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A Padé Approximate Linearization Algorithm for Solving

the Quadratic Eigenvalue Problem with Low-Rank Damping

Ding Lu∗ Xin Huang† Zhaojun Bai‡ Yangfeng Su§

June 30, 2014

Abstract

The low-rank damping term appears commonly in quadratic eigenvalue problems arising
from physical simulations. To exploit the low-rank damping property, we propose a Padé
Approximate Linearization (PAL) algorithm. The advantage of the PAL algorithm is that
the dimension of the resulting linear eigenvalue problem is only n+ ℓm, which is generally
substantially smaller than the dimension 2n of the linear eigenvalue problem produced
by a direct linearization approach, where n is the dimension of the quadratic eigenvalue
problem, ℓ and m are the rank of the damping matrix and the order of a Padé approximant,
respectively. Numerical examples show that by exploiting the low-rank damping property,
the PAL algorithm runs 33 – 47% faster than the direct linearization approach for solving
modest size quadratic eigenvalue problems.

1 Introduction

We consider the quadratic eigenvalue problem (QEP)

Q(λ)x ≡ (λ2M + λC +K)x = 0, (1.1)

where M , C and K are n × n matrices, referred to as mass, damping and stiffness matrices,
respectively, in structural dynamics analysis. The low-rank damping property refers to the case
where the damping matrix C is of rank ℓ, ℓ ≪ n and admits the rank-revealing decomposition

C = EFT, (1.2)

where E and F are n× ℓ full column rank matrices.

The QEP with the low-rank damping arises frequently from analysis of structural dynam-
ics [10, 18] and structural-acoustic interaction [3, 6, 32]. In these applications, the damping
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force is typically appled to the boundary and/or a small region. The finite element discretiza-
tion of the governing equations leads to a QEP with an extremely sparse and low-rank damping
matrix C.

To compute the eigenvalues of the QEP (1.1) close to a point σ of interest, a standard
approach is to first apply the shift spectral transformation µ = λ− σ and then solve the QEP

(µ2M + µCσ +Kσ)x = 0, (1.3)

by a linearization technique, where Cσ = C+2σM and Kσ = σ2M +σC+K. For example, in
the first companion form, the QEP (1.3) is equivalent to the linear eigenvalue problem (LEP):

[
−Cσ −Kσ

In 0

] [
µx
x

]
= µ

[
M 0
0 In

] [
µx
x

]
, (1.4)

where In is the n×n identity matrix. For other forms of linearization, see [12, 28] and references
therein. The task of finding eigenvalues λ of the QEP (1.1) close to the shift σ becomes one
of extracting smallest (in modulus) few eigenvalues µ of the LEP (1.4).

After linearization, a variety of subspace-projection based methods and software for the re-
sulting LEP can be applied. However, the dimension of the LEP (1.4) is twice the dimension of
the QEP (1.1), and consequently, memory and computational costs are increased substantially.
In particular, the Gram-Schmidt process for maintaining the orthogonality of the basis of the
projection subspace in an LEP solver is observed as the dominant cost. The Jacobi-Davidson
method [34], SOAR [1] and Q-Arnoldi [29] are memory-efficient QEP algorithms. However,
none of these algorithms explicitly exploits the low-rank damping property for computational
efficiency.

In this paper, we propose an algorithm to explicitly exploit the low-rank damping property
for computational efficiency. The new algorithm is referred to as Padé Approximate Lin-
earization, abbreviated as PAL. The dimension of the LEP produced by the PAL algorithm is
nL = n+ℓm, where ℓ is the rank of C, and m is the order of Padé approximant. Since typically
ℓ ≪ n and m is a small positive integer, nL is much smaller than the dimension 2n of the LEP
derived by a direct linearization. Consequently, the PAL leads to a substantial reduction in
memory and computational costs. Numerical examples show that with comparable accuracy,
by exploiting the low-rank damping property, the new PAL algorithm runs 33 - 47% faster
than the direct linearization approach for solving the QEPs of modest sizes.

