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ABSTRACT OF THE DISSERTATION

Robust source localization using the generalized array invariant and a
vertical array

by

Chomgun Cho

Doctor of Philosophy in Oceanography

University of California, San Diego, 2017

Hee Chun Song, Chair
William S. Hodgkiss, Co-Chair

The array invariant approach for passive localization utilizes multiple ar-

rivals separated in beam angle and travel time via conventional plane-wave beam-

forming using either a horizontal or vertical array in shallow-water. Since this

approach does not require precise knowledge of the environment and an acoustic

propagation model, it is robust to environmental fluctuations. In addition, the ap-

proach is essentially equivalent to the waveguide invariant β based on the dispersion

relationship between the group and phase speeds when β = 1, a generic value in

ideal waveguides. However, the array invariant can be applicable to many shallow-

water environments where the surface-bottom reflected arrivals behave similarly

xv



to those in ideal waveguides, simply using β = 1. By incorporating the waveguide

invariant, the array invariant can be extended to general waveguides, referred to

as generalized array invariant that is fully supported by the waveguide invariant

physics. This dissertation presents the relationship between the waveguide invari-

ant and array invariant, demonstrations with several experimental data using the

generalized array invariant with a short- or long-aperture vertical array, and an

impact of array tilt on the array invariant-based source-range estimation.

• HF97 (High Frequency 1997) experiment: Demonstration of the robustness

of source-range estimation using a 12-m vertical array for a source (2–3 kHz)

at 6-km range in ∼100-m deep water in a fluctuating ocean environment over

a day.

• RADAR07 (Random Array of Drifting Acoustic Receivers 2007) experiment:

Range-dependent environment with a sloping bottom using a 2.8-m vertical

array for a moving source (2–3.5 kHz) between 0.5 and 5 km in range with

the water depth varying from 80 to 50 m.

• SAVEX15 (Shallow-water Acoustic Variability EXperiment 2015) experi-

ment: Range-independent environment using a large-aperture (about 56 m)

sparse vertical array for a moving source (0.5–2 kHz) between 1.5 and 3.5

km in range in ∼100-m deep water.

• KAM11 (The Kauai Acomms MURI 2011) experiment: Impact of array tilt

on source range using a 1.2-m vertical array for a moored source (7–19 kHz)

at 3-km range in ∼100-m deep water.

xvi



Chapter 1

Introduction

For more than four decades, vertical line arrays have played key roles such

as acoustic source localization, detection, noise measuring, and passive fathometer

to exploit the ocean through sound. One important key role is the acoustic source

localization for military and civilian applications to track marine mammals or

objects in underwater for analysis of their behaviors, and well-known localization

techniques are matched-field processing (MFP) [1–4], waveguide invariant (WI)

[4, 5], and array invariant (AI) [6–8,11].

The MFP first introduced by Bucker [1] has been remarkable interests and

extensively studied for passive source localization in ocean waveguide using a ver-

tical array. The MFP can be considered the generalized plane-wave beamforming

and requires an acoustic propagation model to generate the replicas, i.e., steering

vectors from the solution of the wave equation in the ocean environment [3]. Af-

ter correlating them with the data from a receiver array, this processing finds the

highest correlation in all possible source locations. This computationally intensive

array processing requires accurate knowledge of the acoustic propagation environ-

ment in order to exploit the unique spatial field structure of signals propagating in

an ocean waveguide. Subsequent studies [2–4] showed that the MFP performs well

and provides the range and depth for low frequency (e.g. < 1 kHz). For broadband

signals, this approach can be utilized by either coherently or incoherently averag-

ing over the frequency band. However, the MFP is very sensitive to mismatch in

the propagation environments (sound speeds, bottom density and attenuation, etc)

1
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and/or receiver array geometry such as array tilt and position. Recently, in order

to mitigate environmental mismatch for the high frequency, a nonlinear signal pro-

cessing technique called frequency difference MFP (FDMFP) [12] was developed

for a broadband source localization; however, this FDMFP is also computationally

intensive.

The waveguide invariant introduced by Chuprov and described by β is the

fundamental descriptor of acoustic wave propagations in ocean waveguide, which

characterizes the interference structure observed in the range-frequency plane and

this structure that relates group speed to phase speed (equivalently group and

phase slowness) [4, 5]. The isovelocity waveguide has a canonical value of β = 1,

which is also applicable to many shallow water environments. However, for an

arbitrary sound speed profile, the propagating modes can be divided into distinct

groups of modes that behave similarly, and each group can have a different value

of β. Waveguide invariant β also can be range-dependent if the waveguide has

a range-dependent bathymetry and sound speed [13, 14] and internal waves [15].

Waveguide invariant theory has been utilized for various applications in the ocean:

Time-reversal focusing [16,17], sonar array processing [18], and source localization

[19–23]. For source localization, Thode et al. demonstrated that the Bartlett

MFP sidelobe interference structures converge to the source range in the range-

frequency plane where the source is fixed [19]. Moreover, Sostrand [21] showed

that an impulsive source is localized at 10 to 115 km range using the end-fire of

a bottom-mounted horizontal array and waveguide invariant. Also, Cockrell and

Schmidt [23] reported that a range estimate accuracy is approximately 25% up to

around 2 km from a fixed source to a moving underwater vehicle using waveguide

invariant.

Array invariant (AI) proposed by Lee and Makris [6] and denoted by χ uti-

lizes multiple arrivals separated in beam angle and travel time for instantaneous

source-range estimation via conventional plane-wave beamforming for either a hor-

izontal or vertical array in a horizontally stratified ocean waveguide. This method

was demonstrated using both simulations and data for source range estimation in

shallow water using a towed horizontal array, providing a reasonable source-range
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estimate with little computational effort and the full array gain. Furthermore, no

environmental knowledge is required except that the received field should not be

dominated by waterborne propagation. Although this approach was based on the

relationship between the group speed and phase speed, the authors claimed that

the AI is different from the waveguide invariant because this approach does not

rely on model interference. However, this dissertation will show the relationship

between the two invariants in Chapter 2.

The remainder of this dissertation is organized as follows.

Chapter 2 derives the relation between the waveguide invariant and array

invariant for a horizontal and vertical array [7]. After examining the relationship,

two examples are illustrated as two typical acoustic environments with opposite

signs of β: ideal waveguide (β ≈ +1) and n2-linear waveguide (β ≈ −3).

Chapter 3 demonstrates robust source-range estimation using a vertical

array in shallow water [8]. The High Frequency 1997 (HF97) experiment data was

analyzed to show that the array invariant using a 12-m long vertical array robustly

estimates a range for a broadband source (2–3 kHz) at 6-km range in ∼ 100-m deep

water in a fluctuating ocean environment over a one-day period.

Chapter 4 derives iterative range estimation for a moving source in a sloping-

bottom shallow-water waveguide using the generalized array invariant [9]. This

chapter demonstrates the iterative source-range estimation in range-dependent

bathymetry where the Random Array of Drifting Acoustic Receivers 2007 (RADAR

07) experiment was performed. The receiver array with a 2.8-m long deployed at

70-m depth captured a broadband source (2–3.5 kHz) about 6-m depth towed at a

speed of about 3 knots (1.4 m/s) between 0.5 to 5 km in range with the correspond-

ing water depth constantly decreasing 80 and 50 m along a sloping environment.

Chapter 5 demonstrates array-invariant-based source localization in shallow

water using a sparse vertical array [10]. To do this, the Shallow-water Acoustic

Variability EXperiment (SAVEX15) data was analyzed using a sparse 56-m long

vertical array (16-element) in approximately 100-m deep shallow water. A broad-

band source (0.5–2 kHz) was at various ranges (1.5–3.5 km) from the vertical array.

This chapter shows the array invariant approach can be applied to a long sparse
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vertical array in range-independent environments where the sound speed variation

across the array was 12 m/s.

Chapter 6 presents impact of array tilt on source-range estimation using

a vertical array in shallow water [11]. To do this, theoretical analysis, simulated

data analysis, and the experimental data analysis were conducted using a 1.2-m

vertical array in ∼100-m deep water. The experimental data was acquired from

Kauai Acomms MURI 2011 (KAM11) experiment, where both a high-frequency

broadband (7–19 kHz) source and a vertical array were deployed at about 15-m

deep near surface.

Lastly, this dissertation presents conclusions and suggests future work.
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Chapter 2

The relation between the

waveguide invariant and array

invariant

Authors:

H.C. Song

Chomgun Cho

2.1 Abstract

The waveguide invariant β is based on the dependence of group speed on

phase speed and summarizes the robust interference phenomenon in the range-

frequency plane. Over the last decade the elegant approach has been utilized

for various applications including passive source ranging. Separately, the array

invariant approach [Lee and Makris, J. Acoust. Soc. Am. 119, 336-351 (2006)]

has been proposed for a robust source-range estimator from beam-time intensity

data using either a horizontal or vertical array. In this letter, it is shown that

the array invariant can be derived from the waveguide invariant theory assuming

β = 1.

7
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2.2 Introduction

The waveguide invariant, denoted by β, is based on the dependence of group

speed on phase speed in an acoustic waveguide and summarizes the interference

striations observed in the plot of acoustic intensity versus range and frequency [1,2].

It has been generalized by Grachev [3] to include other acoustic parameters such

as sound speed and water depth. It is commonly derived using normal modes of

the waveguide [2,4,5], while recently a complementary interpretation has been pro-

vided through the behavior of impulse response [6]. In many cases, the waveguide

invariant within a group of modes is a scalar parameter (e.g., β ≈ 1), approxi-

mately independent of range, frequency, mode numbers, and even details of the

sound speed profiles. As a result, the elegant and robust property of β has been

utilized over the last decade for various applications in underwater acoustics [7–11],

including passive range localization [12–17].

Separately, the array invariant, denoted by χ, has been proposed by Lee and

Makris [18] for instantaneous source-range estimation in a horizontally stratified

ocean waveguide from passive beam-time intensity data after conventional plane-

wave beamforming using either a horizontal or vertical array. While the approach

was generally based on the relationship between the group speed and phase speed,

the authors claimed that the array invariant is distinguished from the waveguide

invariant because it does not rely on modal interference, providing a better esti-

mate in real time with little computational effort and the full array gain. Further,

no knowledge of the environment is required except that the received field should

not be dominated by purely waterborne propagation. The method was success-

fully demonstrated using both simulations and experimental data for source range

estimation in shallow water using a towed horizontal array. On the other hand, a

similar beam-time diagram was introduced for range localization by Søstrand [15]

using an endfire bottom-moored horizontal array, but invoking the waveguide in-

variant theory.

The objective of this letter is to show that indeed the array invariant can

be derived from the waveguide invariant theory and is a special case of β = 1,

applicable to many shallow-water waveguides where surface/bottom reflected paths
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are dominant with β ≈ 1. This explains why waterborne (refracted) rays or modes,

characterized by a different group of modes with a negative β, should be excluded

from the array invariant processing. Since the parameter χ includes β in our

derivation, the array invariant approach potentially can be extended to the case

when β 6= 1 (e.g., −3), provided that a similar group of modes is utilized for range

estimation.

Section 2.3 reformulates the waveguide invariant theory in the beam-time

plane and derives an elliptic equation for vertical arrays and a simple linear equa-

tion for horizontal arrays, consistent with the array invariant approach. Section 2.4

then makes a specific connection between the two invariants. Section 2.5 analyzes

two different waveguides with opposite signs of β to illustrate how the waveguide

invariant affects the beam-time migration pattern utilized for range estimation,

followed by a summary in Sec. 2.6.

2.3 Waveguide invariant

For simplicity, we assume a range-independent waveguide while the waveg-

uide invariant theory can be extended to mildly range-dependent environments

[2, 4, 5]. As depicted in Fig. 2.1, two common arrays are considered: (a) vertical

array and (b) horizontal array aligned with the source (i.e., endfire) which can be

easily generalized to the case with an azimuth angle φ0 in the horizontal plane.

2.3.1 Vertical array

The waveguide invariant β is defined from a functional relationship between

the group and phase velocities, Vg and Vp (or, equivalently the group and phase

slowness, Sg and Sp). We can then express individual group and phase velocities

as a Taylor expansion around the average group and phase velocities of a set of

modes (or eigen rays). It is shown by Jensen et al. [5] that

1

β
= −d(1/Vg)

d(1/Vp)
= −d(Sg)

d(Sp)
. (2.1)
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Figure 2.1: The geometry of two common arrays (thick lines): (a) vertical array
and (b) endfire horizontal array. θ is the grazing angle of the ray arrival. In (b), θb
is the elevation angle defined with respect to the broadside of the horizontal array.
In general, the horizontal array will have an azimuth angle φ0 in the horizontal
plane from the source (i.e., source bearing) while φ0 = π/2 corresponds to the
endfire in (b).

The group velocity can be calculated as the source range R divided by the travel

time t

Vg =
R

t
. (2.2)

The phase velocity Vp is the ratio of the local sound speed c to the cosine of the

incident grazing angle θ at a receiver as shown in Fig. 2.1a

Vp =
c

cos θ
=

c√
1− sin2 θ

=
c√

1− s2
, (2.3)

where s ≡ sin θ and 0 ≤ s < 1. The conversion to sin θ in Eq. (2.3) is necessary

because the beamforming output using a vertical array will be provided as a func-

tion of sin θ. The local sound speed c should be replaced by an average sound

speed used for plane-wave beamforming, assuming that the sound speed variation

is minimal across the aperture [18].

The waveguide invariant formula in Eq. (2.1) then can be rewritten as

1

β
= − d(t/R)

d(
√

1− s2/c)
=
( c
R

) dt/ds

s/
√

1− s2
. (2.4)

Let’s define a parameter bv such that

bv ≡
(
R

c

)
1

β
. (2.5)
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Note that bv has a dimension of time since β is a dimensionless scalar parameter

(e.g., β = 1). In addition, bv has the same sign as β. The above differential

equation is simplified to

dt = bv
s√

1− s2
ds. (2.6)

Now we assume β is constant and thus bv is constant. Integrating in t and s

respectively yields

t− t0 = bv

∫ s

s0

s√
1− s2

ds = −bv
√

1− s2
∣∣∣s
s0

= −bv
√

1− s2 + bv

√
1− s20, (2.7)

where t0 and s0 are arbitrary constants. Rearranging the equation, we have

t = −bv
√

1− s2 + tc, (2.8)

where

tc = t0 + bv

√
1− s20. (2.9)

This equation has the form of an ellipse whose minor and major axes coincide with

the Cartesian coordinates (s, t) assuming |bv| > 1

s2 +
(t− tc)2

b2v
= 1, (2.10)

whose center is located on the t-axis at (0, tc) and bv is the vertical semi-major

axis.

2.3.2 Horizontal array

Let’s first consider a horizontal array aligned to the source (i.e., endfire) as

depicted in Fig. 2.1b. In this case, the phase velocity Vp in Eq. (2.3) is written

simply as

Vp =
c

cos θ
=

c

sin θb
=

c

sb
, (2.11)

where sb ≡ sin θb with θb defined with respect to the broadside of the horizontal

array (i.e., elevation angle), consistent with the vertical array case and c is the

local sound speed at the depth of the horizontal array.
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The waveguide invariant formula in Eq. (2.1) then becomes

1

β
= − d(t/R)

d(sb/c)
= −

( c
R

) dt

dsb
. (2.12)

In contrast with an elliptic equation derived for a vertical array, we now have a

simple linear equation in the beam-time coordinates (sb, t) having a slope

dt

dsb
= −

(
R

c

)
1

β
= −bh. (2.13)

where bh is equivalent to bv defined in Eq. (2.5) for a vertical array.

In general, the horizontal array is not in the endfire with an azimuth an-

gle of φ0 in the horizontal plane from the source. In this case, we can employ a

spherical coordinate geometry to understand the effect of the azimuth angle [18].

Alternatively, the process of rotating the horizontal array to the endfire is equiva-

lent to replacing the local sound speed c with an apparent sound speed, (c×sinφ0).

Now a more general definition of bh can be introduced for a horizontal array with

source bearing φ0

bh =

(
R

c sinφ0

)
1

β
=

bv
sinφ0

. (2.14)

This expression reduces to the endfire case when φ0 = π/2.

2.4 Relating the waveguide invariant to array in-

variant

In the previous section, the functional relationship of the waveguide invari-

ant between the phase and group velocities (Vp, Vg) is mapped into the functional

relationship between the sine of the arrival angle (i.e., beam) with respect to the

broadside of the array and the travel time, (s, t) and (sb, t), respectively. Our

results are compared with those described in the array invariant approach [18],

leading to a few important observations:

• The parameters bv and bh defined in Sec. 2.3 during the transformation cor-

respond to the array invariants χv and χl defined in Eqs. (19) and (16) of

Ref. [18], respectively, except that the waveguide invariant β is absent in
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χv and χl. Recall that the source range R contained in these parameters is

estimated for passive range localization from the beam-time intensity data.

