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Abstract

Imaging mass spectrometry has become a mature molecular mapping technology that is used 

for molecular discovery in many medical and biological systems. While powerful by itself, 

imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically 

informative imaging technologies to maximize the information gained from a single experiment 

and enable deeper understanding of biological processes. Within this review, we describe 

MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been 

integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and 

electrochemistry in a field termed multimodal imaging. We explore the future of this field and 

discuss forthcoming developments that will bring new insights to help unravel the molecular 

complexities of biological systems, from single cells to functional tissue structures and organs.
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1. INTRODUCTION

Imaging mass spectrometry (IMS) is a technology that enables the mapping of hundreds 

to thousands of molecules within biological systems.1–6 The instruments within the field 

can measure a diverse array of sample types and chemical classes, ranging from low 

molecular weight metabolites7–10 and signaling molecules11–13 to lipids,14–21 peptides,22–24 

and proteins.25–29 A typical IMS experiment involves defining an area of the sample surface 

to be imaged followed by the desorption and ionization at multiple discrete locations. Each 

desorbed location, or pixel, is composed of an individual mass spectrum. A molecular 

image is generated for each signal recorded by plotting the ion intensity of that signal 

throughout the array of pixels generated from the sample. While there are many types of 

IMS technologies that have been reported in literature, we highlight here the three most 

common: matrix-assisted laser desorption/ionization (MALDI),30,31 secondary ion mass 

spectrometry (SIMS),32–34 and desorption electrospray ionization (DESI).35–38 Additional 

information on other types of IMS technologies can be found in several recent reviews.1,4,39

Each IMS technology can be coupled to a variety of analytical approaches to enhance 

the information gained in a single experiment. Although IMS provides rich, chemically 

informative spectra and mapping capabilities, combining this unique mass specific 

technology with other analytical approaches can provide additional information for an 

analyzed sample. Combining two or more imaging modalities is termed multimodal 

imaging. The accrued advantages include enhanced discrimination between modality 

specific chemical and instrumental noise from biologically relevant chemical signals, 

improved sensitivity and specificity of chemical classes not easily analyzed by a single 

modality alone, and enhanced data mining capabilities. Combining IMS technologies 

with other analytical approaches provides a more effective means to probe the molecular 

complexity of biological systems. In this review, we summarize major advancements in the 
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field of multimodal imaging mass spectrometry over the past few years and discuss the 

exciting future of this field.

2. OVERVIEW OF IMAGING MASS SPECTROMETRY TECHNOLOGIES

2.1. Matrix-Assisted Laser Desorption/Ionization.

MALDI is a common ionization method within the IMS field as it can visualize numerous 

molecular species over a broad mass range with great molecular diversity. For tissue 

analysis, sample preparation typically involves sectioning of tissues and thaw mounting 

these sections onto a glass slide or other target (e.g., conductive surface for high voltage 

ion sources) and subsequent application of an organic chemical matrix that aids in 

analyte desorption and ionization.40 Spatial resolution is defined by the ablation area 

of the laser and the distance between pixels (pitch). A variety of matrices are used for 

specific molecular classes. Commonly used matrices include 2,5-dihydroxybenzoic acid41 or 

cyano-4-hydroxycinnamic acid42 for positive ion mode analysis of metabolites, lipids, and 

peptides. Additionally, 9-aminoacridine43 is typically used for negative ion mode analysis of 

metabolites, lipids, and proteins, while 1,5-diaminonaphthalene44 is employed for analysis 

of lipids in both ion polarities. Recently norharmane has been shown to be effective for 

the analysis of hydrophobic molecules and low molecular weight metabolites.45 Matrix 

deposition is often performed robotically to best balance reproducibility, analyte extraction, 

achieve small crystal size, and produce coating homogeneity, although sublimation, sieving, 

and airbrushing are also used in the field.4,46

As high spatial resolution MALDI IMS capabilities are developed that approach cellular and 

subcellular resolutions, challenges in sensitivity arise as the number of molecules sampled 

decreases with smaller pixel sizes. Ultimately, spatial resolution is dependent upon multiple 

factors such as matrix crystal size, laser focus, and stage motor step precision. Most modern 

