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ABSTRACT OF THE DISSERTATION

Essays on Identification

by

Roy Henry Allen

Doctor of Philosophy in Economics

University of California, San Diego, 2017

Professor Ivana Komunjer, Co-Chair

Professor Andres Santos, Co-Chair

The first two chapters of this dissertation study identification of a new class of

demand models termed perturbed utility models. The first chapter provides sufficient

conditions under which structural functions in these models can be uniquely determined

from knowledge of conditional means. The second chapter proposes a definition of

complementarity/substitutability for these models and shows how to recover this measure

x



from data.

The third chapter of this dissertation studies inference in a class of partially

identified models. Specifically, this chapter provides a finite-sample power comparison

between two existing tests of moment inequalities.
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Chapter 1

Identification of Average Demand

Models

Abstract: This paper studies the nonparametric identification of a model of

average demand for multiple goods, once unobservable heterogeneity has been integrated

out. The model can be used for bundles, decisions under uncertainty, stochastic choice,

and other examples. Optimizing behavior implies an analogue of Slutsky symmetry,

which we exploit to show nonparametric identification of the model. Our main results do

not rely on special regressors or identification at infinity. As a special case we provide

new conditions for identification of additive random utility models (ARUM). These

conditions also apply to a stochastic choice model allowing bounded rationality. In an

illustrative application, we refute ARUM in favor of this more general model.

1
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1.1 Introduction

Individuals often choose quantities of multiple goods at once. The most familiar

example is the choice of quantity bundles in a standard consumer problem. In decisions

under uncertainty, an individual chooses a lottery (= “quantities”) over outcomes (=

“goods”). While there are many tractable econometric approaches to modeling choice of

a single good, the literature on demand of multiple goods is less well-developed. This

paper studies identification of an “average demand” framework for multiple goods.

This model can be used to understand how individuals value different characteris-

tics of goods, make counterfactual statements, and quantify welfare changes. This paper

shows that even when there are multiple goods, conditional means can answer many

questions without needing a full specification of the underlying behavioral model. For

example, in a model of decisions under uncertainty, fairly general forms of heterogeneity

or departures from expected utility are allowed, and we can still identify risk aversion.

This paper shows that optimization implies certain equalities that provide simple

identification results for a large class of models. The equalities we exploit are analogues

of Slutsky symmetry in the standard consumer problem. Such equalities arise in a class

of models where the choice vector is the derivative of the indirect utility function. This is

a common consequence of the envelope theorem, and a number of existing latent utility

models fit into the class we study, including additive random utility models (McFadden

(1973)).

We assume each good has an unknown index function controlling its desirability.

Each index function depends on the characteristics of that good. Formally, assume the
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demand vector Y satisfies

Y “ M̃pv1pX1q, . . . ,vKpXKq,εq, (1.1)

where Xk includes characteristics of good k as well as demographic variables, vk controls

the desirability of good k, and ε represents unobservable heterogeneity. The structure we

impose is that for fixed ε, M̃p¨,εq is the derivative of a convex function.

This paper studies what we can learn about features of preferences given knowl-

edge of ErY | X “ xs. The main contribution of this paper is that ~v “ pv1, . . . ,vKq
1 is

identified under mild conditions. Knowledge of~v allows us to understand how individuals

value the characteristics of goods. For example, the curvature of vk may describe an

individual’s risk aversion. While it is fairly straightforward to identify the ordinal ranking

of vk, this paper shows that ~v is identified up to an affine transformations. Once ~v is

identified, we show welfare differences are identified using only conditional means. This

is possible because we interpret M̃p¨,εq as the derivative of the individual-specific indirect

utility function. Welfare is then calculated as the average indirect utility.

We are motivated to study (1.1), rather than a more general model, for several

reasons. First, this structure is implied by many latent utility models. Examples include

discrete choice additive random utility models (McFadden (1973), McFadden (1978)),

the bundles model of Gentzkow (2007) and Fox and Lazzati (forthcoming), and an

expected utility model considered in Agarwal and Somaini (2014). A byproduct of our

analysis is to provide weaker conditions for identification of these models. Second,

conditional means are sufficient to identify differences in average welfare for this model.

It is unclear when this is possible for more general models. Third, since our results

require only knowledge of conditional means (and not full conditional distributions), we

can handle less than ideal data. For example, in decisions under uncertainty we may not
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observe choices of lottery, but instead only the outcomes of the lotteries.1 Finally, this

is a cardinal model in the sense that the structural functions~v are identified up to affine

transformations. Relaxing (1.1) to a more general index model may lose this feature.

Models that are not cardinal can be hard to interpret or take to data because they require

a careful handling of normalizations.

We identify~v without specifying M̃ or the distribution of ε. Assuming indepen-

dence between observable characteristics and unobservable heterogeneity, we show ~v

is identified if: (i) each good has a continuous regressor specific to it that affects its

desirability, (ii) there is sufficient complementarity and/or substitutability among goods,

and (iii) some smoothness and support conditions are satisfied. Identification is up

to a location and multiplicative scale normalization for ~v, which in general cannot be

weakened.

Specializing the analysis, we obtain a new set of conditions for identification of

the additive random utility model (ARUM). This model includes logit, nested logit, and

probit as special cases. We establish nonparametric identification of~v without specifying

a distribution of the latent variables. In contrast with the nonparametric identification

results of Matzkin (1993), we do not require a priori knowledge of how a regressor enters

vk
2 and do not need to reduce the problem to a binary choice identification problem.3

Instead, we impose smoothness conditions to obtain constructive identification results.

Smoothness conditions are not imposed by Matzkin (1993), so our results are not strictly

more general.

In ARUM, we identify ~v without using the full structure of the model. The

1From such data one can estimate the conditional probability of each outcome, which in our setup is
the “average demand.”

2Such as a special regressor structure.
3The latter technique is sometimes termed identification at infinity.



5

results apply to a strictly more general model of stochastic choice studied in Allen and

Rehbeck (2016b). A motivation for this model is that a common violation of random

utility models is that adding an alternative to a menu can increase the probability of

choosing an existing alternative (e.g. Huber, Payne, and Puto (1982)). The model of

Allen and Rehbeck (2016b) accommodates this behavior and also allows the closely

related possibility that a good could become more attractive and an existing good could be

chosen with higher probability. Such behavior is ruled out by ARUM. As an illustrative

application, we use the “no complementarity” implication to provide a parametric test

of ARUM against the more general model. Using data from Louviere et al. (2013) on

preference for types of pizza, we refute ARUM because there is not enough stochastic

substitution among alternatives.

Our identification results use an analogue of Slutsky symmetry, and the core

argument is simple. First, the latent utility model of (1.1) aggregates. Specifically, when

latent variables are independent of characteristics, (1.1) implies

ErY | X “ xs “Mpv1px1q, . . . ,vKpxKqq, (1.2)

where M is the gradient of a convex function. Symmetry states that the effect of an

increase in the index vk on the mean of Y` is equal to that of an increase of v` on the mean

of Yk:
BMkpvq
Bv`

“
BM`pvq
Bvk

.

If for example each xk is scalar and only enters the index for good k, then using symmetry

(and the chain rule) we show that

BErYk | X “ xs
Bx`

O

BErY` | X “ xs
Bxk

“
Bv`px`q
Bx`

O

Bvkpxkq

Bxk
.
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This provides constructive identification of partial derivatives of~v at certain points x`, xk.

By repeated use of this equality, the fundamental theorem of calculus, and a location and

scale normalization, we obtain constructive identification of~v.

This paper proceeds as follows. Section 1.2 contains a literature review. Sec-

tion 1.3 formalizes our setup, provides examples and further literature review, and

illustrates restrictions of the model under smoothness conditions. Section 1.4 establishes

conditions for nonparametric identification of ~v. Section 1.5 constructively identifies

changes in D and average welfare. Section 1.6 characterizes out-of-sample bounds using

the model. Section 1.7 contains an illustrative application. Section 1.8 concludes.

1.2 Literature Review

The literature on identification is large, and so we discuss only some of the most

closely related papers. See Matzkin (2007), Matzkin (2013), and Berry and Haile (2015a)

for recent surveys.

Identification of general simultaneous equations models with multiple endogenous

variables has been studied in Matzkin (2008), Matzkin (2015), and Berry and Haile

(2015b). The present paper differs from this line of work in focusing on specific features

of preferences. Indeed, our identification results do not cover M̃ or the distribution of ε.

In general, we expect the distribution of ε is not identified because we do not restriction

its dimension. We instead identify a feature of its distribution in the form of average

welfare changes. A second difference is we work with conditional means and allow

for discrete Y , whereas the referenced line of work uses conditional densities and thus

requires continuous Y .
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The techniques of this paper use the property that the choice vector is the deriva-

tive of a convex function. This is a shape restriction coming from optimization. The

identifying power of shape restrictions, such as monotonicity, convexity, and homoth-

eticity, has been demonstrated in Matzkin (1992), Matzkin (1993), and Matzkin (1994).

Using tools from convex analysis and related fields, a wave of recent papers has leveraged

the hypothesis of optimization to establish identification. Examples include Galichon

and Salanié (2015) and Chernozhukov et al. (2014).

While analogues of symmetry are known in a number of settings, to our knowl-

edge, exploiting Slutsky symmetry for identification of index functions constitutes a

new technique. We discuss its relationship to the special regressor (Lewbel (1998))

approach, which has been a powerful and influential tool in the identification literature.

This approach assumes additional separability in~v, such as that Zk enters vk in a known

way vkpXkq “ Zk` ṽkpWkq, where Xk “ pZk,Wkq. We show in examples that when latent

variables are independent of characteristics, this structure is unnecessary.4 The functions

~v are identified not because Zk enters vk in a known way, but because Zk is a relevant,

good-specific regressor. When latent variables are independent conditional on certain

characteristics (Lewbel (1998), Lewbel (2000)), we show in several examples that the

partial linearity of the special regressor approach can be relaxed to additive separability,

vkpXkq “ gkpZkq` ṽkpWkq, where Xk “ pZk,Wkq. This means that Zk does not need to enter

vk monotonically. Our results can be used to identify gk. By defining Z̃k “ gkpZkq, the

insights of the special regressor approach can then be readily applied to the constructed

special regressor Z̃k. We thus place some identification results that use special regressors

on firmer foundations.5

4Use of the term “special regressor” has commonly been applied any setup such as vkpXkq “ Zk`

ṽkpWkq, though Lewbel (1998) is motivated by failures of independence between observable characteristics
and latent variables.

5We discuss this in greater detail in examples. Recall we require multiple goods for our nonparametric
results, so we do not contribute to the special regressor technique when there is only a single good.
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A structure similar to (1.1) or (1.2) has been widely used. However, previous

work typically begins with a model of utility maximization that implies one of these

representations. We mention a few of the most closely related papers. For ARUM, the

celebrated Williams-Daly-Zachary theorem (McFadden (1981)) states that conditional

choice probabilities are the derivative of a convex function. In a panel setting, Shi, Shum,

and Song (2016) use this feature to identify~v when it is assumed to be linear. McFadden

and Fosgerau (2012a) study a representation related to (1.1) focusing on budget variation.

Fudenberg, Iijima, and Strzalecki (2015) study a stochastic choice model that implies

(1.1). Chiong, Galichon, and Shum (2016) study a structure similar to (1.1) in dynamic

discrete choice. Roughly, their results can be used to show that if M is known then~v is

identified. Fosgerau and Palma (2015) use a special case of (1.1) to model and estimate

demand for differentiated products

This paper is part of a broader study of (1.2) and slightly more general perturbed

utility models (PUM). In Allen and Rehbeck (2016a), we show that PUM provides a

setting in which to define complementarity when prices are not available. We show in the

consumer problem that if prices were available, our definition of complementarity would

agree with the Hicksian definition stated in terms of cross-price elasticties.6 We also

show an aggregation property of a class of latent utility models. We use this result in the

present paper to show that several existing latent utility models have conditional means

consistent with PUM. In Allen and Rehbeck (2016b) we study the model specialized to

stochastic choice. We show it is testable, but do not study identification.

6A related result appears in Gentzkow (2007), but assumes there are no income effects.
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1.3 Model and Examples

We study models in which conditional means satisfy

ErY | X “ xs P argmax
yPB

K
ÿ

k“1

ykvkpxkq`Dpyq. (1.3)

We call this the perturbed utility model (PUM). This is a generalization of the structure

discussed in the Introduction. The vector ErY | X “ xs can be interpreted as the vector of

average demands for K goods, conditional on characteristics. We can interpret BĎ RK

as a fixed budget. Each good k has a dk-dimensional vector of characteristics Xk. These

include good-specific regressors as well as demographic and other individual-specific

regressors. We collect these in X “ pX 11, . . . ,X
1
Kq
1, which we treat as a random variable.

The functions ~v “ pv1, . . . ,vKq
1 shift the marginal utility of each good. The function

D encodes substitutability/complementarity patterns between the goods. Importantly,

characteristics do not enter D.

We state the following maintained assumptions.

Assumption 1.1. (i) ErY | X “ xs satisfies (1.3) for every x P supppXq.7

(ii) B is a non-empty set.

(iii) vk : Rdk Ñ R for k “ 1, . . . ,K.

(iv) D : RK ÑRYt´8u is an extended real-valued function that is finite at some y P B.

For some of our results, we require an additional assumption.

7The support of a random variable Z, which is denoted supppZq, is the smallest closed set K such that
PpZ P Kq “ 1.
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Assumption 1.2. (Unique Maximizer) For each x P supppXq,

Mp~vpxqq “ argmax
yPB

K
ÿ

k“1

ykvkpxkq`Dpyq

is a singleton.

A sufficient condition for Assumption 1.2 is that D is strictly concave and B is

convex and nonempty. Under this assumption, we can write

ErY | X “ xs “Mp~vpxqq,

where M : RK Ñ RK .

We first describe a class of latent utility models that imply (1.1) and then provide

some examples that fit into our framework.

1.3.1 Examples

One possible interpretation of (1.3) is that the function being maximized is a

utility function for a representative agent and ErY | X “ xs is the demand for that agent.

The restrictions of this model also arise from many latent utility models. Suppose that

the quantity vector Y satisfies

Y P argmax
yPB

K
ÿ

k“1

ykvkpXkq` D̃py,εq. (1.4)

This is utility maximization subject to a budget constraint. The econometrician observes

characteristics Xk, but does not observe individual heterogeneity, ε, which is possibly

infinite-dimensional. We can interpret D̃py,εq as some (possibly unknown) function



11

allowing individual heterogeneity in preferences over the goods.

Allen and Rehbeck (2016a) show that if X and ε are independent and other mild

regularity conditions hold, conditional means satisfy (1.3) for some D PD. The set D

denotes extended real-valued functions that are finite at some y P B and never attain8.

We will use this aggregation theorem to show several examples that fit in our framework.

The fact that vkpXkq does not contain latent variables is a key homogeneity

assumption, but this assumption is weaker than may initially appear. An equivalent

restatement of the model is given by,

Y P M̃p~vpXq,εq, (1.5)

where for fixed ε, M̃ is the subgradient of a convex function and is derived from D̃ and

B. (See Appendix 1.10 for details.) When there is a unique maximizer to (1.4), the

subgradient is just the derivative and we have the equality Y “ M̃p~vpXq,εq, as presented

in the Introduction. The response of Y to changes in X is flexible, and can vary widely as

ε varies. The core shape restriction that must hold for each ε is a multivariate version of

monotonicity.

We now turn to specific examples. Previous work has needed to specify the form

of D̃. Our results apply regardless of the form, provided certain expectations exist. Recall

that we differ from previous work in that we are interested in~v, whereas previous work is

often interested in the distribution of ε. To identify this distribution, more structure on D̃

is typically needed.
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Bundles

We present a version of the model studied in Gentzkow (2007), Fox and Lazzati

(forthcoming), and Allen and Rehbeck (2016a). Assume for simplicity that there are two

goods, and an individual can buy either 0 or 1 unit of each good. Let u j,k denote utility

obtained from quantity j of good 1 and quantity k of good 2. We assume utilities are

given by

u0,0 “ 0

u1,0 “ v1pX1q` ε1,0

u0,1 “ v2pX2q` ε0,1

u1,1 “ u1,0`u0,1` ε1,1,

(1.6)

where Xk is a vector of characteristics for good k. The vector ε“ pε1,0,ε0,1,ε1,1q consists

of latent random variables known to the individual but not the econometrician. The

variable ε1,1 parametrizes whether the goods are complements or substitutes.

Under the following conditions, this model fits into our setup.

Lemma 1.1. Let Y P t0,1u2 denote the utility maximizing quantities of (1.6). Assuming

X and ε are independent, Y is measurable, and ε has finite mean, then there is some

D PD such that

ErY | X “ xs P argmax
yPr0,1s2

2
ÿ

k“1

ykvkpxkq`Dpyq.

In particular,

Dpyq “ sup
ỸPY :ErỸ pεqs“y

E
“

Ỹ1pεqε1,0` Ỹ2pεqε0,1`1tỸ1pεq “ Ỹ2pεq “ 1uε1,1
‰

,

where Y is the set of measurable functions from the support of ε to t0,1u2.
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This result uses the additive separability in (1.6). If similar separability is main-

tained, this example can generalize to multiple goods, regardless of whether the quantities

are discrete.

Fox and Lazzati (forthcoming) formally study identification of this model, focus-

ing on identification of the distribution of ε (and other structural features not present in

our simplified model). They rely on special regressors Zk that enter vkpXkq “ Zk` ṽpWkq

in a known way, where Xk “ pZk,Wkq. Our results show that~v can be identified without

this structure, and so we show that their insights apply to a more general setup.

Additive Random Utility Models

Additive random utility models have been widely used since the seminal work

of McFadden (1973). These models include familiar examples like logit, nested logit,

and probit. Suppose an individual chooses from a set of K alternatives (called goods

previously). Alternative k has utility given by

uk “ vkpXkq` εk.

In an additive random utility model (ARUM), an individual’s choice satisfies

Y P argmax
yP∆K´1

K
ÿ

k“1

ykvkpXkq`

K
ÿ

k“1

ykεk, (1.7)

where ∆K´1 “ ty P RK |
řK

k“1 yk “ 1, yk ě 0 @ku. We let the individual choose from the

probability simplex ∆K´1 to handle utility ties. Typically the individual is just picking

the alternative with the highest latent utility.

We are interested in identification of~v without specifying a distribution for the
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latent variable ε “ pε1, . . .εKq
1. Instead, we assume X and ε are independent. The

following result, with slightly stronger assumptions, is due to Hofbauer and Sandholm

(2002).

Lemma 1.2. Assume Y is consistent with (1.7). If ε and X are independent, Y is

measurable, and ε has finite mean, then there is some D PD such that

ErY | X “ xs P argmax
yP∆K´1

K
ÿ

k“1

ykvkpxkq`Dpyq.

In particular, Dpyq “ supỸPY :ErỸ pεqs“yE
”

řK
k“1 Ỹkpεqεk

ı

, where Y is the set of measur-

able functions from the support of ε to ∆K´1.

Note we do not have to assume that ε j and εk are independent for j ‰ k, and

moreover we do not have to specify a distribution for ε. Identification of the distribution

of ε is straightforward once~v is identified.

We provide a new set of conditions for identification of ARUM. Under the

assumption that ε and X are independent, Matzkin (1993) provides two sets of conditions

to identify ~v. The first requires that one function vk be known at a large set of points

S k such that vkpS kq “ R. This is typically interpreted as assuming vkpXkq “ Zk` ṽkpWkq

for a special regressor Zk. The second set of conditions ensures that the identification

problem can be reduced to that of a binary choice problem by an assumption such as

~vpsupppXqq “ RK . Our results show that neither of these assumptions is necessary.

Our results do not handle general failures of independence between ε and X . We

show in Remark 1.3 that we can relax independence if we impose additive separability,

vkpXkq “ gpZkq ` ṽkpWkq. Suppose that conditional on pW1, . . . ,WKq, the vector Z “

pZ1, . . . ,ZKq is independent of ε. Our results show gk is identified. By defining z̃k “ gpzkq,

we can use z̃k as a special regressor (Lewbel (2000)) to identify ṽk. Lemma 1.2 also rules
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out random coefficients models. Matzkin (2007) and Berry and Haile (2009) use special

regressors to identify models with nonseparable heterogeneity. Because we show how to

relax assumptions of the special regressor approach, we widen the applicability of these

papers.8

Our results do not apply if we replace independence with conditional median

restrictions as in the maximum score approach (Manski (1975), Manski (1985), Matzkin

(1993), Fox (2007)). Heuristically, the maximum score approach has only been shown to

deliver ordinal identification of vk whereas additive, independent errors ensures cardinal

identification of vk.

Expected Utility / Moral Hazard

Suppose an individual chooses a lottery Y that maximizes expected utility plus a

heterogenous term D̃:

Y P argmax
yPB̃

K
ÿ

k“1

ykvkpXkq` D̃py,εq. (1.8)

There are K outcomes. Outcome k is a “good” treated in our general setup. Individual

heterogeneity is represented by ε.

Agarwal and Somaini (2014) study a special case of (1.8) in their study of

school match. An agent chooses a report, but in equilibrium the agent knows the

allocation probabilities associated with this report. Thus, choice of report is equivalent

to choice from a set of lotteries. They assume expected utility with additive errors so

that D̃py,εq “
řK

k“1 ykεk. We can interpret vkpXkq` εk as the von Neumann-Morgenstern

utility index. This index is assumed known to the individual but not the econometrician.

8Berry and Haile (2009) show that this can be done using the Matzkin (1993) conditions for nonpara-
metric identification in ARUM. Recall we provide an alternative set of conditions to Matzkin (1993).
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The budget B̃ in the latent utility specification (1.8) is a finite set of lotteries.9

With this structure, Agarwal and Somaini (2014), Section 6.2 establishes iden-

tification of the distribution of ε using knowledge of B̃ and a special regressor. We

strengthen their results by showing that~v is identified without needing a special regressor.

It is possible to identify~v without knowledge of B̃, without observing the choice of lottery

or report (many observations of ex-post assignment is sufficient), and with deviations

from expected utility.10 Together with the results of Agarwal and Somaini (2014), this

establishes identification of~v and the latent distribution of ε.11

The setup of (1.8) also admits a moral hazard interpretation. Suppose an individual

can exert costly effort to affect the probability a particular outcome is realized. Formally,

the individual chooses an effort level e P E to maximize

K
ÿ

k“1

pkpeqvkpXkq´ cp~ppeq,εq.

The vector ~ppeq “ pp1peq, . . . , pKpeqq represents the probability of each outcome occur-

ring given the effort level. If effort is unobserved, this can be written in the form of

(1.8). The budget is given by B̃ “ ty | y “ ppeq for some e P Eu and D̃ is defined by

D̃py,εq “ ´cp~ppeq,εq whenever y“ ~ppeq. If the econometrician does not observe effort,

then the individual’s choice of effort is analogous to choice of a probability vector.