• When β = 1, bv and bh are equivalent to the reciprocal of χv and χl, re-

spectively, i.e., bv = 1/χv and bh = −1/χl. Since β ≈ 1 for most bottom-

interacting shallow-water environments [5], the array invariant approach can

be applied without explicitly invoking the waveguide invariant. Note that

a small deviation from β = 1 can be easily translated to range estimation

errors or to the uncertainty in the local sound speed c since they are all glued

together.

• Not surprisingly, the array invariant approach excludes waterborne (or re-

fracted) paths which are typically characterized by a negative β, as opposed

to the surface-bottom reflected paths with a positive β ≈ 1. This is be-

cause for reflection-dominated paths, group speed decreases with increasing

phase speed, whereas for refracting paths, group speed increases with in-

creasing phase speed [5]. In addition, modes near cut-off are excluded in the

array/waveguide invariant.

• Since the array invariant is directly linked to the waveguide invariant, the

array invariant approach can be extended to the case when β 6= 1, provided

that a similar group of modes is utilized for range estimation. Specifically, an

example of upward-refracting environment with β = −3 will be illustrated

in Section 2.5.

2.5 Illustrative examples

Two acoustic environments with opposite signs of β displayed in Fig. 2.2 are

analyzed to illustrate how the beam-time migration (elliptic or linear) is utilized for

range localization: (a) ideal waveguide (isovelocity) and (b) n2-linear waveguide

where n2(z) = c20/c
2(z) = 1 − 2az with a = 8 × 10−6 m−1. Both waveguides

have analytic expressions for the waveguide invariant: (a) β = cos2 θ and (b)

β = −3/(1− tan2 θ). By limiting the range of grazing angles (or modes), however,
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Figure 2.2: Schematic of two waveguides: (a) ideal (β = 1) and (b) n2-linear
(β = −3) where n2(z) = c20/c

2(z) = 1− 2az with c0 = 1473 m/s and a = 8× 10−6

m−1. The source-receiver distance is 5 km. The phase and group speeds that
generate the beam-time migration together are evaluated at 500 Hz.

we can assume β = 1 and β = −3, respectively [5,6]. In the Appendix, the beam-

time migration for the isovelocity case is derived using β = cos2 θ to validate this

assumption.

Despite its simplification, the ideal waveguide with β = 1 represents many

realistic shallow-water environments when surface/bottom reflected paths are dom-

inant. Similarly, the n2-linear waveguide with β = −3 represents propagation en-

vironments dominant with refracted paths. The source frequency is set to 500 Hz

and the distance between a source and a receive array is 5 km. Both the source

and receive depth (center of the array) are chosen 50 m in Fig. 2.2a whereas in

Fig. 2.2b the source is at the surface and the receiver is at 200 m depth.

2.5.1 Vertical array

The beam-time migration that can be generated by a vertical array is illus-

trated in Fig. 2.3. The solid lines are the theoretical ellipses in (s, t) coordinates

derived in Eq. (2.10) (only right-half shown due to symmetry). Superimposed

(crosses) are the beam-time migration where each mark (+) denotes the travel
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time (t) based on the individual group speed and range versus the corresponding

phase speed in beam angle (s). In the ideal waveguide with a positive β, the first 26

modes are shown in Fig. 2.3a along the ellipse in the lower quadrant, constrained

by the sign of bv in Eq. (2.8) that has the same sign as β, consistent with Fig. 10b of

Ref. [18]. The beam-time migration curve using β = cos2 θ (refer to the Appendix)

is also displayed in Fig. 2.3a (dashed line), which is almost identical to the ellipse

assuming β = 1 for the low-order modes with small grazing angles (i.e., s < 0.4).

The beam-time migration with a vertical array requires minimal 3 modes to fit the

ellipses although more modes would provide a robust and better estimate.

In contrast, the beam-time migration in the n2-linear waveguide is captured

by the ellipse in the upper quadrant due to the negative β as shown in Fig. 2.3b.

The densely-populated first 77 modes (+) are displayed whose turning depth is

less than 1000 m, indicating that the array invariant approach for passive range

localization is applicable to the refracting paths with a negative β. For convenience,

the Cartesian coordinates (s, t) have a different scale to show the entire half of the

ellipses (i.e., stretched in s-axis).

2.5.2 Horizontal array

Similarly, the beam-time migration that can be generated by a horizontal

array is shown in Fig. 2.4 assuming the azimuth angle of φ0 = 80◦ (almost the

endfire). In comparison with ellipses for a vertical array, the solid lines indicate

a simple linear equation with a slope derived in Eq. (2.13) in (sb, t) coordinates.

Superimposed (+) are the pair of group and phase speeds transformed into the

pair of travel time (t) and beam angle (sb). As expected, the beam-time migration

for the ideal waveguide in Fig. 2.4a is consistent with Fig. 7b of [18]. In addition,

the beam-time migration curve derived using β = cos2 θ (refer to the Appendix)

is displayed in Fig. 2.4a (dashed line), which is almost identical to the linear line

assuming β = 1 for the low-order modes with small grazing angles (i.e., sb > 0.95).

The high-order modes (e.g., > 20) deviate from the linear line that can be excluded

from the array invariant processing or whose contribution would be negligible due

to attenuation.
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Figure 2.3: (Color online) Beam-time migration generated by a vertical array:
(a) ideal and (b) n2-linear. The solid lines are the theoretical ellipses derived in
Eq. (2.10) in (s, t) coordinates (only right-half shown due to symmetry). Superim-
posed are the beam-time migration where each mark (+) denotes the travel time
(t) based on the group speed and range versus the phase speed in beam angle (s).
The selection of quadrants, either lower or upper, depends on the sign of bv or β.
For the ideal waveguide in (a), the beam-time migration curve based on β = cos2 θ
is also displayed (dashed line). For convenience, the Cartesian coordinates (s, t)
have a different scale (i.e., stretched in s-axis).

On the other hand, the slope is reversed from negative to positive in Fig. 2.4b

for the n2-linear waveguide with a negative β. The beam-time migration with a

horizontal array requires minimal 2 modes to fit the straight line while more modes

would lead to a better estimate.
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Figure 2.4: (Color online) Beam-time migration generated by a horizontal array
with the azimuth angle of φ0 = 80◦: (a) ideal and (b) n2-linear. The linear
equations derived in Eq. (2.13) are drawn in (sb, t) coordinates. Superimposed are
the beam-time migration where each mark (+) denotes the travel time (t) based
on the group speed and range versus the corresponding phase speed in beam angle
(sb). The slope, either negative or positive, depends on the sign of bh or β. For
the ideal waveguide in (a), the beam-time migration curve based on β = cos2 θ is
also displayed (dashed line).

2.6 Summary

The array invariant proposed for passive range localization was shown fun-

damentally equivalent to the waveguide invariant theory when β = 1. Specifically,

the functional relationship between the group and phase speeds was converted into

the functional relationship between the travel time and beam angle, i.e., beam-time

migration. Since many shallow-water environments are characterized by β ≈ 1, the

array invariant approach could be applied without explicitly invoking the waveg-

uide invariant. It was found that the beam-time migration follows ellipses for

vertical arrays and lines for horizontal arrays. The potential generalization of

the array/wavguide invariant approach was illustrated using an upward-refracting
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environment with β = −3.

2.7 Appendix: Derivation of beam-time migra-

tion for ideal waveguide using β = cos2 θ

The analytic expression for the waveguide invariant in ideal waveguide (i.e.,

isoveloctity) is β = cos2 θ, which depends on the grazing angle θ. For small grazing

angles (low-order modes), however, the dependence is negligible and β can be

assumed approximately unity. Here we derive the beam-time migration curve

using β = cos2 θ in Sec. 2.3 to validate the approximation.

2.7.1 Vertical array

Introducing β = cos2 θ = 1− s2 into Eq. (2.4), we obtain

dt =
R

c

sds

(1− s2) 3
2

. (2.15)

With the substitution (1 − s2) = u
2
3 and sds = −1

3
u−

1
3du, the equation takes the

form

dt = −
(
R

3c

)
u−

4
3du. (2.16)

We next integrate both sides of the equation to obtain

t− t0 = −
(
R

3c

)
1

−4
3

+ 1
u−

4
3
+1

∣∣∣∣u
u0

=
R

c

(
u−

1
3 − u−

1
3

0

)
. (2.17)

Since u
1
3 =
√

1− s2, there follows

t− t0 =
R

c

(
1√

1− s2
− 1√

1− s20

)
. (2.18)

Using the Taylor series expansion, we can rewrite the above equation

t− tc =
R

c

(
1 +

1

2
s2 +

3

8
s4 +O(s6)

)
, (2.19)

where

tc = t0 −
R

c

1√
1− s20

. (2.20)
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This equation is not in the form of an ellipse in (s, t) coordinates as depicted in

Fig. 2.3a (dashed line). For small grazing angles (i.e., s < 0.4), however, this curve

is almost identical to the ellipse derived assuming β = 1.

2.7.2 Horizontal array

Substituting β = cos2 θ = s2b in Eq. (2.12), we obtain

dt = −R
c

dsb
s2b
. (2.21)

Integrating both sides gives

t− t0 =
R

c

1

sb

∣∣∣∣sb
sb0

=
R

c

(
1

sb
− 1

sb0

)
(2.22)

or, equivalently,

t− tc =

(
R

c

)
1

sb
, (2.23)

where

tc = t0 −
R

c

1

sb0
. (2.24)

The beam-time migration in (sb, t) coordinates is not a straight line as depicted

in Fig. 2.4a (dashed line). For small grazing angles (i.e., sb > 0.95), however, this

curve is almost identical to the straight line based on β = 1.
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Chapter 3

Robust source-range estimation

using the array/waveguide

invariant and a vertical array

Authors:
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H.C. Song

W. S. Hodgkiss

3.1 Abstract

The array invariant based on beam-time migration has been proposed for

source-range estimation using a horizontal or vertical array, with no need for for-

ward model computations. The approach has been demonstrated successfully with

experimental data in shallow water using a horizontal towed array. Recently the

array invariant has been shown to be a special case of the waveguide invariant

theory. In this paper, the unified array/waveguide invariant approach to source-

range estimation is applied to a short-aperture vertical array in a fluctuating ocean

environment over a one-day period. Specifically, the mean range estimates using a

22
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12-m long vertical array in ∼100 m deep water are less than 8% relative error for

a source (2–3 kHz) at 6-km range, demonstrating the robustness of this approach.

3.2 Introduction

This paper addresses the problem of passive source-range estimation using a

short-aperture vertical array in shallow water, with no need for the forward model

computations involved in matched field processing (MFP) [1]. The approach taken

in this paper is a straightforward extension of the waveguide invariant concept

first introduced by Chuprov [2] to the beam-time intensity domain, which is a

generalization of the array invariant proposed by Lee and Makris [3,4]. The unified

waveguide/array invariant approach is applied to both simulations and data to

demonstrate the robustness of the proposed approach.

The waveguide invariant, denoted by β and based on the functional rela-

tionship between the group and phase speed in an acoustic waveguide (equiva-

lently group and phase slowness) [5], describes the dispersive nature of waveguide

propagation and characterizes the interference striations observed in the range-

frequency plane. The isovelocity waveguide has a canonical value of β = 1, which

also is applicable to many shallow water environments. For an arbitrary sound

speed profile, however, the propagating modes that contribute to the wavefield

can be divided into distinct groups of modes that behave similarly within each

group with each group having a different value of β. The value of β also can be

range-dependent if the waveguide has a range-dependent bathymetry and sound

speed [6,7] and internal waves [8]. Waveguide invariant theory has been exploited

for various applications in the ocean, including time-reversal focusing [9,10], source

localization [11–14], and sonar array processing [15].

On the other hand, the array invariant [3], denoted by χ, is derived in the

beam-time intensity domain after plane-wave beamforming using either a horizon-

tal or vertical array, presumably independent of the waveguide invariant. This

approach provides a reasonable source-range estimate with little computational

effort, the full array gain, and minimal knowledge of the environment, but is re-
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stricted to bottom-interacting, shallow-water environments. The array invariant

method was demonstrated using both simulations and data for source range esti-

mation in shallow water using a towed horizontal array.

Motivated by the array invariant work, waveguide invariant theory recently

has been reformulated in the beam-time domain since the phase and group speeds

defined in β are associated with a local beam angle and a travel time, respectively

[4]. It was found that the array invariant is a special case of β = 1, thus being

extendable to waveguides with different values of β, i.e., a generalization of the

array invariant. The implication is that the array invariant is fully supported

by the waveguide invariant physics. In this paper, the unified waveguide/array

invariant approach to source-range estimation is investigated using data collected

on a 12-m long vertical array in ∼100-m deep water from a 2–3 kHz source at 6-km

range.

The paper is organized as follows. Section 3.3 reviews the array invariant

approach in conjunction with the waveguide invariant theory, with a major focus on

vertical arrays. Section 3.4 describes the high-frequency experiment (HF97) [16]

conducted in shallow water off San Diego, CA, in October 1997. In Sec. 3.5,

range estimation based on the array/waveguide invariant theory is presented using

simulations and HF97 data, followed by a summary in Sec. 3.6.

3.3 Unified array/waveguide invariant for verti-

cal arrays

3.3.1 Array invariant

The array invariant [3] stems from the observation that in an ideal isove-

locity waveguide the beam-time migration sh(t) for an endfire horizontal array,

where sh(t) = cos θ(t) with a grazing angle θ, depends only on the source range r0,

independent of source frequency band, mode number, source/receiver depth, and

waveguide depth (refer to Fig. 4 in Ref. [3]). This approach then was extended

to many shallow-water waveguides by excluding so-called waterborne (refracted)
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Figure 3.1: Coordinate system including the grazing angle θ and source range r0.

modes. The array invariant can be applied to both horizontal and vertical arrays

with the beam angle defined with respect to the broadside of the array, yielding

two respective invariant parameters: χh (or χl) and χv. For a vertical array (see

Fig. 3.1), the beam angle corresponds to the grazing angle sv = s = sin θ in the

beam-time domain (s, t), whereas sh = cos θ for a horizontal array in (sh, t). Con-

ventional plane-wave beamforming requires appropriate element spacing to avoid

spatial aliasing, adequate aperture which determines the beam resolution, and

minimal sound speed variation across the array aperture.

The array invariant approach is summarized in the Appendix for a vertical

array that enables source-range estimation directly from r0 = −c/χv, where c

is the local (averaged) sound speed and χv is evaluated from data in the beam-

time domain (s, t) after plane-wave beamforming. It should be pointed out that χv

defined here is modified from the original but more consistent with χl in Eq. (16) of

Ref. [3]. Further, the resulting beam-time migration curve s(t) follows an identical

elliptic equation in both the array invariant and waveguide invariant [4].
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3.3.2 Waveguide invariant

In contrast with the array invariant theory which is restricted to isovelocity

and similar shallow-water waveguides [3], waveguide invariant theory applies to

general waveguides [5]. The waveguide invariant is based on the dependence of

group speed Vg (or group slowness Sg = 1/Vg) on phase speed Vp (or Sp = 1/Vp),

summarized by a scalar parameter β

1

β
= −d(1/Vg)

d(1/Vp)
= −d(Sg)

d(Sp)
. (3.1)

For a number of sound speed profiles, analytic expressions for β can be derived [17].

The ideal waveguide that led to the array invariant theory has β = cos2 θ, which is

approximately β ≈ 1 for low-order modes (e.g., θ < 20◦). Moreover, β ≈ 1 remains

valid for many shallow-water environments where surface/bottom reflected paths

are dominant. On the other hand, an upward refracting profile has a negative

β = −3/(1 − tan2 θ), approximately β ≈ −3 for small grazing angles. For an

arbitrary sound speed profile, the modes contributing to the wavefield can be

divided into different groups of modes [2] that behave similarly within each group

having a different value of β. In other words, the waveguide invariant β can vary

depending on the specific group of modes for a given waveguide.

The waveguide invariant defined in the (Vp, Vg) or (Sp, Sg) coordinate system

can be transformed into the beam-time domain: (s, t) for a vertical array and

(sh, t) for a horizontal array. For a source-receiver distance r0, the group speed

is convertible to the travel time through Vg = r0/t, whereas the phase speed is

associated with the incident grazing angle θ of a mode (or ray) such that Vp =

c/ cos θ. Similar to the array invariant case, the coordinate transformation into the

beam-time domain generates two invariant parameters [4]: (i) bv = (r0/c)/β for a

vertical array and (ii) bh = bv/ sinφ0 for a horizontal array with an azimuth angle

of φ0 (e.g., φ0 = π/2 for endfire). It is important to note that both parameters

(bv and bh) contain β and have a dimension of time since β is a non-dimensional

scalar. During this transformation, β is assumed constant, implying that the

array/waveguide invariant is based on a single group of modes having the same

value of β.
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The two invariant parameters are inversely proportional to the array invari-

ant parameters such that bv = −1/χv and bh = −1/χl. For a vertical array, the

range estimate based on the waveguide invariant theory now includes β:

r0 = β (bvc) = −β (c/χv) (3.2)

where χv is estimated from the beam-time intensity data (refer to the Appendix).