The rest of this paper is organized as follows. In section 2, we introduce a spectral transfor-
mation that transforms the QEP (1.1) into an NEP. In section 3, we present the PAL algorithm.
In section 4, we present a backward error analysis and a scaling scheme. In section 5, we give
some implementation details of the PAL algorithm. In section 6, we present three numeri-
cal examples to demonstrate the accuracy and efficiency of the PAL algorithm. Concluding
remarks are in section 7.
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Figure 2.1: The domain Sσ (grey region including the solid line) and its complement Scσ. If σ
is a positive real number, then Sσ is the right half-plane including the non-negative imaginary
axis, and if σ is a pure imaginary number with positive imaginary part, then Sσ is the upper
half-plane including the non-positive real axis.

2 Spectral transformation

To compute eigenvalues of the QEP (1.1) close to a prescribed nonzero shift σ while preserving
the low-rank damping property, let us consider the spectral transformation:

gσ : Sσ −→ C (2.1)

λ 7−→ µ =
λ2

σ2
− 1,

where Sσ, shown in Figure 2.1, defines a domain of the complex plane C:

Sσ ≡
{
z ∈ C | arg

( z

σ

)
∈
(
−π

2
,
π

2

]}
∪ {0}. (2.2)

In addition, let us define the mapping

fσ : C −→ Sσ (2.3)

µ 7−→ λ = σ
√
µ+ 1,

where
√· denotes the principal square root.1

The following lemma characterizes the relationship between mappings gσ and fσ.

Lemma 1. (a) If λ ∈ Sσ and µ = gσ(λ), then fσ(µ) = λ. (b) If µ ∈ C and λ = fσ(µ), then
λ ∈ Sσ and gσ(λ) = µ.

Proof. First let us show that if λ ∈ Sσ, then
√
(λ/σ)2 = λ/σ. In fact, by the polar coordinate

λ/σ = teθi, where t is the modulus and θ ∈ (−π/2, π/2], we have (λ/σ)2 = t2e2θi. Consequently,
by the definition of principal square root, we have the identity

√
(λ/σ)2 = λ/σ.

For (a) we can derive

fσ(µ) ≡ σ
√
µ+ 1 = σ

√
λ2

σ2
− 1 + 1 = σ

√
λ2

σ2
= σ

λ

σ
= λ. (2.4)

1Using the polar coordinate system, a complex number z can be expressed as z = teiθ, where t ≥ 0 is the
modulus and the distance to the origin, and θ ∈ (−π, π] is the angle that the line from z to the origin makes
with the positive real axis. The principal square root of z is then defined by

√
z =

√
teiθ/2.
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For (b), since λ/σ =
√
µ+ 1, and by the definition of principal square root we have√

µ+ 1 = teθi with t being the modular and θ ∈ (−π/2, π/2], which implies λ ∈ Sσ. By
(a) we have µ = gσ(λ).

Using the spectral transformation (2.1), the QEP (1.1) is transformed into the following
nonlinear eigenvalue problem (NEP):

N (µ)x ≡ [Kσ − µMσ + fσ(µ)C]x = 0, (2.5)

where Kσ = K + σ2M and Mσ = −σ2M .

The following theorem shows the relationship between the QEP (1.1) and the NEP (2.5)
with respect to the domain Sσ.

Theorem 1. (a) If (λ, x) is an eigenpair of the QEP (1.1) and λ ∈ Sσ, then (µ = gσ(λ), x) is an
eigenpair of the NEP (2.5). (b) If (µ, x) is an eigenpair of the NEP (2.5), then λ = fσ(µ) ∈ Sσ

and (λ, x) is an eigenpair of the QEP (1.1).

Proof. (a) By Lemma 1(a), we have λ = fσ(µ), where µ = gσ(λ). Since (λ, x) is an eigenpair,
it follows

0 = Q(λ)x = (λ2M + λC +K)x

= [(µ+ 1)σ2M + fσ(µ)C +K]x = N (µ)x.

