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Final Report2 : Safety Analysis of 
Automated Highway Systems 

Nancy G. Leveson 
University of Washington 

1 Executive Summary 
This is a second final report on the work done under this grant. A first report 
was written and submitted that included a description and copies of publi- 
cations under grant funding. At the time, however, I did not know that a 
separate report was required because the grant number had changed during 
the 3-year period of the grant. This second report contains a more detailed 
description of the safety analysis techniques and tools that have been devel- 
oped for a state-based requirements specification language called Requirements 
State Machine Language (RSML). These tools include a simulator that allows 
for forward and backward execution of RSML specifications, a fault tree gen- 
erator that is based on backward simulation, and tools to check for consistency 
and completeness of specifications. An example requirements specification of 
an automated highway system design is described and the functionality of 
the tools are demonstrated on the model. The report also contains a copy of 
a dissertation on a new safety analysis technique, called Software Deviation 
Analysis (SDA) that was partially supported by this grant. The technique 
allows analysis of the behavior of the model in the presence of deviations from 
expected inputs, i.e, how the system would work in an imperfect environment. 
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Safety Analysis Tools for AHS 
Models 

1 Introduction 
In many systems, especially safety-critical systems, it is important to spec- 
ify the required behavior of the system as completely and unambiguously as 
possible. Incorrectly behaving software can have disastrous consequences. It 
is at this stage of system specification that some of the most costly errors 
are introduced because accidents are primarily related to specification, rather 
than implementation, errors [13, 81. These errors are the last and most diffi- 
cult to find according to  most studies of software errors. It is thus desirable 
to provide readable, unambiguous, and complete requirements specifications 
and to be able to perform an analysis of the specifications to validate desired 
properties of the system. 

The goal of our work is to explore the limits of automated analysis to pro- 
vide information useful in safety-critical project development. We are explor- 
ing various types of analyses that can be performed on state-machine mod- 
els. Although these ideas can be adapted to most state-machine modeling 
languages, the language used in this paper is Requirements State Machine 
Language (RSML), which was developed to specify the system requirements 
for TCAS I1 (Traffic Alert and Collision Avoidance System) for the FAA [ll]. 
This language includes many of the hierarchical abstraction and parallel state- 
machine features of modern state-machine specification languages [3]. These 
features make such languages feasible for specifying complex systems, but they 
sometimes also greatly complicate the analysis process. We assume that the 
reader is familiar with the basic features of such languages, but we include a 
section describing the features of RSML that are relevant to this paper. 

For this grant, we have developed an RSML specification of an automated 
highway system (AHS) to demonstrate the usefulness of this approach to eval- 
uating safety of AHS systems. It is important to note that our specification 
is used to demonstrate the analysis tools and approach, and the model itself 
does not purport to be complete or based on any real AHS design. We, how- 
ever, believe it to be non-trivial and realistic enough to provide a convincing 
demonstration. 
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The rest of this paper is organized as follows. Section 2 describes the 
AHS model. Section 3 presents the basic features of RSML relevant to this 
paper. Finally, Section 4 describes the safety analysis techniques, including 
forward and backward simulation, generation of fault trees, and consistency 
and completeness analysis. The complete model is contained in the appendix. 

2 The AHS Example Model 
In this paper, we have used RSML to create a requirements specification of 
an AHS model. The specification is based some of the fundamental design 
decisions in the AHS model described in [5, 61. We have chosen to concentrate 
on modeling the motion of vehicles on the automated highways. 

Our AHS model consists of a highway with multiple automated lanes in 
which traffic is organized in platoons of closely spaced vehicles under automatic 
control. The “intelligence” in the model is concentrated in the vehicle control 
systems and in the roadway infrastructure. The characteristics of the model 
are as follows : 

0 The highway consists of multiple lanes, each lane supporting vehicles 
traveling in the same direction. 

0 The entry and exit of vehicles to or from the highway or vehicle entry 
checks are not included in the model. 

0 Vehicles move on the highway by performing three kinds of maneuvers: 
Change-lane, Merge, and Split (described below). 

0 On the highway, all vehicles move at the same speed except when they 
take part in one of the above-mentioned three maneuvers. 

0 Roadside information structures are present along the highway. They 
sense traffic conditions and communicate this information to the vehicles. 

0 Vehicles travel in platoons, i.e., groups of closely spaced vehicles. Each 
platoon has a platoon leader, which is defined as the vehicle in the front 
of the platoon. The number of vehicles in a platoon can vary from one 
to a specified maximum. Each platoon must maintain a headway from 
the others platoons. Furthermore, each vehicle in a platoon (except for 
the platoon leader) must be separated from the one in front of it by a 
constant distance. These limits and assumptions are designed to enable 
the system to optimize capacity and reduce travel times of vehicles on 
the highway. 
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0 Vehicles are provided information on the speed and position of other 
vehicles around them through sensors and through communication with 
the roadside information structures and the other vehicles. 

The model includes three classes of maneuvers that a vehicle can perform on 
the automated highway: (i) Change-lane, (ii) Merge, and (iii) Split. Change- 
lane enables a single vehicle to move into an adjacent lane, Merge enables 
a platoon to join with the platoon in front of it to form a single platoon, 
and Split enables a platoon to separate into two. Change-lane is performed 
by a vehicle that is the only vehicle in its platoon, after ensuring, through 
communication, that no vehicles are present in the adjacent lane that could 
impede its maneuver. Merge is performed by a platoon by accelerating toward 
the platoon directly ahead of it until it becomes part of that platoon. In Split, 
either a leader of a platoon can split from the platoon by accelerating away 
from it (after ensuring that it is safe to do so), or part of the platoon (all 
vehicles in the platoon in front of the vehicle that initiated the maneuver) can 
accelerate away to form a separate platoon. 

3 RSML specification of the AHS Model 
RSML is based on an underlying Mealy machine and adopts some of the 
features introduced in Statecharts [3], including hierarchical abstraction into 
superstates and parallel state machines. A specification may be composed 
of multiple components, where each component specifies the behavior of a 
corresponding system component. A more detailed description of RSML can 
be found in [ll]. 

The AHS can be modeled using multiple identical sub-systems, each sub- 
system representing a vehicle or a roadside control structure. The environment 
for each vehicle consists of the other vehicles on the highway as well as roadside 
controllers along the highway. Each vehicle can be considered as consisting 
of various components: the sensors (which provide information about other 
vehicles in the vicinity), the controller (which is responsible for the maneuvers 
of the vehicle on the highway), a transmitter (which can send messages to 
other vehicles), a receiver (which can receive messages from other vehicles), 
and others. 

The vehicle controller handles communication with the vehicle’s environ- 
ment, and it controls the maneuvers in which the vehicle can take part. We 
have specified the behavior of this component using RSML. The state machine 
model of the controller is an abstraction of the perceived behavior of the con- 
troller and can be iteratively modified during the requirements development 
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Roadside 
Controller Vehicle 

Figure 1: Communicating components an the AHS model. Arrows represent 
communication between components. 
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Figure 2: An AND/OR table. 

phase as the understanding of the environment and the controller behavior 
changes. Specifications can be made more detailed or abstract, depending on 
the kind of analysis desired. 

RSML components can communicate with each other, or with their envi- 
ronment, through point-to-point messages over defined channels. RSML mes- 
sages are received asynchronously and queued upon arrival. The interfaces are 
connected to specific communication channels where the receipt of a message 
on a channel can set variable values and trigger events. Each channel is con- 
nected to one input interface and one output interface, and each interface is 
connected to exactly one channel. 

Within a vehicle in the AHS, the sensor and the receiver components pro- 
vide inputs to the controller component, while the controller provides inputs 
to the transmitter, which in turn communicates with the receiver on other 
vehicles. This communication structure is shown in Figure 1. Within a com- 
ponent, internal events are broadcast and available everywhere. 

RSML components contain a state hierarchy, transitions between states, a 
set of input and output interfaces, a set of variables and constants, and a set 
of events to order the transitions. 

Each transition in RSML has a source, destination, trigger event, and 
events that it triggers along with a guarding condition that must be true 
for the transition to be taken. RSML provides the full predicate calculus for 
expressing guarding conditions: A guarding condition may be either a simple 
Boolean TRUE or FALSE, an AND/OR table, or an existential or universal 
quantifier of a variable over another condition. 

An AND/OR table is a disjunction consisting of Boolean expressions, which 
may contain macros (other AND/OR tables, that is, functions returning a 
Boolean value) or predicates over arithmetic expressions (including numeric 
functions and variable and table references). An example of an AND/OR 
table is shown in Figure 2. The far left column of the AND/OR table lists the 
logical phrases; each of the other columns is a conjunction of those phrases 
and contains the logical values of the expressions. If one of the columns is 
true, then the table evaluates to true. A column evaluates to true if all of its 
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elements are true. A dot denotes “don’t care”. 
We have found while observing the use of RSML by application experts 

that AND/OR tables provide a more natural and reviewable notation when 
compared to other formal notations, such as the usual predicate calculus no- 
tation. A predefined macro, IN-STATE, returns true if the component is in 
a specified state. A predefined function, TIME, when applied to a variable 
or event returns the time that the variable was last assigned or the event 
was triggered. It is also possible to retrieve the nth last time that a variable 
was assigned or event was triggered. Thus, the condition represented by the 
AND/OR table in Figure 2 will evaluate to true if either (1) Dis tance  is in 
state IP, ThisLaneFront is true, and the variable OwnSpeed does not have the 
same value as the constant System-Speed, or (2) P o s i t i o n  is in state S ing le ,  
Dis tance  is in state IP, and OwnSpeed has the same value as System-Speed. 

We describe the state machine model of the controller in the next sub- 
section. We then describe the rest of the RSML specification of the controller in 
terms of vehicle maneuvers. We finally provide a detailed example of the Merge 
maneuver to show some of the transitions and interfaces in the specification. 

3.1 State description of the Model 
In the RSML model shown in Figure 3, the controller component is modeled 
as four parallel state-machines. This state decomposition represents one of 
many different ways in which the controller can be specified. 

The Maneuver-Status state machine represents the maneuver in which the 
vehicle is presently engaged. It is composed of the following atomic states : 

0 NoAaneuver: Vehicle is currently not engaged in any maneuver, 
- 

0 Merge: Vehicle is part of the Merge maneuver, 

0 Change-Lane: Vehicle has initiated the Change-lane maneuver, 

0 S p l i t :  Vehicle has initiated the Split maneuver, 

0 Busy: Vehicle is participating in a maneuver, but did not initiate that 
maneuver, 

0 Waitl: Vehicle is waiting for a reply from another vehicle, and 

0 Wait2: Vehicle has received a reply from one vehicle and is waiting for 
a reply from another. 
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Figure 3: The  state-machines comprising the controller component. Arrows 
between states denote the presence of at least one transition between them. 
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The Distance state machine represents the distance between the vehicle 
and the nearest one ahead of it and in its lane: 

0 The I P  (inter-platoon distance) indicates that the distance to the closest 
vehicle in front is at least the minimum desired between platoons. Such 
a situation can arise, for example, when the vehicle is the leader of a 
platoon and is not participating in any maneuver. 

0 IAP (intra-platoon distance) indicates that the closest vehicle in front is 
at a distance equal to or less than the desired distance between vehicles 
in a platoon. Such a situation can arise, for example, when a vehicle is 
part of a platoon but not the leader of that platoon. 

0 Between indicates that the closest vehicle in front is neither far (at an 
inter-platoon distance) nor close (at an intra-platoon distance) but in 
between. Such a situation can arise, for example, when a vehicle is the 
leader of a platoon that is merging with the platoon ahead. 

The Motion state machine represents the speed at which the vehicle is 
moving: 

0 Steady: Vehicle is moving at a constant speed, equal to the speed of 
vehicles on the highway that are not participating in a maneuver, 

0 Accelerate: Vehicle is accelerating; for example, at the beginning of a 
Merge or a Split, 

0 Decelerate: Vehicle is decelerating; for example, at the end of a Merge 
or a Split, and 

0 Lane-Change: Vehicle is changing lanes in a diagonal motion. 

The Position state machine represents the position of a vehicle within a 
platoon: 

0 Single: Vehicle is the only one in the platoon, 

0 Leader: Vehicle is the leader of the platoon, and there is at least one 
more vehicle in that platoon, and 

0 Not-Leader: Vehicle is part of the platoon, but not the leader 
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3.2 Rest of the specification 
The rest of the RSML specification consists of constants, events, input and 
output variables, input and output interfaces, and descriptions of the tran- 
sitions between states. The input and output interfaces represent messages 
between the Controller component and its environment (other components 
or vehicles or roadside control structures). As mentioned earlier, the RSML 
specification was developed based on three maneuvers that describe the motion 
of vehicles on the automated highway. These maneuvers are now described in 
detail. The roadside controllers decide if it is feasible for a vehicle to initiate 
a maneuver, and a message is sent to the appropriate vehicle accordingly. 

3.2.1 The Change-lane maneuver 

A Change-lane can be initiated only if there are no other vehicles in the pla- 
toon. Before changing lanes, the vehicle must ensure that there are no other 
vehicles within a critical distance (such that they would impede the changing 
of lanes) in the other lane. Assuming that vehicle A wants to change to lane 
L, three situations arise : 

0 There is no vehicle in L within a critical distance of A. In this case, A 
can change lanes without communicating with any other vehicles. 

0 There is at least one platoon in L within a critical distance of A (either 
ahead or behind it), while there is no platoon within a critical distance in 
the other direction. In this case, A must communicate with the platoon 
in L closest to it before deciding to change lanes. Suppose B is the leader 
of the closest platoon in L. On receiving a message from A, if B is not 
taking part in some other maneuver and it is feasible for A to change 
lanes without colliding with any vehicle in B’s platoon, B agrees to take 
part in A’s Change-lane and continues to move at a steady speed (along 
with the rest of the vehicles in its platoon) while A changes lanes. 

0 There is at least one platoon in L ahead of A and at least one behind A 
that are within a critical distance. In this case, A needs to communicate 
with the closest platoons on both sides of it before deciding to change 
lanes. Suppose B and C are the leaders of these two closest platoons. 
Then, as in the previous case, if B and C are not taking part in some 
other maneuver and it is feasible for A to change lanes without colliding 
with a vehicle in either of their platoons, both agree to A’s Change-Lane, 
thus continuing to move at a steady speed (along with the rest of their 
platoons) while A changes lanes. 
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After A changes lanes, it continues to be a single vehicle platoon. 

3.2.2 The Merge maneuver 

A Merge combines two successive platoons in a single lane into one. Merge is 
always initiated by the leader of the rear platoon, which accelerates towards 
the platoon in front and merges into it. Merging is subject to the condition 
that the combined size of the two platoons does not exceed the limit for platoon 
size. 

Assume that vehicle A is the leader of the rear platoon, i.e. the platoon 
that wants to merge, and vehicle B is the leader of the platoon with which A’s 
platoon wants to merge. If B receives a message from A and is not involved in 
another maneuver, then B ascertains whether a merge is feasible by checking 
that the sum of the number of vehicles in the two platoons involved does not 
exceed the limit for a platoon size. If B agrees to the merge, then A and 
the rest of the vehicles in A’s platoon merge with B’s platoon by accelerating 
toward it and then subsequently decelerating. 

3.2.3 The Split maneuver 

A Split involves separating a platoon into two. It may be needed, for example, 
because a platoon size has exceeded the limit or because a vehicle in the 
platoon needs to change lanes. Split may be initiated by any vehicle in the 
platoon. Two situations arise : 

0 The leader of a platoon decides to split. A split can take place if there is 
no vehicle within a certain critical distance in front of the leader (so as 
to impede its movement). In this case, the leader accelerates away from 
the rest of the vehicles in its platoon until it reaches a safe distance. 

0 A vehicle that is not the leader of a platoon decides to cause a split. A 
split can take place if there is no vehicle within a certain critical distance 
in front of the leader of that platoon. In this case, all vehicles in front 
of the initiator accelerate away from it to form their own platoon. 

3.3 Detailed specification of Merge 
In order to demonstratre the use of RSML to specify the controller, some 
of the transitions and communication (interfaces) involved in Merge are now 
described. They represent the RSML specification of the AHS that forms the 
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input to the analysis tools. Only part of Merge is shown here. The entire 
maneuver is described in Appendix A. 

Assume A is the vehicle that attempts to initiate Merge while B is the 
leader of the platoon in front of it (if any). A initiates Merge upon receiving 
an appropriate message from the environment (a roadside control structure). 
This message is represented as part of an input interface of A. 

Interface Sys-M-start: 
Source: Roadside-ControlStructure 
Trigger Event: RECEIVE(Vehiclelid, Dist-ahead) 
Condition: 
Output Action: Systemmerge 
Description: Receive indication from roadside control structure to initiate 
Merge. Vehiclelid is id of the leader of the platoon with which we will 
merge. Dist-ahead is the distance between the two platoons. 

Upon receiving an indication to start Merge, A checks if it is capable of initi- 
ating the maneuver. If so, it initiates the sending of a message to B and waits 
for an acknowledgement. 
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Transition(s): INo_Maneuverl d 
Location: Controller 
Trigger Event: Systemmerge 
Condition: OR 

A 
N 
D 

Output Action: Reqmerge, Set-vehiclelid, Set-own-id,Setaum-vehicles-p, 
Set-dist-ahead 
Description: Send request to B to merge with it. Output action will result in a message to 
B to request a merge. Generate events that trigger assignments to relevant output variables. 

A sends the message through an output interface, indicating the vehicle id of 
B, the number of vehicles in its platoon, and how far behind it is. Note that 
the sending of the message is triggered by Reqrmerge, which was generated as 
a result of the transition [NoManeuver d Waitl]. 

Interface M-send: 
Destination: Vehicle 
Trigger Event: Req-merge 
Output Action: SEND(Vehiclelid, Ownid, Num-vehiclesin-platoon, 
Dist-ahead) 
Description: Send message to leader of platoon ahead, indicating desire to 
merge. 

A waits for a reply from B. If A does not receive any reply from B within a 
specified time period (because, for example, B is busy in another maneuver, 
or there is a communications failure), A times out and aborts the maneuver. 
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Transition( s):  Im + 

Location: Controller 
Trigger Event: TIMEOUT (TIME(Reqmerge), TIMEOUT-VALUE) 
Condition: OR 

A 
Ar Position In State Leader I RR Position In State Single 

D Distance In State IP l v s N N  
Output Action: 
Description: No response received from leader of platoon ahead within time limit. Abort 
maneuver. 

J 

If A does receive a reply from B (indicating B’s approval of the maneuver), it 
starts its Merge. (B sends a similar message to other vehicles in A’s platoon 
also.) 

Interface M-rcv-ok: 
Source: Vehicle 
Trigger Event: RECEIVE(Vehiclelid, Num-vehicles) 
Condition: 
Output Action: Rcvdmerge-ok 
Description: Receive message from leader of platoon in front indicating 
Merge is OK. Num-vehicles is the number of vehicles in the platoon ahead. 
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Transition(s): P I - - - +  F l  
Location: Controller 
Trigger Event: Rcvdmerge-ok 
Condition: 

A 
N 
D 

fb 
T T  

Output Action: 
Description: Leader received indication to proceed with merging with platoon ahead. 

All vehicles in A’s platoon start accelerating towards B’s platoon. 

Transition(s): l S t e a d y l 4  -1 
Location: Motion 
Trigger Event: Rcvdmerge-ok 
Condition: OR 

Position In State Leader 
Position In State Single 

A Position In State Not-Leader 
N Maneuver-Status In State Wait1 

Maneuver-Status In State No-Maneuver 
Distance In State IP 
Distance In State IAP 

Output Action: 
Description: Start accelerating towards platoon ahead to merge with it. 
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r- 

Location: Distance 
Trigger Event: Rcvdmerge-ok 
Condition: 

A 
N 
D 

OR 
Position In State Single 
Position In State Leader 
Maneuver-Status In State Wait1 
Motion In State Steady 
Dist-ahead = IPDISTANCE I ITIITI 

Output Action: 
Description: Start merging with platoon ahead. This is the case where the leader of the 
merging platoon is IPDISTANCE behind the platoon ahead. 

Each vehicle knows the distance to traverse in order to join B’s platoon at 
the rear. Each vehicle accelerates for half this distance and decelerates (at the 
same rate) for the other half in order to merge with B’s platoon at the same 
relative speed. (The transitions involving the deceleration of the vehicles are 
not shown.) Once A’s platoon has merged with B’s, all vehicles in the former 
revert to their default states. A is no longer the leader of its platoon. A also 
lets B know that Merge is complete. B receives an indication of the completion 
of the maneuver, and its states are reset accordingly. 
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Transition( s):  _+ I No-Maneuver I 
Location: Controller 
Trigger Event: TIMEOUT(TIME(Rcvdmerge-ok), 
2*Sqrt(2*DistAhead/ACCEL-RATE)) 
Condition: 

A 
N 
D 

I Position In State Not-Leader I 
1 Distance In State Between I 
Distance In State IAP 
Motion In State Decelerate 

Output Action: 
Description: Platoon merges with platoon ahead. 

Interface M-send-complete: 
Destination: Mrcv-vehicle-complete 
Trigger Event: Sendmerge-complete 
Condition: 
Output Action: SEND(Vehicle1-id) 
Description: Send message to leader of platoon ahead, indicating comple- 
tion of Merge. 
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4 Specification Analyses 
The goal of our project is to explore the limits of automated analysis to provide 
information useful in safety-critical project development. Previously, Leveson 
and Stolzy described how backward analysis could be used to analyze a Time 
Petri-net model for safety [12], both with respect to the possibility of getting 
into hazardous states when the system operated as specified and when there 
were various types of failures. 

Briefly, the procedure starts with a set of hazardous conditions. For each 
member of this set, the immediately prior state or states are generated from 
the inverse Petri net. Each of these “one-step-back” states is then examined 
to see if it is potentially a critical state. Informally, a critical state is defined as 
a state from which there is at least one path from which it is possible to reach 
a hazardous state (and possibly also non-hazardous states) and at least one 
path from which it is possible to reach only hazardous states. Identification 
of a critical state can be used to eliminate the path to the hazardous state or, 
if that is not possible, to design suitable controls. Note that it is necessary to 
look forward only one step from each potentially critical state in order to label 
it as critical (i.e., there exists a next state that is not hazardous). If it is not 
critical, it will be eliminated by the algorithm in a later state. 

The procedure starts with partial states only. Some conditions in the 
state are unimportant as far as safety is concerned; therefore, the complete 
composition of the reachable hazardous states (i.e., the complete states from 
which to start the analysis) is not known at the beginning of the algorithm. 
The “don’t-care” places in each state are filled in during the course of the 
analysis with the conditions that are possible given the particular model under 
consideration. 

The procedure described considers only hazardous states that could be 
reached if the system operated correctly, i.e., it detects errors in the specifi- 
cation. Additional analysis procedures can be used to analyze the effects of 
faults and failures during operation of the system and thus to aid in the design 
of fault-tolerance and fail-safe mechanisms. 

In the past, we developed algorithms to assist in performing some types 
of safety analyses on state-based specifications. We are now building tools to 
automate these algorithms and develop new types of safety analyses for require- 
ments specifications written in RSML. We have also explored the application 
of our safety analysis procedures defined on Petri-nets to more complex RSML 
models and the automatic synthesis of fault trees from the model. 

The core of our analysis tools is a simulator that is able to read RSML 
specifications. The simulator executes the specifications and assists in certain 
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analyses. Forward simulation of a specification provides the designer with in- 
formation from which to determine if the specification conforms to the desired 
behavior. (At present, the simulator is run through a textual interface. A 
graphical user interface is under development.) 

Automatic fault tree generation from the specification, based on backward 
simulation, allows a designer to see if, and how, a system can enter a hazardous 
state. In addition, Heimdahl [4] has developed algorithms and an automated 
tool to check an RSML specification for completeness and consistency. The 
tool also detects nondeterminism in the specification. Nondeterministic spec- 
ifications may not only be unsafe, but they also make safety analysis less 
feasible. Although we do not require that detected nondeterministic behavior 
be removed from the specification, the instances that we detected in our TCAS 
I1 specification led to potentially unsafe behavior and basically reflected errors 
in the specification process. 

Before describing the analysis tools, a definition of the term configura- 
tion as used in this paper is required. A configuration is a complete set of 
states in which the system can exist at some given moment. For example, the 
Controller system can be in a configuration where Maneuver-Status is in 
state No-Maneuver, Distance is in state IP, Motion is in state Steady, and 
Position is in state Single. This configuration reflects the situation of a 
vehicle on the automated highway moving at a steady speed, not performing 
any maneuver, and being the only vehicle in its platoon. The configuration is 
textually represented as (MS:No-Maneuver, D:IP, M:Steady, P:Single). Simi- 
larly, a partial configuration is a configuration that specifies the states of only 
a subset of the components. 

4.1 Forward simulation 
Forward simulation can be started from a prespecified set of input messages 
and an initial system configuration. Simulation “steps” are divided into mi- 
crosteps. A microstep is taken by choosing a set of transitions that are each 
triggered by an event generated during the previous microstep. This event 
may be generated by a transition, a message receipt, or a timeout. A full 
step is completed when no more microsteps can be taken. After completing a 
step, a system-wide queue is checked to determine when the next timeout or 
message is scheduled to occur. The global clock is advanced to this time, and 
the component that received the timeout or message begins a new step. The 
Simulator can be executed from start to completion or it can be single-stepped 
(either a microstep or a step at a time), highlighting the currently active states 
on the screen. 
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Forward simulation allows for a check on the system specification to see 
whether it conforms to the way the system is supposed to work. It can also 
display whether the system, based on its specification, can get into undesired 
configurations. 

The textual output from a forward simulation of the Merge maneuver is 
displayed in Figure 4. The graphical user interface will provide more readable 
output. The simulation process is as follows: 

The simulator is started through a textual Tcl interface in line 1. The AHS 
system is configured into its default states (lines 2-10)--MS:No_Muneuver, 
D : P ,  M:Steady, P:SingZe). This default configuration represents a vehicle on 
the automated highway moving at a steady speed, not performing any maneu- 
ver, and being the only vehicle in its platoon. In order to simulate Merge to 
completion, we set up messages that will be sent to the Controller component 
at the appropriate times. (Messages are set with the rsml-addMessage com- 
mand, and its syntax is rsml-addMessage <destination component> <destination 

, interface> <list of arguments of message> <time at which message should be 
sent >) . 

The first message (line 12) is sent by the roadside infrastructure suggesting 
the vehicle begin its maneuver. The message is received by the input interface 
Sys-M-start in the component Controller. The first parameter (1) refers to 
the id of the recipient, while the second parameter (20)  indicates the distance 
between the recipient and the platoon in front of it. The message is to be 
sent at a time value of 5 units (the system is initialized at time 0). The 
second message (line 14) simulates a response from the leader of the platoon 
in front agreeing to Merge. The simulator acknowledges the correctness of the 
messages by adding them to its message queue (lines 13 and 15) .  

The simulator considers the earliest message or timeout, which, in this case, is 
the message from the environment to begin Merge. The message is received by 
the vehicle (line 17), and it triggers the event Systemmerge (line 18) accord- 
ing to specification. This event then triggers the transition in line 20, which 
further triggers the sending of a message (line 21).  The system changes state 
because of the transition taken (lines 22-23). The vehicle has now sent a mes- 
sage to the leader of the platoon in front, indicating its desire to merge with 
the latter’s platoon. No more events are active and, hence, no more transitions 
are taken. The system thus completes a step (or a macrostep) (line 26). 

The simulator considers the next message or timeout, which happens to be 
the second message sent earlier. Receipt of this message enables the vehicle 
to continue with Merge. The vehicle begins to accelerate forward, and the 
system changes state because of three orthogonal transitions (lines 30-32). 

We now run the system to completion (line 16) with the command rsml-runFW. 
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curie% rsml-sim -i text-int.tc1 
Entering state "Controller No-Maneuver" 
Entering state "Controller Maneuver-Status" 
Entering state "Controller IP" 
Entering state "Controller Distance" 
Entering state "Controller Steady" 
Entering state "Controller Motion" 
Entering state "Controller Single" 
Entering state "Controller Position" 
Entering state "Controller Controller-Machine" 
AHS 
rsml ~ 2 . 9 ~  (textual interface) $ rsml-addMessage Controller Sys-M-start Cl 
RSML cb Adding Delta: message ({Controller Sys-M-start (1 20) 5)) 12 
rsml ~ 2 . 9 ~  (textual interface) $ rsml-addMessage 
Controller M-rcv-ok Cl 5) 10 
RSML cb Adding Delta: message {(Controller M-rcv-ok C1 5) 10)) 13 
rsml ~ 2 . 9 ~  (textual interface) $ rsml-runFW 
message received: "Controller Sys-M-start (1 20) 5" 
event "System-merge" triggered 

End of a microstep ---------- 
transition "Controller No-Maneuver-to-Waitl-2" taken 
message sent: "EXTERNAL EXTERNAL Cl 0 0 20) 5 M-send" 
Leaving state "Controller No-Maneuver" 
Entering state "Controller Waitl" 
event "Req-merge" triggered 

---------- 

---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ========== 

message received: "Controller M-rcv-ok Cl 5) 10" 
event "Rcvd-merge-ok" triggered 

transition "Controller Waitl-to-Merge" taken 
transition "Controller IP-to-Between" taken 
transition "Controller Steady-to-Accelerate" taken 
Leaving state "Controller Waitl" 
Entering state "Controller Merge" 
Leaving state "Controller IP" 
Entering state "Controller Between" 
Leaving state "Controller Steady" 
Entering state "Controller Accelerate" 

---------- End of a microstep ---------- 

---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ========== 

event "TIMEOUT (TIME (PREV ( 0 )  Rcvd-merge-ok ) , 
Sqrt(TW0 * Dist-ahead / ACCEL-RATE))" triggered 
---------- End of a microste@---------- 

20) 5 



43: 
44: 
45: 
46: 
47: 
48: 

49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 

- 

transition "Controller Accelerate-to-Decelerate" taken 
Leaving state "Controller Accelerate" 
Entering state "Controller Decelerate" 
---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ========== 

event "TIMEOUT (TIME(PREV(0)Rcvd-merge-ok 1, 
TWO * Sqrt(TW0 * Dist-ahead / ACCEL-RATE))" triggered 

End of a microstep ---------- 
transition "Controller Merge-to-No-Maneuver" taken 
transition "Controller Between-to-IAP-2" taken 
transition "Controller Decelerate-to-Steady" taken 
transition "Controller Single-to-Not-Leader" taken 
message sent: "EXTERNAL EXTERNAL €11 26 M-send-complete" 
Leaving state "Controller Merge" 
Entering state "Controller No-Maneuver" 
Leaving state "Controller Between" 
Entering state "Controller IAP" 
Leaving state "Controller Decelerate" 
Entering state "Controller Steady" 
Leaving state "Controller Single" 
Entering state "Controller Not-Leader" 
event "Send-merge-complete" triggered 

---------- 

---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ====x===== 

########## End of simulation ############ 

Figure 4: Forward Simulation Example (contd.) 

21 



The event Rcvdmerge-ok, which was triggered because of the receipt of the 
second message (line 28), now causes a timeout event to be generated (line 
41). This timeout event is an indication for the vehicle to begin decelerating 
(line 43). Another timeout event at a later time causes the vehicle to change 
its speed to a steady speed (line 48). This second timeout event also indicates 
the end of the maneuver, and the vehicle moves into its new configuration 
indicating that it is now part of a platoon (lines 50-53). The vehicle also sends 
a message to the leader of its platoon (line 54) indicating that it has completed 
the maneuver. 

4.2 Fault Tree generation 
Fault Tree Analysis (FTA) is a form of safety analysis widely used in the 
aerospace, electronics, and nuclear industries. The technique was originally 
developed in 1961 at Bell Labs to evaluate the Minuteman Launch Control 
System for an unauthorized missile launch. 

The top event in a fault tree is a hazardous condition or state of the system, 
where a hazard is defined as a state or set of conditions of a system (or an 
object) that, together with other conditions in the environment of the system 
(or object), will lead to an accident (loss event) [8]. FTA uses Boolean logic 
to describe the combinations of events and states that constitute a hazardous 
state. Each level in the tree lists the events and states that are necessary to 
cause or lead to the state shown in the level above it. 

Previously, Leveson and colleagues explored the generation of fault trees 
from code [lo, 91. Basically, generating code-level fault trees assumes that 
system-level fault trees have already been built down to the software inter- 
face. In contrast, this paper examines the practicality of producing system- 
level (rather than code-level) fault trees from a state-machine model. Because 
producing fault trees is labor-intensive and error-prone and depends on the an- 
alyst’s understanding of the operation of the system, attempts have been made 
to synthesize these trees automatically. Several procedures for automatic syn- 
thesis have been proposed, but these work only for systems consisting purely 
of hardware elements. 

In the automated approaches, a model of the hardware, such as a circuit 
diagram, is used to generate the tree [l, 2, 71. Taylor’s technique, which is typ- 
ical, takes the components of the hardware model and writes them as transfer 
statements [15]. Each statement describes how an output event from the com- 
ponent can result from the combination of an internal change in the component 
and an input event and how the component state changes in response to input 
events. In general, the transfer statement will be conditional on the previous 
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component state. Together, the transfer statements form the transfer function 
for the component. 

Both the normal and failure properties of the component are described, 
and each transfer statement is represented as a small fragment of a fault tree 
that Taylor calls a mini-fault tree. The synthesis process consists of building 
the fault tree by matching the inputs and outputs of these mini-fault trees. 

To generate more general fault trees, a model that includes more than just 
hardware circuits is required. We are exploring techniques to generate fault 
trees from state-machine models. 

Automatic fault tree generation from an RSML specification is based on 
a backward simulation of the system. Backward simulation involves finding 
configurations such that there exist a set of transitions that can lead from each 
of these configurations to the current configuration in a microstep. For each 
such "one-step-back" configuration found, fault tree templates (representing 
mini-fault-trees) are created. These templates contain detailed information 
on how the system could move from the one-step-back configuration to the 
current configuration. Thus the backward reachability tree provides the basic 
structure on which the fault tree is built. 

Backward execution can be used to implement the safety analysis algo- 
rithm described earlier and originally defined for Time Petri-nets. A particu- 
lar starting configuration can have zero or more one-step-back configurations, 
such that a set of parallel transitions can cause the system to move from each 
one-step-back configuration to the starting configuration in a microstep. For 
every one-step-back configuration constructed, the algorithm considers those 
configurations that can be reached in one forward microstep. The information 
obtained can be used to eliminate paths to hazardous states from the model. 