This expression reduces to the array invariant case when β = 1, which is not sur-

prising since the array invariant has been developed from the isovelocity waveguide

with β = 1. In addition, β ≈ 1 for most bottom-interacting shallow-water envi-

ronments. A small deviation from β = 1 will map into range estimation errors in

addition to errors resulting from uncertainty in the local sound speed c. The array

invariant was demonstrated successfully with simulations and data in shallow wa-

ter, without explicitly invoking waveguide invariant theory [3]. However, Eq. (3.2)

is not restricted to shallow-water environments but applicable to general waveg-

uides, provided that a group of modes having the same value of β are taken into

account. Eq. (3.2) will be used for the unified array/waveguide invariant approach

to source-range estimation in Sec. 3.5.

3.4 HF97 Experiment

The high frequency experiment (HF97) was conducted off San Diego, CA,

during October 1997 [16, 18]. A schematic of the experiment is shown in Fig. 3.2

including the environmental and acoustic instrumentation in a mildly down-slope

environment of ∼100 m depth. The goal of the experiment was to measure envi-

ronmental variations in the water column and to relate the environmental effects

with variations in the acoustic channel response. Thus both sources and receivers

were moored near the bottom to minimize the impact of source/receiver motion.

Time-evolving temperature structure over the 24-hour period on JD301 (October

28) measured by the thermistor string is displayed in Fig. 3.3a from the mixed

layer through the main thermocline (10–70 m). In addition, sound speed profiles

(SSPs) determined from concurrent CTD measurements at several times on JD301
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Figure 3.2: High Frequency 1997 experiment overview: (a) the source and receiver
locations and bottom bathymetry off San Diego and (b) schematic of deployed
hardware (not to scale)

are shown in Fig. 3.3b where the CTD data are offset by 4 m/s per cast for conve-

nience. Note that the SSP contains two thermoclines, one near mid-water depth

and another near the bottom. The presence of these two thermoclines induces a

significantly downward refracting environment for acoustic energy propagation.

The three sources were operated in the 2.5-, 6.0-, and 18-kHz frequency

bands. To investigate the unified array/waveguide invariant approach to source-

range estimation, our analysis will focus on the 2.5-kHz source operated at a source

level of 188 dB re 1 µPa at 1 m. Specifically, the 2.5 kHz source transmitted a

1-s, 2–3 kHz, linear frequency modulated (LFM) chirp continuously for 6 minutes

beginning every hour for an extended period of time. The source transmissions

were captured by a 64-element, 12-m long vertical array centered at 100-m and

moored in 110-m water depth, approximately 6 km away from the source. The

inter-element spacing of 0.1875 m corresponds to 0.3125 wavelength (λ) at 2.5

kHz, less than half the wavelength required to avoid spatial aliasing.

A typical example of the channel impulse response (CIR) along the vertical

array is shown in Fig. 3.3c on JD301 17:07 UTC (marked by an arrow in Fig. 3.3a),

estimated from the 1-s long, LFM chirp (2–3 kHz). The early arrivals (20–35 ms),

group (i), are followed by a cluster of arrivals (40–55 ms), group (ii), that exhibit
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a high-intensity energy. Then the late-arriving identifiable wavefronts, group (iii),

are visible between 60–140 ms, which will be exploited for range estimation based

on the array/waveguide invariant approach in Sec. 3.5.

Figure 3.3: (a) Time-evolving temperature structure over the 24-hour period
(JD301) measured by the thermistor string extending from the mixed layer through
the main thermocline (10–70m). (b) Sound speed profiles determined from CTD
measurements at several times on JD301. The profile contains two thermoclines,
one near mid-water depth and another near the bottom. The CTD data are offset
by 4 m/s per cast from the one on the far left. (c) Intensity of the channel
impulse response as a function of delay and hydrophone depth on JD301 17:07
UTC denoted by a vertical arrow in (a). The early arrivals (20–35 ms), group (i),
are followed by a cluster of arrivals (40–55 ms), group (ii), that exhibit a high-
intensity energy. Then the late-arriving identifiable wavefronts, group (iii), are
visible between 60–140 ms.
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Figure 3.4: (a) Sound speed profile at 14:21 UTC on JD301 (October 28). (b)
Group vs. phase slowness curve at 2.5 kHz. The modes are grouped into three
different regions depending on the group speed (Vg): (i) early (Vg > 1507 m/s), (ii)
intermediate (1500 < Vg < 1507 m/s), and (iii) later arrivals (Vg < 1500 m/s). The
high-intensity of group (ii) is due to the contribution of several low-order modes
which carry more energy than the high-order modes. The modes within group (iii)
are lined up with a negative slope corresponding to β = 0.95 from Eq. (3.1), which
can be exploited for the unified array/waveguide invariant for range estimation in
Sec. 3.5.

3.5 Range estimation

3.5.1 Acoustic environment

For simulations and data analysis, a sound speed profile selected from the

CTD casts is shown in Fig. 3.4a. The sound speed below 90 m to the bottom is as-

sumed constant (c = 1501.5 m/s) where the vertical array is moored. The seafloor

depth is ∼110 m at the receiver location, deeper than the source at ∼100 m, i.e., a

mildly down-slope bathymetry over the 6-km distance. The ocean bottom can be

modeled as a simple half-space for the high frequency source of interest (2–3 kHz)

since the acoustic energy cannot penetrate deep into the bottom. The geoacous-

tic parameters in the area from previous experiments [19] are compressional wave

speed cb = 1572 m/s, density ρb = 1.76 g/cm3, and attenuation αb = 0.3 dB/λ.

Assuming a range-independent environment with 110-m water depth, the

group slowness (Sg) versus phase slowness (Sp) curve is presented in Fig. 3.4b

using the normal mode program Kraken [20] at the center frequency of 2.5 kHz.
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On the horizontal axis, the mode number increases from the right (i.e., first mode)

towards the left. The modes can be grouped into three different regions depending

on the group speed (Vg) or arrival time: (i) early (Vg > 1507 m/s), (ii) intermediate

(1500 < Vg < 1507 m/s), and (iii) later arrivals (Vg < 1500 m/s).

The arrival structure based on the group speed can describe the observed

CIR in Fig. 3.3c. The early arrivals (20–35 ms) are group (i) from relatively high-

order modes, which are followed by the lower- and higher-order modes on both

sides of group (i). The low-order modes generally carry more energy than high-

order modes, especially when both the source and receiver are near the bottom in a

downward-refracting environment. Consequently, the acoustic intensity increases

significantly in group (ii) (40–55 ms). The later arrivals (60–140 ms) belong to

group (iii) from much higher-order modes with large grazing angles. Note that

modes within group (iii) are lined up with a negative slope corresponding to β =

0.95 from Eq. (3.1). Only those modes having the same value of β are used for the

array/waveguide invariant approach to source-range estimation.

Although not included in the array invariant, group (i) contains a modal

transition region around Vg = 1521 m/s where the nature of the mode changes (i.e.,

slope reversal), a case when a refracted mode changes to a reflected mode or vice

versa [21]. It is where there is an abrupt change in SSP of Fig. 3.4a at ∼40 m depth

and internal waves have a maximum amplitude. Since the transition region is most

sensitive to the environmental fluctuations, the robustness of the array/waveguide

invariant approach partly comes from not involving modes in group (i).

3.5.2 Simulation: Beam-time migration

Simulation of the beam-time migration curve based on Eq. (3.6) in the

Appendix is shown in Fig. 3.5a for the range-independent environment described

in Sec. 3.5.1 and the HF97 source/receiver geometry. The source signal is impulsive

in the 2–3 kHz frequency band, and a spatial Hamming window is applied during

plane-wave beamforming [3]. The vertical axis is relative time with respect to the

high-intensity arrival.

As expected from Fig. 3.4b, the group (i) modes arrive first at the grazing
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angle of sin θ ≈ 0.16. Immediately follows the high-intensity group (ii) with a

broad range of incident angles from the horizontal up to sin θ = 0.25. The higher-

order modes of group (iii) arrive later at large grazing angles, whose intensity is

14 dB down from the peak. Both up-going and down-going waves can be resolved

by a vertical array, but only the up-going component (i.e., positive θ) is shown in

Fig. 3.5a. For source-range estimation, the array invariant parameter χv can be

estimated from the curve (solid line) passing through the later arrivals of group

(iii). The source-range estimate based on Eq. (3.2) incorporating the waveguide

invariant β = 0.95 is 6.2 km with a relative error of 3% for the source at 6-km

range.

3.5.3 HF97 data analysis

The HF97 data are analyzed over two separate periods on JD 301 (October

28), 00:00 – 3:20 and 16:00 – 23:20 UTC. The source signal was a 1-s, 2–3 kHz,

LFM chirp, continuously transmitted for one minute (i.e., 60 chirp transmissions)

and then repeated every hour over an extended period of time.

We begin with a representative example from 00:07 UTC of the beam-

time migration shown in Fig. 3.5b after conventional plane-wave beamforming

with a spatial Hamming window followed by matched filtering. The overall arrival

structure is in good agreement with the simulation in Fig. 3.5a. Specifically, the

early arrivals (i) come in at sin θ = 0.13, followed by the high-intensity arrivals (ii)

with grazing angles ranging from the horizontal to sin θ = 0.2, and later arrivals

(iii) whose intensity is 15 dB down from the peak. Based on the estimate of χv

from the solid line passing through those modes within group (iii) and β = 0.95,

an initial estimate of the source range of 6.5 km is obtained with an 8% error from

the true source range of 6 km. The range error increases to about 13% if β = 1

is applied as would be the case using the original array invariant [3], indicating

the benefit of the unified array/waveguide invariant approach with β incorporated

(see Table 3.1).

A value of β = 0.95 was estimated using a range-independent environment

assumed in Fig. 3.4a. The actual bottom, however, approximately has a constant
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Table 3.1: Source-range estimation from beam-time migration of the HF97 data
shown in Fig. 3.5b for various values of β

β Source range estimate relative range error comments

1 6.8 km 13 % array invariant

0.95 6.5 km 8 % range-independent

0.9 6.1 km 2 % down-slope bottom

Figure 3.5: Beam-time migration after conventional plane-wave beamforming for
the HF97 source/receiver geometry and 2–3 kHz broadband signal. (a) Simulation.
The array invariant parameter χv can be estimated from the curve (solid line)
passing through the modes within group (iii). The source-range estimate from
Eq. (3.2) is 6.2 km with a 3% relative error using β = 0.95. (b) HF97 data at
00:07 UTC. The source range is estimated at 6.1 km with a 2% error using β = 0.9
incorporating the down-slope bottom bathymetry (see Table 3.1). Note that the
vertical axis is relative time in both plots.

downward slope from about 100-m (source) to 110-m (receiver). If the waveguide

has a range-varying bottom bathymetry, β also can depend on the range. D’Spain

and Kuperman [7] have derived an expression for the range-dependent β(r) for an

isovelocity waveguide with a sloping bottom,

β ≈ D(source)

D(receiver)
(3.3)

where D denotes the water depth at the source and receiver locations, respec-

tively. The range-dependent β subsequently was applied to experimental data and

provided excellent agreement between the data and model predictions in the anal-
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ysis of spectrograms. With a new value of β = 0.9 incorporating the bathymetry

change from Eq. (3.3), an improved estimate of the source range of 6.1 km is ob-

tained with a 2% error, reduced from the 8% error when β = 0.95 (Table 3.1). In

MFP, the effect of mismatch in bathymetry is to shift the peak of the match away

from its correct position, resulting in a biased estimate of the source location. In

a down-slope environment, the source appears deeper in depth and farther away

from the true range, referred to as a mirage [19]. Thus the range-dependent β

mitigates the offset in estimated range in MFP caused by neglecting the range

dependence of the bottom bathymetry in a shallow water waveguide. We will use

β = 0.9 for the analysis of the HF97 data.

A representative example of source-range estimation for a one-minute period

(i.e., 60 chirp transmissions) is shown in Fig. 3.6 (01:07 UTC). The range estimates

are distributed around the mean value of 6.09 km with a standard deviation of 0.77

km. Finally, the overall performance of range estimation over an extended period

of time on JD301 is summarized in Fig. 3.7 with hourly means (rectangles) and

standard deviations (vertical bars) based on the analysis of a 60 s transmission

record per hour. The mean source-range estimates vary between 5.7 km and 6.5

km, which corresponds to less than 8 % relative error, with standard deviations

about those means of less than 0.86 km. Note that there is a data gap between

3 and 16 hours, and results are not shown at 19 and 21 hours where the data are

contaminated by noise. These results further demonstrate the robustness of the

unified array/waveguide invariant approach under a fluctuating ocean environment

as illustrated in Fig. 3.3a.

Since the angles of arrivals are less than 20◦ with respect to the broadside

of the vertical array, we can use a much smaller number of array elements while

maintaining its aperture and performance. The HF97 receive array had 64 elements

with 0.3125 wavelength (λ) element separation at 2.5 kHz, and the critical angle

of propagation is less than 20◦. Therefore, the number of the elements can be

reduced to 16 without concern for spatial aliasing.
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Figure 3.6: Range estimation of HF97 data for one-minute period (i.e., 60 chirp
transmissions) at 01:07 UTC, using β = 0.9. The range estimates are distributed
around the mean value of 6.09 km with a standard deviation of 0.77 km.

Figure 3.7: Overall performance of HF97 range estimation over an extended
period of time on JD301 with hourly means (rectangles) and standard deviations
(vertical bars) based on the analysis of a 60 s transmission record per hour. The
mean source-range estimates vary between 5.7 and 6.5 km, corresponds to less than
8 % relative error, with standard deviations about those means of less than 0.86
km. Note that there is a data gap between 3 and 16 hours, and the results are not
shown at 19 and 21 hours due to noise contamination.
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3.6 Summary

The unified array/waveguide invariant approach based on beam-time mi-

gration was proposed for robust source-range estimation using a short-aperture

vertical array. Rather than the forward model computations required for MFP,

the approach involves conventional plane-wave beamforming and a single waveg-

uide invariant parameter β which depends upon the acoustic waveguide. In many

shallow-water environments, β can be assumed approximately equal to 1 and any

deviation from β = 1 can be translated to range-estimation errors. With β = 0.9

incorporating the down-slope bottom bathymetry, the approach was applied suc-

cessfully to HF97 data in a fluctuating shallow-water environment over a one-day

period. Specifically, the mean range estimates using a 12-m long vertical array in

∼100 m deep water were less than 8% relative error for a source (2–3 kHz) at 6-km

range, demonstrating the robustness of the proposed approach.

3.7 Appendix: Array invariant for vertical ar-

rays χv

The array invariant approach in Ref. [3] is summarized with a focus on

vertical arrays (VAs). The equations referred to here are from Ref. [3]. Acoustic

propagation can be described in terms of normal modes in a range-independent

environment. The acoustic pressure field at a receiver (r, z) and frequency f due

to a source at (r0, z0) can be expressed as follows:

P (r, z, f) = 4πQ(f)
i√

8πρ(z0)
e−

iπ
4

∑
n

un(z0)un(z)
eikrn|r−r0|√
krn|r − r0|

, (3.4)

where n is the mode number, krn the nth horizontal wavenumber, ρ the density,

Q(f) the source spectrum, and the nth mode shape un(z) that satisfies the or-

thonormality condition of
∫∞
0
um(z)un(z)/ρ(z)dz = δmn. For convenience, a VA is

positioned at r = 0 with its center depth at zc, and the horizontal distance between

the source and receive array is r0. (refer to Fig. 3.1).



37

Assuming that the sound speed variation is minimal across the array aper-

ture [3], the output of conventional plane-wave beamforming in the frequency do-

main can be derived from Eq. (3.4)

PB(s, f) = 4πQ(f)
i√

8πρ(z0)
e−

iπ
4

∑
n

un (z0)
eikrnr0√
krnr0

×
[
N+
n B (s− sn) +N−n B (s+ sn)

]
,

(3.5)

where θ is a grazing angle defined from the horizontal axis (broadside of the array),

s = sin θ, sn = sin θn, B(s) the beam pattern, and N+
n and N−n are the plane-wave

amplitudes of the nth mode in opposite directions. The nth mode shape satisfies

un(z) = N+
n e

ikznz + N−n e
−ikznz with the nth vertical wavenumber kzn. Note that

sin θ corresponds to cosφ in Ref. [3] where φ is defined as the elevation angle, i.e.,

φ = π/2− θ.
The time-domain beamformer output PB(s, t) can be obtained simply by

taking the inverse Fourier transform of Eq. (3.5),

PB(s, t) = 2 Re

{∫ ∞
0

PB(s, f)e−i2πftdf

}
, (3.6)

where Re{·} represents the real part. Although not employed in this paper, the

stationary phase approximation has been applied in Ref. [3] to further obtain

analytical expressions when the source signals are transient (refer to Eq. (4) and

Appendix A in Ref. [3]).

