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Abstract

In recent studies of semantic representation, two distinct
sources of information from which we can learn word
meanings have been described. We refer to these as at-
tributional and distributional information sources. At-
tributional information describes the attributes or fea-
tures associated with referents of words, and is acquired
from our interactions with the world. Distributional in-
formation describes the distribution of words across dif-
ferent linguistic contexts, and is acquired through our
use of language. While previous work has concentrated
on the role of one source, to the exclusion of the other,
in this paper we study the role of both sources in combi-
nation. We describe a general framework based on prob-
abilistic generative models for modelling both sources of
information, and how they can be integrated to learn se-
mantic representation. We provide examples comparing
the learned structures of each of three models: attri-
butional information alone, distributional information
alone, and both sources combined.

Keywords: Probabilistic Models; Semantic Represen-
tation; Information Integration.

Introduction
We can distinguish between two distinct sources that
provide us with information about the meanings of
words. The first is what we will call attributional in-
formation. This describes physical, emotional and con-
ceptual (or otherwise nonlinguistic) attributes associated
with the referents of words. These are features or at-
tributes associated with words that are based upon or
built up from our interactions in the environment, and
our knowledge of the objects and relationships in the
world. A second source of information about word mean-
ings is what we will call distributional information. This
describes the distribution of words across different lin-
guistic or textual contexts. This type of information has
been memorably summarized by the phrase “you shall
know a word by the company it keeps”, (Firth, 1957).
In other words, the type of linguistic contexts in which
a word occurs can provide clues as to what that word
might mean.

While these two sources of information are not un-
correlated, neither are they identical, and it is plausi-
ble to assume that they are both utilized when learning
the meaning of words. The two sources are correlated
because words that refer to similar things or events in
the world are likely to appear in similar linguistic con-
texts. The reverse case could also be argued. Knowing

that two words appear in similar texts might imply that
these words refer to similar things in the world. It is,
however, reasonable to assume that these sources are
distinct, or that one source is not entirely explained by
or dependent upon the other. For example it can be ar-
gued that attributional information is more important
in learning words referring to concrete entities and ac-
tions, for which the properties of the thing or event in the
world can be experienced via the senses, whereas distri-
butional information may be more important in learning
abstract words, those that we learn primarily via lin-
guistic context. Thus both types of information can be
exploited in order to learn word meanings. In previous
studies, the contributions of either source alone, inde-
pendent of the other, have been studied. In particular,
within cognitive psychology, researchers have primarily
focused on the development of models of meaning repre-
sentation based on attributional information (Collins &
Quillian, 1969; Hinton & Shallice, 1991; McRae, Sa, &
Seidenberg, 1997; McClelland & Rogers, 2003; Minsky,
1975; Smith, Shoben, & Rips, 1974; Vigliocco, Vinson,
Lewis, & Garrett, 2004), whereas recently within compu-
tational linguistics, machine learning and related areas in
cognitive science, researchers have primarily focused on
distributional information alone (Burgess & Lund, 1997;
Dagan, Lee, & Pereira, 1997; Griffiths & Steyvers, 2003;
Hofmann, 1999b; Landauer & Dumais, 1997; Schütze,
1992). In this paper, we describe a model that uses both
sources in combination as the basis of semantic repre-
sentation.

Generative Models of Semantic
Representations

Probabilistic generative models provide a general means
by which to model semantic representation. This ap-
proach has already been pursued both within machine
learning (Blei & Ng, 2003; Hofmann, 1999b, 1999a; Teh,
Jordan, Beal, & Blei, 2004) and within cognitive science
(Griffiths & Steyvers, 2003, 2002). Generative models
describe the data of interest in terms of explicit proba-
bilistic relations and variables. The nature of these rela-
tionships and variables are inferred or learned from data.
This general class of models can be used to model the
role of both attributional and distributional information.
Indeed, many of the previous models of semantic repre-
sentation, mentioned above, can be described as implic-
itly falling within this general class. In this paper, we
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will use this approach to model both the independent
and joint role of distributional and attributional infor-
mation in semantic representations.

Considering the role attributional information alone
plays in semantic representation, a suitable generative
model would describe how concrete terms (or more prop-
erly, their referents) are generated. In this case, a simple
generative model might assume that concrete terms are
defined in terms of a distribution over latent attribute
classes, and that these attribute classes are themselves
probability distributions over binary properties or fea-
tures. Concrete terms are distributions over these fea-
tures, obtained by repeatedly sampling from the distri-
bution of latent attribute classes and then sampling from
the distributions over binary properties associated with
these classes.

