a cost-effective approach.

The final aspect that we considered was how a field trial could be carried out.  This trial would be
used to go beyond the tentative conclusions of this paper in order to establish the feasibility of
using cellular telephone technology to measure travel time.  This trial would consist of making
actual travel time measurements using one or more cellular telephone systems, making ground
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truth measurements using existing technology, and as well comparing the results with a GPS
vehicle probe solution.
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1.   INTRODUCTION

As part of the information age the transportation sector is motivated to obtain reliable information
in order to observe and control traffic flow. Providing traffic information and travel time
estimates between any two points is becoming a major challenge for the public institutions and
private companies targeting the mobility services that can be offered to the driving population.
The ways of providing such information may vary from country to country and involve a wide
range of possibilities; changeable Messages Signs installed at strategic highway intersections,
dedicated in-car devices or even simple radio or internet messages.

Travel time estimates are becoming an important part of  a nation’s Intelligent Transportation
Systems regardless of the distribution channel. Basic traffic data are usually collected by road-
side systems. Such systems mostly use inductive loop detectors. The detectors help to define the
traffic density, the traffic flow and speed.  These are the basic parameters needed by the
operational traffic engineers.

These stationary sensors are very useful but the cost of implementing and maintaining such
sensors to attain significant coverage of the roadway network is becoming prohibitive.
There are other ways to estimate travel time, particularly using equipped vehicles as sensors
(probe vehicles).  Use of probe vehicles is likely to lead the way for more efficient and more cost
effective techniques.

In a recent statement Mercedes Benz points out that:

”Most experts agree that the idea of highways with costly imbedded sensors that monitor
and even control traffic flow, or provide re-routing around traffic jams, would be too
expensive and impractical for universal use. However, imagine that every car on the road
might actually double as a moving sensor, continuously feeding information about
weather, traffic flow, and road surface conditions to a central mainframe computer. This
vast traffic database would then be bundled into a useful, up-to-date route guidance
package beamed back to all its subscribers.

The most promising research vehicles for the ‘car as sensor' concept are Mercedes-Benz
models equipped with special radio systems which gather and transmit data from the car's
existing rain and light sensors, its satellite navigation system, and the sensors for the
Electronic Stability Program of stability control. The more cars that serve as traffic and
road sensors, the more accurate and comprehensive this concept could be. Without the
need for expensive sensors in the road or cameras at intersections, the coverage could
extend beyond just high-travel highways to all country roads, city streets and bridges.”

The above statement is concerned only with large numbers of vehicles equipped with special
purpose positioning devices. This will only happen in the longer-term timeframe. In the short
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term there are other means of considering vehicle as probes, particularly leveraging upon the
installed base of cellular telephones.

The rapid penetration of cellular phones means that many vehicles on the road network are
equipped with a cellular telephone.  If these telephones can be accurately located then this offers
the opportunity to use every mobile telephone equipped vehicle as a probe.

The present study is aimed at: 1) providing an overview of the technology and the potential
benefits arising from the technology, 2) identifying important issues related to vehicle probes
with the cellular technologies, 3) outline the assumptions being made in our study,  4) sketching
the approach we are following, and 4) providing an early indication of the feasibility of the
cellular technology for vehicle probes.

2. INSTITUTIONAL ENVIRONMENT

The major trends in the cellular phone markets and ITS related options

The Stanford Research Institute (SRI) consulting firm predicts that cellular telephone will be by
far the dominant communications network for ITS products and services in consumer markets.
This prediction is based on the preference for voice, cellular's declining price and growing
consumer base, and its ability to support short messaging for transmitting vehicle location data.
In addition, future new data services such as packet and high-speed circuit-switched
communications and mobile originated short messaging are adding to network functionality and
will future-proof technology as ITS services expand.

There are today more than 60 million of cellular subscribers in the U.S., spending an average $46
a month. Almost one third of these phones are digital and this proportion is growing everyday,
due to the strong involvement of cellular carriers who want to increase their capacity by using
digital networks. The cell phone suppliers are also participating to this trend, by developing a
broad range of new digital handsets with web-phone capabilities. In the San Francisco Bay Area,
new analog phones are no longer available.

The cellular market and digital technology trends

There are a number of competing cellular protocols, including IS-95 Code Division Multiple
Access (CDMA), IS-136 Time Division Multiple Access (TDMA) and Global System Mobile
(GSM).  Little more than a year ago, critics wondered if CDMA would make it to the starting line
in the wireless industry. Now, CDMA is positioned to catch market-leading GSM by early 2003,
according to a new report 4,  "IS-95 CDMA is well positioned in North America, Asia, and other
areas of the globe," says Ira Brodsky, president of Datacomm. "It is no coincidence virtually all
leading vendors agree the next generation wireless technology will be based on CDMA."

                                                
4 “CDMA Wireless Business Opportunities”, February, 1998  from Datacomm Research
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In its report, Datacomm says that GSM does enjoy a comfortable subscriber lead at this point.
But, the agency says that growth will slow in this region. Therefore, by having a stronger position
in North America, Asia, and Latin America, the research agency expects stronger growth in
CDMA technology over the next several years, with CDMA passing GSM in 2003.
As stated in the report, though the demand for CDMA telephones continues to grow more rapidly
than the demand for GSM phones, GSM's early lead nearly guarantees that it will remain the
most popular digital standard until 2003.

According to a new study written by Micrologic Research and published by Forward Concepts5,
the market for GSM cellular telephones will grow from $15.5 billion in 1999 to $24.5 billion in
2003, a compound annual growth rate (CAGR) of 12.1%. During the same period, the study
forecasts the worldwide CDMA cellular market will grow from $3.5 billion to $20.4 billion, a
compound growth rate of 55.9%. The IS-136 TDMA digital cellular standard is forecasted to
have a more modest effect on the market with worldwide handset sales of $1.4 billion in 1999
growing to only $3.5 billion in 2003.  The report indicates that there will be limited third-
generation (3G) cellular service available in Europe and Japan by 2001 and in North American by
2002. The number of 3G cellular subscribers is predicted to reach 16.9 million in Europe, 12.5
million in Japan, and 10.6 million in the Americas by the end of 2005

The study predicts that there will be at least two 3G standards. Europe will use W-CDMA/TD-
CDMA and Latin America will use CDMA 2000. North America and parts of Asia, including
Japan, will use both standards.

The Telematics Aspects - Driving Forces

Telematics is a recent term used to describe the integration of vehicle control and monitoring
systems with location tracking devices and wireless communications. Because of the need of
wide geographic coverage, virtually all telematics devices are likely to use cellular cell phones.
Telematics devices can be used for many purposes including :

•  automatically notify authorities of an accident, and guide them to the car;
•  track stolen vehicles;
•  provide navigation assistance to lost drivers;
•  call emergency roadside assistance;
•  perform remote diagnostics of engine functions

The Strategis Group has identified strong interest in telematics particularly among cellular phone
users. A significant number of cellular users (78%) are interested in having emergency roadside
assistance, compared with just over half of non users; half of cellular user express interest in
stolen vehicles recovery, compared with more than one-third for non-users.

                                                
5 3G Cellular Market Opportunities. A report on the progress toward 3G cellular technologies with infrastructure and
terminal  forecasts for Japan, Europe, and North America. A Micrologic report brought by Forward Concepts. Report
No. 920, 1998.
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On the commercial side, the Automatic Vehicle Location (AVL) systems become a major market
for both wireless location and mobile data services. AVL is making the breakthrough from being
a niche product for long haul trucking fleets to becoming an essential communications device for
business fleets of all types. For tracking fleets the leading communication mode is satellite bases
and used by half of the users; the cellular carriers  only provide  24% of the communication
needs. By 2003, the position of cellular and satellite should be reversed, with cellular accounting
for two-thirds of all communication needs.

Safety aspects driving forces; the E911 mandate leads the way to positioning
capabilities

The safety concerns are the leading market forces driving the new cell phones buyers. Every day
there are about 100,000 emergency calls in the United States; 30% of them are from cell phones.
The Federal Communications Commission has taken a step to facilitate the emergency response
action by asking the cellular carriers to report the location of the 911 calls. This decision came in
1996 through the so-called E-911 mandate. More recently the FCC has revised its rules aimed at
providing consumers with enhanced 911 emergency services when using wireless phones. The
new requirements promote public safety, competition among wireless 911 equipment
manufacturers and the continued improvement in the quality of 911 services. These new rules
will enable handset-based methods of providing location information for 911 calls to compete in
a reasonable way with network-based solutions in meeting the FCC's Enhanced 911 (E911) Phase
II requirements. The FCC also modified implementation requirements for carriers and revised the
accuracy/reliability rules applicable to all Automatic Location Identification (ALI) technologies.
These new rules will benefit both callers and public safety entities by providing accurate and
efficient automatic location information in emergencies.