The array invariant parameter χv in Eq. (21) for a vertical array is estimated

as follows: (a) multiple peaks are selected from PB(s, t) in the beam-time domain

(s, t) and (b) then a least squares estimate of χ̂v is carried out using Eq. (30).

Similar to χl in Eq. (16) for a horizontal array, we define a new χv from Eq. (18)

χv ≡
d(cos θ)

dt
≡ d

dt

√
1− sin2 θ ' − c

r0
. (3.7)

In this case, the least squares estimate of χ̂v can be obtained from (1 − s2)1/2 =

χvt + dv where dv is a constant intercept. Note that Eq. (3.7) satisfies an el-

liptic equation in the (s, t) coordinate, consistent with the one derived from the

waveguide invariant in Ref. [4].
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Finally, the source-range can be estimated from r̂0 = −c/χ̂v, where c is

an average sound speed across the VA aperture used for conventional plane-wave

beamforming PB(s, f).
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4.1 Abstract

The array invariant theory was generalized by incorporating the waveguide

invariant β, referred to as the generalized array invariant. In this paper, the gen-

eralized array invariant is extended to mildly range-dependent environments with

a sloping bottom where the waveguide invariant is variable in range. Assuming

41
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knowledge of the bottom slope, the array invariant can be applied iteratively to esti-

mate the source range starting with β=1 (i.e., range-independent), which converges

toward the correct source range by updating β at the previously estimated range.

The iterative array invariant approach is demonstrated using a short-aperture ver-

tical array (2.8-m) in a sloping-bottom shallow-water waveguide from the Random

Array of Drifting Acoustic Receivers 2007 experiment (RADAR07), where a high-

frequency source (2–3.5 kHz) close to the surface (6-m) was towed between 0.5 to

5 km in range with the water depth varying from 80 to 50 m.

4.2 Introduction

The array invariant, first proposed by Lee and Makris [1], has been suc-

cessful in achieving robust source-range estimation in shallow-water acoustic en-

vironments [2, 3]. The approach is based on the dispersion characteristics in ideal

waveguides and involves conventional plane-wave beamforming, exploiting multi-

ple arrivals separated in beam angle and travel time, i.e., beam-time migration.

The array invariant [1] was extended to general waveguides by incorporating the

waveguide invariant β, referred to as the generalized array invariant [3]. For ideal

waveguides and reflection-dominated environments, the waveguide invariant is ap-

proximately unity (β ≈ 1) for small grazing angles (e.g., < 20◦). As a result,

the original array invariant [1] was assumed to be independent of the waveguide

invariant. Using a short- [2] or long-aperture [3] vertical array, the generalized

array invariant for source-range estimation was demonstrated in shallow-water en-

vironments for relatively high-frequency sources (e.g., above 1 kHz), with minimal

knowledge of the environment and computational efficiency.

The inclusion of the waveguide invariant β in the formulation [2–6] implies

that the generalized array invariant can be extended to mildly range-dependent

environments where mode propagation is adiabatic and thus the waveguide invari-

ant is meaningful via the generalized waveguide invariant [7]. The objective of

this paper is to demonstrate the array invariant-based source-range estimation in

shallow-water environments with range-varying bottom bathymetry using at-sea
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data.

The waveguide invariant for an ideal waveguide with a sloping bottom was

derived by D’Spain and Kuperman using the adiabatic approximation [8], which

is simply a ratio of the water depth at the source location to that at the receiver

location. The main drawback for source range estimation is that an accurate value

of β requires prior knowledge of the water depth at the source range (r0) to be

estimated. Assuming that the bottom slope is known to the receiver, we propose

an iterative array invariant to estimate the source range starting with β = 1 (i.e.,

range-independent), which converges toward the correct source range by updating

β(r̂) at the previously estimated range (r̂). The iterative array invariant approach

will be experimentally verified using a short-aperture vertical array (2.8 m) in

a sloping-bottom shallow-water waveguide, where a high-frequency source (2–3.5

kHz) near the surface (6-m) was towed between 0.5 to 5 km in range with the

water depth varying from 80 to 50 m.

The paper is organized as follows. Section 4.3 reviews the generalized array

invariant and generalized waveguide invariant for an ideal waveguide with a sloping

bottom, including a high-order approximation that is derived in the Appendix.

Then the iterative approach to range estimation is described in conjunction with

the array invariant. Section 4.4 describes the Random Array of Drifting Acoustic

Receivers 2007 (RADAR07) experiment [9], conducted off Setúbal, Portugal, in

July 2007, with a major focus on the source-tow run in a sloping environment. In

Sec. 4.5, the performance of tracking the towed source using the iterative array

invariant is presented, followed by a summary in Sec. 4.6.

4.3 Generalized array invariant for a sloping bot-

tom

The generalized array invariant that includes the waveguide invariant β is

derived in the literature [3, 4]. The source range r0 can be estimated simply from

r0 = −β
(
c

χ

)
, (4.1)
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where c is the local sound speed used for beamforming. For an ideal waveguide

with β = 1, this formula reduces to the original array invariant [1].

The array invariant parameter χ is defined as

χ ≡ d

dt
(cos θ) =

d

dt

√
1− sin2 θ =

d

dt

√
1− s2, (4.2)

where s = sin θ with the grazing angle θ from the horizontal and t is the travel

time. The above equation can be expressed as an elliptic curve in the beam-time

(s, t) coordinate (see Fig. 4.3):(
t− t0
1/χ

)2

+ sin2 θ = 1, (4.3)

where 1/|χ| is the horizontal semi-major axis and the center of ellipse is at (0, t0) [4].

The parameter χ can be estimated numerically from the beam-time migration data,

e.g., using the least-squares (LS) approach as described in the Appendix of Ref. [3].

4.3.1 Generalized waveguide invariant for a sloping bottom

For an ideal waveguide with a sloping bottom, D’Spain and Kuperman [8]

derived a generalized waveguide invariant such that

1

β
=
Dr

Ds

, (4.4)

where Dr and Ds are the water depth at the receiver and the source location,

respectively. This simple expression was then experimentally verified to analyze

the data collected in a bottom-slope shallow-water environment. For a range-

independent environment, i.e., when Dr = Ds, Eq. (4.4) reduces to β = 1, which

is also valid in many bottom-interacting shallow-water environments.

Since the source range (r0) is proportional to β in Eq. (4.1), it is important

to assess the accuracy of the simple expression Eq. (4.4). Thus, we have revisited

the derivation in the Appendix where Eq. (4.4) corresponds to a zeroth-order ap-

proximation, Eq. (4.8). On the other hand, the first-order approximation derived

in Eq. (4.10), which is almost identical to the analytic expression in Eq. (4.5),

has an additional term that depends on the grazing angle (or mode number). For
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an up-slope bottom similar to the RADAR07 environment, the zeroth-order ap-

proximation is estimated to be about 6% larger than the first-order approximation

when averaged over up to the bottom critical angle of sin 24◦ (refer to Fig. 4.5).

Consequently, the trade-off of using the simple expression Eq. (4.4) with the array

invariant would be over-estimation of the source range, as will be confirmed in

Sec. 4.5.

4.3.2 Iterative array invariant

The array invariant-based source-range estimation using Eq. (4.1) includes

β, which is approximately unity in many shallow-water environments [7]. For

range-dependent sloping bottom, however, an accurate value of β in Eq. (4.4)

requires prior knowledge of the water depth (Ds) at the source range (r0) to be

estimated. Assuming the bottom slope is known to the receiver, the array invariant

approach can be employed iteratively as follows:

1. Estimation of the array invariant parameter χ from the beam-time migration

data

2. Initial range estimate of r̂0 = −c/χ, assuming β0 = 1 (i.e., Ds = Dr) and

c = 1500 m/s

3. Iterative range estimate of r̂k = βkr̂0 with an updated βk = D(r̂k−1)/Dr,

where D(x) is the water depth at the estimated source range x in the previous

iteration.

4. Convergence check: |r̂k − r̂k−1| ≤ Rc (e.g., 100 m), a radius of convergence

(threshold)

4.4 RADAR07 experiment

The RADAR07 experiment was performed in 9-15 July 2007 on the conti-

nental shelf off the west coast of Portugal, roughly 23 km south of Setúbal [9]. This
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Figure 4.1: (Color online) RADAR07 source-tow experiment overview: (a)
schematic of the deployed hardware in a simplified sloping environment and (b)
complex bottom bathymetry off Setúbal, Portugal, along with the ship track (yel-
low line), first in the up-slope and then down-slope direction. The open circle (◦)
denotes the receiver array location (SLIVA). The water depth is in meters.

is a dynamic site with significant internal tide activity due to the complex bathy-

metric features, including a canyon, seamounts, and a narrow continental shelf.

The experiment was a multi-institutional effort between University of Algarve’s

SiPLAB, Nato Undersea Research Centre (NURC), the Hydrographic Institute (of

the Portuguese Navy), Naval Research Laboratory (NRL), and Heat, Light and

Sound (HLS) Research Inc. The experiment was designed to support research

in several areas, including matched field tomography and underwater communica-

tions. Two research vessels from the Hydrographic Institute of Portugal were used,

NRP Don Carlos I and NRP Auriga. Active acoustic signals were transmitted from

NRP D. Carlos I towing three different acoustic sources covering 0.5–20 kHz and

were received by multiple receive arrays, drifting or moored.

To investigate the proposed iterative array invariant approach, our analysis

will focus on the source-tow run carried out on JD 194 (July 13), from 16:38 to

18:19 UTC (about 2 hours). The schematic of the experiment is illustrated in

Fig. 4.1 along with the bathymetry. A broadband low-frequency source (0.5–3.5

kHz) was deployed to about 6-m depth and towed mostly at a speed of about 3

knots (1.4 m/s) by the NRP D. Carlos I along the specified A-F source-tow track

in a sloping environment, first in the up-slope and then down-slope direction. The

white circle (◦) in Fig. 4.1b indicates the location of NURC’s SLIVA (SLIm Vertical
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Figure 4.2: (Color online) (a) A representative sound speed profile during the
source-tow run on JD 194. The source at 6-m depth (∗) is in the surface mixed
layer, while the receiver at 70-m depth (◦) is well below the thermocline in a
downward-refracting environment. (b) Channel impulse response (CIR) measured
at a range of 0.7 km, indicating a delay spread of about 80 ms with 6 distinct
arrivals. The plot is normalized by the maximum intensity and displayed in dB.
Few hydrophones (e.g., at 68.6 and 69.5 m) were not working properly and thus
excluded for conventional plane-wave beamforming.

Array) moored in about 87.5-m water depth, consisting of three nested subsets of

hydrophones spaced for various frequency bands of interest. In this paper, we will

use a subset of 32-element line array with a 2.8-m aperture centered around 70-m

depth. Note that the bottom bathymetry is approximated by a simple sloping

bottom in Fig. 4.1a, facilitating the iterative approach based on the knowledge

of the slope. This work utilizes 100-ms, 0.5–3.5 kHz linear frequency modulated

(LFM) chirp channel probe transmitted at various ranges (0.5–5 km) during the

source-tow run.

Environmental data included water-column sound-speed profiles (SSPs) us-

ing CTD (conductivity, temperature, and depth) and thermistor strings. Two

SSPs measured prior to the source-tow run were averaged out in Fig. 4.2a, which

is a downward-refracting environment with the mixed layer depth down to 10 m.

The towed source at 6-m depth (∗) is in the mixed layer, while the receiver array

(◦) is well below the thermocline at 70-m depth. The source near the surface can

excite high-order modes that interact with surface and bottom; thus, these modes
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behave like ones in an ideal waveguide from which the array invariant originated.

As a result, all the high-order modes (i.e., ray arrivals) can be used to estimate

the source range based on the array invariant.

An example of channel impulse response (CIR) at 0.7 km range is displayed

in Fig. 4.2b, indicating six distinct arrivals with a delay spread of about 80 ms. The

plot is normalized by the maximum intensity and displayed in dB. Few hydrophones

(e.g., at at 68.6 and 69.5 m) were not working properly; thus, they are excluded

for plane-wave beamforming.

4.5 Source tracking in a sloping environment

The RADAR07 data collected during the source-tow run (16:38–18:19 UTC)

are analyzed to track the source traveling in a sloping environment as depicted in

Fig. 4.1. The source signal was a 100-ms, 0.5–3.5 kHz, LFM chirp transmitted at

0.2-s intervals for 4 s (i.e., 20 chirp transmissions) and then repeatedly every 30 s

at various ranges from 0.5 km up to 5 km. To improve the beam resolution given

the aperture of the array (2.8 m), only the upper-half frequency band (i.e., 50-ms,

2–3.5 kHz) is utilized for matched-filtering and beamforming.

4.5.1 Beam-time migration

The beam-time migration (s, t) is presented in Fig. 4.3 for three represen-

tative source ranges: (a) 0.7 km, (b) 2.8 km, and (c) 4.9 km. The water depth

at the corresponding range is 75 m, 62 m, and 55 m, respectively. The vertical

axis denotes the beam (s = sin θ) with a positive angle θ defined for an up-going

paths (red circles), and the horizontal axis is the relative travel time (t). A varying

number of arrivals were identified at different ranges, determined by a threshold

set to find peaks (e.g., −10 dB) [3]. For instance, there are two up-going (circles)

and three down-going (squares) arrivals at 0.7 km, whereas many more arrivals up

to 11 are captured at 2.8 km.

Following the steps in Sec. 4.3.2, an elliptic curve (solid line) that best fits

the identified arrivals (circles and squares) in the least-squares (LS) sense [3] can
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Figure 4.3: (Color online) Beam-time migration at three representative ranges:
(a) 0.7 km (16:41), (b) 2.8 km (17:06), and (c) 4.9 km (17:29 UTC). The water
depth at the corresponding range is 75, 62, and 55 m. A positive beam angle repre-
sents an up-going path (red circles), and the dynamic range is 20 dB. Note that the
curvature of the elliptic curve increases with range. A different number of distinct
arrivals (circles and squares) is used to estimate the array invariant parameter χ
at different ranges. (d) Iterative range estimation in a sloping environment for a
source at 4.9 km range corresponding to (c). The range estimate is initially 8.6
km assuming β = 1 (range-independent) and c = 1500 m/s, but gradually con-
verges toward 4.6 km in a zig-zag fashion with a relative range error of −6%. The
performance of iterative range estimation is summarized in Table 4.1.
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Figure 4.4: (Color online) (a) Source-range estimation during the source-tow
run for about 2 hours (16:38–18:19): assuming β = 1 (open circles, blue) and using
the iterative approach with β(r) (solid circles, red). The solid line is based on the
ship GPS. (b) Corresponding relative range errors (%). The mean relative range
error with the iterative approach is about 18%.

be drawn with an appropriate array invariant parameter χ (refer to Table 4.1). It

is noticeable that the curvature of the ellipses increases as the range increases. The

iterative array invariant approach to range estimation is illustrated in Fig. 4.3d for

the source at 4.9 km range. The range estimate is initially 8.6 km assuming β = 1

and c = 1500 m/s, but gradually converges over the iteration toward 4.6 km in a

zig-zag fashion, with a relative range error of −6%. The performance of iterative

range estimation for the above three ranges is summarized in Table 4.1.

Table 4.1: Iterative source-range estimation from beam-time migration shown
in Fig. 4.3 at various ranges.

Source Water β(r0) = Ds/Dr χ Initial Range Relative

range depth estimate estimate range

(r0) (Ds) with β = 1 (r̂0) error

(a) 0.7 km 75 m 0.86 -1.60 0.9 km 0.9 km 25%

(b) 2.8 km 62 m 0.71 -0.31 4.8 km 3.3 km 17%

(c) 4.9 km 55 m 0.63 -0.17 8.6 km 4.6 km -6%
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4.5.2 Source-range tracking

During the source-tow run, the LFM chirp signal was transmitted contin-

uously at 0.2-s intervals for 4 s (i.e., 20 chirp transmissions) and then repeated

every 30 s over almost two hours. Thus, for each range, the mean range estimate

was obtained from 20 transmissions. The overall performance of range estimate is

presented in Fig. 4.4 over the entire source-tow run. The solid line is based on the

ship GPS data where the towed source was assumed to be about 70 m behind the

actual GPS location, although the offset is relevant only at close ranges (e.g., < 1

km).