Considering the role distributional information alone
plays in semantic representation, an appropriate gen-
erative model would describe how a text is generated.
Henceforth, we will use the term text to refer to any
linguistic or textual utterance. While this could be an
entire article, book, or transcribed conversation, we will
usually use the term to refer to paragraphs, sentences,
or strings of consecutive words in written documents or
transcribed speech. A simple generative model of texts
might assume that texts are multinomial distributions
over latent semantic classes or topics, and that these la-
tent topics are themselves multinomial distributions over
words. A text is generated by repeatedly sampling from
the distribution over latent topics, and then sampling
from their corresponding distributions over words. In
such a model, the semantic representation of a given
word is defined in terms of its posterior probability dis-
tribution over the latent classes. In other words, the se-
mantic representation of a given word is the probability
distribution over the latent topics that can be inferred
whenever the word is generated.

Combining the two sources of information is straight-
forward. The data we observe consists of sets of words,
and associated with each word is a distribution over
binary non-linguistic attributes. As will be clarified,
we can assume that a distribution over latent variables
accounts for both the distribution of words in a text
and the distribution of binary features associated with a
given word. The semantic representation of a word is de-
fined in terms of its posterior distribution over these la-
tent topics. These semantic representations will be con-
strained to account for both the distributions of words
in texts, and the distributions of binary attributes asso-
ciated with given words.

The intuitive rationale behind the model is as follows:
On its own, the statistical structure and patterns in a
language can provide information about word meanings.
A subset of the words in the language are associated
with physical objects or events in the world, and this
information can be integrated with statistical patterns
in language. As a contrived example, knowledge that
the word cat refers to those creatures with claws and
whiskers that meow, etc. can be integrated with im-
plicitly acquired statistical knowledge that cat co-occurs

with the words dog and pet, etc. This two sources of
information could be combined to provide a richer un-
derstanding of the semantics of the word cat than could
be learned by either source alone.

The Model: Formal Specifications

We can make the preceding description more formal as
follows. The observable data that we are modelling con-
sist of both texts and the attributes associated with
words. As mentioned, texts take the form of para-
graphs, sentences and strings of consecutive words in
a natural language corpus. If there are J texts in a
corpus, we can label them as {z1, z2 . . . zj . . . zJ}. The
texts are, in general, of variable length. For example,
text zj is of length Tj and consists of the sequence of
words {wj

1, w
j
2 . . . wj

tj
. . . wj

Tj
}. For each possible j and

t, wj
tj

will be a word in the vocabulary of word-types
V = {v1, v2 . . . vk . . . vK}. What defines a word-type for
our purposes is described below, but in general, word-
types are a set of common dictionary words in English.

A subset of the words in any human language will
concrete words, or words that refer to objects, events,
actions, etc., in the world. Assume that of the K dic-
tionary words in V we have obtained a set Vf of N con-
crete words, where N ≤ K. For each word in Vf we
have a probability distribution over a set of L binary
features. We can represent this binary feature vector by
y = {y1, y2 . . . yl . . . yL}, where yl is the lth binary fea-
ture of y. Each feature is a property or attribute that
could be associated with the physical referent of the con-
crete words in Vf .

To model semantic memory according to the descrip-
tion provided above, we provide generative models for
the case where attributional data alone is used, where the
distributional data alone is used, and where both data
sources are used. The graphical models (or Bayesian
Networks) for these three generative models are shown in
Figure 1. A graphical model describes the conditional in-
dependence structure of the variables in a model. Taken
together, we have the observable variables wt, yt and
zt that represent, respectively, the words, features and
text occurring at a time t. In addition, we introduce the
latent-variable xt ∈ {ξ1, ξ2 . . . ξm . . . ξM}. As a latent,
or hidden, variable the value of xt is unobserved. We
see that in the attributional model, the binary attribute
vector yt is conditioned upon xt, while xt is conditioned
upon the word label wt. In the distributional model, we
have the observable words conditioned upon the latent-
variable xt, which is then conditioned upon the text zt.
In the combined model, both the words wt and binary at-
tribute vector yt are conditioned upon the latent-variable
xt, with xt conditioned upon the text zt. The paramet-
ric forms of these conditional distributions are as follows.
(The parameters in the models are referred to generically
as θ, until further specified).