Background on E911:

The FCC's wireless 911 rules seek both to improve the reliability of wireless 911 services and to
provide the enhanced features generally available for wireline calls. To further these goals, the
agency has required wireless carriers to implement E911 service, subject to certain conditions
and schedules, including a request from a Public Safety Answering Point (PSAP). Phase I of the
FCC's E911 rules requires that a dialable number accompany each 911 call, which allows the
PSAP dispatcher to call back if the call is disconnected or to obtain additional information. It also
gives the dispatcher the location at the cell site that received the call as a rough indication of the
caller's location. Phase II of the FCC's wireless 911 rules allows the dispatcher to know more
precisely where the caller is located, a capability called Automatic Location Identification or
ALI.  The original FCC E911 rules were adopted in 1996, and reflected then current expectations
about technological development. At that time, it was anticipated that only network-based
approaches would be employed to provide ALI. Since then advances in technologies that employ
new or upgraded handsets have demonstrated significant progress. However, as a practical
matter, the original  FCC rules only permit network-based solutions to meet the Phase II
requirements in the short term because they require that ALI be provided for all 911 calls in a
PSAP's area as of a fixed date (October 1, 2001). As a result, the original rule effectively
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precluded use of a handset-based approach, which requires the gradual replacement or upgrade of
current handsets. In 1999 the FCC revised its rules to permit the phase-in of new or upgraded
handsets in order for handset-based solutions to be a viable competitor for initial ALI deployment
under Phase II, while making other revisions aimed at promoting wireless E911 and improving
public safety.

Specifics of the 1999 Action:

The FCC adopted the following revisions to its wireless E911 rules in September 1999  6 ; the
major statements are as follows:

•  Wireless carriers who employ a Phase II location technology that requires new, modified or
upgraded handsets (such as GPS-based technologies) may phase-in deployment of Phase II
subject to the following requirements:

•  Without respect to any PSAP request for Phase  deployment, the carrier shall:
a) Begin selling and activating ALI-capable handsets no later than March 1, 2001;
b) Ensure that at least 50 percent of all new handsets activated are ALI- capable no later than

October 1, 2001; and
c) Ensure that at least 95 percent of all new digital handsets activated are ALI- capable no

later than October 1, 2002.

•  Once a PSAP request is received, the carrier shall, in the area served by the PSAP:  Within
six months or by October 1, 2001, whichever is later:
a) Ensure that 100 percent of all new handsets activated are ALI-capable;
b) Implement any network upgrades or other steps necessary to locate handsets; and
c) Begin delivering to the PSAP location information that satisfies Phase II requirements.

Within two years or by December 31, 2004, whichever is later, undertake reasonable
efforts to achieve 100 percent penetration of ALI-capable handsets in its total subscriber
base.

•  For roamers and other callers without ALI-capable handsets, carriers shall support Phase I
ALI and other available best practice methods of providing the location  the handset to the
PSAP.

•  To be allowable under the FCC rules, an ALI technology that requires new, modified, or
upgraded handsets shall conform to general standards and be interoperable, allowing roaming
among different carriers employing handset-based location technologies.

•  For carriers employing network-based location technologies, the FCC replaces its current
plan, which requires that implementation be fully accomplished within 6 months of a PSAP
request, with a revised rule requiring the carrier to deploy Phase II to 50 percent of callers

                                                
6 (Before the Federal Communications Commission Washington, D.C. In the Matter of Revision of the Commission's
Rules)  CC Docket No. 94-102 To Ensure Compatibility with   RM-8143 Enhanced 911 Emergency Calling
Systems) Third Report and Order  Adopted:  September 15, 1999
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within 6 months of a PSAP request and to 100 percent of callers within 18 months of such a
request.

•  The FCC adopts the following revised standards for Phase II location accuracy and reliability:
a) For network-based solutions: 100 meters for 67 % of calls, 300 meters for 95 % of calls;
b) For handset-based solutions: 50 meters for 67 % of calls, 150 meters for 95 % of calls.

•  The FCC directs wireless carriers to report their plans for implementing E911 Phase II,
including the technology they plan to use to provide caller location, by October 1, 2000. This
report provides information to permit planning for Phase II implementation by public safety
organizations, equipment manufacturers, local exchange carriers, and the FCC, in order to
support Phase II deployment by October 1,2001.

•  The FCC directs that the Office of Engineering and Technology and the Wireless
Telecommunications Bureau, working with interested parties, proceed expeditiously to
address issues of verifying compliance with the Phase II  accuracy and reliability standards.

3.  CELL PHONE POSITIONING THEORY

Cellular telephone systems are radio-based mobile communications systems. In this case cellular
means that the systems use many basestations to transmit or receive the signals from the mobile
telephones. These base stations are distributed over the service area, nominally in a hexagonal
pattern. The area in the closest vicinity of a base station is known as a cell.

The mobile’s power level is adjusted so that the signal from a mobile is unlikely to be received
by base stations that are not in the immediate vicinity of the mobile. This means that frequencies
can be reused in different parts of the service area, allowing many more telephones to operate for
the same frequency allocation. A further advantage of using a cellular structure is that the mobile
will always be relatively close to the base station with which it is communicating. This reduces
the power requirements for transmission, so increasing the time between charges for the mobile’s
battery. The cell size varies depending on the propagation characteristics of the area and the
density of users, for example in rural areas the cell radius might be 30 km, in suburban areas five
km, and in the central business district of a large city, the cell size might be considerably less
than a kilometer.
For some time it has been realized that it is possible to carry out positioning using a cellular
telephone system [1].  A number of factors, especially the FCC E911 ruling, has meant that
recently cellular positioning has become an active area of research and development [2]. There
are a number of advantages to a cellular telephone positioning system:

•  It makes use of the installed infrastructure of the cellular telephone system, so greatly
reducing establishment costs.

•  Cellular systems already have a spectrum allocation.
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•  In areas of the worst propagation, cellular systems tend to have the greatest number of cells.

•  There is already a very large installed user base.

•  The cellular system provides a two-way communications link.

The principal disadvantage of cellular telephone positioning technology is that the system has not
been designed without regard to positioning, so the engineer has to work around certain
characteristics of the cellular system. In particular:

•  Cellular systems tend to be designed so that it is only necessary for one base station to pick
up the signal from a mobile.

•  The bandwidths tend to be narrower than is optimal.

There are several ways that position can be derived in a cellular positioning system.  These
include :

The Signal Profiling involves measuring the characteristics of the received signal and
comparing it with a database of previous measurements.   A search is made historically
measured signal profile that is close to the received signal.  The estimated position is
taken to be the same as the position of the closest historical profile.

The Angle-of-Arrival technique uses a large antenna in order to estimate the angle-of-
arrival of the received signal. The antenna could be a large dish, or more likely, it can be
an array, synthesized from individual antenna elements. Such arrays are unlikely to be
cost effective or environmentally acceptable in metropolitan areas. However, for micro-
cellular systems, where the baselines are very short, it might be possible to make accurate
measurements with relatively small antenna arrays.

The Timing Measurement technique, in its simplest form, requires a receiver to make an
accurate determination of the time-of-arrival of received signals. The arrival time of the
signal is a function only of distance traveled, so it is possible to combine measurements
from different basestations in order to make a position determination.

In cellular systems, timing measurements can be done in two ways.  The first is propagation time
measurements, which involves a measurement of the round trip time between a mobile and a
basestation.  This results in circular loci for the possible location of the mobile.  Two
measurements result in an ambiguous position fix (see figure 1a), a third measurement resolves
the ambiguity.   The second way is Time Difference of Arrival (TDOA) where the arrival of a
signal is measured at a number of different basestations.  The TDOA measurements result in
hyperbolic loci (see figure 1b).



8

(a) (b)

Figure 1.  Examples of generic positioning techniques: (a) propagation time measurements (range), (b) TDOA measurements. The black dots
indicate the location of the basestation.  The mobile is at the spot marked ‘X ‘.