The following result shows that (1.8) fits into our setup.

Lemma 1.3. Assume Y is consistent with (1.8). If ε is independent of X, Y is measurable,

9This set is fixed in one of their identification approaches (Agarwal and Somaini (2014), Section 6.2).
This budget is convexified in the average demand version of the model.

10These deviations could be due to costly effort or hedging Fudenberg, Iijima, and Strzalecki (2015),
Section 5.1.

11While ~v is identified without needing to know the budget B̃, the results of Agarwal and Somaini
(2014) use knowledge of the budget to identify the distribution of ε. It is unknown whether knowledge of
B̃ is needed to identify the distribution of ε.
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and ErD̃pY,εq | X “ xs is finite for each x P supppXq, then there is some D PD such that

ErY | X “ xs P argmax
yP∆K´1

K
ÿ

k“1

ykvkpxkq`Dpyq.

Stochastic Choice

In discrete choice models, a growing literature studies choice that is stochastic at

the individual level. One way to represent this is by

Y P argmax
yP∆K´1

K
ÿ

k“1

ykvkpXkq` D̃py,εq, (1.9)

where Y is the choice of lottery for a specific individual (ε) given characteristics X . The

interpretation of stochastic choice as deliberate choice of lottery is due to Machina (1985)

and has received renewed theoretical and empirical interest.12 We study this model in

Allen and Rehbeck (2016b). Lemma 1.3 shows (1.9) this model fits into our setup once

we integrate out ε.

Choice may be stochastic because it is costly to make or implement a decision

(Mattsson and Weibull (2002)). For a “trembling hand” example (Selten (1975)), suppose

that an individual chooses the alternative with highest index vkpXkq a fraction p1´ εq

of the time, and otherwise uniformly randomizes over the remaining alternatives. The

variable ε is specific to the individual and can be thought of as a probabilistic chance of

12Recent work includes Cerreia-Vioglio et al. (2015) and Agranov and Ortoleva (2017).
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making a mistake. This is a special case of p1.9q if we set

D̃py,εq “

$

’

’

&

’

’

%

0 if Dk s.t. yk “ 1´ ε and y j “
ε

K´1 for j ‰ k

´8 otherwise
.13

The representation (1.9) can capture other forms of costly optimization, preference for

variety, and ambiguity aversion arising from uncertainty over the true utility of a good

(Fudenberg, Iijima, and Strzalecki (2015)). A related setup has been used to model

rational inattention (Matejka and McKay (2014), Caplin and Dean (2015)).

One qualitative feature allowed in (1.9) is a form of complementarity. For

example, vk can increase due to a change in xk, and the conditional probability of

choosing some other alternative can increase. This behavior may be natural in a model

of mistakes or preference for variety. Complementarity is formally ruled out in ARUM.

See Allen and Rehbeck (2016a) for a further discussion of complementarity.

In practice, we may not observe the choice of lottery Y , only the realizations

of the lottery (i.e. the actual choices). Observing only realizations is sufficient for our

identification results, since we only need the vector of conditional choice probabilities,

ErY | X “ xs.

Remark 1.1. Shi, Shum, and Song (2016) study identification of ARUM in a panel setting

when~v is linear. Theorem 1.8 shows that their identified set uses (only) the implications

of the more general perturbed stochastic choice model discussed in this section. Thus,

our results can be seen as a nonparametric counterpart to their identification results. We

note that in addition to linearity, they impose vk does not depend on k. This imposes an a

priori common scale of vk with respect to characteristics. While this is reasonable in a

13Note that Lemma 1.8 requires that ErD̃pY,εq | X “ xs be finite. This allows D̃ to take on value ´8
since Y is a choice. We include this function for motivation, but note that it is not formally covered by our
identification results. If we smooth it slightly, our identification results apply.
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discrete choice setting, one message of the present paper is that this is not necessary.

1.3.2 Model Structure

We now show how PUM implies analogous of the Slutsky restrictions. This

helps illustrate the structure of the model and provides a foundation for our identification

results. Recall that under Assumption 1.2, ErY | X “ xs “Mp~vpxqq for some M. Let Jpvq

denote the Jacobian matrix of Mpvq, which has j,k element equal to BM jpvq
Bvk

.

Proposition 1.1 (“Slutsky Conditions”). Let Assumption 1.1 and 1.2 hold. Assume M is

continuously differentiable in a neighborhood of v with Jacobian matrix Jpvq. Then

(i) u1Jpvquě 0,@u P RK .

(ii) Jk,`pvq “ J`,kpvq for k, `“ 1, . . . ,K.

We refer to (i) as positive semi-definiteness and (ii) as symmetry. Symmetry

provides a cross-equation equality that will be the foundation for our identification results.

Symmetry follows from the fact that when Jpvq exists, it is the Hessian of a

convex function. We provide a binary choice example further illustrating why symmetry

appears. This is a special case of ARUM (Section 1.3.1).

Example 1 (Binary Choice). Suppose that there are only two goods. In addition, as-

sume pε1,ε2q is independent of X and has a continuous density. Then conditional on

characteristics, the probability of choosing good 1 is given by

ErY1 | X “ xs “ Ppv1px1q` ε1 ą v2px2q` ε2 | X “ xq

“ Fpv1px1q´ v2px2qq,
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where F denotes the cumulative distribution function of ε2´ ε1. Similarly,

ErY2 | X “ xs “ 1´Fpv1px1q´ v2px2qq.

If we write,

ErY | X “ xs “Mp~vpxqq “ pFpv1px1q´ v2px2qq,1´Fpv1px1q´ v2px2qqq
1,

we can easily see that
BM2pvq
Bv1

“
BM1pvq
Bv2

.

If in addition pε1,ε2q has a strictly positive density, these partial derivatives are strictly

negative.

1.4 Identification of~v

This section provides conditions under which~v is nonparametrically identified.

We treat D as an unknown function. We assume knowledge of ErY | X “ xs over

x P supppXq. This is because we aim to understand whether~v can be uniquely determined

with ideal, population-level information. Thus, we abstract from sampling error. One can

think of knowledge of ErY | X “ xs as obtained from an “infinite” number of independent

and identically distributed draws of pY,Xq.

Our results require that each good has a continuous regressor that is excluded

from the other equations. To formalize this, recall Xk is a dk-dimensional vector of

characteristics for good k. Partition each such vector into Xk “ pZ1k,W
1q1. The dk

z -

dimensional vector Zk contains regressors that are excluded from the function v` for
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`‰ k. We require dk
z ą 0. The dw-dimensional vector W contains characteristics that are

common across goods, such as socioeconomic characteristics.

For a discrete choice example, suppose the K goods are modes of transportation.

Interpret ErY | X “ xs as the probability distribution of choosing the goods, conditional

on observable characteristics. Let k “ 1 denote “bus.” The vector Z1 may include bus

fare and the number of bus lines. The vector W may include regressors that could affect

the desirability of several (or all) goods, such as an individual’s income.

In order to identify~v we require a normalization. Let c P Rk and let λą 0 be a

scalar. Then we have the equality

argmax
yPB

K
ÿ

k“1

ykvkpxkq`Dpyq “ argmax
yPB

K
ÿ

k“1

ykpλvkpxkq` ckq`

˜

λDpyq´
K
ÿ

k“1

ykck

¸

.

(1.10)

Because we do not specify D, identification requires two normalizations, to handle both

λ and c. This is because if ~v is consistent with the model, then λ~v` c is as well. We

provide conditions under which~v is identified up to a multiplicative scale normalization

and additive location normalization.

Identification of~v is established as follows. First, we assume all characteristics are

continuous and that there are no common characteristics, i.e. dw “ 0. Using the analogue

of Slutsky symmetry, we constructively identify~v up to a location/scale normalization.

We then leverage this analysis to identify~v when dw ą 0.

1.4.1 Identification for Good-Specific Regressors

We first provide identification results if each regressor shows up in exactly one

index vk. Specifically, we treat the case dw “ 0 in this section. These results hold as well
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if we condition on a fixed value w of common characteristics. We will use this fact to

identify~v when there are common characteristics.

We provide an informal sketch how we use symmetry for identification. For

simplicity suppose that xk is a scalar for k “ 1, . . . ,K. Under smoothness conditions, for

arbitrary k, `,
BErYk | X “ xs

Bx`
“
BMkpvq
Bv`

ˇ

ˇ

ˇ

ˇ

v“~vpxq

Bv`px`q
Bx`

, (1.11)

from the chain rule. This relies on the fact that x` is excluded from v jp¨q for j ‰ `.

Secondly, x` must be continuous so we can take a derivative. An analogous equation

holds for k and ` interchanged. Assuming all involved derivatives are nonzero, combining

(1.11) with symmetry of cross-partials of M (Proposition 1.1(ii)), we obtain

BErYk | X “ xs
Bx`

O

BErY` | X “ xs
Bxk

“
Bv`px`q
Bx`

O

Bvkpxkq

Bxk
. (1.12)

Thus, we identify the ratio of two specific partial derivatives of~v at points x` and xk.

We now consider the general case where xk is not a scalar and formalize the

arguments leading to (1.12). We only need (1.12) to hold at certain points. We thus make

explicit the points of evaluation of partial derivatives. We maintain Assumption 1.2 to

state the following definition.

Definition 1.1 (Pairs). Say that the points Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

x`“x˚`
and Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
are paired if

they exist and the following conditions hold.

(i) There exists a known value x˚ “ px˚
1

1 , . . . ,x˚
1

K q
1 P supppXq that has `-th component

x˚` and k-th component x˚k .

(ii) BErY`|X“xs
Bxk,q

ˇ

ˇ

ˇ

x“x˚
and BErYk|X“xs

Bx`,p

ˇ

ˇ

ˇ

x“x˚
exist.

(iii) M is continuously differentiable in a neighborhood of~vpx˚q.
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(iv) BMkpvqs
Bv`

ˇ

ˇ

ˇ

v“~vpx˚q
‰ 0.

If in addition Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

x`“x˚`
and Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
are nonzero, we say that they are strictly

paired.

One important fact is that if Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

x`“x˚`
and Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
are paired, then either

`‰ k or the values are equal, x˚` “ x˚k . This is because of part (i). In particular, if K “ 1,

then in order for partial derivatives to be paired, they must be evaluated at the same

arguments.

Part (i) is stated in terms of x˚ being known so that (in principle) we know

precisely where to evaluate derivatives of conditional means. Part (ii) is a support

condition. In order for these derivatives to exist, we need to be able to continuously vary

xk,q and x`,p separately from the other characteristics. Part (iii) ensures symmetry,

BMkpvq
Bv`

ˇ

ˇ

ˇ

ˇ

v“~vpx˚q
“
BM`pvq
Bvk

ˇ

ˇ

ˇ

ˇ

v“~vpx˚q

Part (iv) is a behavioral restriction. It requires that if good ` becomes more

attractive, there need to be “spillovers” to good k. These occur precisely when goods

satisfy a local form of substitutability or complementarity.14

Proposition 1.2. Let Assumptions 1.1 and 1.2 hold and assume x`,p and xk,q are regres-

sors specific to ` and k, respectively. If the points Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

x`“x˚`
and Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
are

14See Allen and Rehbeck (2016a) for more discussion of complementarity and substitutatibility in these
models.
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paired and Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
‰ 0, there is some known x˚ P supppXq such that

BErYk | X “ xs
Bx`,p

ˇ

ˇ

ˇ

ˇ

x“x˚

O

BErY` | X “ xs
Bxk,q

ˇ

ˇ

ˇ

ˇ

x“x˚
“
Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x˚`

O

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x˚k

,

(1.13)

where x˚` and x˚k are components of x˚ specific to goods ` and k, respectively, and

BErY` | X “ xs{Bxk,q
ˇ

ˇ

x“x˚ ‰ 0. In particular, the right hand side of (1.13) is identified.

It is noteworthy that the left hand side of (1.13) involves the characteristics for all

goods x˚, whereas the right hand side only involves the characteristics for alternatives

` and k. This suggests the equality could potentially be used to perform a specification

test.15

This result tells us that a derivative ratio can be identified by comparing two

goods at a time. Identification is established by varying good-specific regressors. We will

leverage this result to identify~v by using the ideas of the following lemma, which is a

consequence of the fundamental theorem of calculus.

Lemma 1.4. Let f : RÑ R and g : RÑ R be differentiable and define

hpa,bq “
B f paq
Ba

O

Bgpbq
Bb

whenever the denominator is nonzero. If hp¨,b˚q exists and is known for a fixed b˚,

Bgpbq
Bb

ˇ

ˇ

ˇ

b“b˚
“ 1, and f p0q “ 0, then f is identified. In particular,

f pa˚q “
ż a˚

0
hpa,b˚qda.

15For stochastic choice, when X is discrete and takes on finitely many values, Allen and Rehbeck
(2016b) characterize the complete testable implications of the model. An interesting question is whether an
alternative characterization of the testable implications can be given when X is continuous and smoothness
conditions hold.
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This lemma can be applied as well to identify g once f is identified. The multi-

variate extension is immediate. In our setting, f paq and gpbq are replaced by v`px`q and

vkpxkq. The function h is replaced by derivative ratios of conditional means.16

The following theorem is our main result. Its assumptions ensure that the points

Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

x`“x˚`
and Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
are paired whenever j‰ ` and these derivatives are nonzero.

Identification of~v follows using Proposition 1.2 and Lemma 1.4.

Theorem 1.1. Let Assumptions 1.1 and 1.2 hold, assume all regressors are good-specific

and assume K ě 2. Assume X has full support,17 ~v is differentiable,~vpsupppXqq “ RK ,

and M is continuously differentiable with nonzero cross-partial derivatives. Then~v “

pv1, . . . ,vKq is identified under the following normalization:

i. (Scale) Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
P t´1,1u for a tuple pk,q,x˚k q.

ii. (Location) v`p0d`q “ 0 for each ` “ 1, . . . ,K, where 0dk denotes a dk-dimensional

vector of zeros.

Remark 1.2. We assume X has full support to identify ~v over its entire domain. We

assume~vpsupppXqq “ RK for simplicity.18

In light of (1.10), the scale and location normalization cannot be weakened

without further restrictions on D.19 To obtain identification with this normalization, it

is necessary that the model involve multiple goods in a non-trivial way. If K “ 1 or

there is no complementarity/substitutability across goods, the best we can hope for is

identification of vk up to a monotonic transformation. See Remark 1.10.

16We contrast this result with what could be obtained if we knew f “ g but only observed h at points
a“ b. In this case, we could only identify f up to a monotonic transformation.

17That is, supppXq “ Rd1 ˆ¨¨ ¨ˆRdK .
18This assumption allows us to rule out boundary issues. We expect it can be relaxed to the assumption

that ~vpsupppXqq is convex with nonempty interior but do not provide details. See Appendix 1.16 for a
result that significantly weakens the assumptions of Theorem 1.1.

19Though other normalizations could ensure identification. An example would be replacing the scale
normalization with |vkpx˚k q| “ 1, provided this value is nonzero and x˚k ‰ 0dk .
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As a corollary of Theorem 1.1, we provide new conditions for identification of

additive random utility models. The theorem readily applies because in ARUM, all

cross-partials of M are nonpositive. Under mild conditions, the cross-partials are strictly

negative.

Corollary 1.1. Let the assumptions of Lemma 1.2 hold and assume K ě 2. Suppose

X has full support, ~v is differentiable, ~vpsupppXqq “ RK , and ε has a density that is

everywhere positive and continuously differentiable. We maintain the assumption that

all regressors are good-specific. Then the conditions of Theorem 1.1 are satisfied. In

particular,~v is nonparametricially identified up to a location and scale normalization.

The assumptions of Theorem 1.1 are overly strong in some contexts. In particular,

it is not innocuous to assume that all cross-partials of M are everywhere nonzero. In

ARUM, having everywhere nonzero cross-partials implies choice probabilities are always

on the interior of the simplex. More generally, having nonzero cross-partials implies

goods can never switch from being complements to being substitutes, since this would

imply a cross-partial derivative is zero somewhere by continuity. In Appendix 1.16, we

show identification of~v under a weaker set of assumptions that can accomodate these

cases. The basic idea is that we can use Proposition 1.2 to identify derivative ratios of

components of~v. We can multiply these derivative ratios to identify new derivative ratios.

If all derivative ratios of~v can be identified, we then identify~v up to location and scale

by the mean value theorem.

Remark 1.3 (Special Regressors). Our results can be combined with insights of the

special regressor (Lewbel (1998)) approach to relax independence conditions in some

of our motivating examples. For concreteness, consider the discrete choice setting with

latent utility for alternative k given by

uk “ gkpXk,1q` ṽkpXk,´1q` εk, (1.14)
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where Xk,1 is a scalar and Xk,´1 collects components of Xk other than Xk,1. We assume

(1.14) holds for each k“ 1, . . . ,K. We also assume each Xk,1 is continuous. The canonical

version of the special regressor approach imposes the additional assumption that gk be

the identity mapping. This implies that Xk,1 enters vk monotonically and that Xk,1 and εk

are in the same units.

We can relax independence between characteristics and unobservables to a con-

ditional independence condition. Specifically, suppose that X1 “ pX1,1, . . . ,XK,1q and

ε“ pε1, . . . ,εKq are independent, conditional on X´1 “ pX1,´1, . . . ,XK,´1q. Then condi-

tioning on X´1 “ x´1, Lemma 1.2 applies to yield

E rY | X1 “ x1,X´1 “ x´1s P argmax
yP∆K´1

K
ÿ

k“1

ykgkpxk,1q`Dpy,x´1q

for some D. Note that x´1 enters D. By fixing x´1 and varying x1, Theorem 1.1 provides

conditions under which gkp¨q is identified for each k.20 Conditions from Lewbel (2000)

can then be used to identify ṽk.

Remark 1.4 (Invertibility). While the Jacobian of M is assumed to exist at certain points,

we do not place invertibility restrictions on it. Thus, we are not using the inverse function

theorem for any of the results in this section.

1.4.2 Identification for Common Characteristics

In this section we provide identification results when there are discrete character-

istics or characteristics that are not good-specific. We require that each good have at least

20To apply our results, a location and scale assumption is needed for gk. It is important to note that a
scale assumption such as g1kp0q P t´1,1u must hold for arbitrary conditioning values x´1. Thus, while
imposing g1kp0q P t´1,1u is weaker than assuming gkpXk,1q “ Xk,1 as in Lewbel (2000), it may not be an
“innocous” normalization.
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one good-specific, continuous regressor. All other characteristics can be discrete.

Recall we assume Xk “ pZ1k,W
1q1, where W consists of characteristics that are

common across alternatives, and Zk consists of regressors that may be specific to alterna-

tive k. To state the following assumption, partition Zk “

´

Zp1q
1

k ,Zp2q
1

k

¯1

. Think of Zp1qk as

a subvector of continuous regressors specific to good k. Let Zpmq “
´

Zpmq
1

1 , . . . ,Zpmq
1

K

¯1

for m“ 1,2.

Assumption 1.3. There exists a known
´

z̃p2q
1

, w̃1
¯1

P supp
´

Zp2q,W
¯

such that

i. ~v
´

supp
´

Zp1q | Zp2q “ z̃p2q,W “ w̃
¯

, z̃p2q, w̃
¯

“~vpsupppZ,W qq.

ii. ~v
´

zp1q, z̃p2q, w̃
¯

is identified for each zp1q P supp
´

Zp1q | Zp2q “ z̃p2q,W “ w̃
¯

.

Part (i) states that conditional on a value
´

z̃p2q
1

, w̃1
¯1

, Zp1q can move sufficiently

to trace out the variation in~v. This is a relevance and support condition. Under Assump-

tion 1.2, (i) is equivalent to assuming that for each pz1,w1q1 P supppZ,W q, there exists

z̃p1q P supppZp1q | Zp2q “ z̃p2q,W “ w̃q such that

ErY | Z “ z,W “ ws “ ErY | Z “ z̃,W “ w̃s,

where z̃ “ pz̃p1q
1

, z̃p2q
1

q1. Sufficient conditions for (ii) are given in Theorem 1.1. Recall

that the results of the theorem go through conditional on Zp2q “ z̃p2q,W “ w̃.

For the following theorem, define

DBpyq “

$

’

’

&

’

’

%

Dpyq if y P B

´8 otherwise
.

Theorem 1.2. Let Assumptions 1.1, 1.2, and 1.3 hold. Assume D is concave and B is

convex. If the derivative of DB exists at ErY | Z “ z,W “ ws and pz,wq P supppZ,W q,
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then~vpz,wq is identified.

The assumptions on DB are used to establish that

ErY | Z “ z,W “ ws “ ErY | Z “ z̃,W “ w̃s ùñ ~vpz,wq “~vpz̃, w̃q. (1.15)

From this implication we identify ~vpz,wq by “matching” it with a value ~vpz̃, w̃q that is

already identified. With the maintained assumptions that D is concave and B is convex,

differentiability is actually necessary for this implication without further restrictions on

the parameter space for~v. This is formalized in Proposition 1.5.

Remark 1.5. Concavity of D is innocuous on its own (see Theorem 1.8), but places

restrictions when combined with differentiability. Differentiability of DB at ErY | Z “

z,W “ws implies this value cannot be on the boundary of B. In particular, differentiability

requires that B have a non-empty interior when viewed as a subset of RK . This rules out

the probability simplex. However, the theorem can be extended to handle the probability

simplex after a change of variables. This can be done with the normalization v1p¨q “ 0,

which is sensible if the first good is an outside option such as “buy nothing.” With

this normalization, the problem can be reparametrized to eliminate the first good. See

Appendix 1.18.1 for more details.

1.5 Identification of D and Welfare Changes

We now study identification of D, assuming ~v is identified from our previous

results. When these are both identified, many counterfactual questions can be answered.

Secondly, D provides information on the complementarity/substitutability in the model,

and so is of interest in its own right.
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To study welfare, define the social surplus function (McFadden (1978))

V pxq “ sup
yPB

#

K
ÿ

k“1

ykvkpxkq`Dpyq

+

.

This function has been widely use to quantify welfare changes in a discrete choice

environment (Small and Rosen (1981)).21 In ARUM, V pxq “ ErmaxktvkpXkq`εku | X “

xs. Allen and Rehbeck (2016a) show that for a class of latent utility models (which

includes our examples), V may interpreted as the average indirect utility function for

optimizing agents, once latent variables have been integrated out. Alternative objects

may be more natural measures of welfare. In discrete choice, if D arises purely due to

costly optimization for an individual, then differences in
řK

k“1ErYk | X “ xsvkpxkq for

different choices of x may be welfare relevant. We will refer to V as a welfare measure,

with the caveat that its interpretation depends on the context.

The units of V are “utils,” but utils can be converted to characteristics because

~v is assumed known. For example, if price enters as a characteristic (as is common in

discrete choice models that assume away income effects), then differences in V can be

converted to dollars.

