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Alzheimer’s Disease Neuroimaging Initiative

Abstract

Diffusion magnetic resonance imaging is an imaging technology designed to probe anatomical 

architectures of biological samples in an in vivo and noninvasive manner through measuring water 

diffusion. The contribution of this paper is threefold. First, it proposes a new method to identify 

and estimate multiple diffusion directions within a voxel through a new and identifiable 

parametrization of the widely used multi-tensor model. Unlike many existing methods, this 

method focuses on the estimation of diffusion directions rather than the diffusion tensors. Second, 

this paper proposes a novel direction smoothing method which greatly improves direction 

estimation in regions with crossing fibers. This smoothing method is shown to have excellent 

theoretical and empirical properties. Last, this paper develops a fiber tracking algorithm that can 

handle multiple directions within a voxel. The overall methodology is illustrated with simulated 

data and a data set collected for the study of Alzheimer’s disease by the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) is an in vivo and noninvasive medical 

imaging technology that uses water diffusion as a proxy to probe anatomical structures of 

biological samples. The most important application of dMRI is to reconstruct white matter 

fiber tracts in the brain—large axonal bundles with similar destinations. In white matter, 

water diffusion appears to be anisotropic, as water tends to diffuse faster along the fiber 

bundles. Therefore, white matter fiber structures can be deduced from the diffusion 

characteristics of water. Mapping white matter fiber tracts is of great importance in the study 

of structural organization of neuronal networks and the understanding of brain functionality 

[Mori (2007), Sporns (2011)]. Moreover, dMRI also has many clinical applications, 

including detecting brain abnormality in white matter due to axonal loss or deformation, 

which are thought to be related to many neuron degenerative diseases including Alzheimer’s 

disease, and also in surgical planning by resolving complex neuronal connections between 

white and gray matter [Nimsky, Ganslandt and Fahlbusch (2006)].

dMRI techniques sensitize signal intensity with the amount of water diffusion by applying 

pulsed magnetic gradient fields on the sample. Specifically, water diffusion along the 

gradient field direction leads to signal loss and the amount of loss at a voxel equals the 

summation (across locations within the voxel) of the sinusoid waves with shifted signal 

phases weighted by the proton density at their respective locations. In other words, signal 

loss (referred to as the diffusion weighted signal) is the inverse Fourier transform of the 

diffusion probability density function of water molecules, and thus can be used to recover 

water diffusion characteristics. The amount of signal loss is also influenced by various 

experimental parameters, including the gradient field intensity (the stronger, the more loss), 

the duration of gradient fields (the longer, the more loss), etc. Their effects are aggregatively 

reflected by an experimental parameter called the “b-value” which is often fixed throughout 

the experiment (though multiple b-values are used in Q-space imaging). Since only water 

motion along the gradient field direction can be detected, multiple gradient directions need 

to be applied [Mori (2007)].

In its raw form, dMRI provides diffusion weighted signal measurements on a 3D spatial grid 

(of the sample) along a set of predetermined gradient directions [Bammer et al. (2009), 

Beaulieu (2002), Chanraud et al. (2010), Mukherjee et al. (2008)]. For example, a typical 

data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has diffusion 

measurements along 41 gradient directions for each voxel on a 256 × 256 × 59 3D grid of 

the brain. The first step of dMRI analysis is to summarize these measurements into estimates 

of water diffusion at each voxel. A popular model for water diffusion is the so-called single 

tensor model where the diffusion process is modeled as a 3D Gaussian process described by 

a 3 × 3 positive definite matrix, referred to as a diffusion tensor; see Mori (2007) for an 

introduction to diffusion tensor imaging (DTI) techniques. Figure 1 depicts a tensor map on 
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a 2D grid, where each diffusion tensor is represented by an ellipsoid, estimated from 

diffusion weighted measurements from an ADNI data set using a single tensor model. One 

then extracts the local diffusion direction as the principal eigenvector of the (estimated) 

diffusion tensor at each voxel and reconstructs the white matter fiber tracts by computer-

aided tracking algorithms via a process called tractography [Basser et al. (2000)].

However, DTI cannot resolve multiple fiber populations with distinct orientations, that is, 

crossing fibers, within a voxel since a tensor only has one principal direction. Consequently, 

in crossing fiber regions, estimated diffusion tensors may lead to low anisotropy estimation 

or oblate tensor estimation. Poor tensor estimation results in poor direction estimation, 

which adversely affects fiber reconstruction, for example, early termination of or biased 

fiber tracking.