MALDI IMS platforms utilize either a frequency tripled Nd:YAG (355 nm) or nitrogen gas 

laser (337.7 nm) and can achieve spatial resolutions of 5–20 μm using traditional front-side 

laser optics.50–52 Improving laser focus beyond 5 μm can be achieved with more advanced 

setups using lower laser wavelengths (e.g., 213 nm) or changing laser geometries (e.g., 

transmission-mode), to minimize the effective spot size as described in the next several 

examples. For instance, Heiles et al. demonstrated a new source that integrates a 213 nm 

laser allowing for a ~3 μm footprint using front-side laser optics.53 Alternatively, Zavalin 

and coworkers developed a transmission-mode geometry MALDI source, where the UV-

laser is redirected to ablate the sample from the back side. By decoupling the laser and ion 

optics, higher numerical aperture objectives can be utilized without impeding the ion path, 

resulting in ~1 μm spot sizes.54 However, a drawback of any high spatial resolution IMS 

experiment is a reduction in ion abundances; the Caprioli55 and Dreisewerd47 laboratories 

incorporated a secondary laser perpendicular to the primary ablation plume as a means 

to enhance ionization of transmission geometry setups. An example of these data sets is 

featured here (Figure 1A).
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2.2. Secondary Ion Mass Spectrometry.

SIMS utilizes electrostatically focused primary ions (e.g., Bi+, Cs+, and O−) or clusters 

(e.g., Au3 +, C60, and Ar) to impact the sample surface, causing a collisional cascade in the 

top few monolayers of the sample leading to the ejection of secondary ions.2,34 Because 

of the high energy of the ion beam, analyte ions often undergo significant fragmentation 

and analysis is typically limited to molecular weight ions <2 kDa.56 The energy of the 

ion beam plays a critical role in sampling and can be divided into two regimes: static and 

dynamic SIMS. Static SIMS is defined by low primary ion doses (<1013 cm−2) and beam 

currents (pA-nA) suitable for surface analysis of elements and molecules. Alternatively, 

dynamic SIMS has much higher primary ion doses (>1013 cm−2) and beam currents (mA), 

making it suitable for depth profiling and three-dimensional imaging.57 In general, sample 

preparation for SIMS analysis is minimal and consists of mounting tissues flatly onto 

conductive targets and drying prior to introduction into the source vacuum chamber.58,59 

Although not required, washing samples to remove salts from tissue prior to analysis can 

improve ion yield.60,61

The primary advantage of SIMS is its high spatial resolution capabilities because ion beams 

can be tightly focused using electric fields (1 μm to 30 nm).32 Similar to MALDI, SIMS 

spatial resolution is defined by the diameter of the ion beam at the surface and the pitch. 

SIMS has been used for cellular and subcellular analyses62–65 and for the determination of 

molecular profiles of various disorders, including different cancer types66 and cardiovascular 

disease.67 It has also been used to monitor signaling between bacterial cocultures and 

distinct alkyl quinolone messengers between different strains of Pseudomonas aeruginosa 
(Figure 1B).48 Additionally, SIMS was employed to visualize salt redistribution in brain 

tissue between healthy and stroke mice.68 While effective for low molecular weight 

metabolite and lipid analyses, it has not been commonly applied to peptide and protein 

imaging studies.

2.3. Desorption Electrospray Ionization.

DESI is performed by spraying charged solvent droplets on the surface of the sample 

where the analytes are desorbed and ionized for subsequent detection by MS.69 The 

imaging experiment is performed in a continuous raster sampling mode where the target 

is moved continuously under the DESI spray in a “typwriter-like” motion. Spatial resolution 

is estimated by the target stage velocity, sampling rate of the mass spectrometer, number 

of spectra averaged for a single pixel, and distance between adjacent line scans. Although 

DESI has limited spatial resolution capabilities (~150 μm), it requires minimal to no sample 

preparation. Tissues sections are mounted onto glass slides and sampling is performed at 

ambient pressure. Recently, the Laskin lab developed a modified form of this sampling 

approach, termed nanoDESI, using a liquid microjunction to increase spatial resolution to 