Therefore, (µ, x) is an eigenpair of the NEP (2.5).
(b) By Lemma 1(b), we have λ ∈ Sσ, and µ = gσ(λ). Since (µ, x) is an eigenpair of N (µ),

it follows

0 = N (µ)x = [Kσ − µMσ + fσ(µ)C]x

= [Kσ − gσ(λ)Mσ + λC]x = Q(λ)x.

Hence (λ, x) is an eigenpair of the QEP (1.1).

For computing the eigenvalues of the QEP in the complement of Sσ, i.e., S
c
σ = S−σ \ {0},

we consider the following NEP

N c(µ)x ≡ [Kσ − µMσ − fσ(µ)C]x = 0, (2.6)

The following theorem shows the equivalence between the QEP (1.1) and the NEP (2.6) with
respect to the domain S

c
σ.

Theorem 2. (a) If (λ, x) is an eigenpair of the QEP (1.1) and λ ∈ S
c
σ, then (µ = gσ(λ), x) is

an eigenpair of the NEP (2.6). (b) If (µ, x) is an eigenpair of the NEP (2.6) and µ 6= 0, then
λ = −fσ(µ) ∈ S

c
σ and (λ, x) is an eigenpair of the QEP (1.1).

Proof. Similar to the proof of Theorem 1. Note that Scσ = S−σ \{0} and f−σ(µ) = −fσ(µ).

By Theorems 1 and 2, the eigenvalues of the QEP (1.1) in Sσ are transformed to the
eigenvalues of the NEP (2.5), while the eigenvalues of the QEP in S

c
σ are transformed to the

eigenvalues of the NEP (2.6). Since we are interested in extracting the eigenvalues of the QEP
close to σ, we will focus on the NEP (2.5) in the rest of the paper.
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Figure 2.2: (a) The regions Bρ with ρ = 1, 2, · · · , 10 (left). (b) The region Aσ,1 = σB1 with
σ = 1.5 + 1.5i (darker grey region) (right).

By the spectral transformation (2.1), λ close to σ corresponds to µ close to zero. Thus
seeking eigenvalues λ of the QEP (1.1) close to the shift σ turns into seeking small (in modulus)
eigenvalues µ of the NEP (2.5) in a disk |µ| ≤ ρ. Specifically, the region in Sσ corresponding
to the disk |µ| ≤ ρ is

Aσ,ρ = {λ | λ ∈ Sσ and |gσ(λ)| ≤ ρ} ≡ σBρ, (2.7)

where Bρ = {λ | λ ∈ S1 and |λ2 − 1| ≤ ρ}. Aσ,ρ is the “unit” region Bρ scaled by σ, as shown
in Figure 2.2. As we can see Aσ,ρ leans toward the origin (0, 0). Aσ,ρ can be regarded as the
domain of confidence for the spectral transformation (2.1). This is similar to the notion for
the shift spectral transformation [30].

We note that in practice, the shift |σ| should not be chosen too small. Otherwise, the
domain of confidence Aσ,ρ in the λ-plane corresponding to |µ| ≤ ρ is small. In this case the
Padé approximant to be introduced in the next section will be able to approximate only a
small number of eigenvalues of the QEP.

3 Padé approximate linearization

In this section, we start with an approximation of the NEP (2.5) by a rational eigenvalue
problem (REP) via Padé approximation. Then we apply a trimmed linearization technique to
convert the REP into an LEP.

3.1 Padé approximation

To find an accurate approximation of the NEP (2.5), let us consider an order-(m,m) diagonal
Padé approximation [2] of the function

√
µ+ 1. In matrix-vector form, it can be written as

rm(µ) = −aT(Im − µDm)−1a+ d, (3.1)

where a is a column vector a = [(γ1/ξ1)
1

2 , (γ2/ξ2)
1

2 , . . . , (γm/ξm)
1

2 ]T, Dm is a diagonal matrix
Dm = − diag(ξ1, ξ2, . . . , ξm), d = 2m+ 1 and

γj =
2

2m+ 1
sin2

jπ

2m+ 1
and ξj = cos2

jπ

2m+ 1
.
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Figure 3.1: The contour plot of log10 |e(µ)| with the order-5 diagonal Padé approximant. Three
marked poles on the real axis are approximately −1.0862, −1.4130 and −2.3319. (The other
two poles not presented are approximately −5.7948 and −49.3742.)