In order to resolve intravoxel orientational heterogeneity, several approaches have been 

proposed. Tuch et al. (2002) propose a multi-tensor model which assumes a finite number of 

homogeneous fiber directions within a voxel. However, it has been shown that the 

parameters in the multi-tensor model are not identifiable [Scherrer and Warfield (2010)]. 

Imaging techniques such as Q-ball and Q-space and the corresponding nonparametric 

methods have also been proposed [Descoteaux et al. (2007), Tuch (2004)]. However, such 

methods often require high angular resolution diffusion imaging (HARDI) [Hosey, Williams 

and Ansorge (2005), Tuch et al. (2002)] where a large number of gradients is sampled. In 

light of these facts, the goal of this paper is to develop a new fiber direction estimation and 

tracking method that can handle crossing fibers without requiring any high resolution 

techniques. The proposed method, named DiST, short for Diffusion Direction Smoothing 

and Tracking, is completely automated and improves existing methods in several aspects. 

Particularly, it is applicable either when there is a large number of gradient directions (as in 

the HARDI setting) or when only a relatively small number of gradient directions are 

available (as in most clinical settings).

The DiST method can be divided into three major steps.

Step 1: Estimate the tensor directions within each voxel under a multi-tensor model. A new 

parametrization is proposed which makes the tensor directions identifiable. An efficient and 

numerically stable computational procedure is developed to obtain the maximum likelihood 

(ML) estimate of the tensor directions. Here we highlight that this method focuses on the 

estimation of the tensor directions rather than the actual tensors themselves.

Step 2: Using the voxel-wise tensor direction estimates from step 1 as input, a new direction 

smoothing procedure is applied to further improve the diffusion direction estimates by 

borrowing information from neighboring voxels. A distinctive and unique feature of this 

smoothing procedure is that it handles crossing fibers through the clustering of directions 

into homogeneous groups. We note that, although various tensor smoothing methods have 

been proposed [e.g., Arsigny et al. (2006), Carmichael et al. (2013), Fillard et al. (2007), 

Fletcher and Joshi (2007), Pennec, Fillard and Ayache (2006), Yuan et al. (2012)], little work 

has been done on direct diffusion direction smoothing. One notable exception is the work of 

Schwartzman, Dougherty and Taylor (2008), which harnesses diffusion directions directly to 
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construct a map of test statistics for detecting differences between diffusion direction maps 

from two groups of subjects while the spatial smoothness of the test statistics is being 

considered. Also, note that approaches to averaging unsigned directions in the real projective 

space are known in the directional statistics literature.

Step 3: Last, a fiber tracking algorithm is applied to reconstruct fiber tracts using the 

smoothed diffusion direction estimates obtained in step 2. This tracking algorithm is 

designed to explicitly allow for multiple directions within a voxel.

We apply DiST to an ADNI data set measured on a healthy elderly person with a 41-

direction dMRI scan on a 3 Tesla GE Medical Systems MRI scanner. ADNI is a longitudinal 

study (since 2005) that collects serial MRI, cognitive assessments and numerous additional 

measurements approximately twice per year from hundreds of elderly individuals spanning a 

range from cognitive health to clinically diagnosed Alzheimer’s disease. We also examine 

DiST using simulated data sets which mimic the most commonly encountered experimental 

situations in terms of number of gradient directions and signal-to-noise ratio. DiST is shown 

to lead to superior results than those based on the single tensor model in the simulation 

study, as well as more biologically sensible results in the real data application.

The rest of the paper is organized as follows. Section 2 provides background material for 

some common tensor models. The proposed methods for tensor direction estimation, 

smoothing of estimated directions and fiber tracking are presented in, respectively, Sections 

3, 4 and 5. Section 6 summarizes simulation results. The application to an ADNI data set is 

presented in Section 7. Section 8 provides some concluding remarks, while additional 

simulation results and technical details are collected in the online Supplemental Material 

[Wong et al. (2016)].

2. Tensor models

Suppose dMRI measurements are made on N voxels on a 3D grid representing a brain. For 

each voxel, we have measurements of diffusion weighted signals along a fixed set (i.e., the 

same for all voxels) of unit-norm gradient vectors . We write the set of 

measurements as , where s is the 3D coordinate of the center of this voxel.