The functions V and D are linked by the identity

V pxq “
K
ÿ

k“1

ErYk | X “ xsvkpxkq`DpErY | X “ xsq, (1.16)

which follows from the fact that ErY | X “ xs is a maximizer. We will state results in

terms of differences in V and D, depending on which is more convenient.

In order to characterize what can be learned about D, we will use the following

21See also Bhattacharya (2015). The results of Bhattacharya (2015) do not apply to the general setting
we consider.
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inequality, which follows from writing the necessary conditions for optimality:

DpErY | X “ x̃sq´DpErY | X “ xsq ď pErY | X “ xs´ErY | X “ x̃sq1vpxq. (1.17)

Remark 1.6 (Normalizations). Nonparametric identification of~v requires a location and

scale normalization, as shown in (1.10). The results in this section are specific to a

particular normalization. The scale normalization affects the bounds on both D and

V , and the effect of the scale is easy to see. A less transparent fact is that the location

normalization only affects the bounds on D. For example if we normalize ~vpxq “ 0K ,

where 0K is vector of zeros of length K, then from (1.17) we have

DpErY | X “ x̃sq´DpErY | X “ xsq ď 0 (1.18)

for any x̃ P supppXq. This tells us that the highest value of D is obtained at the point

where we normalize~vp¨q “ 0K . Fortunately, the particular location normalization will not

affect identification of differences in V . This is shown in the integral representation in

Theorem 1.4.

1.5.1 Partial Identification of D and Welfare Changes

We first provide bounds on the differences of certain values of D. Recall these

bounds immediately give bounds on differences in V by (1.16). The bounds are sharp if

we only know that D PD , i.e. D is finite at some y P B and never attains ´8.

Let x0, . . . ,xS be a sequence of points in supppXq. By summing up (1.17), we
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obtain

DpErY | X “ xS
s´DpErY | X “ x0

sq ď

S´1
ÿ

s“0

pErY | X “ xs
s´ErY | X “ xs`1

sq
1~vpxs

q.
(1.19)

We need a bit more notation to present a strengthening of this bound. For x, x̃ P supppXq,

let Cpx, x̃q be the set of finite sequences in supppXq that begin at x and end at x̃. Define

∆Dpx, x̃q “ inf
S

inf
txsuS

s“0ĎCpx,x̃q

#

S´1
ÿ

s“0

pErY | X “ xs
s´ErY | X “ xs`1

sq
1~vpxs

q

+

∆Dpx, x̃q “ sup
S

sup
txsuS

s“0ĎCpx,x̃q

#

S´1
ÿ

s“0

pErY | X “ xs
s´ErY | X “ xs`1

sq
1~vpxs`1

q

+

.

By (1.19), we obtain that for arbitrary x, x̃ P supppXq,

∆Dpx, x̃q ď DpErY | X “ x̃sq´DpErY | X “ xsq ď ∆Dpx, x̃q. (1.20)

We formalize below that these bounds are sharp if D is only restricted to satisfy D PD.

Note we do not assume a unique maximizer. This is for technical reasons.22

Theorem 1.3. Suppose Assumption 1.1 holds,~v is known, and x, x̃ P supppXq. Then there

exists a function D̃ PD such that

D̃pErY | X “ x̃sq´ D̃pErY | X “ xsq “ ∆Dpx, x̃q

and

@x P supppXq,ErY | X “ xs P argmax
yPB

K
ÿ

k“1

ykvkpxkq` D̃pyq.

22The bounds still hold with the additional restriction of a unique maximizer. Studying sharpness is
technically challenging because one must work with strict inequalities.



33

An analogous statement holds for ∆Dpx, x̃q.

To bound differences in V , we can use (1.16) to obtain,

V px̃q´V pxq “

˜

K
ÿ

k“1

ErYk | X “ x̃svkpx̃kq´

K
ÿ

k“1

ErYk | X “ xsvkpxkq

¸

`pDpErY | X “ x̃sq´DpErY | X “ xsqq .

Theorem 1.3 shows differences in D are bounded by D and D, which then bound differ-

ences in V .

1.5.2 Point Identification of D and Welfare Changes

In this section we establish point identification of differences in D and V . We first

define the~v-subdifferential of V at x:

BvV pxq “ tu P Rk
| @x̃,V px̃q´V pxq ě u ¨ p~vpx̃q´~vpxqqu.

It can be shown that

ErY | X “ xs P BvV pxq. (1.21)

If BvV pxq is a singleton, then

ErY | X “ xs “Mp~vpxqq,

as used previously. The following result identifies differences in V and D by “integrating”

(1.21).

Theorem 1.4. Let Assumption 1.1 hold. Assume~v is known, V is everywhere finite, and let

x0,x1 P supppXq. Suppose there is a function xptq such that~vpxptqq “ t~vpx1q`p1´tq~vpx0q
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and xptq P supppXq for t P r0,1s. Then

V px1
q´V px0

q

and

DpErY | X “ x1
sq´DpErY | X “ x0

sq

are identified. In particular,

V px1
q´V px0

q “

ż 1

0
ErY | X “ xptqs ¨ p~vpx1

q´~vpx0
qqdt.

This result shows that conditional means are sufficient for identification of average

welfare. (Recall V may be interpreted as the average indirect utility function in many

examples.) The integral representation of V is analogous to changes in consumer surplus

in the standard consumer problem. It is also closely related to the revenue equivalence

theorem (Riley and Samuelson (1981), Myerson (1981)).

Corollary 1.2. Let Assumption 1.1 hold. Suppose~v is identified and the set~vpsupppXqq

is convex. Then for every x0,x1 P supppXq,

V px1
q´V px0

q

and

DpErY | X “ x1
sq´DpErY | X “ x0

sq

are identified.

Remark 1.7. These results only identify differences in D for points in tErY | X “

xsuxPsupppXq. The set tErY | X “ xsuxPsupppXq need not be convex even under the as-

sumptions of Corollary 1.2.
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1.5.3 Direct Identification of Welfare Changes

The previous results in this section are of a two-step nature. They rely on the

fact that~v has first been identified, and then use this to identify or bound differences in

D and welfare changes. In this section we provide an explicit one-step mapping from

conditional means to welfare. For brevity, we provide an informal outline how to leverage

our previous results.

For notational simplicitly we assume each good has one characteristic, i.e. dk “ 1.

The following lemma follows from the integral representation in Theorem 1.4.

Proposition 1.3. Assume dk “ 1 for each k. Let Assumptions 1.1 and 1.2 hold and

assume V and~v are differentiable. Let x be in the interior of supppXq. Then for each `,

BV pxq
Bx`

“ ErY` | X “ xs
Bv`px`q
Bx`

. (1.22)

Proposition 1.2 provides conditions under which

BErYk | X “ xs
Bx`

O

BErY` | X “ xs
Bxk

“
Bv`px`q
Bx`

O

Bvkpxkq

Bxk
.

Combining this with (1.22) we have for each ` that,

BV pxq
Bx`

“ ErY` | X “ xs
BErYk|X“xs

Bx`
BErY`|X“xs

Bxk

Bvkpxkq

Bxk
.

By integrating over x` (other characteristics fixed), this equality identifies differences in

V up to the scale term Bvkpxkq
Bxk

. This scale term has the interpretation as a conversion rate

between utils and characteristic xk.
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1.6 Counterfactual Bounds

While complete knowledge of~v and D can answer many counterfactual questions,

it may be unreasonable to assume these are both identified. We now use the structure of

the model to provide counterfactual or out-of-sample bounds without the assumption D

is identified. We are formally interested in the set

argmax
yPB

K
ÿ

k“1

ykvkpx0
kq`Dpyq, (1.23)

where x0 R supppXq.23 We provide bounds on a generic element of the set (1.23), denoted

M̃px0q. We do not assume (1.23) is a singleton.

We formalize the sharp bounds on M̃px0q, assuming~v is known at out-of-sample

points. In practice, such knowledge typically requires extrapolation such as assuming

that~v belongs to a parametric class of functions, and must confront estimation error. The

results in this section assume that (somehow)~v is known and defined everywhere, and

shows how to provide sharp bounds on M̃px0q. Importantly, we do not place assumptions

on D other than D P D. This allows us to highlight that the shape restrictions of the

model are capable of delivering non-trivial out-of-sample restrictions.

For a simple version of the bounds on M̃px0q, suppose K “ 1. Bounds on M̃px0q

are given by

sup
x`PsupppXq:~vpx`qă~vpx0q

ErY | X “ x`s ď M̃px0
q

ď inf
xuPsupppXq:~vpxuqą~vpx0q

ErY | X “ xu
s.

(1.24)

The following proposition characterizes the sharp bounds in the general setting (K ě 1),

23We implicitly assume the argmax set is non-empty.



37

provided the only thing we know about D is D PD .

Theorem 1.5 (Sharp Out-of-Sample Bounds). Let Assumption 1.1 hold, assume ~v is

known, and assume D PD . Let x0 R supppXq and assume

M̃px0
q P argmax

yPB

K
ÿ

k“1

ykvkpx0
kq`Dpyq.

Then the most that can be said about M̃px0q is the following: M̃px0q P B and for every

integer S, and sequence x1 . . . ,xS´1 of points in supppXq,

M̃px0
q
1
p~vpx0

q´~vpxS´1
qq ě ErY | X “ x1

s
1~vpx0

q´ErY | X “ xS´1
s~vpxS´1

q

´

S´2
ÿ

s“1

pErY | X “ xs
s´ErY | X “ xs`1

sq
1~vpxs

q.
(1.25)

When supppXq is finite, the counterfactual restrictions on M̃px0q are given by a

finite set of linear inequalities. This is because each cycle constitutes a linear restriction

and there are finitely many such cycles. The number of cycles grows quickly, however,

and so directly operationalizing these inequalities can be computationally expensive.

Remark 1.8. While the focus of our analysis is on identification, this theorem has some

practical implications. Suppose we have an estimate of~v over its entire domain. Suppose

we also have estimates of ErY | X “ xs for values of x in a user-chosen set. To apply

Theorem 1.5, the estimates of~v and ErY | X “ xs must be consistent with the restrictions

of the model. Otherwise, restrictions like (1.25) would rule out any possible conjectured

value of M̃px0q. This highlights a potential advantage of using shape-restricted estimation

methods: if estimates of~v and ErY | X “ xs are constrained to satisfy the restrictions of

the model, then Theorem 1.5 can directly be used to provide counterfactual bounds.
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1.7 Application

Nonparametric estimation enforcing all of the constraints of the model is compu-

tationally challenging and is left for future work. The fundamental problem is enforcing

the constraint that the Jacobian of M is everywhere positive semidefinite, which is a con-

tinuum of constraints. We are pursuing a computationally feasible estimation approach

in ongoing work.

One convenient feature for discrete choice is that a semiparametric model can be

used for maximum-likelihood-based inference. Specifically, set

ErY | X “ xs “ Pp~vpxq,λq,

where Y is a vector of indicators, and P now replaces the notation M to highlight that

conditional means are conditional probabilities. The index functions~v are nonparametric,

and λ is a finite-dimensional parameter that determines the mapping from the index to

the conditional mean. By an appropriate choice of P, enforcing all of the constraints

is straightforward. We will illustrate this with the paired combinatorial model (PCL)

(Chu (1981), Chu (1989), Koppelman and Wen (2000)). We choose this model because it

allows us to provide a parametric test of ARUM (Section 1.3.1) against the strictly more

general perturbed stochastic choice model (Section 1.3.1). Violations of ARUM occur

precisely when stochastic complementarity can occur.

1.7.1 Paired Combinatorial Logit

First we describe PCL. This model generalizes logit and allows pairs of alterna-

tives to be in the same nest, with a parameter controlling substitution patterns within the
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nest. This model consists of an individual first choosing a pair according to a logit-like

formula, and then second choosing an alternative within this pair according to another

logit-like formula. Specifically, the model can be written

Pkpv,λq “
ÿ

j‰k

Pk| jkpv,λqPjkpv,λq,

where

Pk| jkpv,λq “
evk{λ jk

ev j{λ jk ` evk{λ jk

denotes the probability of choosing k conditional on choosing the nest jk, and

Pjkpv,λq “
pev j{λ jk ` evk{λ jkqλ jk

řK´1
`“1

řK
m“``1pev`{λ`m` ev`{λ`mqλ`m

denotes the probability of choosing nest jk. Combining these, choice probabilities are

given by,

Pkpv,λq “

ř

j‰k evk{λ jkpev j{λ jk ` evk{λ jkqλ jk´1

řK´1
`“1

řK
m“``1pev`{λ`m` ev`{λ`mqλ`m

. (1.26)

We see that this model reduces to logit when each of the nesting parameters λ jk equals 1.

The model is perhaps best understood by the substitution patterns it allows.

Higher values of λ jk denote less substitutability between j and k. If λ jk ą 1 and there are

at least 3 alternatives, this model allows complementarity

BPkpv,λq
Bv j

ą 0

for certain values of v. This is ruled out in ARUM, but is allowed in the perturbed utility

model. The following result shows that this model is a strict generalization of ARUM

if the parameter space is enlarged to allow λ jk ą 1. We show a similar result for nested

logit in Allen and Rehbeck (2016a).
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Proposition 1.4. Let~vpsupppXqq “ Rk. Then PCL is consistent with ARUM if and only

if 0ă λ jk ď 1 for each pair jk. PCL is consistent with PUM if 0ă λ jk.

The proposition is proven by showing that for fixed λ, Ppv,λq is the gradient of a

convex function

The threshold λ jk ď 1 allows us to provide a simple parametric test of ARUM

versus PUM. Formally, we can test

H0 : 0ă λ jk ď 1 for each pair Ha : λ jk ą 1 for some pair.

1.7.2 Data Description

To test H0 we use data from Louviere et al. (2013) on pizza choice. This is a

stated-preference, panel dataset collected from an opt-in web survey. Each individual is

randomized to a design, and faces either 16 or 32 decisions in that design.

An individual faces 5 alternatives for each decision. The alternatives are ordered

left to right. Each alternatives specifies the values of the different characteristics (price,

brand, number of toppings, etc.). We treat alternative k (or good k in our general setup)

as the alternative in the k-th position.

In the survey, different individuals are shown different characteristics. For ex-

ample, some individuals never see the delivery time. We include the characteristics that

are available for all individuals: price ($12-$18 Australian dollars), number of toppings

(up to 4), dummies for brand, whether the pizza comes with a free drink, and whether it

comes with free dessert. These characteristics will shift the values of vkpxkq, which we

will use to identify the nesting parameters λ.
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1.7.3 Identification and Normalizations

Recall our nonparametric identification results require several ingredients. (i)

First, each good needs a continuous regressor affecting its desirability. Here, all regres-

sors we use are good-specific. (ii) Second, there needs to be sufficient complementar-

ity/substitutability among the alternatives. Except in pathological cases, discrete choice

models imply a rich amount of complementarity/substitution. We may thus invoke results

in Appendix 1.16 for identification. We reiterate that the conditions in that appendix,

while difficult to state, are weak. (iii) Finally, we need a location and scale normalization.

The location and scale normalization of (iii) can be weakened for the PCL relative

to the normalizations used for our nonparametric results. This is because of our particular

specificaton for Ppv,λq. We need to normalize the intercept of one alternative to be 0,

and need some restriction on the nesting parameters λ jk (Koppelman and Wen (2000)).

We impose that these are 1 for all pairs except adjacent alternatives. This gives us the

nesting parameters λ12,λ23,λ34,λ45,λ51. Note we treat the first and last alternative as

adjacent.

1.7.4 Test

We wish to test

H0 : 0ă λ jk ď 1 for each adjacent pair Ha : λ jk ą 1 for some pair.

This is a parametric specification test of ARUM against PUM. For this test,~vpxq is an

unknown nuisance function. To get an intuition for how to construct a feasible test of H0,
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suppose that we have
?

n
´

λ̂´λ

¯

d
Ñ Np0,V q.

Let V̂ denote a consistent estimate for V and let σ̂ jk denote the diagonal component of

V̂ associated with λ̂ jk. Using the normal approximation, we can construct a simple but

conservative test by rejecting H0 when

max
jk

?
n

λ̂ jk´1
σ̂ jk

ěΦ
´1
p1´α{5q, (1.27)

where Φ denotes the standard normal cumulative distribution function. The 5

comes from the fact that H0 involves 5 inequality restrictions for the adjacent pairs

λ12,λ23,λ34,λ45,λ51.

Approximate size control of this test follows from the following, which holds

under H0 and the normal approximation to λ̂,

P

˜

max
jk

?
n

λ̂ jk´1
σ̂ jk

ěΦ
´1
p1´α{5q

¸

ď P

˜

max
jk

?
n

λ̂ jk´λ jk

σ̂ jk
ěΦ

´1
p1´α{5q

¸

ď 5max
jk

P

˜

?
n

λ̂ jk´λ jk

σ̂ jk
ěΦ

´1
p1´α{5q

¸

« 5pα{5q “ α.

The naive test of (1.27) is potentially conservative whenever these inequalities are

strict. To address potential conservativeness of the test, an alternative test of H0 can

be constructed by drawing on ideas from the literature on moment inequalities. See

for example Romano, Shaikh, and Wolf (2014). We omit the details because for our

application the conservative test given by (1.27) handily rejects H0.
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1.7.5 Results

Table 1.1: Logit vs. Paired Combinatorial Logit

Multinomial Logit PCL

PRICE -0.119 -0.140
(0.0137) (0.0163)

NUMTOP 0.347 0.414
(0.0320) (0.0417)

FREEDRK 0.348 0.442
(0.0391) (0.0543)

FREEDSRT 0.206 0.243
(0.0360) (0.0447)

PIZZAHUT 0.278 0.323
(0.0866) (0.107)

DOMINOS 0.284 0.321
(0.0921) (0.109)

EAGLEBOYS 0.00747 0.00756
(0.0764) (0.0917)

λ12 1 2.47
(0.300)

λ23 1 1.20
(0.370)

λ34 1 1.85
(0.283)

λ45 1 .545
(0.362)

λ51 1 2.047
(0.260)

Observations 4,928 4,928

Notes: Robust standard errors in parentheses,
clustered at the individual level. Omitted brand
is Pizza Haven.

We use (1.26) to estimate the model with maximum likelihood, treating obser-

vations as independent. To facilitate comparison with existing work, we specify linear

index functions vkpxkq “ β1xk with the same β for each alternative.24 The vector xk is a

24Given that we take a semiparametric approach, one could instead take vkpxkq to be a linear combination
of a tensor product of polynomials of the characteristics.
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vector of characteristics for good k. It includes a constant, though the intercept on the

kth good is normalized to 0. Recall that our primary interest is on testing H0, which only

involves λ.

Table 1.1 reports the coefficient estimates obtained from PCL. We include multi-

nomial logit estimates for comparability. The β coefficients are similar for the two

models, especially when they are rescaled by dividing by βPRICE to compute a measure

of willingness to pay. We are most interested in the estimates of λ jk for PCL. Recall

our null hypothesis is that λ jk ď 1 for each pair. We can reject this if a single t statistic

is high enough. Calculating the statistic t12 “ p2.47´ 1q{.3 “ 4.9, we reject the null

hypothesis at conventional significance levels. (For α “ .05, the critical value from

(1.27) is Φ´1p1´ .05{5q “ 2.33.) All nesting parameters except λ̂45 are above 1, overall

suggesting there is “not enough substitution” in the data to be consistent with ARUM.

The PCL is a member of the large family of generalized nested logit models

(Wen and Koppelman (2001)). In Appendix 1.19, we show that this entire family of

models is sometimes consistent with ARUM, but is always consistent with the perturbed

utility model. This provides a large class of likelihood models that can readily be used.

Indeed, our reading of the literature is that these models are often estimated without

imposing parameter restrictions necessary for ARUM. The results of this paper – together

with Allen and Rehbeck (2016b) and Allen and Rehbeck (2016a) – provide a theoretical

foundation for use of these and other models when ARUM may not hold.25

25See also Fosgerau and Palma (2015) and Shi, Shum, and Song (2016) for parametric estimation of
perturbed utility models. These papers do not use the full structure of ARUM.
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1.8 Conclusion

This paper shows that perturbed utility models are identified under mild conditions

using conditional means. We show this by leveraging the fact that agents in the model

are optimizers. Optimization implies equality restrictions that allow us to obtain cardinal

identification of the model.

Using our results, we show in several examples that some existing work using

special regressors applies to more general setups. We do this by either showing ~v is

nonparametricially identified without actually needing a special regressor structure,26 or

that an additively separable structure is sufficient for identification.27 Relaxing the latter

assumption means that the special regressor for good k does not need to enter the index

vk monotonically.

Our identification results apply to a model that strictly generalizes additive ran-

dom utility models (ARUM) and allows a form of stochastic complementarity. As an

illustrative example, we show that the paired combinatorial logit model can be used for

a parametric test of ARUM against the perturbed utility model. We test this using data

from Louviere et al. (2013) and find evidence against ARUM.

A detailed study of estimation in the general case is left for future work. There

are both computational and econometric challenges to fully nonparametric estimation.

Recall that under mild assumptions we have

ErY | X “ xs “Mp~vpxqq,

where M has a Jacobian that is symmetric and positive semi-definite. We essentially

26As in ARUM with errors independent of characteristics.
27As in ARUM with conditional independence conditions as in Lewbel (2000).
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only use symmetry for our identification results,28 but to estimate conditional means

that are consistent with the model, it is necessary to impose full semi-definiteness. For

independent and identically distributed data tpY i,X iqun
i“1, an intuitive approach is to

construct a constrained least-squares estimate by solving the problem,

min
M̂PMn,~̂vPVn

n
ÿ

i“1

pY i
´ M̂p~̂vpX i

qqq
1
pY i
´ M̂p~̂vpX i

qqq

s.t. ∇M̂puqľ 0,@u P RK,

where Mn and Vn are sets that grow to be dense in the parameter spaces for M and ~v,

respectively. The Jacobian of M is denoted ∇M and ľ denotes the positive semi-definite

order. The primary computational challenge is that the semi-definiteness constraint is

actually a continuum of constraints. In ongoing work, we are pursuing a computationally

feasible approach to enforcing this constraint. The econometric challenge to studying a

constrained estimator is to develop a theory designed to reflect the finite sample impact

of imposing a constraint.

28We also use that the diagonals of the Jacobian of M are weakly positive.
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1.10 Preliminaries in Convex Analysis

Definition 1.2 (Subdifferential). Let f : RK Ñ RYt`8u be a convex function. The

subdifferential of f at z is the set

B f pzq “ tw P RK : @z̃ P RK, f pz̃q´ f pzq ě w1pz̃´ zqu.

An element of B f pzq is called a subgradient at z. B f is a multi-valued mapping

called the subdifferential of f .

Definition 1.3 (Convex Conjugate). Let f be a function from RK to r´8,8s. Then the

convex conjugate of f is denoted

f ˚pwq “ sup
zPRK

tz1w´ f pzqu.

The function f ˚ is convex (regardless of whether f is convex) as discussed in

Rockafellar (1970), p. 104.