Attributional Model
In the attributional model, the probability of the ob-
served binary attributes yt, conditioned upon wt can be
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(a) Attributional Model
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(b) Distributional Model
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(c) Combined Model

Figure 1: The generative models that utilize a) attributional, b) distributional and c) combined information sources.

factored as

P
(
yt

∣∣wt, θ
)
=

∑
{xt}

P
(
yt

∣∣xt, θ
)
P

(
xt

∣∣wt, θ
)
, (1)

where the latent variable xt is integrated over. The prob-
ability that the lth binary variable of yt, i.e yt

l , takes the
value 1 given that xt = ξm, is denoted by pml. The prob-
ability that xt takes the value ξm given the value of wt,
is denoted by π

[wt]
m . We can re-write (1) as

P
(
yt

∣∣wt, θ
)
=

M∑
m=1

π[wt]
m

L∏
l=1

p
(1−yt

l )
ml (1− pml)(1−yt

l ). (2)

As such, the attributional model is a mixture of M mul-
tivariate Bernoulli distributions.

Distributional Model
In the distributional model, the probability of the ob-
served word wt, conditional upon observing text zt can
be factored as

P
(
wt

∣∣zt, θ
)
=

∑
{xt}

P
(
wt

∣∣xt, θ
)
P

(
xt

∣∣zt, θ
)
. (3)

The probability of observing that wt = vk given that
xt = ξm is denoted by qmk. The probability that xt = ξm

upon observing that zt = j, is denoted by π
[zt]
m . We can

re-write (3) as

P
(
wt

∣∣zt, θ
)
=

M∑
m

π[zt]
m

K∏
k=1

q
I(wt=vk)
mk , (4)

where I(a) is an indicator function, taking the value 1 if
its argument a is true, and 0 otherwise. The distribu-
tional model is, as such, a mixture of multinomial distri-
butions.

Combined Model
In the combined model, as shown in Figure 1, both the
word label wt and attribute vector yt are conditioned
upon the latent variable xt, which is conditioned upon
the text zt. Integrating over the values of xt, the condi-
tional likelihood of the observables is

P
(
yt, wt

∣∣zt, θ
)

=
∑
{xt}

P
(
yt

∣∣xt, θ
)
P

(
wt

∣∣xt, θ
)
P

(
xt

∣∣zt, θ
) (5)

and substituting in parameters pml, qmk and π
[zt]
m as in

(2) and (4)

=
M∑
m

π[zt]
m

K∏
k=1

q
I(wt=vk)
mk

L∏
l=1

p
(1−yt

l )
ml (1−pml)(1−yt

l ). (6)

As such, the combined model is a mixture of both mul-
tivariate Bernoulli distributions and multinomial distri-
butions.
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Model Learning
Given a set of training data D consisting of both texts
and attributes associated with concrete words, for each
model above we would ideally wish to estimate P

(
θ
∣∣D)

,
or the posterior probability of the parameters given the
data. In any analyses of the models, we would then in-
tegrate over this entire distribution. In related work, we
are using Markov-Chain Monte Carlo (MCMC) simula-
tions to compute these posteriors, however these studies
will not be described here. For present purposes, we will
approximate P

(
θ
∣∣D)

by its modal point θmp, which as-
suming a prior distribution over the parameters, is given
by its maximum likelihood estimate θmle.

The standard procedure for maximum-likelihood (or
maximum posteriori) estimation in latent-variable mod-
els is Expectation-Maximization (EM). This consists of
iteratively computing a lower-bound on the likelihood
of the data P

(
D

∣∣θ), and maximizing this bound with re-
spect to the parameters. This leads to a set of parameter
update rules that can be guaranteed to monotonically in-
crease the likelihood and converge to an (at least local)
maximum. For example, in the case of the combined
model above, the update rules for pml, qmk and π

[zt]
m are

pml ∝
J∑

j=1

Tj∑
tj=1

P
(
xt =ξm,

∣∣wt, yt, zt =j, θ
)
yt

l , (7)

qmk

∝
J∑

j=1

Tj∑
tj=1

P
(
xt =ξm,

∣∣wt, yt, zt =j, θ
)

I(wt =vk),
(8)

π[zt]
m ∝

Tj∑
tj=1

P
(
xt =ξm,

∣∣wt, yt, zt =j, θ
)
. (9)

The update rules for the attributional model and distri-
butional model are special cases of the above rules, with
the appropriate changes having been made.

Simulations

The text corpora used consisted of fiction and non-fiction
books publicly available at the Oxford Text Archive
(≈ 6.5 · 106 words) and Project Gutenberg (≈ 11.6 · 106

words), Reuters Newswire texts (≈ 2.5 · 106 words), and
a set of Usenet articles (≈ 5.25 · 106 words). We folded
British into American spellings (e.g. centre to center,
favour to favor, realised to realized, etc.), folded affix-
variations of words into their word-stems (e.g. swims,
swam, swum, swimming changed to swim, etc.), erad-
icated non-words (using a standard American-English
dictionary), and eradicated stop-words (using a standard
list of ≈ 550 stop-words). This reduced the corpora to a
total size of ≈ 7.7 · 106 words, with 16, 956 word-types.
By further eradicating all word-types that appear with
a frequency of greater than 104 or less than 102, we can
reduce the total size to ≈ 6.1·106 words, and 7, 393 word-
types. This corpus was divided into a set of 51, 160 texts,
each of which were ≈ 150 words long.