The poles of rm(µ) are −1/ξj for j = 1, 2, . . . ,m.

It can be shown [27] that an exact formula for the approximation error is given by

e(µ) ≡
√
µ+ 1− rm(µ) = 2

√
µ+ 1

θ2m+1

1 + θ2m+1
(3.2)

where θ = (
√
µ+ 1− 1)/(

√
µ+ 1 + 1).2 When |µ| is sufficiently small, |e(µ)| = O(µ2m+1).

The Padé approximation is more accurate than the polynomial-based Taylor approximation.
For example, Figure 3.1 is a contour plot of the error |e(µ)| of r5(µ). For µ = 2, we have
|e(2)| ≈ 1.77 × 10−6. In contrast, the error of the 10th-order Taylor approximation is about
5.9938.

By the Padé approximant (3.1), the NEP (2.5) can be written as

N (µ)x = [Kσ − µMσ + σ(rm(µ) + e(µ))C]x = 0.

By truncating the error e(µ), it is then turned into the following REP:

R(µ)x ≡ [Kσ − µMσ + σ rm(µ)C]x = 0. (3.3)

Note that it is an abuse of notation that we use (µ, x) to denote the eigenpairs of the NEP
(2.5) and the REP (3.3). However, we will connect the eigenpairs of the REP with the original
QEP (1.1) directly. The eigenpairs of the NEP will no longer be referenced.

The Padé approximation induces m poles {−1/ξ1, . . . ,−1/ξm} in the REP (3.3). All these
poles are real and less than −1. Large Padé error only occurs in a small region around the
poles, as illustrated in Figure 3.1. Since the eigenvalues µ of interest of the REP (3.3) are close
to zero, the presence of the poles is generally not a concern in practice.

2In [27], this result is shown for the case µ is real and µ > −1. However, it can be extended directly to
complex µ.
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The REP (3.3) can be interpreted as a perturbation of the original QEP (1.1). Specifically,
if (µ∗, x∗) is an eigenpair of the REP (3.3), then it is easy to verify that (λ∗ = fσ(µ∗), x∗) is
an eigenpair of the QEP

Q̃(λ)x =
[
λ2M + λ(C +∆C) +K

]
x = 0, (3.4)

where

∆C = − e(µ∗)√
µ∗ + 1

C
x∗x

H
∗

‖x∗‖2
.

The QEP (3.4) is a perturbation of the original QEP (1.1). The perturbation only occurs in
the damping matrix C and the perturbed damping term is still of low-rank. Furthermore, the
relative perturbation error

‖∆C‖
‖C‖ =

|e(µ∗)|
|√µ∗ + 1|

‖Cx∗‖
‖C‖‖x∗‖

is expected to be small due to small Padé approximation error |e(µ∗)|. In addition, the quantity
‖Cx∗‖/(‖C‖‖x∗‖) is expected to be small too due to the low-rank damping property. It
provides extra accuracy to the approximation. In the extreme case where Cx∗ = 0, the REP
(3.3) and the QEP (1.1) share the same eigenpair. See Example 1 in section 6.

The idea of approximating a nonlinear eigenvalue problem by a simple eigenvalue problem
has been proposed repeatedly. In [33, 31], a successive linear approximation method is used
to solve a nonlinear eigenvalue problem by successively solving a sequence of linear eigenvalue
problems. Instead of linear approximation, high-order polynomial and rational function ap-
proximations are studied [8, 38, 22, 21, 20, 15]. Although the notion of using one type of
eigenvalue problem to approximate another type is widely adopted, a comprehensive error
analysis of such an approach is not trivial. This is particularly true for nonlinear eigenvalue
problems. Recently, the eigenvalue approximation error is characterized using the first order
perturbation theory [8] and the nonlinear perturbation of linear eigenvalue problems [5]. Here,
for the REP approximation (3.3) of the NEP (2.5), the approximation error can be interpreted
as the backward error to the original QEP (1.1). We can apply the well-studied perturbation
theory of the QEP, see for example [37]. This is another advantage of our proposed approach.