Lemma 1.5 (Rockafellar (1970), Theorem 23.5). Let f : RK Ñ RYt`8u be a convex

function such that f pzq ă 8 for some z. Then the following are equivalent,

(i) w˚ P B f pz˚q.

(ii) z1w˚´ f pzq attains its supremum in z at z“ z˚.
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If in addition f is lower semi-continuous, then the following conditions are also equivalent

to the ones above,

(i) z˚ P B f ˚pw˚q.

(ii) w1z˚´ f ˚pwq attains its supremum in w at w“ w˚.

If we rewrite the first part of the lemma as 0 P B f pz˚q´w˚, we may recognize it

as a sort of generalized first order condition.

Note that we do not assume f is convex in the following result.

Lemma 1.6. Let f : RK Ñ RYt`8u be a function such that f pzq ă 8 for some z. If

z1w˚´ f pzq attains its supremum in z at z“ z˚,

then

z˚ P B f ˚pw˚q.

Proof. By assumption the supremum is attained, so

f ˚pw˚q “ z˚
1

w˚´ f pz˚q.

Because f ˚ is defined as a supremum, for arbitrary w̃,

f ˚pw̃q ě z˚
1

w̃´ f pz˚q.

Thus,

f ˚pw̃q´ f ˚pw˚q ě z˚
1

pw̃´w˚q,

so z˚ P B f ˚pw˚q.
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Lemma 1.7 (Rockafellar (1970), Theorem 25.1). Let f : RK ÑRYt`8u be convex and

assume f pz˚q is finite. Then f is differentiable at z˚ if and only if B f pz˚q is a singleton.

1.11 Appendix: Proofs for Section 1.3

We make use of the following result, which is proven in Allen and Rehbeck

(2016a). The lemmas for our examples are immediate corollaries.

Theorem 1.6 (Allen and Rehbeck (2016a)). Let

Y P argmax
yPB

K
ÿ

k“1

ykvkpXkq` D̃py,εq,

where ε is possibly infinite-dimensional. Suppose ε is independent of X, Y is measurable,

and ErD̃pY,εq | X “ xs is finite for each x P supppXq.29 Then

ErY | X “ xs P argmax
yPconvpBq

K
ÿ

k“1

ykvkpxkq`Dpyq

for Dpyq “ supỸPY :ErỸ pεqs“yE
“

D̃pỸ pεq,εq
‰

, 30 where Y is the set of measurable functions

from the support of ε to B, and convpBq denotes the convex hull of B.31

This result may be useful for identification of some other applications so we

discuss its requirements. The key requirement is that unobservables enter the latent utility

29Allen and Rehbeck (2016a) provide sufficient conditions for existence of a measurable selector using
results from Stinchcombe and White (1992). These results are mild and allow D̃ to take on value8, which
allows “random budgets” that are proper subsets of B.

30D is taken to be ´8 if there is no Y P Y such that ErY pεqs “ y. D is always finite when evaluated at
ErY | X “ xs.

31This is a trivial extension of results in Allen and Rehbeck (2016a). There, we assume B is convex to
ensure that a measurable selector exists. Here, we take measurability of Y as a high-level condition. The
theorem does not restrict D̃ to be finite, so the budget B can be absorbed into D̃; thus, setting B“ RK is
without loss of generality. We explicitly maintain the budget for ease of understanding, noting that when
we do this we have to convexify B in the statement of the theorem.
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function separably from the characteristics. This rules out random coefficients models.

Moreover, ε must be independent of characteristics. Because D̃ can be ´8, the theorem

allows random budget sets. Specifically,

Bpεq “ ty P B | D̃py,εq ą ´8u

can depend on ε. These budget sets just need to be independent of characteristics.

Our results establish identification of~v and the aggregated function D. Our results

do not cover identification of D̃ or the distribution of ε. It may be possible to use the

characterization Dpyq “ supỸPY :ErỸ pεqs“yE
“

D̃pỸ pεq,εq
‰

to identify these latent objects,

though we do not pursue this.

Proof of Proposition 1.1. Let

DBpyq “

$

’

’

&

’

’

%

Dpyq if y P B

´8 otherwise
.

By Lemma 1.6, ErY | X “ xs P Bp´DBq
˚p~vpxqq, where p´DBq

˚ is the convex conjugate of

´DB. By Assumption 1.2 and Lemma 1.7, ErY | X “ xs P Bp´DBq
˚p~vpxqq, is a singleton.

Thus when Jpvq exists, it is the Hessian of a twice continuously differentiable convex

function, and so the result follows from Rockafellar (1970), Theorem 4.5.
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1.12 Appendix: Proofs for Section 1.4

1.12.1 Proofs for Section 1.4.1

Proof of Proposition 1.2. The proof is a direct extension of the arguments in the text.

Under the assumptions of Definition 1.1, there is some x P supppXq such that

BErYk | X “ xs
Bx`,p

ˇ

ˇ

ˇ

ˇ

x“x˚
“
BMkpvq
Bv`

ˇ

ˇ

ˇ

ˇ

v“~vpx˚q

Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x˚`
BErY` | X “ xs

Bxk,q

ˇ

ˇ

ˇ

ˇ

x“x˚
“
BM`pvq
Bvk

ˇ

ˇ

ˇ

ˇ

v“~vpx˚q

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x˚k

.

(1.28)

Recall these equalities hold at the specified points. Under condition (iv) of Definition 1.1,

we may take the ratio of the equations in (1.28) to yield the result.

Proof of Theorem 1.1. This is implied by Corollary 1.3 so we provide only a brief dis-

cussion.

Using Proposition 1.2, the conditions of the theorem provide constructive identifi-

cation of
Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x̃`

O

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x̃k

(1.29)

whenever `‰ k. Thus we only need to deal with `“ k. Because~vpsupppXqq “ RK , we

can always find a “path” between equations as in the discussion leading to (1.33). Thus,

(1.29) is identified without restrictions.

Corollary 1.3 shows the sign of Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
is identified. Using the scale and

location normalization,~v is identified by the mean value theorem. Constructive identifica-

tion can also be established by the fundamental theorem of calculus (recall Lemma 1.4).

We can relax the assumption~vpsupppXqq “ RK . If we assume~vpsupppXqq is con-
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vex with nonempty interior,32 then the preceeding arguments identify~v at characteristic

values in the interior of~vpsupppXqq. The basic idea is that derivative ratios such as (1.29)

can be identified for a sufficiently rich set of inputs. Since ~vpsupppXqq is convex, we

can use the mean value theorem to identify ~vpxq if it is in the interior of ~vpsupppXqq.

Identification of arbitrary~vpxq then follows by continuity.

Proof of Corollary 1.1. Because ε has a density that is continuously differentiable, M

is continuously differentiable. Because ε has a positive density, M has strictly negative

cross-partial derivatives. All of the other conditions of Theorem 1.1 hold.

1.12.2 Proofs for Section 1.4.2

Proof of Theorem 1.2. By Assumption 1.3(i) there exists pz̃, w̃q P supppZ,W q such that

ErY | Z “ z,W “ ws “ ErY | Z “ z̃,W “ w̃s.

Since DB is differentiable at ErY | Z “ z,W “ ws, Assumption 1.2 and Proposition 1.5

establish that

ErY | Z “ z,W “ ws “ ErY | Z “ z̃,W “ w̃s ðñ ~vpz,wq “~vpz̃, w̃q.

Assumption 1.3(ii) completes the proof since~vpz̃, w̃q is identified.

32Our assumptions imply that ~vpsupppXqq is a Cartesian product of connected sets, each in R. This
implies that~vpsupppXqq is convex.
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1.13 Appendix: Proofs for Section 1.5

Proof of Theorem 1.3. Kos and Messner (2013) prove a result related to this in their

study of incentive compatible transfers in a mechanism design setting.

Fix x˚ P supppXq. Define D̃ over y P tErY | X “ xuxPsupppXq by

D̃pyq “ inftpy´ErY | X “ xS
sq
1~vpxS

q` ¨ ¨ ¨` pErY | X “ x1
s´ErY | X “ x˚sq1~vpx˚qu,

where the infimum is taken over finite sequences such that xs P supppXq for each s. For

y R tErY | X “ xsuxPsupppXq, set D̃pyq “ ´8. This function satisfies

D̃pErY | X “ x˚sq ď 0

because we can take a sequence with all terms equal to ErY | X “ x˚s. Theorem 1.8(iv)

establishes the opposite inequality, so we have

D̃pErY | X “ x˚sq “ 0.

By the construction of D, we have

D̃pErY | X “ x̃sq “ Dpx˚, x̃q

for every x̃ P supppXq (recall x˚ is fixed). Thus,

D̃pErY | X “ x̃sq´ D̃pErY | X “ x˚sq “ ∆Dpx˚, x̃q



54

The proof of Rockafellar (1970), Theorem 24.8 establishes that D̃ satisfies

@x P supppXq,ErY | X “ xs P argmax
yPB

K
ÿ

k“1

ykvkpxkq` D̃pyq.

The analogous statement for ∆Dpx˚, x̃q follows from similar arguments.

Proof of Theorem 1.4. Step 1: Change of variables.

Define

Ṽ pvq “ sup
yPB

#

K
ÿ

k“1

ykvk`Dpyq

+

,

where we recognize Ṽ pvq “ V pxq when v “~vpxq. To state a version of the envelope

theorem with this change of variables, define

BṼ pvq “
!

u P Rk
| @ṽ,Ṽ pṽq´Ṽ pvq ě u ¨ pṽ´ vq

)

.

For each x P supppXq such that~vpxq “ v, we have

ErY | X “ xs P BṼ pvq. (1.30)

This follows from Lemma 1.5 and the fact that ErY | X “ xs is a maximizer.

Step 2: Convert to single variable problem and invoke Rockafellar (1970), Corol-

lary 24.2.1.

For t P r0,1s, let

hptq “ Ṽ
`

t~vpx1
q`p1´ tq~vpx0

q
˘

.

The function Ṽ is convex and sptq “ t~vpx1q` p1´ tq~vpx0q is affine so h is convex. The
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function h is thus directionally differentiable. Let its left derivative be denoted h1´ptq and

let h1`ptq denote the right derivative of h. The directional derivative of Ṽ at y in direction

z is denoted Ṽ 1py;zq; see Rockafellar (1970) for the formal definition. From (1.30) we

have,

ErY | X “ xptqs P BṼ pt~vpx1
q`p1´ tq~vpx0

qq.

Combining this with Rockafellar (1970), Theorem 23.2 we have

h1´ptq “ Ṽ 1pt~vpx1
q`p1´ tq~vpx0

q;´p~vpx1
q´~vpx0

qqq ď ErY | X “ xptqs ¨ p~vpx1
q´~vpx0

qq

h1`ptq “ Ṽ 1pt~vpx1
q`p1´ tq~vpx0

q;~vpx1
q´~vpx0

qq ě ErY | X “ xptqs ¨ p~vpx1
q´~vpx0

qq.

From Rockafellar (1970), Corollary 24.2.1 we obtain

Ṽ p~vpx1
qq´Ṽ p~vpx0

qq “

ż 1

0
ErY | X “ xptqs ¨ p~vpx1

q´~vpx0
qqdt.33

Since~v is known,

V px1
q´V px0

q “ Ṽ p~vpx1
qq´Ṽ p~vpx0

qq

is identified.

1.14 Appendix: Proofs for Section 1.6

Proof of Theorem 1.5. Obviously, M̃px0q P B by use of the a priori knowledge of the

budget.

33Rockafellar (1970), Corollary 24.2.1 establishes that the Riemann integrals of h1´ and h1` from 0 to 1
exist and are equivalent. Riemann integrability of ErY | X “ xptqs ¨ p~vpx1q´~vpx0qq from 0 to 1 then follows
from a sandwiching argument.
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To prove the rest, let M̃px0q be a conjectured value and let tErY | X “

xsuxPsupppXqY M̃px0q be the original values of the conditional mean augmented with

this conjectured value. The conjectured value is consistent with the model if and only

if the restrictions of Theorem 1.8(iv) hold. By rearranging the cyclic monotonicity

inequalities, we obtain (1.25).

1.15 Appendix: Proofs for Section 1.7

Proof of Proposition 1.4. The first part of the lemma is known. It remains to show PCL

is consistent with the perturbed utility model.

The PCL probabilities satisfy

Ppv,λq “ ∇ ln

¨

˝

ÿ

j‰k

pev j{λ jk ` evk{λ jkq
λ jk

˛

‚.34

By the arguments in Appendix 1.19, the function

ln

¨

˝

ÿ

j‰k

pev j{λ jk ` evk{λ jkq
λ jk

˛

‚

is convex in v, completing the proof.

To see that PCL allows complementarity, we use the fact that the sign of

BPkpv,λq
Bv j

34See e.g. Koppelman and Wen (2000).
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equals that of

´

»

–Pk`

´

1
λ jk´1

¯

pPj`PkqpPj| jkqpPk| jkq

Pj

fi

fl .35 (1.31)

We suppress dependence of each P term on v and λ for simplicitly. We show that

(1.31) can be positive, indicating complementarity, when λ jk ą 1 and there are at least 3

alternatives. To that end, let v` “ 0 for ` except j and k. Then set v j “ vk. This implies

Pj| jk “ .5, so the sign of (1.31) is determined by the sign of

´PkPj`
1
4

ˆ

1
λ jk´1

˙

pPj`Pkq. (1.32)

By setting v j “ vk to sufficiently small values, (1.32) becomes positive.

1.16 Appendix: Identification of ~v for “Nonstandard”

Cases

As discussed previously, Theorem 1.1 rules out some examples of interest. We

now provide weaker conditions under which~v is identified. Instead of assuming cross-

partials of M are everywhere nonzero, we assume cross-partials are nonzero at a “rich”

set of points.

The basic idea is that if we identify many ratios of partial derivatives of ~v,

then we can identify ~v itself by two different approaches. The first, which is feasible

given the assumptions of Theorem 1.1, allows us to integrate these derivatives and

obtain constructive identification; recall Lemma 1.4. The second approach, taken in

this section, is to use the mean value theorem to obtain non-constructive results. Recall

35See Koppelman and Wen (2000).
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that by the mean value theorem, a differentiable function is uniquely determined by

its partial derivatives. Thus, we only need to identify ratios of all partial derivatives

of ~v. We describe how to do this by multiplying ratios that are directly identified by

Proposition 1.2.

For an example, suppose

Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x1
`

O

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x1
k

and
Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

ˇ

x j“x2
j

O

Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x2
`

are identified from data (via Proposition 1.2). If x1
` “ x2

` , we can multiply these derivative

ratios to identify
Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

ˇ

x j“x2
j

O

Bv`px`q
Bx`,p

ˇ

ˇ

ˇ

ˇ

x`“x1
`

. (1.33)

Note that this derivative ratio can be identified even if j “ k and x2
j ‰ x2

` . This shows that

if ratios of derivatives are identified and overlap in a specific sense, then we can multiply

these ratios to identify new ratios. We need to handle sequences of derivative ratios of

arbitrary finite length, so we introduce some more notation.

Definition 1.4 (Paths). There is a path from the point a :“ Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
to b :“

Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

x j“x̃ j
if a is nonzero and there is a sequence of partial derivatives beginning

at a and ending at b such that each adjacent element is paired, and these pairs are strict

except possibly between the final two elements of the sequence.

In order for there to be a path between partial derivatives, several conditions must

hold. We must have K ě 2 or xk “ x̃ j. The function M must be continuously differentiable

over (at least) a finite set of points. Importantly, it is not necessary that all cross-partials

be nonzero or that M be continuously differentiable everywhere

Theorem 1.7. Let Assumptions 1.1 and 1.2 hold and assume xk,q and x j,r are regres-
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sors specific to k and j, respectively. If there is a path from the point Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
to

Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

x j“x̃ j
, then

Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

ˇ

x j“x̃ j

O

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x˚k

(1.34)

is identified.

Proof of Theorem 1.7. Let
Bv`1px`1q
Bx`1,p1

ˇ

ˇ

ˇ

x`1“x1
`1

, . . . ,
Bv`M px`M q
Bx`M ,pM

ˇ

ˇ

ˇ

x`M“xM
`M

be a finite sequence as

in Definition 1.4. For each m“ 2, . . . ,M, let

Sm´1,m “
Bv`mpx`mq

Bx`m,pm

ˇ

ˇ

ˇ

ˇ

x`m“xm
`m

O

Bv`m´1px`m´1q

Bx`m´1,pm´1

ˇ

ˇ

ˇ

ˇ

x`m´1“xm´1
`m´1

. (1.35)

This ratio is identified due to Proposition 1.2. This follows because for măM, the nu-

merator and denominator are strictly paired. For m“M, the numerator and denominator

are paired and the denominator is nonzero.

By construction,

M
ź

m“1

Sm´1,m “
Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

ˇ

x j“x̃ j

O

Bvkpxkq

Bxk,q

ˇ

ˇ

ˇ

ˇ

xk“x˚k

since all intermediate terms cancel out. This is valid because there is never any division

by zero.

The following corollary relaxes assumptions in Theorem 1.1.

Corollary 1.3. Let Assumptions 1.1 and 1.2 hold and assume all regressors are good-

specific. Assume there is a tuple pk,q,x˚k q such that Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
has a path to Bv jpx jq

Bx j,r

ˇ

ˇ

ˇ

x j“x̃ j

for any j, r, and x̃ j P Rd j . Then~v is identified under the following normalization:

i. (Scale) Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
P t´1,1u.
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ii. (Location) v`p0dkq “ 0 for each ` “ 1, . . . ,K, where 0dk denotes a dk-dimensional

vector of zeros.

Proof of Corollary 1.3. First we identify the sign of Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
. Under Assump-

tions 1.1 and 1.2, it can be shown that

ErY | X “ xs ‰ ErY | X “ x̃s ðñ pErY | X “ xs´ErY | X “ x̃sq1p~vpxq´~vpx̃qq ą 0.

(1.36)

(This is a straightforward extension of Lemma 1.8.) From the assumptions of the corollary,

there is some x˚ P supppXq that has x˚k as its k-th row. Moreover, there must be some `

such that
BM`pvq
Bvk

ˇ

ˇ

ˇ

ˇ

v“~vpx˚q
‰ 0

This follows from the definition of a path. Since Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
‰ 0, we see that for

sufficiently small changes in xk,q there must be a change in ErY` | X “ xs. From (1.36)

this implies that there must be a change in ErYk | X “ xs as well. Again using (1.36),

we determine the sign of Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
depending on whether ErYk | X “ xs is locally

increasing or decreasing with respect to xk,q.

Normalizing Bvkpxkq
Bxk,q

ˇ

ˇ

ˇ

xk“x˚k
to 1 or ´1 depending on its sign, we identify all partial

derivatives using Theorem 1.7. Recall that from the mean value theorem, two functions

that share partial derivatives can differ by at most an additive constant. Given the location

normalization,~v is identified.

We provide an example where the path condition holds even though M may lie

on the boundary of B and may not even be continuous. This illustrates how identification

in Corollary 1.3 is established using restrictions on pairs of partial derivatives. This is

in contrast with Theorem 1.1, which places global restrictions that rule out boundary
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behavior and discontinuities as in the following example.

Remark 1.9 (Boundaries and Discontinuities). For illustration of how we can handle

boundary issues, let B be the probability simplex, K ą 2, and let D be given by,

Dpyq “

$

’

’

&

’

’

%

´
řK

k“1 pk ln pk if pk ‰ 0 for at most 2 distinct k

´8 otherwise.

We set 0 ln0 to 0. For simplicity suppose xk is scalar. This choice of D ensures exactly 2

goods will be chosen with positive probability, and requires that they be the ones with

the highest values of the indices vkpxkq (assuming the two highest values are unique).

Suppose the second highest value of vkpxkq is unique and let kp1q and kp2q attain the

highest values of vk.36 Then

ErYkp1q | X “ xs “
evkp1qpxkp1qq

evkp1qpxkp1qq` evkp2qpxkp2qq
,ErYkp2q | X “ xs “

evkp2qpxkp2qq

evkp1qpxkp1qq` evkp2qpxkp2qq
.

If~v is differentiable, sufficient conditions for Corollary 1.3 are fairly mild. One sufficient

condition is that X has full support, all partial derivatives of~v are everywhere nonzero,

and ~vpsupppXqq “ RK . Note that while we may write ErY | X “ xs “ Mp~xq, M is not

differentiable everywhere. In fact, it is not even continuous everywhere.

1.17 Appendix: Partial Identification of~v

Our sufficient conditions for identification of~v may fail. Our conditions do not

apply if all covariates are discrete, sufficient substitution/complementarity does not exist,

or if ErY | X “ xs is not suitably differentiable. We provide a complete characterization

36These implicitly depend on x.
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of the identifying power of the model for~v, assuming only that D PD. The results in

this appendix are the discrete analogues of positive semi-definiteness and symmetry

(Proposition 1.1).

Characterizing the identifying power of the model is beneficial even when~v is

identified. Section 1.4 attempts to answer the condition “Under what conditions is ~v

identified?” To answer this we used symmetry. The results in this appendix use conditions

more closely related to monotonicity. These conditions characterize the identifying power

of the model and may provide a more transparent answer to the question “What variation

in the data identifies~v?”

Now, we allow the possibility that there are multiple values of~v that are consistent

with the restrictions of the model. The set of such values is called the identified set for~v

and is denoted

VID “

#

~v P V | DD PD s.t. @x P supppXq,ErY | X “ xs P argmax
B

K
ÿ

k“1

ykvkpxkq`Dpyq

+

.

The set V is the parameter space for~v. We assume V consists of real-valued functions.

It could be further restricted. For example, it could be a parametric class of functions.

We are again agnostic about the function D. As previously, D is the set of functions

D : RK Ñ RYt´8u that are finite at some point y P B.

The following lemma is a convenient restatement of restrictions of the optimizing

model.

Lemma 1.8. If~v P VID, then there is some D PD such that for every x, x̃ P supppXq,

pErY | X “ xs´ErY | X “ x̃sq1~vpxq ě DpErY | X “ x̃sq´DpErY | X “ xsq

ě pErY | X “ xs´ErY | X “ x̃sq1~vpx̃q.
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Moreover, DpErY | X “ x̃sq and DpErY | X “ xsq are finite.

Proof. We use necessary conditions for optimality. If~v P VID, then for some D PD we

must have,

ErY | X “ xs1~vpxq`DpErY | X “ xsq ě ErY | X “ x̃s1~vpxq`DpErY | X “ x̃sq

ErY | X “ x̃s1~vpx̃q`DpErY | X “ x̃sq ě ErY | X “ xs1~vpx̃q`DpErY | X “ xsq.

Since D PD, it is finite at the referenced points because of optimality. The inequalities

of the lemma follow from rearranging these inequalities.