Although two angle of arrival measurements from two basestations can also be combined to
make a position measurement (see Figure 2(a)), it is possible to combine a propagation time
measurement and an angle of arrival measurement to make a position measurement from a single
basestation (see figure 2(b)).  The signal profiling does not yield a locus, it corresponds more to
pattern matching than conventional positioning methods.
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Figure 2: Further examples of generic positioning techniques : (a) angle of arrival measurements, (b) combination of range and angle
measurements. The block dots indicate the location of the basestation. The spot mobile is at the spot marked ‘X’.

There are two broad categories of positioning systems: self-positioning or remote-positioning. In
self-positioning, the mobile telephone works out its location based on the reception of signals
from the base stations. In remote-positioning, the system works out the location of the mobile by
causing the base stations to operate in a co-operative manner to process the signal received from
mobile. Self-positioning has a number of advantages including greater privacy and less changes
to the overall cellular network. Remote-positioning has the advantage that certain
implementations require no changes to the mobile telephone, allowing the large installed user
base of mobile telephones to be used immediately for positioning.  For cellular positioning
systems, remote-positioning is also referred to as network based positioning and self-positioning
can be referred to as handset based positioning.

The architecture of a self-positioning system is shown in figure 3.  This architecture is drawn for
TDOA systems.  The diagram applies to other methods (such as propagation time, profiling)
differing only in that there is no need for synchronization and the number of basestations

(a) (b)
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involved in the measurement).  The main elements are the mobile and the basestations. For
TDOA systems, there is a need for some means of synchronizing the basestations.   The basic
operation of the self-positioning system is that the mobile listens to the signals from the
basestations and then makes a measurement of position based on those signals.   Conceptually, all
the positioning methods described above could be implemented as self-positioning, however
signal-profiling would be more difficult than the others because of the need to carry a large
database onboard the mobile and the need to regularly update the database.  From the viewpoint
of cellular probes application, the fatal inadequacy of pure self-positioning, as depicted in Figure
2(a) is that only the mobile “knows” its location.  For the cellular probe application there needs to
be a method of relaying back the data to a central site, known as a Location Service Center
(LSC).  This could be done using standard cellular packet protocols, such as GSM’s Short
Messaging Service (SMS).  A combination of self-positioning together with a data link from the
mobile to a LSC provides a handset-based solution for travel time estimation.

.

Figure 3:  Architecture of a self-positioning system
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Figure 4:  Architecture of a network-based positioning system.

The architecture for a network-based positioning system is shown in Figure 4.  Here the signal
from the mobile is received at the basestations.  The measurements at the basestations are then
sent back to the LSC where the position can be calculated and distributed to other parties.

Prospects for Different Mobile Telephone Standards
Different mobile telephone standards include GSM, CDMA, Analog, and the third Generation
Mobile Standards and each has its own characteristics.

GSM
GSM  was developed as a European digital telephone standard.  It was first deployed in 1992 and
is now widely used around the world.  In the 900 MHz band (GSM 900) there are services
operating in at least 53 countries covering Europe, Australia, South Africa, and parts of the
Middle East and Asia. In the United States, GSM, implemented at 1900MHz, is referred to as
GSM/Personal Communications Services 1900 (GSM/PCS 1900) or GSM North America. In
Europe and Asia, GSM is also available at 1800 MHz; the standard being referred to as Digital
Communication System (DCS 1800).  From a positioning system viewpoint these systems have
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similar characteristics;  the only significant difference being the propagation characteristics of the
higher frequency implementations.

From a positioning viewpoint, the most important signal parameter of a cellular system is the
bandwidth.  The wider the bandwidth, the easier it is to do time of arrival measurements.
Accordingly, systems with a wider bandwidths are more likely to support TDOA and propagation
time type positioning technologies.

The bandwidth of GSM is about 250 KHz.  This is smaller than would be used for a custom-
designed positioning system (GPS uses signals of approximately 1 MHz and 10 MHz).
However, the 250KHz of GSM does provide some opportunity for a  TDOA or propagation time
technology.  Measurements have already been carried out [3] indicating that GSM positioning
systems are likely to satisfy the FCC mandate for network-based positioning.

It appears that some GSM networks are operated in such a fashion that there is very strong co-
channel and adjacent channel interference [4].  This interference can severely limit the accuracy
of positioning system measurements.

CDMA
CDMA is considered likely to be the most successful digital telephony standard in the United
States.   It uses a spread spectrum transmission system and is being assessed for positioning
applications [5].   This has the advantage of a relatively graceful degradation in the presence of
interference.  As well the bandwidth of CDMA is about 1.25MHz, so that it is closer to the
optimal bandwidth needed for time of arrival measurements.   A further advantage of CDMA
compared to GSM and Analog is that all basestations are synchronized, so facilitating the
implementation of TDOA solutions.  One disadvantage of CMDA is that it uses very tight power
control, meaning that in some cases it will only be possible to process a signal from a single
basestation.  Nevertheless, the prospects for CDMA cellular positioning seem reasonably bright.

From the viewpoint of the cellular probe application, the synchronization of CDMA means it is
practicable, using Doppler measurements, to make instantaneous velocity measurements.
Without Doppler measurements, a cellular positioning system can only estimate velocity by
tracking the progress of the mobile over a period of time.

Analog
Analog is the oldest type of mobile telephony standard.  It has a number of disadvantages with
respect to mobile positioning, including a very small bandwidth (25KHz) and susceptibility to
interference.   However most mobile telephones in use in the United States are analog, and the
original FCC mandate insisted that these existing telephones should be able to be located.
Accordingly there has been more research and development into the problem of network-based
location of analog mobile telephones than any other system.  Some of this work is innovative and
might provide methods of overcoming the severe limitations of analog technology.
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In the longer term, analog telephones are likely to be phased out.  The reason for this is that the
digital standards (CDMA and GSM) allow a greater capacity (i.e. more users for a given
frequency allocation) so there are strong economic reasons for cellular operators to encourage
customers to adopt digital technology.

Third Generation Mobile Standards
This is the standard that deals with the type of mobile systems that will be deployed after GSM
and CMDA.   Indications are that the successor to GSM and CDMA is likely to use an even
wider bandwidth.  This means that successor systems are likely to be even better suited to
positioning than the current digital standards.  From the viewpoint of the cellular probe
application, this provides a strong indication that future developments in cellular standards are
unlikely to invalidate the concept.

4. CURRENT WORK IN CELLULAR POSITIONS AND ITS POTENTIAL
FOR TRAVEL TIME DATA

Current work in cellular positioning

As stated before this is an area of very active work.  Although some information has been
published (for example [1]), much of the work is being undertaken in conditions of industrial
secrecy.  Many claims are made, but there have been few independent trials.

This is a very rapidly evolving field, so at this point we have not attempted to fully survey or
evaluate the differing technologies.  However, in order to ascertain that positioning technologies
are likely to be available we spoke to a small sample of the organizations involved in this area:

Lucent:
Lucent is actively involved in the positioning area and has been examining the feasibility of
CDMA positioning.  Lucent also indicated that the CDMA development Group is trying to
evolve a standard for evaluating different cellular positioning systems.

University of Technology, Sydney (UTS) :
The research group has tested a first prototype of a GSM cellular positioning system and has
carried out field trials on a second prototype.  The technology has been sold to Cambridge
Positioning Systems, a United Kingdom based company.

U.S Wireless Corporation, San Ramon, California :

U.S. Wireless is building a nationwide location information network to provide instant, accurate,
and reliable location data to wireless carriers and other service providers.  An independent,
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shared network operating as a service bureau, the U.S. Wireless network will offer multiple
carriers, Internet Portals, call centers, and other service providers a reliable and cost-effective
means for gathering location data. The technology can pinpoint the location of any mobile
telephone subscriber anywhere, anytime, with close precision. Using proprietary Location
Fingerprinting™ technology, the RadioCamera™ system determines a wireless subscriber’s
location signal profiling.  The RadioCamera™ identifies the unique radio signature, or
“fingerprint,” of the call and matches it to a similar fingerprint stored in its central database.
In cooperation with the University of Maryland, the University of Virginia and Maryland and
Virginia DoTs, U.S Wireless is measuring highway congestion by tracking motorists talking on
cellular telephones as they drive the Capital Beltway [6].