The open circles (◦) obtained with β = 1 do not take into account the

variability of β(r) in a sloping range-dependent environment. As a result, the range

error increases significantly with range such that the relative range error exceeds

100% at about 5 km range. On the other hand, the iterative array invariant

approach (•) even with a simplified sloping bottom in Fig. 4.1a provides good

performance over the entire source track with the relative range error of about

18%. As described in the Appendix, the source range is mostly over-predicted

because the simple expression for the waveguide invariant in Eq. (4.4) is always

larger than the exact value. A few exceptions of under-prediction at around 5 km

(e.g., −6%) are likely due to the mismatch between the simplified sloping bottom

and the actual bottom bathymetry. Additional uncertainty is attributed to the fact

that the derivation of β is based on a two-dimensional sloping bottom, neglecting

the three-dimensional propagation effect in the RADAR07 environment.

4.6 Summary

The generalized array invariant that includes the waveguide invariant β has

been successful for source range estimation with minimal environmental informa-

tion and using a short-aperture vertical array in shallow water. In this paper, the

array invariant was extended to a range-dependent environment with a sloping

bottom where β requires prior knowledge of the water depth at the source range

to be estimated. To get around the problem, an iterative approach was proposed,
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which starts with β = 1 but gradually converges toward the correct source range

by updating β at the previously estimated source range. The iterative array invari-

ant approach was demonstrated using a short-aperture vertical array (2.8 m) in a

sloping-bottom shallow-water environment, where a high-frequency source (2–3.5

kHz) near the surface (6-m) was towed between 0.5 to 5 km in range with the

water depth varying from 80 to 50 m. The mean absolute relative range error was

about 18% during the entire source-tow run.

4.7 Appendix: Waveguide invariant for an ideal

waveguide with a sloping bottom

The starting point is the expression for the waveguide invariant β(r0) de-

rived in Ref. [8] for an ideal waveguide with range-varying bottom bathymetry

where mode propagation is adiabatic (refer to Eq. (22) of Ref. [8])

1

β(r0)
=

(1− γ2n(0)/k2)1/2

γ2n(0)

1

r0

∫ r0

0

γ2n(x)

(1− γ2n(x)/k2)3/2
dx, (4.5)

where γn(x) is the nth-mode vertical wave number, k is the medium wave number,

and r0 is the source range from the receiver at r = 0. For the low-order modes

where γ2n/k
2 � 1, we can apply the first-order Taylor approximation [10] to each

of the two power functions containing γ2n/k
2, and Eq. (4.5) thus becomes

1

β(r0)
≈
(

1

γ2n(0)
− 1

2k2

)
1

r0

∫ r0

0

(
γ2n(x) +

3γ4n(x)

2k2

)
dx. (4.6)

Neglecting the product of the two first-order terms (i.e., 1
2k2
×
∫ r0
0

3γ4n(x)
2k2

dx), we

obtain

1

β(r0)
≈ 1

γ2n(0)

1

r0

∫ r0

0

γ2n(x)dx+
1

γ2n(0)

1

r0

∫ r0

0

3γ4n(x)

2k2
dx− 1

2k2
1

r0

∫ r0

0

γ2n(x)dx.

(4.7)

The first term on the right-hand side, corresponding to a zeroth-order approxima-

tion, can be simplified for an ideal waveguide with a sloping bottom

1

γ2n(0)

1

r0

∫ r0

0

γ2n(x)dx =
D2
r

r0

∫ r0

0

1

d2n(x)
dx =

(
Dr

Ds

)
, (4.8)
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where γn(x) = nπ/d(x), γn(0) = nπ/d(0), d(x) = Dr +Ax with A representing the

bottom slope. The water depths at the receiver and the source locations are Dr

and Ds = Dr +Ar0, respectively. D’Spain and Kuperman [8] used this formula for

the analysis of data collected in a sloping shallow-water environment. For a range-

independent case (i.e., Dr = Ds), the zeroth-order waveguide invariant becomes

equal to one (β = 1).

The second and third terms on the right-hand side of Eq. (4.7), correspond-

ing to the first-order approximation, can be combined into a simple expression

1
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dx− 1
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3n2π2D2

r

2k2
1

r0

∫ r0

0

1

d4(x)
dx− n2π2

2k2
1

r0

∫ r0

0

1

d2(x)
dx

=
n2π2

D2
rk

2

D2
r

D2
s

(
Dr +Ds

2Ds

)
= sin2 θn

(
Dr

Ds

)2(
Davg

Ds

)
,

(4.9)

where Davg = (Dr +Ds)/2 is the averaged water depth and θn is the grazing angle

of nth mode at the receiver. From Eqs. (4.8) and (4.9), we obtain an expression for

the waveguide invariant β(r0) in an ideal waveguide with a sloping bottom that

includes up to the first-order terms

1

β(r0)
≈
(
Dr

Ds

)
+

(
Davg

Ds

)(
Dr

Ds

)2

sin2 θn. (4.10)

Besides the water depth at the source and receiver locations, the first-order waveg-

uide invariant β(r0) depends on the grazing angle θn at the receiver. For a range-

independent case (Dr = Ds), the above expression reduces to β = 1/(1+sin2 θn) ≈
cos2 θn for small angles (e.g., sin θ < 0.4), which is the analytic expression for

the waveguide invariant in ideal waveguide suppressing the modal index (β =

cos2 θ) [7]. It should be mentioned that Burenkov [11] also provided a similar

first-order approximation where the factor (Davg/Ds) was missing in the second

term.

To investigate the accuracy of the above approximations, the waveguide

invariant β(r0) is evaluated at 2 km range for an upslope bottom similar to the

RADAR07 and is displayed in Fig. 4.5 as a function of grazing angle (or mode

number). The water depths at the receiver and source location are 87.5 m and 72.5



54

Figure 4.5: (Color online) The waveguide invariant β(r0) evaluated at 2-km
range for an upslope bottom as a function of grazing angle (or mode number). The
water depth at the receiver and source location is 87.5 m and 72.5 m, respectively,
and the bottom critical angle for the RADAR07 environment is about sin θ = 0.4.
The zeroth order approximation (dotted horizontal line) is 24% higher than the
first-order approximation (dashed blue line) at sin θ = 0.5.

m, respectively. While the first-order approximation (dashed line) of Eq. (4.10)

gradually decreases with an increase in the grazing angle (i.e., high-order modes),

it is almost identical to the exact solution of Eq. (4.5) (solid line) up to sin θ = 0.2

and the deviation at sin θ = 0.5 is less than 10%. On the other hand, the zeroth-

order approximation of Eq. (4.8) (dotted horizontal line) has a constant value

of β = 0.83, which is about 24% higher than the first-order approximation at

sin θ = 0.5. Although not shown here, similar results were obtained at other ranges.

The bottom critical angle for the RADAR07 environment was about sin 24◦ = 0.4.

The source-range estimation based on the generalized array invariant is

directly affected by the accuracy of β via Eq. (4.1). The average value of β from

the horizontal up to the critical angle is about 0.78, which is 6% less than the zeroth-

order approximation of 0.83. Thus, the range estimate based on the generalized

array invariant using β = 0.83 is larger than the actual source range. This is
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evident in Fig. 4.4 where the majority of the data indicates an over-prediction in

source-range estimates with a few exceptions at around 5 km ranges.
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5.1 Abstract

The array invariant proposed for robust source localization in shallow water

exploits the beam-time migration of broadband signals. The approach requires

minimal knowledge of the environment, but involves plane wave beamforming using

a short-aperture vertical array in stratified acoustic waveguides. In this paper, the

array invariant approach is extended to a large-aperture vertical array that is sparse

with significant variation of the sound speed across the aperture for conventional

beamforming. The extension is feasible because the array invariant in shallow water

utilizes surface/bottom-reflected arrivals that behave like those in ideal waveguides.

57
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Robust source-range estimation is demonstrated using data from a 16-element, 56-

m long vertical array at various ranges (1.5–3.5 km) from a broadband source

(0.5–2 kHz) in approximately 100-m deep shallow water.

5.2 Introduction

The array invariant [1], denoted by χ, was proposed for robust source-range

estimation in shallow-water environments, which involves conventional plane wave

beamforming using a vertical or horizontal array. The approach is based on the dis-

persion characteristics in ideal waveguides and utilizes multiple arrivals separated

in beam angle and travel time. The benefit of the approach is that no forward

model computations are required, thus avoiding the potential environmental mis-

match inherent in matched-field processing (MFP), especially for source frequen-

cies above 1 kHz [2] [3] [4]. The method was first demonstrated using simulations

and experimental data collected from a towed horizontal array [1]. Despite its ro-

bustness and computational simplicity, the array invariant has not received much

attention.

Recently it was revealed [5] that the array invariant based on the beam-time

migration can be derived directly from the well-known waveguide invariant the-

ory [6]. Specifically, the array invariant is a special case of the waveguide invariant

parameter β = 1, which is not only a canonical value for ideal waveguides from

which the array invariant originated, but is also applicable to many shallow-water

environments involving surface/bottom-interacting ray paths. As a result, the ar-

ray invariant [1] was successfully applied without explicitly invoking the waveguide

invariant. The implication is that the array invariant can be extended to general

waveguides with different values of β, fully supported by the physics of the waveg-

uide invariant. Subsequently, the unified array/waveguide invariant approach to

source-range estimation was demonstrated using a short-aperture vertical array

(12-m) for a broadband source (2–3 kHz) at 6-km range in approximately 100-m

deep shallow water [7].

The array invariant requires broadband signals for multipath separation in
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beam angle and travel time, where the resolution in beam and time depends on

the array aperture, center frequency, and signal bandwidth. An important and

practical question is whether the array invariant approach is applicable to a large

aperture vertical array employed for MFP in stratified acoustic waveguides where

(i) the array is sparse and (ii) the sound speed varies significantly across the ar-

ray aperture for conventional plane wave beamforming. The contribution of this

paper is two-fold. First, the array invariant is reformulated into a generalized ar-

ray invariant that formally incorporates the waveguide invariant in the derivation.

Second, it is demonstrated using experimental data that indeed a sparse verti-

cal array can be utilized for the array invariant-based source-range estimation in

shallow water.

The rest of the paper is organized as follows. Section 5.3 discusses the gen-

eralized array invariant and range estimation, with a detailed derivation provided

in the Appendix. Then a recent shallow water experiment conducted in the north-

eastern East China Sea is briefly described in Sec. 5.4. A representative channel

impulse response (CIR) captured by a vertical array from a modest broadband

source (0.5–2 kHz) is analyzed and compared to a simulated CIR using a nor-

mal mode propagation model. Section 5.5 presents the beam-time migration and

source-range estimation at various ranges (1.5–3.5 km), followed by a summary in

Sec. 5.6.

5.3 Generalized array invariant

The generalized array invariant χ that includes the waveguide invariant β

is derived in the Appendix. From Eq. (5.9), the source range r0 can be estimated

simply from

r0 = −β
(
c

χ

)
, (5.1)

where c is the local sound speed used for beamforming. For an ideal waveguide

with β = 1, this formula reduces to the expression in the array invariant [1].

The array invariant parameter χ should be estimated numerically from the

beam-time migration data [7], e.g., using the least-squares approach described in
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the Appendix. For a vertical array denoted by a subscript v, the measured beam

angle is sv = sin θ with the grazing angle θ defined in Fig. 5.5b, and χv can be

calculated from Eq. (5.8)

χv ≡
d

dt

√
1− s2v. (5.2)

The above equation leads to an elliptic curve in (sv, t) coordinate, as will be illus-

trated in Sec. 5.5 (see Figs. 5.3 and 5.4).

5.4 SAVEX15 Experiment

A Shallow-water Acoustic Variability EXperiment (SAVEX15) was con-

ducted in the northeastern East China Sea during May 2015. The goal of SAVEX15

was to obtain acoustic and environmental data appropriate for studying the cou-

pling of oceanography, acoustics, and underwater communications in the region.

The experimental site had a nearly flat sandy bottom and water depth of approxi-

mately 100 m. Both fixed and towed source transmissions were carried out to two

moored vertical line arrays (VLAs) over ranges of 1–10 km. The acoustic trans-

missions were in various frequency bands covering 0.5 to 32 kHz and included both

channel probing waveforms as well as communication transmissions. Environmen-

tal data included water column sound speed structure, sea surface directional wave

field, and local wind speed and direction.

To examine array invariant-based source-range estimation, a segment of

data is analyzed during a source-tow run conducted on JD 146 (May 26), from

16:40 to 16:55 UTC. The schematic of the source-tow run is illustrated in Fig. 5.1a.

A broadband source (0.5–2 kHz) called SeaNos was deployed to about 50-m depth

and towed by the R/V Onnuri mostly at a speed of 4 knots (2 m/s) along a

specified ship track. The SeaNos source level (SL) was 165 dB re µPa @ 1 m. The

VLA consisted of 16 elements spanning a 56.25-m aperture with 3.75-m element

spacing, covering about half the water column (from 25 to 81 m) in about 100-m

deep water. This work utilizes a 100-ms, 0.5–2 kHz linear frequency modulated

(LFM) chirp channel probe transmitted at various ranges (1.5–3.5 km) from the

VLA.
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Figure 5.1: (Color online) (a) Schematic of a source-tow run on JD 146 (May
26). A 16-element vertical line array (VLA) was moored in 100-m deep water. A
broadband source (0.5–2 kHz) deployed to 50-m depth was towed at a radial speed
of approximately 2 m/s at various ranges (1.5–3.5 km). (b) SSP averaged from
3 CTD profiles collected around JD 146, featuring an asymmetrical underwater
sound channel (USC) with the channel axis at 40 m. The vertical line (dotted)
at 1505 m/s corresponds to the lower edge of the USC. (c) Group slowness (Sg)
versus phase slowness (Sp) curve at the center frequency of 1.25 kHz. The modes
are grouped into two regions depending on the phase speed Vp = 1/Sp: (i) high-
order modes with Vp > 1505 m/s and (ii) low-order modes with Vp < 1505 m/s
(blue circle). The dashed line is an approximate slope of the group (i) modes
associated with the waveguide invariant β = 1.02. The high-order, late-arriving
modes within the slanted ellipse (above the horizontal line) will be exploited for
array invariant-based range estimation in Sec. 5.5.
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A sound speed profile (SSP) averaged from three CTD (conductivity, tem-

perature, and depth) casts conducted before and after the source-tow run is shown

in Fig. 5.1b. Surprisingly, the SSP indicates an underwater sound channel (USC)

that is typical for deep water, although a similar USC is also observed during the

summer in the shallow southern Baltic Sea [8]. The USC is asymmetric with re-

spect to the channel axis at 40 m close to the source depth (50 m), and the sound

speed of 1505 m/s corresponds to the bounding region of the USC (vertical dotted

line). While the maximum sound speed difference between the sound channel and

surface/seafloor amounts to 20 m/s, the variation of the sound speed across the

VLA (Fig. 5.1b) is about 12 m/s. In a companion paper to follow, the USC will

be discussed in more detail.

5.4.1 Measured CIR

The CIR estimated at 2.8-km range using the LFM channel probe is shown

in Fig. 5.2a along the VLA depth after matched-filtering (JD146164500). The

horizontal axis is a relative time of arrival (ms) with the high-intensity arrivals at

around t = 20 ms. The arrival structure appears complicated with many distinct

paths and a delay spread of up to 140 ms. The modest source level (165 dB) is

compensated for by the pulse compression gain of about 22 dB (i.e., the time-

bandwidth-product of the LFM chirp).

To understand the channel characteristics, the group slowness (Sg) versus

phase slowness (Sp) curve corresponding to the SSP in Fig. 5.1b, or equivalently the

group speed (Vg = 1/Sg) versus phase speed (Vp = 1/Sp), is illustrated in Fig. 5.1c

at the carrier frequency of 1.25 kHz. On the horizontal axis, the mode number (or

phase speed) increases from the right towards the left. The modes can be divided

into two groups based on the phase speed Vp: (i) high-order modes (Vp > 1505

m/s) and (ii) low-order modes (Vp < 1505 m/s). For group (i) high-order modes,

the waveguide invariant parameter β is defined by [9]

1

β
= −d(1/Vg)

d(1/Vp)
= −d(Sg)

d(Sp)
. (5.3)

The inverse of the negative slope (dashed line) for group (i) modes in Fig. 5.1c is
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Figure 5.2: (Color online) Channel impulse response (CIR) at 2.8 km range using
the LFM channel probe after matched-filtering (JD146164500): (a) data and (b)
model. The simulated CIR (b) is based on a normal mode propagation model and
the SSP displayed in Fig. 5.1b, assuming a range-independent environment with a
simple half-space bottom. The eight distinct arrivals captured between 30 and 90
ms (indicated by the top arrow) are from the group (i) high-order reflected modes,
which are exploited for source-range estimation based on the array invariant in
Sec. 5.5.

estimated as about β = 1.02, being close to the ideal waveguide of β = 1. Thus

the group (i) modes are surface/bottom-reflected paths that behave like those in

ideal waveguides, which can be exploited for source-range estimation based on the

array invariant [5]. The delay spread of the channel (e.g., 140-ms) is determined

by the group speeds of the lowest and highest modes (along the dashed line in

Fig. 5.1c) contributing to the field.