Backward simulation can currently be performed one microstep at a time. 
Hence fault trees are automatically constructed one backward microstep at 
a time. Larger fault trees can easily be built by repeating the symbolic 
backward simulation, starting from an appropriate one-step-back configura- 
tion each time. Once the backward simulation has been repeated a desired 
number of backward steps, the entire fault tree can be generated. By gener- 
ating the tree one step at a time, we allow the possibility of having a human 
analyst prune the tree of physically impossible branches to save time and effort. 

We first describe the templates used in creating fault trees. We then demon- 
strate the fault tree procedure with the help of an example. Typically, a great 
many one-step-back configurations are possible for an initial configuration. 
The fault tree generation tool can eliminate impossible one-step-back config- 
urations based on IN-STATE conditions. This pruning technique is described 
next. Finally, we show how fault tree analysis can be used to modify the 
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Starting configuration C 

r 1 
Backwards configuration C-1 Backwards configuration C-n 

....._________ 

Figure 5: Basic template for each level of fault tree. 

Backwards configuration C j  

A C 

Configuration and 
guarding conditions triggering event 
Information on 

Figure 6: Expansion of a backward configuration node. 

system design so that it can handle failures. 

4.2.1 Fault tree templates 

The fault tree generator constructs mini-fault-trees, each of which represents 
a path from a configuration to one of its one-step-back configurations. These 
mini-fault-trees are constructed from a set of templates that describe in greater 
detail how the system could move from one configuration to another. As 
noted earlier, Taylor uses a similar notion of mini-fault-trees to represent small 

Configuration C-i 
Event e triggered 

Configuration C-i 
TIMEOUT event 

Configuration C-i 
Message received 

Figure 7: Choices of triggering event nodes. 
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Figure 8: Expansion of guarding conditions information node. 
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fragments of fault trees that are generated from hardware circuit diagrams [15]. 
Given an initial configuration, there can be zero or more one-step-back con- 

figurations, such that there exists a set of orthogonal transitions that can cause 
the system to move from each of these backward configurations to the initial 
configuration in a microstep. Figure 5 shows the template corresponding to 
this situation. Figure 6 displays the expansion of each backward configuration 
node. The orthogonal transitions are triggered by a set of simultaneous events 
(there may be one event in this set that triggers all the orthogonal transitions, 
or there may be more than one). This situation is depicted by node A. Fur- 
thermore, the events in this set may need to be triggered before other events in 
order for the system to move to the starting configuration. This information is 
shown in node B. Finally, the guarding condition(s) on each of the orthogonal 
transitions, if any, need(s) to be satisfied in order for the transitions to be valid 
(node C). An event can be generated as an action of a transition, as a result of 
a message received, or as a result of a timeout. Figure 7 displays these choices. 
Finally, Figure 8 shows a template that represents the set of guarding condi- 
tions that are to be satisfied, in terms of each individual guarding condition. 
This template depicts an expansion of node C in Figure 6. 

Perhaps the easiest way to understand the procedure is to look at an ex- 
ample. 

4.2.2 Fault tree example 

For the example, we assume a safety constraint for the AHS that platoons 
must be at least an inter-platoon distance apart from each other. This inter- 
platoon distance is such that a vehicle decelerating at full platoon breaking can 
avoid colliding with the vehicle ahead when the latter is decelerating at some 
standard greater rate. A hazard arises when this condition is violated, i.e., 
when the leader of a platoon is at less than an inter-platoon distance behind 
a vehicle. Such a situation can be represented by the partial configuration C ,  
(D:Between, P:Leader). The fault tree, with C as root, is shown in Figure 9. 
(The RSML fault tree generator outputs the fault tree in a file using a format 
that is readable by dotty, a graph layout program that generates and displays 
graphs. The fault tree generator can be easily modified to output the tree in 
some other format if required.) 

The fault tree displays three sub-trees that can lead to C: one correspond- 
ing to Merge, one to Split where the vehicle is just behind the leader of the 
platoon and the latter decides to split, and one where the vehicle is not the 
leader of a platoon and decides to cause a split in the platoon. The subtrees 
display how the system can end up in the configuration C (the events, mes- 
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Platoon too close to one ahead w OR 
Config C: (Between, Leader) 
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Event : Rcvd-split-ok 
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o condition 
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Waiting for Merge split message: 

Config : (Waitl, IAP, Steady, Not-Leader) 
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I 

F i, 
I I 

H Vehicle not in any maneuver: 

Config C3: (No-Maneuver, IP, Steady, Leader) 
Event : System-merge 
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Vehicle not in any maneuver: I 
Start-accl _ _ _  

Event : System-merge 
Config : (No-Maneuver, IAP, Steady, Not-Leader) 

Figure 9: An example of a n  A H S  fault tree generated f rom a n  RSML specafi- 
cation. 
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sages, and conditions required) starting from the configurations at the lowest 
level. 

Consider the leftmost subtree of C. One backward configuration from C 
was found. This configuration, C1, (MS:Waitl, D:IP, M:Steady, P:Leader), is 
represented by node A in Figure 9 and denotes the situation where the leader 
of a platoon is waiting for a response from a vehicle. The set of transitions 
that take the system from C1 to C are triggered by the event Rcvdmerge-ok. 
This set consists of the following orthogonal transitions: 

0 The transition [Wait1 d Merge] (in the state-machine Maneuver-Status), 

0 The transition [IP -+ Between] (in the state-machine Dis tance) ,  and 

0 The transition [Steady Accelerate]  (in the state-machine Motion). 

Unlike C ,  C1 is not a partial configuration and requires that Maneuver-Status 
and Motion be in specific states. Such a requirement is a result of the IN-STATE 
guarding conditions on the three transitions listed above. 

Node B in the fault tree specifies that the event Rcvdnerge-ok must be 
triggered before a timeout event on Reqmerge moves the system from C1 to 
C (this timeout event causes the system to abort Merge if the leader of the 
platoon ahead does not respond to a Merge request within an appropriate 
amount of time). For every one-step-back configuration constructed, the fault 
tree generator considers those configurations that can be reached in one for- 
ward microstep. If these one-step-forward configurations exist, a set of events 
triggering transitions to each such configuration is constructed and displayed. 
This analysis is based on the critical state analysis for Petri nets that was 
described in the previous section. Such information can be useful in identi- 
fying situations where a missed event or transition could cause the system to 
get into a hazardous situation. Finally, node C requires that the condition 
“This- lane- f ront- pos i t ion  - Own-position = IP-DISTANCE,’ needs to be 
true for the transitions to be taken. 

The next level of the tree (the sub-tree with node A as root) describes 
how the system can get into C1. One backward reachable configuration, call 
it C2, was found (node D). Cz represents the situation where the C o n t r o l l e r  
component receives a message that causes the event Rcvdmerge-ok to be 
triggered, which in turn triggers the transitions connecting C1 and C. Node 
E indicates that there are no conditions on the receipt of the message and the 
triggering of Rcvdmerge-ok. The state machines remain in the same states 
while the message is received. 

D : P ,  M:Steady, P:Leader). C3 represents the configuration of a vehicle at 
At the next level, node F represents the configuration C3, (MS:No-Maneuver, 
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the beginning of Merge. The system can move from C, to C2 if the event 
Systemmerge is triggered before Rcvd-req-chng-lane, System-split, or Rcvd-req-split 
(node G). 

In summary, the example fault tree generated by the tool shows that a 
vehicle can end up in a potentially hazardous situation (denoted by the con- 
figuration C) in three different ways (represented by the three sub-trees of the 
root node of the fault tree), based on the specification describing the normal 
functioning of the system. If Merge or Split were completed, it would move 
from C to a safe configuration according to the specification (for example, in 
Merge, the vehicle would slow down appropriately to merge with the one in 
front and not crash into it). The fault tree does reveal that if the system was 
in C and some failure occurred (a communication error, for example) that pre- 
vented it from continuing according to its specified behavior, a collision could 
result. Hence the fault tree identifies situations where adequate care needs 
to be taken to ensure correct behavior or risk-minimization mechanisms need 
to be added to prevent a catastrophe in the presence of failures. Section 4.3 
describes another such situation and suggests a way to modify the design to 
incorporate a fault-handling mechanism. 

4.2.3 IN-STATE Pruning 

Typically, a great many backward configurations are possible from an initial 
configuration. However it may be impossible for the system to move from some 
of these one-step-back configurations to the initial configuration because the 
guarding conditions on the set of orthogonal transitions cannot all be satisfied. 
The fault tree generation tool can eliminate impossible one-step-back configu- 
rations based on IN-STATE guarding conditions. (A similar sort of pruning can 
be performed for IN-ONE-OF guarding conditions also.) To explain this pruning 
technique, consider an example. Suppose a vehicle is in configuration C1, where 
C1 is represented by (MS:No-Maneuver, D:IP, M:Accelerate, P:Single), i.e., it 
is a single vehicle and accelerating. In the AHS specification, there exists a 
transition T ,  [Steady - Accelerate], triggered by the event Rcvdmerge-ok. 
So the configuration C2, (MS:No-Maneuver, D:IP, M:Steady, P:Single), is a 
possible one-step-back configuration of C1. However, one of the IN-STATE 
guarding conditions on transition T is “Maneuver-Status In-State Waitl”, 
which is not satisfied if the system were in CZ. Hence, C2 fails to be a valid 
backward configuration for C1 and can be eliminated from the fault tree for 
C1. Such pruning can drastically cut the number of one-step-back configura- 
tions. Manual pruning can also be performed by the analyst. We are exploring 
additional ways to provide automatic pruning. 
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Leader too close and accelerating 

Config : (IAP, Accelerate, Leader) 

B 

Leader getting closer and accelerating 

Config : (Between, Accelerate, Leader) 

Event : Received-lane-info 

Event before 

Figure 10: Fault tree example. 

4.3 Handling failures 
Consider the hazardous situation where the leader of a platoon is very close 
to the vehicle in front of it (at an intra-platoon distance) and accelerating. 
Such a situation can be represented by the partial configuration C defined as 
(M:AcceZerute, D:IAP, P:Leader). Figure 10 displays the fault tree with C 
as its root (node A). Only one one-step-back configuration (C,), defined as 
(M:AcceZerate, D:Between, P:Leader) and represented by node B, was found 
by the fault tree generator. C1 represents the situation where the leader is still 
accelerating, but it is farther away from the vehicle in front (the state machine 
Distance is in state Between). The system moves from C1 to C when the 
event Received-lane-info is generated (node B). This event is generated 
by the receipt of a message from the vehicle’s forward sensor indicating its 
distance from the vehicle in front of it. The state machine Distance changes 
state through the transition [Between d IAP], reflecting the sensor input. 
Node C shows that the system can move from C1 to C provided that the 
sensor input is received before a timeout event based on Rcvdmerge-ok. In 
terms of the RSML specification, this timeout event triggers the transition 
[Accelerate d Decelerate] during Merge. The timeout in effect slows the 
vehicle down at the appropriate instant so that it merges with the platoon 
ahead without crashing into it. Within the confines of the normal behavior of 
the system, this timeout event and the associated transition would occur before 
the transition [Between -+ IAP] that causes the system to move from C1 to 
C. However, node C reveals that if either the timeout event or its related 
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transition fail (because of a faulty communications component or a faulty 
deceleration device, for example), the system can move into the hazardous 
situation represented by C, thus potentially causing an accident. 

Information from the fault tree can thus be used to identify safety-critical 
areas and situations where a failure in the system (for example, a failure that 
leads to the transition [Accelerate 4 Decelerate] in Merge being missed) 
can place the system in a hazardous configuration. The design of the AHS can 
be then be strengthened appropriately to prevent such a configuration from 
occurring. Leveson and Stolzy ([12]) show how interlocks can be incorporated 
into Petri net models to ensure that a desirable transition has precedence 
over an undesirable one. In the AHS model, we would like the transition 
[Accelerate d Decelerate] to be taken before the transition [Between d 
IAP]. If the desired former transition does not get taken, we would like the 
system to act appropriately to prevent the vehicle from entering the state IAP 
while still accelerating. 

One way the AHS specification can be modified to prevent the system from 
moving into configuration C in the presence of a transition failure (failing to 
decelerate) is to introduce a watchdog timer. This timer can be treated as 
another vehicle component that can communicate with the controller. The 
timer is set by a message from the controller, and after a specified period of 
time, it sends a message back to the controller. The timer can be used to set 
a limit on how long a vehicle can accelerate. Thus, if a vehicle is in a situation 
described above where it fails to decelerate while participating in Merge or 
Split, the timer or controller can initiate a backup deceleration mechanism. In 
order for this to work, the timer should be set for a time period (1) greater 
than the time the vehicle would normally accelerate as part of Merge or Split 
and (2) less than the time it would take for the vehicle to collide with the one 
in front if it continued accelerating. If the vehicle decelerates normally, the 
message from the timer is ignored. However, if the vehicle fails to decelerate 
normally, the message from the timer can be used to place the vehicle in a 
special configuration where it can decelerate at a higher rate than normal 
(emergency braking) to avoid collision. 

We modified the AHS design to incorporate the timer, adding both transi- 
tions and interfaces. An extra state, Decelerate-Quick, was added to repre- 
sent the state where the vehicle is decelerating quicker than normal in order to 
slow down and avoid a collision. Figure 11 shows part of a forward simulation 
with the modified AHS specification. Lines 1-3 show the system in the middle 
of Merge,  where the vehicle begins accelerating forward. At the same time, a 
message is sent to the timer (line 4) indicating the beginning of acceleration. 
When the vehicle fails to decelerate, i.e. it continues to be in its accelerated 
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... 
transition "Controller Waitl-to-Merge" taken 
transition "Controller IP-to-Between" taken 
transition "Controller Steady-to-Accelerate" taken 
message sent: "EXTERNAL EXTERNAL (10) 10 OInterface-send-timer" 

message received: "Controller IInterface-get-timer 0 20" 
event "Timer-received" triggered 

transition "Controller Accelerate-to-Decelerate-Quick" taken 
Leaving state "Controller Accelerate" 
Entering state "Controller Decelerate-Quick" 

... 

---------- End of a microstep ---------- 

---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ========== 

event "TIMEOUT (TIME(PREV(0)Timer-received 1, 
Sqrt (TWO * Dist-ahead / QUICK-DECEL-RATE) 1 I' triggered 

End of a microstep ---------- 
transition "Controller Merge-to-No-Maneuver" taken 
transition "Controller Between-to-IAP-2" taken 
transition "Controller Decelerate-Quick-to-Steady" taken 
transition "Controller Single-to-Not-Leader" taken 
message sent: "EXTERNAL EXTERNAL (1) 25 M-send-complete" 

---------- 

... 
---------- End of a microstep ---------- 
---------- ---------- End of a macrostep ========== 

########## End of simulation ############ 

Figure 11: Forward Simulation with timer. 
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state, a message is received from the timer (line 5). The message causes the 
system to move into the special state Decelerate-Quick (line 8). After de- 
celerating for a certain time (the quicker deceleration rate is determined by 
the constant QUICK-DECEL-RATE), the vehicle completes Merge in a normal and 
safe fashion (lines 15-19). 

We have generated fault trees for other hazardous situations. For exam- 
ple, the AHS system can find itself in the hazardous configuration (D:IAP, 
P:Between) during a Merge or Split maneuver. We have also found that the 
specification prevents the system from entering configurations where the vehi- 
cle is not in the midst of any maneuver, yet its other state machines are not in 
their default states. An example of such a configuration is (MS:No-Maneuver, 
M:Accelerate, P:Leader). 

The fault tree analysis thus enables the designer to detect situations where 
failures can lead to accidents. Failure-handling mechanisms can then be added 
to make the system more resilient to failures. 

4.4 Consistency analysis 
Tools have also been developed to check the consistency and completeness of 
RSML specifications [4]. 

Consistency and logical completeness analysis on an RSML specification is 
performed automatically, and the analysis results are output to a file without 
user intervention. The output lists conditions on the transitions out of a state 
that allow more than one transition to be satisfied simultaneously or miss- 
ing cases. Performing this analysis on our AHS model, two nondeterministic 
situations were detected, both arising during the beginning of Change-lane. 
The output from the analysis that checks for one of these non-deterministic 
situations is shown in Figure 12. 

As described earlier, there are three cases for Change-lane, depending on 
how many vehicles are present in an adjacent lane within a critical distance: 
none, one, or at least two. With respect to the vehicle desiring to change 
lanes, a transition from NoJaneuver to one of Change-Lane, Waiti, or Wait2, 
respectively, can be taken, each triggered by the same event. In the AHS 
specification, the Boolean variables Next-lane-f r o n t  and Next-lane-back in- 
dicate the presence of a vehicle in the adjacent lane within a critical distance in 
front of or behind the vehicle. These variables allow the system to determine 
which of the three transitions from No-Maneuver to take. For example, the 
transition [NoXaneuver f Change-Lane] is governed by the following two 
guarding conditions : 
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Analyzing transitions for trigger: System-chnglane 

No-Maneuver-to-Change-Lane anded with No-Maneuver-to-Wait2 

T : Position In State Single 
T : Distance In State IP 
T : Motion In State Steady 
T : Position In State Single 
T : Distance In State IP 
T : Motion In State Steady 
T : Next-lane-back = TRUE-VAL 
T : Next-lanefront = TRUE-VAL 
T : Next-lanefront-position - Own-position 2 IPDISTANCE 
T : Own-position - Next-lane-back-position 2 IPDISTANCE 

Figure 12: Consistency analysis. 

0 the expression Next-lane-front = TRUE-VAL is false (i.e. there is no 
vehicle ahead in the adjacent lane), and 

0 the expression Next-lane-back = TRUE-VAL is also false. 

These two conditions were incorrectly left out of the guarding conditions 
for the transition. This omission means that if a vehicle is moving at a steady 
speed and is the only vehicle in its platoon, and either of Next-lane-front or 
Next-lane-back were true, then the transition from NoManeuver to Change-Lane 
can be taken, along with either of the transitions from NoManeuver to Wait1 
or Wait2. This is an obvious error in the specification and can lead to a haz- 
ardous situation (For example, a collision can result if the first transition is 
taken and there is a vehicle in the adjacent lane). 

The consistency and logical completeness analysis can thus greatly help in 
developing consistent, unambiguous specifications. 
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5 Conclusions 
This paper describes tools for the safety analyses of RSML specifications. 
These tools include a forward simulator, a fault tree generator based on back- 
ward simulation, and a consistency and logical completeness checker. The 
automated analyses were demonstrated for a specific AHS model. 
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A Appendix A: Vehicle-Controller Example 
Specification 

This appendix includes an example specification of a vehicle controller com- 
ponent. This model is intended only as an example and does not represent 
any real AHS design. 

A.l  Interface 
This section defines the interfaces between the controller component and the 
components with which it communicates. 

Roadside 
Controller Vehicle 

Figure 13: The components and interface messages. Only the messages t o  and 
f rom the Vehicle Controller are included here. A complete system specification 
would include all the messages. 

Input interfaces 

The model has 17 different input messages to the vehicle controller as 
described below. 
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Interface Sys-CL-start: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80, Vehicle2-idV+l) 
Condition: 
Output Action: System-chnglanee-84 
Description: Message to begin Change-Lane maneuver. 

Interface CL-rcv: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80, Vehicle2idv-81) 
Condition: 

A 

Output Action: Rcvdreq-chnglanee-84 
Description: Message from vehicle in adjacent lane that wants to change 
lanes. From CLsendl or CLsend2. 

Interface CL-rcv-vehicle-complete: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80) 
Condition: 

A 

Output Action: Vehicle-chng-lane-comp~etee~~4 
Description: Message indicating another vehicle has completed Change- 
lane maneuver. From CLsend-completel. 
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Interface CL-rcv-ok: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelid,-80) 
Condition: 

A 
N I Vehicle1idv-8o = OWnidv-80 D I LTJ 

Output Action: Rcvd-chnglane-oke-84 
Description: Indication from vehicle in adjacent lane that it is OK to 
continue Change-lane maneuver. From CLsend-ok. 

Interface Sys-M-start: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelid,-8~,, Dist-aheadV-8l) 
Condition: 
Output Action: Systemmergee-s4 
Description: Message to begin Merge maneuver. 

1 Interface M-rcv: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(VehiclelidV-8o, Vehicle2idV-8l, 
Num~vehic~es,~~o, Distahead,_sl) 
Condition: 

A 
N 1 Vehicle1-idv-8o = OWnidv-80 1 
D 

Output Action: Rcvdreq-mergee-84 
Description: Message from leader of rear platoon that wants to merge. 
From Msend. 
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Interface M-rcv-ok: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80, Num-vehiclesv-go) 
Condition: 
Output Action: Rcvdrnerge-oke-84 
Description: Message from leader of platoon in front indicating Merge is 
OK. F’rom Msend-ok. 

I 

Interface Mrcv-vehicle-complete: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80) 
Condition: 

A 

Output Action: VehiClemerge-COmplete~g4 
Description: Message from leader of merging platoon indicating its platoon 
has merged. F’rom Msend-complete. 

I 

Interface Sys-S-start: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80, ~um-vehiclesv-~o) 
Condition: 
Output Action: Systemsplit,-84 
Description: Message to begin Split maneuver. 
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Interface S-rcv-back: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelid,-80) 
Condition: 

A 
D 
N 1 Vehiclelid,-so = Ownid,-so I 

Output Action: Become-leadere-~4 
Description: Message from leader of platoon that is splitting away. From 
Ssend-back. 

Interface S-rcv-completel: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelid,-80) 
Condition: 

A 
D 
N I Vehiclelidv-80 = OWnidV-8o 1 

Output Action: Vehiclesplit-completee-84 
Description: Message from your leader that split, indicating it has com- 
pleted its Split maneuver. From Ssend-completel. 

Interface S-rcv-leader: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80, Vehic1e2idv-81, 
Num-vehic1esv-8o) 
Condition: 

A 
D 
N I VehiclelidV-8o = OWnidv-80 I 

Output Action: Rcvdreqsplite-84 
Description: Message to leader from vehicle in platoon that wants to split. 
From Ssendleader. 
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Interface S -rcv-all: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelidv-80) 
Condition: 

A 
N D [Vehiclelid,-*o = OWnidv-80 I 

Output Action: Start-accle-84 
Description: Message from leader of platoon informing about split in pla- 
toon. From Ssend-all. 

Interface S-rcv-splitter: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehicle1idv-80) 
Condition: 

A 
D 
N I Vehiclelidv-80 = OWnidv-80 1 ITJ 

Output Action: Rcvdsplit-oke-84 
Description: Message from leader of platoon to vehicle that wants to split. 
From Ssendsplitter. 

Interface S-rcv-complete2: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Vehiclelid,-so) 
Condition: 

A 
N I Vehiclel-idv-80 = OWnidv-80 1 ITJ 
D 

Output Action: Vehiclesplit-completee-84 
Description: Message from your leader that split, along with other vehicles 
that were in front of you. From Ssend-complete2. 
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Interface Rcv-own-info: 
Source: Forward Sensor 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Dist-aheadv-8~) 
Condition: 
Output Action: Receivedlaneinfo,-s4 
Description: Message from forward sensor indicating distance of vehicle 
ahead. 

Interface Get-positions: 
Source: Receiver 
Destination: Vehicle Controller 
Trigger Event: RECEIVE(Own-positionv-80 Thislanefront-positionv-Tg ) 
Condition: 
Output Action: 
Description: Receive information on parameters. 

Output Interfaces 

The vehicle controller can transmit 14 different output message types. 

Interface CL-sendl: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Req-chnglanel e 8 4  

Output Action: SEND(Vehiclelidv-80, Ownid,_so) 
Description: Message to leader of platoon in adjoining lane, indicating 
desire to change lanes. 
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Interface CL-send2: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Req-chng-lane2 ,344 

Output Action: SEND(Vehicle1idv-80, Ownidv_8o) 
Description: Message to leader of other platoon in adjoining lane, indicat- 
ing desire to change lanes. 

Interface CL-send-ok: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Chnglane-ok ,344 
Output Action: SEND(Vehicle2idv-81) 
Description: Message to vehicle that wants to change lane, indicating 
approval of Change-lane maneuver. 

Interface CL-send-completel: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Changelane-complete e 4 4  

Output Action: SEND(Vehiclelid,_so) 
Description: Message to leader of platoon in adjacent lane, indicating 

, completion of Change-lane maneuver. 

Interface CL-send-complete2: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Changelane-complete e-84 

Output Action: SEND(Vehicle2-idv-~l) 
Description: Message to leader of other platoon in adjacent lane, indicating 
completion of Change-lane maneuver. 
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Interface M-send: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Req-merge e-84 

Num~veh ic l e s in~p~a toonv~~~ ,  Dist-aheadv-81) 
Description: Message to leader of platoon ahead, indicating desire to 
merge. 

output Action: SEND(Vehiclel-idv-80, OWnidv-80, 

Interface M-send-ok: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Merge-ok e-84 

Output Action: SEND(Vehicle2-idv-81, Num~vehiclesin~p~atoon, ,~~~,  
Dist-ahead,-sl) 
Description: Message to leader of rear platoon that wants to merge, indi- 
cating approval. 

Interface M-send-complete: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendmerge-complete e-84 

Output Action: SEND(Vehiclel-idv-80) 
Description: Message to leader of platoon ahead, indicating completion of 
Merge maneuver. 

Interface S-send-back: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendleadersplit e-84 

Output Action: SEND(Vehicle1idv-80) 
Description: Message from leader of platoon that wants to split to vehicle 
behind. 
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Interface S-send-completel: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendspl-complete1 e-84 

Output Action: SEND(Vehicle1idv-80) 
Description: Message to new leader of platoon behind, indicating the com- 
pletion of Split maneuver. 

Interface S-send-leader: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Reqsplit e-84 

Output Action: SEND(Vehiclelidv-80, Ownidv-80, Num-vehiclesv-80) 
Description: Message to leader of platoon indicating vehicle wants to cause 
a split. 

Interface S-send-all: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendsplit-ok e-84 

Output Action: SEND(idList,-gl) 
Description: Message from leader to vehicles behind, but ahead of vehicle 
that initiated the Split maneuver, to proceed with the maneuver. 

I 
Interface S-send-splitter: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendsplit-ok e-84 

Output Action: SEND(Vehicle2idv-81) 
Description: Message from leader to vehicle that initiated the split, indi- 
cating that the Split maneuver is in progress. 
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Interface S-sendxomplete2: 
Source: Vehicle Controller 
Destination: Transmitter 
Trigger Event: Sendspl-complete2 e-84 

Output Action: SEND(Vehiclelidv-8o) 
Description: Message from leader to vehicle that initiated the split, indi- 
cating completion of the Split maneuver. 

A.2 Behavioral Specification 
The behavioral state machine part of the specification describes the blackbox 
behavior of the components, in this case the vehicle controller. Because the 
specification is blackbox, only externally visible behavior is described and only 
in terms of external variables. No internal variables or design is included. 
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Maneuver Status Transition Definitions 

Maneuver-Status 
\ 

L 

7 

Wait2 
No-Maneuver 

-z 2- Busy 

Figure 15: 

Transfers t o  the busy state occur when the vehicle is participating in a 
maneuver, but  i t  did not initiate that maneuver. 

Transit ion( s) : I No-Maneuvers-48 I 4 

Location: Controller 
Trigger Event: Rcvdreq-chng-lanee-84 
Condition: 

A 
DiStanCe,-48 In State D 
Position,-48 In State Leaders-48 N 
Position,-48 In State Single,-48 

MOtiOn,-48 In State Steadys-48 

Output Action: Chnghne-oke.84, Set-vehicle2ide-s4 
Description: Agree to request from vehicle in adjacent lane to change lanes. 
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TEknSitiOn( S) : -1 -+ I Nohianeu~er , -4~  I 
Location: Controller 
Trigger Event: Vehicle-chnglane-complete,-~~ 
Condition: OR 

A 
Positions-48 In State Leader,-& N 
Positions-48 In State Single,-48 

Distance,-48 In State I P S 4  D 
Motions-4s In State Steady,-48 

Output Action: 
Description: End of Change-lane maneuver. 

Location: Controller 
Trigger Event: 
TIMEOUT-VALUE),B5 
Condition: 

TIMEOUT (TIME(PREV(0)Rcvdreq-chng-lane ), 

OR 

Output Action: 
Description: No response from vehicle changing lanes. Abort Change-lane maneuver. 
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Transition( s ) :  I No_Maneuver,-48 I 
Location: Controller 
Trigger Event: Rcvdreq-mergee-84 
Condition: 

- -1 

A 
N 
D 

Output Action: 
Set-dist-aheade-84 
Description: Agree to request from platoon behind to merge with this platoon. 

Transition(s): -1 - I No-ManeuverS-48 I 
Location: Controller 
Trigger Event: Vehiclemerge-completee-84 
Condition: 

A 
Position,-48 In State Single,-48 D 
Distance,-48 In State N 
MOtiOn,-48 In State Steady,-48 

Position,-48 In State Leader,-48 

Output Action: 
Description: Rear platoon has completed merge. 
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Transition(s): - I No-Maneuvers-4g I 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvdreqmerge ), TIMEOUT_VALUE),_s5 
Condition: 

A 
N 
D 

Output Action: 
Description: No response from rear platoon about merging. Abort Merge maneuver. 

Transition(s): I No-Maneuvers-4g I - E3 ~ u s y ~ - ~ ~  

Location: Controller 
Trigger Event: Becorne-leadere-g4 
Condition: 

Output Action: 
Description: Indication from leader that it is splitting. 
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Location: Controller 
Trigger Event: Vehiclesplit-completee-84 
Condition: OR 

Output Action: 
Description: Former leader of platoon has completed Split maneuver. 

Transition( s): I No-Mane~ver,-4~ I -+ -1 
Location: Controller 
Trigger Event: Rcvdreqsp1ite-84 
Condition: 

Output Action: Split-0ke-84, Sendsplit_oke-84, Set-idListe_84, Set-vehicle2ide_84 
Description: Agree to request from vehicle in platoon to cause a split. 
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Location: Controller 
Trigger Event: Start-accle_84 
Condition: 

A 
N 
D 

Output Action: 
Description: Vehicles that are not leaders begin to split. 

Transition( s ) :  --+ I No-ManeuverS-48 I 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok ), TWO * Sqrt(TW0 * TWO * 
IPDISTANCE / ACCELRATE)),_85 
Condition: 

A 
N 
D 

Output Action: Sendspl-complete2,-84, Set-vehiclel-ide-84 
Description: Splitting vehicles complete Split maneuver. 

OR 11 
T F  

The following transitions represent maneuvers tha t  are initiated by this 
vehicle. 
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Location: Controller 
Trigger Event: System-chnglanee-84 
Condition: 

A 
N 
D 

Output Action: 
Description: Initiate Change-lane maneuver. No vehicles in adjacent lane. 

Location: Controller 
Trigger Event: System_chnglane,-s4 
Condition: 

A '  
N .  
D .  

Output Action: Req-chnghnele-84, Set-vehiclel-ide-84, Set-OWnide-84 
Description: Send request to vehicle in adjacent lane to change lanes. 
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Transition(s): -1 - [Change_Lane,_4sI 
Location: Controller 
Trigger Event: Rcvd-chnglane-oke-84 
Condition: 

Output Action: 
Description: Received indication to proceed with changing lanes. 

Transition(s): a1tl,-48 --+ I No-Maneuvers-48 1 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Req-chng-lane1 ), TIMEOUT-VALUE)e-85 
Condition: 

Output Action: 
Description: No response from vehicle in adjacent lane. Abort Change-lane maneuver. 

56 



Location: Controller 
Trigger Event: System-Chnglanee-84 
Condition: 

A 
N 
D 

Position,-48 In State Single,-48 
Distance,-48 In State 
Motion,-48 In State SteadyS-48 
Nextlane-back,-~n 

Output Action: Req_chnglane2,84, Set-vehicle1-ide-84, Set_own-ide-84 
Description: Send request to two vehicles in adjacent lane to change lanes. 

T [ T 

Transition(s): ait2,-48 - I No-Maneuvers-48 I 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(O)Req-chng-lane2 ), TIMEOUT-VALUE)e-85 
Condition: 

Output Action: 
Description: Received indication from both vehicles in adjacent lane to proceed with 
changing lanes. 
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Transition(s): - -1 
Location: Controller 
Trigger Event: Rcvd-chnghne-oke-g4 
Condition: 

Output Action: 
Description: Received indication from one vehicle to proceed with changing lanes. Wait 
for reply from the other. 

Transition(s): 4 I No-Maneuvers-4g 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Systemxhnglane ), 
CHANGELANE-TIME)e-84 
Condition: 

Output Action: Changelane-completee-g4, Set-vehiclelide-g4, Set-vehicle2ide-g4 
Description: Vehicle changing lanes completes Change-lane maneuver. 

58 



Transition( s): I No-Maneuvers-48 I -- -1 
Location: Controller 
Trigger Event: Rcvdmerge-oke_84 
Condition: 

Output Action: 
Description: Platoon ahead has agreed to Merge maneuver. Begin merging. 

Transit ion( s) : I No_Mane~ver,-4~ I + 

Location: Controller 
Trigger Event: Systemmergee_84 
Condition: OR 

Output Action: Req-mergee-84, Set-vehicle1ide-84, Set-own-ide-84, 
Set~lum_vehicles_p,_84, set-dist_aheade-84 
Description: Send request to platoon ahead to merge with it. 
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Transition(s): I] - -1 
Location: Controller 
Trigger Event: Rcvdmerge-oke..84 
Condition: 

A 
N 
D 

OR 

Output Action: 
Description: Received indication to proceed with merging with platoon ahead. 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Req-merge ), TIMEOUT_VALUE),-~E, 
Condition: 

A 
N 
D 

OR 

Output Action: 
Description: No response from platoon ahead. Abort Merge maneuver. 
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Transit ion( s) : -1 -+ I No-Maneu~er,-4~ 1 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok ), TWO * Sqrt(TW0 * 
Dist-ahead / ACCELRATE))e-85 
Condition: 

A 
N 
D 

Position,-48 In State Single,-48 

Distance,-48 In State BetWeen,-48 
Distance,48 In State IAPs-48 

Output Action: 
Description: Platoon merges with platoon ahead. 

Transit ion( s) : I ~ o - ~ a n e u v e r , - ~ ~  I + 

Location: Controller 
Trigger Event: Systemsplite-84 
Condition: 

A 
N 
D 

Output Action: Start-leadersplite-84, Send1eadersplite-84, Set-vehicle1-ide-84 
Description: Leader initiates Split maneuver. 
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Location: Controller 
Trigger Event: Systemsplite-84 
Condition: 

A 
N 
D 

Output Action: ReqSplite-84, Set-vehic1e1ide-84, Set-own-ide-s4, Setnum-vehiCleSe-84 
Description: Send request to leader to split platoon. 