In a previous study, Vigliocco et al. (2004) compiled
frequencies of a set 1029 binary attributes associated
with a set of 456 common words. The 456 words con-
sisted of 230 nouns, of which 169 referred to objects and
71 to actions, and 216 verbs, all of which referred to
actions. The attribute-types and their frequencies were
collected from speaker-generated lists of attributes asso-
ciated with the 456 words. This was done in a manner
similar to that used in McRae et al. (1997). Certain
word types referred to distinct verb and noun senses, e.g.
(the) hammer and (to) hammer. For present purposes,
these word-types were regarded as identical and the vec-
tors associated with the words were collapsed. Out of
this set of words, a subset of exactly 300 also occurred
in our reduced (i.e. 7, 393 word-types) text corpora.

In summary, the text corpora consist of 51, 160 texts,
each described by a frequency distribution over 7, 393
word-types. Of these 7, 393 word-types, a subset of 300
are also described by a frequency distribution over 1029
attribute-types. The word-attribute set alone, the text
set alone and the word-attribute and text-set together
were used to train the distributional model, attributional
model and combined models, respectively. In all cases,
this was done using EM to find the maximum likelihood
estimates of the parameters given the observed data-
sets. In the simulations described here, the attributional
model used a latent-variable of dimensionality 150 with
both the distributional model and the combined model
used latent-variables of dimensionality 300.

Analysis of Trained Models

As described above, the latent variables in each model
can be seen as distributions over words, attributes or
both. In Figure 2, we illustrate some of these latent
variables. For each case, we draw samples of the words
and/or attributes with which they are associated. The
distributional model learns latent variables that corre-
spond to multinomial distributions over words. These
distributions can be intuitively viewed as topics that
have been learned by the model. In the three exam-
ple latent variables shown for the distributional model
(i.e. the three leftmost columns of Figure 2), we see
topics that could be labelled government, business and
religion. In the attributional model, latent variables
correspond to distributions over binary attributes and
can intuitively be viewed as attribute classes. Examples
of attribute-classes, and the samples over attributes to
which they correspond, are shown in the middle three
columns of Figure 2). These classes could be labelled
human-body, fruit-vegetable and clothing. In the case of
the combined model, latent variables correspond to dis-
tributions over both words and attributes. In this sense,
they are merges or combinations of both attributional
and distributional classes. We provide some examples in
the rightmost three columns of Figure 2). The classes
learned could be labelled transport, medical and war,
each defined both by clusters of words and clusters of
attributes. The words are given in uppercase, while the
attributes are in lowercase.

In each model, we can measure how much any given
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NATION MONEY ALLAH human fruit leg CAR PATIENT WAR

AUTHORITY HUNDRED BIBLE face green clothing HORSE MEDICAL GUN

PRINCIPLE COURT BELIEF hair grow wear RIDE DOCTOR KILL

CENTURY LAND APOSTLE eye red body DRIVE HEALTH ATTACK

UNITE PAY CHURCH shoulder round protect DRIVER MEDICINE KNIGHT

GOVERNMENT THOUSAND DISBELIEVE leg sweet cover transport nose kill

SOCIETY TAX CHRIST hand juice body vehicle body weapon

RELIGION CITY JESUS body tree warm 4-legs human anger

CONSTITUTION SCIENCE MARRY foot eat long wheel eye fear

POLITICAL OFFICE SPIRIT mouth food humans car head yell

Figure 2: Examples of latent classes learned by (from left to right) the distributional, attributional and combined
models. For each example latent class, we have drawn samples of the words and/or the attributes they correspond
to. Capitals refer to words, while lower case refer to attributes.

word predicts any other. The extent to which word vj

predicts vi is given by

P
(
w = vi

∣∣w = vj , θ
)

=
∑
{x}

P
(
w = vi

∣∣x, θ
)
P

(
x
∣∣w = vj , θ

)
. (10)

In both the distributional model and the combined
model, P

(
w = vi

∣∣x, θ
)

is the likelihood term of the
model, while P

(
x
∣∣w = vj , θ

)
is given by Bayes rule,

P
(
x
∣∣w = vj , θ

)
∝

∑
{z}

P
(
w = vj

∣∣x)
P(x, z) . (11)

On the other hand, for the attributional model
P

(
x
∣∣w = vj , θ

)
is directly available, while P

(
w = vi

∣∣x, θ
)

is obtained by Bayes rules, i.e.