One feature captured in Lemma 1.8 is the monotonicity condition

pErY | X “ xs´ErY | X “ x̃sq1p~vpxq´~vpx̃q ě 0. (1.37)

This resembles the law of compensated demand if we relate ErY | X “ xs to Hicksian

demand and ~́vpxq to the price vector. For further illustration of (1.37), suppose that~vpxq

and~vpx̃q only differ with respect to their first component. Then (1.37) becomes

pErY1 | X “ xs´ErY1 | X “ x̃sqpv1px1q´ v1px̃1qq ě 0,

which states that the conditional expectation of Y1 is weakly increasing in v1.

We now use Lemma 1.8 to remove the nuisance function D. To that end let

x0, . . . ,xM´1,xM “ x0 be a cycle of points in supppXq. By repeated application of
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Lemma 1.8 we obtain,

M´1
ÿ

m“0

pErY | X “ xm
s´ErY | X “ xm`1

sq
1~vpxm

q

ě

M´1
ÿ

m“0

DpErY | X “ xm`1
sq´DpErY | X “ xm

sq

“ 0.

(1.38)

By summing up over a cycle, we “sum out” the unknown function D. An alternative

way to state the inequalities obtained in this way is as follows. Suppose that txmuM´1
m“0 Ď

supppXq. Then for every permutation π we have

M´1
ÿ

m“0

ErY | X “ xm
s
1~vpxm

q ě

M´1
ÿ

m“0

ErY | X “ xπpmq
s
1~vpxπpmq

q.

This inequality highlights the connection to optimizing behavior. Intuitively, no permuta-

tion can improve the “match” between choices (= conditional expectations) and payoffs

(= marginal utility shifters). We now show that inequalities such as (1.38) capture the

complete restrictions of the model for~v.

Theorem 1.8 (Sharp Characterization of VID). Let~v P V . The following are equivalent:

i. ~v P VID, i.e. there is a function D PD such that

@x P supppXq,ErY | X “ xs P argmax
yPB

K
ÿ

k“1

ykvkpxkq`Dpyq.

ii. There is a concave function D PD such that

@x P supppXq,ErY | X “ xs P argmax
yPB

K
ÿ

k“1

ykvkpxkq`Dpyq.
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iii. There exist finite numbers tDxuxPsupppXq such that for every x, x̃ P supppXq,

pErY | X “ xs´ErY | X “ x̃sq1~vpxq ě Dx̃´Dx.

iv. For every integer M and cycle of points x0, . . . ,xM´1,xM “ x0 each in supppXq,

M´1
ÿ

m“0

pErY | X “ xm
s´ErY | X “ xm`1

sq
1~vpxm

q ě 0.

Proof. We shall show (i) ùñ (iii) ùñ (iv) ùñ (ii) ùñ (i).

By relating Dx with DpErY | X “ xsq, the previous discussion shows (i) ùñ

(iii) ùñ (iv). Note that while D may take on value ´8 over some points, DpErY | X “

xsq ą ´8 for each x P supppXq. This is because D PD ,~vpxq is finite, and ErY | X “ xs a

maximizer. This is why the numbers in (iii) are finite.

The implication (iv) ùñ (ii) follows from Rockafellar (1970), Theorem 24.8,

so we provide only a sketch of this implication. Let Γ “ RK ˆRK . Let S “ tpErY |

X “ xs,~vpxqquxPsupppXq, so we have S Ď Γ. The set S is contained in the graph of a

cyclically monotone multi-valued mapping (see Rockafellar (1970), which generalizes

Definition 1.5). By the constructive extension result of Rockafellar (1970), Theorem

24.8, we have~vpxq P B f pErY | X “ xsq, where f is a convex function that never attains

´8 and that is finite at some point. By Lemma 1.5 and the fact that ErY | X “ xs P B for

x P supppXq, we have

ErY | X “ xs1~vpxq´ f pErY | X “ xsq “ sup
yPB

 

y1~vpxq´ f pyq
(

.

By letting D“´ f , we have (ii).
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Obviously, (ii) ùñ (i).

This result is closely related to results in Brown and Calsamiglia (2007) and

Chambers and Echenique (2009a).37 Related results that simultaneously vary budgets

are established in McFadden and Fosgerau (2012a).

The fact that (i) and (ii) are equivalent means that if we assume D is concave, we

obtain no additional identifying power for~v. Moreover, it is not possible to separately

test whether D is concave aside from testing the entire model. This insight is fairly

well-known in other settings (Afriat (1967), Varian (1982)).

Part (iii) is helpful for computational reasons such as checking whether a particular

point is in the identified set. Note that we need not worry about forcing Dx and Dx̃ to

agree whenever ErY | X “ xs “ ErY | X “ x̃s, since (iii) implies Dx “ Dx̃ by double

inequalities.

If the parameter space V contains constant functions, these functions will always

be in VID. This can easily be seen from (iv). We refer to (iv) as the cyclic monotonicity

inequalities in light of the following definition.

Definition 1.5 (Cyclic Monotonicity). f : R`Ñ R` is said to be cyclically monotone if

for every integer M and cycle x0,x1, . . . ,xM´1,xM “ x0 of points each in R`,

M´1
ÿ

m“0

p f pxm
q´ f pxm`1

qq
1xm
ě 0.

To the best of our knowledge, cyclic monotonicity was introduced in the econo-

metrics literature by Shi, Shum, and Song (2016). Shi, Shum, and Song (2016) have

previously demonstrated that additive random utility models (Section 1.3.1) imply the

37A similar result is shown in Allen and Rehbeck (2016b), which focuses on formal testability of a
version of this model. That paper uses different techniques because strict inequalities are required.



67

restrictions of (iv).

Remark 1.10 (Single Dimensional Case). When K “ 1, it can be shown that Theo-

rem 1.8(iv) is equivalent to the condition that for every x, x̃ P supppXq,

pErY | X “ xs´ErY | X “ x̃sqp~vpxq´~vpx̃qq ě 0.38

This shows that when K “ 1, the most we can say about~v is that it must be consistent

with the monotonicity statements:

ErY | X “ xs ą ErY | X “ x̃s ùñ ~vpxq ě~vpx̃q

ErY | X “ xs ă ErY | X “ x̃s ùñ ~vpxq ď~vpx̃q.39

This is purely ordinal information, and so point identification is impossible for many

choices of the parameter space. If V is unrestricted, then in the single dimensional case

whenever ṽ P VID, we also have gpṽq P VID for any strictly increasing function g. Even if

V is restricted to a class of differentiable functions with a location/scale normalization,

VID may not be a singleton.

1.18 Appendix: Injectivity

This section provides some injectivity results that are used in establishing identi-

fication of~v in Section 1.4. We use the same mathematical setup as before, but change

notation a bit. Formally, we are interested in when the following mapping is at most a

38See Rockafellar (1970), p. 240.
39When~v is assumed linear, these restrictions are implied by but do not generally imply the restrictions

of the generalized regression model of Han (1987).
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singleton,

ρ
´1
py˚q “

#

u P RK
| y˚ P argmax

yPB

K
ÿ

k“1

ykuk`Dpyq

+

.

This question is relevant for identification because when ρ´1pErY | X “ xsq is a singleton,

we have

ErY | X “ xs “ ErY | X “ x̃s ùñ ~vpxq “ ~̃x.

This implication is the key to our identification results for common characteristics. In this

section, we consider a slightly different structure than previously. We use the abstract

notation y˚ because we do not restrict attention to u P~vpsupppXqq.

Existence of an inverse function ρ´1 is relevant to handle certain forms of endo-

geneity. We provide a sketch and pointers to some relevant papers. Suppose for example

that conditional on characteristics we have

uk,i “ vkpxk,iq`ξk,i.

The random vector ξi “ pξ1,i, . . . ,ξk,iq
1 need not be independent of the characteristics

Xi “ pX 11,i, . . . ,X
1
k,iq
1. Let

y˚i “ argmax
yPB

K
ÿ

k“1

ykpvkpXk,iq`ξk,iq`Dpyq.

We assume this is a singleton. For concreteness, one may think of y˚i,k as the market share

of good k in market i, as in Berry (1994). Note y˚i is a random variable. Suppose an

inverse ρ´1 exists for every value in the support of y˚i , so that we have

ρ
´1
k py˚i q “ vkpXk,iq`ξk,i (1.39)
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almost surely. Using instruments that satisfy a completeness or conditional mean restric-

tion, several recent papers contain identification results for equations similar to (1.39).

See Berry and Haile (2014), Chen (2013), and Dunker, Hoderlein, and Kaido (2015).

We complement these papers by providing sufficient conditions for the inverse ρ´1 to

exist.40

We now turn to our formal results.

Assumption 1.4. BĎ RK is convex and has nonempty interior.

Assumption 1.4 rules out the probability simplex, which does not have a nonempty

interior when viewed as a subset of RK . We consider the probability simplex separately

in Section 1.18.1.

Assumption 1.5. D : BÑ RYt´8u is a concave function.

Define

T “

#

y P intpBq | y P argmax
yPB

K
ÿ

k“1

ykuk`Dpyq for some uk P RK

+

.

The following result is a consequence of Lemma 1.7.

Proposition 1.5. Suppose y˚ P T . Let Assumptions 1.4 and 1.5 hold. Then the following

are equivalent:

(i) ρ´1py˚q is a singleton.

(ii) D is differentiable at y˚.

40Relative to the invertibility results of Berry, Gandhi, and Haile (2013), we work with a specific model.
In return we can handle complementarity without a reparametrization. Our results are thus distinct from
theirs.
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Proof. Let

DBpyq “

$

’

’

&

’

’

%

Dpyq if y P B

´8 otherwise
.

This allows the budget B to remain implicit. Recall that B is convex, so DB is concave.

Note that DBpy˚q must be finite.

We can now prove the result using the preceding lemmas once we identify ´DB

with f , y˚ with z˚, and v with w.

By Lemma 1.5,

ρ
´1
py˚q “ Bp´DBpy˚qq.

From Lemma 1.7, we conclude that ρ´1py˚q is a singleton if and only if p´DBq is

differentiable at y˚. Since y˚ is in the interior of B, p´DBq is differentiable at y˚ if and

only if D is differentiable at y˚.

This result explains why differentiability is used in Theorem 1.2.

We can state a global version of the proposition.

Corollary 1.4 (Global Injectivity). Let the conditions of Proposition 1.5 hold. Let T̃ Ď T .

Then the following are equivalent:

(i) For each y˚ P T̃ , ρ´1py˚q is a singleton.

(ii) D is differentiable at each y˚ P T̃ .
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1.18.1 Injectivity on the Simplex

We now assume that B is the probability simplex,

B“

#

y P RK
|

K
ÿ

k“1

yk “ 1,yk ě 0 for k “ 1, . . . ,K

+

.

In order to obtain an injectivity result, we need to restrict the set of possible values of the

vector u. This is because for fixed D,

argmax
yPB

K
ÿ

k“1

ykuk`Dpyq

is the same set with u replaced by u` c, where c is a constant vector. We restrict the

parameter space u lives in with the following normalization for its first component:

U “ tu P RK
| u1 “ 0u.

We are now interested in when

ρ
´1
U py˚q “

#

u PU | y˚ P argmax
yPB

K
ÿ

k“1

ykuk`Dpyq

+

is a singleton.

Assumption 1.6. D : BÑ RYt´8u is a concave function. Moreover, ty P B | Dpyq ą

´8u has nonempty interior when viewed as a subset of B.

A nonempty interior will be needed because we invoke (Fréchet) differentiability

of D. Because B is the probability simplex, we need to replace T with a set defined over
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the relative interior of B:41

TU “

#

y P ripBq | y P argmax
yPB

K
ÿ

k“1

ykuk`Dpyq for some u PU

+

.

Proposition 1.6. Suppose y˚ P TU . Assume K ě 2. Let B be the probability simplex and

let Assumption 1.6 hold. Then the following are equivalent:

(i) ρ
´1
U py˚q is a singleton.

(ii) D is Fréchet differentiable at y˚.

Proof. We can prove this from Proposition 1.5 with a change of variables. The basic

idea will be that over the probability simplex, y1 is uniquely determined by py2, . . . ,yKq.

Using the normalization defining U, we may convert the problem from a K-dimensional

problem to a K´1-dimensional problem and then invoke Proposition 1.5.

We define a new function,

D̃py2, . . . ,ykq “

$

’

’

&

’

’

%

D
´´

1´
řK

k“2 yk

¯

,y2, . . . ,yK

¯

if
řK

k“2 yk ď 1,yk ě 0

´8 otherwise.

This function removes y1 by using the budget constraint. The function D̃ is concave since

D is concave and B is convex.

Now define the multi-valued mapping ρU that maps points in RK´1 to subsets of

41The relative interior of B is the set

ripBq “

#

y P RK |

K
ÿ

k“1

yk “ 1,yk ą 0 for k “ 1, . . . ,K

+

.
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RK by

ρUpuq “ argmax
yPB

K
ÿ

k“2

ykuk`D

˜˜

1´
K
ÿ

k“2

yk

¸

,y2, . . . ,yK

¸

. (1.40)

Note that the choice of the first component (y1) now enters trivially. Similarly define ρ

from RK´1 to subsets of RK´1 by

ρpuq “ argmax
y2,...,yKPRK´1

K
ÿ

k“2

ykuk` D̃py2, . . . ,yKq. (1.41)

Over the probability simplex, we may put ρUpuq and ρpuq in one-to-one correspondence

by the mapping πpy1, . . . ,yKq “ py2, . . . ,yKq.

Finally, note Fréchet differentiability of D at y˚ is equivalent to differentiability

of D̃ : RK´1 Ñ RYt`8u at πpy˚q. Invoking Proposition 1.5, ρ
´1
V py˚q is a singleton if

and only if D is Fréchet differentiable at y˚.

1.19 Appendix: Perturbed Generalized Nested Logit

We first describe the generalized nested logit (GNL) (Wen and Koppelman (2001)).

See Train (2009) for a textbook treatment. Let there be a finite set of nests Nm, indexed

by m. Each alternative k has a weight 0ď αkm ď 1 reflecting membership in nest m. For

each k, these weights sum to 1. Each nest has a nesting parameter λm.

The GNL specifies that conditional on utility index v, the choice probability

vector satisfies

Ppvq “ ∇ lnGGNLpvq,



74

where

GGNLpvq “
ÿ

m

˜

ÿ

kPNm

αkmevk{λm

¸λm

.

We suppress dependence of G and P on λ for notational convenience.

For example, if each alternative is in its own nest, this reduces to

GLogitpvq “
K
ÿ

k“1

evk ,

from which we arrive at the multinomial logit probabilities,

Pkpvq “ ∇k ln

˜

K
ÿ

k“1

evk

¸

“
evk

řK
j“1 ev j

.

We will show that GNL is consistent with PUM even when it is consistent with ARUM

by using the following result.

Proposition 1.7. Let Ppvq “ ∇ ln
ˆ

ř

m

´

ř

kPNm
αkmevk{λm

¯λm
˙

. Suppose 0 ď αkm ď 1

for each km,
ř

m αkm “ 1 for each k, and λm ą 0 for each m. Then there is some D PD

such that

Ppvq “ argmax
yP∆K´1

ÿ

k“1

ykvk`Dpyq.

By setting v “~vpxq in Proposition 1.7, we see that ErY | X “ xs :“ Pp~vpxqq is a

perturbed utility model. It is known that when 0ă λm ď 1, this model is consistent with

ARUM. Thus, by enlarging the parameter space to requiring only 0ă λm, GNL provides

a strict generalization of ARUM. We will prove this proposition using several lemmas.

Lemma 1.9. Let f : RK Ñ RYt`8u be a lower semi-continuous, convex function such
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that f pzq ă 8 for some z. Let Ppvq “ ∇ f pvq be a probability vector. Then

Ppvq “ argmax
yP∆K´1

ÿ

k“1

ykvk´ f ˚pyq,

where f ˚ denotes the convex conjugate of f .

Proof. This follows immediately from Lemma 1.5.

It remains to show that lnGGNLp¨q is convex, or equivalently that GGNLp¨q is

log-convex.

The following result is well-known (see e.g. Boyd and Vandenberghe (2004)).

Lemma 1.10. Let f p~uq “
řJ

k“1 euk . Then f is log-convex, i.e.

ln f pα~u`p1´αq~vq ď α ln f p~uq`p1´αq ln f p~vq.

Lemma 1.11. Let gpp~vq “ p
řJ

k“1 βkevk{pqp, where βk ě 0 for each k“ 1, . . . ,J. Then for

every pą 0, gp is log-convex:

lngppα~u`p1´αq~vq ď α lngpp~uq`p1´αq lngpp~vq.

Proof. This is straightforward.

lngppα~u`p1´αq~vq “ p ln

˜

J
ÿ

k“1

elnβkpαvk`p1´αqukqq{p

¸

.

The proof follows by the previous lemma.

The following result is well-known (see e.g. Boyd and Vandenberghe (2004)).

Lemma 1.12. The sum of log-convex functions is log-convex.
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Proof of Proposition 1.7. By Lemma 1.9, we only need to show that lnGGNLp¨q is log-

convex.

By Lemma 1.11, the component

˜

ÿ

kPNm

αkmevk{λm

¸λm

is log-convex in v due to the parameter restrictions αkm ě 0 and λm ą 0. Since GGNLp¨q

is the sum of such components, Lemma 1.12 completes the proof.



Chapter 2

Complementarity in Perturbed Utility

Models

Abstract. This paper extends the Hicksian definition of complementarity to

settings outside of the standard consumer problem. Using the structure of perturbed

utility models, we show how to identify complementarity using variation in observable

characteristics. This does not require price variation. We propose a derivative ratio as a

measure of the degree of complementarity, which can be estimated with standard instru-

mental variables techniques. Turning to specific settings we show (i) the assumption of

no income effects is not needed to identify complementarity in the analysis of Gentzkow

(2007) and (ii) complementarity is ruled out by many, but not all, discrete choice models.

77
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2.1 Introduction

The classical definition of complementarity labels two goods complements if

the cross-price elasticity of compensated demand is negative (Hicks and Allen (1934)).

Despite the importance of complementarity, there are many examples where this definition

does not apply. This could occur either because prices do not vary (Gentzkow (2007)) or

the setting is outside of the standard consumer problem. For example, “Are exercise and

sleep complements or substitutes?” is not a precise question. We extend the Hicksian

definition to answer this question using non-price characteristic variation. Our definition

is based on comparative statics and can be used for prediction. For example, if exercise

and sleep are identified as complements for an individual, this suggests building bicycle

paths will induce that person to sleep more.

We propose a model-based definition of complementarity that preserves key fea-

tures of the Hicksian definition of complementarity. First, our definition uses alternative-

specific characteristics to identify complementarity. In the Hicksian case these must

be prices. Second, our definition is symmetric. Perturbed utility models (McFadden

and Fosgerau 2012b) are a class of models with just enough structure to ensure these

properties. These models generate conditional means (or “average quantities”) that satisfy

ErY | X “ xs P argmax
yPB

k
ÿ

j“1

y jv jpx jq`Dpyq, (2.1)

where k is the number of alternatives and y is a k-dimensional vector of quantities of each

alternative. An “alternative” is general and may constitute a specific time activity such

as exercise. Each alternative has a vector of characteristics associated with it, and these

are collected in the observable random variable X “ pX1, . . . ,Xkq P Rd ˆ . . .ˆRd . For

example, Gentzkow (2007) uses accessibility to the internet as a characteristic of online
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news. The collection of functions v“ pv1, . . . ,vkq encodes how characteristics affect the

desirability of each alternative. Let D be an extended real-valued function and BĎ Rk be

a compact, convex set that is interpreted as a budget.

Instead of variation in prices, we use variation in v (due to changes in x) to define

and identify complementarity. This requires alternative-specific characteristics that shift

the value of one alternative relative to the others. Our approach thus follows Gentzkow

(2007). Our primitive definition of complementarity is that if v j increases (due to a

change in x j) and the `th component of ErY | X “ xs increases, then goods j and ` are

local complements. The definition is formally stated in terms of partial derivatives. Thus,

our definition is local and preserves the comparative statics features of the Hicksian

definiton.

We show how to identify complementarity even when v is not known a priori.

This is possible by checking the sign of derivative ratios such as

BErYj | X “ xs
Bx`,q

O

BErY` | X “ xs
Bx`,q

(2.2)

and their discrete counterparts. This uses variation in x`,q, which is the q-th characteristic

specific to alternative `. The derivative ratio is positive exactly when goods j and ` are

local complements according to our primitive definition. When conditional means are

linear, derivative ratios can be estimated using standard linear instrumental variables

methods.

We apply and analyze our definition of complementarity in two settings. First,

we study the bundles model of Gentzkow (2007), in which ErY | X “ xs is the average

quantity of k different goods purchased. We show that the assumption of no income

effects is unnecessary to identify whether goods are complements or substitutes. For
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perturbed utility models, a derivative ratio like (2.2) identifies not only the sign of

Hicksian substitution effects, but also the ratio of cross- and own-price substitution

effects. Thus, our definition of complementarity formally extends the Hicksian definition.

Next, we turn to the setting of discrete choice. Now we interpret ErY | X “ xs

as a vector of conditional choice probabilities. While perturbed utility models allow

complementarity, there are special cases that rule it out. Additive random utility models

are one important class that rules out complementarity. Complementarity is also ruled

out in the additive perturbed utility models proposed by Fudenberg, Iijima, and Strzalecki

(2015). More broadly, violations of regularity from the random utility hypothesis are a

form of complementarity (Block and Marschak (1960)).1 Therefore, complementarity is

a qualitative feature that can be used to sort among models of discrete choice.

While we focus attention on the bundles and discrete choice settings, perturbed

utility models can be used in other settings. For example, ErY | X “ xs can represent

conditional probabilities of choosing an action in a game theoretic context, average time

spent on k different activities, and so forth. The wide range of applicability of our analysis

is highlighted by Theorem 2.1, which shows that the structure of the perturbed utility

model is implied by a large class of latent utility models. This allows us to accommodate

certain forms of unobserved heterogeneity or measurement error. This result may be of

independent interest since it shows that the the structure of the perturbed utility model

aggregates.

The literature on complementarity is large. Samuelson (1974) provides a compre-

hensive survey of alternative definitions of complementarity in the standard consumer

problem. Gentzkow (2007) pioneers the use of non-price characteristics to identify

1Regularity states that adding an item to a menu of alternatives cannot increase the probability of
choosing any specific alternative that was previously available.



81

complementarity. Complementing the focus of this paper, Manzini, Mariotti, and Ülkü

(2015) study complementarity when there is no characteristic variation in a model free

setting.

Focusing on settings that admit a lattice structure such as certain firm or game-

theoretic problems, a large literature relates complementarity with shape restrictions

such as supermodularity (Topkis (1978), Vives (1990), Milgrom and Shannon (1994),

Athey and Stern (1998)). We depart from this literature in two directions: we focus on

local definitions of complementarity; and we define complements based on comparative

statics of the model. In the context of the standard consumer problem, the relationship

between supermodularity of the utility function and a comparative statics definition of

complementarity has been discussed in Samuelson (1974) and Chambers and Echenique

(2009b).