Assuming Gaussian diffusion, the noiseless signal intensity is given by [e.g., Mori (2007)]

where S0(s) is the nondiffusion-weighted intensity, b > 0 is an experimental constant referred 

to as the b-value and D(s) is a 3 × 3 covariance matrix referred to as the diffusion tensor. 

This model is called the single tensor model and is suited for the case of at most one 

dominant diffusion direction within a voxel.

Although the single tensor model is the most widely used tensor model in practice, it is not 

suitable for crossing fiber regions. To deal with crossing fibers, this model has been 

Wong et al. Page 4

Ann Appl Stat. Author manuscript; available in PMC 2017 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extended to a multi-tensor model [e.g., Behrens et al. (2003, 2007), Tabelow, Voss and 

Polzehl (2012), Tuch (2002)]:

(1)

Where  and pj(s) > 0 for j = 1, …, J (s). Here J (s) represents the number of 

fiber populations and pj(s)’s denote weights of the corresponding fibers.

3. Voxel-wise estimation of diffusion directions

One important goal of dMRI studies is to estimate principal diffusion directions, referred to 

as diffusion directions hereafter, at each voxel. They may be interpreted as tangent directions 

along fiber bundles at the corresponding voxel. The estimated diffusion directions are then 

used as an input for tractography algorithms to reconstruct fiber tracts. This section explores 

the diffusion direction estimation within a single voxel. For notational simplicity, 

dependence on voxel index s is temporarily dropped. Moreover, for ease of exposition, we 

assume that σ and S0(s) are known and delay the discussion of their estimation to Section 7.

Under the single tensor model, various methods for tensor estimation have been proposed, 

including linear regression, nonlinear regression and ML estimation; for example, see 

Carmichael et al. (2013) for a comprehensive review. Then diffusion directions are derived 

as principal eigenvectors of (estimated) diffusion tensors. However, for the estimation of 

multi-tensor models, severe computational issues have been observed and additional prior 

information and additional assumptions are usually imposed to tackle these issues. For 

instance, Behrens et al. (2003, 2007) use shrinkage priors and Tabelow, Voss and Polzehl 

(2012) assume all tensors to be axially symmetric (i.e., the two minor eigenvalues are the 

same) and have the same set of eigenvalues. Scherrer and Warfield (2010) show that the 

multi-tensor model is indeed nonidentifiable in the sense that there exist multiple 

parameterizations that are observationally equivalent. These authors suggest to use multiple 

b-values in data acquisition to make the model identifiable. However, due to practical 

limitations, most of the current dMRI studies are obtained under a fixed b-value and so 

render their suggestion inapplicable. Below we show that the identifiability issue does not 

prevent one from estimating the diffusion directions and so neither strong assumptions nor 

special experimental settings are necessary if one is only interested in diffusion directions 

rather than the diffusion tensors themselves.

3.1. Identifiability of multi-tensor model

Model (1) can be rewritten as
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where aj > 0 for j = 1, …, J such that pj aj > 0, Dj + (log aj /b)I3 is positive definite and 

. When J = 2, one can easily derive the explicit conditions for aj to fulfill these 

criteria, and see that there are infinite sets of such aj ’s. However, note that Dj + (log aj /b)I3 

shares the same set of eigenvectors with Dj. Thus, one may still be able to estimate diffusion 

directions, which correspond to the major eigenvectors of the tensors. This motivates us to 

consider estimating diffusion directions directly instead of the tensors themselves.

Now we assume that Dj ’s are axially symmetric; that is, the two minor eigenvalues of Dj are 

equal. This is a common assumption for modeling dMRI data and it implies that diffusion is 

symmetric around the principal diffusion direction [Tournier et al. (2004, 2007)]. By not 

differentiating the two minor eigenvectors, we obtain a clear meaning of diffusion direction. 

In addition, this reduces the number of unknown parameters by one for each tensor in the 

multiple tensor model and thus facilitates estimation. In the following, we propose a new 

parametrization of the multi-tensor model which is identifiable and thus can be used for 

direction estimation.