P
(
w = vi

∣∣x, θ
)
∝ P

(
x
∣∣w = vi, θ

)
P

(
w = vi

∣∣θ) (12)

How predictive any word is, given an observation of an-
other word, can be taken as a measure of semantic relat-
edness. This measure may, perhaps, be more theoreti-
cally motivated than other measures that are based upon
a distance metric. This argument is already presented in
detail in Griffiths and Steyvers (2003). What a predic-
tion of a word vi by a word vj means can be interpreted
as given that we are observing vj in this text, how proba-
ble is word vi. Below, we show words predicted by some
example words in each of the three models. For compar-
ison purposes between the models, here we provide only
prediction of words that were in both the text-based and
attribute-based data-sets.

Dog

Distributional : growl bark chase lick whine cat tail paw
wolf snap
Attributional : cat rabbit goat tail pig fox sheep horse
bear fur
Combined : cat growl tail bark paw whine chase sheep
lick wolf

Gun

Distributional : threat stab knife bomb kick kill argue
snap knock murder
Attributional : murder sword dagger bomb threat knife
shield threaten stab scream

Combined : threat knife murder stab bomb threaten kick
snap knock argue
Ride
Distributional : motorcycle bicycle horse chase pant slide
thumb truck clatter ankle
Attributional : carry drive travel train move pull ap-
proach walk push truck
Combined : motorcycle bicycle horse travel pull slide
truck chase carry push

Discussion
The attributes associated with a word, and its distri-
bution across texts both provide information about its
the meaning. Either source alone can provide informa-
tion not provided by the other: Attributes provide in-
formation about the physical (or nonlinguistic) relation-
ships in the world between the referents of the word,
while distributional information provide a rich patterns
of linguistic (or non-physical) contexts where the word is
found. While attributional information is undoubtedly
used to learn concrete words, distributional information
provides valuable information about the behavior of ab-
stract words. While in previous studies, the role in se-
mantic representations of each source, independent of
the other, has been investigated, in this paper we de-
scribe how both sources can be used in combination.

In using both sources of information, patterns in one
source can interact with those of another. As a trivial
example, if words va and vb are related with respect to
attributional information, while word vb and vc are re-
lated with respect to distributional information, that we
might infer that va and vc are related. Inferences may
be made given the ensemble of correlations between and
within the two data sources. Such inferences are sug-
gested by the latent variables that are learned and shown
in Figure 2. For example, in the case of the combined
model’s latent classes shown in Figure 2, we can see that
attributional information leads to knowledge of patterns
of body-parts, while distributional information leads to
knowledge of patterns relating to medicine. Together
both can lead to an inference that the realm of medicine
and medical things are coupled with realm of body-parts
and functions.

Conclusions and Further Work
Models that can integrate attributional and distribu-
tional information may inform us about how knowledge
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derived from experience in the world and knowledge de-
rived from language may be integrated to lead to human
semantic representations. This is the starting point and
motivation behind this present work. Models based on
attributional information develop semantic representa-
tions from the nonlinguistic attributes associated with
the referents of words. This is an intuitively appealing
idea about how word meanings are acquired. From a
developmental perspective, these models provide an ac-
count of how word meanings can be linked to conceptual
knowledge that develops independent of language. How-
ever, attributional information does not represent the
only source of information about word meaning. From
early stages in their development, children are exposed to
language and it is reasonable to assume that they implic-
itly use the distributional information inherent in their
linguistic input in order to learn new words, as well as to
enrich the semantic representation for words referring to
concrete referents. Using probabilistic models we have
shown how these two different sources of information can
be integrated to form semantic representations.

Two projects are to be carried out to further the ideas
presented here. The first regards the models that are
used. The EM algorithm is prone to local minima, as
well as data over-fitting. This can limit the usefulness of
the models that we have presented here. Bayesian learn-
ing methods based on MCMC sampling can be used to
sample from the posterior probability of the parameters,
and integrate over this for both learning and inference.
These methods have already been pursued in related
probabilistic models used for learning semantic repre-
sentations (Blei & Ng, 2003; Griffiths & Steyvers, 2003,
2002; Teh et al., 2004). The second project concerns
comparison with human behavioral data. We speculate
that semantic relationships formed when both attribu-
tional and distributional information are used in combi-
nation will be more accurate in describing human per-
formance than models based on either source alone.
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