The rest of this paper is organized as follows. Section 2.2.1 presents a preview of

our analysis by showing how (non-price) characteristic variation can identify complemen-

tarity in the standard consumer problem. Section 2.2.2 shows how measurement error

and unobservable heterogeneity can be accommodated in our setup. Section 2.3 presents

our primitive definition of complementarity and shows how to identify whether goods are

complements or substitutes using characteristic variation. Section 2.4 studies the bundles

model of Gentzkow (2007). Section 2.5 studies complementarity in a discrete choice

setting. Section 2.6 summarizes the analysis.

2.2 Perturbed Utility Models

Perturbed utility models provide a framework to maintain important features of

Hicksian complementarity. We illustrate this in an example. This example motivates our
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analysis of complementarity and provides a direct link to Hicksian complementarity.

2.2.1 Relation to Hicksian Complementarity

In this section, we specialize the perturbed utility model to a variant of the

standard consumer problem. Suppose a consumer chooses y to maximize

Upy;xq “
k
ÿ

j“1

y jv jpx jq`Dpyq subject to
k
ÿ

j“1

p jy j ď I. (2.3)

This functional form allows alternative-specific characteristics to enter the utility function.

Characteristics x are fixed and the agent chooses quantities to maximize utility. Let y˚j

denote Marshallian demand for good j and suppose y˚j ą 0 for all j. We write y˚j instead

of ErY j | X “ xs for notational convenience. Let h˚j be the associated Hicksian demand

function for good j.2 Appendix 2.8 shows that the derivative of Marshallian demand

with respect to characteristics is just a scaled version of the substitution effect:

By˚j
Bx`,q

“´
Bv`{Bx`,q

λ˚

Bh˚j
Bp`

, (2.4)

where λ˚ is the marginal utility of income. Note that the scale term involves only

alternative `. We can cancel out the unobservable scale to obtain the following result.

Proposition 2.1. Suppose Bh˚` {Bp`‰ 0 and By˚` {Bx`,q‰ 0. Then assuming the derivatives

exist,
By˚j
Bx`,q

N

By˚`
Bx`,q

“
Bh˚j
Bp`

N

Bh˚`
Bp`

. (2.5)

2All dependence on parameters is left implicit. See Appendix 2.8 for more details.
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In particular, by the law of compensated demand,

sign
ˆ

By˚j
Bx`,q

N

By˚`
Bx`,q

˙

“´signpBh˚j {Bp`q.3 (2.6)

Even without price or income variation, we can still recover the sign of the

Hicksian measure of complementarity.4 This is possible due to additive separability of

Upy;xq and the fact that changes in characteristics do not affect the budget set. In our

subsequent analysis, a derivative ratio of conditional expectations will similarly be used

to identify complementarity.

For some intuition behind (2.5) and Proposition 2.1, note that the expenditure

minimization problem simply finds a supporting hyperplane to the upper contour set

of a utility function. The price derivatives of Hicksian demand are characterized by

pivoting this supporting hyperplane, whose slope is determined by prices, around the

upper contour set. Even without price or income variation, we can “reproduce” this same

pivoting with characteristic variation provided the characteristics enter as in (2.3).

2.2.2 A Latent Utility Foundation

We now return to the general setting. We show that the restrictions of the

perturbed utility models arise from a class of latent utility models. This illustrates

that the structure of perturbed utility models is preserved even under certain forms of

heterogeneity or measurement error. Allowing unobservable heterogeneity is essential

for the practical measurement of complementarity, as emphasized in Athey and Stern

3While DR is related to the Hicks-Allen definition of complementarity, this is a good opportunity to
note that to our knowledge, neither of the authors of the present paper is related to Roy G. D. Allen.

4Note that using the Slutsky Equation, (2.5) allows for partial recoverability of income effects using
characteristic variation. This is not assumption-free since it relies on the form of the utility function.
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(1998) and Gentzkow (2007).

Consider the utility function

Upy;X ,εq “
k
ÿ

j“1

y jv jpX jq` D̃py,εq, (2.7)

where ε is a random variable of possibly infinite-dimension and captures unobservable

heterogeneity. Here D̃ is an unknown, extended real-valued function. The set B is a

budget that does not depend on unobservables. Note this assumption is mild since D̃ can

take on value ´8.

We comment on some key aspects of this utility function. Importantly, observable

characteristics X do not enter D̃. To relax this assumption, we can allow a subvector of X

to enter D̃ and condition analysis on a fixed value of those observables. It is necessary for

our anlaysis that at least one characteristic does not enter D̃. A second key assumption is

that ε enters the utility specification separably from X . This assumption is needed for our

aggregation result (Theorem 2.1).

To fix ideas, we present an example.

Example 2 (Bundles). This example considers a bundles model studied in Gentzkow

(2007) and Fox and Lazzati (forthcoming). For simplicitly, we consider a model with two

goods in which a consumer can buy between 0 and 1 unit of each good. The consumption

vector y“ py1,y2q obtains utility

Upy;X ,ε,ηq “
ÿ

jď2

y jv jpX jq` D̃py,ε,ηq,

where

D̃py,ε,ηq “ y1ε1` y2ε2`η ¨∆1py1 “ 1,y2 “ 1q
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and B“ r0,1s2. Here, both ε and η are latent random variables. ∆ is a parameter.

Let Y ˚pX ,εq be a measurable maximizer of Upy;X ,εq subject to the budget

constraint y P B.5 We do not observe Y ˚pX ,εq directly because ε is unobservable. Instead,

we assume knowledge of

ErY | X “ xs “ ErY ˚pX ,εq | X “ xs.

Knowledge of conditional means can be thought of as “limiting information” if we

observe an arbitrarily large independent and identically distributed sample tpY i,X iqun
i“1.

The focus of this paper is on what is theoretically identifiable given this knowledge, not

the finite sample reality that must deal with estimation error.

Under regularity conditions ensuring existence of a measurable Y ˚pX ,εq as well

as finiteness of certain expectations, we now show that ErY ˚pX ,εq | X “ xs is consistent

with the perturbed utility model.

Theorem 2.1. Let

Y ˚pX ,εq P argmax
k
ÿ

j“1

y jv jpX jq` D̃py,εq.

Under Assumptions 2.5 and 2.6 (stated in Appendix 2.9), if ε K X, then

i. ErY ˚pX ,εq | X “ xs is consistent with a perturbed utility model with the same v “

pv1, . . . ,vkq and

Dpyq “ sup
YPY :ErY pεqs“y

E
“

D̃pY pεq,εq
‰

,6

where Y is the set of measurable functions from supppεq to B.7

5Sufficient conditions for existence of a measurable Y˚pX ,εq are given in Appendix 2.9.
6D is taken to be ´8 if there is no Y P Y such that ErY pεqs “ y. D is always finite when evaluated at

ErY˚pX ,εq | X “ xs.
7The support of a random variable Z is the smallest closed set K such that PpZ P Kq “ 1.
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ii. Define the Social Surplus Function (McFadden 1978)

Gpxq “ E
„

max
yPB

Upy;X ,εq | X “ x


. (2.8)

Then

Gpxq “max
yPB

$

&

%

k
ÿ

j“1

y jv jpxq`Dpyq

,

.

-

. (2.9)

Theorem 2.1 demonstrates the link between the latent utility and representative

agent formulations.8 It shows how restrictions on conditional means arise without spec-

ifying the distribution of latent variables. Specifically, this aggregation result occurs

regardless of correlation or other types of dependence of ε. While we explicitly char-

acterize how D̃ and the distribution of ε induce a function D for a representative agent,

obtaining analytical results for D appears challenging in general.

We now require an additional assumption. This will be used to establish that our

definition of complementarity is symmetric.

Assumption 2.1 (Index Sufficiency). If vpxq “ vpx̃q, then ErY | X “ xs “ ErY | X “ x̃s.

Assumption 2.1 states that ErY | X “ xs depends on x only through vpxq. Assump-

tion 2.1 is automatically satisfied if the argmax of (2.1) is always single-valued. With

minor abuse of notation we may write, ErY | vs :“ ErY | vpXq “ vs.

Corollary 2.1. Define the v-subdifferential

BvGpxq “ tu P Rk
| @x̃,Gpx̃q´Gpxq ě u ¨ pvpx̃q´ vpxqqu.

Under Assumption 2.1 and the conditions of Theorem 2.1, BvGpxq is nonempty and

8Theorem 2.1 appears new at this level of generality and these results may be of independent interest.
In the setting of discrete choice, related results appear in McFadden (1981), Hofbauer and Sandholm
(2002), and Fosgerau and Palma (2015).
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satisfies

(i) E rY | X “ xs P BvGpxq.

(ii) When ErY | vs is differentiable,

BErYj | vs
Bv`

“
BErY` | vs
Bv j

@ j, `“ 1, . . . ,k. (2.10)

Proof. This Corollary follows from McFadden and Fosgerau (2012b) Theorem 1.

Note that we are not assuming we know ErY | vs, just stating properties of it. Part

piq is a form of Roy’s Identity, and may be seen as a generalization of the Williams-Daly-

Zachary Theorem in the discrete choice literature (see e.g. McFadden (1981)). When

v is the identity mapping and BvGpxq is a singleton, part piq states that the conditional

mean vector is the Jacobian of G at x. In this case, part piiq follows for the same reason

the Slutsky matrix is symmetric: the Jacobian of ErY | vs is the Hessian of a convex

function. Note that Corollary 2.1 holds for general compact budget sets as emphasized

in McFadden and Fosgerau (2012b). Our measurement of complementarity will not

require (or use) knowledge of B. When this budget set is known a priori, additional shape

restrictions on D can potentially be used to try to separate alternative notions of “true

complementarity” due to preferences from those due to the shape of the constraint set.9

This important distinction is left for future work.

9Suppose B“ ty : y“ αp1, . . . ,1q`p1´αqp0, . . . ,0q for some α P r0,1su. Then changing v moves the
optimal solution along this manifold in ways that are only consistent with our definition of complementarity.
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2.3 Measuring Complementarity

We now propose formal definitions of complementarity measures. Each measure

is rooted in the standard Hicksian definition. Only some of these measures can be

recovered from data without knowledge of the functions v. We first present differential

measures and then discrete measures.

2.3.1 Differential Measures of Complementarity

We maintain Assumption 2.1 so that we can write ErY | vs “ ErY | vpXq “ vs for

simplicity. In addition we assume differentiability.

Assumption 2.2. ErY | vs is differentiable in v.

Definition 2.1. Goods j and ` are local complements at v if

CD j,`pvq “
BErY j | vs
Bv`

ě 0, (2.11)

and substitutes if

CD j,`pvq ď 0.

We will show how to identify whether goods are local complements using data,

but first we consider some alternative measures of complementarity that are stated only

in terms of ErY | vs. We call CD the cross-derivative measure due to the similarity with

cross-price elasticities. Note that by Corollary 2.1, CD j,`pvq “CD`, jpvq.

When the function v is not known a priori, we cannot directly identify CD j,`pvq

from data. We thus propose two alternative measures of complementarity. Our preferred
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measure is the derivative ratio (DR) measure

DR j,`pvq “
BErYj | vs
Bv`

O

BErY` | vs
Bv`

, (2.12)

which can heuristically be thought of as a ratio of indirect effect to direct effect. We also

introduce

CM j,`pvq “
BErYj | vs
Bv`

BErY` | vs
Bv`

, (2.13)

which we call the CM measure to emphasize this as a comovement measure. This

measure is superficially related to measures such as CovpYj,Y` | vq, but the interpretation

is fundamentally different. CovpYj,Y` | vq can be positive in a way that is unrelated to the

comparative statics measure CM. We explore this further in Section 2.4.

It can be shown that under Assumption 2.2, BErY`|vs
Bv`

ě 0. This ensures that the

denominator of DR has a known sign.10

Assumption 2.3 (Index Relevance). BErY`|vs
Bv`

‰ 0.

Assumption 2.3 formalizes that there must be a direct effect due to a change in

v`.11

Proposition 2.2. Under Assumptions 2.1-2.3,

sign
`

CD j,`pvq
˘

“ signpCM j,`pvqq “ signpDR j,`pvqq. (2.14)

The proof of this proposition is simple and is omitted. Proposition 2.2 demon-

strates that once we can link the measures to observables we can test the sign of any of

the three measures. While CM and DR are not necessarily symmetric in magnitude with

10See Lemma 2.2 in the Appendix.
11Of course it is possible that ErY` | vs is differentiable and strictly increasing in v` and yet the derivative

is 0.
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respect to j and `, they are symmetric in sign.

We are interested not only in defining and testing complementarity but also a

measure of complementarity with cardinal meaning. For this purpose, DR conveys the

most useful information when v is not known a priori. This is because DR is scale free,

while CD and CM are not invariant to monotonic transformations of v.12 In fact, DR j,`pvq

can be identified directly from the data under an additional assumption.

Assumption 2.4 (Characteristic Relevance). There exists a characteristic q for alterna-

tive ` such that Bvpxq{Bx`,q ‰ 0.

Together with Assumption 2.3, this is a relevance assumption for x`,q. Relying on

Assumptions 2.1-2.4, we have

BErYj | X “ xs
Bx`,q

“
BErYj | vs
Bv`

ˇ

ˇ

ˇ

ˇ

v“vpxq

Bv`px`q
Bx`,q

. (2.15)

This equation holds with j “ ` and j ‰ `. By dividing two such equations we obtain

BErYj | X “ xs
Bx`,q

O

BErY` | X “ xs
Bx`,q

“ DR j,`pvpxqq. (2.16)

Recall that we used the same derivative ratio to identify Hicksian complementarity in

Section 2.2.1.

Because the characteristics of alternative ` enter the perturbed utility models only

through the index function v`, (2.16) is the same value for any q such that Bvpxq{Bx`,q ‰ 0.

In other words, derivatives taken with respect to different characteristics will identify

the same measure of complementarity. Thus, if one learns the derivative ratio by using

12It is clear from the definition of perturbed utility models that v is not identified up to scale when D is
not known, since we can multiply the right hand side of (2.1) without affecting the argmax set. Moreover,
when the only variation in the data is in characteristics for a single good, say, `, then it can be shown that
v` can at best only be identified up to a monotonic transformation without further restrictions.



91

characteristic variation in x`,q, then we obtain the same ratio for x`,r for any other

characteristic r.

Proposition 2.3. Under Assumptions 2.1-2.4, DR j,`pvq is identified from data.

When ErY | X “ xs is linear in x, DR j,`pvpxqq can be estimated by linear in-

strumental variables. See Appendix 2.14 for details. The sign of CM is also directly

recoverable from data by

BErY j | vs
Bx`,q

BErY` | vs
Bx`,q

“
BErYj | vs
Bv`

BErY` | vs
Bv`

ˆ

Bv`
Bx`,q

˙2

“CM j,`pvq
ˆ

Bv`
Bx`,q

˙2

. (2.17)

We will use a related comovement measure for our discrete measures of complementarity.

2.3.2 Discrete Measures of Complementarity

We extend our analysis to a discrete setting for two reasons. First, the support

of characteristics, denoted supppXq, may be discrete. Second, we may wish to test a

hypothesis involving non-local variation such as that goods are everywhere complements

(over the support of X).

We focus on complementarity between goods j and `. We make use of the

following definition, which implicitly depends on j and `.

Definition 2.2 (Comparability). Let x, x̃ P supppXq. Then x “ px1, . . . ,xkq and x̃ “

px̃1, . . . , x̃kq are comparable if they differ only with respect to components corresponding

to x j or x` but not both.

We introduce a discrete version of the CM measure,

DCM j,`px, x̃q “ pErY j | X “ xs´ErY j | X “ x̃sqpErY` | X “ xs´ErY` | X “ x̃sq. (2.18)
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We use this measure rather than a discrete analogue of the derivative ratio to avoid

division by 0. We propose the following definition of complementarity (relative to a point

x) for discrete changes.

Definition 2.3. Goods j and ` are complements at x P supppXq if for every vector x that

is comparable to x,

DCM j,`px,xq ě 0.13

We say they are substitutes at x if the opposite inequality holds.

We show this definition is consistent with the differentiable analysis.

Proposition 2.4. Let v1 “ vpxq,v0 “ vpxq, where x and x are comparable. Then under

the assumptions of the previous section, if j and ` are local complements for every v on

the line segment between v1 and v0, then

DCM j,`px,xq ě 0.

Our definition of complementarity is relative to a single vector x.14 There are of

course alternative definitions. One approach would be to label the goods complements at x

if the above inequality holds for every x that is comparable to x in a specific neighborhood.

This would provide a local discrete definition of complementarity.

We now compare our definition with some previous notions involving covariances

and conditional covariances.

Proposition 2.5. Let SĎ supppXq and suppose any two elements of S are comparable.15

Let x P S be arbitrary.

13This paper studies complementarity and substitutability in terms of population-level data. See Kaplan
(2015) for tests of the hypothesis H0 : DCM j,`px,xq ě 0.

14Two goods can be neither complements nor substitutes at x according to our definition.
15The conditioning set S is similar to sets used in Proposition 2 of De Paula and Tang (2012).
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i. If goods j and ` are complements at x, then

CovpErYj | Xs,ErY` | Xs | X P Sq ě 0.

ii. If goods j and ` are substitutes at x, then

CovpErYj | Xs,ErY` | Xs | X P Sq ď 0.

Proposition 2.5 clarifies how (an implication of) our definition of complementarity

differs from alternative approaches that associate complementarity with the sign of

CovpYj,Y`q or CovpYj,Y` | Xq.

2.4 Bundles Model

We now revisit Example 2. Using Theorem 2.1, we may integrate out the latent

variables and study complementarity in terms of ErY | X “ xs. This is just a vector of

average quantitites of goods 1 and 2. Our definition of complementarity agrees with

that of Gentzkow (2007) at this level of aggregation. Proposition 2.1 shows that if we

embed this example in the standard consumer problem, we can identify complementarity

without assuming no income effects.16

We now relate supermodularity of D̃ in the latent utility model with our definition

of complementarity. Supermodularity has been used in this setting by Fox and Lazzati

(forthcoming).

16This embedding requires minor changes including addition of a third (outside) good and inclusion of
a budget reflecting both the quantity constraints of Example 2 and the standard income budget.
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Definition 2.4. D̃py,ε,ηq is supermodular in y at pε,ηq if

D̃pp1,1q,ε,ηq` D̃pp0,0q,ε,ηq ě D̃pp1,0q,ε,ηq` D̃pp0,1q,ε,ηq. (2.19)

D̃py,ε,ηq is submodular in y at pε,ηq if the opposite inequality holds.

We say D̃ is supermodular (resp. submodular) if it is supermodular (resp. sub-

modular) for almost every pε,ηq. It is clear that D̃ is supermodular if and only if η ¨∆ě 0

almost surely.

In the following result, DR1,2 denotes the derivative ratio of the conditional

means.

Proposition 2.6. Suppose pε,ηq and X are independent, ε | η has a density with respect

to Lebesgue measure, and Erηs “ 1.

i. If D̃ is supermodular, then DR1,2pvpxqq ě 0 for every x at which it is defined, and for

any comparable vectors x, x̃, DCM1,2px, x̃q ě 0.

ii. If D̃ is submodular, then DR1,2pvpxqq ď 0 for every x at which it is defined, and for

any comparable vectors x, x̃, DCM1,2px, x̃q ď 0.

Fox and Lazzati (forthcoming) show how to identify whether goods are substitutes

or complements under an additional assumption. They partition X j “ pZ j,Wjq and assume

v jpX jq “ Z j` ṽ jpWjq for some ṽ j. They show that variation in Z j identifies the sign of ∆.

In addition to separability, this assumes a priori knowledge that Z j enters monotonically

in v jpX jq. We highlight that we do not need a priori knowledge of how a characteristic

enters v j to identify the sign of ∆. This complements the work of Fox and Lazzati

(forthcoming), whose focus is instead on identification of all aspects of the model.

We close this example by contrasting our measures of complementarity with
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CovpY1,Y2 | X “ xq. Our conclusion essentially agrees with results in Athey and Stern

(1998) that conditional covariance may contain little or no information about complemen-

tarity. In particular, conditional covariance of choices may capture only the covariance of

unobservables.

Proposition 2.7. Assume ∆“ 0, vpxq is the zero vector in Rk, and that pε1,ε2q|X “ x is

normally distributed with mean 0. Then

signpCovpY1,Y2 | X “ xqq “ signpCovpε1,ε2 | X “ xqq.

2.5 Discrete Choice

When making a single discrete choice, it is natural to label all goods substitutes

since only one good is chosen. We will instead focus on a higher level of aggregation

than a single discrete choice. Specifically, we focus on complementarity in terms of

conditional choice probabilities. One reason to consider complementarity at this level of

aggregation is that complementarity is ruled out by many existing discrete choice models.

We make a slight change of notation and write

ErY | X “ xs P argmax
yP∆k

k
ÿ

j“1

y jv jpx jq´Cpyq, (2.20)

where Yj is an indicator for whether good j is purchased. The vector of conditional

choice probabilities is denoted ErY | X “ xs. The budget is now the probability simplex

∆k “ ty P Rk |
řk

j“1 yk “ 1 , y j ě 0 @ ju. Following the literature, we place a negative in

front of C so that it may be interpreted as a cost to perfect optimization.

An important special case of this model is the class of additive random utility
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models, which includes familiar examples such as logit and probit. It is easy to see that

these models do not allow complementarity.

Example 3 (Additive Random Utility Models). Suppose alternative j has conditional

indirect utility

v jpx jq` ε j,

and an individual chooses an alternative that maximizes utility. Letting D̃py,εq “

´
řk

j“1 ykεk, Theorem 2.1 shows these models fit into our framework when ε “

pε1, . . . ,εkq is independent of X “ pX1, . . . ,Xkq.17

Perturbed utility models have been used to model costly optimization,18 mistakes,

rational inattention,19 and ambiguity aversion arising from not knowing the true utility

(or characteristics) of an alternative. Many existing models impose that C is additively

separable. For example, Fudenberg, Iijima, and Strzalecki (2015) introduce the model

with general additively separable C functions such as Cpyq “
řk

j“1 cpy jq.20 Additively

separable C do not allow alternatives to be (strict) complements according to our definition

(Proposition 2.8). Thus, one can use the “no complementarity” implication to test the

restrictions of the entire class of additively separable cost functions.

Proposition 2.8. Suppose C is differentiable, strictly convex,21 and ErY | X “ xs is

always on the relative interior of ∆k. Moreover, assume C is additively separable, i.e.

Cpyq “
řk

j“1 c jpy jq. Then for each pair of alternatives j, ` and comparable vectors x, x̃,

DCM j,`px, x̃q ă 0.

17Under additional differentiability assumptions, Hofbauer and Sandholm (2002) have previously
shown that the perturbed utility model is strictly more general than the additive random utility model.