Location: Controller 
Trigger Event: Rcvdsplit-oke-84 
Condition: 

A 
N 
D 

Position,-g8 In State Not-Leaders-48 
 distance,^^ In State IAPs-48 

Output Action: 
Description: Vehicles ahead start to split from rest of platoon. 

Transition(s): -1 4 I No-Mane~ver,-4~ I 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit ), T W  
IPDISTANCE / ACCELRATE)),_ss 
Condition: 

‘0 * Sqrt(TW0 * 

Output Action: 
Description: Complete Split maneuver. 
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Transition(s): I S p l . 1  lts-48 - [ No&faneuver,-48 I 
Location: Controller 
Trigger Event: VehiClesplit_COmplete,_84 
Condition: 

A I MotionS-4s In State Steads,-48 

Output Action: 
Description: Complete Split maneuver. 

Motion Transition Definitions 

Motion 

Decelerate Accelerate 

Lane-Change 

Figure 16: 
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Transition(s): -- 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok ), TWO * Sqrt(TW0 * 
Dist-ahead / ACCELRATE))+85 
Condition: 

A 
N 
D 

Position,-48 In State Single,-48 
Position,-48 In State Leader,-48 
Position,-g8 In State Not_Leader,_48 
Maneuver-StatusS-48 In State Merges-48 

Output Action: 
Description: Decelerate during Merge maneuver. 

OR 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit ), Sqrt(TW0 * 
IPDISTANCE / ACCELRATE)),-85 
Condition: 

Output Action: 
Description: Former leader of platoon decelerates during Split maneuver. 
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Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok ), Sqrt(TW0 * TWO * 
IPDISTANCE / ACCELRATE))e-85 
Condition: 

A 
N 
D 

Output Action: 
Description: Vehicles decelerate during Split maneuver. 

Transition(s): -1 --+ 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok ), TWO * Sqrt(TW0 * 
Dist-ahead / ACCELRATE))e-85 
Condition: 

A 
N 
D 

Output Action: Sendmerge-completee-84, Set-vehiclel-ide-84 
Description: Vehicles have merged with platoon ahead. 

OR 
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Transition( s ) :  1 ~ecelerate,-48 I - 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Start-leadersplit ), TWO * Sqrt(TW0 * 
IPDISTANCE / ACCELRATE))e-85 
Condition: 

Output Action: Sendspl_completele_84, Set-vehicle1ide-84 
Description: Former leader has completed Split maneuver. 

Transition(s): -1 --+ 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Split-ok ), TWO * Sqrt(TW0 * TWO * 
IPDISTANCE / ACCELRATE)),_85 
Condition: OR 

Output Action: 
Description: Vehicles have completed Split maneuver. 
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Transition(s): [ ~ a n e - ~ h a n g e , - 4 ~  I - -1 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)System-chng-lane ), 
CHANGELANE-TIME)e-84 
Condition: 

A 
N 
D 

Maneuver-StatusS-48 In State Change_Lane,-48 
Position,-48 In State Single,-48 
Distance,-48 In State 

Output Action: 
Description: Completion of Change-lane maneuver. 

Transition(s): -1 - 
Location: Controller 
Trigger Event: Rcvdrnerge-oke-84 
Condition: 

Output Action: 
Description: Start accelerating towards platoon ahead to merge with it. 
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Transition(s): -1 -+ -1 
Location: Controller 
Trigger Event: Start-1eadersplite-84 
Condition: 

Output Action 1: 

A 
N 
D 

Position,-~s In State Leaders-48 
Maneuver-Status,-dx In State Splitn-4x 

Description: Leader starts accelerating away from platoon during Split maneuver. 

Location: Controller 
Trigger Event: Split_Ok,-84 
Condition: 

A 
N 
D 

Maneuver-Statuss-48 In State Busy,-48 
Positions-4g In State Leaders-4s 
Distances-48 In State Ips-48 

Output Action: 
Description: Leader starts accelerating during Split maneuver. 

Transition(s): - 
Location: Controller 
Trigger Event: Start-accle-84 
Condition: 

A 
N 
D 

Output Action: 
Description: Vehicles that are not leaders start accelerating during Split maneuver. 
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Transition(s): I E I  -+ -1 
Location: Controller 
Trigger Event: System-chnglanee84 
Condition: 

I Next-lanefrontv-7c, I 
Output Action: 
Description: No vehicles in adjacent lane. Proceed with changing lanes. 

Transition(s): - -1 
Location: Controller 
Trigger Event: Rcvd-chng1ane-oke-84 
Condition: 

Output Action: 
Description: Received indication to proceed with changing lanes. 
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Distance Transition Definitions 

I Distance 

+ Between 

~ 

Figure 17: 

Transition(s): -1 
Location: Controller 
Trigger Event: Received-1aneinfoe-s4 
Condition: 

Output Action: 
Description: Act on sensor input. 
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Transition(s): -1 -+ -1 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok 
Dist-ahead / ACCELRATE)),-85 
Condition: 

Output Action: 
Description: Towards completion of Merge maneuver. 

), TWO * Sqrt(TW0 * fb 
T T  

Location: Controller 
Trigger Event: Vehiclesplit-completee-~4 
Condition: fi 

T T  

Output Action: 
Description: Former leader of platoon has accelerated away to complete split. 
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Transition(s): -1 - F l  
Location: Controller 
Trigger Event: VehiClesplit_COmpletee-8.1 
Condition: 

A 
N 
D 

Output Action: 
Description: Vehicles ahead have accelerated away to complete split. 

Transition(s): -1 - 
Location: Controller 
Trigger Event: Become_leader,-84 
Condition: 

A 
N 
D 

Output Action: 
Description: Vehicle in front, i.e. the leader, starts splitting away. 

Transition(s): -1 - -1 
Location: Controller 
Trigger Event: Rcvd-~plit-ok~-84 
Condition: 

Output Action: 
Description: Vehicles ahead start splitting away. 
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Location: Controller 
Trigger Event: Rcvdmerge_ok,-s4 
Condition: 

A 
N 
D 

Output Action: 
Description: Start merging with platoon ahead. 
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Position Transition Def in i t ions  

I 

Position 

Single e D 

Leader W 

Not-Leader - 
Figure 18: 

Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok ), TWO * Sqrt(TW0 * 
Dist-ahead / ACCELRATE)),-85 
Condition: 

A 
N 
D 

O u t p u t  Action: 
Description: Platoon has merged with platoon ahead. 
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r 
Transition(s): t -1 
Location: Controller 
Trigger Event: Startleadersplite-84 
Condition: 

A 
N 
D 

Output Action: 
Description: Leader begins to split away from platoon. 

Transition(s): -1 ---+ -1 
Location: Controller 
Trigger Event: Split-0ke-84 
Condition: 

Output Action: 
Description: Leader begins to split. This is the only other vehicle in the platoon. 
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Transition(s): - 
Location: Controller 
Trigger Event: Become_leader,_84 
Condition: 

A 
Motion,-48 In State Steady,-48 D 
Distance,-48 In State IAPs-48 N 
Maneuver-StatusS-48 In State No-ManeuverS-48 

N u m ~ v e h i c ~ e s i n ~ p ~ a t ~ o n ~ ~ ~ o  > 2 

Output Action: 
Description: Become new leader of platoon as leader splits. 

Transition(s): -+ -1 
Location: Controller 
Trigger Event: Rcvdsplit-oke-84 
Condition: 

Output Action: 
Description: Become new leader of platoon as part of it accelerates away during Split 
maneuver. 
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Transition(s): -1 
Location: Controller 
Trigger Event: Become-leadere-84 
Condition: 

Output Action: 
Description: Leader splits and this is the only other vehicle in the platoon. 

Location: Controller 
Trigger Event: Rcvdsplit-oke-84 
Condition: 

A 
N 
D 

Output Action: 
Description: Rest of platoon splits and this is the only vehicle left. 
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Transition(s): -1 t I leader,48]  
Location: Controller 
Trigger Event: Vehiclemerge~complete,_~~ 
Condition: 

A 
N 
D 

Output Action: 
Description: Rear platoon merges with this vehicle. 

Transition(s): 4 -1 
Location: Controller 
Trigger Event: TIMEOUT (TIME(PREV(0)Rcvd-merge-ok ), TWO * Sqrt(TW0 * 
Dist-ahead / ACCELRATE)),-85 
Condition: 

A 
N 
D 

Output Action: 
Description: Merge with platoon ahead. 

A.3 Input Variables 
Input: Next -lane-back 
Type: boolean 
Expected Range: True, False 
Granularity: N/A 
Units: N/A 
Load: 
Exception handling information: 
Description: True if vehicle present behind in adjacent lane, False 
otherwise. 
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Input: Next -lane front 
Type: boolean 
Expected Range: True, False 
Granularity: N/A 
Units: N/A 
Load: 
Exception handling information: 
Description: True if vehicle present aheac 1 in a( djacent lane, False otherwise. 

Input: Thislane-front 
Type: boolean 
Expected Range: True, False 
Granularity: N/A 
Units: N/A 
Load: 
Exception handling information: 
Description: True if vehicle present ahead in own lane, False otherwise. 

Input: Next-lane-back-position 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Position of vehicle behind in adjacent lane. 

Input: Next-lanefront-position 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Position of vehicle ahead in adjacent lane. 

Input: This-lane-front-position 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Position of vehicle ahead in own lane. 
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Input: Own-position 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Position of own vehicle. 

Input: Num-vehiclesin-platoon 
Type: integer 
Expected Range: 0 .. 20 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Number of vehicles in platoon. 

Input: Num-vehicles 
Type: integer 
Expected Range: 0 .. 20 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Number of vehicles in a platoon. Used in communication 
during Merge or Split maneuver. 

Input: Own-id 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of own vehicle. 

Input: Vehiclelid 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of a vehicle. 

80 



Input: Vehicle2id 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of a vehicle. 

Input: idList 
Type: integer list 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: N/A 
Load: 
Exception handling information: 
Description: List of IDS of vehicles in platoon. 

Input: Dist -ahead 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Units: feet 
Load: 
Exception handling information: 
Description: Distance between vehicle and one ahead. Used in Merge. 

A.4 Output variables 
Output: Vehiclelid-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Set-vehiclelide-84 
Assignment: VehiclelidV-8o 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of vehicle. 
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Output: Vehicle2id-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Set-vehicle2ide-~4 
Assignment: Vehicle2idv-81 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of vehicle. 

Output: Own-id-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Set_ownid,-84 
Assignment: OWnidv-80 
Units: N/A 
Load: 
Exception handling information: 
Description: ID of own vehicle. 

Output: Num-vehiclesin-platoon-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Setnum-vehicles-pe-84 
Assignment: Num~vehic les in~p~atoon ,~~~ 
Units: N/A 
Load: 
Exception handling information: 
Description: Number of vehicles in own platoon. 

Output: Num-vehicles-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Setnum-vehiclese-84 
Assignment: Num-vehiclesv-80 + 1 
Units: N/A 
Load: 
Exception handling information: 
Description: Number of vehicles in platoon, plus one. 
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Output: Dist-ahead-out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: Set_dist_ahead,-s4 
Assignment: Dist-aheadV-8l 
Units: feet 
Load: 
Except ion handling informat ion: 
Description: Distance of vehicle ahead. 

Out put : idList -out 
Type: integer 
Expected Range: 0 .. 1000 
Granularity: 1 
Trigger: SetidList,-84 
Assignment: idList,-81 
Units: N/A 
Load: 
Exception handling information: 
Description: List of ids of vehicles in platoon. 
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A.5 Constants 
IP-DISTANCE : 20 
CHANGE-LANE-TIME : 3 
TIMEOUT-VALUE : 10 
IAP-DISTANCE : 2 
ACCEL-RATE : 5 
MAX-VEHICLES- NPLATOON : 20 
MIN-SPLIT-DIST K NCE : 60 

A.6 Event List 
System-chnglane 
Rcvdreq-chnglane 
Vehicle-chnglane-complete 
Rcvd-chnglane-ok 
Changelane-complete 
Req-chnglanel 
Chnglane-ok 
Req-chnglane2 
Systemmerge 
Rcvdreqmerge 
Rcvdmerge-ok 
Vehiclemerge-complete 
Sendmerge-complete 
Reqmerge 
Merge-ok 
Systemsplit 
Startleadersplit 
Becomeleader 
Rcvdreqspllt 
St art accl  
Rcvd-split-ok 
Split -ok 
Vehiclesplit-complete 
Split2xomplete 
Sendleadersplit 
Reqsplit 
Sendsplit-ok 
Sendspl-complete1 
SendspLcomplete2 
Receivedlaneinfo 
Set-vehiclelld 

et-vehlcle2~d 
et -ownld 
etaurn-vehicles 

Setnum-vehicles-p 
et-dist-ahead 
etidList 

TIMEOUT (TIME(PREV(0)System-chnglane ), CHANGE-LANE-TIME) 
TIMEOUT (TIME(PREV(0)Rcvd-req-chnglane ), TIMEOUT-VALUE) 

8 
8 
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TIMEOUT (TIME(PREV(0)Req-chnglanel ), TIMEOUT-VALUE) 
TIMEOUT (TIME(PREV(O)Req_chnglane2 ), TIMEOUT-VALUE) 
TIMEOUT (TIME(PREV(0)Req-merge ), TIMEOUT-VALUE) 
TIMEOUT (TIME(PREV(0)Rcvdmerge-ok), TWO * Sqrt(TW0 * Distahead 
/ ACCEL-RATE)) 
TIMEOUT (TIME(PREV(0)Rcvd-reqmerge ), TIMEOUT-VALUE) 
TIMEOUT (TIME(PREV(0)Startleadersplit ), Sqrt(TW0 * IP-DISTANCE 
/ ACCEL-RATE)) 
TIMEOUT (TIME(PREV(0)Startleadersplit ), TWO * Sqrt(TW0 * IPDISTANCE 
/ ACCEL-RATE)) 
TIMEOUT (TIME(PREV(0)Split-ok ), Sqrt(TW0 * TWO * IP-DISTANCE 
/ ACCEL-RATE)) 
TIMEOUT (TIME(PREV(0)Split-ok ), TWO * Sqrt(TW0 * TWO * IP-DISTANCE 
/ ACCEL-RATE)) 
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Chapter 1 

Introduction 

Major technological advances in the past century have facilitated inventions of 

profound usefulness to humankind. We are able to produce more food, fight disease, 

guard against natural disasters, and otherwise improve our quality of life. However, 

the same inventions can also be the cause of diseases, disasters, and a degraded 

quality of life. Bridges and buildings protect us from a harsh environment, but on 

occasion they fall. Power plants of all varieties heat our homes in the winter and 

give electricity to hospitals. But power plants, especially nuclear power plants, are 

capable of large-scale destruction. Even a non-destructive black-out can potentially 

contribute to the loss of lives. Such technologies as aviation, railway systems, nuclear 

energy, and medical systems have had a steadily increasing impact on our safety and 

welfare. 

Much of the good and bad that technology can bring is due to an ever-increasing 

complexity in the things we build. Even as we create tools at the limit of our un- 

derstanding, we use them to design even more complicated systems. This trend is 

not limited to advanced research; systems are routinely developed with increasing 

complexity [a ] .  Systems have likewise increased steadily and significantly in sheer 

size [31]. Size and complexity make the task of carefully investigating the hazards 

to which a device or process may expose its environment more difficult [31]. This, 
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combined with the difficulty operators have in understanding hazards as they occur, 

and especially in bringing them under control, compromises our ability to design safe 

systems. As Charles Perrow observes: 

In the last fifty years, ... and particularly in the last twenty-five, to 

the usual cause of accidents-some component failure, which could be 

prevented in the future-was added a new cause: interactive complexity 

in the presence of tight coupling, producing a system accident [26]. 

The means of system control influences complexity. This is especially true of 

automatic controllers; the potential “coupling” that Perrow mentions above is limited 

if the control loop requires actions from a human operator. Historically, systems have 

been controlled by mechanical or electrical means, although pneumatic, hydraulic, 

and other devices are also commonly placed in the control loop. However, computers 

and the software they contain are steadily replacing many of these conventional tech- 

nologies. For example, in 1955 only ten percent of U.S. weapon systems contained 

software. By 1981, more than 80 percent were computerized [15]. 

The reasons for computerization are many-fold, though not all of them are 

sound. Computers can centralize process control, a common but debatable goal. 

Software is relatively easy to modify, saving time and expense for the developers. It 

is more precise and accurate than many conventional technologies. Computers per- 

form millions of instructions per second, making software the fastest alternative to 

perform complex tasks. Additionally, the combination of computer screen and flexible 

operating modes makes the computer an attractive alternative to the “traditional op- 

erator’s control panels, festooned with switches, buttons, and lamps.” Unfortunately, 

the computer is also used as a marketing tool; “computerized” systems are often per- 

ceived by industry, the government, and the general public as uniformly superior to 

older technologies. Finally, computers are used to improve system safety. 
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The arguments given here comprise only a partial list of why computers are in- 

creasingly prevalent in safety-critical systems, but it is strong argument that software 

has a growing role in process control. However, software is certainly not without its 

problems. First and foremost, it increases the very complexity it seeks to treat [20]. 

This is at least partly due to the aforementioned phenomenon of attempting to build 

ever more complex systems as they become possible: 

[Tlhe availability of enormous computing power at a low cost has led 

to expanded use of digital computers in current applications and their 

introduction into many new applications. Thus larger and more complex 

systems are being designed. 141 

The additional complexity is compounded by the nature of control software. 

While conventional technologies exhibit typically continuous behaviors (consider, for 

example, the sawtooth-shaped voltage of an overdriven capacitor or the deflection 

of a stressed beam) software typically exhibits discrete reactions to its inputs. This 

behavior can be dangerous since small perturbations of software inputs often result 

in huge deviations in the outputs [l5, 261.' Additionally, the mathematics governing 

programming languages are not as well understood, nor as easily calculated, as those 

for analog systems [15]. 

Software engineering is a relatively new discipline, and there is very little his- 

torical data on its use as compared to other fields of engineering. The products of 

software have very unpredictable failure modes and rates compared to, say, metal- 

lurgy, solid state electronics, or chemistry. Although more will be learned as software 

engineering matures, efforts are exasperated by the wide range of possible behaviors 

'Devices other than digital computers are certainly capable of such reactive behavior, e.g., a 

switch connected to an explosives detonator. However, it is common-place for there to be a highly 

non-linear relationship between software inputs and outputs. 
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enabled by software. Process-control software is especially difficult to characterize, as 

designs generally result in “frontier software,” which tests the limits of programming 

practice [24]. 

As we place more faith in computers, we become more vulnerable to their fail- 

ures. Peter Neumann has compiled a list of over 400 cases in which computers con- 

tributed to an accident or near-accident, some of which resulted in loss of life. Some 

incidents are due to computer hardware failures. However, the majority are due to 

some sort of software error [8]. Computers have contributed to an increasing number 

of medical equipment recalls by the U.S. Food and Drug Administration. For exam- 

ple, the number of recalls doubled between the years of 1982 and 1984 [13]. According 

to Forrester and Morrison [8], failures are common in telephone switching software, 

air traffic control systems, bank automated teller machines, electronic funds transfer 

systems, industrial robots, and police computers. 

One proposed solution to the problem of unsafe software is to remove the com- 

puter from safety-critical systems altogether [8]. Similarly, the problem may some- 

times be avoided by not building the system at all. These options should seriously be 

considered; however, it is unrealistic to expect such rules to be applied categorically. 

Computer software has many strengths, and sometimes it is the best alternative. 

Regardless, computers will continue to be installed in safety-critical devices, and it 

is the responsibility of software and system engineers to develop methods of making 

software safer. 

Unit, integration, and operational testing are the traditional ways to make soft- 

ware more reliable. While testing is a necessary part of software development, in 

general it is not sufficient for safety-critical software. Some operational tests cannot 

be performed at all, e.g., inducing a meltdown in a nuclear reactor or firing missiles 
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at the United States to test the SDI system proposed in the 1980’s. Operational 

conditions can be simulated during integration testing, but assumptions about the 

environment may be wrong. Even if operational testing can be performed, there are 

probably insufficient resources (including time) to obtain a high enough statistical 

confidence in the software. For example, “ultra-reliable” software with an expected 

failure rate of lo-’’ per hour would require approximately 114 years testing of 10,000 

replicates [4]. About one-third of all software errors do not appear until after 5,000 

operation years [20]. These figures do not include the added burden of testing in the 

presence of failures of other components. It is difficult, if not impossible, to test the 

software under all failure modes of the system. Thus, although testing is a necessary 

part of protecting the system against unsafe software, other steps must be taken to 

insure system safety. 

1.1 Contribution of the dissertation 

An important step in developing safe software is to perform hazard analyses. 

Hazard analyses were first developed in the fields of nuclear power and weaponry, 

aviation, and space technology [31]. As is shown in chapter 2, there are a variety 

of hazard analysis procedures, but few can handle the complexities of software. In 

particular, there is a lack of forward search methods for the analysis of software 

requirements. 

This dissertation presents an algorithm that, given a formal requirements spec- 

ification, automatically generates perturbations in the system, which it propagates 

forward to find potential hazards. The algorithm can be used to explore how de- 

viations in the system can affect the controller’s behavior (and, via feedback, the 
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process’s state) and how deviations in the controller’s behavior can affect the pro- 

cess. In order to achieve this goal, a primitive language of causal dependency will 

be presented. Additionally, a framework is provided for calculating normal and de- 

viant behavior at varying levels of detail. The algorithm is defined in terms of these 

concepts. 

1.2 Organization of the dissertation 

This dissertation is organized into eight chapters, including this introduction. 

Chapter 2 is a survey of existing hazard analysis procedures. The contributions of 

this thesis are introduced in chapter 3. These contributions are then each treated in 

detail in the following chapters. A new primitive language of causality is presented 

in chapter 4. Chapter 5 provides a theoretical and practical framework for the de- 

velopment of a calculus of deviations. These concepts form the basis for a forward 

analysis algorithm developed in chapter 6. Chapter 7 presents examples. Chapter 8 

summarizes the results and suggests new research areas for deviation analysis. 



Chapter 2 

Related Work 

This chapter presents hazard analysis techniques that may be considered to ad- 

dress software safety concerns. These methods are drawn from academic discourses in 

software and system safety and from the state of practice in various industries. The 

present survey is not intended to be complete with respect to these fields of knowl- 

edge. Rather, evaluation of the methods is limited to applicability to requirements of 

embedded-control software. 

Given a system and an anticipated operating environment, hazard analysis is 

the methodical investigation of the system, in part or as a whole, for potential haz- 

ards. The concept of a hazard has been defined in a variety of ways. A traditional 

engineering definition is the “potential for an uncontrolled transfer of energy having 

the capacity to result in such undesired effects as death and injury.”[31] This defi- 

nition precludes software from being in a hazardous state since it does not directly 

involve an uncontrolled transfer of energy. Even if the definition is interpreted to 

include indirect releases of energy, it excludes other dangerous situations. For exam- 

ple, a non-operational patient monitoring system can lead to an accident in which no 

energy is released, controlled or otherwise. 

Another definition of hazard, suggested by [30], is a “peril, danger, or risk.” 

While this captures the intuitive notion of a hazard, and certainly cannot be proven 

7 
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to exclude any cases, it is too ambiguous to serve as a technical definition. Probably 

the most useful definition is that of [16]: 

a hazard is a state or set of conditions of a system ... that together 

with other conditions in the environment of the system ... will lead to an 

accident (loss event). 

Thus, a hazard is a state of the system such that an accident is inevitable under certain 

circumstances. Note that this definition differentiates between the system and its 

environment. A useful working definition of the system is the controller and the part 

of its environment over which it has some control [16] (thus dividing the controller’s 

environment into “system” and “environment.”) For example, consider an autopilot 

on an aircraft. The autopilot is the controller. It exercises at least partial control 

over the entire aircraft, but not over anything external to the aircraft. Therefore, the 

autopilot system is defined by the borders of the aircraft. The operating environment 

is everything else that the aircraft encounters, including weather, other aircraft, the 

ground, and radio signals. A potential hazard is a downward-drifting autopilot in an 

airborne aircraft. Under some circumstances (e.g., over foggy, mountainous terrain) 

an accident will occur. Note that the hazard is not present when the aircraft is 

grounded. A hazard description must include the state of the system and must be 

defined with respect to some (realistic) environmental conditions. 

Hazard analyses may conceivably be performed at any stage of system develop- 

ment. However, there is evidence that the earliest stages of development may benefit 

most from a hazard analysis. In a study limited to the causes of safety-related software 

errors [all, Lutz found that the errors that persist until integration and system test- 

ing are usually due to difficulties with the software requirements. In particular, she 

reports that “safety-related functional faults are more likely than non-safety-related 

functional faults to be caused by requirements which have not been identified.” Thus, 
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Figure 2.1: The TCAS I1 model of detected aircraft, written in RSML [6]. 

one may conclude that it is most beneficial and easiest to perform analysis early in 

the design process. 

A system may be represented in two complementary ways. A structural defini- 

tion represents the system as a static hierarchy of elements. Structural relationships 

are invariant with respect to time. For example, the RSML diagram in figure 2.1 con- 

tains a variety of structural definitions. The states Other-Trafic, Proximate-Trafic, 

Potential- Threat, and Threat are mutually exclusive. This relationship is independent 

of time; if one state is active then the others must be inactive. The state Threat is 

coexistent with its sub-states: Crossing, RIM-Send-Status, Range-Test, etc.. If one of 
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this group is active, then all of them are. Again, this relationship may be applied 

without knowledge of past activity. 

RSML states are boolean-active or inactive. Structural definitions may take 

other mathematical forms. For example, the ideal gas law, PV = nRT, is invariant 

with respect to time. 

The dynamic behavior of a system may be represented as a mapping from state 

to subsequent state. Dynamic definitions differ from structural definitions in that 

the relationships depend on time. The transitions in the Intruder-Status example 

transitions are dynamic definitions. For example, if state Potential-Threat is active, 

then the transition to Other-Trufic defines how Intruder-Status can be in that state 

in the next instant. (Note that the conditions for taking the transition are not shown 

in the diagram.) 

Most hazard analysis techniques involve a search of some sort. The type of 

search may be categorized with respect to the direction of analysis. “Forward” 

searches are those in which the analyst traces from cause to effect. If one conceives 

of the system as a function, then a forward search works from domain to range. In 

contrast, “backward” searches work from range to domain, thus representing a trace 

of the function’s inverse relation. 

The techniques presented in this chapter are divided into backward searches, 

forward searches, and combined approaches. 
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2.1 Backward Search Techniques 

2.1.1 State Machine Hazard Analysis 

State Machine Hazard Analysis (SMHA) is an algorithmic procedure developed 

specifically for the analysis of software requirements [18], although the method can 

be adapted to any stage of design [16]. SMHA was originally defined for a timed 

Petri net language [18]. It has been adapted to Statecharts [23, 241 and an effort is 

underway to adapt it to RSML. The algorithm takes as input a model of the system 

described in a formal, state-based language. The algorithm also requires the system 

state space to be partitioned into complementary “hazardous ” and “safe” states. 

The algorithm also supports analysis of safety in the presence of failures if the formal- 

language supports the specification of “failure” transitions (described below). 

The algorithm begins with a set of hazardous states that the analyst wishes 

to inspect. It chooses one and does a search backward along all paths leading to 

that state. The search terminates at a “critical” state-a state that is safe and leads 

directly to another safe state (other than the one that is being followed backward, if it 

happens to be safe.) The critical state is the last point at which the system can avoid 

a hazard. The requirements must be changed to eliminate the undesired transition 

from the critical state. The algorithm then picks another hazardous state to inspect. 

Note that the algorithm is conservative in that it requires the removal of bad 

transitions at all critical states, whether or not the critical state is reachable from 

the initial state. The analyst is forced to remove hazardous states that may not 

be reachable, but the added burden is probably far outweighed by the savings in 

analysis efforts in determining whether a critical state is reachable. Thus, SMHA 
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is a labor-efficient method of hazard analysis. Additionally, designing in these extra 

safety constraints provides a measure of protection against implementation errors and 

hardware failures. 

One consideration of the algorithm is whether any critical states could lead 

eventually only to hazardous states, since the safe alternative may itself lead only 

to hazardous states. This problem is avoided by having the hazardous transitions 

removed as they are found. This is accomplished by adding the transition to a list 

for the analyst to inspect and removing it for the reachability graph. In this way, the 

next search to reach a particular critical state has one less transition to choose from. 

By the time the last hazardous state is analyzed, that “critical” state is no longer 

critical, because all transitions but the one under inspection have been eliminated 

from the reachability graph; the search continues backward to the new critical state. 

Thus the algorithm facilitates the removal of the hazards under inspection. 

SMHA must be performed after the hazard identification phase since it takes 

the hazardous states as input. Like any backward analysis method, it is most suited 

for a relatively small number of hazardous states [18]. 

2.1.2 Fault Tree Analysis 

Fault tree analysis (FTA) was developed by Bell Laboratories in 1961 for the 

Minuteman missile project [14]. The analysis begins with the identification of some 

undesired event, called the “top event.” The analyst determines the conditions that 

could comprise the top event and places them in a graphical layout similar to that 

shown in figure 2.2. If a single condition in a group of conditions is sufficient to cause 
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Figure 2.2: Fault tree. 

the top event, then the conditions are all connected by an OR gate; an AND gate is 

used if all conditions must be true for the top event to occur. 

Treating each condition as a new top event, the analyst proceeds successively 

to build a tree in which causality can be traced from the leaves to the root. The 

tree is finished when all the leaves are “primal events,” which are considered to occur 

stochastically or are otherwise resistant to a logical analysis. The decision of when 

to stop is at the discretion of the analyst [16], subject to the information available. 

Fault trees may be used qualitatively to determine whether or how a particular 

top event is possible by inspecting “cut sets.” A cut set is a set of primal events 

such that all of the events are necessary and sufficient to cause the top event [14]. 

Algorithms exist to produce a fault tree’s cut sets automatically. Thus the fault tree 

is very useful in determining the causative relationship between primal events and 

the top event [14]. 

FTA is traditionally a probabilistic methodology [7]. A quantitative analysis 

can be performed if probabilities are provided for the primal events, although the 
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analysis is complicated by non-independent events. However, the validity of proba- 

bilistic methods has been called into question. Actual rates of failure in practice have 

exceeded calculated values by several orders of magnitude [27]. Probability densities 

are usually ignored [30]. Consequently, no statistical confidence can be attached to 

the top event’s probability, severely restricting its usefulness. Especially with respect 

to software, numbers can be very difficult to obtain. In order to complete a prob- 

abilistic analysis, the analyst must assign arbitrary values for software failures. In 

light of this dilemma, the FAA specifically excludes software from any quantitative 

analysis requirements [2O]. 

FTA is used extensively in safety programs in the nuclear power and weapons 

industries. It has also gained widespread acceptance in other industries.’ 

Although FTA has proven useful in practice, manually-constructed fault trees 

suffer from several weaknesses. They can require much time and effort to construct 

[ 5 ,  9, 14, 331. Also, they are subject to logical errors and omissions [14]. Because of 

this, and because FTA ((is an art, rather than a science” [33], different analysts often 

produce fault trees that are inconsistent with each other [5, 15, 331. 

Several algorithms have been developed to alleviate problems with the manual 

construction of fault trees. One family of algorithms is based on the technique of 

“mini-fault trees.” The other family of algorithms uses “digraphs.” 

‘A variation of FTA is the Management Oversight and Risk Tree (MORT). MORT is guided by a 

1500-item questionnaire related to system management, human behavior, and environmental factors 

[16]. These issues are outside the scope of this dissertation. 
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Figure 2.3: Mini-fault tree for IF-THEN-ELSE. Taken from [17]. 

Mini-Fault Trees 

The term “mini-fault tree” was coined by Taylor and the concept was developed 

independently by Taylor and by Leveson in the early 1980’s. A mini-fault tree is a fault 

tree fragment for a particular language construct, such as a programming language 

statement (see figure 2.3 for an example). The top node of a mini-fault tree is an 

event to expand. The leaves of a mini-fault tree are events or conditions that must 

be investigated in order to show that the top node can or cannot occur. For each 

leaf, the analyst has the option of attaching another mini-fault tree or expanding it 

by hand. 

In practice mini-fault trees are usually equivalent to the application of weakest 

pre-condition rules. The weakest precondition wp(S, R) is defined as the weakest 

logical statement about the state in which execution of statement S results in state 
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Figure 2.4: Mini-fault tree constructed from standard component transition table. 
The output is either an event or a new state. 

R. The root node of a mini-fault tree is equivalent to state R occurring as a result 

of statement S .  The remaining nodes define the weakest precondition. For example, 

the mini-fault tree in figure 2.3 is equivalent to the following weakest pre-condition 

rule: 

wp(if-then-else, event) = (cond. A wp(then-part, event)) V 
( l cond .  A wp(e1se-part, event)) 

Mini-fault tree analysis methods have been outlined for both hardware and 

software. Taylor describes an algorithm based on a process flow sheet of the plant, 

such as a piping and instrumentation diagram [ 33 ] .  The system is assumed to be a set 

of standard components, such as valves and pumps, inter-connected by ports. Each 

port has process variables defined for it, such as pressure and temperature. A state 

transition table is defined for each standard component mapping an input variable 

event (“pressure becomes high”) and a component state to a new state or output 

event. The mini-fault trees are constructed from these tables. See figure 2.4 for an 

example. 

Leveson and Harvey [17] define software fault tree analysis (SFTA). The goal 

of SFTA is either to prove that the software cannot cause a particular event or to 

show the circumstances under which the the event can occur. A standard fault tree 
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Figure 2.5: An instantiated mini-fault tree (taken from [17].) 

is constructed until a leaf node involves an assertion on the result of a particular 

software statement. The analysis tool then attaches the program statement’s mini- 

fault tree onto the fault tree at the appropriate place, substituting appropriate values 

(see figure 2.5 for an example.) 

Software fault tree analysis is semi-automated. Leaves of a mini-fault tree that 

reference other statements can have their mini-fault trees appended (e.g., (‘then-part 

causes event” and ‘(else-part causes event” in figure 2.3.) This activity is equivalent 

to the expansion of wp(S, R)  terms in a weakest pre-condition definition. 