3.2 Trimmed linearization

To solve the the REP (3.3), we apply the trimmed linearization technique [35]. It converts the
REP (3.3) to an LEP. Specifically, by the Padé approximant (3.1) and the factorization (1.2)
of the damping matrix C, the rational term of the REP (3.3) can be rewritten as

σrm (µ)C = −σaT
(
Im − µDm

)−1
a · EFT + σdC

= −σE
(
Iℓ · aT

(
Im − µDm

)−1
a
)
FT + σdC

= −σE(Iℓ ⊗ aT)
(
Iℓ ⊗ Im − µIℓ ⊗Dm

)−1
(Iℓ ⊗ a)FT + σdC

= −Eσ1
(Iℓm − µIℓ ⊗Dm)−1FT

σ2
+ σdC, (3.5)

where Eσ1
= σ1E(Iℓ ⊗ aT), Fσ2

= σ2F (Iℓ ⊗ aT), ⊗ is the Kronecker product and σ = σ1σ2
with σ1 and σ2 being two scalars.3 By (3.5), the REP (3.3) can be written as

R(µ)x =
[
Kσ + σdC − µMσ − Eσ1

(Iℓm − µIℓ ⊗Dm)−1FT
σ2

]
x = 0. (3.6)

3The decomposition σ = σ1σ2 is not unique. A desirable choice of σ = σ1σ2 will be discussed in section 5.
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Applying the trimmed linearization proposed in [35], the REP (3.6) can be recast as the LEP
of dimension nL = n+ ℓm:

L(µ)xL ≡ (A− µB)xL = 0, (3.7)

where

A =

[
Kσ + σdC Eσ1

FT
σ2

Iℓm

]
, B =

[
Mσ 0
0 Iℓ ⊗Dm

]
,

and

xL = Hx with H =

[
In

−(Iℓm − µIℓ ⊗Dm)−1FT
σ2

]
.

The connection between the REP and the LEP is shown in the following theorem, where y(i :j)
denotes the entries i to j of a vector y.

Theorem 3. [35, Theorem 3.1] (a) If µ is an eigenvalue of the REP (3.3), then it is an
eigenvalue of the LEP (3.7). (b) Let (µ, xL) be an eigenpair of the LEP (3.7) and µ be not a
pole of the REP (3.3) and xL(1 :n) 6= 0. Then (µ, xL(1 :n)) is an eigenpair of the REP (3.3).
Moreover, the algebraic and geometric multiplicities of µ for the REP (3.3) and the LEP (3.7)
are the same.

Note that it is imposed that µ is not a pole of the REP (3.3). This condition can be easily
verified since all poles {−1/ξ1, . . . ,−1/ξm} of the REP (3.3) are known from the choice of the
Padé approximant rm(µ).

3.3 Summary

The following is a summary of the proposed algorithm for computing a few eigenpairs of the
QEP (1.1) around the shift σ.

1. Use the spectral transformation (2.1) to convert the QEP (1.1) to the NEP (2.5).
2. Select a Pade approximant rm(µ) by (3.1).
3. Approximate the NEP (2.5) by the REP (3.3).
4. Use the trimmed linearization to the REP (3.3), and obtain the LEP (3.7).
5. Compute a few small (in modulus) eigenpairs (µ, xL) of the LEP (3.7),
6. Return (λ, x) = (fσ(µ), xL(1 :n)) as approximate eigenpairs of the QEP (1.1).

We call this approach the Padé Approximate Linearization (PAL). A discussion on some im-
plementation aspects will be presented in section 5.

4 Error bound and scaling

In this section we provide a backward error analysis for the proposed PAL algorithm, and
discuss a scaling scheme to reduce the backward error.

