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Fig. 2. Sinusoidal signal corrupted by impulsive and Gaussian noise (dotted),
the actual polynomial prediction (solid), and the recursive prediction (dashed).
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Blind System Identification
Using Minimum Noise Subspace

Yingbo Hua, Karim Abed-Meraim, and Mati Wax

Abstract—Developing fast and robust methods for identifying multiple
FIR channels driven by an unknown common source is important for
wireless communications, speech reverberation cancellation, and other
applications. In this correspondence, we present a new method that
exploits a minimum noise subspace (MNS). The MNS is computed from
a set of channel output pairs that form a “tree.” The “tree” exploits,
with minimum redundancy, the diversity among all channels. The MNS
method is much more efficient in computation than a standard subspace
method. The noise robustness of the MNS method is illustrated by
simulation.

I. INTRODUCTION

Blind identification of multiple-channel FIR system driven by a
common source has recently received much attention due to its
potential applications in wireless communications. In contrast to the
traditional cost-function based adaptive approaches and the more
recent higher order statistics (HOS)-based methods, the second-order
statistics (SOS)-based methods have become a popular topic in this
community since [3], e.g., see [2] and the references therein. Among
many SOS-based methods known so far is the subspace (SS) method
shown in [1]. The SS method applies the MUSIC concept to a relation
between the channel impulse responses and the noise subspace
associated with a covariance matrix of the system output. In this
correspondence, we present a new variation of the SS method. Instead
of exploiting the full noise subspace, this new method exploits a
minimum noise subspace (MNS). The MNS method represents a solid
extension of an observation made in [1] that the full noise subspace
of the system output covariance matrix is generally not necessary to
asymptotically yield the unique (up to a constant scalar) estimate of
channel responses. We will show that the minimum dimension of the
noise subspace required for unique system identification isM � 1,
whereM is the number of FIR channels. Although not any set of
M � 1 noise vectors yields unique identification, each vector in a
proper set ofM � 1 noise vectors can be computed from one of
M � 1 covariance matrices that correspond to aproperset ofM � 1

(distinct) pairs of channel outputs. AnyM�1 pairs of channel outputs
that span a “tree” pattern as shown in Fig. 1 are aproperchoice. The
MNS method is much more efficient in computation than the SS
method. Simulations have shown that the MNS method is slightly
less robust to channel noise than the SS method.

II. CHANNEL MODEL AND THE SS METHOD

We considerM parallel FIR channels driven by a common source.
The output vector of theith channel can be written as

yi(n) = His(n) +wi(n)
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Fig. 1. “Tree” that connectsM = 5 channel outputs as its “nodes.” A tree
must have no loop and connect all its nodes. Here, the nodes 2, 4, and 5
are “ending” nodes, and the nodes 1 and 3 are “branching” nodes. (The tree
spanned byM � 1 pairs of channel outputs is the same as the tree byM �1
pairs of the columns ofH(z) in the proof for Lemma 3.)

where

yi(n) = [yi(n) yi(n+ 1) � � � yi(n+N � 1)]T

s(n) = [s(n� L) s(n� L+ 1) � � � s(n+N � 1)]T

wi(n) = [wi(n) wi(n+ 1) � � � wi(n+N � 1)]T

Hi =

hi(L) � � � hi(0) 0 � � � 0
0 hi(L) � � � hi(0) � � � 0
...

...
...

...
...

...
0 � � � 0 hi(L) � � � hi(0)

;

N � (N + L):

where

yi(n) output sequence of theith channel
s(n) input sequence
wi(n) noise sequence on theith channel (uncorrelated withs(n))
hi(k) impulse response of theith channel.
L maximum order of theM channels
N window length on each channel output.

Then, we write

y(n) = Hs(n) +w(n)

where

y(n) =

y1(n)
...

yM(n)

; w(n) =

w1(n)
...

wM(n)

and

H =

H1

...
HM

:

The matrixH is known as theMN�(N+L) generalized Sylvester
matrix [6], which has the full column rankN+L under the following
assumptions:

A1) TheM channels do not share a common zero.
A2) N � L + 1.