18Mattsson and Weibull (2002).
19Matejka and McKay (2014).
20Fudenberg, Iijima, and Strzalecki (2015) also study alternative C functions that are not covered here.
21Strict convexity is mild and is “almost” equivalent to assuming a unique maximizer as shown in

(Allen and Rehbeck (2016b)).
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A related result is shown in Feng, Li, and Wang 2015.

We now relate the shape of C with the DR measure of complementarity. Shape

restrictions such as supermodularity have been related with a global notion of complemen-

tarity in other settings (Topkis (1978), Milgrom and Shannon (1994)). Without a change

of variables, we find that the relationship between the shape of C and complementarity

involves a number of cross derivatives of C.

For simplicity, suppose there are 3 alternatives. We write y˚j instead of ErYj | X “

xs for notational convenience. Under regularity conditions, Appendix 2.13 shows that

DR2,1pvpxqq is given by

DR2,1pvpxqq “
´C3,3py˚q`C2,3py˚q´C1,2py˚q`C1,3py˚q

C2,2py˚q`C3,3py˚q´2C2,3py˚q
.

Subscripts on C denote mixed partial derivatives. The denominator of DR2,1pvpxqq is

strictly positive under our regularity conditions, so the sign of DR2,1pvpxqq is determined

by

´C3,3py˚q`C2,3py˚q´C1,2py˚q`C1,3py˚q.

The sign of this sum is not determined by supermodularity of C.22

2.5.1 Perturbed Nested Logit

We consider an example that generalizes the standard nested logit model. We

show that the nested logit probability formula is sometimes an additive random utility

model, but is always a perturbed utility model. The parameters for which the model is not

an additive random utility model are precisely the parameters that admit complementarity.

22Under differentiability, supermodularity of the utility function requires C j,`pyq ě 0 for j ‰ `. Note
that C j,`pyq ě 0 is neither necessary nor sufficient for DR j,`pvpxqq ą 0.
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We also show that a logarithmic version of DR identifies nesting parameters in the model.

To define this model, we partition the alternatives t1, . . . ,ku into nests

A1,A2, . . . ,AM. Now assign to each nest Am a weight ηm ą 0. Let the cost function

be given by

Cpyq “
M
ÿ

m“1

»

–ηm
ÿ

rPAm

yr lnyr`p1´ηmq

˜

ÿ

rPAm

yr

¸

ln

¨

˝

ÿ

jPAm

yr

˛

‚

fi

fl . (2.21)

Let j be in nest Am. The nested logit probabilities (see e.g. Train (2009)) are given by

y˚j pxq “
ev jpx jq{ηm

ř

rPAm
evrpxrq{ηm

´

ř

rPAm
evrpxrq{ηm

¯ηm

řM
s“1

`
ř

rPAs
evrpxrq{ηs

˘ηs
. (2.22)

The first fraction is the probability of choosing j conditional on choosing the nest Am.

The second fraction is the probability of choosing the nest Am. We see that ηm “ 1 for

m“ 1, . . . ,M corresponds to the standard logit formula. The following result builds on

results in Fosgerau and Palma 2015.23

Proposition 2.9. If ηm ą 0 for m “ 1, . . . ,M, then C defined in (2.21) generates the

probabilities defined in (2.22). In particular, the nested logit formula is a perturbed

utility model even when it is not an additive random utility model.

When ηm ą 1 for some nest m, it is known that (2.22) can be inconsistent with

random utility maximization (see Train (2009) for discussion and references). We

show that the inconsistency with random utility maximization occurs precisely when

complementarity is allowed. To that end, let j and ` belong to the same nest Am. We then

23Fosgerau and Palma 2015 consider the same cost function in the context of market shares and show
the equivalence with nested logit. They formally require nesting parameters to be in the interval p0,1s. See
their paper for a comprehensive analysis of “flexible entropy” models, which are a subclass of perturbed
utility models.
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obtain

lnpy˚j pxqq “
v jpx jq

ηm
´

v`px`q
ηm

` lnpy˚` pxqq.

If v` were a known function, ηm could be recovered by varying x` in this expression,

holding x j fixed. We must instead deal with the case of an unknown function v`. Let

x`,q be a characteristic of alternative ` that is excluded from the characteristics of good j.

Assuming differentiability and that B lnpy˚` pxqq{Bx`,q ‰ 0,

B lnpy˚j pxqq{Bx`,q
B lnpy˚` pxqq{Bx`,q

“
B lnpy˚j pxqq{Bv`
B lnpy˚` pxqq{Bv`

“´

˜

1`pηm´1q
y˚` pxq

ř

rPAm
y˚r pxq

´ηmy˚` pxq

¸´1

`1.

(2.23)

This equation24 shows that a derivative ratio directly identifies ηm since all other terms

on the right hand side of (2.23) are identified. Moreover, only local information is needed

to determine these nesting parameters, not full identification of v.

Equation (2.23) is strictly positive, indicating complementarity, whenever

ηm´1
ηm

ą
ÿ

rPAm

y˚r pxq. (2.24)

Note that this requires ηm ą 1.25 We provide a possible interpretation of complementarity.

If a nest is not typically noticed by the individual (think:
ř

rPAm
y˚r pxq small), then making

an alternative in the nest more attractive could make it more likely the individual notices

other alternatives in the nest. This could result in the individual choosing those items

more often due to this complementarity.

24See Appendix 2.13.1 for derivation. The sign of this derivative ratio (with logs) is the same as the
sign of DR j,`pvpxqq.

25Whenever ηm ą 2 for m“ 1, . . . ,k and there are two distinct nests with at least two alternatives, the
weak inequality version of (2.24) must be satisfied for at least one nest m. Thus for any value of x, there
are always two goods that are local complements.
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If ηm ą 1, then complementarity occurs when
ř

rPAm
y˚r pxq is close to 0. When v

can take on arbitrarily large and small values, we can always ensure that the sum of these

probabilities is sufficiently small. This yields the following result.

Proposition 2.10. Assume vpsupppXqq “Rk and for every x there is an alternative ` and

a characteristic q such that B lnpy˚` pxqq{Bx`,q ‰ 0, and B lnpy˚j pxqq{Bx`,q exists. If 1ă ηm,

j, ` P Am, and there exists s R Am, then there exists a characteristic vector x such that

B lnpy˚j pxqq{Bx`,q
B lnpy˚` pxqq{Bx`,q

ą 0.

2.6 Conclusion

This paper extends the definition of Hicksian complementarity to a wide variety

of settings. Using the perturbed utility model, we provide a primitive definition of com-

plementarity and show how to identify complementarity using characteristic variation.

This definition agrees with the Hicksian definition and we show how to identify the sign

of Hicksian substitution effects without price variation. The study of complementarity is

important for reasons beyond just documenting whether two goods are substitutes or com-

plements. We show that “no complementarity” is a testable implication of a large class of

discrete choice models. Measures of complementarity can also be used for identification

of structural parameters. For example, a logarithmic version of the derivative ratio (DR)

measure of complementarity identifies nesting parameters in nested logit. We also relate

our definition of complementarity with the concept of supermodularity. Complementarity

and supermodularity are consistent in a bundles setting, but do not agree in the discrete

choice setting.
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2.8 Appendix: Proofs for Section 2.2.1

In this section, we examine comparative statics with respect to characteristic

variation and prove Proposition 2.1. We assume that we are evaluating demand functions

at an interior point. Throughout the remainder of this section, assumptions on differen-

tiability are left implicit in the analysis. Consider the Lagrangian given by the standard

consumer problem

Lpy,λ,µq “
k
ÿ

j“1

y jv jpx jq`Dpyq`λ

¨

˝I´
k
ÿ

j“1

p jy j

˛

‚`

k
ÿ

j“1

µ jy j

with λě 0 and µ j ě 0. The first order conditions at an interior point yield

v jpx jq`D jpyq´λp j “ 0 for j “ 1, . . . ,k

k
ÿ

j“1

p jy j “ I.

Let the function for Marshallian Demand of good j be denoted y˚j “ y˚j pp,x, Iq and

the Lagrange multiplier at the maximum be denoted λ˚ “ λ˚pp,x, Iq. Assume y˚ is a

regular maximizer.26 We suppress dependence on parameters throughout the analysis for

26See Varian (1992), p. 498. This ensures the second order conditions are satisfied with a strict
inequality.
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convenience. Let p“ pp1, . . . , pkq
1 P Rk

` and

H “

»

—

–

∇2Dpy˚q ´p

´p1 0

fi

ffi

fl

.

Examining the total derivative with respect to p and applying Cramer’s rule, we can write

the Slutsky Equation

By˚j
Bp`

“ λ
˚ p´1q`` j detpH`, jq

detpHq
`
p´1qk`1` j detpHk`1, jq

detpHq
y˚`

“
Bh˚j
Bp`

´
By˚j
BI

y˚`

where Hr,c is the submatrix of H which removes row r and column c. Moreover, let

h˚j “ h˚j pp,x,uq be the Hicksian demand function for good j. Similarly, we can examine

the change in Marshallian demand when there is a change in characteristic q of alternative

` (x`,q). Differentiating the first order conditions and applying Cramer’s rule yields

By˚j
Bx`,q

“´
Bv`
Bx`,q

p´1q`` j detpH`, jq

detpHq
.

We can rewrite this as a scaled version of the Hicksian substitution term,

By˚j
Bx`,q

“´
Bv`{Bx`,q

λ˚

Bh˚j
Bp`

. (2.25)

Thus,
By˚j
Bx`,q

N

By˚`
Bx`,q

“
Bh˚j
Bp`

N

Bh˚`
Bp`

.

To obtain an additional result, one can substitute equation (2.25) into the Slutsky
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Equation and rearrange to obtain

By˚j
Bx`,q

“ p´BS`ε j,I´ ε j,p`q

ˆ y˚j
y˚` p`

˙

pBv`{Bx`,qqy˚`
λ˚

.

ε j,p` “
By˚j
Bp`

p`
y˚j

is the cross-price elasticity of demand for alternative j with respect to

p`, ε j,I “
By˚j
BI

I
y˚j

is the income elasticity of demand for alternative j, and BS` “
p`y˚`

I is

the budget share of alternative `. We examine the units of the last term in the above

equation and find that
´

Bv`
Bx`,q

y˚` {λ
˚
¯

is in units
´

∆$
∆characteristic q of good l quantity `

¯

. One

could interpret this term as the willingness to pay for a marginal increase in a characteristic

at current demand.

2.9 Appendix: Proof of Theorem 2.1

We first provide a set of sufficient conditions on D̃, marginal utility shifters v j,

and budgets B such that argmaxyPBUpy;X ,εq admits a measurable selection, where U is

defined in (2.7). Recall that y P Rk and let BRk be the Borel σ-algebra induced by the

Euclidean metric. Let ε : ΩεÑ E be a random variable defined from the probability space

pΩε,Fε,Pεq to the measure space pE,Eq. Let X : ΩX Ñ pRdqk be a random variable from

the probability space pΩX ,FX ,PXq to the measurable space ppRdqk,BpRdqkq where BpRdqk

is the Borel σ-algebra of pRdqk. Note that the projection of X in the j-th component is a

random variable to pRd,BRdq where BRd is the Borel σ-algebra of Rd .

Assumption 2.5. We assume D̃, marginal utility shifters v, and budget B satisfy the

following:

i. D̃ : RkˆE Ñ R̄ is E-measurable and continuous in Rk.27

27R̄ :“ RYt´8,`8u denotes the extended reals.
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ii. For all j “ 1, . . . ,k, v j : Rd Ñ R̄ is BRd -measurable

iii. Let BĎ Rn be a nonempty, compact, and convex budget

Lemma 2.1. Under Assumption 2.5, there exists a measurable selector

Y ˚pX ,εq P argmax
yPB

Upy;X ,εq.

Proof. From (i) in Assumption 2.5 and Stinchcombe and White 1992 Lemma 2.15,

D̃ : RkˆE Ñ R̄ is BRk bE-measurable where BRk is the Borel σ-field of Rk. From (ii)

of Assumption 2.5, we have that v jpX jq is BpRdqk measurable since it is a composition

of a measurable function and the continuous projection of X to X j. Therefore, each

g jpy,Xq “ y jv jpX jq is continuous in Rk for each X and BpRdqk-measurable for each

y P Rk. By Stinchcombe and White 1992 Lemma 2.15, g j : RnˆpRdqk is BRk bBpRdqk-

measurable.

Since D̃py,εq does not depend on X and X K ε, we may extend D̃ to be BRk b

pBpRdqk bEq-measurable.28 Similarly, each g jpy,Xq does not depend on ε and X K ε,

so we may extend g j to be BRk b pBpRdqk bEq-measurable. Therefore, Upy;X ,εq “
řk

j“1 y jv jpX jq`D̃py,εq is BRkbpBpRdqkbEq-measurable since it is a sum of measurable

functions. Moreover, for all pX ,εq P pRdqk, Up¨;X ,εq : Rk Ñ R̄ is continuous.

Lastly from (iii) of Assumption 2.5, the assumptions of Corollary 2.21 and Lemma

2.22 in Stinchcombe and White 1992 are satisfied so for any probability measure P on
´

ppRdqk,Eq,pBpRdqk bEq
¯

, there is a pBpRdqk bEqP-measurable everywhere selection29

Y ˚ that satisfies Y ˚pX ,εq P argmaxyPBUpy;X ,εq for all pX ,εq P ppRdqk,Eq. Note that

argmaxyPBUpy;X ,εq is non-empty and compact for all pX ,εq P ppRdqk,Eq.

28We suppress dependence of D̃ on X for convenience.
29F P is the completion of a σ-field F with respect to the probability measure P.
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The assumption that B does not depend on ε can be relaxed using conditions from

Stinchcombe and White 1992.

Assumption 2.6. ErD̃pY ˚pX ,εq,εq | X “ xs exists and is finite.

Assumption 2.6 is a high level condition that is easily checked in many examples.

In additive random utility models, a sufficient condition is that ε has finite mean and is

independent of X . Because we maintain the assumption that B is compact and convex,

Assumption 2.6 implies that Gpxq is finite.

Proof of Theorem 1. Fix x P supppXq. Let Yx denote the set of measurable functions

from supppεq to B. We include the subscript x only for ease of exposition, but note that

Yx is defined with no reference to x. Under Assumption 2.6, Gpxq is finite. Using the
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definition of Gpxq, we see that

Gpxq “E
„

max
yPB

Upy;X ,εq | X “ x


(2.26)

“E
“

Y ˚pX ,εq1vpxq | X “ x
‰

`ErD̃pY ˚pX ,εq,εq | X “ xs (2.27)

“E rY ˚px,εqs1 vpxq`ErD̃pY ˚px,εq,εq | X “ xs (2.28)

ďE rY ˚px,εqs1 vpxq` sup
YxPYx:ErYxpεq|X“xs“ErY˚px,εqs

ErD̃pYxpεq,εq | X “ xs (2.29)

ďsup
yPB

$

&

%

k
ÿ

j“1

y jv jpx jq` sup
YxPYx:ErYxpεq|X“xs“y

ErD̃pYxpεq,εq | X “ xs

,

.

-

30 (2.30)

“sup
yPB

$

&

%

k
ÿ

j“1

y jv jpx jq` sup
YxPYx:ErYxpεqs“y

ErD̃pYxpεq,εqs

,

.

-

(2.31)

“sup
yPB

sup
YxPYx:ErYxpεqs“y

E

»

–

k
ÿ

j“1

y jv jpx jq` D̃pYxpεq,εq

fi

fl (2.32)

“ sup
YxPYx

E

»

–

k
ÿ

j“1

Yx, jpεqv jpx jq` D̃pYxpεq,εq

fi

fl (2.33)

ďE

«

sup
yPB

Upy;x,εq

ff

(2.34)

“Gpxq (2.35)

In the above derivation, Yx, jpεq denotes the j-th component of Yxpεq. The final inequality

follows from Jensen’s inequality. We obtain that these inequalities are all equalities. This

further implies existence of all expectations because Gpxq is finite. Finally, we have that

ErY ˚pX ,εq | X “ xs P argmax
yPB

$

&

%

k
ÿ

j“1

y jv jpxq`Dpyq

,

.

-

,

where Dpyq “ supYxPYx:ErYxpεqs“yErD̃pYxpεq,εqs. Here we use that B is convex to ensure

30The supremum is taken to be ´8 if there is no Yx P Yx such that ErYxpεq | X “ xs “ y
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that ErY ˚pX ,εq | X “ xs is in the argmax set. It is clear that D does not depend on x;

recall we included the subscript in Yx purely for exposition. Finally, note that 2.6 ensures

that Dpyq is finite when evaluated at ErY ˚pX ,εq | X “ xs for any x P supppxq.

2.10 Appendix: A Monotonicity Lemma

We will use the following lemma in a few places. It is a version of the law of

(compensated) demand.

Lemma 2.2. Let x, x̃ P supppXq. Then

i.

pErY | X “ xs´ErY | X “ x̃sq1pvpxq´ vpx̃qq ě 0.

In particular, if x “ px1, . . . ,xkq and x̃ “ px̃1, . . . , x̃kq only differ with respect to the

j-th component (i.e. x` “ x̃` when `‰ j), then

v jpx jq ą v jpx̃ jq ùñ ErYj | X “ xs ě ErY j | X “ x̃s.

ii. Assume for x and x̃ that there is a unique maximizer to (2.1), or alternatively D is

strictly concave and B is convex. Then whenever ErY | X “ xs ‰ ErY | X “ x̃s,

pErY | X “ xs´ErY | X “ x̃sq1pvpxq´ vpx̃qq ą 0.

In particular, if x “ px1, . . . ,xkq and x̃ “ px̃1, . . . , x̃kq only differ with respect to the

j-th component, then

ErYj | X “ xs ą ErY j | X “ x̃s ùñ v jpx jq ą v jpx̃ jq.
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(i) and (ii) are shown in (Allen and Rehbeck (2016b)). (i) is straightforward

and follows from writing out the necessary conditions for maximization. (ii) essentially

follows from the definition of a unique maximizer.

2.11 Appendix: Proofs for Section 2.3

Proof of Proposition 2.4. This follows from Lemma 2.2 and the Fundamental Theorem

of Calculus.

Proof of Proposition 2.5. This result is closely related to Chebyshev’s association in-

equality. We have by definition that,

pErYj | X “ xs´ErYj | X “ x̃sqpErY` | X “ xs´ErY` | X “ x̃sq ě 0, @x, x̃ P S.

Let X and X̃ be independent. Then,

E
“

pErYj | Xs´ErY j | X̃sqpErY` | Xs´ErY` | X̃sq | X , X̃ P S
‰

ě 0. (2.36)

Using independence of X and X̃ , we see the left hand side of (2.36) is equal to

E
”

ErYj | XsErY` | Xs`ErY j | X̃sErY` | X̃s | X , X̃ P S
ı

´E
“

ErYj | X̃sErY` | Xs`ErYj | X̃sErY` | Xs | X , X̃ P S
‰

“ 2E
“

ErY j | XsErY` | Xs | X P S
‰

´2ErYj | X P SsErY` | X P Ss

“ 2CovpErYj | Xs,ErY` | Xs | X P Sq.
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Note that we used that

ErErYj | X̃sErY` | Xs | X , X̃ P Ss “ ErYj | X P SsErY` | X P Ss,

which follows from the fact that X and X̃ are independent and identically distributed.

This proves the first statement of the proposition. The second statement follows from

analogous arguments.

2.12 Appendix: Proofs for Section 2.4

Proof of Proposition 2.6. Recall that supermodularity is equivalent to assuming η ¨∆ě 0

almost surely. Suppose x “ px1,x2q and x̃ “ px̃1,x2q differ only with respect to the

characteristics of good 1. Suppose v1px1q ą v1px̃1q. The proof of Lemma 1 of Fox and

Lazzati (forthcoming) shows that ErY2 | X “ xs is weakly increasing in v1, and hence we

conclude

ErY2 | X “ x̃s ě ErY2 | X “ xs.

Since v1px1q ą v1px̃1q, from Lemma 2.2 we obtain

ErY1 | X “ x̃s ě ErY1 | X “ xs.

If instead v1px1q ă v1px̃1q, then the opposite inequalities hold. Finally, if v1px1q “

v1px̃1q, then ErY | X “ xs “ ErY | X “ x̃s because ε | η has a density with respect to

Lebesgue measure (so that utility ties occur with probability 0 and the argmax set of the

perturbed utility model is a singleton). Thus we establish that regardless of the sign of
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v1px1q´ v1px̃1q,

Cpx, x̃q “

pErY2 | X “ x̃s´ErY2 | X “ xsq pErY1 | X “ x̃s´ErY1 | X “ xsq

ě 0.

From this we obtain that DR2,1pxq ě 0 when it exists.

The case η ¨∆ď 0 almost surely is proven by similar arguments.

Proof of Proposition 2.7.

CovpY1,Y2 | X “ xq “ PppY1,Y2q “ p1,1q | X “ xq´PpY1 “ 1 | X “ xqPpY2 “ 1 | X “ xq

“ Ppε1 ě 0,ε2 ě 0q´Ppε1 ě 0qPpε2 ě 0q

“ Ppε1 ě 0,ε2 ě 0q´1{4.

Finally, note Ppε1 ě 0,ε2 ě 0q ą 1{4 if and only if Covpε1,ε2 | X “ xq ą 0.

2.13 Appendix: Proofs for Section 2.5

Proof of Proposition 2.8. Since C is additively separable, Cpyq “
řk

j“1 c jpy jq. Let

v`px`q ą v`px̃`q, and let x “ px1, . . . ,xkq and x̃ “ px1, . . . , x̃`, . . .xkq only differ with re-

spect to the `-th component. By differencing the first order conditions of the respective
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Lagrangians (see (2.39)) we obtain

v`px`q´ v jpx jq “ c1`py
˚
` pxqq´ c1jpy

˚
j pxqq

v`px̃`q´ v jpx jq “ c1`py
˚
` px̃qq´ c1jpy

˚
j px̃qq.

Differencing these again yields,

v`px`q´ v`px̃`q´
“

c1`py
˚
` pxqq´ c1`py

˚
` px̃qq

‰

“ c1jpy
˚
j px̃qq´ c1jpy

˚
j pxqq. (2.37)

Suppose for the purpose of contradiction that y˚j pxq ě y˚j px̃q for some j‰ `. Then by strict

monotonicity of the derivatives of strictly convex functions and (2.37) we have that this

must hold for every j ‰ `. Moreover, Lemma 2.2 implies y˚` pxq ě y˚` px̃q. Note we cannot

have y˚j pxq “ y˚j px̃q for every j, since then we would violate (2.37) (recall v`px`q ą v`px̃`q).

Thus we must have y˚j pxq ě y˚j px̃q for all j, with at least one strict inequality. This violates

that all probabilities must sum to 1. Hence we obtain, by contradiction, that y˚j pxq ă y˚j px̃q.

This implies that DCM j,`pxq ă 0, as desired.