The SFTA templates have been defined for the programming language Ada, 

and hence for most algorithmic programming language statements. It has been used 

extensively, including for shutdown software at Ontario Hydro nuclear reactor [3] and 

the University of California, Berkeley FIREWHEEL spacecraft [17]. The methodol- 

ogy has also been extended to the Statecharts specification language [23,24], showing 
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+1 REVERSED VALVE ACTION 

0 VALVE STUCK 

Figure 2.6: A simple digraph. 

the applicability of mini-fault tree analysis, and especially SFTA, to the analysis of 

software requirements. 

Digraphs 

The other method of automating fault tree analysis is the use of directed graphs, 

referred to as digraphs in the literature. Digraphs are used in failure analysis to con- 

struct a model of failure propagation. Nodes in a digraph represent process variables. 

The directed edges represent lines of influence between variables. Figure 2.6 illustrates 

a simple digraph. 

The basic procedure for producing a fault-tree using a digraph is to first convert 

the system description into a digraph and then traverse the digraph backward (ie., 

in the opposite direction of the edges.) The conversion of specification to digraph can 

be automated if standard components are used [14]. For example, figure 2.7(a) shows 

a simple pipe-and-process diagram. Figure 2.7(b) is a description of the standard 

failure behavior of one of its components, a valve. Figure 2.7(c) shows a portion of 

the resulting digraph based on the failure behavior in (b). 

Digraphs can be augmented by specifying the type of influence a failed variable 

can have on another variable. Lapp and Powers [14] allow the set of values {-lo, 

- 1 , 0, +1, +lo} to appear on digraph edges. These values are simplifications of 

the partial derivative of the destination variable’s value with respect to the source 
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Figure 2.7: (a) A simple pipe-and-process diagram. (b) Failure description of a valve. 
(c) The digraph resulting from applying the failure description (b) to figure (a). 
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variable. A value of fl indicates that a failure in one variable causes another to 

deviate from normal value by a moderate amount. A value of f10 indicates that a 

very large deviation results. A value of 0 indicates that the source variable has lost 

influence over the controlled variable. The sign of the edge represents the direction 

of deviation in the controlled variable. The Lapp and Powers method is an example 

of the use of qualitative mathematics, which is discussed in chapter 5 .  

A digraph can include multiple edges between two nodes. In this case, all but 

one of the edges are qualified with failure conditions. The condition may be considered 

external to the model (as all conditions are in the Lapp and Powers version) or it 

may be a predicate of other variable values, as in the logic flowgraph [9]. 

The basic algorithm for constructing a fault tree begins with an assumed failure 

in one of the process variables (ie., at one of the nodes in the digraph.) If the digraph 

is augmented with values, then a specific failure is identified (such as a value of +lo.) 

This is the top event of the fault tree. The algorithm inspects all edges leading into 

the digraph node and constructs an OR gate under the top event consisting of all 

the variable failures that could lead to the top event. Then each of the failures is 

inspected in turn. If several failures must act in conjunction to produce the top event, 

then those failures are placed under an AND gate. 

The algorithm must consider cancelling effects by other variables. For example, 

if an extremely high value for variable A can cancel variable B’s effect on variable C, 

then a treatment of variable B’s influence must include the negation of the possible 

influence of variable A: 
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Y Variable C Fails 

1 Variable B Fails I I extremely high 
A is not 

Digraphs have not been adapted successfully to software. In particular, the 

use of (constant-valued) partial derivatives as a basis for influence is inadequate 

for expressing the often complex relationship between software inputs and outputs. 

However, the use of qualitative values for variable deviations appears to be a promis- 

ing approach, as will be explained in subsequent chapters. 

With the exception of logic flowgraphs, the digraph models do not incorporate 

binary relationships between variables. 

2.2 Forward Search Techniques 

Forward search techniques focus on whether or how a normal or failure state 

can cause a hazard. 

2.2.1 Failure Modes, Effects, and Criticality Analysis 

Failure modes and effects analysis (FMEA) is employed to determine the effects 

of single failures on a system’s performance [7] (contrasted with fault tree analysis, for 

example, which allows the consideration of multiple failures.) FMEA was developed 
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Potential Risk 
Part name Failure Mode Potential effect of failure mode Priority 

Positive input Open circuit No screenwash 108 
wire to pump Short to ground This might (should) blow a fuse 72 

Short to positive The pump will be permanently on. 27 
The water will quickly run out, 
resulting in no screenwash 

Input to CPU Open circuit No screenwash 108 
Short to ground The pump will be permanently on. 54 

The water will quickly run out, 
resulting in no screenwash 

switch which would result in no 
screenwash. 

Short to positive This might blow the tracking on the 54 

Screenwash Stalled pump The pump has a stall current of 72 
Pump 10 A. The fuse is rated at 5 A. 

The fuse will therefore blow. 
Negative input Open circuit No screenwash 108 

to relay Short to ground The pump will be permanently on. 64 
The water will quickly run out, 
resulting in no screenwash 

Darlington output 
Short to positive This would blow the CPU 54 

Figure 2.8: Example of a Failure Modes, Effects, and Criticality Analysis (FMECA) 
table. The second column lists failures modes, the third column failure effects, and 
the last column lists criticality ratings. Taken from [as]. 

as an aid to  reliability analysis, but a variant known as Failure Modes, Effects and 

Criticality analysis (FMECA) has been used to identify potential hazards [16]. 

FMEA is basically an ad-hoc procedure based on a tabular form (see figure 2.8 

for an example.) The first step of the procedure is to  list all of the components of the 

system. Next the analyst lists all of the possible failure modes and failure rates for 

each component. All these data are entered into the FMEA forms. The analyst then 

determines and describes all the possible effects for each failure [16]. For a FMECA 

this information includes hazard severity, the likelihood of detection, and frequency 

of occurrence. If a failure rate is sufficiently high and the effect is sufficiently serious, 
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then the system must be redesigned [as]. A search for failure causes is not a part of 

the FMEA procedure [as]. 

FMEA has been used extensively and is well-understood by industry [7]. It is 

most appropriate as a detailed analysis of a single, standard component [16]. 

FMEA is described as a slow and tedious procedure [7, 25, 281. There are no 

tools to lessen the analyst’s burden of investigating many similar effects, and there 

has been little research into the automation of FMEA [as]. The amount of labor 

involved causes FMEA’s to be expensive, since they must be performed by experts 

[25]. In particular, the method leaves to the analyst the burden of investigating many 

similar failure patterns [28] (or recognizing that such patterns exist.) 

Another weakness of FMEA is its concentration on single failures. In contrast 

to methods like HAZOP, they do not treat hazards arising in component interfaces 

[16]. Finally, FMEA’s lack of structure with respect to identifying failure modes or 

searching for effects is problematic for a software hazard analysis. As discussed in 

chapter 1, control software behavior is often complex and disjointed. Analysts can be 

overwhelmed by the multitude of variable interactions. FMEA does not provide any 

assistance in structuring a search for failure effects. 

2.2.2 Event Tree Analysis 

Event Tree Analysis (ETA) was developed as a hazard analysis method for the 

nuclear industry. The basic structure of ETA is a decision tree, called an event tree. 

Each node in an event tree represents the occurrence or absence of an event, usually 

a failure. The event tree is constrained in two ways. All nodes that are equidistant 

from the root node address the same event. Also, time must proceed monotonically 
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Initiating 
event 

Yes - - 7 No accident 
* * e - / 

/ / e 

Yes e yes / 
e e - 

Yes Yes 

Yes ~ 

no Small loss-of- no 
, /coolant accldent 

0 
0 

0 
0 

no no , no 0 

J - -  - -  - -  - -  - -  
no 

- -  - - -  - -  - - - - severe accident 
Possibility of mode 

+ 8 secs + 12 secs + 2 mins + 5 mins 

z d  pump boiler &ed (Scram) 
Boiler Standb Reactor trip Primary circuit Primary circuit ECCS 

relief valve relief valve start-up 
ECCS not shut Outcome of 
down by accident 
operators pump start-up open reseats on 

falling pressure 

Figure 2.9: An event tree, taken from [16]. 

down the tree, L e . ,  an event node cannot occur before its parent. Figure 2.9 shows 

an example event tree. 

ETA is most commonly used for probabilistic analysis. Each event is assigned 

a numeric probability. The probability of a hazard occurring via a particular path 

is the product of all of the event probabilities along that path, assuming the events 

are independent. The total probability of a particular hazard occurring is the sum of 

each path leading to that hazard. In the example in figure 2.9, a boiler feed pump trip 

may lead to a severe accident if the standby boiler feed pump fails to start and the 

reactor fails to trip or if the standby boiler feed fails to start, the reactor trips and the 

primary circuit relief valve does not open. Given the following fictitious probabilities 

for each event 

Standby boiler feed pump starts = P ( u )  = .99 
Reactor trip (Scram) = P(b)  = .98 

Primary circuit relief valve open = P(c)  = .97 

the probability of a severe accident is 

= [I - P(a ) ] [ l -  q b ) ]  + [l - P(a)]P(b)[l - P(c)] 

= (.01)(.02) + (.01)(.98)(.03) 
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A occurs, then B occurs 

A occurs, B fails to occur 

B occurs, then A occurs 

no Both A and B fail to occur 
A B A 

Figure 2.10: An event tree for two unordered events A and B. 

= 2.00 X 1 0 - ~  + 2.94 X 

This equation assumes, of course, that P ( u ) ,  P(b) ,  and P ( c )  are independent. 

ETA is useful for presenting in detail the possible scenarios that can transpire 

in the event of multiple failures. However, the thoroughness comes at great cost. The 

trees can require quite a bit of space on the page, due to the need to list all events 

across the bottom of the page. The list of events can also grow quite long if events 

do not have a strict sequence. If events A and B may occur as AB or BA, then the 

event tree must have ABA at the bottom of the page to accomodate the alternative 

sequences (see figure 2.10.) Both of these problems are mitigated by separating 

the tree into sub-trees, each of which can have its own list of relevent events. The 

relationship between a sequence of events and the resulting failure is not explicitly 

shown. ETA is limited to a single initiating event. Finally, and most seriously, 

the probabilistic analysis becomes quite complicated if events are not independent. 

Unfortunately, it is difficult to prove (and dangerous to assume) that two events are 

independent. 
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ETA is appropriate only at the detailed design stage and afterward [16]. There 

do not appear to be any automated methods for constructing an event tree, although 

ETA appears to lend itself to automation as well as manual analysis. 

2.3 Combined Techniques 

Some hazard analysis techniques combine forward and backward searches by 

beginning with a scenario, searching backward to find ways in which the scenario can 

occur, and searching forward to determine whether the scenario leads to a hazard. 

Methods that employ such a strategy may be considered “exploratory” since neither 

hazards nor their causes are necessarily known beforehand. 

2.3.1 Cause-Consequence Analysis 

Cause-consequence analysis (CCA) is a semi-automated hazard analysis tech- 

nique that combines forward and backward searches. The source of analysis is a 

block diagram of the system, where each block represents a functional unit and a line 

between blocks represents the output of one block serving as input to the other. 

CCA produces a cause-consequence diagram based on the system description. 

Figure 2.11 shows an example of a cause-consequence diagram. An event box describes 

a change in the system state. A decision boa: shows alternative effects of an event, 

depending on a condition box or condition tree. Condition trees resemble fault trees, 

except that the top event is the condition that makes the decision box true. A 

condition box is a single-node condition tree. The notation also provides for inhibitory 

relationships between events. This symbol is useful to show mutual exclusion, i.e., to 
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Initial Event Falls 
I I 

Condition Box 

Decision Box 

Event Description N 

Event Box I Becomes Ground I 
I Wet I 

Figure 2.11: A cause-consequence diagram, taken from [32] 

show that an event can cause exactly one consequent event of multiple alternatives. 

All the symbols except for the condition boxes and trees form a decision graph. 

The algorithm begins with an initial event. It traces the event backward until 

events can be considered spontaneous. The procedure is essentially the same as con- 

structing a fault tree, suggesting that the algorithms described earlier are applicable 

here. The algorithm then traces forward to find the effects, constructing the decision 

graph. 

As a manual technique, CCA is a systematic analysis of system block diagrams 

that results in a notation in which sequence is shown explicitly [32]. As a semi- 

automated technique, it has several shortcomings. The analyst must decide when 

a particular search path will not lead to a hazard. Also, contrasted with HAZOP 

(presented in the next section) the algorithm does not automatically identify failure 

modes. This lack is not an important flaw in a highly heterogeneous process, where 

behavior is not easily specified anyway, but CCA is not as useful for software process 

control, where system behavior is already abstracted and specified. Thus, it would 

be much more helpful to the analyst for the analysis procedure to postulate failure 
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modes automatically, rather than relying on expert input. More seriously, CCA 

cannot represent feedback directly. All components involved in a feedback loop must 

be collected into a single component for purposes of analysis. Finally, the diagrams 

can become “unwieldy.” [ 161 

2.3.2 Hazard and Operability Study 

Hazard and operability analysis (HAZOP) is a semi-formal review procedure 

developed for the chemical industry to cope with potential hazards and other dis- 

turbances in operations. The goal of a HAZOP is to identify operational deviations 

from intended performance and study their impact on the system’s safety [31]. The 

HAZOP procedure is carried out by a HAZOP expert (the leader) and a team of 

system experts. The leader poses a battery of questions to the experts in an attempt 

to elicit potential system hazards. A HAZOP is basically an exploratory analysis, as 

neither potential faults nor hazards have been identified beforehand [22]. Rather, the 

HAZOP leader hypothesizes an abnormal condition and analysis proceeds in both 

directions determining whether and how the condition is possible and what effects it 

has on the system. 

The analysis follows a systems theory model of accidents [16], in that it concen- 

trates on the hazards that can result from component interaction, Le.,  accidents are 

caused by deviations in component behavior. The basic document that a HAZOP 

draws from is a pipe-and-process diagram. Each pipe has certain process parameters, 

such as pressure, temperature, and chemical composition. A list of guide words is 

applied to each parameter to yield an inventory of deviations from normal or expected 

behavior. See table 2.1 for a typical list of guide words. An example of a deviation 

is the guide word “MORE” applied to pipe A’s temperature. The analysts are asked 
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NONE Intended result is not achieved. 
MORE Too much of a particular parameter. 
LESS Not enough of a parameter. 
AS WELL AS Unintended activity or material. 
PART OF Parts of the parameter are missing. 
REVERSE Parameter’s value is opposite of intended value. 
OTHER THAN Something other than the intended result happens. 

Table 2.1: HAZOP guide words (adapted from [16].) 

the two questions “What is the effect of pipe A’s temperature being too high?” and 

“How can pipe A’s temperature get too high?” Since the questions center around 

pipe parameters, HAZOP has been characterized as a “flow-based” analysis [22]. 

A deviation that can occur and can lead to a hazard is a meaningful deviation 

[22]. Often, this definition is modified to be probabilistic, i e . ,  a deviation that can 

occur with sufficiently high probability and can lead to a hazard with sufficiently high 

probability. 

HAZOP has been used extensively in the chemical, nuclear and food processing 

industries [22]. The success of HAZOP may be attributed to several factors. The 

hypothetical nature of HAZOP questions encourages creative thinking [16]. Also, 

HAZOP studies are typically performed by a team of analysts, led by a HAZOP ex- 

pert, resulting in a potentially very useful exchange of information and opinions. As a 

result, the HAZOP procedure is almost uniquely capable of systematically identifying 

new hazards in a proposed design. 

Since the procedure focuses on flow at the exclusion of component functionality, 

a preliminary HAZOP can be performed early in system design, though the results 

will likely be quite preliminary. 

HAZOP has several limitations. It is time- and labor-intensive [16], in large 

part due to its reliance on group discussions. HAZOP analyzes causes and effects 
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OMISSION Intended output is missing. 
COMMISSION Unintended output is generated. 
EARLY Output is generated sooner than intended. 
LATE Output is generated later than intended. 
COARSE INCORRECT Output’s value is wrong. 
SUBTLE INCORRECT Output’s value is wrong, but cannot be detected. 

Table 2.2: MASCOT guide words. 

with respect to deviations from expected behavior, but it does not analyze whether 

the design, under normal operating conditions, yields expected behavior or if the 

expected behavior is what is desired. 

Since HAZOP is a flow-based analysis, deviations that originate from within 

components are not inspected directly. Rather, a deviation within a component (as 

well as a human error or other environmental perturbation) is assumed to be mani- 

fested as a disturbed flow [31]. This assumption may be problematic both for manual 

and automated procedures. A basic strength of the manual HAZOP is the way in 

which it engenders investigative thought processes. A purely flow-oriented approach 

may cause the analyst to neglect component-related malfunctions and hazards in favor 

of pipe-related causes and effects. Thus it may help a manual analysis to hypothesize 

component deviations. 

Software HAZOP 

Since a HAZOP concentrates on physical properties of the system [31], it is 

not directly applicable to analyzing computer input and output. McDermid and 

Pumfrey [22] outline a manual technique for adapting HAZOP to software design. The 

procedure taken is essentially identical to a standard HAZOP, except that the pipe- 

and-process diagram and guide words are changed. The pipe-and-process diagram 

is replaced by a MASCOT diagram. MASCOT encodes a structural model of the 
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software design, essentially a data-flow language. The guide words chosen by the 

authors are listed in table 2.2. 

The McDermid and Pumfrey method provides a systematic way to perform a 

manual HAZOP of software design. The method has been been applied successfully 

to  the analysis of a “moderate size” aerospace system. The authors intend to adapt 

the method to HOOD and Statecharts. 

A problem with developing an automated technique based on MASCOT is that 

only data flow (or “information flow” in the authors’ terminology) is subjected to 

analysis. While this strategy is faithful to the standard HAZOP procedure, it pre- 

cludes an analysis based on deviations in system state other than that of data paths. 

This weakness does not limit the technique’s ability to find plausible hazards, since 

every deviation of a component’s state either causes a deviation of an output pa- 

rameter in the data-flow diagram or else it is not meaningful. Rather, the inclusion 

of state-based deviations is important because of the exploratory nature of HAZOP. 

The analysts wish to identify weaknesses in the design, and an analysis that stops at 

the border of each component does not provide the necessary detail. 

Another difficulty in developing an automated technique based on McDermid 

and Pumfrey’s list is the guide word “subtle incorrect”. Whereas it is trivial to 

generate predicates and test cases based on a parameter being “high” (e.g., “T > 

T,,,” and “T = T,,,+l,” respectively), a deviation that is defined to be an erroneous 

value that “cannot be detected” defies elaboration. 

A further difficulty in developing an automated procedure based on MASCOT 

guide words is the generality of the guide word “COARSE INCORRECT”. This 

single guide word replaces several standard HAZOP guide words, such as “HIGH” 

and “LOW”. Given that a HAZOP analysis is exploratory, the guide words should 
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Method Direction Stages Automated? 
FTA Backward SRI Y Stages: 
SMHA Backward R Y S - System requirements 
FMECA Forward S N R - Software requirements 
ETA Forward S N D - Design 
CCA Combined S N I - Implementation 
HAZOP Combined SD N 

Table 2.3: Summary of hazard analysis methods 

tend toward specificity in guiding the expert or the computer program. Chapter 5 

presents a procedure for developing guide words for specific types of parameters. 

2.4 Summary 

In summary, there are existing methods for performing automated backward- 

search hazard analysis of process-control software requirements. In contrast, the 

analyst does not have a tool to perform a forward search any way but manually (refer 

to figure 2.3.) The remaining chapters present a theoretical yet practical solution to 

this problem. 



Chapter 3 

Deviation Analysis 

This chapter presents an introduction to a new hazard analysis method called 

deviation analysis. Deviation analysis uses a forward search to find a causal path 

from a given initial deviation to a hazardous deviation. Thus, the goal is very similar 

to that of HAZOP. However, due to the need for the analysis to be at least semi- 

automated and for the analysis to be applicable to software, the technique is more 

detailed and must be defined formally. This chapter presents an informal overview of 

deviation analysis in order to place into context the more rigorous treatment provided 

in subsequent chapters. 

The TCAS I1 avionics system is used here as an example. The TCAS I1 sys- 

tem consists of a computer, radio communication equipment, and pilot switches and 

displays. TCAS I1 has two parts: a surveillance system and the collision avoidance 

system (CAS). For each aircraft in the vicinity, CAS determines the aircraft’s distance 

from itself at their closest point of approach (CPA). If the aircraft will be too close, 

then CAS issues a resolution advisory, or RA. An RA is a command to the pilot (via 

aural alarms and the TCAS display) to take an evasive maneuver, by causing the 

aircraft to climb, descend, or hold course. Acceptable climb and descend rates are 

delimited on the TCAS display. 

33 



34 

Interface: 
Source: Mode-S-Transponder 
Destination: CAS 
Trigger Event: REcEIvE(0wn-Update-Message(0wn-Mode-S-ID, Pilot-Selected-SL)) 
Assignment(s): 

Own-Mode-S-AddressV_37 = Own-Mode-S-ID 
Mode-SelectorV-s4 = Pilot-Selected-SL 

Output Action: None. 
Description: If an update message is received from own transponder, then update the 
applicable variables. 
MOPS Ref.: Periodic-data-processing (p. 3-P23) 

Figure 3.1: Receipt of Mode S Address from the Mode S transponder. 

Each operational TCAS I1 system has a unique identifier called the Mode S 

address, which TCAS I1 obtains from a radio communication device called the Mode S 

transponder. Figure 3.1 shows the RSML specification of how the Mode S address 

is received by CAS from the Mode S transponder. The Mode S address and input 

from the pilot are contained in the Own-Update-Message. The values of these fields 

are assigned to two input variables. (Input variables represent information that has 

been received from other components.) 

One of the key-words of HAZOP is “TOO HIGH.” Suppose that the analyst 

wishes to investigate the potential deviations resulting from field Own-Mode-S-ID 

being too high (e.g. ,  an improperly encoded message.) Inspecting figure 3.1 reveals 

immediately that TCAS’s model of the Mode S address, Own-Mode-S-Address, is too 

high as a result. 

The next question the analyst asks is, what system variables does Own-Mode-S- 

Address influence? This variable is used directly in three CAS definitions. Figure 3.2 

shows the definition of an output interface in which TCAS I1 transmits a radio- 

frequency message, communicating important maneuvering information to a danger- 

ously close TCAS-equipped aircraft. Certain conditions must hold in order for the 
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high Mode S address to be sent to the other aircraft. The trigger event Need-To- 

Send-Resolution-Message must be present and the guarding condition must be true. 

Given these circumstances, TCAS I1 will transmit a resolution message with a high 

Mode S address for itself. The analyst may then proceed to track the deviation into 

the receiving aircraft. However, at this point it is clear to a TCAS I1 expert that the 

approaching aircraft will not correctly identify the message’s origin, thus disrupting 

safety-critical communication. 

A second definition that directly uses Own-Mode-S-Address is the macro defi- 

nition RA-Display-Delay, shown in figure 3.3. This definition addresses the problem 

of incompatible evasive maneuvers. If two aircraft are equipped with TCAS I1 units 

then it is likely that they will both recognize a hazardous situation and attempt to 

maneuver the aircraft to the same altitude, thus continuing the hazardous situation. 

The solution is to have one of the units delay issuing an advisory until the other has 

chosen a direction. Specifically, if the other aircraft also has an operational TCAS I1 

unit (Other-Capability) and its maneuvering intent is not known ( Other-VRC), then 

the solution is for the TCAS I1 unit to delay displaying its RA for a certain number 

of seconds if it has a higher Mode S address. 

If the correct value of Own-Mode-S-Address is greater than 0ther-Mode-S- 

Address, then a value that is too high does not change the result. However, if the 

correct value is less than Other-Mode-S-Address, then a too-high value may cause 

RA-Display-Delay to be erroneously true. Propagating the deviation thus requires 

three assumptions: 

0 The other aircraft has an operational TCAS I1 unit. 

0 No intent (RA) has been received from the other aircraft. 
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Interface: 
Source: CAS 
Destination: TCAS-Transmitter 
Trigger Event: Need-To-Send-Resolution-Message,-~~o 
Condition: 

there exists i : 

OR 
A 
N 
D 

Other-Aircraft,-lol [i] in state Waiting-For-Reply 
Some Other-Aircraft,-lol in state Waiting-For-Reply 
Other-Aircraft,-lol Til in state Waitinn-to-Coordinate 

Assignment(s): None 
Output Action: 

Sent-RMe-280[i] 
S~~~(Reso~ution-Message(Other-Aircraft[i] D Other-Mode-S-Addressv-107, 

Own-Mode-S-AddressV-37, Multi-Aircraft-Flag, 
cvcf-232(i), VRCf-264(i), 
VSBf-265( cvcf-232(i), VRCf-264(;)))) 

Description: If the condition is satified, then an aircraft model i that satisfies the con- 
dition is selected, and a resolution message is sent to the corresponding aircraft. The first 
column causes i to match with an intruder with which own aircraft has already initiated 
a coordination sequence. The second column causes i to match with an intruder that has 
yet to be coordinated with (note that it can only match if own aircraft is not currently 
coordinating with some other aircraft). 
MOPS Ref.: Sendlnitial-Intent (p. 6-P57), Complete-SendJntent (p. 6-P59). 

Figure 3.2: Definition of interface between CAS and the TCAS transmitter for the res- 
olution message command. The table is called an “AND/OR” table. The AND/OR 
table must be true in order for the assignments to  be made. The AND/OR table is 
true if one of the columns is true. A column is true if each of its rows is true. (‘T’ = 
true, ‘F’ = false, ‘ e ’  = don’t care.) 
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Macro: RA-Display-Delay 
Definition: 

A 
Other-VRC,_los = No-Intent N 
Other-Capabilityv-lll = TCAS-TA/RA 

Own-Mode-S-Addressv_37 > Other-Mode-S-Addressv_107 

Description: Threat is TCAS equipped and no intent has been received and own 
Mode-S address is higher than threat’s. 
MOPS Ref.: RESOLUTION~AND_COORDINATION.TCAS~threat_processing. 

Figure 3.3: Macro RA-Display-Delay. 

0 The magnitude of the deviation is greater than the difference in Mode S address 

values. 

Given these assumptions, RA-Display-Delay will be true when it should be false. 

The macro RA-Display-Delay is referenced in five places in the TCAS I1 spec- 

ification. All five references are transition definitions. The transitions are shown in 

figure 2.1, a state diagram representing TCAS’s possible classifications of other air- 

craft. Of interest is the state Threat, which is the classification given to an aircraft 

that appears to be approximately on a collision course with the TCAS unit’s own 

aircraft. Within this state, the RA-Display-Delay macro is used to define the transi- 

tions of Advisory, accounting for three of the five references, and the transitions into 

Strength-Not-Selected, accounting for the remaining two references. 

Transition(s): 0 -+ ITA/RA-Delayl 
Location: Threat D Advisory,-lg6 
Trigger Event: N/A 
Condition: 

I RA-Display-Delaym-2l6 I 
Output Action: None 
Description: Delay this RA if the other aircraft has a higher Mode S address. 
MOPS Ref.: See Intruder-Status macro section. 

Figure 3.4: Transition to TA/RA-Delay upon first entering state Threat. 
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Transition(s): 0 lRAl 
Location: Threat D Advisory,-136 
Trigger Event: N/A 
Condition: 

I RA-Display-Delay,al6 I 
Output Action: None 
Description: Proceed to display RA if own address has precedence. 
MOPS Ref.: See Intruder-Status macro section. 

Figure 3.5:  Transition to R A  upon first entering state Threat. 

Advisory indicates whether an RA has been issued against the threatening air- 

craft. If Advisory is in state TA/RA-Delay then TCAS is waiting for the threat to 

communicate its intended RA before taking action. If in state RA,  then an RA has 

been issued to the pilot and transmitted to the TCAS-equipped threat. 

Figure 3.4 shows the condition for initially entering TA/RA-Delay. If RA- 

Display-Delay is erroneously true, then Advisory will likewise enter TA/RA-Delay 

erroneously. In order to propagate the deviation, the analyst must assume that 

Intruder-Status was not previously in state Threat. This assumption is not inconsis- 

tent with the prior assumptions for RA-Display-Display, so the deviation is possible. 

Figure 3.5 shows the condition for initially entering RA. If RA-Display-Delay is 

erroneously true (as we are assuming it is), then the guarding condition for Advisory 

will be false, and the state R A  will not be entered. Just as with the above transition, 

the analysis must assume that Intruder-Status was not previously in state Threat in 

order to propagate the deviation. 

Continuing with the erroneously entered TA/RA-Delay: Figure 3.6 shows the 

definition of the transition from TA/RA-Delay to RA.  If RA-Display-Delay is de- 

viantly true, then the first column of the AND/OR table is incorrectly false. However, 
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Transition(s): 1-1 --+ 

Location: Threat D Advisory,-136 
Trigger Event: Air-Status-Evaluated-Evente-279 
Condition: 

A 
N 

t 2 t(entered TA/RA-DelayS-l36 ) + 2 s(WTTHR) D 
RA-Di~play-Delay,~~~ 

Output Action: End-RA-Deferral-Evente-279 
Description: Column 1: RA display delay criteria is not satisfied (intent was received 
from threat). Column 2: RA display delay criteria is satisfied but the delay time limit 
has expired. (Note: The 2-second delay timeout allows for the reception of two additional 
surveillance reports. The surveillance update period is nominally one second. The timeout 
period is subject to change.) 
MOPS Ref.: See Intruder-Status macro section. 
RESOLUTION~AND~COORDINATION.TCAS~threat~processing, Reversalxheck. 

Figure 3.6: Transition from TA/RA-Delay to RA.  

this deviation is “masked” if at least two seconds have elapsed since entering TA/RA- 

Delay. That is, the transition is taken in the normal way despite RA-Display-Delay. 

The assumption must be made that the elapsed time is less than two seconds in ad- 

dition to the assumption that the trigger event Air-Status-Evaluated-Event occurs in 

order to propagate the deviation. 

The result of the transition being inhibited is that Threat is in state TA/RA- 

Delay, it is not in state RA,  and the output action End-RA-Deferral-Event is not 

produced, all of which are deviations. 

The forward analysis should continue in this way for all of the deviations pro- 

duced. Although the remaining analysis will not be presented in this introductory 

treatment, the reader will probably not be surprised that the deviations just described, 

along with further assumptions, cause the suppression of a resolution advisory to the 

pilot. However, it was not so obvious a priori that a spuriously high Mode S address 

could inhibit the display of an RA. 
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3.1 Goals 

HAZOP has various strengths, and before describing what is expected of the 

deviation analysis algorithm it would be helpful to eliminate what contribution the 

algorithm cannot reasonably be expected to make. HAZOP is a group-oriented proce- 

dure, by which experts gather in a structured setting to discuss the proposed system. 

This activity is inherently human in nature and cannot be duplicated by an auto- 

mated algorithm. Deviation analysis could serve as an additional “expert” during 

a conventional HAZOP, but the algorithm in this case is simply a resource for the 

HAZOP procedure. 

On the other hand, the role of the HAZOP leader can be duplicated, at least in 

part. The HAZOP leader is not an expert of the proposed system. This independence 

from the project helps the HAZOP leader to pose novel questions. Likewise, an 

algorithm can subject a requirements specification to situations not anticipated by 

the experts. In particular, a goal of deviation analysis is to capture the utility of the 

HAZOP guide word for software requirements. 

The next chapter presents a primitive language of causality that encodes such 

information. The analysis also requires the ability to infer how and under what 

conditions deviations propagate. The calculus of deviations developed in chapter 5 

facilitates this task. Finally, chapter 6 presents automated and semi-automated al- 

gorithms based on the strategy presented in this chapter. 



Chapter 4 

A Primitive Language of Causality 

This chapter first defines the concepts of “cause” and “system” as used in this 

thesis. A primitive language of causality is then defined and illustrated based on 

these definitions. The chapter closes with a description of how RSML specifications 

may be translated to causality diagrams. 

4.1 Definitions 

Before investigating the ways in which the causal information may be repre- 

sented, it may be helpful to define the concept of “cause.” Lewycky [19] describes 

philosophers’ attempts through the ages to define cause, and shows how difficult the 

task is, if it is possible at all. Part of the problem lies in differentiating causation from 

correlation. If event A always precedes event B,  does that mean that A causes B? 

Fortunately, for the purposes of the hazard analysis algorithm presented in this thesis, 

the question can remain unanswered. Since all physical relationships are provided by 

the analyst, the difference between causation and correlation is moot. Both concepts 

are reduced to logical implication for the purpose of analysis. Thus, if event A is used 

to define the occurrence of event B,  it may be assumed that they are causally linked. 

41 
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If in fact another event causes both A and B independently, then this does not pre- 

clude the analyst from using the occurrence of event A to infer a subsequent B. The 

only caveat to this practice is that the behavioral definitions must be complete. If C 

causes A then B ,  but D causes A only, then A cannot be used to infer the occurrence 

of B. 

Another difficulty is how far back to trace cause. If A causes B which subse- 

quently causes C ,  then which is the cause of C? Again, this question can remain 

unanswered for purposes of the algorithm presented in chapter 6. The forward anal- 

ysis proceeds one step at a time, so cause is always considered to be immediately 

preceding effect. The analyst can develop more remote definitions of causality from 

a sequence of events. 

It should be noted that the complementary term “dependency” could have been 

chosen for the discussion, but the concept of dependency is more general than that 

of causality. In particular, one might confuse use of the term here with the notion as 

used by dependency graphs in compiler theory. In that sense, a dependency between 

two variables indicates a relationship of type.  This concept is similar to, but not 

the same as, that of value dependencies of a causality diagram. A causality diagram 

must satisfy certain type constraints, but that is not the purpose of the diagram. For 

example, given an expression z = y + 2, where y is an integer and z is a float, a 

dependency graph reveals that z must be a float. A causality diagram shows that, 

for example, y’s previous value and 2’s current value are added to produce 2’s value. 

The notion of causality as used in this dissertation can be defined formally. It 

first requires a formal definition of a system: 

Definition 1 (Closed system) 

A closed system S is defined by a 5-tuple formal automaton S = (Q, 6, E ,  V, B ) ,  where 
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0 Q is a set of states, 

0 S : Q - Q is the transition function, 

0 E is a finite set of system variable symbols, 

0 V is a set of value symbols for the system variables, 

0 B : Q x E - V maps system variables to their bound values for a given state. 

A closed system’s state is defined by the symbols in Q. A closed system has no 

inputs, but one may think of the “input” to the formal automaton S as an initial 

state qo taken from &. The transition function S maps qo to the subsequent state ql, 

which maps to q 2 ,  ad infinitum. A closed system has no outputs, either, but one may 

consider the series 

&o) = qo 41 q 2 . e .  

to be the “output” of S. If Q is a finite set, then 8(qo) is a recurring series of length 

less than or equal to 11Q11. 