On the other hand, the low-order modes in group (ii) are refracted (wa-

terborne) paths with a similar group speed (blue circle), whose acoustic energy

is trapped mostly around the channel axis. Within group (ii), high-order modes

propagate faster than do low-order modes with a negative value of β. The high-

intensity arrivals at around t = 20 ms in Fig. 5.2a correspond to the group (ii)

modes with a delay spread of less than 10 ms, which are embedded in the early

reflected arrivals from the group (i) modes along the dashed line, but below the

horizontal line (dash-dot).
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5.4.2 Simulated CIR

For comparison purposes, a model-based CIR is presented in Fig. 5.2b using

a normal mode propagation model, assuming a range-independent environment

with a simple half-space bottom. With the SSP in Fig. 5.1b, the geoacoustic

properties of the sea floor [10] are typical of sand: density ρb = 1.97 g/cm3,

compressional sound speed cb = 1800 m/s, and compressional wave attenuation

αb = 0.94 dB/wavelength. The simulated CIR shows a good agreement with the

data (Fig. 5.2a) in terms of its arrival structure, as will be confirmed in the beam-

time migration presented in Sec. 5.5 (Fig. 5.3). In particular, several pairs of

up and down-going, X-shaped arrivals that are well separated in travel time are

aligned closely with the data counterparts after the high-intensity arrivals up to

t = 90 ms.

There are some notable differences, too. The simulated arrivals in Fig. 5.2b

remain strong vis-a-vis the data counterparts in Fig. 5.2a, which gradually diminish

over time and are barely visible around 100 ms. This can be attributed to the fact

that the higher-order modes of group (i) with steeper propagation angles and slower

group speeds (within the dashed ellipse in Fig. 5.1c) are significantly attenuated

due to the many interactions with rough boundaries, coupled with uncertainties

in the bottom attenuation. In addition, the averaged SSP used for modeling may

not capture the details of the actual SSP present during data collection, which

resulted in some difference in the early strong refracted arrivals from group (ii) at

around t = 20 ms.

5.5 Beam-time migration and range estimation

For source-range estimation, the beam-time migration (sv, t) is presented

in Fig. 5.3 (gray scale): (a) data and (b) model, each corresponding to Fig. 5.2,

respectively. The vertical axis represents the beam angle sv = sin θ with a positive

value defined for an up-going path (e.g., red circles), and the horizontal axis is the

relative travel time t (ms). The VLA is positioned around the channel axis with

significant variation of the sound speed up to 12 m/s (refer to Fig. 5.1b) and thus
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Figure 5.3: (Color online) Beam-time migration at 2.8 km range: (a) data and
(b) model, each corresponding to Fig. 5.2. A positive beam angle represents an
up-going ray path (e.g., red circles) and the dynamic range is 20 dB, showing an
excellent agreement between data and model. The high-intensity arrivals around
t = 20 ms are from refracted low-order modes with low grazing angles that are
confined to the broadside (e.g., | sin θ| < 0.1), whereas the similar structure ap-
pearing on both sides at higher angles (| sin θ| > 0.2) is due to spatial aliasing. The
eight reflected arrivals from group (i), marked by circles and squares between 30
and 90 ms, constitute an elliptic curve (solid line) from which the array invariant
parameter χv can be obtained for source-range estimation. There are additional
early reflected arrivals detected around t = 20 ms (dotted circles) that are not used
for the array invariant-based range estimation. The estimated source range is 3.2
km with a 15% relative error for (a) data and 3.0 km with a 7% relative error for
(b) model.

an averaged sound speed of c = 1500 m/s is used for plane-wave beamforming.

Although the design frequency for the VLA is 200 Hz with the element spacing of

3.75 m, the spatial aliasing in beam angle (i.e., grating lobes) is expected to be

mitigated over the broad frequency band (0.5–2 kHz) [11]. The dynamic range is

20 dB.

A few interesting observations can be made. First, there is an excellent

agreement between the data and model in Fig. 5.3, indicating that modeling can

be used as a powerful tool for simulations and analysis despite some uncertainties

in the environment. Second, the early high-intensity arrivals around t = 20 ms

are spread around the broadside (i.e., |sv| < 0.1), which are from the group (ii)
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Figure 5.4: (Color online) Same as Fig. 5.3 but for other ranges using data: (a)
1.5 km (JD146165500) and (b) 3.5 km (JD14616400). The structure is similar to
Fig. 5.3, and a different number of reflected arrivals (circles and squares) is used
for the array invariant analysis. The estimated source range is 1.6 km with a 6%
relative error for (a) and 4.1 km with a 17% relative error for (b) (see Table 5.1).

refracted low-order modes with smaller grazing angles (blue curve in Fig. 5.1c).

The similar, less-intense (e.g., 7 dB below) structure appearing on both sides at

higher angles (|sv| > 0.2) is due to spatial aliasing with the sparse VLA. Third,

many reflected arrivals at higher angles (0.1 < |sv| < 0.3) are visible, albeit weak,

marked by circles and squares. For array invariant-based range estimation, a total

of eight distinct arrivals of up- (circles) and down-going (squares) rays captured

between 30 and 90 ms will be utilized, as depicted in Fig. 5.2 (top arrow).

Finally, an elliptic curve (solid line) corresponding to Eq. (5.2) that best

fits the eight reflected arrivals (circles and squares) in the least-squares sense is

obtained with an appropriate array invariant parameter χv, enabling the source-

range estimation based on Eq. (5.1). Note that the distinct arrivals in Fig. 5.3a

(data) are a little offset from the elliptic curve by approximately 0.7◦ likely due to

an array tilt, which is neglected in this paper. However, the impact of array tilt on

the array invariant is analyzed in a separate paper. For the source at 2.8-km range

in Fig. 5.3, the estimated source range is 3.2 km with a relative error of 15% for (a)

data and 3.0 km with a relative error of 7% for (b) model, respectively. Similarly,

the beam-time migration for two other source ranges is presented in Fig. 5.4 using
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experimental data: (a) 1.5 km (JD146165500) and (b) 3.5 km (JD14616400). The

beam-time migration structure is similar to Fig. 5.3, and a different number of

reflected arrivals (circles and squares) is selected for the array invariant analysis.

The estimated source range is 1.6 km with a 6% relative error for (a) and 4.1 km

with a 17% relative error for (b), which are summarized in Table 5.1.

Table 5.1: Source-range estimation from beam-time migration of the SAVEX15
data at various ranges using β = 1.

Source range Estimated range Relative range error Beam-time migration

1.5 km 1.6 km 6% Fig. 5.4a

2.8 km 3.2 km 15% Fig. 5.3a

3.5 km 4.1 km 17% Fig. 5.4b

5.6 Summary

The array invariant approach for robust source-range estimation in shal-

low water utilizes multiple arrivals separated in beam angle and travel time, which

behave like those in ideal waveguides. While the approach requires minimal knowl-

edge of the environment, it involves plane wave beamforming using a short-aperture

vertical array in stratified acoustic waveguides. In this work, the array invariant

approach was extended to a large-aperture vertical array that was sparse with

significant variation of the sound speed across the aperture for conventional beam-

forming. Robust source-range estimation was confirmed using experimental data

from a 16-element, 56-m long vertical array at various ranges (1.5–3.5 km) from a

broadband source (0.5–2 kHz) in approximately 100-m deep shallow water.

5.7 Appendix: Generalized array invariant

The array invariant proposed by Lee and Makris [1] is revisited to formally

connect the array invariant and waveguide invariant such that the waveguide invari-

ant parameter β is embedded in the array invariant χ, referred to as a generalized
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Figure 5.5: The geometry of two arrays (thick lines): (a) endfire horizontal array
and (b) vertical array. θ is the grazing angle of each ray/mode arrival. In general,
the horizontal array will have an azimuth angle φ0 in the horizontal plane from
the source (i.e., source bearing) while φ0 = π/2 corresponds to the endfire array
in (a).

array invariant. Two common arrays in acoustic waveguides are considered: (a)

horizontal and (b) vertical, as depicted in Fig. 5.5. The horizontal array is aligned

with a source (i.e., endfire) that can be easily extended to the case with an azimuth

angle φ0 in the horizontal plane [5].

5.7.1 Horizontal array

Consider an ideal waveguide with the water depth of 100 m and the sound

speed of c = 1500 m/s, whose dispersion characteristics are illustrated in Fig. 5.6a.

The modal group speed Vg,n is related to the modal propagation angle θn defined

as a grazing angle in Fig. 5.5a

Vg = c cos θ. (5.4)

This equation is the basic building block of the array invariant approach where the

mode number n is dropped for convenience [1].

The group speed Vg is simply replaced with the source range r0 divided by

the travel time t, i.e., Vg = r0/t, whereas cos θ is the beam angle measured by a

horizontal array, denoted by sh. Then we have

sh ≡ cos θ =
Vg
c

=
(r0
c

) 1

t
. (5.5)
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For a given source range r0 and sound speed c, the beam angle sh and the travel

time t are inversely proportional in (sh, t) coordinate, as shown in Fig. 5.6b.

The horizontal array invariant parameter χh is defined as the derivative of

the horizontal beam angle sh with respect to the travel time t, i.e., the slope in

(sh, t) coordinate

χh ≡
dsh
dt

= −
(r0
c

) 1

t2
= −

(
c

r0

)
cos2 θ, (5.6)

where t = r0/(c cos θ) from Eq. (5.5) is substituted. In general, χh (or slope) varies

depending on the grazing angle θ (or mode), as evident in Fig. 5.6b. By constrain-

ing the range of the grazing angle, however, χh can be treated as approximately

constant or invariant over those modes or angles.

The analytical expression for the waveguide invariant in ideal waveguides

is β = cos2 θ [9]. Then the array invariant parameter χh in Eq. (5.6) reveals the

waveguide invariant parameter β, formally connecting the two invariants

χh = −
(
c

r0

)
β. (5.7)

Previously the above relationship was derived from the waveguide invariant theory

where the array invariant was a special case of β = 1 [5]. Here, the array invariant is

transformed to a generalized array invariant that contains the waveguide invariant

parameter β, closing the loop. On the flip side, the analytic expression for the

waveguide invariant in ideal waveguides is derived indirectly, β = cos2 θ. For low-

order modes with small grazing angles (i.e., θ < 20◦), β ≈ 1 and thus χh ≈ −(c/r0),

which is applicable to many shallow-water environments where surface/bottom

reflected paths are captured [7] [9].

When the horizontal array is not in the endfire with an azimuth angle of

φ0 in the horizontal plane from the source, the process of rotating the horizontal

array to the endfire is equivalent to replacing the local sound speed c with a virtual

sound speed, (c sinφ0). The endfire horizontal array corresponds to φ0 = π/2.

5.7.2 Vertical array

The only difference between a vertical and a horizontal (endfire) array is

the beam angle measured by the respective array. For a vertical array depicted
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Figure 5.6: (a) Group speed Vg and propagation angle θ as a function of fre-
quency in an ideal waveguide. The water depth and the sound speed are 100 m
and 1500 m/s, respectively. The first 5 modes are displayed starting from the left.
(b) The beam-time migration curve as a function of reduced travel time (t− r0/c)
and array beam angle sh = cos θ when the source azimuth angle φ0 = π/2 and the
source range r0 = 2 km.

in Fig. 5.5b, the measured beam angle is sin θ, denoted by sv = sin θ. While the

vertical array invariant parameter χv is defined in (sv, t) domain, it provides the

same result as χh in Eq. (5.6)

χv ≡
d

dt
(cos θ) ≡ d

dt

√
1− s2v = −

(
c

r0

)
cos2 θ = −

(
c

r0

)
β. (5.8)

The array invariant parameter χv can be evaluated numerically from the beam-

time migration in (sv, t) coordinate, which satisfies an elliptic equation [5]. On the

other hand, the horizontal array invariant parameter χh is deduced from the beam-

time migration in (sh, t) coordinate, which is linear. Once χv or χh is calculated

from beam-time migration data, the source range r0 can be simply estimated from

r0 = −β
(
c

χ

)
. (5.9)

For stratified waveguides, the local sound speed c can be replaced by an average

sound speed across the array aperture for plane wave beamforming.
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5.7.3 A least-squares estimate of χv

The array invariant parameter χv in Eq. (5.8) can be estimated as follows:

(a) find peaks above a threshold (e.g., −10 dB) in (sv, t) domain, (b) cluster the

peaks with similar arrival times while the clusters are separated when the minimal

time difference between them is larger than a specified time-interval (e.g., 1-ms),

and (c) identify the maximum peak in each cluster, {smax(t1), · · · , smax(tN)}. This

process can be done automatically for various choices of the parameters (threshold

and time-interval).

A least-squares estimate of χ̂v then can be obtained from Eq. (5.8) approx-

imated by
√

1− s2v = χvt+ dv, with dv being a constant intercept [1]:

[χ̂v dv]
T = (T TT )−1T TS, (5.10)

where S = [(1− smax(t1))1/2, (1− smax(t2))1/2, · · · , (1− smax(tN))1/2]T , T =

[(t1, t2, · · · , tN)T1T ], and 1 is an 1×N vector given by 1 = [1, 1, · · · , 1].

Acknowledgment

This research was supported by the US Office of Naval Research.

Chapter 5, in full, is a reprint of the material as it appears in the Journal of

Acoustical Society of Americas: H.C. Song and Chomgun Cho, “Array invariant-

based source localization in shallow water using a sparse vertical array,” J. Acoust.

Soc. Am, 141 (1), 183-188, 2017. The dissertation author was a primary investi-

gator and author of this material.

Bibliography

[1] S. Lee and N. C. Makris, “The array invariant”, J. Acoust. Soc. Am. 119,
336–351 (2006).

[2] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, “An overview of
matched field methods in ocean acoustics”, IEEE J. Oceanic Eng. 18, 401–424
(1993).



72

[3] P. Hursky, M. Porter, M. Siderius, and V. McDonald, “High-frequency (8-16
kHz) model-based source localization”, J. Acoust. Soc. Am. 115, 3021–3032
(2004).

[4] B. M. Worthmann, H. C. Song, and D. R. Dowling, “High-frequency source lo-
calization in a shallow water sound channel using frequency difference matched
field processing”, J. Acoust. Soc. Am. 138, 3549–3562 (2004).

[5] H. C. Song and C. Cho, “The relation between the waveguide invariant and
array invariant”, J. Acoust. Soc. Am. 138, 899–903 (2015).

[6] S. D. Chuprov, “Interference structure of a sound field in a layered ocean”,
in Acoustics of the Ocean, 71–91 (Nauka, Moscow) (1982), edited by L. M.
Breakhovskikh and I. B. Andreevoi.

[7] C. Cho, H. C. Song, and W. S. Hodgkiss, “Robust source-range estimation
using the array/waveguide invariant and a vertical array”, J. Acoust. Soc.
Am. 139, 63–69 (2016).

[8] G. Grelowska, “Prevaling patterns of the sound speed distributions in the
environment of the southern Baltic”, Archives of acoustics 25, 359–368 (2000).

[9] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational
Ocean Acoustics (Springer, New York) (2011). Chs. 3 and 5.

[10] W. Ryang, S. Kim, S. Kim, and D.-C. Kim, “Geoacoustic model of the trans-
verse acoustic variability experiment area in the northern East China Sea”,
Geosciences Journal 17, 267–278 (2013).

[11] J. Dmochowski, J. Benesty, and S. Affes, “On spatial aliasing in microphone
arrays”, IEEE Trans. Signal Process. 57, 1383–1395 (2009).



Chapter 6

Impact of array tilt on

source-range estimation in shallow

water using the array invariant

Authors:

Chomgun Cho

H.C. Song

6.1 Abstract

The array invariant proposed for robust source-range estimation in shallow

water is based on the dispersion characteristics in ideal waveguides for broadband

signals. With minimal knowledge of the environment, the approach involves plane-

wave beamforming using a vertical array, utilizing multiple arrivals (i.e., eigenrays)

separated in beam angle and travel time. In the presence of array tilt, however, the

beam angle estimates are shifted, which potentially affects the range estimation

based on the array invariant. Conversely, the array tilt could be estimated for

a known source range. In this paper, the sensitivity to array tilt is analyzed

theoretically and examined using simulations and data. It is found that even a

73
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small tilt angle (e.g., < 2◦) of a 1.2-m long vertical array near the surface, if not

compensated for, can result in a relative range error of 20% or more, for a high-

frequency source (7–19 kHz) at 3-km range in approximately 100-m deep shallow

water. Moreover, the power spectrum of the time-evolving array tilt estimated for

9 min shows a dominant period of 5.6 s, which is consistent with the surface wave

period concurrently measured from a waverider buoy.