Radix Technologies, Mountain View, California :

Radix Technologies, Inc. has developed a network-based geo-location system designed to locate
wireless phones to an accuracy far exceeding the current FCC E911 mandate. The initial version
of Radix’s GeoPhone TDOA/AOA location system is designed for CDMA wireless networks,
with later versions being adapted for AMPs, TDMA, and GSM protocols. The system co-locates
a low cost sensor at each cell site to gather timing data on the cell phone to be located. The
GeoWorkstation, co-located with the MSC, manages the system functionality, gathers all data
from the sensors, and calculates the latitude/longitude position data.  The GeoPhone system can
be used to deliver the position data for E911 emergency location services or other value-added
location services that may be offered by wireless carriers in the near future. Through the
implementation of a highly integrated design, and by using the existing antenna array and
network communication resources, the GeoPhone system offers a low cost solution for adding
geo-location capability for all existing and future subscribers. Radix has applied its expertise in
advanced signal processing to develop the location technology and algorithms used in the
GeoPhone system. The development of high-speed microprocessors has enable the cost effective
implementation of very complex signal processing techniques. The result is a high precision,
network-based geo-location system that eliminates many obstacles which have plagued network
based location solutions.

SnapTrack , San Jose, California :

The company is developing  hand set supported positioning applications, instead of  network
solutions. When SnapTrack is activated, the wireless network sends an estimate of the location of
the handset to a server. The server informs the handset which GPS satellites are in its area, and
the handset takes a "snapshot" of the GPS signal, calculates its distance from all satellites in view
and sends this information back to the server. The server software performs complex error
correction and calculates the caller's precise latitude longitude and altitude. In the case of a 9-1-1
call, the server sends the information to the Public Safety Answering Point. For other location-
based applications, the server can send the coordinates to a third-party service provider, a
dispatcher or back to the handset. The process takes  just a few seconds, whereas conventional
GPS receivers can take several minutes.
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5. HOW THE CELL PHONE PROBE CONCEPT APPLIES TO THE BAY
AREA ROAD NETWORK NEEDS FOR TRAFFIC INFORMATION

Although most of the major freeways in the Bay Area are planned to be instrumented, minor
freeways and the majority of arterials have no plans to be instrumented in the near future. We
believe that cellular technology, loop detectors and other sensor or detector technologies can
coexist and complimentary. For example, the cellular technology can supplement the inductive
single loops by providing  speed calculation and can also be used in areas where loops and other
sensor technologies are not deployed.

Presently, 100 miles of Bay Area freeways are instrumented with inductive loop detectors.
Caltrans has planned additional 500 miles of freeways to be instrumented with inductive loop
detectors over several years. However, over 70% of the existing loop detectors have not produced
accurate or reliable traffic data for various reasons, including hardware, software and
communication problems. Caltrans is currently identifying problems and enhancing the existing
loop detector performances, but there has been slow progress on identifying problems associated
with individual monitoring stations that are already deployed.

The need for alternative methods for traffic data collection is apparent for two important reasons:
1) improvement of surveillance data for Caltrans District 4 traffic management and operations
and 2) TravInfo’s data dissemination of accurate and reliable traveler information for the Traveler
Advisory Telephone System (TATS) and Bay Area Information Service Providers (ISP).

Considering the slow progress of loop detector instrumentation of the Bay Area traffic
surveillance system and the extent to which loop systems require maintenance, the cellular phone
probe system has been recommended as an alternative means of supporting traffic data coverage,
especially in those areas where the existing detectors do not work properly and where
instrumentation may not be deployed in the near future.  The SRI study speculated that the
cellular phone probe system can potentially provide cost-effective wide-area data coverage
including both freeways and arterials. No heavy infrastructure investment is necessary for cellular
probes. With the growing number of cellular phone subscribers, it is reasonable to assume that
there will be a sufficient number of vehicles equipped with cellular phones to provide accurate
and reliable information of traffic conditions at a given link during peak hours. In the Bay Area,
over half of vehicles traveling freeways have cellular phones according to the 1998 Bay Area
household survey conducted by PATH.

Approximately 100,000 cellular calls report traffic incidents daily in the US which amount to
25% of the total 911 calls annually. In many cases, 911 callers did not know the exact location of
where they were calling from or where the incident had occurred. As a result, the federal
government mandated that cellular carriers meet the E911 requirement that a specifies caller’s
location within 50 meter radios by 2001. About a dozen companies have developed or are
currently developing various technologies to provide their services to cellular carriers to meet this
requirements. The E911 requirements provide new opportunities to utilize cellular technologies
for measuring vehicle speed and travel direction. However, the viability of these technologies for
monitoring vehicle speed and measuring travel time has not been determined.
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Overview on theoretical probe models

The concept of using a probe vehicle for estimating travel time has been investigated for some
time, [7], [8], [9], [10], [11]. These studies have all shown the concept is technically feasible.
The results show that in general, roughly 5%  need to be instrumented  in order to achieve
reasonable estimates of the travel time. These studies have assumed that the probe reports
represent an  independent random sample from the traffic stream and that the vehicle probes are
able to estimate their location with a very high order of accuracy. There is no reason to think that
the cars traveling with a cell phone are not a random sample of the total vehicle population but
the second  assumption is not valid in the case of cellular telephone positioning systems.  Such
systems are likely to have an error of the order of 100 meters RMS.  This error can cause the
following problems :

•  Assignment of a vehicle to the wrong road.
•  Mistakes in the direction of travel.

As well, in order to make a position measurement the mobile has to be turned on.  Users might
turn a phone on for a brief period then turn it off again, so that cellular probes will operate in an
intermittent, more random fashion that dedicated probe technologies.

In addition to the issue of accurately tracking mobile telephones, there is a further technical issue
of the system capacity needed in order to actually make the measurements.  Given the probe
application is likely to be a secondary application to the FCC E9111 requirement, it is important
the cellular probe application does not use too much of the capacity of the cellular positioning
system.  If the usage by the cellular probe application is too high, this could jeopardize the
primary application, or necessitate the installation of many additional positioning receivers.

Accordingly, our analysis has focused on these difference, rather than completely duplicating
earlier work.  We have taken two complimentary approaches.  The first was to construct a series
of analytical models that addressed different issues.  The second was to develop a simple discrete
event simulation.

 A brief description of each of the analytical models is presented below, together with the overall
results. These models are still under development and require verification and validation. Details
of some of the more important models are presented in Appendix A.

Placing the vehicle on the road
This looked at using a process of map matching to place a probe vehicle on a particular road.  We
estimated the probability of incorrectly placing the vehicle on a road that was to parallel to the
road on which the probe was actually traveling.  The probability was found to be a simple
function of the ratio standard deviation of the position measurement noise divided by the distance
the roads were apart.  Further work would look like at the probability of error for other
geometries such as two roads crossing perpendicularly.
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Estimating the mean speed
The mean speed was calculated by a least squares fit of a series of position measurements.  This
process would be necessary in systems such as GSM where it is not possible to measure the
instantaneous speed.  The variance of the speed estimate was found to be proportional to the
variance of the position measurement variance and inversely proportional to the cube of the
number of measurement points and the square of the time interval between measurements.  This
means that only a relatively small number of measurements are needed, particularly if they are
widely space in time.  A formula was also developed for estimating the travel time from the mean
speed.  We are also examining the errors involved in a more direct measurement of the travel
time.

Number of Measurements needed to characterize a network
This model looked at the overall problem of how many travel time measurements were need to
characterize a network.  If too few measurements are made then only a small number of links will
have been characterized, so that the overall information is not greatly improved over the
historical travel time averages.  This derivation assumed a worst case that the probes were
randomly chosen.  The model was developed in terms of coverage, i.e. fraction of links for which
the links have been measured in the time frame of interest.   The result was a surprisingly simple
approximation :

E = 1 – exp (-αρL)

Where α = fraction of vehicles sampled
ρ= density of traffic per unit length
L = average link length
E=coverage.

This formula says that to improve the coverage you need to increase the fraction of vehicles
sampled or increase the average link length.   The latter arises because the larger the link length
the more likely you are that a randomly chosen vehicle will be on that link.  The heavier the
traffic density, the greater the coverage because the total number of sampled vehicles becomes
larger.   The exponential nature of the formula indicates why there can be rapidly diminishing
returns associated with increasing α, because once αρL is greater than one, the coverage rapidly
approaches 100%.  Of course care is needed when interpreting this formula.  For example,
although longer link lengths translate to increased coverage, if the link lengths are too long then
they do not provide useful information about travel times in a particular area.