4.1 Error bound

Let (µ̂, x̂L) be a computed eigenpair of the LEP (3.7) with the backward error ηL(µ̂, x̂L). Then
by the PAL algorithm, (λ̂, x̂) = (fσ(µ̂), x̂L(1 : n)) is an approximate eigenpair of the original
QEP (1.1) with the backward error ηQ(λ̂, x̂), where

ηL(µ̂, x̂L) =
‖L(µ̂)x̂L‖
ϕ(µ̂)‖x̂L‖

, ηQ(λ̂, x̂) =
‖Q(λ̂)x̂‖
ρ(λ̂)‖x̂‖

, (4.1)

8



and ϕ(µ̂) = ‖A‖+ |µ̂|‖B‖ and ρ(λ̂) = |λ̂|2‖M‖+ |λ̂|‖C‖+ ‖K‖.
Now let us derive an upper bound of ηQ(λ̂, x̂) in terms of ηL(µ̂, x̂L). First, we observe that

the residual of the eigenpair (λ̂, x̂) of the QEP satisfies

Q(λ̂)x̂ = N (µ̂)x̂ = R(µ̂)x̂+ σe(µ̂)Cx̂

= R(µ̂)[ In 0 ]x̂L + σe(µ̂)Cx̂ = GL(µ̂)x̂L + σe(µ̂)Cx̂, (4.2)

where for the last equality, we used the identity

R(µ̂)[ In 0 ] = GL(µ̂) with G = [ In − Eσ1
(I − µ̂Iℓ ⊗Dm)−1 ].

Then by (4.2), we have the bound

‖Q(λ̂)x̂‖
‖x̂‖ ≤ ‖G‖ ‖L(µ̂)x̂L‖

‖x̂‖ + |σe(µ̂)| ‖Cx̂‖
‖x̂‖

≤ ‖G‖‖x̂L‖‖x̂‖
‖L(µ̂)x̂L‖

‖x̂L‖
+ |σe(µ̂)|‖Cx̂‖

‖x̂‖ . (4.3)

In terms of the backward errors ηQ(λ̂, x̂) and ηL(µ̂, x̂L), the inequality (4.3) can be written as

ηQ(λ̂, x̂) ≤ α ηL(µ̂, x̂L) + β, (4.4)

where α and β are given by

α = ‖G‖‖x̂L‖‖x̂‖
ϕ(µ̂)

ρ(λ̂)
and β =

|σe(µ̂)|
ρ(λ̂)

‖Cx̂‖
‖x̂‖ . (4.5)

The quantity α is an error growth factor from the solution of the LEP (3.7) to the solution
of the QEP (1.1). Later we will show how to reduce α via a proper scaling scheme. The
quantity β is dominated by the Padé approximation error e(µ̂), which is small in practice as
we have discussed in Section 3.1. Another contributing factor to make the term β even smaller
is the quantity ‖Cx̂‖. If Cx̂ = 0, then the approximate eigenpair (λ̂, x̂) of QEP (1.1) is also
an approximate eigenpair of the undamped eigenvalue problem (λ2M +K)x = 0. In this case
the bound (4.4) implies that there is no Padé approximation error contributing to the overall
error. Since the dimension of the null space of C is expected to be large due to its low-rank
property, the value ‖Cx̂‖ is generally very small. This so-called extra accuracy phenomenon
has been observed in all of our numerical experiments as shown in Section 6.

In summary, the upper bound (4.4) indicates that in order to have an accurate approxima-
tion of the QEP (1.1) by the LEP (3.7), the Padé approximation error β should be within the
desired threshold and the error growth factor α be bounded and small.