~10 μm (Figure 1C).49 While nanoDESI is not discussed in a multimodal imaging context 

here, we eagerly anticipate the higher spatial resolution of nanoDESI being coupled to other 

modalities. Moreover, DESI and nanoDESI been used to map metabolite,70–72 lipid,73–76 

and drug distributions in a variety of biological systems ranging from plants to diseased 

mammalian tissue.77–79 Further, additives in DESI solvent can target specific molecules in 

the case of reactive DESI80 or enhance extraction.70
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DESI and nanoDESI IMS are minimally destructive techniques and have been used 

experimentally in surgical settings to enable intraoperative molecular assessment and aid 

in real-time intraoperative decisions.36,81,82 Sans et al. molecularly characterized high-grade 

serous carcinoma, serous borderline ovarian tumors and normal ovarian tissue samples 

using DESI IMS.83 They identified predictive markers of cancer aggressiveness and built 

classification models to enable diagnosis and prediction of high-grade serous carcinoma in 

comparison to normal tissue with a high certainty of ~96%. Similar work from the Eberlin 

lab has led to the development of a hand-held mass spectrometry device, the MasSpec 

Pen, which enables in vivo diagnostics during surgery.84–86 This device has been used for 

classifying ovarian87 and breast cancer88 since it was originally developed. Because it can 

be operated at atmospheric pressure and requires minimal sample preparation, DESI holds 

promise for use in clinical and surgical settings.

3. COMBINING MULTIPLE IMAGING MASS SPECTROMETRY 

TECHNOLOGIES

Because each IMS technology has unique performance characteristics for different 

molecular classes, there is utility in coupling them together. Technologies such as tandem 

MS, microextractions, and ion mobility each add additional dimensions to the MS data set, 

expanding upon the chemical information that can be obtained, either by enabling de novo 
identification or reducing spectral complexity.

3.1. Spatially Targeted Tandem MS.

Tandem mass spectrometry enables de novo identification of molecules within complex 

samples.89–91 Tandem MS is generally accomplished by performing isolation within one 

mass analyzer for subsequent fragmentation and transmittance into another mass analyzer 

for detection.92 Serially performing these analyses allows for identification of discrete 

molecules within a biological sample.93,94 In the context of imaging, pixels can be 

subdivided allowing for a precursor ion scan and subsequent MS/MS scans. This spatially 

targeted structural information comes at the cost of spatial resolution to accommodate 

multiple samplings. Additionally, it is often difficult to perform tandem MS analysis within 

an imaging experiment if the ion of interest is only present within a small number of 

disperse features or pixels.17 Alternative means of targeting sample regions or locations for 

identifying key ions include multimodal image-guided surface sampling,95,96 microprobe 

extraction for offline tandem MS,97–99 and tandem MS on an orthogonal sample.16,30 By 

using these various strategies, ions that are found in a small number of pixels or structural 

features can be targeted for analysis.

Tandem MS can be used within an imaging context to identify the differential localization 

of isomers or isobars within a tissue. Although tandem MS has been reported for several 

types of IMS technologies,100–102 it is primarily used for SIMS imaging because most 

ion beams fragment analyte ions during the ionization process.103–107 Any imaging mass 

spectrometer with MS/MS capabilities can generate fragment ion images108,109 enabling 

direct visualization and differentiation of isomers and isobars within tissue without prior 
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separation or derivatization. Generally, these experiments are usually limited to surveying a 

small number of ions within a sample, since the tissue is partially consumed during analysis.