Effect of differing densities
This model looked at the fact that on a road network you have roadways of markedly differing
density e.g. Surface network and Freeways.  The analysis showed an exponential relationship
with density, meaning that those parts of the network with the highest densities will have the
greatest coverage.  This is a nice property, because much of the interest in travel time
measurements occurs when there is congestion, i.e. high density.  This result indicates that a
cellular based probe system will automatically gives more reliable results in such areas.
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Directional Errors
One problem with a cellular based travel time estimation system is that it is possible to make an
error and consider that the vehicle is going in the wrong direction.  A model was developed to
estimate the probability of making such an error.  It was found the error was inversely related to
the ratio of vehicle speed to the standard deviation of the speed measurement.  In other words,
directional errors are only likely to occur when there is a very low traffic speed.  However this
source of error can still impact on the performance, because very low traffic speeds are often
associated with a serious incident, making the determination of direction of flow quite important.

Effect of wrong road placement
This examines the error introduced by placing a vehicle on the wrong road.   It assumed a worst
case that travel times on different roads are independent of each other.  In this case the effect of
wrong placement is quite severe, resulting in an error worse than simply assuming the historical
average travel time.  However in many cases the travel times of nearby roads are related to each
other so the effect is probably not as severe as indicated by this analysis.  Aspects of this analysis
need to be improved.

Overall Model
This integrates most of the previous models to provide an estimate of the standard deviation of
the travel time measurements.

Utilization of Positioning Receivers.
This analysis examines the utilization of positioning receivers in terms of the number of position
measurements that need to be made in a network, the number of receivers needed to make a
position measurement, and the interval between measurements.  A final parameter is the number
of positioning receivers that are scattered around the network.  This analysis also looks at the
communication load involve in making the position measurements.

Overall Results
Most of the above models were linked together to provide an overall estimate of the accuracy of
the travel time measurements and the utilization of the positioning receivers.   A printout of the
model, including all value of all the parameters is shown in Appendix B.  These parameters are
only tentative, we are currently carrying out an investigation to find more reliable estimates of the
parameters.  Any suggestions or data are welcome.

Highlights of this analysis are as follows.   For just 5% of the vehicles samples, the coverage was
very high, i.e. in a 15 minute time window and a link length of 1.5 km (which is relevant to the
Bay Area network), most links in the network would be sampled.   The model also indicated that
for a spacing of 250 meters between roads, the probability of assigning a vehicle to the wrong
road was very small, less than .001.  It was found that the raw standard deviation of the travel
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time was about 10 seconds (about 10% of the travel time for the link) and was only degraded
slightly by wrong road assignment and non-sampled links. The effect of directional errors was
not included in the model, but it is considered likely that it will be small.

Assuming that 400 positioning receivers were used to make the position measurements, it was
found the average utilization of each positioning receiver would be less than 1%.  This low value
is due the large number of basestations, the small amount of time needed to make a measurement
(100 ms), and the relatively long time interval between measurements (ten seconds or more).

Results from the use of a simple simulation model

The simple analytical models do not capture the complexity of vehicle movement along a
freeway .  Accordingly, we prepared a complementary analysis to the analytical models presented
above by building a discrete event simulation of travel along a section  of a freeway (see figure5).

The aim of this simulation was to compare average link travel time for a simulated traffic flow
situation with different  size samples of vehicle probes (5% to 50%, at 5% intervals) drawn from
the total population. The position accuracy of the probes is given at random in a 150 meters
range, which is what we can expect from cellular positioning methods. We studied different road
network configuration to test the robustness of the estimates in travel times.

We simulated vehicles entering the network at constant speed, with a Gaussian speed distribution.
We used distributions with different means corresponding to the different network and lane
situations, and we were able to input different volume and speed parameters for two lanes of
freeway, plus an adjacent road.  The network was divided in links of 1.5 km,.  The model counts
the number of cars per link and their speed on a 3 minutes cycle with a refreshment period of 15
minutes. The results are average (harmonic mean) link travel time estimates over an hour
(simulated time).
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•  the probes with a zero speed during a 15 minute measuring period are also eliminated,
they can correspond to phones who are not in cars; this is not done if all the probes
have zero speed (i.e. traffic stopped)

•  the probes whose location has been spotted at least once out of an envelope of 300
meters on each side of the road are also eliminated

The observed distribution of speeds allows us to use link travel time for the network link, if the
speeds are the same on each lane, or by lane/link if the distribution shows a two-peak
distribution. The figure 6 shows the result of the positioning model applied to the traffic flow
distribution of the simulation showing how the positional errors obfuscate the known vehicle
positions:

Figure 6: Positioning model of the simulation

Case studies and probe travel time estimates

We consider six different cases, in order to assess the effect of different traffic conditions and
network geography  on  the accuracy of the travel times estimates of the probes. The
configuration for each case and the results for each case are set out below :
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Case 1 : free flowing conditions on both lanes :

average speed Density
lane 1 100 km/h 1600 v/h
lane 2 80 km/h 2400 v/h

Differences in travel time estimates  
free flowing condition on both lanes (60 MPH)
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Case 2 : slow flowing condition on both lanes

average speed Density
lane 1 30 km/h 1000 v/h
lane 2 30 km/h 1000 v/h

Differences in travel time estimates
heavy traffic condition on both lanes (20 MPH)
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Case 3 :  free flowing condition on one lane and slow flowing condition on the other –
differences in travel time estimates for the slow lane

average speed Density
lane 1 30 km/h 1000 v/h
lane 2 80 km/h 1500 v/h

Differences in travel time estimates 
 for the slow lane (20 MPH)
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Case 4 : free flowing condition on one lane and slow flowing condition on the other –
differences in travel time estimates for the fast lane

Differences in travel time estimates
for the fast lane (50 MPH)
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Case 5 : two fast lanes and a frontage road (we assume for the filtering of the probes that a
frontage road is not 200 meters closer from a freeway during more than  3 links, e.g. 4.5
km); free flowing condition on both lanes and slow on the frontage road.

average speed Density
lane 1 90 km/h 1500 v/h
lane 2 70 km/h 2000 v/h
frontage 50 km/h 1000 v/h

3 links

200 m

15 Km
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Differences in travel time estimates
two fast lanes plus a slow parallel lane (30 MPH)
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Case 6 : differences in travel time estimates for a more complex network

average speed density
lane 1 80 km/h 1500 v/h
lane 2 60 km/h 2000 v/h
road 60 km/h 1000 v/h

200 m

200 m
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Synthesis
The results show a very acceptable accuracy of the cell-phones-as-probes concept, even with as
low as 5% of  probes.  This result is also consistent with the analytical models describe earlier.
The use of the cell phone model must be adapted to the road network where it applies. In other
words, we will have to calibrate with existing traffic data from other sources. The probe model
will also become more and more accurate as the number of digital phones increases, which is
almost certainly the actual trend.

Estimates of the cell phone distribution  on the Bay Area road network links

First we gathered data on the distribution of links in the Bay Area. This data is shown below in
tables 1 and 2

The road network7

                                                
7 We are considering here the state highway network. The network includes freeways and also major arterials. We
would only consider the freeway network for a first deployment phase although the technology could be extended to
the arterials after improvement of the cell phone signal positioning/filtering process.
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The traffic density  is given for both directions8, table 1.

Name exits (nb of links =nb of exits-1) mileage average/month average/peak hour

4 21 exits 26.53 miles 72000Vehic/mth 5875/hour
13 7 5.36 45000 4400
17 12 23.06 77000 7300
24 16 13.54        152000 10500
37 12 21.26 34700 3100
80 50 40.17 147000 12600
82 40 37.47 37000 3500
84 18 13.88 31000 3000
85 9 7.17 87000 7050
92 21 21.14 70000 6500
101 99 82.17 180000 15000
237 12 12.72 70000 6900
238 6 2.43 104000 6000
280 54 50.94 150000 13000
380 4 1.67 130000 12500
580 61 53.19 140000 12500
680 67 74.61 135000 11500
780 9 6.33 53000 5000
980 3 1.33 180000 13000
total
mileage         498.97

table 1 : Bay Area state highway network characteristics

                                                
8 "1997 traffic volumes on California state highways, Division of traffic operations, June 1998.
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Table 2 : distribution of  link mean lengths for the Bay Area freeway network

On the network there are some links which  have a low traffic density, and are not critical for the
travel time variations, unless an accident is reported. A system design consideration will be to
balance the links where we absolutely need traffic information, e.g. the ones with high traffic and
with poor traffic detection capabilities on the road infrastructure with the links where historical
data could be enough.