The blind identification problem here is to findH from the sequence
fy(n) for n = 1; 2; � � � ; Tg. The SS method [1] exploits the sample
covariance matrix of all channel outputs:

Ry =
1

T

T

n=1

y(n)y(n)H

whereH denotes the conjugate transpose. AsT becomes large, this
matrix has the asymptotical structure

Ry =HRsH
H +Rw

with

Rs =
1

T

T

n=1

s(n)s(n)H

and

Rw =
1

T

T

n=1

w(n)w(n)H :

The SS method then computes the eigendecomposition ofRy:

Ry = [Us Un ]
�s

�n
[Us Un ]

H

where the matrixUn consists of theMN � N � L less dominant
eigenvectors ofRy. In addition to assumptionsA1) andA2) if

A3) the source covariance matrixRs has the full rankN+L, and
A4) the noise covariance matrixRw is proportional to the identity

matrix (which is true when the noise is white andT is very
large)

then it can be shown [1] that range (Un) is the orthogonal comple-
ment of range (H). Hence, range (Un) is referred to as the noise
subspace. The SS method yields an estimateHe of H by solving
the equation

U
H
nHe = 0

in a least square sense (whereHe is subject to the same structure as
H). This estimate is uniquely (up to a constant scalar) equal toH

under the assumptionsA1)–A4) [1].

III. T HE MNS METHOD

In the MNS method, we first selectM � 1 distinct pairs from the
M channel outputsfyi(n); i = 1; � � � ; Mg. The M � 1 pairs of
channels (or channel outputs) must form a tree pattern, as shown in
Fig. 1, where the channels are the “nodes” of the tree. Then, for each
pair of channel outputs, we compute the covariance matrix

R
i; j
y =

1

T

T

n=1

yi(n)
yj(n)

yi(n)
yj(n)

H

and its least dominant eigenvector~vi; j . Let ~vi; j = ~v (i)

~v (j)
, where

each subvector has the dimensionN � 1. Then, define the “zero
padded” vector

v
i; j =

vi; j(1)
...

vi; j(M)

where

v
i; j(k) =

~vi; j(i) k = i

~vi; j(j) k = j

0 otherwise.

Then, we form aMN � (M � 1) matrix Vn consisting of the
M � 1 vectorsfvi; jg. Similar to the SS method, the MNS method
yields an estimateHe of H by solving the equationVH

nHe = 0 in a
least square sense (whereHe is subject to the same structure asH).
The significant computational advantage of the MNS method over the
SS method is obvious. In particular, the SS method requires a full
eigendecomposition of anMN �MN matrix, but the MNS method
computes the single least dominant eigenvector of a2N�2N matrix
in parallel for each ofM � 1 pairs of channel outputs.

We will now establish that under the assumptionsA1)–A4), a) the
MNS method yields the unique estimate ofH, and b)M � 1 is the
smallest number of vectors from the noise subspace in order for an
equation likeVH

nHe = 0 to yield the unique estimate ofH.
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Lemma 1 (Easy to Prove):For any equationvHH = 0, where
v = [v(1)

T
� � � v(M)

T
]
T with v(i) = [vi(0) � � � vi(N � 1)]

T

and H is a MN � (N + L) generalized Sylvester matrix, there
uniquely corresponds a polynomial equationM

i=1
Vi(z)Hi(z) = 0

of degreeN+L�1, whereHi(z) =
L

l=0
hi(l)z

�l of degreeL, and
Vi(z) =

N�1

l=0
vi(l)z

�l of degreeN �1. The converse is also true.
Lemma 2: If there areqvMN � 1 vectorsfvi for i = 1; � � � ; qg

such thatfvHi H = 0 for i = 1; � � � ; qg, whereH is aMN � (N +

L) generalized Sylvester matrix, thenH is (possibly) unique up to
a constant scalaronly if q � M � 1.

Proof: Using Lemma 1, it is straightforward to show that
fvHi H = 0 for i = 1; � � � ; qg is equivalent to the polynomial matrix
equationV(z)h(z) = 0 of degreeN + L � 1, whereV(z) is a
q �M polynomial matrix of degreeN � 1 uniquely corresponding
to fvi for i = 1; � � � ; qg, and h(z) is an M � 1 polynomial
vector of degreeL uniquely corresponding toH. However, using
the polynomial matrix theory [5],h(z) is determined by the equation
V(z)h(z) = 0 uniquely up to a polynomial (or constant) scalaronly
if q � M � 1.