3.2. Multi-Imaging Mass Spectrometry Experiments.

Each of the three types of IMS technologies discussed here provide different molecular 

coverage and spatial resolution. As a result, investigators have combined some of these to 

gain further functionality. SIMS and MALDI IMS have been combined to detect multiple 

chemical classes, such as low molecular weight metabolites and lipids within individual 

cells95 and tissue.111 Additionally, the combination of MALDI and SIMS has been used to 

analyze hair to enhance sensitivity and spatial resolution.112,113 Both MALDI and SIMS 

sources are operated under vacuum using similar tissue preparation protocols. In some 

cases, SIMS analyses have been shown to be enhanced by the application of a MALDI 

matrix.114,115 While less common, combining MALDI and DESI together enables analysis 

of different lipid species116 and comapping of lipids and proteins.117 To our knowledge, 

there has not yet been a DESI and SIMS multimodal IMS experiment, likely because 

of the differences in sample preparation. Reaction additives can be employed for DESI 

analyses for quantitation and derivatization chemistries, bringing additional capabilities to 

any combination of technologies. Finally, DESI produces multiply charged ions that are 

often more amenable to tandem MS applications.

3.3. Microextraction.

Microextraction protocols aim to remove key analytes from bulk material to reduce 

chemical complexity118 and target specific analytes. Both solid and liquid phase extraction 

techniques have been coupled to IMS for increased peak capacity and sensitivity. Solid 

phase microextraction (SPME) comprises a diverse set of solventless techniques that allow 

for in vivo analysis. An advantage of SPME devices is that most analytes are introduced 

into the MS system at once. Introducing ions concurrently increases sensitivity and signal-

to-noise (S/N) compared to technologies that generate a transient signal.119,120 Furthermore, 

SPME is used to separate an analyte of interest from bulk material, such as in trace analyte 

analysis.121

Liquid extractions, such as liquid microjunction (LMJ)96,122and liquid extraction surface 

analysis (LESA),97,123 also enhance peak capacity and reduce ion suppression. Briefly, 

extraction solvents are dispensed onto a tissue surface and collected for subsequent 

liquid chromatography or capillary electrophoresis MS analysis.50 Spatially targeted liquid 

extractions are advantageous because they can be coupled to different separation techniques, 

increasing both sensitivity and depth of coverage. For instance, Cahill et al. used an 

LMJ extraction to image portions of a microfluidic device while it was functioning with 

future use aimed at biology-based microfluidic devices.124 Typically, this technology utilizes 

relatively large areas for droplet placement. However, recently microLESA was combined 

with piezoelectric spotting of trypsin to achieve higher spatial resolution sampling than 

previously reported.97,125 In addition, microLESA was integrated with autofluorescence 

microscopy to correlate protein signatures of murine kidney and Staphylococcus aureus 
abscesses without tissue staining.97 As these techniques continue to improve in spatial 

resolution and automated platforms become available, combining IMS with spatially 
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targeted microextractions will be adapted to supplement spatial information with deeper 

molecular coverage and added identification capabilities.

3.4. Ion Mobility.

Ion mobility separations add an orthogonal analytical dimension to IMS that reduces ion 

interference for improving peak capacity and specificity and aiding in identification of 

species. Additionally, drift time or collision cross sections (CCS) calculated with the use of 

standards can be used to help identify isomers and isobars. Ion mobility techniques that have 

been coupled to IMS include drift tube mass spectrometry (DTIMS),126,127 traveling wave 

ion mobility spectrometry (TWIMS),128,129 field asymmetric ion mobility spectrometry 

(FAIMS)130–132 and, more recently, trapped ion mobility spectrometry (TIMS).133–135

A major focus of the ion mobility field is developing higher resolving power platforms, 

so they can separate isomers and isobars. Park, Fernandez-Lima, and coworkers utilized a 

buffer gas and ion trapping by electric field gradient for the development of TIMS devices. 

They report resolving powers of ~200 but up to ~400.136–138 One approach for increasing 

resolution is by increasing path length and/or number of passes around the mobility device. 

Notable ion mobility advancements include the development of structures for lossless ion 

manipulation (SLIM) devices,139,140 as well as the cyclic ion mobility (cIM).141 SLIM 

devices utilize a separation path length of ~540 m142 for achieving resolving powers over 

1800. Using cIM, resolving power of 750 (with 100 passes) has been reported using a 

reverse sequence peptide pair. Although, sensitivity can be challenging in these devices 

as ions are lost radially over time. Recently cIM has been integrated with LESA for the 

improvement of S/N and the number of detected proteins from tissue samples (Figure 2).110