4.2 Scaling

It is a common practice to use a proper scaling scheme to the QEP for obtaining an LEP with
a better condition number and smaller backward error [9, 18, 11, 16, 39]. A popular scaling
scheme is to scale the QEP by a pair of parameters ω and ζ such that the coefficient matrices
of the following scaled QEP have nearly unit 2-norms:

Qs(λs)xs ≡ (λ2
sMs + λsCs +Ks)xs = 0, (4.6)

9



where λs = ω−1λ, Ms = ω2ζM , Cs = ωζC and Ks = ζK. If the shift σ for Qs is applied, then
we should use the scaled shift σs = ω−1σ. It is shown [9, 17, 18] that with the choice of scaling
parameters

ω = (‖K‖/‖M‖)1/2 and ζ = 2(‖K‖+ ω‖C‖)−1, (4.7)

the companion form linearization of the scaled QEP (4.6) generally yields a better conditioned
LEP.

Applying the PAL algorithm to the scaled QEP (4.6), we obtain the following scaled LEP

Ls(µs)xLs
≡ (As − µsBs)xLs

= 0, (4.8)

where

As =

[
ζ(Kσ + σdC)

√
ζEσ1√

ζFT
σ2

Iℓm

]
and Bs =

[
ζMσ

Iℓ ⊗Dm

]
.

If (µ̂s, x̂Ls
) is an approximate eigenpair of the LEP (4.8), then (λ̂s, x̂s) = (σs

√
µ̂s + 1, x̂Ls

(1 :n))
is an approximate eigenpair of the scaled QEP (4.6). Subsequently,

λ̂ = ωλ̂s = ωσs
√
µ̂s + 1 = σ

√
µ̂s + 1 = fσ(µ̂s) and x̂ = x̂s. (4.9)

is an approximate eigenpair of the original QEP (1.1).

We observe that the scaled LEP (4.8) does not depend on the scaling parameter ω, and
neither does the approximate eigenpair (λ̂, x̂) of the QEP. Furthermore, if the eigenpair (µ̂s, x̂Ls

)
of the scaled LEP (4.8) is computed with the backward error rtol, then by (4.4), we have

ηQ(λ̂, x̂) ≤ αs · rtol+ β, (4.10)

where

αs = ‖Gs‖
ϕs(µ̂s)

ζρ(λ̂)

‖x̂Ls‖
‖x̂‖ , (4.11)

and ϕs(µ̂s) = ‖As‖+ |µ̂s|‖Bs‖, and Gs = [In, −√
ζEσ1

(Iℓm − µ̂sIℓ ⊗Dm)−1].

By (4.10), we see that to reduce backward error ηQ, the scaling parameter ζ should be
chosen to yield a small growth factor αs. Towards this goal, we have the following theorem to
give an upper bound of αs.

Theorem 4. Let the rank-revealing decomposition C = EFT and the shift splitting σ = σ1σ2
be chosen such that

|σ1|‖E‖ = |σ2|‖F‖ =
√
|σ| ‖C‖. (4.12)

Then by the scaling parameter

ζ =
1

max {‖σ2M‖, 2m‖σC‖, ‖K‖} , (4.13)

we have

αs ≤
(

4mτ

τ + 2
+ 2 + |µ̂s|

)(
1 + δ2

1− δν

)
ρ(σ)

ρ(λ̂)
, (4.14)

where τ = ‖C‖/
√
‖M‖‖K‖, δ = ‖(Iℓm − µ̂sIℓ ⊗Dm)−1‖ and ν = ‖Ls(µ̂s)x̂Ls‖/‖x̂Ls‖.
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Proof. To show the upper bound (4.14), we start with the definition (4.11) of αs. For the term
‖Gs‖ of αs, we have

‖Gs‖2 ≤ 1 + ‖
√

ζEσ1
‖2‖(Iℓm − µ̂sIℓ ⊗Dm)−1‖2. (4.15)

Due to the assumption (4.12) and the choice of the scaling ζ as in (4.13), we have

‖
√
ζEσ1

‖ = ‖
√
ζσ1E(Iℓ ⊗ aT)‖ ≤

√
ζ|σ1|‖E‖‖a‖ =

√
ζ2m‖σC‖ < 1, (4.16)

where we used the identity ‖Iℓ⊗aT‖ = ‖a‖ = (2m)1/2.4 Therefore by (4.15) and the definition
of δ, we have

‖Gs‖ ≤
√
1 + δ2. (4.17)

For the second quantity ϕs(µ̂s)/ζρ(λ̂) of αs, let us first bound ‖As‖ and ‖Bs‖.