6.2 Introduction

Since first introduced by Bucker in 1976 [1], matched field processing (MFP)

has been extensively studied for passive source localization in oceanic waveguides

typically using a vertical array [2–4]. MFP is a generalization of plane-wave beam-

forming wherein the “steering vectors,” or replicas, are not plane waves but solu-

tions of the wave equation (i.e., Green’s function) descriptive of the ocean environ-

ment at array elements for all possible source locations [3]. This computationally

intensive array processing requires accurate knowledge of the environment in order

to exploit the unique spatial structure of the field (i.e., complexity) for source local-

ization (range and depth). The localization resolution and uniqueness (ambiguity)

depend upon the waveguide and the source frequency, and the localization per-

formance depends on spatial sampling that improves with a large aperture array

and an appropriate element spacing. The main drawback of MFP is its sensitiv-

ity to mismatch in the acoustic environment (sound speed, bottom attenuation,

etc.) and/or geometry (e.g., array position and tilt), and variants of MFP have

been developed for robustness since its introduction, including a recent frequency-

difference MFP [5]. For broadband signals, MFP can be applied at each Fourier

component and then incoherently averaged across the frequency band. In practice,

MFP has been successful mostly at low frequencies below 1 kHz [4].

On the other hand, the array invariant [6], denoted by χ, has been proposed

for robust source-range estimation in shallow-water environments. The approach is

based on the dispersion characteristics in ideal waveguides for broadband signals.

In a complete reversal to MFP, this approach involves plane-wave beamforming,
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utilizing coherent multiple arrivals (i.e., eigenrays) separated in beam angle and

travel time, referred to as “beam-time migration” (e.g., Fig. 6.1b). The resolution

of the beam angle and travel time depends on the array aperture, center frequency,

and signal bandwidth. The source-range information is contained in the beam-

time migration pattern, either linear for a horizontal array or elliptic for a vertical

array [7]. With no forward model computations required, the approach is robust

and efficient, especially in the high-frequency regime (e.g., > 1 kHz) where MFP

performs poorly with a lack of robustness to environmental mismatch. The method

was first demonstrated using simulations and experimental data collected from a

towed horizontal array [6].

Recently it was revealed [7] that the array invariant can be derived directly

from the well-known waveguide invariant theory [8–11] in the beam-time coordi-

nate. Specifically, the array invariant is a special case of the waveguide invariant

corresponding to β = 1. This value is not only a canonical value for ideal waveg-

uides from which the array invariant originated, but it is also applicable to many

shallow-water environments involving surface/bottom-interacting ray paths [4,12].

As a result, the array invariant [6] was successfully applied without explicitly in-

voking the waveguide invariant. The implication is that the array invariant can be

extended to general waveguides with different values of β, including mildly range-

dependent environments, and is fully supported by the physics of the waveguide

invariant. Subsequently, the unified array/waveguide invariant approach to source-

range estimation was demonstrated using a short-aperture vertical array (12-m)

moored near the seafloor and a broadband source (2–3 kHz) at 6-km range in

approximately 100-m deep shallow water [13].

Despite the robustness and computational simplicity, the array invariant

approach has a potential weakness. The array invariant relies entirely on plane-

wave beamforming to estimate the beam angles under the assumption that the

vertical array involved is vertical. In the presence of array tilt, however, the esti-

mated beam angles are shifted, which in turn will affect the beam-time migration

and ultimately the source-range estimation. On the other hand, the array tilt angle

could be estimated inversely for a known source range. The objective of this paper
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is to investigate the impact of array tilt on the array invariant and range estima-

tion using both simulations and data collected in a shallow-water environment. In

this paper, the array tilt will be confined to a two-dimensional plane containing

the source and receiver.

The paper combines results from theoretical analysis, simulated data anal-

ysis, and experimental data analysis. In Sec. 6.3, a modified array invariant is

derived that accounts for the array tilt. Section 6.4 begins with a description of

a shallow-water experiment where a 1.2-m long vertical array deployed near the

surface was used to measure the channel impulse response (CIR) from a moored

broadband source (7–19 kHz) at 3-km range in approximately 100-m deep water. A

geometric ray model is employed to identify several distinct ray paths (eigenrays),

which are displayed in the arrival angle and (relative) travel time domain. Then

plane-wave beamforming is applied to simulated data generated by a normal mode

propagation model, providing a theoretical beam-time migration. Section 6.5 ana-

lyzes the beam-time migration of experiment data without compensation for array

tilt, and its impact on range estimation. Finally, the power spectrum of a time-

varying array tilt over one minute is presented to confirm the correlation between

the array tilt and surface wave movement, followed by a summary in Sec. 6.6.

6.3 Array invariant with array tilt

For a general acoustic waveguide with the waveguide invariant parameter

β, the source range r0 based on the array invariant parameter χ is estimated using

r0 = −β
(
c

χ

)
, (6.1)

where c is the local sound speed. For an ideal waveguide with β = 1, this formula

reduces to the expression in the array invariant [11, 13].

The array invariant parameter χ should be estimated numerically from the

beam-time migration. For a vertical array of interest, χ0 with no array tilt is

defined as

χ0 ≡
d

dt
(cos θ) =

d

dt

√
1− sin2 θ, (6.2)
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Figure 6.1: (Color online) (a) Coordinate system including a vertical line array
and a point source at range r0. A positive grazing angle of θ is assigned to an up-
going ray path, and the tilt angle ∆θ is defined as positive for counter-clockwise
rotation in the source-receiver plane. (b) An ideal beam-time migration for a
shallow-water environment corresponding to the KAM11 experiment in Sec. 6.4.
The migration curve passing through the distinct arrivals (dots) is elliptic for a
vertical array.

where sin θ is the beam angle measured by a vertical array with the grazing angle

θ defined in Fig. 6.1a. A positive θ is assigned to an up-going ray path. The above

equation leads to an elliptic curve in (t, sin θ) coordinate or approximately in (t, θ)

coordinate for small grazing angles (e.g., |θ| < 10◦) [7], which is a reasonable

assumption for a far-field source. An ideal beam-time migration is illustrated in

Fig. 6.1b for a shallow-water environment corresponding to the KAM11 experiment

described in Sec. 6.4.

In theory, χ0 can be calculated from a pair of distinct arrivals in the beam-

time domain, (t1, θ1) and (t2, θ2):

χ0 =
1

t2 − t1

(√
1− sin2 θ2 −

√
1− sin2 θ1

)
∼=

1

2∆t1,2
(sin2 θ1 − sin2 θ2), (6.3)

where ∆t1,2 , t2 − t1 and the beam angles are assumed small (e.g., | sin θ| < 0.2).

For typical shallow-water environments with a positive β, |θ1| < |θ2| for t1 < t2.

When there are multiple arrivals available, χ0 can be estimated using the least-

squares approach [13].
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6.3.1 Tilted array invariant

In the presence of array tilt, ∆θ, the arrival angles after plane-wave beam-

forming are shifted by the same amount, and instead we obtain a tilted array

invariant parameter χt

χt ≡
d

dt
(cos(θ + ∆θ)) ∼=

1

2∆t1,2

(
sin2(θ1 + ∆θ)− sin2(θ2 + ∆θ)

)
, (6.4)

from a pair of shifted arrivals, (t1, θ
′
1 = θ1 + ∆θ) and (t2, θ

′
2 = θ2 + ∆θ). A positive

tilt angle ∆θ is assigned to counter-clockwise rotation in Fig. 6.1a. Applying a

Taylor series expansion of Eq. (6.4) to the first order around zero for θ1, θ2, and

∆θ [14], i.e., a small angle approximation, we can represent χt as a sum of two

terms including χ0:

χt ∼=
1

2∆t1,2
(sin2 θ1 − sin2 θ2) +

sin ∆θ

∆t1,2
(sin θ1 − sin θ2) = χ0 + ∆χ. (6.5)

The additional second term ∆χ is due to the array tilt, which vanishes when

∆θ = 0. If the tilt angle ∆θ is available (i.e., measured), we can recover χ0 from

Eq. (6.5), and the source range can be estimated correctly using Eq. (6.1).

The impact of array tilt on the range estimation error can be described by

the change in the array invariant parameter ∆χ from Eqs. (6.1) and (6.5) such

that
rt − r0
r0

=

(
rt
r0

)
− 1 =

(
χ0

χt

)
− 1 = −χt − χ0

χt
= −∆χ

χt
, (6.6)

where rt denotes the range estimate in the presence of an array tilt. For a pair

of arrivals, the relative range error will be affected by both the angle of arrivals

(θ1, θ2) and tilt angle ∆θ.

6.3.2 Estimation of array tilt

For a known source range r0, the array tilt angle ∆θ can be inversely esti-

mated from the shifted beam-time migration. Using Eqs. (6.1) and (6.5), the tilt

angle ∆θ1,2 is derived for a pair of angle-shifted arrivals, (t1, θ
′
1 = θ1 + ∆θ) and

(t2, θ
′
2 = θ2 + ∆θ):

∆θ1,2 = sin−1
(

(βc/r0)∆t1,2
sin(θ′1)− sin(θ′2)

+
sin(θ′1) + sin(θ′2)

2

)
. (6.7)
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In shallow-water environments, the surface/bottom reflected arrivals are exploited

for the array invariant [13], which behave like those in ideal waveguides. Thus, we

can simply use β = 1 and c = 1500 m/s in Eq. (6.7) with minimal knowledge of

the environment.

When there are more than two arrivals (i.e., N > 2), the array tilt angle

can be estimated by averaging all possible combinations of pairs, i.e., NC2:

∆θ =
2

N(N − 1)

N−1∑
n=1

N∑
m>n

∆θn,m. (6.8)

6.4 KAM11 experiment

The Kauai Acomms MURI 2011 (KAM11) experiment was conducted in

shallow water off the western side of Kauai, Hawaii, in the summer of 2011 [15].

The goal of KAM11 was to collect acoustic and environmental data appropriate for

studying the coupling of oceanography, acoustics, and underwater communications.

A number of acoustic sources and receivers were deployed along the approximately

100-m deep isobath. The acoustic transmissions were in three bands covering 3.5 to

35 kHz, which included both channel probing waveforms as well as communication

transmissions. Environmental data collected included water-column sound-speed

profiles (SSPs) using CTDs (conductivity, temperature, and depth) and thermistor

strings, sea surface directional wave field from a waverider buoy, and local wind

speed and direction from the R/V Kilo Moana. The acoustic environment was

downward refracting with the mixed layer depth varying between 20 m to 60 m.

Figure 6.2 shows the wind speed and direction along with waverider-derived

sea surface wave spectrum during the first deployment of the waverider buoy, from

June 24 (JD 175) to July 1 (JD 182). The wind speed and sea surface conditions

exhibited a daily pattern, similar to the substantial daily oceanographic variability

in the region. The peak surface wave direction in Fig. 6.2c was northeastern (about

45◦) almost parallel to the 100-m isobath (i.e., acoustic transmission path). The

dominant surface wave period (ocean swell, red curve) in Fig. 6.2d was about 4–6

s, with the corresponding wavelength (λ) of 25–55 m.

For the array invariant analysis in conjunction with array tilt, we focus on
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Figure 6.2: (Color online) KAM11 environmental data: (a) wind speed and
direction, (b) sea surface wave spectrum, (c) peak surface wave direction, and (d)
significant wave height and wave period. The data were collected during the first
deployment of the waverider buoy, from June 24 (JD 175) to July 1 (JD 182),
and (a) was collected from the R/V Kilo Moana. The wind speed and sea surface
conditions exhibited a daily pattern, similar to the daily oceanographic variability
in the area. The horizontal line with the red arrow on panel (d) indicates the
sea surface condition corresponding to the time period (i.e., 20:55 UTC) when the
acoustic data analyzed in Sec. 6.5 were transmitted. Specifically, the surface wave
period in (d) (red curve) was about 5.5 s. Local time is 10-hour earlier than UTC,
i.e., UTC = Local time + 10 hours.

the acoustic transmissions carried out on June 25 (JD 176) with the schematic

shown in Fig. 6.3a. The source on the right side, called WHOI-Tx1, was actually a

4-element source array with 0.5-m element spacing, whose center depth was about

15 m. Since the elements are closely spaced and the array invariant is to estimate

the source range without knowledge of the source depth (i.e., source depth-blind),

the short-aperture source array is represented by a single source moored at 15-m
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Figure 6.3: (Color online) (a) Schematic of KAM11 experiment (JD 176). The
source at approximately 15-m depth (WHOI-Tx1) represents a short-aperture, 4-
element source array with inter-element spacing of 0.5-m. The transmitted signal
was 48-ms long, 9–17 kHz LFM chirp waveforms every 96 ms for 9 min. The re-
ceiver (WHOI-Rx1) was a 1.2-m long, 24-element vertical array with 5-cm element
spacing, with all the elements embedded in polyurethane forming a single line ar-
ray. The short vertical array with no inclinometer was moored at 3-km range and
about 16-m depth. The 32′′ subsurface float (orange ball) above the array at about
10-m depth was intended to keep the vertical array straight, but it was subject to
horizontal movement due to its proximity to the ocean surface, resulting in the ar-
ray tilt. (b) Sound speed profile measured from a CTD cast (19:22:14 UTC) about
an hour prior to the source transmissions. (c) A representative channel impulse
response (CIR) along the receiver depth after matched-filtering (20:51:13 UTC).
The dynamic range is 20 dB.
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depth in Fig. 6.3a. The source (WHOI-Tx1) transmitted 48-ms, 9–17 kHz linear

frequency modulation (LFM) chirp waveforms, every 96 ms for 9 min. The receiver

approximately at 3-km range from the source, called WHOI-Rx1, was a 1.2-m

long, 24-element vertical array with 5-cm element spacing, with all the elements

embedded in polyurethane forming a single line array, tilted or not. The short

vertical array (WHOI-Rx1) was deployed to 15.6-m depth with a 32′′ subsurface

float (orange ball) above the array at about 10-m depth. The float was intended

to keep the vertical array straight with enough buoyancy, but its proximity to the

ocean surface (i.e., < λ/2, λ is a surface wavelength, e.g., λ = 40 m) subjected

it to horizontal movement, thus resulting in the array tilt. Unfortunately, no

inclinometer was attached to the receiver array to monitor the array tilt during

the deployment. The array invariant with a known source range, however, provides

an opportunity to inversely estimate the array tilt angle over the duration of 9 min,

as will be presented in Sec. 6.5.

A representative channel impulse response (CIR) is displayed in Fig. 6.3c

after matched-filtering (20:51:13 UTC). The horizontal axis is delay time in mil-

liseconds and the vertical axis is depth in meters. There appear three separate

groups of arrivals spread over 30 ms: (i) early, strong arrivals around t = 0, (ii)

intermediate, several distinct arrivals packed over 5 ms (5 < t < 10 ms), and

(iii) later, weak, diffused arrivals (t > 15 ms). Plane-wave beamforming using the

vertical array (WHOI-Rx1) will translate the data into a beam-time migration in

Sec. 6.5 (see Fig. 6.5b).

6.4.1 Acoustic propagation with ray tracing

To understand the arrival structure, a geometric ray-tracing model [16] is

applied with the sound speed profile shown in Fig. 6.3b, which was measured from a

CTD cast (19:22:14 UTC) about an hour prior to the source transmissions. After

a slight increase from the surface down to 30 m (i.e., upward-refracting surface

channel), the sound speed tends to decrease toward the bottom, i.e., downward

refracting. Nevertheless, the sound speed variation in the water column is minimal

with less than 2 m/s, and the local sound speed around the receiver depth (16 m)
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is 1535.4 m/s.

Figure 6.4: (Color online) (a) Ray path diagram, showing the first six paths
(eigenrays) for the source/receiver geometry depicted in Fig. 6.3a. (b) Correspond-
ing six eigenrays (color-matched) are displayed in terms of the arrival angle (sin θ)
and delay time (t), similar to a beam-time migration. The arrivals, in order from
left to right with the number increasing ( 1©– 6©), are labeled as S (surface bounce,
red), D (direct, green), B (bottom bounce, blue), SB (surface-bottom, cyan), BS
(bottom-surface, magenta), and SBS (surface-bottom-surface, black). Note that
S and D both are trapped in the surface channel, arriving almost simultaneously
around t = 0 with the angle of arrivals being close to the horizontal (sin θ ≈ 0).

Assuming a range-independent environment with a flat surface and bottom,

a ray path diagram is illustrated in Fig. 6.4a for the source/receiver geometry

depicted in Fig. 6.3a. The first six arrivals (eigenrays) are presented in Fig. 6.4b in

terms of the arrival angle and delay time with respect to the first arrival at t = 0,

equivalent to a beam-time migration. The arrivals, in order from left to right with

the number increasing ( 1©– 6©), are labeled as S (surface bounce, red), D (direct,

green), B (bottom bounce, blue), SB (surface-bottom, cyan), BS (bottom-surface,

magenta), and SBS (surface-bottom-surface, black).