Beyond increasing peak capacity and specificity, trendlines within ion mobility heat 

maps can be used to identify different molecular species, classes, and subclasses.143 For 

example, MALDI DTIMS IMS was used successfully to separately image a lipid species 

([phosphatidylcholine(34:2)+H]+) from a closely isobaric peptide ion (RPPGFSP).144 

Škrášková et al. visualized multiply charged polysialylated gangliosides using DESI 

TWIMS.116 Recently TIMS has been integrated with MALDI IMS to the separate and 

map isobaric lipid species directly from tissue.145 Cooper and coworkers introduced a new 

cylindrical FAIMS device coupled to LESA IMS. This workflow improved the number of 

detected proteins from what was previously reported as much as 10 times in murine brain, 

testes, and kidney.146 Clearly, ion mobility has great potential for IMS applications as it 

provides the ability to overcome the analytical challenges associated with direct sampling 

of complex biological tissues. Software is continually being developed to more efficiently 

process highly dimensional ion mobility IMS data.

4. INTEGRATION WITH OTHER TECHNOLOGIES

Non-MS analytical technologies can be integrated with MS technologies to increase 

chemical coverage. Since each technology has distinctive advantages for different molecular 

classes, experiments that synergistically incorporate multiple technologies gain unique 

chemical information neither one can obtain alone. For example, many cell types and 

functional cell states are uniquely suited for analysis by specific methods, such as 
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transcriptomics or immunostaining, and integrating these can add great utility to the 

molecular specificity of MS.

4.1. Microscopy.

Microscopy is one of the oldest analytical approaches dating back to the early 17th century 

and is commonly applied to biological and clinical problems.148–151 Overall, microscopy 

images are generated by capturing electromagnetic radiation or particle beams as they 

interact with the sample through reflection, refraction, or diffraction. A series of lenses and 

objectives focus the light/particles enabling imaging with high magnification.

Brightfield and histological stains, such as hematoxylin and eosin (H&E) and periodic 

acid-Schiff (PAS), are used extensively in pathology to assess tissue integrity, health, and 

disease.152–154 Stained tissues have been employed with IMS to connect molecular profiles 

to histological features of both healthy and diseased tissue, such as cancer155–159 and 

functional disorders.160,161 Recently, Basu et al. enabled IMS and histology to be rapidly 

correlated by incorporating matrix precoated slides, templates, and a 10 kHz laser.162 

Histological stains are ubiquitous within the scientific and medical field, so multimodal 

studies that combine IMS and stained microscopy improve interpretation and facilitate 

collaboration between the technologists and the biologists or physicians. Similarly, simple 

brightfield images can be used for correlation of IMS signals to specific tissue structures, 

particularly in cases that have features that are easily distinguished with brightfield 

microscopy.163,164

Fluorescence microscopy of both endogenous fluorophores165,166 and tagged 

antibodies167–169 or nucleic acids170,171 have also been fundamental to our understanding 

of biological systems. For example, Vardi et al. used autofluorescence from chlorophyll 

and MALDI IMS to study lipid metabolism within algal plaques.172 By targeting key 

proteins or genes, investigators can parse metabolic pathways and monitor how these 

change as a function of disease state or demographic. While exceptionally powerful and 

informative, these technologies are generally limited to studying peptides or proteins since 

there are few probes available for low molecular weight metabolites and lipids.173,174 

IMS has been readily coupled to fluorescence microscopy approaches to tie together cell-

type specific immune16,17,175,176 and transcript profiles177–179 to metabolites detected by 

IMS.180 Immunohistochemistry can be used to histologically classify and contextualize 

the chemical information obtained by IMS. Moreover, the combination of both IMS and 

immunohistochemistry produce more rigorous classification schemes than either modality 

independently. Recently, several laboratories have combined immunohistochemistry and 

IMS to correlate protein or metabolite signals to specific tissue substructures.181–184 