The cellular phone distribution

PATH conducted a household survey of Bay Area residents in November 1998. The survey
suggests that 37.7 % of the Bay Area commuters are expected to travel with a cell phone. The
distribution of  cell phones equipped travelers is not the same when considering freeway users
versus arterial users. When the correction factor of 1.3 (from the cross tabs observation) is
applied one can estimate that approximately 50% of  freeways users are traveling with a cell
phone. Roughly 1/3 of these phones are digital, and 70% of them are always “on” while traveling.
This brings our target population to 11.6%. A major carrier can get almost 1/3 of the subscribers.
Depending on the potential interest of carriers for entering the DOT market for travel times and
the exclusivity issues which have to be evaluated in the future, we estimate between 5% to 12%
of probes will be available to deliver the information which is well within the accuracy
boundaries that we have evaluated in our simulation work.
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A close analysis of the Bay Area network shows the absolute number of probes we can expect by
link over a five minute period, table 3.

Table 3 :distribution of the number of probes by freeway link over a 5 minute period

We assume that the  distribution of probes on the freeway network is the same that the
distribution of all the cars on the same network. This can be slightly calibrated during a field test
evaluation.

Business Issues

The transportation and the wireless telecommunication sectors have been ignoring each other for
a long time. Each one of these sectors is making investment decisions without considering that in
many cases they are dealing with the same issues; the end user of the road network is at the same
time the end user of a cell phone. However the value of the services are not considered in the
same manner. From the telecommunication standpoint, the cell phone user is paying for an
individual and personalized service ; the transportation sector is considering the road user as a
statistical element of a global stream. The cell phone as a probe concept, links  the
telecommunication network capabilities to the global transportation needs in the data collection
and information domain. These issues have to be evaluated through viable business models with a
shared vision of the step by step implementation.
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We know that at least, 12 U.S. companies are targeting the E-911 market and further applications
for positioning services for the mobile. The probe concept and the DoT travel time market can be
the next opportunity for these companies. Organizations wishing to take advantage of this
concept will need to address the privacy issues which could arise from the deployment of the
positioning technologies on a large scale.

When considering the Bay Area investments necessary for E-911 mandate, one might evaluate
the infrastructure costs, if this solution is followed by the carriers, to be $20,000 a cell site, which
brings a total of about  20 millions dollars for the good coverage of the network.. Assuming that
the carrier is allowed to charge the subscriber 65 cents a month, this brings the gross income to
comply with E-911 mandate to $23 Millions.

On the other hand the California statewide, transportation investment in detection has been on the
order of $166 million. The annualized cost is estimated to be approximately $34 million,
assuming maintenance & operation costs of 10% and a straight-line ten year life for depreciation.
In addition, approximately $61 million has been programmed for construction.  "Programmed"
means that there has been a financial commitment to construct the systems.  Assuming that one
half of the programmed projects are in operation during the next two years the annual statewide
cost of detection is of the order of $49 million.
The equivalent estimate for District 4 (essentially the Bay Area) is approximately 12.4 million
annually. The main strategic issue is to evaluate how much a deployment of a Bay Area cell-
phone-as-probe-concept  would save from the Caltrans operating funds, and how the funding
transfer from the transportation infrastructure and maintenance to the wireless operating costs
would benefit to the wireless companies involved in this new business.

6. FIELD OPERATIONAL TESTS

Introduction

The field test work assumes that the PATH group can access to cell phone positioning
technologies implemented on at least selected links of the Bay Area network. The probes data
will have to be compared to “ground truth” data obtained from the road network. There are few
places that are instrumented to provide a good estimate of travel times on the Bay Area network.
A stretch on I80, between Albany  and Emeryville exits, is well instrumented and can provide
fairly accurate travel time information. The accuracy of the data is validated by the Berkeley
Highway Laboratory. The ideas developed hereafter are 100% dependant on the possibility of
implementing telecom technologies to obtain accurate positions of the phones. Many vendors and
developers of relevant technologies have been contacted and we are still waiting to know their
keenness to participate.  The “ground truth” data can also be obtained from GPS measurements of
cars traveling on the freeway.
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Objectives

Simulations and analytical modeling can only go so far. In order to make a full assessment, a
field operation test is required. The objective of the field test is to further investigate the
feasibility of cellular technologies for traffic surveillance and management. The accuracy of
vehicle speed or travel time data will be tested against data generated from using  GPS and
Differential GPS. The Field Operational Test (FOT) will demonstrate two scenarios: 1) the
Global Positioning System and 2) cellular technology using the cellular analog system.  These
demonstration scenarios have a common goal that is to measure the accuracy and reliability of
vehicle speed or travel time on the Bay Area freeway network.

The first field test was conducted in June 2000. Two field engineers drove a vehicle equipped
with two analog phones and a GPS and Differential GPS for five hours between 11 AM – 4PM.
The purpose of this field work was to collect data and test the data using the PATH developed
algorithm for data reduction.

Investigation of the Global Positioning System

To assess the effectiveness and adequacy of cellular and GPS technologies for incident detection
and speed information, the current state of the technologies and commercially available GPS
units was investigated.  The GPS and DGPS units are used to detect nodes in the roads and send
IP packets through a wireless modem containing information on the position and time of the
vehicles to a centralized database at PATH. The nodes are placed on critical points on highway
overhead bridges and using the TravInfo link definition. The GPS units send continuous amounts
of data to a laptop computer where software takes in the information and determine if a node
point has been passed.  Differential GPS was used to eliminate the inaccuracy inherent in the
signals being sent to the GPS unit due to selective availability.

Development of Models for Vehicle Positioning Using Cellular Technologies

At this stage, several simple analytical models of the measurement process have been developed
as documented in this discussion paper.  There were a number of reasons for constructing these
models; identify important parameters, gain a deeper conceptual understanding, and provide
ballpark estimates of system performance.

As a result of the modeling process, a clearer idea of the parameters that need to be estimated was
gained.  Examples of such parameters include; the distribution of cellular users on the Bay Area
Network (BAN), statistical distribution of traffic on the BAN, the distribution of cellular base
stations in the Bay Area, size of links, acceptable window time, maximum sampling frequency,
measurement accuracy's, and other parameters associated with the road network and the cellular
systems.  At this state, first cut estimates for all the important parameters have been established.
The analytical model are now ready to be tested for its technical viability.  The first phase of the
operational test will be done using the existing simulation models such as PARAMICS. The
second phase of the field test will be performed on selected links, if the simulation models were
technically proved to be workable.
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For the Field Operational Test, we intend to carry out the following tasks:

The GPS surveillance technology

a) Test and validate the GPS computer programs developed by PATH.  The initial work will be
done walking around local streets with arbitrarily designated nodes.

b) Revise the programs if necessary and test them again until they produce desired information
and send data to the central databank.

c) Test and validate the system by driving along I-80 between Albany and Emeryville back and
forth to produce data.  Analyze the data to validate the robustness of the system.

d) Install the system in four to six FSP vehicles, transit buses or delivery vehicles to test the
system.

e) Analyze data to determine whether the system can produce accurate and reliable speed data
on major freeway links.

f) Prepare a working paper to report on the FOT results.

Cellular positioning technology

a) Verify and document the analytical models and simulation models.
b) Complete the parameter estimation.
c) Calibrate simulation models to validate different cell technologies
d) Complete a simulation of performance assuming a system working on three links of the Bay

Area Network.
e) Determine the accuracy of travel time data .

For the second phase of the study, we plan to evaluate cellular technologies further for their
vehicle positioning ability against different traffic surveillance technologies. The proposed field
test site will be on a 3 mile I-80 corridor defined by the Berkeley Highway Lab between the cities
of Emeryville and Albany. We will evaluate cell-GPS vehicle positioning technologies with
respect to other technologies such as inductive loop detectors, CCTV camera, and Electronic Toll
Collection tags. The proposed field test site is instrumented with inductive loop detectors and
CCTV.

The objectives of the second phase field test are to:
1) Determine the technical viability of cellar-GPS data collection techniques for freeway and

surface street traffic information.
2) Compare data generated from using these technologies with data generated from data

collected using loop detectors, a CCTV camera in Emeryville, and ETC tags.
3) Recommend future course of actions to Caltrans District 4 and the TravInfo Management

Board for deployment of cell-GPS technologies for traffic data collection.
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Methodology
The second phase study will be conducted in three phases: 1) data collection using cell-GPS
technologies on the Berkeley Highway Lab link, 2) comparison of the data generated from using
these technologies with loop, CCTV, and ETC data on this corridor, 3) identification of links
most suitable for cell-GPS technology deployment in the Bay Area. The central function of the
cellular and GPS field tests will be housed in the newly created Traveler Information Center in
Berkeley. Data comparison and analysis will be done at the Richmond Field Test.