We now characterize complementarity for an arbitrary number of goods. The

Lagrangian is given by

Lpy,λ,µq “
k
ÿ

j“1

y jv jpx jq´Cpyq`λ

¨

˝1´
k
ÿ

j“1

y j

˛

‚`

k
ÿ

j“1

µ jy j (2.38)

for λ P R and µ j ě 0.

We assume that Cpyq “Cpy1, . . . ,ykq is a twice continuously differentiable strictly

convex function and v jp¨q are continuously differentiable functions in x j. We define C jp¨q

as the partial derivative with respect to the j-th component. Similarly, C j,`p¨q “
B2

By jBy`
Cp¨q.
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Lastly, assume that the solution y˚ is at a point on the relative interior of the simplex. We

consider changes in choice probabilities when there is a change in the q-th characteristic

of good ` (denoted x`,q).

Consider the optimization of (2.38) at an interior point. In this case, µ j “ 0 for

every j so that first order conditions are given by

v jpx jq´C jpyq´λ“ 0 for j “ 1, . . . ,k (2.39)

k
ÿ

j“1

y j “ 1. (2.40)

Define the optimal probability of choosing object j by y˚j “ y˚j px1, . . . ,xnq and the La-

grange multiplier as λ˚ “ λ˚px1, . . . ,xkq. Assume y˚ is a regular maximizer. We suppress

dependence on the characteristics for convenience. We focus on a change in x1,q. Similar

to the standard consumer problem, we examine the total differential with respect to the

characteristic x1,q. This gives the system of equations,

Bv1

Bx1,q
´

k
ÿ

j“1

C1, jpy˚q
By˚j
Bx1,q

´
Bλ˚

Bx1,q
“ 0

´

k
ÿ

j“1

C j,`py˚q
By˚j
Bx1,q

´
Bλ˚

Bx1,q
“ 0 for all `‰ 1

k
ÿ

j“1

By˚j
Bx1,q

“ 0.

Let 1“ p1, . . . ,1q1 P Rk and

H “

»

—

–

´∇2Cpy˚q ´1

´11 0

fi

ffi

fl

.
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Combining H with the above system of equations gives

H

»

—

—

—

—

—

—

—

—

—

—

–

By˚1
Bx1,q

By˚2
Bx1,q

...
By˚k
Bx1,q

Bλ˚

Bx1,q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

´
Bv1
Bx1,q

0
...

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let Hr,c be the submatrix of H which removes row r and column c. Now, use Cramer’s

rule and the definition of the determinant to obtain

By˚`
Bx1,q

“´
Bv1

Bx1,q

ˆ

p´1q1``detpH1,`q

detpHq

˙

.

We assume these derivatives are non-zero. For ` “ 1, by second order conditions of

a maximizer
´

p´1q1``detpH1,`q

detpHq

¯

ă 0 (recall we assume this is a regular maximizer; see

Varian 1992, Howard 1977.). Thus,

sign
ˆ

By˚1
Bx1,q

˙

“ sign
ˆ

Bv1

Bx1,q

˙

.

Using the DR definition of complementary, we examine if

DR`,1pxq “
By˚`
Bx1,q

N

By˚1
Bx1,q

“
p´1q1``detpH1,`q

detpH1,1q
ě 0

for `‰ 1. Note the sign of DR`,1pxq depends only on C and may be positive or negative

when k ě 3 depending on the magnitude of the second derivatives. The equation in the

main text is obtained from expanding the determinants above when k “ 3.
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2.13.1 Nested Logit Derivations

Proof of Proposition 2.9. Note that 0ă ηm for m“ 1, . . . ,M ensures we have an interior

solution. To see this, recall v jpx jq is finite for each j. Suppose for the purpose of

contradiction that y˚j “ 0, y˚k ‰ 0. A differential shift in probability from y˚k to y˚j

decreases Cpy˚q at rate8, so this cannot be a maximizer.

Let mp jq denote the nest of alternative j. For simplicity, write v j :“ v jpx jq for

j “ 1, . . . ,k. The first order conditions of the Lagrangian for arbitrary y˚j are given by,

v j´ηmp jq lnpy
˚
j q´p1´ηmp jqq ln

¨

˝

ÿ

qPAmp jq

y˚q

˛

‚“ λ`1,

where λ is the Lagrange multiplier on the probability simplex constraint. For j,q in the

same nest we conclude

y˚q “ y˚j
evq{ηmp jq

ev j{ηmp jq
.

Hence we may write

ÿ

qPAmp jq

y˚q “
y˚j

ev j{ηmp jq

¨

˝

ÿ

qPAmp jq

evq{ηmp jq

˛

‚,

and so our first order conditions can be rewritten after some rearrangement as

v j

ηmp jq
´ lnpy˚j q´p1´ηmp jqq ln

¨

˝

ÿ

qPAmp jq

evq{ηmp jq

˛

‚“ λ`1.

Now for arbitrary j, ` not necessarily in the same nest, by differencing the first order
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conditions for j and ` and rearranging we obtain,

lnpy˚j q´ lnpy˚` q “
¨

˚

˝

v j

ηmp jq
` ln

¨

˝

ÿ

qPAmp jq

evq{ηmp jq

˛

‚

ηmp jq´1
˛

‹

‚

´

¨

˚

˝

v`
ηmp`q

` ln

¨

˝

ÿ

qPAmp jq

evq{ηmp jq

˛

‚

ηmp`q´1
˛

‹

‚

.

By exponentiating, we see that the ratio of y˚j {y
˚
` coincides exactly with that of

y˚j pxq{y
˚
` pxq generated according to (2.22). Since the solution to our constrained maxi-

mization problem is determined uniquely by ratios of probabilities, this completes the

proof.

Derivation of Equation (2.23). Let j and ` belong to nest Am. From (2.22), we obtain

y˚j pxq

y˚` pxq
“

ev jpx jq{ηm

ev`px`q{ηm
,

and hence

lnpy˚j pxqq “
v jpx jq

ηm
´

v`px`q
ηm

` lnpy˚` pxqq. (2.41)

Let x`,q be a characteristic of alternative ` that is excluded from the characteristics of

good j. Assuming differentiability, taking the derivative of (2.41) we obtain,

B lnpy˚j pxqq

Bv`

Bv`
Bx`,q

“´
1

ηm

Bv`
Bx`,q

`
B lnpy˚` pxqq
Bv`

Bv`
Bx`,q

. (2.42)
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By direct computation, we see,

B lny˚` pxq
Bv`

“
1

ηm
`

ˆ

ηm´1
ηm

˙

ev`{ηm

ř

rPAm
evrpxrq{ηm

´

´

ř

rPAm
evrpxrq{ηm

¯ηm´1
ev`{ηm

řM
q“1

´

ř

rPAq
evrpxrq{ηq

¯ηq

“
1

ηm
´

ˆ

ηm´1
ηm

˙

y˚` pxq
ř

rPAm
y˚r pxq

´ y˚` pxq.

The replacement by terms with probabilities can be made by inspecting (2.22). Combining

this equation with (2.42), we obtain (2.23).

Proof of Proposition 2.10. This follows from (2.23).

2.14 Appendix: Estimation with Instrumental Vari-

ables

Suppose that there are 2 alternatives and X1 is a characteristic of alternative 1.

Consider the reduced form,

Y2 “ α`βπX1` ε2

Y1 “ γ`πX1` ε1.

If Erε j | X1s “ 0 for j “ 1,2, it can be shown that this reduced form is a perturbed utility

model with v1pX1q “ πX1, v2pX2q “ 0, and a particular choice of D. We obtain (for

π‰ 0),

DR2,1pvpx1qq “

BErY2|X1“x1s
Bx1

BErY1|X1“x1s
Bx1

“
βπ

π
“ β.
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Treating X1 as a instrument for Y1, β can be estimated by standard instrumental variables

methods. When there are 3 or more alternatives or more than 1 instrument, this analysis

is more complicated. One reason is that the perturbed utility model allows conditional

means that are linear in covariates, but it places certain restrictions on the parameters.

Thus, a model-constent estimation approach would require enforcing these parameter

restrictions.

For a non-linear generalization of the preceeding analysis, now consider the

reduced form.

Y2 “ gp f pX1qq` ε1

Y1 “ f pX1q` ε2,

where we assume Erε j | X1s “ 0 for j “ 1,2 and again interpret X1 as a characteristic

specific to alternative 1.31 Then provided the derivatives exist and f 1 ą 0, we have that

BErY2|X1“x1s
Bx1

BErY1|X1“x1s
Bx1

“
g1p f pX1qq f 1pX1q

f 1pX1q
“ g1p f pX1qq,

so that complementarity is determined by the sign of g1.

31This reduced form is consistent with a perturbed model with v1pX1q “ f pX1q, v jp¨q “ 0 for j ‰ 1, and
some D.



Chapter 3

Testing Moment Inequalities: Selection

Versus Recentering

Abstract. This paper provides finite-sample power comparisons and improve-

ments for some existing tests of moment inequalities. We show that the “two-step”

recentering approach of Romano, Shaikh, and Wolf (2014) rejects whenever a moment

selection approach of Chernozukov, Chetverikov, and Kato (2014) rejects. Motivated by

the computational appeal of moment selection, we show how to improve the power of

the latter procedure by adding a correction factor to the moment selection threshold.

118
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3.1 Introduction

Moment inequalities have shown up in many forms, from testing parameter

restrictions in regressions (Wolak (1987)) to inference in partially identified models

(Imbens and Manski (2004), Stoye (2009)).1 Motivated by possible power improvements,

many proposed tests of moment inequalities have incorporated some form of pre-test

(Andrews and Soares (2010), Andrews and Barwick (2012)). The most common form of

pre-testing amounts to selecting a data-dependent point in the compound null hypothesis

and constructing critical values at that point. This can raise the rejection probability

against many alternatives while lowering it (hopefully just slightly) against others. This

paper makes two contributions to this literature.

First, we show that the recentering approach of Romano, Shaikh, and Wolf (2014)

rejects whenever a moment selection approach of Chernozukov, Chetverikov, and Kato

(2014) rejects. (Henceforth RSW and CCK, respectively.) We intentionally make this

observation only in the setting of a “small” number of moment inequalities: the approach

of CCK is motivated by testing a large number of moment inequalities relative to the

sample size and the approach of RSW has not been shown to asymptotically control size

in this setting.2

Next, we propose an improvement to the approach of CCK that retains its compu-

tational appeal. This improved moment selection (IMS) adds a correction factor to the

moment selection threshold of CCK, which weakly increases power. Despite the power

improvement, IMS is still (weakly) less powerful than RSW.

1See Ho and Rosen (2015) and Canay and Shaikh (2016) for reviews of theoretical and empirical
work.

2With the aim of testing hypotheses on parameters in partially identified models, CCK also introduce a
novel three-step test that is not analyzed here.
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3.2 Setup and Preliminaries

We now formalize our hypothesis testing problem and introduce most of our

notation. We are interested in testing the hypothesis that a finite vector of means is

weakly negative,

H0 : µ j ď 0, for j “ 1, . . . , p, Ha : µ j ą 0 for some j. (3.1)

Suppose we have an independent and identically distributed (i.i.d.) sample of random

vectors X1, . . . ,Xn, each in Rp, where Xi “ pXi1, . . . ,Xipq
T and µ j “ ErX1 js. We focus on

tests that reject for large values of the statistic

T pXq “ max
1ď jďp

?
nµ̂ j

σ̂ j
, (3.2)

where X “ pX1, . . . ,Xnq, µ̂ j “
1
n
řn

i“1 Xi j, and σ̂2
j “

1
n
řn

i“1pXi j´ µ̂ jq
2.

Now define J “ t1, . . . , pu and for a set H Ď J let qγpHq satisfy

P˚
˜

max
jPH

?
nµ̂˚j
σ̂ j

ě qγpHq

¸

“ γ,3 (3.3)

where P˚ is a probability measure over µ̂˚ “ pµ̂˚1, . . . , µ̂
˚
pq. Let qγpHq “8. The measure

P˚ may be interpreted as a bootstrap distribution. We treat this measure abstractly because

the power comparisons in this paper are numerical results that hold for any probability

measure, including the empirical bootstrap and other types of exchangeable bootstraps

(Præstgaard and Wellner (1993)).

3For technical convenience we assume γ is chosen such that this probability can be set equal to γ.
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Now for a vector m P tRYt´8uup, define q̃γpmq by

P˚
˜

max
jPJ

?
nµ̂˚j `

?
nm j

σ̂ j
ě q̃γpmq

¸

“ γ.4 (3.4)

Importantly, P˚ is the same probability measure over µ̂˚ as that used to define q̃γpHq.

Note that letting m be a vector with jth component given by m j “ 0 if j P H and ´8

otherwise, we have the relationship qγpHq “ q̃γpmq.

3.3 Power Ranking

In this section we show that the moment recentering approach of RSW is weakly

more powerful than a version of moment selection studied in CCK.

We first describe the moment recentering approach of RSW. First choose β such

that 0ď βă α. Positive β helps direct power to alternatives in which µ j ă 0 for some j.

RSW choose the recentering vector µ̃ defined by

µ̃ j “min
"

µ̂ j`
σ̂ j
?

n
qβpJq,0

*

. (3.5)

The moment recentering test of H0 is given by

φ
RSW

“ 1
 

T pXq ě q̃α´βpµ̃q and T pXq ě 0
(

, (3.6)

where φRSW “ 1 denotes rejection of H0. We include the requirement that T pXq ě 0 (i.e.

at least one sample mean needs to violate the null) since we deal with abstract P˚.

We now describe a version of the moment selection approach (see in particular

4Again, for simplicity we assume q̃γpmq can be chosen to satisfy this probability equality.
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CCK, Section 4.2.2). In order for the test to be well-defined we assume β ă α{2. We

obtain a preliminary estimate of the set of “relevant” moments,

Ĵ “
"

j P J :
?

nµ̂ j

σ̂ j
ě´2qβpJq

*

. (3.7)

The moment selection approach can be thought of as guessing µ j “ 0 if j P Ĵ, and

µ j “´8 otherwise. The moment selection test of H0 is given by

φ
MS
“ 1

 

T pXq ě qα´2βpĴq and T pXq ě 0
(

,5 (3.8)

where φMS “ 1 denotes rejection of H0.

We formalize our assumptions.

Assumption 3.1. qβpJq,qα´2βpĴq, and q̃α´βpµ̃q exist and are defined by (3.3) and (3.4).

They are constructed with the same measure P˚. βă α{2.

Assumption 3.2. The same value qβpJq is used in (3.5) and (3.7).

Existence in Assumption 3.1 is mild and is mainly for technical convenience.

Proposition 3.1. Under Assumptions 3.1 and 3.2,

φ
MS
ď φ

RSW . (3.9)

In order to formally relate φMS and φRSW , it is useful to note that

Ĵ “
"

j :
?

nµ̃ j

σ̂ j
ě´qβpJq

*

. (3.10)

The approach of CCK may be seen as first constructing µ̃, then replacing µ̃ j by 0 if j P Ĵ

5Recall qα´2βpHq “8.
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and ´qβpJq otherwise. Intuitively, this can lose some of the “heterogeneity” information

in the moments. Finally, components satisfying j R Ĵ are deleted. This deletion comes

at a cost of an additional β, which is why the final critical value is qα´2βpĴq instead of

qα´βpĴq.

Remark 3.1 (Other Statistics). With appropriate modifications, Proposition 3.1 extends

to most statistics in the moment inequalities literature, including for example

p
ÿ

j“1

max
"

0,
?

nµ̂ j

σ̂ j

*2

.

The key feature of this statistic is that it is flat in µ̂ j whenever µ̂ j ă 0. We omit the details

for brevity since the next section contains results specific to T .

3.4 Improved Moment Selection

Motivated by the computational appeal of moment selection procedures, we

propose an improved moment selection test. This test weakly dominates φMS in terms of

power but in turn is weakly dominated by φRSW .

The improved moment selection test constructs the following estimate of “relevant”

moments,

ĴI
“

"

j P J :
?

nµ̂ j

σ̂ j
ě´2qβpJq`κ

*

, (3.11)

where

κ“max
"

min
jPJ

qα´2βp jq,0
*

.6 (3.12)

ĴI differs from Ĵ (defined in (3.7)) due to the presence of κ, and we see ĴI Ď Ĵ. κ can be

6In practice, for many choices of P˚ a lower bound on κ can be approximated as Φ´1p1´α`2βq.
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introduced due to the a priori knowledge that rejection only occurs when (at least) one

moment is characterized as binding.

The improved moment selection test is given by,

φ
IMS

“ 1
 

T pXq ě qα´2βpĴ
I
q and T pXq ě 0

(

. (3.13)

To be explicit we state the following assumption.

Assumption 3.3. The same value qβpJq is used in (3.5), (3.7) and (3.11). qα´2βpĴIq

exists. κ provides an a priori bound on the critical value. βă α{3.

Proposition 3.2. Under Assumptions 3.1 and 3.3,

φ
MS
ď φ

IMS
ď φ

RSW . (3.14)

Remark 3.2 (Size Control). RSW show that when P˚ is constructed by the empirical

bootstrap,

limsup
nÑ8

sup
PPP0

EPrφ
RSW

s ď α,

where P0 is a set of null distributions that satisfy a uniform integrability condition. This

directly implies

limsup
nÑ8

sup
PPP0

EPrφ
IMS
s ď α.

3.5 Monte Carlo Study

We conduct a small Monte Carlo study to illustrate an example of the power gap

between the procedures discussed in this paper. The rejection probabilities are illustrated

in Table 3.1.
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We set nominal size at α“ .1 and set β“ α{10 following the recommendation

of RSW. Our power calculations are reported in Table 3.1 and are conducted with the

following design:

n“ 100, p“ 50, Xi „ Npµ, Ipˆpq,

where Ipˆp is the pˆ p identity matrix. µ1 varies from 0 to .4 to trace out a power curve.

For the other means j ě 2, we set µ j “ 5
´

´.1´ p j´2q
49´2

¯

.

Our simulations cover the 3 tests discussed in this paper: φMS,φIMS, and φRSW . We

run 5,000 Monte Carlo simulations. Each quantile needed for each test is approximated

with 999 bootstrap repetitions. P˚ is given by the Gaussian multiplier bootstrap of CCK.

To describe this bootstrap, let twiu
n
i“1 be i.i.d. standard normal, independent of tXiu

n
i“1.

Now let µ̂ j have jth component given by,

µ̂˚j “
1
n

n
ÿ

i“1

wiXi j.

The Gaussian distribution over twiu
n
i“1 induces the distribution P˚ over µ̂˚.

Table 3.1: Power Curve

µ1

Test 0 .05 .1 0.15 .2 .25 0.3 .35 .4

MS 2.9 8.4 18.7 34.5 53.4 72.5 86.1 94.3 98.2
IMS 5.1 12.9 26.3 43.2 62.6 79.7 90.6 96.1 99.2
RSW 7.9 18.1 33.8 53.2 72.2 86.2 94.0 98.0 99.7

Notes: Entries in the table denote rejection probabilities. Nominal size is
10%. Each scenario is based on 5,000 Monte Carlo repetitions, p“ 50
moment inequalities, and n“ 100 observations.

As shown in Table 3.1, the power differences between the three procedures

are moderately large. Recall we construct the means to be heterogeneous. RSW use

additional heterogeneity in the sample moments relative to moment selection which helps



126

understand why this design yields power differences.

3.6 Discussion

This paper shows a nesting of the rejection regions of an existing form of moment

selection, an improved form of moment selection, and the recentering approach of RSW.

This has computational implications beyond the power comparison, since it shows that

implementing RSW can be done in two steps: first do a moment selection test (which

need not involve a bootstrap); then run standard RSW only when the first step fails to

reject. Further, the result provides impetus to extend the approach of RSW to more

general settings beyond testing a finite number of moment inequalities.
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3.8 Appendix

Proof of Proposition 3.1. We consider the case qα´2βpĴq ě 0 since both tests reject only

when T pXq ě 0.

Recall that P˚ is a measure only over µ̂˚, and so other terms (including Ĵ, σ̂ j, µ̃ j)
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are treated as constants in the following derivation:

P˚
˜

max
jPJ

?
nµ̂˚j `

?
nµ̃ j

σ̂ j
ě qα´2βpĴq

¸

ď P˚
˜

max
jPĴ

?
nµ̂˚j
σ̂ j

ě qα´2βpĴq

¸

`P˚
˜

max
jPĴc

?
nµ̂˚j ´ σ̂ jqβpJqq

σ̂ j
ě qα´2βpĴq

¸

ď P˚
˜

max
jPĴ

?
nµ̂˚j
σ̂ j

ě qα´2βpĴq

¸

`P˚
˜

max
jPĴc

?
nµ̂˚j ´ σ̂ jqβpJqq

σ̂ j
ě 0

¸

ď pα´2βq`β.

(3.15)

The first inequality is due to a (weakly) conservative recentering, replacing
?

nµ̃ j with

0 if j P Ĵ and with ´σ̂ jqβpJq otherwise; this is conservative by construction of Ĵ as

easily seen in (3.10). The second inequality replaces qα´2βpĴq pě 0q with 0. The third

inequality follows from the definitions of qα´2βpĴq and qβpJq.

Recall that qα´βpµ̃q is defined as the p1´α`βq-quantile of the distribution of

max jPJ

?
nµ̂˚j `

?
nµ̃ j

σ̂ j
under P˚. From this we conclude that qα´2βpĴq ě q̃α´βpµ̃q, and hence

φMS ď φRSW .

Proof of Proposition 3.2. The first inequality is straightforward. κ ě 0 implies ĴI Ď Ĵ

which in turn implies qα´2βpĴIq ď qα´2βpĴq.

Now note that

ĴI
“

"

j :
?

nµ̃ j

σ̂ j
ě´qβpJq`κ

*

.
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The rest of the proof mirrors the proof of Proposition 3.1.

P˚
˜

max
jPJ

?
nµ̂˚j `

?
nµ̃ j

σ̂ j
ě qα´2βpĴ

I
q

¸

ď P˚
˜

max
jPĴI

?
nµ̂˚j
σ̂ j

ě qα´2βpĴ
I
q

¸

`P˚
˜

max
jPpĴIqc

?
nµ̂˚j ´ σ̂ jpqβpJq´κq

σ̂ j
ě qα´2βpĴIq

¸

ď P˚
˜

max
jPĴI

?
nµ̂˚j
σ̂ j

ě qα´2βpĴ
I
q

¸

`P˚
˜

max
jPpĴIqc

?
nµ̂˚j ´ σ̂ jqβpJqq

σ̂ j
ě 0

¸

ď pα´2βq`β.

(3.16)

Recall that we may assume without loss of generality that qα´2βpĴIq ě 0. The first

inequality follows from the previous arguments and the fact that κď qα´2βpJq ď qβpJq

since βď α{3. The second inequality follows from the fact that κď qα´2βpĴIq, which

holds by construction. The rest of the proof follows from previous arguments.
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