This type of experiment is further extended by recent work where investigators coupled 

multiplexed immunohistochemistry with MALDI FT-ICR IMS to determine metabolic 

profiles of cancer cells, incorporating molecular classes.185 The increase in the plexity of the 

immunofluorescence labels additionally enhances the specificity of chemical profiles created 

by MS analysis, as these immunofluorescence labels can be correlated to more specific 

tissue regions or cell types.
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Immunofluorescence imaging has been correlated with MALDI IMS176 and fluorescence in 

situ hybridization (FISH) with SIMS.177 We could not find an example of either being used 

as part of DESI multimodal studies. This is interesting because there are no experimental 

considerations preventing IHC or FISH from being combined with all the IMS modalities 

discussed here. However, technical challenges in coregistering modalities with dramatic 

differences in spatial resolution may be driving this perceived disparity. Patterson et al. have 

developed combination experimental and computational pipelines using autofluorescence 

microscopy to overcome this challenge for multimodal MALDI IMS studies.165,166 It is 

anticipated that fluorescence microscopy will become an important correlative technology in 

IMS studies.

Particle-based microscopy, such as scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM), offer very high spatial resolution because it is not diffraction 

limited. A series of ion optics are used to focus ions toward a sample. The ions then 

interact with the sample and the emerging electrons and various energy conversion products 

(e.g., secondary electrons, X-rays, light) are captured as an image. Because nanoSIMS 

and electron microscopies have similar sample and operational requirements, they have 

often been used on the same sample.187 TOF-SIMS has been integrated into a helium ion 

microscope for 8 nm imaging with the potential for extremely high resolution molecular 

imaging of biological samples (Figure 3).147 For example, nanoSIMS and TEM have been 

combined to map dopamine distributions in dense core vesicles, providing key insight into 

vesicle loading and nanocompartmentalization.188 Another study involves integration of 

fluorescence microscopy, SIMS, high-energy resolution X-ray photoelectron spectroscopy, 

and SEM on the same plant root to study bacterial growth and infection on this root.189 

The authors combined these four modalities because of the simple and compatible sample 

preparation involved for each. Beyond registration for enhanced localization, particle-based 

microscopy is also readily used to assess MALDI matrix application for ensuring matrix 

coverage and crystal size.190,191

4.2. Spectroscopy.

Spectroscopic imaging includes a suite of optical approaches, such as infrared (IR)192 and 

Raman, that provide unique spectra of complex chemical mixtures, creating reproducible 

chemical profiles of different physiological regions and disease states.193 Spectroscopy is 

used in a wide array of biological studies194–199 because the approaches are generally 

nondestructive, label-free, and capable of high spatial resolutions (diffraction limited, 250 

nm). While each spectroscopic approach activates different, well characterized molecular 

modes, it is often difficult to correlate spectroscopic signatures of complex mixtures to 

discrete chemicals. Rather, they provide general information on bond types and functional 

groups for the entire chemical mixture.200–203 As such, spectroscopy has been coupled to a 

variety of MS technologies, including IMS, to provide more detailed molecular descriptions 

of samples.204–206 Because spectroscopic analysis is label-free and nondestructive, both 

modalities can be performed on the same tissue section.207

Raman and IMS have been correlated to study bacteria,208–210 plants,211 single cells,212 

and mammalian organs.213,214 Fourier transform infrared microscopy (FT-IR) has similarly 
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been coupled to IMS for many biological studies.207,215,216 Recently, Rabe et al. developed 

a method for FT-IR guided MALDI IMS (Figure 4). By coupling these two technologies 

together, the authors reduced data load and acquisition time by >90%.186 Magnetic 

resonance imaging has also been used to compliment molecular specificity of IMS with 

dynamic, whole organ imaging.217–222 While MALDI IMS has primarily been coupled to 

spectroscopic measurements, we foresee DESI increasingly becoming incorporated with 

Raman and magnetic resonance imaging. DESI does not have many tissue preparation 

requirements and can theoretically be directly integrated within either approach. Moreover, 

Raman and magnetic resonance spectra are not saturated when water is present, unlike IR, 

which readily is absorbed by water, making them ideal candidates for multimodal DESI 

experiments.