Write  as the space of the unit principal eigenvector, that is, the 3D unit sphere with 

equivalence relation m ∼ −m. Let αj ≥ 0, ξj > 0 and  be the difference between the 

larger and smaller eigenvalue, smaller eigenvalue and the standardized principal eigenvector 

of Dj, respectively. Since , model (1) becomes

(2)

where τj = pj exp(−bξj) ∈ (0, 1). From the above, one can see that pj and ξj are not 

simultaneously identifiable, so we cannot estimate the tensors. However, as stated in the 

following theorem, τj, αj,  are identifiable, and hence we can estimate the principal 

diffusion directions mj ’s.

Theorem 1—Under model (2), for any arbitrary J, the parameters  are 

identifiable, where  for j = 1, …, J.

The proof of this theorem can be found in Section S5.1 of the Supplemental Material. Note 

that, compared to the model in Tabelow, Voss and Polzehl (2012), model (2) allows for 

different eigenvalues and shapes of the tensors within a voxel, and thus is much more 

flexible.
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3.2. Parameter estimation using maximum likelihood (ML)

We first consider the case when J is known and delay the selection of J to Section 3.3. By 

assuming Gaussian additive noise on both real and imaginary parts of the complex signal, 

the observed signal intensity can be modeled as [see, e.g., Zhu et al. (2007)]

where  is the intensity of the noiseless signal, ϕ(u) is a unit vector in  representing 

the phase of the signal, ε (u) is the noise random variable following  and σ > 0 

denotes the noise level. Note that both ϕ and ε may depend on s. The observed signal 

intensity then follows a Rician distribution [Gudbjartsson and Patz (1995)]:

Moreover, we assume the noise ε(u)’s are independent across different voxels and gradient 

directions.

Under the Rician noise assumption, the log-likelihood of γ in model (2) is

(3)

where  (x cos ϕ) dϕ/π is the zeroth order modified Bessel function of the first 

kind. The ML estimate is obtained through maximizing (3). Although the above new 

parametrization avoids the identifiability issue, the likelihood function usually has multiple 

local maxima, which makes the computation of the ML estimate difficult and unstable.

The method that we used to overcome this issue can be briefly described as follows. We first 

develop an approximation of model (2) whose likelihood can be globally maximized via a 

grid search. We utilize the geometry of the problem so that the grid search can be done 

efficiently. Then we use the ML estimate of this approximated model as the initial value in a 

gradient method to obtain the ML estimate of model (2). This method provides very reliable 

estimates. To speed up the pace of this article, its full description is given in Section S1 of 

the Supplemental Material.

3.3. Selecting the number of tensor components J

Common model selection methods can be applied to select the number of components J. 

Results from extensive numerical experiments suggest that the Bayesian information 

criterion (BIC) [Schwarz (1978)] is a good choice; see Section S2 of the Supplemental 

Material.
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Under model (2), each tensor corresponds to four free scalar parameters since mj is 

characterized by two free scalar parameters. The BIC for a model with I tensors is

(4)

where m is the number of gradient directions and  is the ML estimate of γ under I 

tensors. Then J is chosen as  BIC(I), where Ĩ is a prespecified upper 

bound for the number of components. Based on our experience, Ĩ = 4 is a reasonable choice.

In practice, there are voxels with no major diffusion directions. This corresponds to the case 

where there is only one isotropic tensor. In the case of an isotropic tensor, (2) reduces to 

. Thus, there is only one parameter τ1. We write the corresponding likelihood 

function as Ĩ and denote the ML estimate of τ1 by , which can be obtained by a generic 

gradient method. The corresponding BIC criterion is

where 0 represents no diffusion direction. Combined with the previous BIC formulation (4), 

one has a comprehensive model selection rule which handles voxels with from zero to up to 

Ĩ (here 4) fiber populations.

In practice, we follow the convention and use fractional anisotropy (FA) [see, e.g., Mori 

(2007)],

(5)

where λ1, λ2 and λ3 are the eigenvalues of the corresponding tensor in the single tensor 

model, to conduct an initial screening to speed up the whole procedure. The FA value lies 

between zero and one and the larger it is, the more anisotropic the water diffusion is at the 

corresponding voxel. Thus, we first remove voxels with very small FA values and then apply 

the BIC approach over those suspected anisotropic voxels. Note that such removal is mainly 

for reducing computational cost, as a typical dMRI data set consists of hundreds of 

thousands of voxels. From our experiences, this has little effect on the final tracking results. 

We also note that the proposed framework including selection of J can be applied without 

such removal if enough computational resources are available.