It is easy to show that under the assumptionsA1)–A4), the vector
v
i; j satisfies (vi; j)HH = 0. Since the MNS method only relies on

M � 1 noise vectors, Lemma 2 has now established that the MNS
method exploits a “minimum” noise subspace.

Lemma 3: The MNS method yields the unique (up to a constant
scalar) estimate of the channel responses under the assumptions
A1)–A4).

Proof: From Lemma 1, the equation(vi; j)HH = 0 is equiv-
alent to a polynomial equation

Vj(z)Hi(z)+ Vi(z)Hj(z) = 0

of degreeN + L� 1, whereVi(z) andVj(z) are of degreeN � 1

andHi(z), andHj(z) are of degreeL. Similarly, each subequation
(v

i; j
)
H
He = 0 in the “overall” MNS estimation equationVH

nHe =

0 is equivalent to a polynomial equation

Vj(z)He (z) + Vi(z)He (z) = 0

where the degrees of all polynomials are the same as in the previous
polynomial equation. Combining these two polynomial equations
yields

Hj(z)He (z)�Hi(z)He (z) = 0

. Using this equation for each of theM � 1 pairs of channels, it
follows that the solution toVH

nHe = 0 is equivalent to that of the
polynomial matrix equation

H(z)he(z) = 0

of degree2L, whereH(z) is an (M � 1) �M polynomial matrix
of degreeL uniquely corresponding tofHi(z) for i = 1; � � � ; Mg,
and he(z) is an M � 1 polynomial vector of degreeL uniquely
corresponding tofHe (z) for i = 1; � � � ; Mg (or, equivalently,He).
Note that each row ofH(z) only has two nonzero entries and, hence,
defines a pair of columns. TheM�1 pairs of columns defined by the
M �1 rows ofH(z) also span a “tree” that connects allM columns
ofH(z) as its “nodes.” This tree is identical to the tree spanned by the
pairs of channel outputs (Fig. 1). Note that removing a column and
a row ofH(z) associated with an “ending node” decreases the rank
of H(z) by one, and whenH(z) is 1� 2, its rank is one. It follows
by induction thatH(z) has the full row rankM � 1. Therefore, the
solution for theM �1 vectorhe(z) to the equationH(z)he(z) = 0

must be unique up to a polynomial scalar [5]. Furthermore, sinceh(z)

is a solution of degreeL toH(z)he(z) = 0 and there is no common

TABLE I
IMPULSE RESPONSES OF THEM -CHANNEL SYSTEM. OTHER

PARAMETERS AREM = 4; L = 5; N = 6; T = 245

Fig. 2. Performance comparison of the SS method and the MNS method.
MSE versus SNR.

zero among all channels (seeA1)), h(z) must be the unique solution
up to a constant scalar.

Lemma 3 has established that the MNS method yields asymptot-
ically the unique estimate ofH. This section has provided a much
stronger result than a discussion in [4] on the MNS method.

It is worth noting that the concept behind the MNS method would
become much simpler if assumptionA1) was replaced by the stronger
assumption that “no pair in the set of channel pairs that span a tree has
a common zero.” Under the latter assumption, it is easy to show that
the least eigenvector associated with each pair of channels yields the
unique estimation for that pair of channels, and hence, theM�1 least
eigenvectors associated withM�1 properly chosen pairs of channels
uniquely determine all channels. However, this correspondence has
presented a much stronger result than the above observation.