4.3. Transcriptomics.

Transcriptomics technologies measure gene expression through the extraction and 

amplification of nucleic acids, most generally ribonucleic acids.223–225 Because of the 

exponential amplification that can occur, this group of technologies is highly sensitive and 

has been the driving force behind cell typing and classification. There is great interest in 

coupling IMS with transcriptomics analysis as it would enable simultaneous correlation of 

gene expression to gene products and biproducts. A majority of the literature combining 

mass spectrometry and transcriptomics measurements has involved liquid chromatography 

for bulk proteomics and/or metabolomics.226,227 Toward an imaging context, investigators 

probed an insect, Carausius morosus, for neuropeptide content with MALDI MS and 

correlated this to bulk sequencing to uncover peptides with no known homology.228 

Although this was not an imaging application, the sample preparation was performed in 

such a way that this workflow could be adapted to an imaging workflow. As an additional 

step toward combining IMS with transcriptomics, the Knepper et al. microdissected kidney 

tubules and performed RNA-seq and proteomics.229 This methodology incorporates spatial 

information on the microdissected structures, which is an important step toward coupling 

IMS and transcriptomics directly. Moreover, there has been some exciting work where 

transcriptomics and proteomics IMS information has been correlated on different bulk 

samples.230 Work combining two approaches on the same sample provided insight into 

the link between fatty acids and immunity within breast cancer231 and role of liver X 

receptors in male reproduction.232 While only a few examples exist, the combination of 

transcriptomics and IMS will continue to increase in the coming years and has the potential 

to uncover new connections that span the central dogma of molecular biology.

4.4. Electrochemistry.

Electrochemistry has been vital in the study of electroactive signaling molecules, such 

as dopamine, epinephrine, serotonin, and histamine within biological systems.233–235 This 

is partly because it is capable of absolute quantitation of femto- to zeptomole amounts 

of analyte at μs temporal resolutions. It is highly selective and naturally applicable to 

the analysis of many low molecular weight metabolites, such as neurotransmitters.236 

nanoSIMS/nanoSIMS and electrochemistry are compatible and have been used together 

often to study nonbiological237 and biological samples alike.236,238,239 Ewing et al. have 

quantitated L-DOPA concentrations in vesicles and other organelles using nanoSIMS 
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and validated these concentrations with electrochemistry.240 This is particularly important 

because it enables quantitation of low molecular weight metabolites at high spatial 

resolutions. Further, Larsson and coworkers quantitated octopamine release during different 

stimulations using nanoSIMS and an embedded electrode.241 Investigators in the IMS field 

have also adapted many technologies and developments from electrochemical studies,242 

ranging from nanopipettes to electrochemical principals of ion generation. Adopting 

materials, analyses, or processes from other fields is an effective, time saving process that 

expedites scientific advancements.

5. FUTURE OF THE FIELD

Mass spectrometry technologies have rapidly advanced with improved sampling, ion 

transmission, and detector sensitivity, enabling highly sensitive and specific analysis of 

biological tissues. Under favorable conditions, MS can detect concentrations as low as 10 

zeptomoles or approximately 6000 molecules.6 This sensitivity is sufficient for probing 

most molecules within biological systems and yet there is still much we do not understand. 

Nevertheless, improvements in the molecular, spatial, temporal, and biological specificity 

are required to answer remaining questions. IMS is one available tool that provides 

untargeted, highly multiplexed molecular analysis, but only through the combination 

with other technologies can we achieve specificity in all these areas mentioned above. 

Multimodal imaging experiments can significantly improve performance characteristics, 

including structural identification, throughput, cell type specificity, and dynamic range 

of MS-based chemical profiles. The present article has summarized the current literature 

surrounding multimodal IMS and the development of the field to further explore remaining 

biological questions.

A major task facing multimodal approaches involves efforts to fully integrate the 

several data sets to enable deeper data mining. This is particularly difficult within an 

imaging regime because the various technologies can have dramatically different spatial 

resolutions, data structures, and chemical information. Different computation methods 

for addressing differences within spatial resolution include various methods of up 

sampling the data, performing more refined data fusion, as well as other experimental 

approaches.165,166,243–246 While these are capable of connecting modalities that are 

similar in resolution, significant experimental and technological capabilities are required 

to avoid the introduction of artifacts.207 While many imaging modalities are within an 

order of magnitude of one another, this will influence the capacity to combine lower 

spatial resolution IMS technologies like DESI with higher resolution molecular imaging 

approaches, like SEM.