We summarize our voxel-wise estimation procedure in Algorithm S2 in the Supplemental 

Material. A simulation study is conducted and the corresponding results are presented in 

Section S2 of the Supplemental Material. These numerical results suggest that our voxel-

wise estimation procedure provides extremely stable and reliable results under various 

settings.
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4. Spatial smoothing of diffusion directions

Although model (2) provides a better modeling than the single tensor model for crossing 

fiber regions, it also leads to an increase in the number of parameters and thus the variability 

of the estimates. To further improve estimation, we consider borrowing information from 

neighboring voxels and develop a novel smoothing technique for diffusion directions.

In many brain regions, it is reasonable to model the fiber tracts as smooth curves at the 

resolution of voxels in dMRI (∼2 mm). Therefore, we shall assume that the tangent 

directions of fiber bundles change smoothly. This leads to the spatial smoothness of 

diffusion directions that belong to the same fiber bundle.

4.1. Smoothing along a single fiber

This subsection considers the simpler situation where there is only one homogeneous 

population of diffusion directions; that is, there is only one single fiber bundle without 

crossing. Write T as the total number of estimated diffusion directions from all voxels and 

 as the set of all estimated diffusion directions. Also, write sk as the 

corresponding voxel location associated with . Note that some sk’s share the same value, 

as some voxels contain multiple estimated directions. Following the idea of kernel 

smoothing on Euclidean space [e.g., Fan and Gijbels (1996)], the smoothing estimate at 

voxel s0 is defined as a weighted Karcher mean of the neighboring direction vectors:

(6)

where wi = KH(si − s0)’s are spatial weights and the metric d∗ is defined as

(7)

that is, d*(u, v) is the acute angle between u and v. The weights wi’s place more emphasis 

on spatially closer observations. Here  with K(·) as a 3D kernel 

function satisfying  and H is a 3 × 3 bandwidth matrix. In our numerical work, 

we choose K(·) as the standard Gaussian density, and set H = hI3, where h is chosen using 

the cross-validation (CV) approach described in Section S3 of the Supplemental Material. 

We adopt the leave-one-out CV idea to develop an ordinary CV score and two robust CV 

scores. Their practical performances are reported in Section S6 of the Supplemental 

Material.

4.2. Smoothing over multiple fibers

When there are crossing fibers in a voxel s0, the above smoothing procedure will not work 

well. To address this issue, we first cluster the neighboring estimated directions of s0 into 
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groups that correspond to different fiber populations. Then we apply the above smoothing 

procedure to each individual cluster. This subsection describes this procedure in details.

First we define neighboring voxels for s0. We begin with computing the spatial weights 

defined in Section 4.1. We then remove those voxels with weights smaller than a threshold. 

By filtering out these voxels, we obtain tighter and better separated clusters of directions. 

Moreover, such voxels have little effect on smoothing due to their small weights. The 

artificial data set displayed in Figure 2 provides an illustrative example. Each black dot in 

the left panel represents an estimated direction (from the center of the sphere). In the middle 

panel, the size of each dot is proportional to its spatial weight in equation (6). Last, the right 

panel shows all dots with spatial weights larger than a threshold. Notice that such a trimming 

operation leads to two obvious clusters of directions, which makes the subsequent task of 

clustering the directions much easier.

Next we need a clustering strategy to choose the number of clusters adaptively. With the 

distance metric (7), one can define a dissimilarity matrix for a set of directions and make use 

of a generic clustering algorithm. Our choice is the Partition Around Medoids (PAM) 

[Kaufman and Rousseeuw (1990)] due to its simplicity. Also, we apply the average 

silhouette [Rousseeuw (1987)] to choose the number of clusters; see Algorithm S3 of the 

Supplemental Material. The silhouette of a datum i measures the strength of its membership 

to its cluster, as compared to the neighboring cluster. Here, the neighboring cluster is the 

one, apart from cluster of datum i, that has the smallest average dissimilarity with datum i. 
The corresponding silhouette is defined as (bi − ai)/(max{ai, bi}), where ai and bi represent 

the average dissimilarities of datum i with all other data in the same cluster and that with the 

neighboring cluster, respectively. The average silhouette of all data gives a measure of how 

good the clustering is. Thus, we select the number of clusters via maximizing the average 

silhouette. The detailed smoothing procedure is given in Algorithm S4.

4.3. Theoretical results

This subsection derives asymptotic properties of the proposed direction smoothing estimator. 