By definition, a system is a set of interacting components. Each component 

can be described by one or more system variables, such as temperature, altitude, or 

voltage. Each variable is assigned a symbol in the set E.  The function B maps state 

variables to their values for each state. In practice, a system’s state is defined in 

terms of its state variables, making the two concepts partially redundant. Drawing 

the distinction aids the following definitions, however. 

Recall that the concept of a structural definition was introduced in chapter 2. 

This notion can be formalized using the above definition of a closed system. The 

formal definition will be presented in three steps. The first step is to define the 

concept of a structural relation. A structural relation maps the values of a set of 

variables d to the set of values that a variable r can possibly take. An example 

should illustrate this definition. Assume a system SI = (Q, 6, E ,  V, B ) ,  where 
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Furthermore, the following table defines B: 

Q A B C D  
q 1 0 0 0 1  
q 2 0 1 1 0  
q 3 0 0 1 1  
q 4 0 1 0 1  
q 5 1 1 1 0  

(The definition of S is not needed to discuss structural relationships.) Take as an 

example the structural relation RAB,D, mapping the values of variables A and B to 

D. Referencing the definition of B,  the following table describes RAB,D: 

of those states, D has a value of 1. The states that apply to the second row are q2 

and 44. Variable D has different values for those states, hence RAB,D(O,  1) contains 

two elements. None of the states in Q produces the combination of values for A and B 

given in the third row, so RAB,D(~,O) is the empty set. Finally, q5 is the only state 

that applies to the fourth row, and B(q5,  0)  = 0. 

Since the domain of a structural relation is 2E X E (a set of variables and a 

variable), the number of possible structural relations for a system S is the number of 

sets in the power set of E multiplied by the size of E ,  or IlEll 2 1 1 E l l .  Applying this 

formula to system S1, we see that 64 structural relations are possible. 

The concept of a structural relation can be formalized as follows: 
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Definition 2 (Structural relation) 

Given a system S = ( Q ,  6, E ,  V, B ) ,  a set of system variables d such that d = 

{ d l ,  . .., d,} E ,  and a system variable r E E ,  R : v d l  X ... x vd, + 2vr describes 

a structural relation between d and r if and only if 

The definition is a bi-implication in the form of two constraints. Put simply, the defi- 

nition asserts that a value i is in w, if and only if there is a state with the appropriate 

values for the state variables in d. The first constraint corresponds to the “if” part of 

the bi-implication: if the variables in d have the values q ,  ..., v,, then the value for r 

must be in v,. The second constraint (the “only if” part) asserts that for each value 

i in the set v,, there must be a state q that has the variables in d bound to the values 

v1, ..., v, and variable r bound to i. 

To relate this definition to the example for RAB,D above, d is the set {A ,  B }  

and r is the variable D. In the course of defining R, dl and d2 are arbitrarily chosen 

to refer to A and B,  respectively. Thus, if v1 = 0 and 212 = 1, then inspection of 

RAB,D’S table shows that v, = (0, l}. 

Note that there exists exactly one structural relation between any set of vari- 

ables d and variable r.  The existence of two relations R; and Rj implies that there 

exists a set of bindings for d such that the two relations differ. Since they differ, the 

value for one of the relations, say R;, must contain an element v; that Rj does not 

contain. If indeed r may take the value v; given the bindings for d, then Rj fails the 

first clause of the above definition and is not a relation for d and r .  If r does not take 
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the value v; for any state with the given bindings, then R; fails the second clause and 

is not a relation between d and r .  

The range of a structural relation is a set of variable values. If the range of the 

relation contains exactly one value for each mapping from d to r ,  then the relation is 

a function. This fact is very helpful in using the variables in d to determine the value 

of r.  Formally, a structural function is defined as follows. 

Definition 3 (Structural function) 

Given a system S = (Q, 6, E ,  V, B ) ,  a set of system variables d c E ,  and a system 

variable r E E ,  a structural function exists between the bindings of d and r if and 

only if 

functionalo(d, r )  3 

V i , j  E Q : ( B ( i , r )  # B ( j , r ) )  + ( 3 k  E d : B(i,  k )  # B ( j , k ) )  

In other words, if variable r has different values for two states i and j ,  then some 

variable in d must also have different values for i and j .  Otherwise, r has multiple 

values for some single set of values for d and the relation that maps the values of d 

to r is not a function. 

Structural functions have a property that is useful to the definition of causality 

as used in this thesis. If a structural function exists mapping values for a set of system 

variables d to a single value for another variable r ,  then the variables in d can be used 

to infer the value of r .  Strictly speaking, T is functionally redundant with respect to 

the other system variables. The existence of functionally redundant system variables 

is not an indication of a poorly written specification. Rather, redundancy is common- 

place in the description of physical properties of the system and the controller’s model 
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of these properties. For example, the ideal gas law, PV = nRT, does not obviate 

the explicit reference to a reactor's pressure, volume, mass, and temperature in a 

specification. 

Thus, structural functions indicate the presence of structure in the specifica- 

tion-some variables are defined in terms of others. However, the definition is some- 

what weak in that it shows that a set of variables is suficient to define another 

variable, but not that all the members of that set are necessary for the definition. For 

example, mapping all the variables in the system to a single variable r is certainly 

a structural function, but it contains variables that are not structurally related to r.  

The following definition of structural causality includes in d only those variables that 

are necessary to describe r unambiguously, i. e., necessary as well as sufficient: 

Definition 4 (Structural causality) 

Given a system S = (Q, 6, E ,  V, B ) ,  a set of system variables d c S, and a system 

variable r ,  r d, d structurally causes r if and only if 

functionalo(d,r) A 'v'i C d : lfunctionalo(i,r) 

This definition states that a functional mapping from d to r must exist, and there 

must not exist a functional mapping from a subset of d to r.  The existence of such 

a mapping would indicate the existence of an independent variable in d that is inde- 

pendent of r.  

Sequential causality can be defined in a way analogous to structural causality: 

Definition 5 (Sequential function, sequential causality) 

1. Given a system S = (Q, 6, E ,  V, B ) ,  a set of system variables d c S, and a 

system variable r ,  a sequential function exists between the bindings of d and r 
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if and only if 

functionall (d,  r )  

V i , j  E Q : ( B ( D ( i ) , r )  # B ( D ( j ) , r ) )  +- (3k E d : B ( i , k )  # B ( j , k ) )  

2. Further, d sequentially causes r if and only if 

functionall (d ,  r )  A Vi C d : lfunctionall (2, r )  

Finally, the two concepts can be combined for a general concept of causality: 

Definition 6 (Functional relationship between variables) 

1. Given a system S = ( Q , S ,  E ,  V, B ) ,  two sets of system variables do,d l  c 5' 
(not necessarily disjoint), and a system variable r ,  a function exists between 

the previous bindings of d l ,  the current bindings of do, and the current bindings 

of r if and only if 

2. do and dl  cause r if and only if 
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4.2 Encoding Causality 

Although the deviation analysis algorithm can be developed for each separate 

specification language, there are considerable advantages in developing the algorithm 

and calculus around a “core” analysis language. The language should have a basic 

syntax and semantics into which requirements languages can be translated. There are 

several reasons for doing this. Requirements languages often have subtle semantics. It 

would aid development of the analysis algorithm if the semantics relevant to analysis 

can be made explicit. It is also an advantage to divide the research problem into 

that of (1) translating the relevant parts of the language into a more fundamental 

representation and (2) developing an analysis algorithm for the simpler language. In 

addition, this tactic aids adaptation of the algorithm to other requirements languages, 

since it is an easier task to translate from a full requirements language to the simpler 

analysis language than to translate to another full-featured requirements language or 

to rewrite the analysis algorithm, since it very likely makes semantic assumptions. 

Finally, it is more difficult to explain and understand the algorithm if it is defined 

over a language with features irrelevant to deviation analysis. Thus, it is preferable 

to develop and present the algorithm using a basic analysis language. 

A potential disadvantage of using a separate analysis language is that the analyst 

must maintain two mental models: one of the specification and one of the analysis 

model. However, the translation from specification to analysis language is automatic, 

so the analyst does not need to see the analysis model for the purpose of input to 

the algorithm. In addition, an entity in the analysis model always maps back to a 

single entity in the specification. Thus the algorithm’s results (including a full search 

tree) can be satisfactorily presented to the analyst in terms of the specification model. 
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Therefore it is not strictly necessary that the analyst inspect the analysis model at 

all. 

What is desirable in a language of causality? First of all, the relationships 

represented should be direct. That is, there should be no intermediate variables 

or “steps” that take no time. The language must be able to represent complex 

relationships in order to propagate deviations. The notion of sequential dependency 

should also be explicit, rather than relying on relationships implied by the language’s 

semantics. Simultaneous relationships should be explicit. The language must be able 

to handle numeric and boolean system variables. 

Several languages already exist that partially encode causality. However, they 

do not encode enough information about the nature of causal relationships to be 

useful for a software hazard analysis. 

A dependency graph is a type of directed graph that indicates the “interde- 

pendencies among the inherited and synthesized attributes at the nodes in a parse 

tree.” [l] The relationships are restricted to type, and thus are basically limited to 

analysis of structural causality. 

In contrast, pipe-and-process and block diagrams show sequential causality but 

generally lack structural causality. Additionally, the nature of the sequential causality 

is not described, so only the most rudimentary hazard analysis may be performed 

automatically. 

Digraphs (section 2.1.2) encode sequential causality as a partial derivative. 

However, with the exception of the Logic Flowgraph Method (LFM) [9], interaction 

between causes is not represented. Even with the limited specification of interactions 
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allowed by LFM, the partial derivative is inadequate to specify much of the control 

behavior of software. 

4.3 Causality Diagram Grammar 

A causality diagram is composed of a set of nodes N ,  connected by directed 

edges. Each node n E N has a function associated with it that, combined with the 

edges into n, defines its causality. The value of the nodes is the state of the causality 

diagram. 

Nodes in a causality diagram are divided into source nodes and a u d i a r y  nodes. 

The source nodes correspond to the system variables. The causality of a source node 

is often a complex expression; the auxiliary nodes serve to compose functions of source 

nodes. For example, assume the following arithmetic causalities between source nodes 

s1, s 2 ,  s3, s4, and s5, 

These equations can be represented by the following tree: 

Each of the unnamed nodes represents an “intermediate” expression, in this case 

arising from operator precedence. The expressions have value, and the deviation 

analysis algorithm exploits this fact to provide some information when a deviation 
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cannot propagate from one source node to another. For example, suppose that s3 is 

less then it should be but s4 is normal. Then the sum of s3 and s4 is less than it 

should be. However, if the values of s2 or s6 are not known then the deviation cannot 

propagate to another source node without making any assumptions. It is useful to 

know though that those expressions are deviant. 

Furthermore, the calculus used by the search algorithm to propagate the devi- 

ations may be defined for functions of fixed arity. For example, the sum a + b + c + d 

may be parsed as a + ( b  + ( e  + d ) )  for purposes of analysis. Such a restriction requires 

additional nodes (one for each set of parentheses.) 

Finally, the model specified by the requirements may be incomplete, in essence 

making it an open system with unspecified sources and sinks. In consideration of 

this and the aforementioned needs, the language of causality diagrams contains in- 

termediate nodes (called auxiliary nodes), which are considered to be the same as 

source nodes for the purposes of propagating deviations. For example, the following 

auxiliary nodes may be defined as 

such that s1 and s5 above may be defined by binary arithmetic operators and auxiliary 

nodes: 
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An edge is described for each parameter in a node Nd’s function domain. Each 

edge may be represented as a 2-tuple ( N , ,  T ) ,  where N ,  is the source node and 

T E {sequential, structural}. The edge associates the range of Ns’s function with part 

of Nd’s domain. If T = sequential, then the causal relationship between N ,  and N d  

is temporal. The value of N ,  in one step affects the value of Nd in the next step. 

If T = structural then the causal relationship is structural, which is to say that the 

current value of N,  constrains what the current value of N d  is. The terminology used 

in this thesis is that the source of an edge ( N , )  is called the parent node and the node 

at the terminus ( N d )  is called the child node. 

Because auxiliary nodes facilitate functional composition, the edges with an 

auxiliary node as source almost always have T = structural. The exception is when 

an auxiliary node serves to describe a sequential relationship that extends beyond 

one step, e.g., if node N ,  influences node Nd’s value with a time lag of t steps, then 

t - 1 auxiliary nodes are needed: 

@---@---* 0 0 0 ----@---a 
(Sequential edges will be represented by dashed arrows in this thesis. Structural edges 

will be represented by solid arrows.) 

A node may have a sequential relationship with itself, i e . ,  it may be the source 

of an edge with T = sequential. However, there may not be any loops along paths 

composed only of structural edges. This situation is easy to discover by a search of 

the directed graph created by the nodes and structural edges. 
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Pressure 
Reading 

Pressure = Flow / Aperture 
Aperture = Aperture’ + Delta 
Delta = Delta-Max - Delta-Min 
Delta-Max = Pressure’ > 250 ? 10 : 0 
Delta-Min = Pressure’ < 100 ? 10 : 0 

_ _ _ _ - - -  

I 

I Const (10) Const (0) 
I 
I 
I 
I 
I 
I 

Figure 4.1: Causality diagram example 

Putting the concepts of structural and sequential causality together, figure 4.1 

shows an example of a simple feedback system and the corresponding causality di- 

agram. The system shown is a tank equipped with a variable-aperture valve. The 

system variables are the tank pressure, the flow of material through the tank, and 

the aperture of the valve. To simplify the example, pressure is the quotient of flow 

over aperture. The controller increases or decreases the valve opening by ten units if 

the pressure is above the maximum of 250 units or below the minimum of 100 units, 

respectively. 

The causality diagram in the example contains twelve nodes and sixteen edges. 

Three of the nodes represent the system variables. The behavior of the Flow variable 

is undefined. Pressure is a quotient function, with the numerator edge originating 

from Flow and the denominator edge originating from Aperture. Aperture is an in- 

teresting node because it has direct feedback from its previous value. The size of the 

valve aperture is equal to its previous value (indicated by a dashed line) plus one of 

{ - 1 O , O ,  lo}, as provided by the controller. 
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The remaining nodes comprise the controller. The pressure reading is compared 

to minimum and maximum values (the “<” and “>” nodes, respectively.) Note that 

each node is a function: The domain of the inequality functions is a pair of numbers 

and the range is a boolean. 

The nodes represented by 1o?o:o( are called selection nodes. The selection 

function is defined as follows: 

Thus, following the edges from the subtraction node (the output of the controller) 

backward to the pressure reading, one gets the expression 

[(Pressure’ > 250) ? 10 : 01 - [(Pressure’ < 100) ? 10 : 01 

where Pressure’ represents the previous value for pressure. This is the value that is 

output to the valve actuator. 

Translation of RSML 

This section describes how to translate the Requirements State Machine Lan- 

guage (RSML) to the primitive language of causality. RSML is a graphical, state- 

based requirements specification. RSML specifications are composed of intercon- 

nected system components. Each component is composed of a heirarchical state 

definition, a useful state abstraction originally developed for the Statecharts specifi- 

cation language [lo]. Please refer to [Ill for a presentation of RSML. Some review of 

RSML accompanies the following discussion of translation issues, but knowledge of 

the language’s semantics is recommended. 
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B 4 B  
B X B + B  
X-+% 
% X % + %  
% X % + B  
B x % x % + %  
& + &  
& X & + B  
B x & x & + &  

identity, negation 
and, or 
identity, negation 
+ , - , x , +  

selection 
identity 

selection 

=, #, <, >, 572 

=, #, <, >, I, 2 

Table 4.1: Basic functions. “B” is the set of booleans, “%” is the set of reals, and 
“I” is an enumerated set. 

4.4.1 Basic Functions 

Each node in a causality diagram is associated with a particular function. This 

section presents the basic functions necessary to translate RSML. Although most of 

the functions given here should be useful for translating another language to causality 

diagrams, it is likely that additional basic functions would need to be defined. For 

example, RSML does not include any set theoretic functions. 

The functions described here can be divided into three groups: functions over 

the booleans, reals, and enumerated types. These functions are listed in table 4.1. 

Most of the functions are self-explanatory. The “selection” function has already 

been defined. Enumerated types are small sequences {el, e2, ..., e,}. The relational 

operators are defined such that 

e; = ei 
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. . . . . . , 

Figure 4.2: The Intruder-Status state heirarcby. 

4.4.2 States 

An RSML specification is composed of a heirarchy of “states.” For example, 

figure 4.2 shows the state heirarchy for Intruder-Status (figure 2.1.) According to the 

definition of a system given earlier in this chapter, RSML states are actually state 

variables because they represent part of the system state. The translation of an RSML 

specification to a system automaton would involve mapping the RSML state symbols 

to the variable symbols V .  Since the terminology is somewhat conflicting, please 

interpret use of the term “state” to be an RSML state variable for the remainder of 

this section. 
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1 \ \  

1 Advisory 

Crossing = 
I / / 

RM-Send-Status = dl 

Figure 4.3: The portion of the causality diagram showing the relationship between 
Threat and its children. Each child takes its value directly from Threat. 

States are binary variables; they are either “active” or “inactive.” These two 

values can be modeled by boolean nodes in the causality diagram (i.e., functions with 

a boolean range.) States are classified by their children. A state with no children is 

called a basic state. Two basic states in figure 2.1 are Other-Trafic and New. A state 

whose children are mutually-exclusive is called an or-state. If the or-state is active, 

then exactly one of its children is active. Intruder-Status and Crossing are examples 

of or-states in figure 2.1. The children of an and-state are all active if the and-state 

is active. Threat is an example of an and-state. 

And-States 

The causal relationship between an and-state and its children can be described 

by the boolean identity function. That is, the value of the children (true or false, 

active or inactive) is exactly the same as the and-state’s value. Figure 4.3 shows a 

partial causality diagram for state Threat. 
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Other-Traffic Potential-Threat 

Transitions out of Proximate Traffic 
\ 
\ 
\ 

Transitions to Proximate-Traffic \ 
\ 

\ \ 
\ \ 
\ \ \ OR JOR 

\ \ 
\ \ 

Intruder-Status 

",\\\ 

I N 

I Proximate-Traffic AND AND A AND 1 
Figure 4.4: A causality diagram fragment for Proximate-Trufic. 

Or-States 

The causal relationship between an or-state and its children is a bit more com- 

plicated. The or-state must be active in order for any child to  be active. Three 

additional conditions must hold in order for a child state to be active: 

0 There was either a transition to the state or the state was active in the previous 

instant. The latter condition means that once in a state the system stays in that 

state until there is a transition to another state. This characteristic contrasts 

with transient variables, such as events. 

0 There was not a transition out of the state in the previous instant. 

0 None of the siblings of the state are active. 

he first two conditions are sufficient to describe the behavior of a state procedurally. 

However, the third condition is needed in order to enforce the mutual exclusion of 

or-states. For example, if the analyst postulates an initial scenario in which Climb 

and Descend are both active, the first two conditions would not form a contradiction. 
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The third condition would cause the two nodes to be true and false simultaneously, 

signaling an impossible scenario. 

Figure 4.4 shows a causality diagram fragment based on the relationship between 

Proximate-Trufic and its parent and siblings. 

4.4.3 Events 

Events may be thought of as transient states. In RSML and similar languages, 

events are a sort of communication between states. Events are also used to synchronize 

state transitions. In this capacity they may be thought of as similar to the parentheses 

of an equation [ll]. 

Events can be produced by state transitions, input interfaces, output variable 

transitions, and output interfaces-all of which are types of component transition. 

Since the same event can be produced by multiple transitions, an event is simply 

an or function of the various transitions that can produce it. In RSML, events are 

considered to be active in the next instant after the transition is taken, so all of the 

edges into the or function are sequential. 

The next section shows an example of a transition producing an output action. 

4.4.4 Transitions 

Transitions have five components: 

0 source state, 

0 destination state, 
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I - - - - - - - - - - -  Air-Status-Evaluated-Event 

1 ‘ OR .., \ 
\ 
\ 
\ Guarding-Condition 
\ 
\ 
\ 

NOT 
\ 
\ 
\ 

Transition =,p AND AND 
A 

I \  
I \  

‘ I  \ \  

TA/RA-Delay = AND AND\ AND 
\ 

End-RA-Deferral-Event = OR ... 

I RA= AND\. AND AND 1 
Figure 4.5: A causality diagram fragment for the transition from TA/RA-Delay to 
RA. Compare this diagram to the or-state example to see how transition definitions 
combine with or-state definitions. 

0 triggering event, 

0 guarding condition (optional), and 

0 output action (an optional event). 

The semantics of a transition may be described by the following logical inference: 

S A E A C j 75’’ A D’ A A’, 

where S ,  E ,  and C are the values of the source state, triggering event, and guarding 

condition in one instant, and S’, D’, and A’ are the values of the source state, des- 

tination state, and output action in the next instant. A causality diagram fragment 

for the transition in figure 3.6 is shown in figure 4.5. 

Conditional Connectives 

Conditional connectives (represented by ‘0’) are an abstraction for combining 

transitions. Transitions out of conditional connectives have two distinct differences 



62 

Figure 4.6: A transition into Threat is actually a transition into all of the default 
states contained in Threat. 

Transitions into conditional connectives are the same as any other transition. 

Default State Transitions 

Or-states may have default states. The simplest method of translating default 

transitions to a causality diagram is to translate it first to its component transitions 
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A 
( 4  N 

D 

[ Other-Air-Status,-lnl in state Airborne 1 

P~tential-Threat-Range-Test,-~~~ A 
~(Other-Alt-Reportingv-l13 = True) A 
Own-Tracked-Altf-248 < 15500 f t ( A B 0 V N M C )  ) V 
Other-Air-Status,-lol in state Airborne A 
Potential-Threat-Range-Te~t~-~~~ A 
Other-Alt-Reportingv-113 = True A 
Potential-Threat-Alt-Testm-212 ) 

Other-Air-Status in state Airborne 
Potential-Threat-Ah-Test 

Potential-Threat-Range-Test 

Other-Alt-Reporting = True 

( 4  Own-Tracked-Alt < 15500 ft 

Figure 4.7: AND/OR Table. 

(see figure 4.6.) Such a construction would be very difficult to read, but it makes the 

causal relationships quite clear. 

Transition Bus 

The transition bus is simply a graphical shorthand for transitions directly be- 

tween states; its purpose is to minimize the number of arrows on the page and show 
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the interconnectedness of states. Hence it does not contribute to the semantics of 

RSML or to causality diagrams. 

4.4.5 AND/OR Tables 

AND/OR tables are a graphical representation of boolean expressions in disjunc- 

tive normal form. As such, the semantics of AND/OR tables are quite straightforward 

and easy to encode in a causality diagram. The left-most column of each AND/OR 

table lists the terms of the expression. The remaining columns are logically OR’d, so 

that the table is true if only one column is true. A column is true if all of its terms 

are true. For example, figure 4.7(a) shows an AND/OR table from the TCAS I1 spec- 

ification. Figure 4.7(b) shows the same expression in conventional boolean notation. 

Figure 4.7(c) is the same table as a causality diagram fragment. 

4.4.6 Macros 

A macro is an abstraction of an AND/OR table. RSML has two kinds of 

macro: parameterized and non-parameterized. Non-parameterized macros are simply 

AND/OR tables with names and the translation proceeds in exactly the same way. 

Parameterized macros have one or more parameters in their AND/OR tables. 

A reference to a parameterized macro replaces each parameter with an expression, 

such as the name of an input variable or a state. 

Since causality diagrams represent relationships directly, each parameterized 

macro reference must be replaced by the causality diagram fragment of the AND/OR 

table, with the parameters instantiated. 
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Interface C Triggered 

Message Field in B / Message Field in C 

Interface B Triggered I 
d?d. 

Message Field in A 

I L?.:d  Interface A Triggered 

I 
I 
I 

I 
I 

I 

Input Var =\ ? L : d / 
/ 

/ 
\ / 

\ / 
/ 

\ , - _  -___---, 

Figure 4.8: Causality diagram template for input variables 

4.4.7 Functions 

Like with parameterized macros, each function reference must be replaced by a 

causality diagram of the function definition with the function parameters instantiated. 

4.4.8 Input Variables 

Input variables are set by input interfaces. They may be represented as a series 

of selection nodes, as shown in figure 4.8. In the example, the input variable can be 

assigned a value by one of three interfaces A ,  B ,  and C. If none of the three interfaces 

is triggered by the receipt of a message, then the input variable retains the value it 

had in the previous instant. 

Function Reference 

Triggering Event 

\ 

Figure 4.9: Causality diagram template for output variables 
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Other Input Interfaces 

Message Event 
I 

/ Guarding Condition 
/ I 

\ I / I 

I Interface =\. AND  AND C 1 

Triggered Events Input Variables 

Figure 4.10: Causality diagram template for input interfaces 

4.4.9 Output Variables 

Changes in output variable values are triggered by events. The new value is 

given by the value of a function reference at the time of the event. Figure 4.9 shows 

a causality diagram fragment. 

4.4.10 Input Interfaces 

Input interfaces receive messages from other components. The message has two 

parts: a boolean node representing whether the message has been sent and a numeric 

(or enumerated type) node for each of the fields of the message. The interface is active 

if the message is active and the input interface’s guarding condition is true. Input 

interfaces can can events to be active. Input interfaces share these characteristics 

with transitions. 
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Like or-nodes, input interfaces are mutually exclusive, so a condition of an 

interface being active is that the others are inactive. Figure 4.10 shows a causality 

diagram template for input interfaces. 

4.4.11 Output Interfaces 

Output interfaces package output variables into a message and send to a com- 

ponent or components. The output interface is triggered by an event, contingent on 

a guarding condition. In addition to the message it may also generate events within 

the scope of its own component. 

4.5 Summary 

This chapter began with a definition of closed systems, and especially system 

variables. This definition was used to define two types of causality as related to 

requirements specifications, The concepts of causality were incorporated into a prim- 

itive language of nodes and edges, the artifacts of which are termed causality dia- 

grams. Finally, a strategy for translating RSML specifications to causality diagrams 

was presented. 



Chapter 5 

A Calculus of Deviations 

The previous chapter introduced a primitive language of causality, by which 

system variables are defined in terms of present or previous values of other system 

variables. One possible use of the causality diagram is testing. If certain nodes are 

given specific values then the simultaneous values of other nodes could be derived 

based on structural relationships. Likewise, subsequent values of nodes could be 

determined by inspecting sequential relationships. This would be similar to a partial 

“execution” of the specification. This information would be useful, but the results 

would be valid only for the tests performed. Consequently, the analyst must rely 

on proper coverage of the state space just as in execution of the specification in the 

source language. The causality diagram may still have advantages for this purpose. 

For example, only relevent parts of the specification are “executed.” Furthermore, 

the causality diagram may be an appropriate language upon which to develop test 

selection methods based on deviations in the environment (as opposed to testing 

under normal operating conditions.) 

Alternatively, the causality diagram could be used to develop a proof of the 

system’s behavior. Although formal verification of safety constraints is more general 

than testing, it is also more difficult. For many systems it is just not practical to 

develop and review a proof. 

68 
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These two common approaches are on a continuum of feasibility versus gener- 

ality of the analysis. In practice, compromises must be made between the costs of 

constructing and analyzing the system model and the quality of the results [16]. 

The particular balance struck depends in part on the stage of development. The 

system model typically begins as a coarse, incomplete description of the problem and 

is amended and refined as the solution develops. Accordingly, analysis should be 

an iterative process [16]. To wit, preliminary analysis should readily provide coarse 

results for incomplete information and final testing should yield conclusive results for 

an operational system. 

The general topic of this thesis, software requirements analysis, is one of the 

earliest stages of software development (though not quite as early with respect to 

the system as a whole.) At this stage, the information is usually incomplete and 

volatile. Accordingly, the analyst needs procedures that can expeditiously furnish 

results given incomplete, abstract information. On the other hand, as the control 

model is being developed, the analyst does not require conclusive results so much as 

motivating information. 

5.1 Introduction To Qualitative Mathematics 

A potential solution lies with qualitative mathematics. Qualitative mathematics 

is the creation and study of calculi of small ordered sets, called qualitative domains. 

Qualitative domains partition the system’s quantitative domains (usually the set of 

real numbers.) Formally, a qualitative domain is defined by a function mapping 

members of the quantitative domain to members of a small set. In other words, if 27 
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Table 5.1: Sign algebra. 

is some domain (e.g., the integers or complex numbers) and L is a (small) finite set, 

then a function A4 : D -+ L defines L as a qualitative domain over D. 

The area of research that has introduced qualitative mathematics is most com- 

monly referred to as “qualitative reasoning,” although variations in research emphasis 

have led to such labels as “causal reasoning,” “qualitative process theory,” and “qual- 

itative analysis.” Qualitative reasoning has been proposed as a method for system 

control, as an educational tool, and for system analysis. The present thesis falls into 

the latter category and so can be termed more accurately as qualitative analysis. 

Note that when viewed from the perspective of a calculus, the causality diagram 

may be seen to be a set of axioms. Each node N of the diagram can be rewritten as 

N = f (  11, ...), where f is the node’s function and 11, ... are input nodes. An analysis 

procedure may apply the calculus to the set of system axioms to produce “theories” 

of system behavior. 

A simple and commonly used qualitative domain is the set of signs of the real 

numbers, SQ = { -, 0, +, ?}. SQ partitions the real numbers into two sets, the positive 

(+) and negative (-) numbers. Zero (0) is the border between the two sets. The 

special symbol “?” represents an unknown value and is equivalent to the union of the 

other symbols. The addition and multiplication functions over SQ are referred to as 

s i g n  algebra in the literature. Their definitions are shown in table 5.1. 
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Figure 5.1: A qualitative representation of oscillating functions. The dashed line is 
an oscillating function with increasing envelope, descreasing frequency, and normal 
shape. The solid line is the same function with “sharp” shape. 

Qualitative mathematics is not limited to algebraic functions. For example, 

Schaefer constructs an interesting model for a family of nonlinear oscillating func- 

tions [as]. The parameters of the functions are the envelope, period of oscillation, 

and “shape” of the function. Figure 5.1 shows an example of a qualitative oscil- 

lating function. Schaeffer has developed an algorithm for qualitatively solving the 

derivatives of this family of functions. Please see [29] for a detailed treatment of this 

calculus. 

Qualitative mathematics has the advantage of being efficient to calculate and 

relatively easy to understand. Similar values can be grouped and treated collectively 

by the qualitative functions. 

A disadvantage of qualitative analysis is that potentially useful information is 

lost in the discretization of the quantitative domains. This is not unusual, as all 

models are incomplete approximations of reality. The analyst must decide whether 
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a qualitative analysis, or any method of analysis, is appropriate and useful for a 

particular system. 

It should be noted that the logic used in digraph models such as LFM is a 

type of qualitative mathematics. In particular, they represent qualitative partial 

derivatives of process variables. The qualitative domain is composed of the set of 

values {-lo, - l , O ,  +1, +lo}. The digraph algebra is composed of such rules as 

(-1) + ($10) = +10 (a small negative influence combined with a large positive 

influence results in a large positive influence.) 

A problem with the digraph algebra is that while the qualitative calculations are 

internally consistent, the calculus is not consistent with respect to the quantitative 

domain. For example, suppose that L > 2 is the boundary between small and large 

values. ( L  - 1) and 2 are both small positives, and the sum of two small positives is 

a small positive under digraph algebra. But ( L  - 1) + 2 = L + 1 is large, so the result 

of adding two numbers and converting the result to a digraph value is inconsistent 

with converting the two numbers and then adding them qualitatively. 

5.2 PB,N: A Logarithmic Qualitative Domain 

Before describing the calculus of deviations it is first necessary to describe the 

qualitative calculus for the value part. Since booleans and enumerated types are small 

sets, they can be analyzed directly without converting to qualitative sets. In fact, 

they may be considered to be qualitative sets since they partition the system state 

space into a small number of salient values. 



73 

The author has chosen a logarithmic mapping from the numbers to a qualitative 

domain. A logarithmic scale allows coverage of a large range of values while still 

partitioning the smaller values. The following function defines a mapping from the 

real numbers to a family of qualitative domains. The parameters of the domain are 

the base B and the number of qualitative values N for each sign: 

Definition 7 (PB,N family of qualitative domains) 

Given: B 2 2, N 2 1. B,  N are integers. 

PB,N(x)  is abbreviated as P (x) in formulas to save space. 

The function is fairly straightforward. The reason that 0 < 1x1 5 B is treated 

separately is to account for the sub-interval 0 < 1x1 < 1, in which logarithms are 

negative. 

As an example, if B = 2 and N = 5 ,  the qualitative domain has the following 

definition: 

0 
< I  I I 1  I 1  I I ’  

-16 -8 -4 -2 0 2 4  8 16 

-5 I -4 I -3 1 - 2 1 - 1 1  1 I 2 I 3 I 4 , 5  

Real Numbers 

The size of a qualitative domain PB,N is 2N + 1. 

Disregarding the qualitative values that go to fw, the “coverage” of P2,5 is 

only 32 (from -16 to 16.) In contrast, Plo,7 covers a range of 2 million using only 
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four additional qualitative values. Thus, the parameters can be modified to suit the 

particular system they describe. 

The inverse relation on PB,N is defined as follows. 

Pg,$(q) is defined as an interval over X for three of the four cases, making it a 

relation with respect to X.' 

A proof of the inverse relation follows. It will use the following extended defini- 

tion of PB,N and P i $  over subsets of the real numbers and { - N ,  ..., N } :  

Definition 9 (PB,N and Pg,$ over sets) 

Given X C: X and Q C_ { - N ,  ..., N } ,  

Theorem 1 (Pi,$is the inverse relation of P B , N )  

Proving that Pi,; is the inverse relation for PB,N involves showing that a real number 

is associated with a qualitative value if and only if that qualitative value is associated 
lp-1 B , N  is, however, a function with respect to  the domain of 4-tuples ({open, closed}, 3, 

{open, closed}, %). 
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with the real number: 

vq E { - N ,  ...) N},V'a E 3 : a E P-I ( 4 )  H P ( a )  = q.  

The reader will note that the definitions of PB,N and Pgh both have four parts. For 

three parts the two definitions are identical: x = 0 and Q = 0, 0 < 1x1 5 B and 

I Q I  = 1, and 1x1 > BN-' and I Q I  = N .  The remaining case requires a little bit of 

work to show the inverse relationship: 

1. Given an integer q7 1 < 141 < N .  Prove that P (P-' ( q ) )  = q.  

(a) Let x = p-1 ( 4 )  = Sign(q) ( ~ l q 1 - 1 ,  B I ~ I ] .  