Field Test Plan for Phase 2 Study

The proposed field test will be done over a period of 12 months. The specific tasks are described
as follows.

Data Collection

The purpose of the initial field test will be to investigate the feasibility of cellular-GPS
technologies for vehicle probes. The second phase will evaluate several cellular-vehicle
positioning technologies on the Berkeley Highway Lab corridor.

Data collection tasks

1) Coordinate the Berkeley Highway Lab’s loop detector activities and CCTV-ETC activities
currently underway at PATH.

2) Develop a master plan for the field test effort on the PATH research effort on data collection
technologies including loop improvement, CCTV and ETC through initial meetings.

3) Collect traffic data using GPS and cellular phones, CCTV, and ETC tags.
4)  Establish a common time frame for data collection tasks.

Data Comparison

The goal of the field test is to determine the viability of different vehicle probe technologies for
generating accurate and reliable travel time information. Therefore, the proposed research is to
compare data generated from these technologies for accuracy.

It is hoped that CCTV and ETC projects are developed to a sufficient level to generate data for
comparison. It is also expected that US Wireless and RADIX-Sprint will complete their
infrastructure deployment on the corridor of the Berkeley Highway Lab. Discussions on the
proposed field tests are in Appendix C.  The long-term vision plan is shown in Appendix D.

Data comparison tasks

1) Examine the characteristics of data generated using different technologies.



37

2) Develop data fusion methods for different probe vehicle technologies.
3) Compare the data sets generated from different technologies using statistical tools including

ANOVA, MANOVA and regression procedures in the SPSS environment.
4) Determine the statistical significance of data analysis and acceptable level of accuracy.
5) Prepare a report on the results of the comparison.

Link identification tasks

Based on the results of the Phase 2 study, we will identify freeway network links most suitable
for immediate deployment of the cell-GPS technologies in the Bay Area. One of the purposes of
the  proposed research is to assist Caltrans District 4 and the TravInfo project through multi-level
data collection system.

1) Review the Bay Area-wide link definition established by the TravInfo project.
2) Identify links that are important to traffic management system, however, data on these are not

currently available.
3) Determine the suitability of deploying the cell-GPS probe vehicle technology on various links

throughout the Bay Area.
4) Recommend the cell-GPS technologies for immediate deployment on selected links.

7.  DISCUSSION

The preliminary indications are that despite the low accuracy of cellular positioning, a probe
based travel time measurement system would be able to give reasonable estimates of travel time
with the proportion of probes likely to be available in the near future.  Furthermore the system
load needed to make the measurements is only a small proportion of the total capacity, so that it
is quite possible that cellular operators might be interested in implementing the probe vehicle
travel time estimation system as a secondary application, see appendix C and D.

In summary, there are strong indications of the feasibility of estimating travel time using cellular
positioning systems but a field operational test, as described in section 6,  is needed before a firm
conclusion can be reached.
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Appendix A:  Analytical Models

Definitions

Let ( )iT t  be the actual travel time for a vehicle entering the ith link at time t.

Let 
_

( )iT t  be the historical average travel time for a vehicle entering the ith link at time t.

Let 
_

2 ( )i tσ  be the historical variance of the travel time for a vehicle entering the ith link at time t.

Let 
^

( )iT t  be the predicted travel time based on cellular telephone position for a vehicle entering the ith

link at time t.

Let 
2^
( )i tσ  be the variance of 

^
( )iT t .

Let 
~

( )iT t be the prediction for the ith link at time t such that:

         

^
~

_

  is the cellular information available for 
  that link at that time (or in recent times)

if not available.

( )
( )

( ) 

i
i

i

T t
T t

T t

 
 =  
  

A more sophisticated approach would blend the two estimates, perhaps based on a knowledge of the
temporal correlation function.

Efficiency of the Sampling Process

Suppose within the network there are roadway types with markedly different traffic densities (e.g.
arterial, freeway, minor…).  Let NR be number of such types and '

iρ  (i =1,…, NR) be the density on the ith

road type.  Let Mi be the number of links of each type.  Let M be the total number of links,

1

RN

i
i

M M
=

= ∑
We assume that each link of type i has the same density, '

iρ , so the density of the kth link is given by

kρ = '
iρ  where i is the road type of the kth link.

If we take one sample, the probability of sampling the kth link, kq ,  is given by

'

1

R

k
k N

i i
i

Lq
LM

ρ

ρ
=

=
∑

where L is the length of the link.
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This is because kρ L  is the expected number of vehicles on the kth link and '
i iLM ρ  is total number of

vehicles on the ith type of link.  The probability of Q samples not selecting the kth link is
( ) (1 )Q

k kP Q q= − .

The expected number of links not covered will be

1
( ) (1 )

M
Q

k
k

F Q q
=

= −∑       

or         if only one road type( ) (1 )  QF Q M q= −

Dividing the sum into the different types gives

'
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= −∑
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,E the expected efficiency, i.e., the fraction of links for which there is a measurement, is given by

_ ( )M F QE
M

−= =
( )1 F Q
M

−

Now consider F(Q) for large Q,
'
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i
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So, let N be total number of vehicles on the network and α be fraction of vehicles that are being sampled,
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This has the nice property that the denser the road types make an exponentially faster contribution (as a
function of )α .  If there is just one road type, '

1 1ρ ρ ρ= = , and
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1 LE e αρ−= −

Directional Errors

Suppose we measure velocity using n samples and calculate a mean 
_

v  and a standard deviation
vs .  If the error in measuring velocity is gaussian then we can use standard sampling statistics in order to

work out the probability of making a measurement that is in the wrong direction (ie of a different sign to
the true mean).  In this case the appropriate test is a t-test.

From the above diagram that the probability of choosing the wrong direction is given by the

probability that t<0 where 
_

v

vt
s

=   with n-1 degrees of freedom.

Effect of Wrong Calculation

Consider the standard deviation of '

^
( )iT t i.e. the erroneous predicted travel time for the ith link,

erroneous because it is actually for the 'i  link, i.e. the cell phone has been projected onto the wrong road
and the travel time calculation is based on the data for that road.  Dropping the function of time, we have

' ' ''

2 ^ ^ ^
2( , )( )i i i i i ii p d dT T T T T Tσ = −∫∫

Assuming the links are independent (this assumption needs further discussion) we have

'

^
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Now we consider '

^

( )ip T , assuming ' '

^

i i inT T= +  where '
in  is zero mean estimation noise on the 'i

link. The variance of '
in  is '

^

iσ .  Let
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'
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Now at any one instant ' ' ' '

^ ^ ^

( )i i i ip dT T T T=∫  but averaged over time as well,   ' ' ' '

_^ ^

( )i i i ip dT T T T=∫
Let us further assume that each link has the same mean, so '

_ _ _

i iT T T= =  then
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Provided averages are taken over time as well (This argument needs further rigorous development).

Overall Model

Consider the Mean Square Error (MSE) of 
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Where M = number of links,    = Expected efficiencyE∀

~
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If P  is the probability of assigning to the wrong road then:

2 _ _ _ _ _~ ^ ^
2 2 2 2(1 ) 2 ) (1 )(t E P E P Eσ σ σ σ σ= − + + + −

Utilisation of Positioning Receivers

Let us make the following definitions:

Tu = period of observation (s).



43

Q  = number of vehicles measured in Tu seconds.
TL = time to follow one vehicle along a link (s).

tδ = time interval between samples of vehicle position (s).
NL = number o fbits to send a locus measurement.
Tm = time to make a locus measurement.
NB = average number of basestations to make a position measurement.
NP = number of positioning receivers.