Note that since the space of direction vectors has a non-Euclidean geometry, the theoretical 

framework is different from that of classical smoothing estimators. Without loss of 

generality, suppose we observe  at spatial locations s1, …, sn, respectively. 

Let  be the 3D unit sphere. Then  is the quotient space of  with equivalence relation 

v∼ −v for any  This space is also identified with the so-called real projective space 

.

The theoretical results below were derived under the more convenient random design where 

si’s are independently and identically sampled from a distribution with density fS. The below 

theorem (Theorem 2) remains valid even under a fixed, regular design setting, with the 

number of grid points increasing to infinity. In this case, in the statement of the asymptotic 

formulae and their proofs, the density function fS is replaced with a constant-valued 

function, representing a regular grid, with corresponding changes wherever derivatives of fS 

appear.
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Given a spatial location s0, our target is to estimate v0, namely, the diffusion direction at s0, 

which is defined as the minimizer of  over v, where d∗(u, v) = arccos 

. Here V is a random unit vector representing a random diffusion direction and the 

expectation is taken over V conditional on S = s0, where S represents the location of where 

V is observed. For simplicity, we assume si ∈ ℝ and write it as si thereafter. Thus, our 

estimator (6) at s0 can be written as

where n is the number of diffusion direction vectors and Kh(·) = K(·/h)/h. Here, with slight 

notation abuse, K(·) represents a one-dimensional kernel function throughout the theoretical 

developments.

We first describe a working coordinate system. For each , one can endow a tangent 

space  with the metric tensor  defined as 

. Note that the tangent space is identified with  The geodesics are great 

circles and the geodesic distance is arccos  for any . The corresponding 

exponential map at , Expp :  is given by

while the corresponding logarithm map at , , is given by

One can use the exponential map and the logarithm map to define a coordinate system for 

the  in the following way. Given , we define the logarithmic coordinate as

where  and {e1, e2} forms an orthonormal basis for . Write 

. In addition, we define
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which aligns v with v0, and  for  ω, θ . Note 

that, for any , we have  where  Here 

first aligns a direction v with the true diffusion direction v0 and then represents it by its 

logarithmic coordinate.

We now present the asymptotic results. Now, write  for i = 1,…, n and 

 We have  Also, let  be the j th order derivative of 

ψ with respect to θ for j = 1, 2. Let  and 

 Var (θ1|S1 = s). Also, denote 

Under the assumptions 1–10 laid out Section S5.2 of the Supplemental Material which are 

all standard technical conditions (except for assumption 1 which is to ensure the 

representation of the geodesic distance as a function of the working coordinate system), we 

have the following theorem.

Theorem 2—Let , and assume assump tions 1–10 

hold.

a. There exists a sequence of solutions, , to , such that 

converges in probability to θ0.

b.  is asymptotically normal:

Where

and

The proof of Theorem 2 can be found in Section S5.2 of the Supplemental Material.

5. Fiber tracking

For dMRI, fiber tractography can be classified as a deterministic and probabilistic method. 

Deterministic methods [e.g., Mori and van Zijl (2002), Mori et al. (1999), Weinstein, 

Kindlmann and Lundberg (1999)] track fiber bundles by utilizing the principal eigenvectors 
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of tensors, while probabilistic methods [e.g., Friman, Farneback and Westin (2006), Koch, 

Norris and Hund-Georgiadis (2002), Parker and Alexander (2003)] use the probability 

density of diffusion orientations. Most deterministic methods assume one single diffusion 

tensor in each voxel, and hence are unable to handle voxels with crossing fibers. In view of 

this, this section develops a deterministic tracking algorithm that allows for multiple or no 

principal diffusion directions in a voxel.

The proposed algorithm can be seen as a generalization of the popular Fiber Assignment by 

Continuous Tracking (FACT) [Mori et al. (1999)] algorithm. A brief description of FACT is 

as follows. Tracking starts at the center of a voxel (Voxel 1 in Figure 3, left panel) and 

continues in the direction of the estimated diffusion direction. When it enters the next voxel 

(Voxel 2 in Figure 3, left panel), the track changes its direction to align with the new 

diffusion direction and so on. This tracking rule may produce many short and fragmented 

fiber tracts due to either a wrongfully identified isotropic voxel or spurious directions which 

go nowhere. In addition, it cannot determine which direction to follow in case there are 

multiple directions in a voxel, which happens in crossing fiber regions.