(b) 1x1 = (Blql--l,B/ql] (Recall that B > 0.) Note that this implies that 

sign(x) = sign(q). 

(c) Thus the range gives the inequality: BIqI-' < 1x1 < - 

(d) 1 < 141 + B < BIqI-l. 

(e) 141 < N + ~ l q l  5 W - ' .  
(f)  Therefore, case three in the definition of PB,N applies: 

(g) Substituting the value of n: into the equation: 

I (The third and fourth lines use the fact that q is an integer.) 
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2. Given a real number x, B < 1x1 5 BN-l. Prove that x E P-l ( P  (x)). 

(a) Let Q = P (x) = sign(z) . [log, 1x11. 

(b) IqI = [logB 1x11 (since B > 0). Also, sign(q) = sign(x). 

( c )  Substituting the given bounds on 1x1: 

B <  1x1 5 BN-l 

logB B < log, 1x1 5 lo& BN-l 

1 < log, 1x1 5 N -  1 

Pl < rlogB P I 1  5 YN - 11 
1 <  141 5 N - 1  

(d) Therefore, case three in the definition of Pi,& applies: 

(e) In order to prove the postulate, we need to show that x E P-l(q) .  Since 

sign(q) = sign(x), we can reduce the task to comparing 1x1 to the range 

(BIqI-1, BIqI : 1 

By definition, the ceiling of a number y is y if it is an integer, or the smallest 

integer greater than y if a non-integer. Thus the difference between y and 

its ceiling must be strictly less than 1, and the above inequality is valid. I 
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(g) The right-hand inequality is 

Revisiting the definition of ceiling, we note that the ceiling of y is either y 

itself or some number slightly greater than y. This inequality is valid also, 

completing the proof. I 

5.3 A Qualitative Calculus for PB,N 

This section defines the concept of a qualitative function in PB,N and applies 

this definition to some standard functions to build an algebra over PB,N. 

Definition 10 (Qualitative Function) 

Given a function f ( x ,  y, ...) and qualitative values q,  r ,  ... E PB,N, the qualitative 

function for f is annotated as Ifl and defined as 

U(Q, r ,  ...) = { U ~ X  E ( Q )  A y E P-' ( r )  A ... A P ( f ( z ,  y,  ...)) = a }  

Theorem 2 (Negation) 

The negation of a qualitative value is the negation of its numeric symbol: 

Proof : 
Given: - N < q < N  

q = 0 * M q  = P ( - ( 0 ) )  = 0 = - 4  

Reason 

Def. 7 
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Before proceeding to the mathematical proofs, it would be helpful to construct 

some lemmas. A lemma that will be useful in the proofs in this section is the preser- 

vation of commutivity in PB,N: 

Theorem 3 (Preservation of Commutivity) 

Proof : Reason 
(5.1) Given: f : Z x Z + Z is commutative. 

q,r  E { - N ,  ..., N }  
I f l (q ,  r )  = {ulx E P-' ( 4 )  A y E P-' ( r )  A P (f(z, y ) )  = a }  Def. 10 

= {ulx  E ( q )  A y E P-' ( r )  A P ( f ( y , x ) )  = a }  (5.1) 

= Ifl(., 4 )  Def. 10 
I 

The following lemma will be useful in deriving qualitative addition. It proves 

that the addition of two positive values in PB,N results in the larger value or a value 

one greater. 
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Theorem 4 (Sum of two positive values in PB,N) 

Reason 
(B' , B'+'] Def. 8 
B' < Bq + B' ( B  2 2) 
B * B' 
2 B' ( B  2 2) 
B' + B' 
By + B' ( 4  5 r )  
r + l  (5.2), (5.3), Def. 7 
I 

The following lemma is also used for the addition proof. It proves that if a 

positive qualitative number is subtracted from a larger qualitative number, then the 

result is equal to the larger number or one less. 

Theorem 5 (Difference of two positive values in P B , N )  

Proof : 
P-l ( r )  = 

B' = 

2 
> 

B'- BQ > - 
- 

(5-4) > 
(5.5) B'- Bq < 
(5.6) P (B' - BQ) = 

(B'-', B'] 
Reason 
Def. 8 

The following lemma shows that negation is distributive over multiplication in 

PB,N. 
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Theorem 6 ( q u r  = - q u - r  ) 

Inspection of definition 8 shows that each qualitative value q can be written as 

sign(q) A,, where A, is an interval on [0, +m). sign(q) determines the sign of q and 

A, the range of magnitudes. 

Although it might at first seem that 

can be proven by preservation of commutivity (Thm. 3) ,  such a proof would need 

the lemma uq = -1uq) which is unfortunately not valid under PB,N. This is a 

deficiency in PB,N that would be remedied by having a special value for multiplicative 

identity ( i . e . )  P-' (1) = 1) just as PB,N has for additive identity. This improvement 

is discussed in chapter 8. 

Theorem 7 (Distributivity of Negation) 

(Refer to Thm. 6 for description of A, and AT.)  

Proof : 
-qUT = P (P-1 ( - 4 )  * P-l ( r ) )  

Reason 
Def. 10 
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= P (sign( - q )  - A, - sign( r )  AT) 
= P (- 1 . sign( q )  - A, - sign( r )  . AT) 
= P (sign( q )  A, - 1 . sign( r )  - AT) 
= P (sign(q) e A, sign( - r )  . AT)  
= q u - r  I Def. 10 
= P (- ( sign(q) . A, sign(r) - A T ) )  
= W P  (sign( q) . A, . sign( r )  AT) Def. 10 
= - (qU-r )  I Thm. 2, Def. 10 

5.3.1 Addition 

The rules for addition in PB,N are given by table 1. 

Table 1 (Addition Summarized) 

4 r q1+1r Line Ref. 
1 -N - N ,  ...) -1 -N (5.22), (5.28), (5.33) 
2 -N + 1, ..., -1 4 ,  ..., -1 q - 1,q (5.15)) (5.18), (5.24) 
3 - N ,  ...) -1 0 4 (5.9), (5.11), (5.13) 
4 - N ,  ..., -3 1, ...) -4 - 2 q,q + 1 (5.20), (5.26)~) (5.29)~) (5.34) 
5 - N ,  ..., -2 -4 - 1 q,  ..., -1 (5.2O)(q = a), (5.26)b) (5.29)b 
6 - N ,  ..., -1 - 4  4 ,  ...) r (5.16), (5.25)c, (5.26)c, (5.31) 
7 - N  + 1) ...,- 1 - q +  1 1, ..., r (5.19)(q = 2), (5.25)b, (5.30)b 
8 -N +2 ,...) -1 -q+2 ,..., N r - l,r (5.19)(q > 2),(5.25)~, 

(5.30)u, (5.35) 
9 0  0 ,  ..., N r (5.7),(5.8),(5.10),(5.12) 
10 1, ..., N - 1 q, ..., N - 1 r , r  + 1 (5.14), (5.17), (5.23) 
11 1, ..., N N N (5.21)) (5.27), (5.32) 

Theorem 8 (Addition) 

Table 1 conforms to the definition of qualitative functions. 

Proof : Reason 
Given: - N < n < m < O < q < r < N  



OM0 = P ( [O,O] + [O,O])  
= P ( [ O , O I )  

(5.7) = o  

OM-1 = 

-1MO = - ( lpJO)  

(5-9) = -1 

ONq = 

q M 0  = P ((Bq-l, BPI + [O, 01) 
= P (( B4-1, Bq]) 

(5.10) = 4  

0 M m  = 

mWO = -(-mpJO) 
(5.11) - - m 

OMN = 

NMO = P ( ( B y  $0) + [O, 01) 

= P ( ( B N - 1 ,  $0)) 

(5.12) = N  

OM-N = 

-q+Jo = - (NMO)  
(5.13) I - N  
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Def. 10, Def. 8 

Def. 7 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 

(5-8) 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 
(5.10) 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 
(5.12) 

Def. 10, Def. 8 

Def. 7 

Thm. 7 



(5.15) = {-2, -1> 
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(5.14) 

1pJ-1 = 

-q+J = P ( [ B ,  0) + (0, B ] )  
= p ((-7 B ) )  

(5.16) = {-1,0, 1} 

1pJq  = 

qpJ1 = P ((Bq-l, Bq] + (0, B ] )  
= P ((Bq-l, Bq + B ] )  

(5.17) = { 4 , 4 + 1 )  

-1pJm - - 

mpJ-1 = -(-mpJl) 
(5.18) = {-m, -m + 1} 

-1pJq = 

qpJ-1 = P ((Bq-l, Bq] + [B,  0)) 
= P (( BQ-1 - 1, Bq)) 

(5.19) = ( 4 -  174) 

1pJm = 

mpJ1 = -(-mpJ-1) 
= -{-rn - 1, -m} 

(5.20) = { m , m + l }  

1pJN = 

NpJ1 = P ( ( A N - 1 ,  +(x) + (0, BI) 
= P ( (BN-', +w)) 

(5.21) = N  

-1pJ-N = 

-NpJ-1 = -(NpJl) 

(5.22) = - N  

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 
(5.17) 

Thm. 3, Def. 10, Def. 8 

Def. 7,(4 > 1) 

Thm. 3, Thm. 7 
(5.19) 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 
(5.21) 

q M r  = 
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rHq = P ((B'-1, B'] + [-B-q, -B-q-l > >  Thm. 3, Def. 10, Def. 8 
= P (( B'-l + F - 1 ,  B' + Bq]) 

(5.23) = { r , r +  1) Thm. 4 

rnMn = 

n u r n  = -(-rnM-n) 
(5.24) = { m - l , m }  

Thm. 3, Thm. 7 
(5.23) 

r M m  = 

m M r  = P ([-I?-", -El-"-') + [ - E ' ,  --B-'-')) Thm. 3, Def. 10, Def. 8 
- - P ((Br-1 - B-", B T  - B - m - 1  >) 

{ r  - l , r}  if --m < r - 1 
(1, ..., r }  if --m = r - 1 
{m,  ..., T }  if --m = r 

(5.25) 
= {  

= - {  (1, ..., -n} if q = -n - 1 

= {  

q M n  = 
n w q  = -(-nM-q) 

{-n- I , -n}  i f q < - n - 1  

{-q, ..., -n} if q = -n 

{.,.+I} i f q <  - n - 1  
{n, ..., -I} if q = -n - 1 
{n, ..., q} if q = -n 

(5.26) 

q w N  = 

NMq = P ((E?"-', $0) + (Bq-l, Bq]) 

= P ((BN-'+ w-1 ,  +m)) 

(5.27) = N  

m H - N  = 

- N M m  = - (NH-m)  

(5.28) = - N  

ql+l-N = 

-Nlflq = P ((-m,B"-'-') + (Bq-',Bq]) 

= P ((-m, -W-' + Bq)) 

Thm. 5 

Thm. 3, Thm. 7 

(5.25) 

Thm. 3, Def. 10, Def. 8 

Def. 7 

Thm. 3, Thm. 7 
(5.27) 

Thm. 3, Def. 10, Def. 8 
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(5.29) { -N , -N+1}  i f q < N - 1  
{-N, ..., -1) if q = N - 1 

m M N  = 

Nlflm = - ( -NN-m)  

(5.30) = i  { N - 1 , N )  i f m > - N + l  
(1, ..., N} if m = -N + 1 

- N U N  = 

Nl f l -N  = P ( (BN-', $0) + (-co, BN-'-')) 

= P((-co,+m)) 
(5.31) = { - N, ..., N} 

N M  N = P ( (BN-', $0) + (El"-', +a)) 
= P ((2BN-1, +XI)) 

(5.32) = N  

-NpJ-N = - (NpJN)  
(5.33) = -N 

1 u - N  = 

-NMl = P ((-0, BN-'-1) + (0, B])  

= P ((-w, -BN-' + B ) )  
(5.34) = { - N ,  - N  + 1) 

-1MN 
NM-1  = -(-Nlfll)  

(5.35) = { N  - l , N }  

Thm. 5 

Thm. 3,Thm. 7 

(5.29) 

Thm., 3,Def. 10,Def. 8 

Def. 7 

Def. 10,Def. 8 

Def. 7 

(5.32) 

Thm. 3,Def. 10,Def. 8 

Thm. 5 

Thm. 3,Thm. 7 
(5.34) 

An interesting result of the proof is that addition is independent of the base B. 

The following example shows an addition table for the sub-family P B , ~ ,  of which the 

previous example P2,5 is a member. 
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Example 1 (Addition of P B , ~ )  

-5 -4 -3 -2 -1 0 1 2 3 4 5 
-5 
-4 

-5 -5 -5 -5 -5 -5 -5,-4 -5,-4 -5,-4 -5...-1 -5...5 
-5 -5,-4 -5,-4 -5,-4 -5,-4 -4 -4,-3 -4,-3 -4...-1 -4...4 1...5 

-2 -5 -5,-4 -4,-3 -3,-2 -3,-2 -2 -2,-1 -2...2 1,2,3 3,4 4,5 
-1 -5 -5,-4 -4,-3 -3,-2 -2,-1 -1 -l,O,l 1,2 2,3 3,4 4,5 
0 

-5...-1 -4...4 1...4 3,4 3,4 4 4,5 4,5 4,5 4,5 5 4 
-5,-4 -4...-1 -3...3 1,2,3 2,3 3 3,4 3,4 3,4 4,5 5 3 
-5,-4 -4,-3 -3...-1 -2...2 1,2 2 2,3 2,3 3,4 4,5 5 2 
-5,-4 -4,-3 -3,-2 -2,-1 -l,O,l 1 1,2 2,3 3,4 4,5 5 1 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

-3 -5 -5,-4 -4,-3 -4,-3 -4,-3 -3 -3,-2 -3...-1 -3...3 1...4 4,5 

5 -5...5 1...5 4,5 4,5 4,5 5 5 5 5 5 5 

To provide a bit more motivation as to the efficacy of qualitative mathematics, 

let us explore an efficient representation of P B , ~ .  Since P B , ~  has 11 values, a number 

capable of representing any subset of these values would require 11 bits. The following 

implementation rounds to one and one-half bytes: 

Example 2 (Hexadecimal Representation of &,5) 

PB.5 is a set of 11 values. The power set 2'B95 can be contained in 11 bits, which round 

up to 3 nybbles (half-bytes). The most-significant nybble can be used to represent 

the special values -5, 0, and 5, the middle nybble the bounded negative values, and 

the least-significant nybble the bounded positive values: 

Special Negative Positive 
0 I00 -1 010 1 001 
-5 200 -2 020 2 002 
5 400 -3 040 3 004 

-4 080 4 008 

For example, the set of values { -4, -3,0,5} would equal 5CO. 

Using this encoding scheme, we can implement addition as an 11 x 11 array: 
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Example 3 (Hexadecimal representation of table 1) 

(Refer to example 2 for explanation of hexadecimal values.) 

+ I 200 080 040 020 010 I00  001 002 004 008 400 
----+------------------------------------------------------ 

200 I 200 200 200 200 200 200 280 280 280 2F0 7FF 
080 I 200 280 280 280 280 080 OCO OCO OF0 1FF 40F 
040 I 200 280 OCO OCO OCO 040 060 070 177 OOF 408 
020 
010 
I00 
001 
002 

I 200 280 OCO 060 060 020 030 133 007 OOC 408 
I 200 280 OCO 060 030 010 I11 003 006 OOC 408 
I 200 080 040 020 010 100 001 002 004 008 400 
I 280 OCO 060 030 Ill 001 003 006 OOC 408 400 
I 280 OCO 070 133 003 002 006 006 OOC 408 400 

004 I 280 OF0 177 007 006 004 OOC OOC OOC 408 400 
008 I 2F0 1FF OOF OOC OOC 008 408 408 408 408 400 
400 I 7FF 40F 408 408 408 400 400 400 400 400 400 

Thus, the addition of whole ranges of numbers is reduced to referencing an array 

element. 

5.3.2 Subtraction 

Subtraction is derived from negation and addition. Given q ,  T E PB,N, 

q H r  = q1Ifil-r 

The following table summarizes how one number in PB,N is subtracted qualita- 

tively from another. 
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Table 2 (Subtraction) 

4 r 41-lr 
1 - N  1, ..., N - N  
2 - N  + 1, ..., -1 
3 - N ,  ..., -1 
4 - N ,  ..., -3 
5 - N ,  ..., -2 
6 - N ,  ..., -1 
7 - N  + 1, ..., -1 
8 - N  + 2, ..., -1 
9 0  
10 1, ..., N - 1 
11 1, ..., N 

1, ..., -q  

q + 2, '", 1 
q + l  

q - 1  

0 

4 

- N ,  ..., 4 - 2 
- N ,  ..., 0 
- N  + 1, ..., -4 
- N  

q -  1 , q  

4 , 4 + 1  
q ,  ..., -1 

4 

4 ,  " ' 7  

1, ..., r 
r - l , r  
r 
r , r +  1 
N 

5.3.3 Multiplication 

Qualitative multiplication is defined as follows. The subsequent proof shows 

that this definition satisfies the concept of a qualitative function (Def. 10). 

Definition 11 (Multiplication for PB,N) 

{ O  

if qr = 0 
q U r  = sign(qr) - (1, ..., r + 1) if 141 = 1 

sign(qr) (1, ..., q + 1) if Irl = 1 
sign(qr) . {min( 141 + Irl - 1, N ) ,  min( (41 + Irl, N ) )  otherwise 

Theorem 9 (Multiplication) 

Let: 0 < Is( 5 N ,  1 < q < N ,  1 < r < N .  

Proof : Reason 
- N U - N  E N U N  Thm. 6 

= P ((B"- ' ,+a) * (AN- ' ,+CO))  Def. 10,Def. 8 
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= P ((B2N-2, $0)) 
(5.36) = N  

ouo = P ( O . 0 )  = 0 
S U O  = O U S  

= P (0 . sign(s) * Is\) 
= o  

1u-1 = -1U1 
= -(1U1) 
= {-2, -1} 

qJq = q U 1 =  -1U-q = -4U-l  

P ((0, B] (BQ-' ,  B Q ] )  
= P ((0) BQ+l])  

(5.38) = (1, ... , q + 1} 

Def. 7 

Thm. 3 
Thm. 7 
(5.36) 

Def. 10,Def. 8,Def. 7 
Thm. 3 
Def. 10,Def. 8 
Def. 7 

Thm. 6 
Def. 10,Def. 8 

Def. 7 

Thm. 7 
Thm. 6 
(5.37) ,Thm. 2 

Thm. 3,Thm. 6 
Def. 10,Def. 8 

Thm. 3,Thm. 6 
Thm. 7 
(5.38) 

Thm. 3,Thm. 6 

Def. l0,defipbn 

Def. 7 

Thm. 3,Thm. 6 
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Thm. 7 
(5.39) 

(5.40) 

q u r  = - q u - r  
= P ((Bq-1, Bq] - ( B Y - 1 ,  B']) 
= p (( Bq+'-2, fp+']) 

{ q + r - l , q + r }  i f q + r  5 N 
= ( N  i f q + r > N  

Thm. 6 
Def. 10,Def. 8 

Def. 7 

Thm. 3 
Thm. 7 

The following table shows multiplication for PN,5. 

Example 4 (Multiplication table for P N , ~ )  

- 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
5 5 5 5 1...5 0 -5...-1 -5 -5 -5 -5 
5 5 5 5 1...5 0 -5...-1 -5 -5 -5 -5 
5 5 5 4,5 1...4 0 -4...-1 -5,-4 -5 -5 -5 
5 5 5 3,4 1,2,3 0 -3...-1 -4,-3 -5,-4 -5 -5 

1...5 1...5 1...4 1,2,3 1,2 0 -2,-1 -3...-1 -4...-1 -5...-1 -5...-1 
0 0 0 0 0 0 0  0 0 0 0 

-5...-1 -5...-1 -4...-1 -3...-1 -2,-1 0 1,2 1,2,3 1...4 1...5 1...5 
-5 -5 -5,-4 -4,-3 -3...-1 0 1,2,3 3,4 4,5 5 5 
-5 -5 -5 -5,-4 -4...-1 0 1...4 4,5 5 5 5 
-5 -5 -5 -5 -5...-1 0 1...5 5 5 5 5 
-5 -5 -5 -5 -5...-1 0 1...5 5 5 5 5 
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5.3.4 Division 

Division will not be proven formally here. The interested reader can use the 

strategy demonstrated for addition and multiplication or derive this definition directly 

from the multiplication table. 

Definition 12 (Division) 

5.3.5 Relational Operators 

Since qualitative values partition 82 disjointly, two elements of qualitative values 

cannot be equal if the qualitative values are different. However, except for the point- 

interval zero, nothing can be said about quq, since there exist values in (4) that 

are not equal to each other. 

Table 3 (Equality) 

false i f q f r  

{true, false} otherwise 
i f q = r = O  

Inequality is simply the negation of equality: 
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Table 4 (Inequality) 

i f q f r  
i f q = r = O  

{true, false} otherwise 

The less-than operation is true if q < r and false if q > r.  In general, if q = r 

then the value is unknown, with the exception of the point-interval zero: 

Table 5 (Strictly Less Than) 

i f q < r  
i f q > r o r q = r = O .  

{true, false} otherwise 

The remaining inequalities can be derived easily from 111 by performing the 

following transformations: 

5.4 Inverse Relations 

The algorithm in the next chapter performs backward propagation on assump- 

tions, so that the state can be modeled more completely. Backward propagation is 

accomplished by applying an inverse relation on each input. 

The inverse relations are derived from the normal functions by solving for each 

input. For example, the inverse relations for the product q u r  = s are 
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The results are intersected with the current values of q and T .  Take, for example, the 

following set of values: 

q = {-3, -2, -1,o, 1, a} 

T = {0,1,2} 

s = {-3, -2) 

Calculating the inverse relations: 

qnew = q n ~ M T  
= { -3, -2, -1,0,1,2} n {-5, -4, -3, -2, -1} 

= { -3, -2, -1} 

Tnew = n 
= {0,1,2} n { - 5 ,  -4, -3, -2, -1,1,2,3,4,5} 

= {1,2> 

These results correspond to the intuitive observations that only a negative can be 

combined with a positive to produce a negative (c.f. q ) ,  and zero cannot be a multi- 

plicand of a non-zero product (c.f. T ) .  

5.5 A Qualitative Calculus of Deviations 

A contribution of this dissertation is the use of qualitative mathematics to de- 

scribe deviations. The concept is similar to the guide words of HAZOP. Although 

digraph methods use a qualitative calculus to analyze flow deviations, it is important 

to note that the deviations are indistinguishable from normal relationships. That 
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is, influences are only considered deviations if they are qualified with a fault. For 

example, an influence of -1 if the valve is accidentally reversed is a deviation from 

the norm, but -1 is not the value of the deviation. It is simply the influence of 

one variable on another variable, the same as described for normal relationships. In 

contrast, the calculus developed in this chapter is specifically a calculus of deviations. 

The values characterize the value of a parameter in relation to its normal value. 

Each qualitative value is a 2-tuple (V, D), where V is the qualitative domain 

representing the possible values a process variable can take and D is the qualitative 

domain representing the ways in which the variable can deviate from its correct value. 

D includes the special value 0, which indicates that the variable’s value is correct. 

In order to avoid confusion, V will be referred to as the “value part” and D will be 

referred to as the “deviation part.” 

The value part of the quantitative domains for deviation analysis are the causal- 

ity diagram function types ( i e . ,  the function ranges.) Recall from section 4.4.1 that 

three types are needed to translate an RSML specification: boolean, enumerated, and 

real. Another language may necessitate different quantitative domains. 

In general, the values in a qualitative domain are chosen to distinguish as mini- 

mally as possible between meaningful alternatives [12]. This goal applies to both the 

value and deviation parts. The simplest calculus, sign algebra, was described above. 

Sign algebra as applied to the deviation part describes whether the value part is too 

high, too low, or correct. 

The value-part functions are independent of the deviation part. That is, it 

does not matter whether a variable is a deviation when calculating what its value 

is. However, the deviation-part functions can be dependent on the value. Figure 5.2 
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4 S L L L N N N H H H  

Table 5.2: Sign algebra of deviations. ‘L,’ ‘N,’ and ‘H’ represent values that are too 
low, normal, and too high, respectively. 

shows the rules for addition and multiplication. Deviations due to addition are inde- 

pendent of the value part. However, the value part must be taken into account when 

calulating a product’s deviation. Proofs of these calculations will be presented later 

in this chapter. 

5.6 Deviation Formulae 

This section defines the meaning of a deviation and derives formulae to calculate 

deviations for the functions introduced in section 4.4.1. 

5.6.1 Numeric Functions 

In order to formulate a calculus of deviations, it would be helpful to formally 

define what is meant by a deviation. For purposes of this calculus, a deviation of a 

numeric variable is defined to be the amount added to or subtracted from the correct 

value in order to obtain the actual value. For example, if the pressure should be 
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10 p.s.i. but is in actuality 7 p.s.i. then the deviation in pressure is -3  p.s.i. The 

corresponding formula is 

(5.41) x a  = x, -k xd, 

where X is the variable, the subscript a means the actual value of X ,  c means the 

correct value of X ,  and d is the deviation in X’s value. 

Note that the deviation could be calculated in other ways. For example, Xd 

could be the ratio 2. Under this paradigm, a value of Xd = -0.5 would mean that 

X ,  is the opposite sign of and one-half the magnitude of X,. While this formula is 

quite useful, x d  does not have a value when X ,  = 0 and it is virtually meaningless 

when X ,  = 0. 

Equation (5.41) associates three values to each system variable. Since one value 

can be derived from the other two, the variable may be represented unambiguously 

by one of three pairs: ( X a , X c ) ,  (X, ,Xd) ,  or (X, ,Xd) .  Although any of these three 

alternatives would be appropriate, the calculus of deviations developed here is based 

on ( X a ,  x d ) .  The rationale is that xd is most salient (this being a deviation analysis), 

and X ,  is more salient than X ,  since the analyst is presumably more interested in 

understanding deviations in the context of what actually happens than what should 

have happened. 

Functions also conform to the above definition, so that replacing X with a 

function f ( X ,  Y, ...) yields the equation 

(5.42) f a  = f c  + f d  

The meaning of f a  and f, are straightforward. They are defined in terms of the actual 

and correct values of independent variables X ,  Y, etc., respectively: 



(5.44) 

However, since only the actual value and deviation are available for each variable, 

equation (5.41) is used to replace each parameter in (5.44) with the available input 

information: 

By rearranging equation (5.42) and substituting (5.43) and (5.45) for f a  and f c ,  

respectively, a general definition for function deviations can be derived solely in terms 

of the actual and deviation values of f’s inputs: 

Equation (5.46) can be used as a template to derive the deviation functions for 

numeric functions. A simple example to begin with is addition. The following proof 

uses equations (5.46)) (5.43)) and (5.45) to show that the deviation of X + Y  is simply 

the sum of their deviations: 

Unary negation is as follows: 

(5.48) 
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Subtraction may be derived by using the results of addition and negation: 

Thus far the proofs have shown that f d  = f ( X d ,  Y d ,  ...) for some functions. The 

following proof for multiplication shows that deviations can interact with each other 

as well as the actual values: 

Division is as follows: 

(5.52) 

Reciprocal can be derived from quotient by setting X ,  = 1 and x d  = 0: 

(5.53) 
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5.6.2 Boolean Algebra 

Since there are only two values in the boolean domain, the concept of a deviation 

is limited to whether the value is correct or incorrect. Taking a logical “0” as being 

the special value correct, and hence logical “1” as a deviation, the following truth 

table shows the relationship between correct and actual values and deviations: 

Correct Actual Deviation 

0 0 0 
(BC) (Ba) ( B d )  

0 1 1 
1 0 1 
1 1 0 

One can readily see that this table describes the exclusive-or operation. Thus, the 

boolean equivalent to equation (5.41) is 

Given a boolean operator p (  B ,  C ,  ...), the following equations are the boolean equiv- 

alents of the numeric equations (5.42)-(5.46): 

Negation is as follows: 

(5.61) 
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Intuitively, this equation states that if a boolean variable’s value is incorrect (or 

correct), then its negation is also. 

Logical conjunction is given by 

This form poses a problem for the forward algorithm presented in the next chapter. If 

B, and Bd are both true, then B, Bd is false. False means “no deviation” and the 

algorithm will not continue its search of (BC),. Factoring out @ and rearranging 

the terms gives: 

If B, and B d  are both true, then the forward search algorithm will make the assump- 

tion that 

(B,C, V lB,(C,  @ Cd) = True 

which reduces to C, = True. 

Substituting logical disjunction into 5.55 gives 

Disjunction can likewise be rearranged to facilitate forward analysis: 
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5.6.3 Relational Operators 

Equations (5.46) and (5 .55 )  both are used to determine the deviation equations 

for the numeric relational operators. Like disjunction and conjunction, the relational 

operators do not simplify beyond the given formulae: 

5.6.4 Enumerated Types 

An enumerated type is defined as a set of tokens over which the ’<’ operator 

has been defined (thus enumerating the tokens.) The following function can be used 
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to map from an enumerated type € to the integers: 

This function allows the deviation equations of the relational operators to be extended 

to enumerated types by first mapping the inputs to the integers. For example, given 

e , f  E € 7  

5.7 Application of Deviation Formulae to PB,N 

Now that the deviation formulae and the qualitative domain PB,N have been 

defined, they can be combined to create a qualitative calculus of deviations. 

The deviation calculus could be extended by performing the kind of proof 

demonstrated in section 5.3  on the deviation formulae. However, a simpler solu- 

tion is to extend the causality diagram to include the deviation part. For example, 

recalling that the deviation formula for multiplication is 

the causality diagram fragment would be constructed as follows: 

bd ad 
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This strategy has two advantages. First, it is a straightforward construction with no 

necessary extensions to the PB,N algebra. Second, the inverse relationship between 

deviations and the input values on which they depend can be exploited. For example, 

The inverse deviation relations are calculated in the same manner as for the 

value part. For the multiplication example, 

5.8 Assumptive Functions 

The deviation analysis algorithm must often make assumptions in order to prop- 

agate deviations forward. The mathematical equivalent to this activity is termed the 

assumptive function. The goal is to propagate a deviation, so the function assumes 

that the deviation does propagate (a non-zero deviation part) and calculates the 

inverse relation accordingly. 

5.8.1 Addit ion 

The deviation function for addition is 

(x + Y ) d  = x d  + Y d .  



104 

In order to propagate z d  # 0 to produce (z + y)d  # 0 the sum must be non-zero. 

Thus, remove - z d  from the set of possibilities for yd. For example, if X d  = {1,2,3}, 

andyd={-1 ,0 ,1} , then thenewvaluefory~is{O,1} ,making(z~y)~={1 ,2 ,3 ,4} .  

5.8.2 Subtraction 

Subtraction is similar to addition, except values from X d  are removed from yd’s 

set of possibilities. Given the same example as for addition, the new yd = { -1, O}. 

5.8.3 Multiplication 

Now assume that x d  is non-zero and we want to make (zy)d non-zero. The terms of 

which x d  is a part must be non-zero too. First of all, (x, - zd)  # 0. As discussed 

above, the set of possible values for x d  must be removed from that for z,. For example, 

if x d  > 0, then x, 5 0. Proceeding to the product, (y, - yd) cannot be zero, since 

this would cancel the effect of xd. Finally, z,y, cannot be the same value as its 

subtrahend. In the most general case, this entails setting z,ya to zero in order to 

propagate the deviation. However, additional constraints on the actual and deviation 

values of z and y can loosen the constraint on z,y,. 

Since multiplication is commutative, the same rules apply to propagating yd. 
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5.9 States 

The algorithm presented in the next chapter performs a forward search based on 

qualitative values of nodes in a causality diagram. The node-value pairs are collected 

into sets referred to as states in this thesis. Each state describes the values of some 

subset of nodes in the diagram at a particular instant of time. Since the nodes 

are associated with either the system variables or some part of a system variable’s 

definition, then the state also describes some portion of the system state. Generally 

speaking, each state is consistent with some subset of the system states Q. Note that 

the system variables have quantitative domains whereas the bindings in a state have 

corresponding qualitative domains. Since many qualitative values can map to a single 

qualitative value, a single state binding can represent many state bindings. 

Deviation analysis begins with an initial state, composed of the analyst’s start- 

ing assumptions. Assumptions are in the form of node value assignments, or bindings. 

Using these initial bindings, the algorithm traces structural relations in the causality 

graph, adding to the state’s set of bindings. 

Deviation analysis also involves tracing the causality graph’s sequential rela- 

tions. Normally the sequential relationship is traced forward (from cause-to-effect) 

since deviation analysis is principally a forward analysis method. However, if a state 

contains assumptions, as the initial state does, the causal relationships are also traced 

backward one step to infer further bindings in the current state. This exercise is part 

of the algorithm discussed in chapter 6. What is relevent at this point is knowing that 

each state has a next state, which is in most cases calculated by following sequential 

relationships forward. A state logically implies its next state, i.e., given a system 
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state S that is described by the bindings in qualitative state Q ,  it must be true that 

Next (&)  describes all possible system states that immediately follow S.2 

The activity of using known bindings and causality graph to derive new bindings 

is referred to as propagation in this thesis. A synonymous phrase that will be used in 

chapter 6 is that the node’s value has been “updated” for a state. Please note that 

the update occurs in the state’s data structure, i e . ,  progress is made in analysis of 

a particular system state. The phrase does not mean that some system variable has 

been updated, i.e., that the system has changed state. Changes are recorded as new 

states in deviation analysis. 

As shown in chapter 3 and as further described in this chapter, sometimes 

additional assumptions need to be made in order to propagate deviations. When 

this is the case the assumptions are added to the existing state in the form of node 

bindings. This creates a new state whose bindings are a superset of the original state’s 

bindings. The number of degrees of freedom in the variables is correspondingly fewer. 

The new state is referred to as a derived state. The state to which it added its 

assumptions is called the base state. A state that has no base state is called a root 

state. The bindings in a state that are not in its base state are called its leaf bindings. 

Since more than one set of assumptions may be made about a state to propagate 

deviations, that state may have more than one derived state. Conversely, each derived 

state has only one base state. Therefore, the states form a heirarchy. 