Moreover, technologies provide both overlapping and orthogonal information that is often 

difficult to correlate. For instance, transcriptomics measures gene expression of different 

biochemical pathways that result with peptide and metabolomic products. Ideally, a highly 

expressed gene would indicate the presence of a specific metabolite and IMS would 

detect this same metabolite in high abundance within the same regions, but this is not 

always the case. There many transport, degradation, and modification pathways that impede 

this correlation and create complex data sets that are difficult to interpret. Additional 
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compounding technical factors, such as matrix effects, differences in ionization efficiencies, 

and limited dynamic range add to this complexity. While transcriptomics is used as an 

example here, a similar scenario applies to other multimodal approaches, such as protein 

abundances between IMS and immunofluorescence experiments or lipid analysis by Raman 

spectroscopy and IMS. While challenging, future multimodal experiments will slowly begin 

to unravel the complex relationships between the data produced by orthogonal technologies. 

In connection with this, new machine learning algorithms and approaches will be essential 

for untangling the abundance of chemical information obtained with multimodal IMS. This 

will inevitably lead to a more complete picture of biological systems and pathways.

Finally, improving sample preparation and workflows will undoubtedly improve the quality 

and reproducibility of collected data, particularly as these technologies enter the rigorous 

domain of medicine and clinical trials. Many technologies cannot be combined “out of the 

box”, and so there are often trade-offs made to enable multimodal analysis. Although, 

the gained information from the suboptimal combination of the approaches is often 

greater than the data of either technique alone. Developing methods that enable multiple 

imaging modalities to be performed optimally and with minimal spatial compromise will 

dramatically improve the ability to integrate and discover connections between multimodal 

data sets. Optimizing the ways and methods behind combining the different approaches is a 

clear path forward in the field.

In summary, multimodal IMS is a remarkably diverse endeavor that incorporates the 

best attributes from a variety of scientific disciplines. In the future, multimodal IMS 

technologies will progressively become more common as the scientific community begins 

to study more complex biological and medicinal questions. Such studies have the potential 

to bring together genomic, proteomic, and metabolomic imaging technologies to provide 

unprecedented insights into biology and medicine.
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Figure 1. 
Selected developments within the IMS community. Image of a Vero B cell culture at 1 μm 

spatial resolution acquired with transition mode MALDI-2 IMS developed by the Dreiswerd 

lab (A). Panel A is adapted with permission from ref 47. Copyright 2019 Nature Publishing. 

SIMS image of a coculture of different Pseudomonas aeruginosa strains visualized with 

different signaling small molecules (B). Panel B is adapted with permission from ref 48 . 

Copyright 2019 SPIE. Digital Library. Lipid images both positive and negative mode of the 

mouse uterine tissue using nanoDESI at 10 μm spatial resolution (C). Panel C is adapted 

with permission from ref 49. Copyright 2019 Nature Publishing.
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Figure 2. 
LESA and cIM analysis of a complex murine kidney protein extract. More proteins are 

detected after each additional cycle of cIM (A). IM heat map generated from a single cycle 

of cIM (B), where extracted mass spectra from different trend lines contain different protein 

signatures (C–E). This figure was adapted with permission from ref 110. Copyright 2020 

American Chemical Society.
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Figure 3. 
Images of a TEM grid (A–C) and NaCl salt (D–F) crystal generated from the SIMS 

helium microscope. The SIMS (B, C, E, and F) images are close to the resolution of the 

microscopy (A and D), demonstrating the power of this technique. This figure was adapted 

with permission from ref 147. Copyright 2019 Science Direct.
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Figure 4. 
MALDI IMS lipid profiles obtained after FT-IR generated segmentation. Murine brain is 

differentially segmented based on absorbance of 2922 cm−1 based on disease (A) and 

control mice (B). Using this segmentation, lipid profiles can be generated for different masks 

for chemical differentiation (C and D). This figure was adapted with permission from ref 

186. Copyright 2018 Nature Publishing.
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