IV. PERFORMANCE OF THEMNS METHOD

In our simulation, we used a system of four (M = 4) parallel
FIR channels. The first channel is given by the GSM test channel
[7] with six (L = 5) delayed paths. The other three channels are
generated by assuming a plane propagation model for each path
with corresponding electric angles uniformly distributed in[0; �=3].
A realization of the channel impulse responses is given in Table
I. The output observation noise is an i.i.d. sequence of zero-mean
Gaussian variables. The input signal is an i.i.d. sequence of zero-
mean, unit-variance QAM-4 variables independent from the noise.
The performance is measured by

MSE (dB)= 10 log
10

1

Nr

N

r=1

khr � hk2
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whereNr is the number of independent runs(Nr = 100); h is
the true (unit-norm) vector of the impulse responsesfhi(k) for i =
1; � � � ; M andk = 0; � � � ; Lg; hr is the estimated (unit-norm)
vector of impulse responses at therth run. Note that the equation
V
H

n
He = 0 was solved subject tokhek = 1, and for each run,

we computedhr = �he, where� = h
H

e
h is a phase adjuster. The

signal-to-noise ratio is defined as

SNR (dB)= 20 log
10

khk�sp
M�w

where�s and�w denote the deviations of the input and the noise,
respectively. Fig. 2 compares the performances of the SS and MNS
methods. This figure (which is associated with the case defined by
the table) is quite typical among all the cases that we considered in
our simulation. In the region where the MSE is relatively small (say
�35 dB), the MNS method required an SNR of no more than 3 dB
higher than the SS method, to yield a given value of MSE.
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Optimum Block Adaptive Filtering Algorithms
Using the Preconditioning Technique

Jae Sung Lim and Chong Kwan Un

Abstract—We propose three block adaptive algorithms using the
preconditioning technique. The Toeplitz-preconditioned optimum block
adaptive (TOBA) algorithm employs a preconditioner assumed to be
Toeplitz, the SSOR-preconditioned optimum block adaptive (SOBA) al-
gorithm uses a product of triangular matrices as a preconditioner,
and the circulant-preconditioned OBA (COBA) algorithm is based on
a circulant preconditioner. It is also shown that their tracking properties
and convergence rates are superior to those of the OBA algorithm, the
self-orthogonalizing block adaptive filter (SOBAF), and the normalized
frequency-domain OBA (NFOBA) algorithm.

I. INTRODUCTION

Among the block adaptive algorithms [1]–[7], the block LMS
(BLMS) algorithm [1] is based on the block mean-square error
(BMSE) and employs a fixed step size called the convergence factor
that controls its convergence rate as well as its steady-state behavior.
Unlike the BLMS algorithm, the optimum block adaptive (OBA)
algorithm [2] employs a time-varying step size called the time-varying
convergence factor, which is optimized in a least-square (LS) sense
and updated at each block iteration. However, their convergence
rate greatly slows down when the eigenvalue spread of the input
autocorrelation matrix becomes large because they are inherently
gradient algorithms.

The self-orthogonalizing block adaptive filter (SOBAF) algorithm
[6] proposed by Pandaet al. is based on the assumption that the
autocorrelation estimate is a Toeplitz matrix. They showed that the
algorithm converges under any input conditions at the same rate as
it would if the input was white. The same concept was studied in
[5] and [7] as slightly different approaches. In these approaches,
the autocorrelation estimate is assumed to be a circulant matrix so
that it can be diagonalized by the Fourier matrix. Particularly, Yon
and Un developed the normalized frequency-domain OBA (NFOBA)
algorithm by utilizing a relative normalization technique [7].

In this correspondence, we propose several adaptive algorithms
using the preconditioning technique that can be regarded as a self-
orthogonalization. The Toeplitz-preconditioned OBA (TOBA) is de-
rived by employing the Toeplitz preconditioner, the symmetric suc-
cessive overrelaxation (SSOR) preconditioned OBA (SOBA) is pro-
posed by using the SSOR preconditioner assumed to be a product of
triangular matrices, and the circulant-preconditioned OBA (COBA)
algorithm is formulated by using the circulant preconditioner. In the
algorithms, the filter tap weights are updated along the direction
vector instead of the gradient vector. Additionally, the time-varying
step size is optimized in the direction of the direction vector. The
convergence rates of the proposed algorithms are fast, as compared
with those of the SOBAF and NFOBA algorithms as well as the OBA
algorithm. Moreover, the proposed algorithms do not have the initial
instability problem existing in the SOBAF and NFOBA algorithms.
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