A qualitative state S can be viewed as a predicate on its variable bindings: 

S = bl A b2 A ... A b,, 

2Note that  the concept of “immediately following” is implicitly defined by the model. It may 

mean a microsecond or a minute. 
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Assum tion a 
Figure 5.2: Example of how assumptions and sequential propagation relate. 

where b; is an assertion on a variable binding (e.g., v = High.) S being true means 

that it is consistent with the state of the system at the time considered. The causality 

diagram (which the reader may recall is essentially a set of axioms) can be used to 

calculate S', which is the predicate describing what is true immediately subsequent 

to S being true. This task will be described in detail in section 6.3.1, but briefly it 

is accomplished by first following sequential edges to build a minimal set of bindings 

for the next state and then following structural edges to obtain a full description of 

the state. 

A derived state sd is composed of the bindings of its base state sb and its leaf 

bindings: 

sd = sb A bl A ... A b,. 

Thus it is trivially true that a base state implies its derived states. This observation 

may be combined with the fact that a state implies its next state, yielding a sort of 

lattice of implications, shown in figure 5.2. In this figure, forward sequential analysis 

produces state s: from sb. Further analysis makes an assumption on the state sb 
producing the derived state sd. Si can be produced directly by a forward sequential 

analysis of sd (including the bindings sd inherits from Sb.) However, such an exercise 

involves some redundant calculations, since the leaf bindings in sd often do not change 

the propagation of values in sb. That is, some bindings in Si are the same as those in 
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function Contains-Deviation( S : Mode ) : Boolean 
begin 

if Deviations-In-Leaf (S) then 

else if not Root(S) then 

else 

return True; 

return Contains-Deviation(Base(S)) ; 

return False; 
end ; 

function Deviation-In-Leaf( S : Mode) : Boolean 
begin 

for each binding B in S do 
if Is-Deviation(Value(B)) then 
return True; 

return False; 
end ; 

Figure 5.3: Algorithms for determining whether a mode contains any deviations. 

5’:. In fact, SL can be treated as a derived state of 5’:. Only the forward propagations 

that involve leaf bindings of Sd need to be included in Si. All other bindings can be 

found in Si. 

The automated algorithm in the next chapter discontinues its search along a 

particular path if a state does not contain any deviations, since deviations cannot be 

propagated from normal values. For purposes of that algorithm, a state S is consid- 

ered to “contain deviations” if and only if it contains deviations in its leaf bindings 

or its base state contains deviations. Figure 5.3 shows an algorithmic definition. 



Chapter 6 

A Forward Search Algorithm 

As stated in chapter 2, the goal of this thesis is to develop a forward-search 

algorithm for the purpose of hazard analysis of computer-controlled systems. The 

goals of hazard analysis are to identify hazards, identify their causal factors, and 

evaluate risk [16]. Since a forward search works from cause to effect, a forward- 

searching hazard analysis would tackle the task of identifying potential hazards. 

The algorithms in this chapter assume the following items are available: 

e causality diagram, 

e forward, backward, and conditional function mappings 

e initial state, 

e stopping criteria. 

The causality diagram was discussed in chapter 4. The function mappings were 

discussed in chapter 5 .  The initial state is the starting place of the analysis. 

Deviation analysis may be thought of as a type of symbolic execution, since the 

specification is used to propagate symbols representing classes of values (as defined 

by the calculus of deviations.) It may also be thought of as a limited theorem prover 

that does not prove an a priori postulate, but rather can provide a posteriori “proof” 

of circumstances leading from an initial state (the proof’s antecedent) to a hazardous 

109 
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procedure Semi-Automated 

var 
S : Mode; 

Push-Mode(Get-Initial-Mode-From-Analyst); 
while Stack not empty do 

S := Top(Stack) ; 
Display-Mode(S) ; 
case (Get-Command-From-Analyst) of 

begin 

begin 

Generate-Derived-Modes: 
Propagate-Possible-Deviations(S); 
Display-Derived-Modes(S); 

Push-Mode (Get-Derived-Mode-From-Analyst (S) ) ; 

Push-Mode (Next (S) ) ; 

Pop (Stack) ; 

Analyze-Derived-Mode: 

Analyze-Next-Mode: 

Back-Track: 

end ; 
end ; 

procedure Push-Mode(S : Mode) 
begin 

Push(Stack, S) ; 
Propagate-Def inite-Deviations(S) ; 

end ; 

Figure 6.1: A semi-automated search procedure. 

state. As will be discussed, this proof may involve making assumptions in addition 

to the antecedent. The steps of the proof are composed using rules of the calculus 

(the qualitative functions) and the axioms (the relations in the causality diagram.) 

The search may be directed by the analyst, in which case the deviation analysis 

is semi-automated ,  or it may be directed by a top-level search algorithm, in which 

case it is f u l l y  automated.  The advantage of a semi-automated search is that the 

analyst, who invariably has more knowledge of the system than is represented by the 

specification, can often direct the search toward the most serious hazard scenarios. 
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The advantage of a fully-automated search is that a large number of scenarios can be 

generated and prioritized very quickly. The analyst can then scan a large number of 

scenarios, focusing on the ones that appear to be the most interesting. Both methods 

are profiled in this chapter. 

6.1 Semi-Automated Analysis 

The SemiAutomated search is guided by a stack of states. The stack represents 

states that have already been visited by the analyst. This means that deviations have 

already been propagated for these states (refer to the presentation of Propagate-- 

Def i n i t e D e v i a t i o n s . )  The procedure P u s h S t a t e  performs the push and analysis. 

The SemiAutomated procedure begins by obtaining the initial state from the 

analyst. The state is passed to the procedure P u s h S t a t e ,  where it is analyzed for 

definite deviations and pushed onto the stack. This is the extent of the initialization 

of the procedure and it then proceeds to the command loop. 

When presented with a new state the analyst has two options: analyze the next 

state in sequence (ie., go forward a step) or generate derived states. Derived states 

are discussed in detail later in this chapter, but briefly they are based on the current 

state with additional assumptions in order to propagate deviations. Once the derived 

states have been generated, the analyst may choose one to analyze. A search may 

be concluded or postponed at any point by back-tracking, ie., popping states off the 

stack. 

The command loop (whi le  S tack  n o t  empty do) first pops the top state off 

the stack. It displays the state, including any auxiliary information obtained from 
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procedure Automated 

v a r  
Depth : i n t e g e r ;  
S : Mode; 

Append( Queue, Get- Ini t  ial-Mode-From-Analyst ; 
while  Queue not  empty do 

begin 

begin 
S : = Pop-Front (Queue) ; 
Propagate-Def ini te-Deviat  ions(S) ; 
i f  ( Contains-Deviations(S) 

and Consistent  (S) 
and Unique (S) 
and not  Hazard(S) ) then  

i f  (Step(S) < MAX-STEPS) then  
Prepend(Queue, Next (S) ; 

i f  (Depth(S) < MAX-DEPTH) then  
begin 

begin 

Propagate-Possible-Deviat ions(S) ; 
f o r  each c h i l d  mode C of S do 

Append (Queue, C) ; 
end ; 

end 

Append-Search-Path-To-Hazard-List(S); 
else i f  Hazard(S) then  

end ; 

Figure 6.2: A fully-automated search procedure. 

PropagateDef i n i t e D e v i a t i o n s ,  such as whether it is inconsistent, whether it 

dead-ends, or if it contains a hazardous deviation (as defined by the stop criteria.) 

The analyst is then prompted for a command. If the command is to generate derived 

states, then it does so, displaying the results. If the command is to visit a derived 

state, then the user is prompted for the state to visit. The derived state is analyzed 

and pushed onto the stack. If the analyst gives the command to visit the next state in 

time, then that state is created if necessary (by Next), analyzed, and pushed onto the 

stack. The back-tracking command pops the top state off the stack so that the next 
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iteration of the command loop refers to the state analyzed just before the current 

one. The analysis concludes when all of the states are popped off of the stack. 

The lust in-first out nature of this algorithm is written to complement the char- 

acteristics of short-term human memory. However, it is presented as an example only. 

The SemiAutomated procedure could be improved in several ways. For example, the 

command loop could include 

0 a command that lists the stack, 

0 a command that displays the search tree generated so far, 

0 a command that pops the stack until a particular state is on top (multiplepops), 

0 a command that performs A n a l y z e N e x t S t a t e  until a state is reached that ei- 

ther has no deviations, is inconsistent, or contains a hazardous deviation (mul- 

tiple pushes). 

6.2 Fully-Automated Analysis 

The procedure Automated does a breadth-first search with respect to the derived 

states. First, all of the states with no assumptions are analyzed. Then the states with 

a single assumption are analyzed. The analysis continues until the maximum depth 

of assumptions (MAXDEPTH) is reached or until there are no more states to analyze. 

The algorithm first obtains the initial state from the analyst. This state is 

appended to an empty queue. It is not first analyzed as in the semi-automated 

algorithm since the search loop performs this task. 

The search loop first pulls a state S off the front of the queue. S is analyzed 

for definite deviations (discussed in detail in the next section.) In order for the 
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next state of S (Next (SI) and the S’s derived states to be analyzed, S must satisfy 

certain criteria. First, it must contain at least one deviation. If it does not, then no 

states based on S will contain deviations. Second, it must be internally consistent- 

inconsistent states are not reachable according to the requirements and assumptions 

of the system. Third, it must be unique. If it is not unique, it means that this state 

has been reached via a different search path; any further analysis would be redundant. 

Fourth, if S contains a hazardous deviation then by definition the search is complete. 

In addition, Automated prevents runaway searches by limiting the number of 

steps taken forward (MAXSTEPS) and the number of assumptions a search path can 

have (MAXDEPTH). The values for MAX-STEPS and MAXDEPTH depend on the char- 

acteristics of the system being investigated and should probably be determined by 

the analyst, although the algorithm could make suggestions based on the size of the 

causality diagram. 

If S satisfies the criteria to continue forward, then S’s successor is prepended to 

the queue. Thus, Next (S) is analyzed on the next iteration of the search loop. 

If S satisfies the criteria to investigate potential derived states, then those states 

are generated by PropagatePossibleDeviations (section 6.4) and appended to the 

queue. Since they are appended to the queue and the successors are prepended, this 

ensures that all of the successors are analyzed before the first derived state. When the 

last successor state is analyzed, the derived states are at the front of the queue. Their 

successors are prepended and as they are analyzed, the new, twice-derived states are 

appended. In this way, all of the states of one order of derivation are analyzed before 

any of a higher order of derivation. 

Figure 6.3 shows an example of the search order. The boxes represent states in 

a search tree, where the initial state is the root of the tree (marked by the number 
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Figure 6.3: An example of a search tree produced by the Automated procedure. The 
boxes represent states, the dashed lines mark successor states, the solid lines mark 
derived states, and the numbers show the order of analysis. 

‘1’). One of the children of each non-leaf state is its successor; they are connected by 

a dashed line. For the purpose of the example, each non-leaf state has two derived 

states-these states are connected to their base states by solid lines. The numbers 

in the boxes show the search order. Refer to table 6.1 for the execution trace corre- 

sponding to figure 6.3. 

The algorithm given here is intended as an example of an efficient traversal of 

the search space. It is based on the premise that hazard scenarios requiring fewer 

assumptions are likelier than those with more assumptions. This premise is not 

necessarily true. Other search strategies that are more sensitive to the characteristics 

of the system being analyzed are possible. For example, the system variables could be 

prioritized according to likelihood to deviate. Thus, assumptions could be weighted. 

These weights could be used to sort the search queue. Such a strategy is outside the 

scope of this thesis, since it would likely require a detailed taxonomy of safety-critical 

systems. 
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State (s) Operation State Queue 
Analyst provides initial state 

1 
1 
1 
2 
2 
2 
3 
4 
4 
4 
5 
6 
6 
6 

7-1 3 

Pop front and analyze 
Prepend successor 
Append derived states 
Pop front and analyze 
Prepend successor 
Append derived states 
Pop front and analyze 
Pop front and analyze 
Prepend successor 
Append derived states 
Pop front and analyze 
Pop front and analyze 
Prepend successor 
Append derived states 
Pop front and analyze 

Table 6.1: Execution trace of the Automated procedure. The left column is the state 
currently being analyzed. The middle column is the action being performed. The 
right column is the queue of states yet to be analyzed. 

6.3 Propagation of Definite Deviations 

The previous section presented the main loop for the Automated algorithm. 

This section describes the procedure PropagateDef i n i t e D e v i a t i o n s ,  shown in 

figure 6.4. This procedure takes a state as input and attempts to propagate any 

deviations it contains. In the process of doing this it also propagates any normal 

values that it can, since the normal values of some variables can condition whether 

and how deviations can occur in other variables. 

Each state has two queues for the analysis of definite deviations. One queue 

is for the forward propagation of value changes. The other queue is for propagation 

backward, from effect-to-cause. The forward queue is appended under three circum- 

stances: 
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procedure Propagate-Definite-Deviations(S : Mode) 
begin 

if ( Is-Derived-Mode(S) and not Finished(Base(S)) then 
Propagate-Def inite-Deviations(Base(S)) ; 

Process-Definite-Queues(S); 
if ( Initial-Mode(S) or From-Base(S) then 
begin 

Process-Definite-Queues(Prev(S)); 
Process-Def inite-Queues (S) ; 

end 
Set-Finished(S); 
Check-For-Equivalence@); 
Check-For-Hazards(S); 

end ; 

procedure Process-Definite-Queues(S : Mode) 
begin 

while not Empty(Backward-Queue(S)) do 

while not Empty(Forward-Queue(S)) do 
Propagate-Backward-Def inite(S, Pop-Front (Backward-Queue(S) ))  ; 

Propagate-Forward-Def inite(S, Pop-Front (Forward-Queue(S))) ; 
end ; 

Figure 6.4: The PropagateDef initeDeviations procedure. 
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0 when an assumption about a node is added to a state (including the initial 

assumptions the analyst provides), 

0 when a node changes value due to a forward propagation (see discussion of 

PropagateJorwardDef ini te) ,  and 

0 when a node changes value due to a backward propagation (see discussion of 

PropagateBackwardDef ini te) .  

The backward queue is appended in two circumstances: 

0 when an assumption about a node is added to a state (including the initial 

assumptions the analyst provides), 

0 when a node changes value due to a backward propagation (see discussion of 

PropagateBackwardDef ini te) .  

The procedure takes a state S as input. If S is a derived state, then its base state 

must be analyzed before S is analyzed. Otherwise not all values will get propagated in 

S. For example, suppose node N1 = N2 A N3. Also suppose that in order to propagate 

a deviation (unrelated to N I ) ,  N2 is assumed to be true in S. If N3’s value is unknown 

in Base (S) , then N1’s value is also unknown, since 

true A N3 = N3 = unknown. 

If, however, some value in Base(S) propagates to cause N3 to be set to true or false, 

then N1 should be updated correspondingly in S. It will not, however, if Nl is analyzed 

in S prior to N3 in Base (S) . Thus Base (S) should be analyzed before S (hence the 

first statement in the procedure.) 

After analyzing the base state if necessary, S’s definite queues are processed. The 

procedure ProcessDef inite4ueues first processes all of the nodes in the backward 
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definite queue (BackwardlJueue(S) in the algorithm.) The backward definite queue 

is processed first because, as noted above, backward analysis can cause nodes to 

be added to both the backward queue and the forward queue, whereas the forward 

analysis can only result in nodes being added to the forward queue. Processing the 

backward queue results in an empty backward queue and a possibly larger forward 

queue. Processing the forward queue results in an empty forward queue and no change 

in the backward queue. Thus, processing backward and then forward results in two 

empty queues. Processing forward and then backward could result in a non-empty 

forward queue. 

If S contains assumptions, then its previous state must also be analyzed because 

some values may propagate from S backward to its previous state and then back again. 

For example, if node Nl = Previows(N2) V N3, and an assumption of state S 

is that Nl is false, then N2 must be false in Prev(S) and N3 false in S. If another 

node N4 = Previous(N2) A N 5 ,  then N4 must be false in S. In order for these values 

to propagate properly, S must first be analyzed as described above. The backward 

propagations may add nodes to Prev(S)’s queues. Thus, Prev(S)  must then be 

analyzed. The forward propagations in analyzing P r e i ( S )  may add nodes to S’s 

forward queue. (It cannot result in adding any nodes to S’s backward queue because 

only the forward propagations in Prev(S) can affect S’s queues, and as previously 

discussed backward queues can only be added to by backward propagations.) Since S’s 

forward queue may now contain entries, it must be re-analyzed. The procedure simply 

calls P r o c e s s D e f i n i t e a u e u e s  again, although the check to see if the backward 

queue is non-empty is unnecessary. 

Next, the algorithm sets a flag in S to signify that it has been analyzed for 

definite deviations. The flag is used to determine whether the base state needs to 
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be analyzed before analyzing a derived state, a possibly recursive procedure if the 

base state is itself a derived state. This situation is not possible for the Automated 

algorithm since it analyzes all base states before proceeding to their derived states 

(since the successor states are pushed onto the front of the queue and derived states 

are pushed onto the rear.) However, the SemiAutomated algorithm allows the analyst 

to analyze a state S’s derived state before S’s successor. The derived state’s successor 

has S’s successor as its base state. For example, in figure 6.3 state 2 is state 5’s base 

state. 

The state is then checked for equivalence with any other state in the search tree. 

Finally, it is checked for the existence of hazardous deviations. These algorithms as 

well as the definite propagations will be discussed presently. 

6.3.1 Forward Propagation 

Forward propagation is the application of a qualitative function to update a 

binding in a state. Each node in the causality diagram is associated with a qualitative 

function. If one of the inputs to that node has its value refined, then the value of 

the node may also need to be refined. Forward propagation may take one of three 

forms-structural, sequential, or combined-depending on the types of edges into the 

node. 

The impetus for forward propagation is the update of a node’s value. Since 

the update occurs for a particular state, the two arguments that must be passed to 

the P ropaga te Jo rwardDef  i n i t e  procedure (figure 6.5) are a state S and a node N. 

Recall that the edges out of a node N lead to nodes with which N has a causal relation- 

ship. Accordingly, PropagateTorwardDef i n i t e  calculates the qualitative function 
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for each child node C by iterating over the edges out of N. If the edge is sequential, 

then the function must be evaluated in the context of Next (S). The variable C h i l d 3  

is assigned to either S or Next (S), depending on the type of edge. 

The variable Old-Value is assigned to the current binding of C in C h i l d S  or 

Unknown if no binding exists. NewBinding is assigned to the value of C’s qualitative 

function given the new values of its inputs. The function Input-Values supplies the 

function with values either from C h i l d S  or Prev(Chi ldS) ,  depending on the type 

of each edge into C. 

If the new value is inconsistent with the old value, then C h i l d 3  is marked 

inconsistent. The topic of consistency will be discussed presently. Otherwise, if the 

node’s value has been refined, then it is added to ChildS’s forward queue, so that 

its new value may be propagated to its children. If C’s value is not updated and N’s 

value is a deviation, then C is added to the “possible” queue to see if any assumptions 

can be made to propagate the deviation. 

The procedure finishes when all of the children of N have been inspected, thus 

concluding all possible ways that N’s new value may be propagated forward (without 

making assumptions.) 

6.3.2 Backward Propagation 

Backward propagation is the application of the inverse of a qualitative function 

to update a state’s binding. Its role in deviation analysis is to provide additional in- 

formation about a state. Like forward propagation, backward propagation is initiated 

by the initial assumptions. However, since deviation analysis is primarily a forward 

search method, the Automated algorithm limits the use of backward propagation to 
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procedure Propagate-Forward-Definite(S : Mode, N : Node) 
var 
Child-S : Mode; 
C : Node; 

foreach arc A out of node N do 
begin 

begin 
if ( Sequential(A) ) then 

else 
Child-S : = Next (S) ; 

Child-S := S; 
C := Child(A) ; 
Old-Value := Value(Chi1d-S, C); 
New-Value := Forward-Mapping(Function(C), 

if ( Inconsistent(O1d-Value, New-Value) ) then 
Input-Values(S, C)); 

Mark-Inconsistent(Chi1d-S); 
else 
begin 
if ( Old-Value <> New-Value ) then 
begin 
Update-Value(Chi1d-S, Cy Old-Value, New-Value); 
Add-To-Forward-Queue(Child-S, C); 

if ( Unknown-Deviation(New-Value) and 
Deviant(Value(S, N)) ) then 

Add-To-Possible-Queue(Child-S, C); 

end ; 

end ; 
end ; 

end ; 

Figure 6.5: The PropagatePorwardDef inite procedure. 
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the state containing the assumptions and possibly its preceding state (see sections 6.2 

and 6.3.)  The SemiAutomated algorithm as written does not allow analyzing the pre- 

vious state, but this could easily be added.' 

6.3.3 Existence of Deviations 

The existence of deviations is simple to track. When a state is created, a flag, 

say C o n t a i n s D e v i a t i o n s ,  is set to false. If a binding is added which contains a 

deviation, the flag is set to t r u e .  

6.3.4 Internal Consistency 

When the new value is calculated, the old and new value might be inconsistent. 

Recalling that qualitative values are actually sets over the quantitative domain, the 

two values are inconsistent if the new value is not a refinement of the old value, ie., 

New-Value Old-Value. In other words, the new value must either be the same as 

the old value or describe a portion of the old value. 

An inconsistent result may be due to inconsistent assumptions. Recalling the 

I n t r u d e r- S t a t u s  diagram (figure 2.l) ,  an example of two inconsistent assumptions 

is a state in which Descend and Other- Traf f i c  are both active. 

lTo give the analyst the ability to  propagate definite deviations backward in time, the following 

line could be added to  the case statement: 

AnalyzeSreviousState:  PushState(Prev(S))  ; 
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procedure Propagate-Backward-Definite(S : Mode, N : Node) 
var 
Parent-S : Mode; 
P : Node; 

if ( Arity(N) = 0 ) then return; 
Old-Input-Values := Input-Values(S, N); 
New-Input-Values := 

if (New-Input-Values = Inconsistent) then 

begin 

Backward-Mapping(Function(N), Old-Input-Values, Value(S, N)); 

begin 
Mark-Inconsistent (S) ; 
return 

end ; 

begin 
foreach parent arc A of node N do 

if ( Sequential ( A )  ) then 

else 
Parent-S := Prev(S); 

Parent-S := S ;  
P : = Parent (A)  ; 
if (New-Input-Values(P) <> Old-Input-Values(P)) then 
begin 
Update-Value(Parent,S, Old-Input-Values(P), 

New-Input-Values(P)); 
Add-To-Forward-Queue(Parent-S, P); 
Add-To-Backward-Queue(Parent-S, P); 

end ; 
end ; 

end ; 

Figure 6.6: The PropagateBackwardDef inite procedure. 
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It is possible for inconsistencies to arise from an internally inconsistent calculus. 

For example, the following two qualitative axioms are inconsistent: 

Positive x Unknown = Positive 

Positive x Negative = Negative 

The hypothesis “The product of a positive and negative is positive” is true according 

to the first axiom but false according to the second. 

It is also possible for inconsistencies to arise indirectly from the requirements 

specification and thus from the causality diagram directly. This situation arises from 

loops in structural causality, in which a path may be traced from a node back to itself 

exclusively via structural edges. Such a definition constitutes a recursive, iterative 

function (such as a limit function or a fractal.) Although it may be useful in some 

cases to define an environmental variable recursively, analysis of the causality diagram 

for structural loops is probably prudent.2 Note that loops involving at least one 

sequential edge do not present a problem, since a node’s value is defined in terms of 

its value in a previous state. 

6.3.5 Checking for Equivalence 

It is desirable to identify equivalent states to avoid redundant searches. This 

is useful not only for an efficient automated algorithm, but to aid the analyst in 

recognizing patterns in the search space. 

Checking for equivalence is a potentially costly operation. If the states contain 

an average of b bindings, and there are c states to check against, then a naive check 

’An even more prudent approach is to analyze the original specification for structural loops. 
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for equivalence of a state with previously defined states is O(cb2), assuming the states 

are unsorted. If the states are sorted (an operation requiring time O(b log b ) ) ,  then 

the cost of a search for equivalence is O(cb + blog b) .  

The search for an equivalent state is conducted each time a new state is created. 

Neglecting the effect of duplicates on the number of states created and kept, the 

number of comparisons for n iteratively-created states is given by 

n 

Gib+ blogb 
i=l 

= O( n2b + nb log b)  

Thus the search for equivalent states can become quite costly as the size of the search 

and number of bindings increases. 

An efficient method of comparing states is to compute a pseudo-random integer 

based on the bindings in a state. The integer can be used to exclude practically all 

states except those that are equivalent. This method is similar to a hash function. A 

hash function should distribute hash keys amongst the buckets as evenly as possible, 

to minimize the number of conflicts. Similarly, the proposed equivalence function 

seeks to distribute states evenly over a set of n-bit integers, which shall be called 

equivalence codes. Additionally, the distribution should be as random as possible, so 

that similar states do not have a significantly higher probability of having the same 

code. Thus, even though a search will very likely be concentrated around a group of 

similar states, their equivalence codes should be randomly distributed. 

The code function takes a state as input, which is to say that it takes a list 

of bindings as input. An additional constraint on the code function is that it be 

commutative with respect to the order of the bindings. This avoids the need to sort 
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#include <stdlib.h> 

unsigned Encode(unsigned x) { srand(x); return (unsigned) rand(); 3 

unsigned Equivalence-Code(Binding B) 

unsigned int code, num-bytes, i; 
unsigned char *bytes; 

code = 0; 
num-bytes = sizeof (B) ; 
bytes = (char*) &B; 
for (i = 0; i < num-bytes; i++) 

code = Encode( code A Encode( (unsigned) bytes [ill ) ; 
return code; 

3 

Figure 6.7: Sample C++ functions for calculating equivalence code. 

the bindings so that they are always handed to the function in the same way. It also 

allows the equivalence code to be computed incrementally, as bindings are added. 

This is particularly useful when a derived state is created, as it can simply inherit 

the equivalence code of its base state. 

For example, suppose a base state has the bindings b l ,  bz, and b3 and its derived 

state has the binding b4. Suppose also that another base state has the bindings bl 

and b3 and its derived state has the bindings bz and 134. Then the two derived states 

must have the same equivalence code, which should be different from the codes from 

the two base states. 

The hash function is composed of two operators, one for translating a variable 

binding to a pseudo-random key and one for combining the keys into a single equiva- 

lence code. It is the combining function that must satisfy the commutative property. 

The translating function must satisfy the constraint that it yields the same value each 

time it is called for a particular binding (ie., node-value pair). 
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A suitably random translating function is the pseudo-random function contained 

in most programming language libraries. Figure 6.7 shows an example from the C 

programming language. When this example was run on 100,000 test cases (nodes 

numbered between 0 and 9,999 and values numbered between 0 and 9) there were 

three pairs of bindings with the same equivalence code.3 

A suitably random hash code is integer addition of pseudo-randoms. Integer 

addition is addition modulo 2*, where N is the number of bits. Thus, the distribution 

of the sum randomly distributed naturals between zero and 2N - 1 results is itself 

random. 

6.3.6 Checking for Stopping Criteria 

The stopping criterion can take one of several forms. It can be a list of nodes in 

which a deviation is considered hazardous. It can be a list of states that are considered 

hazardous. The former is faster to check for. The latter allows for node interaction, 

e.g., one may interested in a state in which one node is too high while the other is 

too low. 

6.4 Propagation of Possible Deviations 

Conditional analysis is the propagation of possible deviations. These are devia- 

tions which, given certain assumptions about the state of the system over and above 

what is currently known about its state, will definitely occur. 

3Experiment performed on a Mitra 486DX running Linux 1.1.2, using GNU gcc 2.5.8 and GNU 

stdlib. The Binding data structure was represented as struct { unsigned short int Node; 

char Value ; }. 
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procedure Propagate-Possible-Deviations(S : Mode) 
begin 
while not Empty(Possib1e-Queue(S)) do 
Propagate-Possible(S, Pop-Front(Possib1e-Queue(S))) ; 

end ; 

procedure Propagate-Possible(S : Mode, N : Node) 
var 
D, Parent-D : Mode; 

if (Arity(N) == 0) then return; 
Old-Input-Values := Input-Values(S, N); 
Old-Value : = Value(S , N) ; 
New-Values : = 

if (New-Values(N) <> Old-Value) then 

D := Create-Derived-Mode(S); 
Update-Value (D , Old-Value , New-Values (N) ; 
Add-To-Forward-Queue (D , N) ; 
Add-To-Backward-Queue(D, N); 
for each parent arc A of N do 

if ( Sequential(A1 ) then 

else 

begin 

Possible-Mapping(Function(N), Old-Input-Values, Old-Value); 

begin 

begin 

Parent-D := Prev(D); 

Parent-D := D; 
P := Parent(A); 
if (New-Values(P) <> Old-Values(P)) then 
begin 
Update-Value(Parent-D, Old-Values(P), 

Add-To-Forward-Queue (Parent-D , P) ; 
Add-To-Backward-Queue(Parent-D, PI; 

New-Values (P) ) ; 

end ; 
end ; 

end ; 
end ; 

Figure 6.8: The PropagateBackwardDef inite procedure. 
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Note that unlike the PropagateDef i n i t e  procedures, this procedure does not 

need to check whether the old and new values are inconsistent. This is because the 

definite procedures check for inconsistencies whenever a node changes value. If a 

value changes due to a forward propagation, then it is known to be consistent with 

respect to its inputs; it needs to be checked whether it is consistent with its children 

nodes. This will happen as soon as it is removed from the forward definite queue. 

Likewise a backward propagation causes a node’s value to be consistent with one of 

its children nodes. Since backward propagations cause a changed node to be put into 

both the forward and backward queues, it will be checked against its inputs when it 

is analyzed by PropagateBackwardDefinite and against its other children nodes 

when it is analyzed by PropagateYorwardDef in i te .  

It is important to note that these assumptions may be inconsistent with the state 

of other system variables. Several things can cause this. Some assumptions about the 

system’s behavior may have been left unspecified. Also, the qualitative mathematics 

presented in chapter 5 groups sets of values that are considered similar. This grouping 

facilitates analysis, but can result in loss of significant information. The result of 

impossible assumptions is that the analyst may be presented with an impossible 

hazard scenario. In this respect, deviation analysis is a conservative method similar 

to SMHA. The analyst must invest time in protecting against potentially impossible 

situations, but in doing so also provides insurance against false assumptions and 

future changes in the system’s operating environment. 

On the other hand, the assumptions made by the algorithm may actually be 

inevitable given the known state of the system. Again, this may be due to other 

unspecified assumptions made by the experts or due to the grouping effect of qual- 

itative analysis. In this case, the analyst is presented with a scenario and told that 

a hazard might occur, when in point of fact it will occur. The analyst should still 
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take the scenario seriously, but a potential danger is that in the face of limited time 

and resources the analyst may give the hazard a lower priority than other less-likely 

hazards. 

The forward possible queue is appended when a node’s deviation does not prop- 

agate forward and one of the node’s children has an unknown deviation value.4 This 

indicates the possibility that assumptions could be made in order to propagate the 

deviation. 

6.5 Summary 

This chapter presented two related algorithms, one semi-autoamted and one 

automated, to assist the analyst in discovering potential problems in how software 

handles system deviations. 

The author feels compelled to discuss two possible uses of deviation analysis that 

he feels are not advisable. Although the resulting trace of events from a forward search 

ties a hazard to a given set of causal factors, this information cannot be considered 

fulfillment of the goal of finding causal factors. The analyst cannot assume that all 

causal factors have been identified. Though it may be tempting to use the information 

to infer the impossibility of a hazardous event, this practice is not sound. 

As discussed in chapter 1, the calculation of risk is a controversial task, due 

to the lack of confidence, statistical or otherwise, that can be placed in software 

failure probabilities. Although the results of the algorithm presented in this chapter 

can conceivably be used to calculate approximate risk given an initial scenario, a 

4N.B.: “Unknown” means that a value may or may not be deviant from the norm, not that it is 

definitely a deviation of unknown magnitude. 
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full forward search, and probabilities on the assumed events, such an analysis would 

require a careful treatment of variable interaction, since a wrong assumption that 

system variables are independent can lead to failure probabilities that are many orders 

of magnitude too optimistic. Therefore, the author advises against such an analysis. 



Chapter 7 

Examples 

This chapter presents experimental results of the deviation analysis algorithm 

and a discussion of how deviation analysis addresses the goals of this dissertation. 

The experiments were performed on two models. One model is a simple train cross- 

ing example and the other is part of the requirements specification for the TCAS 

avionics software. The results for each experiment will take the form of space and 

time requirements and some example scenarios produced by the algorithm. 

The software used in these experiments utilizes the RSML simulator developed 

at the University of California, Irvine and the University of Washington. The majority 

of the deviation analysis software is written in C++. The top-level search algorithms 

presented in chapter 6 are written in the interpreted language Tcl. The compilation 

and experiments were performed on the Linux 32-bit operating system (version 1.1.2) 

using the GNU C++ compiler (version 2.5.8). Size and execution performance data 

are for unoptimized code (including debugging information) on an Intel 80486DX2 

microprocessor at 66 MHz. Available physical memory ranged from six to twelve 

megabytes before loading the code and data. The initial free memory affects how 

soon before virtual memory swaps begin, so execution figures are only approximately 

related. Sixteen megabytes of virtual memory were available for the experiments. 
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Figure 7.1: Train crossing example. 

The parameters for PB,N are as follows. The base ( B )  equals 4 and the number 

of elements on each side of zero ( N )  is 8. Thus, the domain has the following divisions: 

(-16384, -4096, -1024, -256, -64, -16, -4,0,4,16,64,256,1024,4096,16384} 

The major consideration in choosing the parameters was to make sure that the divi- 

sions reached into the tens of thousands, since the altitude variables in the avionics 

example can reach 30,000 feet or more. N was chosen to be large enough to provide 

roughly order-of-magnitude coverage within BN.  

This chapter introduces some terminology. Deviations of nodes that have been 

identified by the analyst as being significant are referred to as “significant deviations.” 

“Significant states” are states that contain significant deviations. A trace from the 

initial state to a significant state is a “scenario.” 
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Figure 7.2: Queue sizes on train crossing example 1. 

Train Crossing 

A specification for a simple system is shown in figure 7.1. As the train ap- 

proaches a railroad crossing, a sensor on the tracks sends a signal to the gate con- 

troller, which then lowers the gate. After the train has left the intersection, another 

sensor signals the controller to raise the crossing gate. 

The software creates the causality diagram in about 1.5 seconds. The data 

structures require 252 kilobytes. There are a total of 980 nodes in the causality 

diagram, with 65 nodes directly mapped to entities in the RSML specification and 

the balance of the nodes encoding the causal relationships of the somewhat rich RSML 

semantics. 