From these definitions we can establish the following relationships:

Number of position measurements per second = L

u

QT
T tδ

Number of locus measurements per second = L B

U

QT N
T tδ

System load = L B m

U

QT N T
T tδ

Average Utilisation = L B m

U P

QT N T
T t Nδ

Average Communications Load = L B L

U P

QT N N
T tNδ
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Appendix B: Results from Analytical Models

Average link length 1.5 km L
density of traffic per unit length 100 km^(-1) rho
Fraction of vehicles sampled 0.05 alpha
Total road length 1000 km R

Efficiency 0.9994

Average speed 50 km/hr
Average travel time on link 108 s T_l
Time between samples 10 s delta t
number of samples 10 n
standard deviation of position measure 125 m sigma
volume 5000 vehicle/h

r
standard deviation of speed 4.9295 km/hr sigma_v
standard deviation of travel time 10.648 s sigma_h

at

standard deviation of mean travel time 108 s sigma_ba
r

Distance between roads 0.25 km a
variate -3.162
probability of assignment to wrong road 0.0008 beta

Overall Standard Deviation of travel time 11.748 s sigma_T
Improvement 9.1931

Time between updates 900 s T_u
Number of vehicles monitored in T_u secs 5000 Q
No of position measurements per sec 60 s^(-1)
No of basestations per position
measurement

3 N_B

No of locus measurements per sec 180 s^(-1)
Time to make a locus measurement 0.1 s T_m
Load to make locus measurements 18
No of positioning receivers in area of
interest

400

Average Utilization of basestations 0.045 U_B
Bits per measurement 500 bits B_m
Average comms traffic per basestation 225 bits/s
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Appendix C: Notes on an experimental design for a possible test of cell-
phones-as-probes on I-80

Freeway network

Loops vs. probes
Following a  discussion with Ben Coifman and with Randall Cayford it seems that the Berkeley
Highway Lab could provide ground true data of average speed and travel time on the piece of
instrumented highway between Powell St and Gilman street ((2.7 miles). Some data will be
missing between Ashby Av and Powell st because the station at Powell is not wired . We would
have to get an approximation for the remaining 600 feet, deducted from the rest of the link.
Randall thinks it is reasonable.

It is proposed to get data for a series of 12 consecutive minutes periods divided in 4 subperiods of
3 minutes. Roughly, a 3 minute period corresponds to the time necessary to cross the link in a
free flowing condition (55 miles an hour).
The data could be collected from 6 am to 9 pm during 3 weeks, e.g. 21 days

The travel times will be given over a 12 minute time frame. This is our refreshment period, e.g.
"the average travel time on the I80 link between Powel and Gilman is  let's say 4 minutes and 20
seconds on Monday March 3 between 8 and 8:12 am"…….
We will also consider the average speed between 8:00 and 8:03, 8:03 and 8:06, 8:06 and 8:09,
8:09 and 8:12. We will compare average speed from loops and cell phones over the same periods
(paired matched periods)
6  ↔   7 am  → 12 minutes, 4 subperiods to test
7  ↔   8 am  → 12 minutes, 4 subperiods to test
8  ↔   9 am  → 12 minutes, 4 subperiods to test
9  ↔ 10 am  → 12 minutes, 4 subperiods to test
10↔ 11 am  → 12 minutes, 4 subperiods to test
11↔ 12 am  → 12 minutes, 4 subperiods to test
12↔   1 pm  → 12 minutes, 4 subperiods to test
1  ↔   2 pm  → 12 minutes, 4 subperiods to test
2  ↔   3 pm  → 12 minutes, 4 subperiods to test
3  ↔   4 pm  → 12 minutes, 4 subperiods to test
4  ↔   5 pm  → 12 minutes, 4 subperiods to test
5  ↔   6 pm  → 12 minutes, 4 subperiods to test
6  ↔   7 pm  → 12 minutes, 4 subperiods to test
7  ↔   8 pm  → 12 minutes, 4 subperiods to test
8  ↔   9 pm  → 12 minutes, 4 subperiods to test

We will rotate the 12 minutes period each day within the hour considered e.g.; 6 to 6:12 am on
the first day, then 7:12 to 7:24 and so on for the first day of the experiment ; we will start at 6:12
for the second day and so on; 6:24 am the third day and so on….
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This method will allow us to obtain an optimized number of observations for each period of 12
minutes (and related subperiods of 3 minutes)  on a continuum from 6 am to 9 pm for the 21
consecutive days of experiment.

The experiment represents 315 periods of 12 minutes representing 1260 subperiods of 3 minutes.
Assuming a normal distribution of measured speeds during the 21 days, 1260 tests will allow us
to obtain a roughly 5 % interval of confidence of the average speed for the sample of
measurements representing the total flow on I 80. (under the assumptions of a average speed of
30 mph and standard deviation of 25 mph).

The measurements of travel time by the observed loops on the 2.7 miles I 80 stretch and the 3
associated freeway links  ( 4 exits)  will be compared by pair of observations to the observed
probe travel times over the same periods and subperiods of time. The output would be the
comparisons of means for the two methods of measurements and their statistically significant
correlation. The method allows to measure the association over 1260 paired-matches
measurements. The calculation would concern East bound and Westbound traffic.

cameras
 It is possible to control at random or over the entire period of the experiment the accuracy of the
speed data observed from loop data by using the  already installed cameras. The entire three
weeks of experiment represent 1260 x 3 minutes of observation, e.g. 63 hours of images to check,
e.g. about 3 hours of work per day over a month period for each traffic direction.

GPS
A number of trips can be done on the same network with GPS equipped cars, along the same
period of time. 21 trips per day, 315 in total and for each direction would have to be done to
match each period of 12 minutes.

Arterial

A 1.7 mile stretch of an arterial road on University between 6th  St and Oxford St can be
evaluated with a different manner; In the absence of loop one can suggest to compare the phone
probes measurement to travel times observed from trips made by paid drivers on the segment in
both direction. At least, 315 trips would have to be done in each direction over the 21 days period
to match each period of 12 minutes. May be a solution can be found to lower this requirement
figure by taking into account the phasing signal period during non peak hours as an estimate of
travel time. The 630 trips would represent about 36 hours of driving.

Institutional aspects to consider along any field operational test

The cellular model (not yet applied) where the cellular carrier is the main source of data
collection for the Dot has to be estimated along the testing phase of the technology. This model
aims to bring the carriers and the telecom players as global partners of the DoTs in order to
replace as much as possible traditional high cost of deployment and maintenance of traffic data
acquisition from road based infrastructure by wireless technologies; the technologies would be
deployed and maintained by Cellular operators. As quoted from By Oliver Yandle, ITS America,
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"….The proliferation of wireless technology across the United States is providing ITS with an
enormously valuable tool to improve transportation. More than 74 million Americans now carry
mobile wireless phones. Telecommunications experts expect that number to double over the next
several years. This instant access to communication is enabling transportation managers and
service providers to provide real time travel information and speed emergency assistance to those
in need….".

The cellular positioning technology will not replace all other existing sources of collecting the
data. The experiment test on cell-phones-as-probes that we could conduct with the Berkeley
Highway Lab  could give us a good estimate of the cost figures to run such services. The region
of L.A can also be considered as a potential zone for testing and deploying such technologies.
One could try to optimize the parameters of road network segments which have to be covered,
time period of collecting the data (peak, off peak periods), telecom network capacity and cost of
operating in order to get an optimum usage of the cell phone positioning technologies along with
other sources of data collections.

In the longer term one can think that GPS capabilities can be added to existing phones on a large
market segment. This can lower the operating costs of obtaining the travel times from the cell
phones positioning techniques and could allow us to obtain a better land coverage for the same
cost. The benefits due to technology developments will be transferred to better land coverage on
major road network of  urban and rural environments in California. See chart below, appendix D,
for the strategic deployment and the potential role of PATH in such testing phases.
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Appendix D:  Long Term Vision Plan for Cell Phone Technology Applied to Travel Time Estimates

Phase 0 : preliminary
A    Deployment players    

Cell positioning providers
phase 1 :  experimental test on I 80 (BHL)                Telecom carriers       Supply

CALTRANS
Phase 2 : first deployment on MTC                      

  selected links in the Bay Area Commerce      Demand
  under land coverage/time coverage CAATS
  and cost optima  SRATEGIC COMMITTEE

Phase 3 : Bay Area coverage
  (along with E 911 deployment)

B      PATH role

Phase 4 :   statewide C   Center P.I. of the project
    nationwide
    worldwide After completion of the experimental phase             1) technical manager of the experiment

- look for commercialization of algorithms             2) research coordinator (PATH/U.C.)
- software development in cooperation with    - performance analysis

the private sector    - externalities
   - cost/benefit analysis
   - traffic theory (probes, traffic flow)
   - algorithms (signal processing)
   - model deployment (telecom/road
infrastructure)
    - privacy issues
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