Notably, S and D both are trapped in the surface channel (down to 30

m depth), arriving almost simultaneously around t = 0 with the angle of arrivals

being close to the horizontal (sin θ ≈ 0). The two arrivals often merge into one that

usually becomes the strongest one due to minimal interactions with boundaries,

corresponding to the first group (i) shown in Fig. 6.3c. As a result, the angle of
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the early high-intensity arrivals is an indication of array tilt, providing an initial

estimate of the tilt angle when it occurs. Subsequently followed are four distinct

arrivals between 3–6 ms consisting of two up-going (B and SB) and then two down-

going paths (BS and SBS), which correspond to the intermediate group (ii) between

5–8 ms in Fig. 6.3c. The 2-ms difference in delay time between the model and the

data is likely due to the uncertainty in sound speed and water depth between the

source and receiver.

Figure 6.5: (Color online) Beam-time migration. (a) Simulation with no array
tilt. A total of nine arrivals are identified, consisting of five down-going paths
(blue dots) and four up-going paths (red dots). For the source range of r0 = 3
km and using a generic value of β = 1 and c = 1500 m/s, the expected migration
(dashed line) is derived and superimposed, which passes through the nine distinct
arrivals. (b) KAM11 data corresponding to Fig. 6.3c (20:51:13 UTC). Similar to
(a), the angle of the first arrival at t = 0 (blue dot) is almost horizontal, thus
indicating no array tilt. While the up-going ray paths (red dots) remain close to
or on the expected migration curve (dashed), the down-going ray paths (blue dots)
excluding the first arrival 1© are significantly off from the migration curve, which
is likely due to the interaction with dynamic ocean surface waves prior to reaching
the array.

6.4.2 Beam-time migration with normal mode

For simulations of beam-time migration, a normal mode propagation model

[17] is used to generate the acoustic field along the receiver aperture. In addition
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to the sound speed profile within the water column (Fig. 6.3b), the geo-acoustic

parameters in the areas [18] are assumed typical of sand: density = 1900 kg/m3,

compressional sound speed = 1650 m/s, and compressional wave attenuation =

0.8 dB/wavelength. The broadband source signal is a 48-ms, 9–17 kHz LFM

chirp waveform. The beam-time migration with no array tilt is obtained after

conventional plane-wave beamforming with no spatial window applied, followed

by matched filtering for pulse compression.

The beam-time migration for the simulated data is shown in Fig. 6.5a with

a 20-dB dynamic range in gray scale. A total of nine distinct arrivals (eigenrays)

within 22 ms are identified from the peaks which occur approximately at mid-

points in the angle direction, and they consist of five down-going paths (blue dots)

and four up-going paths (red dots). The arrival structure up to 7 ms is similar to

Fig. 6.4b based on a ray model, except that the first group of arrivals are merged

into a single, near-horizontal, strong one around t = 0. Using the nine distinct

arrivals and least-square approach [13], the array invariant parameter is estimated

at χ0 = −0.5065 with no array tilt. The corresponding source-range estimate is

then r̂0 = 2.96 km with a −1.3% relative error. Assuming an ideal waveguide (β

= 1 and c = 1500 m/s), the expected migration curve for the source range of 3

km (dashed line) is derived and superimposed in Fig. 6.5a, which passes through

all nine distinct arrivals.

6.5 Experimental results

In this section, we analyze the beam-time migration for the KAM11 data

collected over 9 minutes (20:51–20:59 UTC) on JD 176 (June 25), with the schematic

shown in Fig. 6.3a. Recall that the subsurface buoy (orange ball) above the array

at about 10-m depth was to keep the vertical array straight with sufficient buoy-

ancy. Due to its proximity to the ocean surface, however, the buoy moved in the

horizontal direction, which dragged the array and resulted in the array tilt. No

inclinometer was attached to the receiver array to measure the tilt angle. There-

fore, we will use the first arrival with maximum intensity as an initial estimate
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of the array tilt, and then apply the array invariant method to estimate the tilt

angle more precisely for the known source range. Since the dominant surface wave

direction (i.e., ocean swell) was almost parallel to the acoustic transmission path,

the motion of the buoy induced by the wave is also expected to be parallel to the

acoustic transmission path. Hence, the estimated tilt angle is considered the actual

tilt angle of the vertical array.

To investigate the impact of array tilt on source-range estimation, three

representative examples are analyzed: no array tilt (20:51:13 UTC, Fig. 6.5b),

counter-clockwise tilt (20:51:06 UTC, Fig. 6.6a), and clockwise tilt (20:57:55 UTC,

Fig. 6.6b), respectively. Then we will examine the temporal variation of the array

tilt to validate the connection between the array tilt and surface wave movement.

6.5.1 No array tilt

The first example is presented in Fig. 6.5b where seven distinct arrivals

are selected consisting of four down-going (blue dots) and three up-going paths

(red dots), with the first five arrivals denoted by circled numbers ( 1©– 5©). The

first arrival at t = 0 (blue dot, 1©) is the strongest and almost horizontal, thus

indicating a minimal array tilt. The overall arrival structure up to 10 ms is similar

to the simulation result shown in Fig. 6.5a. However, the second group of arrivals

( 2©– 5©) are delayed about 2 ms as discussed in Sec. 6.4.1, and the third and fourth

arrivals are reversed in time. For the known source range of r0 = 3 km and a

generic value of β = 1 and c = 1500 m/s, the expected migration curve (dashed

line) is elliptic and symmetric with respect to the travel time. Interestingly, the

up-going ray paths (red dots) remain close to or on the migration curve (dashed),

whereas the down-going ray paths (blue dots) excluding the first arrival 1© are

significantly off from the migration curve. The deviation of the down-going paths

(blue dots) may be due to the interaction with the dynamic ocean surface waves

prior to reaching the receiver array.

For array invariant-based source-range estimation with no array tilt, we

tested with three different sets of distinct arrivals: (i) three up-going (red dots)

plus the first arrival (blue dot, 1©), (ii) four down-going (blue dots), and (iii) all
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seven arrivals (red and blue dots). Not surprisingly, case (i) that closely follows the

migration curve provides the best estimate of r̂0 = 2.86 km with a −5% relative

error. On the other hand, case (ii) leads to the worst performance of 11.38 km

with a 280% relative error. With all seven paths of case (iii), the source range is

estimated at 4.37 km with a 45% relative error. The results clearly indicate that

the up-going ray paths and the first arrival 1© are more reliable than the down-

going ones, and thus we will utilize the up-going paths plus the first arrival (blue

or red) for the estimation of range and array tilt hereafter. As a cross-check, the

array tilt is estimated at 0.22◦ using Eq. (6.8) and the three up-going arrivals (red

dots) plus the first arrival.

Figure 6.6: (Color online) Beam-time migration for KAM11 data. (a) Case with
a positive (counter-clockwise) array tilt (20:51:06 UTC). The expected migration
curve in the absence of array tilt (dashed line) is shifted down by sin θ = +0.035
(dash-dot) to match the four distinct up-going arrivals (red dots) by visual in-
spection. (b) Case with a negative (clockwise) array tilt (20:57:55 UTC). The
expected migration curve (dashed) is shifted up by sin θ = −0.134 (dash-dot) to
match the four distinct up-going arrivals (red dots) by visual inspection. Note that
the vertical-axis range in (b) is shifted by −0.1 to accommodate the large tilt.

6.5.2 Array tilt

The second example is shown in Fig. 6.6a for a positive (counter-clockwise)

array tilt where seven distinct arrivals (dots) are identified with the first five ar-
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rivals denoted by circled numbers ( 1©– 5©). The dashed line is identical to the

migration curve shown in Fig. 6.5 with no array tilt. Clearly, all the arrivals are

biased downward (i.e., positive angle), evident in the strong first arrival 1© that is

supposed to be near-horizontal. The migration curve then can be shifted down by

approximately sin θ = +0.035 (dash-dot) to match the four up-going arrivals (red

dots) by visual inspection. Without compensation of the array tilt, the estimated

source range is 2.34 km with a −22% relative error using the up-going arrivals (red

dots). Here, the impact of the array tilt is exacerbated by the use of the reliable

up-going paths alone. For the known source range with the four up-going arrivals

(red dots), the array tilt is estimated at 1.4◦, which is close to the down-shifted

angle of 2◦.

The third example shown in Fig. 6.6b is for a negative (clockwise) array tilt

where seven distinct arrivals (dots) are identified and the overall arrival structure

remains similar to Fig. 6.6a. However, all the arrivals are biased upward (i.e.,

negative angle), including the first arrival 1©. Thus the migration curve (dashed)

is shifted up by sin θ = −0.134 (dash-dot) to match the four up-going arrivals (red

dots) by visual inspection. Note that the vertical-axis range is moved by −0.1 to

accommodate the large angle shift. The array tilt is estimated at 7◦ using the four

up-going arrivals (red dots). If the array tilt is not compensated for, the source

range is estimated at an absurd range of negative 5 km due to the large array tilt.

6.5.3 Time-varying array tilt

The vertical array tilt was attributed to horizontal movement of the sub-

surface buoy near the surface, which was induced by dynamic ocean surface waves

(see Fig. 6.3a). In this section, we examine the time-evolving array tilt from mul-

tiple LFM chirps transmitted over an extend period of time. Specifically, a 1-min

sequence consisted of 48-ms LFM chirps at 96-ms intervals for 54 s with the re-

maining 6 s of silence (i.e., 558 LFMs), and the 1-min sequence was repeatedly

transmitted for 9 min.

An example of the time-varying array tilt is illustrated in Fig. 6.7a, sampled

at 96-ms intervals over 54 s, starting 20:59 UTC on JD 176, where two different
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Figure 6.7: (Color online) (a) Temporal variation of the array tilt (dashed)
inversely estimated using the array invariant for the known source range, over a
duration of about 1 min at 96-ms intervals starting 20:59 UTC on JD 176 (560
samples). The angle of the maximum-intensity arrival (solid) that mostly coincides
with the first arrival indicates a high correlation between the two. (b) Normalized
power spectrum of (a). The dominant spectral frequency occurs at f = 0.183 Hz,
or equivalently a period of 5.5 s, which is consistent with the surface wave period
measured from a waverider buoy shown in Fig. 6.2d.
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methods are applied. The dashed curve is tilt angle estimated using the array

invariant with up-going ray paths plus the first arrival, as demonstrated in the

previous three examples. There were some outliers in the estimation, which were

removed and filled in by linear interpolation. On the other hand, the solid curve

is the angle of the maximum-intensity arrival that mostly coincides with the first

arrival, a robust indicator of the array tilt. As expected, the two curves exhibit a

high correlation with a mean difference of −2.3◦, both oscillating like a sinusoidal

wave with a maximum amplitude of about 8◦. A normalized power spectrum

of Fig. 6.7a using the Fourier transform is shown in Fig. 6.7b. The dominant

frequency is at f = 0.183 Hz, or equivalently a period of 5.5 s. Although not

shown, the dominant period of the array tilt ranged from 4.5 to 8.2 s for 9 min,

with an average value of 5.6 s. Not surprisingly, the surface wave period measured

from a waverider buoy was 5.5 s in Fig. 6.2d, confirming the link between the array

tilt and ocean surface wave movement.

6.6 Conclusions

The array invariant proposed for robust source-range estimation in shallow

water is based on the dispersion characteristics in ideal waveguides for broadband

signals. The approach involves plane-wave beamforming using a vertical array,

utilizing multiple arrivals separated in beam angle and travel time. In the pres-

ence of array tilt, however, the estimated beam angles are shifted, and the range

estimation based on the array invariant can be significantly affected. Inversely, the

array tilt can be estimated for a known source range. In this paper, its sensitivity

to array tilt was analyzed by deriving a modified array invariant incorporating the

array tilt, and then applying the formulation to both simulations and KAM11 data.

It was found that even a small tilt angle (e.g., < 2◦) of a 1.2-m long vertical array

near the surface, if not compensated for, can result in a relative range error of 20%

or more, for a high-frequency source (7–19 kHz) at 3-km range in approximately

100-m deep shallow water. Here, the impact of the array tilt was exacerbated by

the use of reliable up-going ray paths alone. Moreover, the power spectrum of the
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time-evolving array tilt estimated for 9 min showed a dominant period of 5.6 s,

which was consistent with the surface wave period concurrently measured from a

waverider buoy.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This dissertation presented the relationship between the waveguide invari-

ant and array invariant, the impact of array tilt on source range estimation, and

the several applications using the generalized array invariant for a short- or long-

aperture vertical array in shallow water environments.

The array invariant approach for passive localization is essentially equiv-

alent to the waveguide invariant based on the dispersion between the group and

phase speeds when β = 1. Specifically, the functional relationship between the

group and phase speeds in the waveguide invariant can be converted into the rela-

tionship between the travel time and beam angle in the array invariant. The array

invariant approach could be applied without knowing the value of the waveguide

invariant parameter due to β ≈ 1 for many shallow-water environments. Also,

the generalized array invariant approach can be potentially utilized for an upward-

refracting environment with β = −3. It was shown that the beam-time migration

follows ellipses for vertical arrays and lines for horizontal arrays.

The array invariant utilizes multiple arrivals in beam angle and travel time

to estimate the source-range, and it does not require knowledge of the environment

and an acoustic propagation model. At high frequencies, the arrivals can be in-

terpreted as ray arrivals, so the array invariant approach is comparable to the ray

tracing that incorporates relative time of arrival information in the aspect of range

93
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estimation for only reflected modes. The main advantages of the array invariant

are no requirement of an acoustic propagation model and no ambiguities of esti-

mated range. However, in the presence of array tilt, the beam angle estimates are

shifted by the array tilt, which potentially affects the range estimation based on

the array invariant. Inversely, the array tilt could be estimated for a known source

range. Even a small tilt angle (e.g., < 2◦) of a 1.2-m long vertical array near the

surface can cause a relative range error of 20% or more, for a high-frequency source

(7–19 kHz) at 3-km range in ∼100-m deep water for the KAM11 experiment. Here,

the impact of the array tilt was exacerbated by the use of reliable up-going ray

paths alone.

There are several applications using the generalized array invariant for a

short- or long-aperture vertical array.

Firstly, the array invariant approach in this dissertation is applied to a

bottom-mounted short-aperture vertical array for the HF97 experiment in a fluc-

tuating ocean environment over a one-day period. The result showed that the

mean range estimates using a 12-m long vertical array in ∼100-m deep water are

less than 8% relative error for a source (2–3 kHz) at 6-km range, demonstrating

the robustness of this approach.

Secondly, the generalized array invariant is extended to mildly range depen-

dent environments with a sloping bottom where the waveguide invariant is variable

in range. Assuming knowledge of the bottom slope, the generalized array invari-

ant can be applied iteratively to estimate the source range starting with β=1 (i.e.,

range-independent), which converges toward the correct source range by updat-

ing β at the previously estimated range. The iterative array invariant approach is

demonstrated using a short vertical array (2.8-m) from the RADAR07 experiment,

where a high-frequency source (2–3.5 kHz) close to the surface (6-m) was towed

between 0.5 to 5 km in range with the water depth varying from 80 to 50 m.

Lastly, the array invariant also can be useful to a large-aperture vertical

array that is sparse with significant sound speed variation (12 m/s) across the

array in the SAVEX15 experiment. This approach showed that robust source-

range estimation is demonstrated using data from a 16-element, 56-m long vertical
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array at various ranges (1.5–3.5 km) from a broadband source (0.5–2 kHz) in ∼
100-m deep shallow water.

7.2 Future work

In this dissertation, the generalized array invariant has demonstrated ro-

bust source localization performances for either a range-independent or a range-

dependent environment in shallow water, involving surface-and-bottom-interacting

paths, i.e., reflected modes, or high order modes. The reflected modes are not sen-

sitive to a sound speed profile because they propagate at averaged sound speed

in the water column, indicating the waveguide invariant parameter close to 1 for

range-independent environment or the ratio of the water depths of the source to the

receiver in sloping-bottom for range-dependent environment. However, applying

the array invariant approach to deep water environments encounters big challenges

in several aspects.

• First of all, the generalized array invariant requires to find a group of modes

which behave similar and to know a value of the waveguide invariant of

that group in deep water environment, which means that the environmental

knowledge is required for deep-water environments, for example, sound speed

profiles (SSPs). To make it more difficult, the value of the waveguide invari-

ant in deep water fundamentally changes over mode and varies a lot from

less than -100 to about 0; as a result, this large variation of β can cause the

generalized array invariant approach to be suffered from a very high relative

range error that can be more than 100 % unless we do know the exact value

of β.

• Second, in deep water environment, the refractive modes dominantly propa-

gate and are very sensitive to SSPs. Thus, arrivals to the receiver array can

be varied over depth. To capture many arrivals, a large aperture array can

be more beneficial since it can increase chance to have more arrivals.

• Lastly, using a large-aperture vertical array to receive many arrivals, the
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generalized array invariant needs to use non-isovelocity beamforming, i.e.,

the turning point filter, due to sound speed variation in order to correctly

estimate beam angles, which makes the processing more complicated and

required of the SSP.
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