The analyst makes initial assumptions-including at least one deviation-to 

start the analysis. In this case, one might investigate the potential effects of the 
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ASSUMPTIONS: 
Step 0: node557: dev(ApproachingSigna1Event) = T 
Step 0: node50: value(ApproachingSigna1Event) = F 
Step 2: node911: correct(value(TrainPositionUnknown)) = T 
Step 3: node972: correct(value(GateUp)) = T 
VALUES : 
Step 0: node50: value(ApproachingEvent) = F 
Step 1: node68: value(SendApproachingSigna1) = F 
Step 2: nodel83: value(Unknown-to-TrainApproaching) = F 
Step 2: node69: value(ReceiveApproachingSigna1 TrainApproachingEvent) = F 
Step 3: node156: value(EnteredCrossingEvent) = F 
Step 3: node213: value(GateUp-to-GateDown) = F 
Step 4: nodel90: value(TrainAppr0aching-to-Unknown) = F 
Step 4: nodel50: value(GateDownCmdEvent GateDownCmdSentEvent) = F 
Step 5: nodel71: value(SendGateDownCmd) = F 
DEVIATIONS: 
Step 0: node557: dev(ApproachingEvent1 = T 
Step 1: node589: dev(SendApproachingSigna1) = T 
Step 2: node714: dev(Unknown-to-TrainApproaching) = T 
Step 2: node874: dev(ReceiveApproachingSigna1 TrainApproachingEvent) = T 
Step 3: node832: dev(GateUp-to-GateDown) = T 
Step 3: node871: dev(EnteredCr0ssingEvent) = T 
Step 4: node869: dev(GateD0wnCmdEvent GateDownCmdSentEvent) = T 
Step 5: node898: dev(SendGateD0wnCmd) = T 

Table 7.1: Summarized results of one of the train crossing’s scenarios. 

approach signal not being sent to the controller when it should have. The analyst 

must also select significant nodes. For the first example, the only significant node is 

the gate-down command issued by the controller. With only the one significant node, 

the search grows very large. Figure 7.2 is a graph of the state queue size for each 

iteration of the Automated algorithm. Automated’s main loop made 4,700 iterations 

before exhausting available memory on the computer (approximately 24 Mbytes.) 

The angle of the curve suggests that the algorithm is not yet halfway through the 

search. 

Although the search did not terminate, it still yielded useful information. Recall 

that deviation analysis is meant as an investigative method, not an exhaustive analy- 

sis. In fact, the most general results are the first to be generated since the algorithm 
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Figure 7.3: (Train crossing, example 1.) The 17: axis is the number of iterations of 
Automated. The y axis is the number of assumptions made to arrive at the state 
being inspected in iteration i. 

investigates all scenarios with n assumptions before moving on to n + 1. Table 7.1 

shows the first significant state to be returned by the algorithm. The scenario re- 

quires four total assumptions. The first two assumptions are the ones provided by 

the analyst: the signal for the approaching train does not occur when it should. The 

next assumption occurs two steps later-the controller's model of the train should 

be in state Unknown.' Finally, the controller model of the gate should be in state 

GateUp in the following step. Given these assumptions, the algorithm determines the 

values and deviations shown. In particular, it finds that under these circumstances, 

the controller should send the command to lower the crossing gate but does not. 

Chapter 6 asserted that the search space can be pruned by limiting the number of 

steps or assumptions. Given that the number of assumptions increases monotonically 

as the search progresses, a limit on the number of searches amounts to a stopping 



138 

Steps Investigated 
Step 

18 - 

1 7  - 

1 6  - 

1 5  - 

14 - 

13 - 

1 2  - 

1 1  - 

1 0  - 

9 -  

8 -  

7 - -  

6 -  

5 -  

4 -  

3 -  

2 -  

1 -  

0 -  

- 
- 

Iterations 

Figure 7.4: (Train crossing, example 1.) Number of steps taken after initial assump- 
tion to arrive at the state under investigation at each iteration. 

criterion for the algorithm (see figure 7.3.) Limiting the number of steps can prune out 

much of the search space if the analyst is interested in immediate effects. Figure 7.4 

shows the number of steps (sequential arcs followed) to get to the state at each 

iteration i. Figures 7.5 and 7.6 shows the queue and assumption graphs when the 

maximumnumber of steps is limited to five (example 2). Note that the search was not 

limited as to the number of assumptions. The algorithm terminated after 98 seconds 

and 383 iterations, finding four significant states. The search required 2.6 megabytes 

of memory. 

The search may also be pruned by adding significant nodes. The first example 

showed that the search space grows very large when targeting a single significant node. 

Figure 7.7 compares the first example with a third search on both of the controller’s 

‘Recall from chapter 5 that “value( Unknown) @ dev( Unknown)” represents the correct value of 

Unknown.  The software converts this expression to “correct( Unknown)” for display to  the analyst. 
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Figure 7.5: Search queue comparison for train crossing examples 1 and 2. 
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Figure 7.6: Assumption comparison for train crossing examples 1 and 2. 
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Figure 7.7: Search queue comparison for train crossing examples 1 and 3. 

outputs (gate-up and gate-down commands.) The third example terminated after 24.2 

minutes. The search required 21.3 Mbytes of memory to iterate over 4,373 states. A 

total of 220 significant states were discovered. 

7.2 TCAS I1 

Chapter 3 introduced the TCAS I1 avionics system. The portion of the spec- 

ification that deals with the model of own aircraft (i .e. ,  the aircraft containing the 

TCAS unit) will serve as an example. Figure 7.8 shows an RSML diagram of the 

states in the Own-Aircraft model. The top part of the diagram lists inputs from 

other components, the states in the middle represent knowledge about the state of 

own aircraft (including commands received from TCAS), and the bottom of the dia- 

gram lists outputs to other aircraft components, such as the TCAS display and the 
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I Own-Aircraft I 
f Input: \ 

Own-Alt-Radio : Integer Traffic-Display-Permitted : {True,False) 
Standby-Discrete-Input : (True, False} Aircraft-Altitude-Limit : Integer 
Own-Alt-Barometric : Integer Prox-Traffic-Dis lay : { True,False} 
Mode-Selector : {TA/RA, Standby, TA-Only, 3,4,5,6,7} ~ ~ n ~ ~ ~ ~ ~ ~ - ~ ~ f e . , T r u e , F a l s e }  
Radio-Altimeter-Status : {Valid, Not-Valid} 
Own-Air-Status : {Airborne, On-Ground} Altitude-Climb-Inhib-Active : (True, False} 
Own-Mode-S-Address : Integer Increase-Climb-Inhibit-Discrete : (True,False} 
Barometric-Altimeter-Status : (Fine, Coarse) 

Effective-SL I Descend-Inhibit 

I ;---__----------- 
I Increase-Descend-Inhibit 

I 

4 
I 
I 

Inhibited 

I 
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I I 
I I I I 

output: 

Sound-Aural-Alarm : (True,False} Climb-RA : Enumerated 
Aural-Alarm-Inhibit : (True,False} Descend-RA : Enumerated 
Combined-Control-Out : Enumerated Own-Goal-Alt-Rate : Integer 
Vertical-Control-Out : Enumerated Vertcal-RAC : Enumerated 

\ Horizontal-RAC : Enumerated 

Figure 7.8: The TCAS I1 model of its own aircraft. 

transmitter. The Advisory-Status and transition logic (which is quite substantial) 

are not shown in the figure. The relevant parts of this diagram will be explained as 

needed. 

The Own-Aircraft causality diagram contains 322 nodes directly related to items 

of the specification (state names, event names, transition names, etc.) and 9675 total 

nodes. The causality diagram for Own-Aircraft requires 2.8 megabytes of memory. 

The data structure is created in approximately 11 seconds. 

One of the inputs to the Own-Aircraft model is the altitude above sea-level, 

provided by the aircraft’s barometric altimeter (Own-Alt-Barometric in the figure.) 
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Figure 7.9: Queue sizes on TCAS I1 example. 

Suppose that the analyst wishes to know potential effects of the barometric altime- 

ter reading being too high. In the example the deviation of Own-Alt-Barometric is 

assumed to take the qualitative value 1, 2, or 3, which corresponds to 

0 < dev( Own-Alt-Barometric) 5 64. 

The analyst next identifies the “significant” nodes, i.e., the nodes for which 

deviations are considered to be of interest. In this example, assume that any transition 

is considered to be significant. In other words, if a transition is taken when it should 

not be, or is not taken when it should, then report the assumptions that led to the 

deviation. 

Figure 7.9 is a graph of search queue size versus iteration. The search queue 

contains the intial state before the first iteration and is empty again after 424 iter- 

ations. The queue contains a maximum of 62 states. The entire search took 23.8 
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minutes. 1,473 total states were created. The total memory used in the search was 

3.2 Mbytes. 

The algorithm identified 144 significant states. All of the significant states ended 

with deviations of automatic sensitivity level (ASL). ASL is a measure of TCAS’s 

sensitivity, which can be viewed as a protective sphere around the aircraft. The ASL 

can range between a value of 1 and 7. The higher the ASL, the larger the protective 

sphere. ASL 1 affords no sphere of protection and displays no traffic information. 

While in ASL 7, TCAS attempts to give a warning 35 seconds prior to the point of 

closest approach with a threatening aircraft. The inputs to ASL are the altimeter 

readings and the prior “effective” sensitivity level (ESL), which is based on pilot and 

air traffic control input. 

One scenario output by the program involves a failure to transition from ASL 

1 to 5. Recall that ASL 1 provides no protection. On the other hand, ASL 5 pro- 

vides a warning of 25 seconds. If ASL fails to transition from 1 to 5, then TCAS 

is not providing the protection that it should be. The output for the scenario is 

listed in table 7.2. In the lists of values and deviations there is a combination of 

dev(ASL-1-to-ASLS) = T and value(ASL-1-to-ASL-5) = F. Together they mean 

that the transition should have occurred but did not. 

The first assumption in the list is the analyst’s assumption. The remaining as- 

sumptions are made by Automated in an attempt to propagate the deviation through 

the ASLA to ASL-5 transition, shown in figure 7.10. The barometric altitude reading 

appears twice in the table, in the third and fourth rows.2 A deviation in the fourth 

row is what occurs in this scenario, and that is the meaning of the second assumption. 

’The deviation for the third row eventually leads to  a transition from ASL 1 to 5 that should not 

occur but does, enabling TCAS alarms when they should be disabled. 
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"ransition(s): + 

Location: Own-Aircraft D Auto-SLs-30 
Trigger Event: Descend-Inhibit-Evaluated-Evente_279 
Condition: 

A 
N 
D 

Effective-SLS-3o in state 4 
Effective-SL,_so in state 6 
Own-Alt-Barometricv-33 22550 ft(ZSL4T05) 
Own-Alt-Barometricv-33 59500 ft(ZSLGT05) 
Own-Alt-Radiov_31 22550 ft(ZSL1T05) 
Climb-Desc.-Inhibit,-lQ~ 
Own-Air-Statusv-3~ = Airborne 
Radio-Altimeter-Statusv-3s = Valid 

OutDut Action: 

~ 

T 
OR 

Figure 7.10: The automatic sensitivity level transition from state 1 to state 5 .  

In order for the high value to propagate, the value of Own-Alt-Barometric must be 

greater than the 9500-foot threshold (ZSL6T05) and the amount of the deviation 

must be greater than the amount it is above that threshold. In other words, without 

the deviation, the altimeter reading would have been less than or equal to 9500 feet. 

Now that the deviation has propagated to the fourth row, assumptions must be 

made in order to propagate it to the entire column. Since the fourth row should have 

been true but is not, the other three relevant rows should be satisified so that the 

column's value is dependent on the fourth row, and hence the deviation. The third, 

fourth, and fifth assumptions address these rows. Note that the assumptions are not 

on the actual values but the correct values. This is a more general assumption, since 

a deviation in any of these other rows also propagates a deviation. The analyst may 

wish to  assume that the actual values are correct (and in fact the Automated algorithm 

may assume this at a later point of the search) but at this point it is sufficient to 

assume that the effective sensitivity level should be in state 6, the aircraft should not 

be inhibited from climbing and descending, and the aircraft should be airborne. 
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STATE: state12241 STATUS: has-deviations significant from-base 
# STEPS: 0 # ADDED ASSUMPTIONS: 7 
ASSUMPTIONS: 
Step 0: node4949: 
Step 0: node5729: 

Step 0: node5759: 
Step 0: node5769: 
Step 0: node5750: 
Step 0: node5827: 

Step 0: node5705: 

Step 0: node5688: 

VALUES : 
Step 0: node1072: 

dev(0wn-Alt-Barometric) == 1 2 3 
ZSL6T05 < value(0wn-Alt-Barometric) AND 
ZSL6T05 - value(0wn-Alt-Barometric) > 

correct (value(ESL-6 Eff ective-SL In State ESL-6)) 
correct(N0T value(C1imb-Desc-Inhibit)) 
correct (value(0wn-Air-Status == Airborne) 
NOT value(ESL-4 Effective-SL In State ESL-4) OR 
value(C1imb-Desc-Inhibit) OR 
NOT value(0wn-Air-Status == Airborne) OR 
value(Radi0-Altimeter-Status == Valid) 
NOT value(ESL-4 Effective-SL In State ESL-4) OR 
NOT value(0wn-Alt-Radio >= ZSL4T05) OR 
value(Climb,Desc-Inhibit) OR 
NOT value(0wn-Air-Status == Airborne) OR 
NOT value(Radio-Altimeter-Status == Valid) 
correct(value(ASL-1 Auto-SL In State ASL-1) AND 
value(Descend-Inhibit-Evaluated-Event)) 

value(ASL-6-to-ASL-5) = F 

-dev(Own-Alt-Barometric) 

Step 0: node780: value(ASL-4-to-ASL-5) = F 
Step 0: node634: value(ASL-2-to-ASL-5) = F 
Step 0: node1218: value(ASL-7-to-ASL-5) = F 
Step 0: node926: value(ASL-5-to-ASL-5) = F 
Step 0: node468: value(ASL-1-to-ASL-5) = F 
Step 0: node291: value(0wn-Alt-Barometric) = 7 8 
Step 0: node474: value(0wn-Alt-Barometric >= ZSL4T05) = T 
Step 0: node478: value(0wn-Alt-Barometric <= ZSL6T05) = F 
DEVIATIONS: 
Step 0: node5692: dev(ASL-1-to-ASL-5) = T 
Step 0: node5731: dev(0wn-Alt-Barometric <= ZSL6T05) = T 
Step 0: node4949: dev(0wn-Alt-Barometric) = 1 2 3 

Table 7.2: Scenario produced for TCAS I1 barometric altimeter deviation. 
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Recall from chapter 3 that an AND/OR table is true if one of its columns is true. 

The third column is false when it should be true, but this deviation does not propagate 

if one of the other columns is true. The sixth assumption addresses the second column 

of the AND/OR table. The expression is the negation of the second column, except 

that the third column cannot be false, since Own-AIt-Barometric > 9500 feet. For the 

second column the actual rather than correct values are assumed because a deviation 

in the second column may cancel out the barometric altimeter deviation. For example, 

if the assumption were correct (NOT ESL-4),3 then ESL would be allowed to be in 

state 4, and if the other conditions are also satisfied the AND/OR table evaluates to 

true despite the deviation in the barometric altimeter. Thus, the deviation does not 

propagate. 

The seventh assumption causes the first column to be false. Note that both 

the first and second columns can be made false by not being in ESL 4, being climb- 

descend inhibited, or not being airborne. Interestingly, the latter two rows cause the 

third column also to be false. Combining one of these with the the third, fourth, 

and fifth assumptions implies multiple, possibly independent, deviations. A strength 

of deviation analysis is that its search is not limited to single failures. Scenarios 

such as this will hopefully help the analyst to consider novel and potentially complex 

interactions between system variables. 

The final assumption involves propagating the AND/OR table to the transition. 

ASL should be in state 1 and the trigger event should occur in order for the deviation 
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to propagate. Generally the analyst may assume that they actually are true, but like 

the third column assumptions, the possibility of multiple deviations is left open. 

A trace of the Automated algorithm is listed in table 7.3. A graphical repre- 

sentation of this trace is provided by figure 7.11. The nodes in the graph represent 

nodes in the causality diagram. (Nodes 5753, 5827, and 491 appear twice to fit the 

graph on a page; each pair is a single node.) Edges are causal relationships, with the 

parents below the children. For example, node 5753 (in the top-lefthand corner) is 

dependent on node 5751 and node 5752 for its value. Arrows represent the direction 

of the search. Arrows pointing toward the top indicate that a parent node changed a 

child node’s value via Propagate-Forward_Definite. A downward arrow indicates that 

Propagate-Backward-Definite changed a parent’s value based on the child’s value. The 

nodes’ function and value are given except where irrelevent to propagation. Although 

space does not allow a full treatment of the meaning of each and every node, the in- 

tuitive meaning of certain nodes is given in table 7.6. The reader may also refer to 

table 7.2. 

7.3 Conclusions 

The experiments show that deviation analysis can take a formal specification 

and given one or more initial assumptions and one or more significant nodes can 

produce scenarios that are likely to be of interest to the safety analyst. The inputs to 

and output from the algorithm can be expressed in terms of the source specification, 

making it straightforward to use. 

Interestingly, increasing the number of “significant nodes” increases the general- 

ity of the search, but actually constrains it in that the search size can only be reduced 
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I n i t :  
state-I : Created  as i n i t i a l  s ta te .  
state-I:  Assume node4949 i s  (I 2 3). 

s ta te-I :  Forward D e f i n i t e :  Considering node4949: 
state-I:  node5723 becomes F due t o  node4949’s new v a l u e .  
s tate-I:  node5724 becomes T due t o  node4949’s new v a l u e .  

s tate-I:  Forward D e f i n i t e :  Considering node5723: 

s tate-I:  Forward D e f i n i t e :  Considering node5724: 

state-I:  Forward P o s s i b l e :  Considering node5730: 

node5730 as T .  

s ta te- I :  node5728 becomes F due t o  node5723’s new v a l u e .  

s tate-I:  Add node5730 t o  Forward P o s s i b l e  queue. 

s t a t e - 2 :  Crea ted  as de r ived  of state-I t o  p ropaga te  

s t a t e - 2 :  Assume node5729 i s  T .  
s t a t e - 2  : Forward D e f i n i t e :  Considering node5730 : 

s t a t e - 2  : Forward D e f i n i t e :  Considering node5731 : 

s t a t e - 2 :  Backward D e f i n i t e :  Considering node5729: 

s t a t e - 2 :  node5731 becomes T due t o  node5730’s new v a l u e .  

s t a t e - 2 :  Add node5761 t o  Forward P o s s i b l e  queue. 

s t a t e - 2 :  node5721 becomes T due t o  node5729’s new v a l u e .  
s t a t e - 2 :  node5725 becomes T due t o  node5729’s new v a l u e .  

s t a t e - 2 :  Forward D e f i n i t e :  Considering node5721: 

s t a t e - 2 :  Forward D e f i n i t e :  Considering node478: 

s t a t e - 2 :  Forward D e f i n i t e :  Considering node490: 

s t a t e - 2  : Forward D e f i n i t e :  Considering node491 : 

s t a t e - 2  : Forward D e f i n i t e  : Considering node488 : 

s t a t e - 2 :  node478 becomes F due t o  node572l’s  new v a l u e .  

s t a t e - 2  : node490 becomes F due t o  node478’s new v a l u e .  

statell838: node491 becomes F due t o  node490’s new v a l u e .  

s t a t e - 2 :  node488 becomes F due t o  node49l ’s  new v a l u e .  

s t a t e - 2 :  node5818 becomes T due t o  node488’s new v a l u e .  
s t a t e - 2 :  node5825 becomes F due t o  node488’s new v a l u e .  

s t a t e - 2 :  Forward P o s s i b l e :  Considering node5761: 

node5761 as T .  
state-3: Crea ted  as de r ived  of s t a t e - 2  t o  propagate  

state-3 : Assume node5759 i s  T . 

Table 7.3: Execution order of the Automated algorithm on the TCAS I1 example 
(continued on next page) 



149 

state-3: Forward D e f i n i t e :  Considering node5761: 

state-3 : Forward D e f i n i t e  : Considering node5763 : 

state-3: Forward P o s s i b l e :  Considering node5771: 

node5771 as T .  

state-3: node5763 becomes T due t o  node576l ’s  new v a l u e .  

state-3: Add node5771 t o  Forward P o s s i b l e  queue. 

state-4: Crea ted  as de r ived  of state-3 t o  propagate  

state-4: Assume node5769 i s  T .  
state-4: Forward D e f i n i t e :  Considering node5771 : 

state-4: Forward D e f i n i t e :  Considering node5744: 

state-4: Forward P o s s i b l e :  Considering node5752: 

node5752 as T .  

state-4: node5744 becomes T due t o  node577l’s  new v a l u e .  

state-4: Add node5752 t o  Forward P o s s i b l e  queue. 

s t a t e - 5 :  Crea ted  as d e r i v e d  of state-4 t o  propagate  

s t a t e - 5 :  Assume node5750 is  T .  
s t a t e - 5  : Forward D e f i n i t e :  Considering node5752 : 

state-5 : Forward D e f i n i t e  : Considering node5753 : 

s t a t e - 5 :  Forward P o s s i b l e :  Considering node5829: 

node5829 as T .  

s t a t e - 5 :  node5753 becomes T due t o  node5752’s new v a l u e .  

s t a t e - 5 :  Add node5829 t o  Forward P o s s i b l e  queue. 

s t a t e - 6 :  Crea ted  as de r ived  of s t a t e - 5  t o  propagate  

s t a t e - 6 :  Assume node5827 i s  T .  
s t a t e - 6  : Forward D e f i n i t e :  Considering node5829 : 

s t a t e - 6 :  Forward D e f i n i t e :  Considering node5693: 

s t a t e - 6  : Backward D e f i n i t e :  Considering node5827 : 

s t a t e - 6 :  Backward D e f i n i t e :  Considering node5819: 

s t a t e - 6 :  Backward D e f i n i t e :  Considering node5817: 

s t a t e - 6 :  Forward Definite:  Considering node492: 

s t a t e - 6 :  node5693 becomes T due t o  node5829’s new v a l u e .  

s t a t e - 6 :  Add node5707 t o  Forward P o s s i b l e  queue. 

s t a t e - 6 :  node5819 becomes T due t o  node5827’s new v a l u e .  

s t a t e - 6 :  node5817 becomes T due t o  node5819’s new v a l u e .  

s t a t e - 6 :  node492 becomes F due t o  node5817’s new v a l u e .  

s t a t e - 6 :  node498 becomes F due t o  node492’s new v a l u e .  

Table 7.4: Execution order of the Automated algorithm on the TCAS I1 example 
(continued on next page) 
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s t a t e - 6  : Forward D e f i n i t e  : Consider ing node498 : 
s t a t e - 6 :  node5696 becomes T due t o  node498’s new va lue .  
s t a t e - 6 :  node5703 becomes F due t o  node498’s new va lue .  

s t a t e - 6 :  Forward P o s s i b l e :  Consider ing node5707: 

node5707 as T .  
state-7: Created as de r ived  of s t a t e - 6  t o  p ropaga te  

state-7: Assume node5705 is  T .  
state-7: Forward D e f i n i t e :  Consider ing node5707: 

s t a t e - 7  : Forward D e f i n i t e  : Consider ing node5683 : 

state-7: Backward D e f i n i t e :  Consider ing node5705: 

state-7: Backward D e f i n i t e :  Consider ing node5697: 

state-7: Backward D e f i n i t e :  Consider ing node5695: 

state-7: Forward D e f i n i t e :  Consider ing node497: 

state-7: Forward D e f i n i t e :  Consider ing node469: 

state-7: Forward P o s s i b l e :  Consider ing node5690: 

node5690 as T .  

state-7: node5683 becomes T due t o  node5707’s new va lue .  

s t a t e - 7 :  Add node5690 t o  Forward P o s s i b l e  queue. 

s t a t e - 7 :  node5697 becomes T due t o  node5705’s new va lue .  

state-7: node5695 becomes T due t o  node5697’s new va lue .  

state-7: node497 becomes F due t o  node5695’s new v a l u e .  

state-7: node469 becomes F due t o  node497’s new v a l u e .  

state-7: node468 becomes F due t o  node469’s new v a l u e .  

state-8: Created as de r ived  of state-7 t o  p ropaga te  

state-8: Assume node5688 is  T .  
state-8 : Forward D e f i n i t e :  Consider ing node5690 : 

state-8: node5692 becomes T due t o  node5690’s new va lue .  

Table 7.5: Execution order of the Automated algorithm (continued.) 
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Node Meaning 
29 ESL in state 6 
385 
416 
468 
468 
469 
478 
488 
490 
49 1 
492 
497 
498 
4949 
5683 
5688 
5690 
5691 
5692 
5693 
5695 
5696 
5697 
5701 
5703 
5705 
5706 
5707 
5721 
5723 
5724 

air status is airborne (row 7) 
not climb or descend inhibited 
ASL in state 1 and triggering event is present 
Transition ASL 1 to 5 
AND/OR table (guarding condition for the transition) is satisfied 
actual value of barometric altimeter 5 9500feet. 
Column 3 value 
Rows 2 and 4 in AND/OR table are true 
Rows 2 and 4 are true and row 6 is false 
Column 2 value 
Column 1 value 
Column 2 or 3 is satisfied 
barometric altimeter deviation 
AND/OR table deviation 
Conditions under which table deviation propagates to transition 
transition deviation, due to table deviation 
Transition deviation, due to  deviation in ASL 1 or trigger event 
Transition ASL 1 to 5 deviation 
Deviation in “column 2 OR column 3” 
Column 1 is not satisfied 
Neither column 2 nor 3 is satisfied 
All 3 columns are false (AND/OR table is false) 
Column 1 should be false 
column 1 should be false, columns 2 and 3 are false 
Conditions under which col. 2 and 3 deviation propagates to whole table 
AND/OR table deviation, due to column 1 
AND/OR table deviation, due to “column 2 OR columnn 3” 
actual value of barometric altimeter > 9500 feet. 
barometric altimeter reading too low 
barometric altimeter reading too high 

Table 7.6: Informal meaning of causality diagram nodes in the TCAS I1 example 
(continued on next page.) 



153 

Node Meaning 
5725 deviation is greater than difference between correct and actual values 
5727 
5728 
5729 

5730 
573 1 
5744 
5750 
5751 
5752 
5753 
5759 
576 1 
5762 
5763 
5769 
5770 
5771 
5817 
5818 
5819 
5823 
5825 
5827 
5828 
5829 

Conditions under which “ Own-Alt-Barometric 5 9500 feet” propagates. 
barometric altimeter 5 9500 feet and it shouldn’t be 
Amount that Own-Alt-Barometric is more than 9500 feet is less than 
deviation 
Own-Alt-Barometric > 9500 feet and it shouldn’t be 
Own-Alt-Barometric 5 9500 ft is a deviation 
Column 3: rows 2, 4, and 6 are deviation 
Conditions to propagate deviation in rows 2, 4, and 6 to all of column 3 
Column 3 is a deviation due to row 7 
Column 3 is a deviation due to rows 2, 4, and 6 
Column 3 deviation 
Column 3: conditions to propagate deviation in row 2 to rows 2 and 4 
Column 3: rows 2 and 4 are deviation because of row 4 
Column 3: rows 2 and 4 are deviation because of row 2 
Column 3: rows 2 and 4 of the AND/OR table deviation 
Column 3: conditions to propagate row 2 or 4 to rows 2, 4, and 6 
Column 3: rows 2, 4, and 6 are deviation due to row 6 
Column 3: rows 2, 4, and 6 are deviation due to row 2 or 4 
Column 2 is false 
Column 3 is false 
Columns 2 and 3 are false 
Column 2 should be false 
Column 3 is true and column 2 should be false 
Conditions under which col. 3 deviation propagates to col. 2 and 3 
Column 2 deviation propagates to columns 2 and 3 
Column 3 deviation propagates to columns 2 and 3 

Table 7.7: Informal meaning of nodes in the TCAS I1 example (continued.) 
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by adding significant nodes. As expected, the Automated algorithm appears to be 

at a disadvantage when investigating effects on a single significant node. A directed 

investigation still1 may best be performed via a backward search, such as a fault tree 

analysis. Deviation analysis appears to be most useful when it is open-ended (many 

critical nodes), investigating the effects of a small number of assumptions on a larger 

number of significant nodes. 

The software requires a large amount of memory (sometimes in the tens of 

megabytes) but the execution time is under 30 minutes for all experiments performed. 

Even when the algorithm exhausted memory, it was after it had identified many 

scenarios. 



Chapter 8 

Results and Future Directions 

8.1 Results 

This dissertation presented a new forward analysis method for safety-critical 

software. The method utilizes a primitive language of causality, a calculus of devia- 

tions, and either a semi-automated or automated search procedure. 

A Primitive Language of Causality. The primitive language of causality was 

shown to be powerful enough to encode state-based specifications using RSML as an 

example. The language lends itself well to analysis since tracing causal relationships 

is reduced to traversing the diagram forward from the source variable to the variables 

it affects. 

A Calculus of Deviations. A new family of qualitative domains, PB,N, was de- 

fined. PB,N domains have a logarithmic scale so that a large range of values may be 

partitioned by relatively few symbols at a coarseness appropriate for the size of the 

numbers. The parameter B can be changed to alter the size of the ranges that the 
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symbols represent. The parameter N determines the number of symbols in the qual- 

itative domain. Together, they determine the coverage of the domain (not counting 

the two extreme symbols that go to infinity.) 

An algebra was developed for PB,N, including the general functions used by the 

causality diagrams. The inverse functions were also defined. 

The concept of a deviation was defined formally and used to derive deviation 

formulas for the general functions. The PB,N algebra was then applied to these for- 

mulas to produce a calculus of deviations. In addition to the normal and inverse 

functions of the PB,N qualitative algebra, ( (ass~mpt ive~~ functions, crucial to propa- 

gating deviations with incomplete information, were defined. 

Search procedures. Two alternative search algorithms were presented. Both algo- 

rithms work from a causality diagram, applying the calculus of deviations in order to 

propagate the analyst’s initial assumptions forward. The SemiAutomated algorithm 

allows the analyst to control which path the search will take. The analyst’s options 

include following a state forward one step to propagate definite deviations or adding 

assumptions (provided by the algorithm) to the current state in order to propagate 

possible deviations. 

Given a set of initial assumptions, the Automatedalgorithm performs a “definite- 

first” search. The algorithm thus provides the most likely scenarios first. 
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Future Directions 

Causality diagram size. Although chapter 4 showed that the causality diagram is 

appropriate for state-based languages, the language needs improvement. It is subject 

to get very large. The causality diagram for a medium-sized RSML specification can 

contain 5,000 nodes.' The issue is one of size versus speed, with the economics of 

computer resources suggesting that memory can afford growth faster than the CPU 

can. However, this strategy may need to be modified for very large specifications. 

Application to other specification languages. An outstanding research is- 

sue is the applicability of the causality language to various specification languages. 

Chapter 4 showed that state-diagram concepts can be translated to causality dia- 

grams. The causality diagram also appears well-suited to functional definitions. 

Timing. A weakness of the language of causality lies in its treatment of timing. 

The author is confident that the language of causality can be extended to include 

more complex temporal relations. An obvious extension is to qualify sequential edges 

with timing information. This strategy would be similar to some Petri-net variants. 

Although the calculus of deviations would be unaffected by such an extension, the 

deviation analysis procedures would require significant changes. 

Of particular interest is the development of deviations based on timing. The 

notions of early and lute are currently defined as sequences of {true-wrong, false- 

wrong} and {false-wrong, true-wrong}, respectively. These deviations could be refined 

with additional timing information. 

'In the author's implementation of the deviation analysis algorithm, the nodes appear to  use well 

under 100 bytes on average, not counting descriptive strings taken from the specification. 
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Improved search strategy. The first incarnation of deviation analysis employs a 

“definite-first” search strategy. If a deviation can definitely be propagated, then the 

algorithm follows that line of inquiry before turning to deviations that require making 

additional assumptions on the system state. At first blush this appears to be a sound 

strategy, but more research needs to be conducted into alternative strategies. The 

analyst is a potential source of additional information to guide the analysis. Perhaps 

data from usage of the SemiAutomated algorithm could guide future research in this 

area. 

Backward deviation analysis. Deviation analysis was developed as a forward 

search method. As discussed already, the forward algorithm is very inefficient at 

finding the effects of particular assumptions on particular critical nodes. A backward 

deviation analysis, exploiting the backward-definite operation and adding a back- 

ward-possible operation, may be a reasonable alternative or supplement to fault tree 

analysis and other backward methods. This possibility should be researched for its 

practicality and usefulness. 

Calculus of Deviations. The calculus of deviations is currently based on a specific 

qualitative mathematics, P B ~ .  PB,N can be improved by representing the negative 

powers 0 < B-g < 1. This improvement provides a reciprocal balance for multiplica- 

tion the way that negation does for addition. 

Alternatively, a calculus of deviations could be developed for intervals. The 

author has already begun research into this area. The results can be much more 

precise than with qualitative mathematics, but the precision comes at a cost. First, 

the number of intervals could grow quite large, leading to a nonlinear increase in com- 

putations (which are already more complex than qualitative calculations.) Second, 
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analysis over arbitrary intervals is subject to “creep”, whereby a node’s value is incre- 

mentally adjusted over time, leading to much finer-grained analysis. Such an analysis 

may be too involved to be useful early in software development. The coarse nature 

of qualitative mathematics allows whole classes of values to be treated at once. 

Analysis skills. With deviation analysis, the analyst has been provided with a new 

tool, but how to use the tool is a significant issue. The analyst needs skills to help 

focus on the analysis that will help most. This is a difficult problem because it is 

often the analyst’s knowledge that interferes with critical review of the specification. 

Deviation analysis has concentrated on the mechanizable parts of HAZOP. Perhaps 

some attention should be paid now to adapting the social component of HAZOP to 

deviation analysis. 

Space and time efficiency. The space and time figures cited in chapter 7 are 

for unoptimized code. Moreover, although considerable thought went into a time- 

efficient algorithm, little attention was paid to optimizing for memory requirements. 

This problem is not trivial, since the algorithm can recognize any state that has been 

visited along another search path. Every state must thus be kept available for the 

duration of the search. 

In conclusion, deviation analysis appears to be a practical method of require- 

ments analysis. The strength of HAZOP guide words has been captured in part by 

the calculus of deviations. However, some guide words must be encoded by devia- 

tion sequences. The Automated algorithm provides meaningful results in a reasonable 

amount of time. The usefulness of the results will be determined by practitioners. 
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