To address these issues, we modify the above procedure in the following manner. Given a 

current diffusion direction (we refer to the corresponding voxel as the current voxel), the 

voxel that it points to (we refer to this voxel as the destination voxel) may have (i) at least 

one direction; (ii) no direction (i.e., isotropic). In case (i), we will first identify the direction 

with the smallest angular difference with the current direction. If its separation angle is 

smaller than a prespecified threshold (e.g., π/6), we enter the destination voxel and tracking 

will go on along this direction; see Figure 3 (Middle). On the other hand, if the separation 

angle is greater than the threshold or case (ii) happens, we deem that the destination voxel 

does not have a viable direction. In this case, tracking will go along the current direction if it 

finds a viable direction within a prespecified number of voxels. The number of voxels that 

are allowed to be skipped is set to be 1 in our numerical illustrations; see Figure 3 (Right). 

On the other hand, the tracking stops at the current voxel if no viable directions within a 

prespecified number of voxels can be found. The detailed tracking algorithm is described in 

Algorithm S5 in the Supplemental Material.

As for the choice of starting voxels, also known as seeds, there are two common strategies. 

One can choose seeds based on tracts of interest and start the tracking from a region of 

interest (ROI). This approach is based on knowledge on ROI and may not give a full picture 

of the tracts of interest if there are diverging branches. The other approach is the brute-force 

approach, where tracking starts from every voxel. It usually leads to a more comprehensive 

picture of tracts at a higher computational cost. The proposed algorithm can be coupled with 

either strategy.

Combining the voxel-wise estimation method in Section 3 and the direction smoothing 

procedure in Section 4 gives the proposed DiST method.
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6. Simulation study

Extensive simulation experiments have been conducted to evaluate the practical 

performances of DiST. They are reported in Section S6 of the Supplemental Material. 

Overall, the DiST method provided highly promising results.

7. Real data application

In this section, we apply the proposed methodology to a real dMRI data set, which was 

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(www.loni.ucla.edu/ADNI). The primary goal of ADNI has been to test whether serial MRI, 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and onset of Alzheimer’s disease (AD). In the following, we 

use an eddy-current-corrected ADNI data set of a normal subject for illustration of our 

technique.

This data set contains 41 distinct gradient directions with the b-value set as 1000 s/mm2. In 

addition, there are 5 b0 images (corresponding to b=0), forming in total 46 measurements 

for each of the 256×256×59 voxels. To implement our technique, we require estimates of S0 

(s)’s and σ. We first estimate S0(s) and σ(s) for each voxel by ML estimation based on the 5 

b0 images. Then we fix σ as the median of estimated σ(s)’s for voxel-wise estimation of the 

diffusion directions. Since the original 256 × 256 × 59 voxels contain volume outside the 

brain, we only take median over a human-chosen set of 81 × 81 × 20 voxels. The estimated 

σ is 56.9.

In this analysis, we focus on a subset of voxels (15 × 15 5), which contains the intersection 

of corpus callosum (CC) and corona radiata (CR). This region is known to contain 

significant fiber crossing [Wiegell, Larsson and Wedeen (2000)]. See Figure 4 (Left) for a 

fiber orientation color map of one of the five xy-planes. Within the whole focused region, 

S0(s)’s have mean 1860.1 and standard deviation 522.7.

We then apply voxel-wise estimation to individual voxels followed by the DiST-mcv 

procedure. Distributions of the estimated number of diffusion directions are summarized in 

Table 1. For comparison purposes, we also fit the single tensor model with the commonly 

used regression estimator [e.g., Mori (2007)].

The tracking results are produced by applying the proposed tracking algorithm to the 

estimated diffusion directions from DiST-mcv, which represents the DiST procedure with h 
chosen by the median cross-validation score (see Sections S3 and S6 of the Supplemental 

Material), and those from the single tensor model estimation. For visualization purposes, we 

present the longest 900 tracts in Figure 5. From anatomy, the CC has a mediolateral 

direction, while the CR has a superoinferior orientation. They are clearly shown in both 

tracking results. In these figures, reconstructed fiber tracts are colored by a RGB color 

model with red for left-right, green for anteroposterior and blue for superior–inferior. Thus, 

one can easily locate the CC and the CR as the red fiber bundle and the blue fiber bundle, 

respectively. The tracking result based on DiST-mcv shows clear crossing between the 
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mediolateral fiber and the superoinferior fiber (in the figure, the crossing of the red and blue 

fiber tracts). From neuroanatomic atlases and previous studies, Wiegell, Larsson and 

Wedeen (2000) conclude that there are several fiber populations with crossing structure in 

this conjunction region of CC and CR, which matches with the tracking based on DiST-mcv. 

However, the single tensor model estimation can only reconstruct one major diffusion 

direction in each voxel, and thus the corresponding tracking result does not show crossing 

structure. Instead, the CC (red fiber bundle) is blocked by the CR (blue fiber bundle), and 

this leads to either termination of the CC fiber tracts or significant merging of the CC and 

the CR fiber tracts instead of the known crossing structure. To give further illustration, 

Figure 4 shows the locations of the CC, the CR and the region of crossing fibers (Cross). 

One can see that estimated directions based on DiST-mcv reproduces the crossing fiber 

structures between the CC and the CR, while the result based on the single tensor model 

tends to connect the CC and the CR fibers.

Moreover, the green fiber on top of the CC represents the cingulum bundle. Both fiber 

tracking based on DiST and the single fiber model produce clear and sensible reconstruction 

of the cingulum bundle. All these features match with neuroanatomic atlases and provide a 

good demonstration of our proposed method.

As shown by Figures 4 and 5, when comparing with the results obtained by the single tensor 

model, DiST produces more biologically sensible and interpretable tracking results. This 

provides more reliable information on brain connectivity and in turn could lead to better 

understanding of neuro-degenerative diseases such as Alzheimer’s disease and autism, as 

well as better detection of brain abnormality, such as deformation and neuron loss in white 

matter regions.

8. Discussion

Using tensor estimation to resolve crossing fiber can be problematic due to the inability of 

estimating multiple diffusion directions by the single tensor model and the nonidentifiability 

issue in the multi-tensor model. In this paper, we take a different route by focusing on the 

estimation of diffusion directions rather than the diffusion tensors. We develop the 

corresponding direction smoothing procedure and fiber tracking strategy, together called 

DiST, along this route. Our technique gives promising empirical results in both simulation 

study (see Section S6 of the Supplemental Material) and real data analysis.

The procedure we presented works well even with a moderate number of gradient directions 

(a few tens), as long as the number of distinct crossing fibers within a voxel is not larger 

than three. With HARDI data, which can have up to a couple of hundred gradient directions, 

rather than modeling the direction distribution within a tensor framework, we can estimate 

the fiber orientation distribution non-parametrically [Descoteaux et al. (2007), Tuch (2004)].

Applying DiST to multiple images from ADNI (either from the same subject over time or 

from multiple subjects) and then relating the tracking results with clinical outcomes such as 

cognitive measures would provide valuable information about the role of white matter 

connectivity in initiation and progression of Alzheimer’s disease and dementia. Although 
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this is an important direction of research, it is beyond the scope of this paper which focuses 

on developing a statistical procedure to denoise dMRI data in order to provide better 

tracking results. We plan to explore more sophisticated applications of the proposed 

procedure in our future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example of a tensor map on a 2D grid where each diffusion tensor is represented by an 

elliposid.
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Fig. 2. 
Direction clustering. Left: all estimated directions. Middle: sizes of all estimated directions 

proportional to weights. Right: estimated directions with weights larger than a threshold. 

Red lines represent underlying true directions.
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Fig. 3. 
Left: Demonstration of the proposed algorithm in the single fiber region. Middle: 

Demonstration of the proposed algorithm in the crossing fiber region. Right: Demonstration 

of the proposed algorithm in the case of absence of viable directions.
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Fig. 4. 
Left: the fiber orientation color map (based on the single tensor model). The focused region 

is indicated by a white rectangular box. Middle (from DiST-mcv) and right (from single 

tensor model): The projection of fiber directions to the xy-plane at z = 102.6 for illustration 

of crossing fibers. (The five xy-planes that we focus on have reference values z = 99.9, 

102.6, 105.3, 108, 110.7 from bottom to top.) The plot also shows the location of corpus 

callosum (CC), corona radiata (CR) and crossing region (Cross). The fiber orientation color 

map is overlaid as the background.
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Fig. 5. 
Top: The longest 900 tracks using DiST-mcv. Bottom: The longest 900 tracks using the 

single tensor model. The left and right figures correspond to different viewing angles.
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