‖As‖ ≤ 2max
{
1,

√
ζ‖Eσ1

‖,
√
ζ‖Fσ2

‖, ζ‖Kσ + σdC‖
}

≤ 2max{1, ζ‖Kσ + σdC‖}
≤ 2max{1, ζ

(
|σ|2‖M‖+ (2m+ 1)|σ|‖C‖+ ‖K‖

)
}

= 2max{1, ζ (ρ(σ) + 2m|σ|‖C‖)}
= 2ζρ(σ) + 4mζ|σ|‖C‖, (4.18)

where for the first inequality, we repeatedly apply the inequality ‖[A1, A2]‖ ≤
√
2max{‖A1‖, ‖A2‖}.

For the second inequality we use the inequalities (4.16) and ‖√ζFσ2
‖ ≤ 1, which is derived by

using an analogous derivation of (4.16). The last equality uses the choice of scaling parameter
ζ.

Meanwhile, the choice of scaling ζ yields

‖Bs‖ ≤ max
{
1, (|σ|2‖M‖)ζ

}
= 1. (4.19)

Combining (4.18) and (4.19), we have

ϕs(µ̂s) = ‖As‖+ |µ̂s|‖Bs‖
≤ 2ζρ(σ) + 4mζ|σ|‖C‖+ |µ̂s|

≤ 2ζρ(σ)

(
1 +

2mτ

τ + 2

)
+ |µ̂s|, (4.20)

where for the last inequality we use the inequality

|σ|‖C‖
ρ(σ)

=
|σ|

|σ2|‖M‖/‖C‖+ ‖K‖/‖C‖+ |σ| ≤
|σ|

2|σ|/τ + |σ| =
τ

τ + 2
.

Dividing the inequality (4.20) by ζρ(µ̂s) on both sides gives rise to

ϕs(µ̂s)

ζρ(λ̂)
≤

(
2

(
1 +

2mτ

τ + 2

)
+

|µ̂s|
ζρ(σ)

)
ρ(σ)

ρ(λ̂)
≤

(
2 +

4mτ

τ + 2
+ |µ̂s|

)
ρ(σ)

ρ(λ̂)
(4.21)

where the second inequality uses the inequality ζρ(σ) ≥ 1.

4Note that the identity
∑m

j=1
tan2 jπ

2m+1
≡ 2m2 +m. See [19].
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Finally, we bound the quantity ‖x̂Ls
‖/‖x̂‖ of αs. By the definition x̂ = x̂Ls(1 :n), it holds

that

x̂Ls = Hsx̂+

[
0

(Iℓm − µ̂sIℓ ⊗Dm)−1[0, Iℓm]Ls(µ̂s)x̂Ls.

]
,

where

Hs =

[
In

−√
ζ(Iℓm − µ̂sIℓ ⊗Dm)−1FT

σ2

]
.

Therefore we have

‖x̂Ls‖
‖x̂‖ ≤ ‖Hs‖+ ‖(Iℓm − µ̂sIℓ ⊗Dm)−1‖‖Ls(µ̂s)x̂Ls‖

‖x̂Ls‖
‖x̂Ls‖
‖x̂‖ , (4.22)

which yields
‖x̂Ls‖
‖x̂‖ ≤ ‖Hs‖

1− δν
≤

√
1 + δ2

1− δν
, (4.23)

where the bound ‖Hs‖ ≤
√
1 + δ2 can be derived similarly to the derivation for the upper

bound (4.17) of ‖Gs‖.
Combining (4.17), (4.21) and (4.23), we have the bound (4.14).

We note that since the eigenvalues µ̂s of interest of the scaled LEP (4.8) are small, i.e.,
|µ̂s| ≈ 0, then δ ≈ 1 and ρ(λ̂) ≈ ρ(σ). Consequently, if the scaled LEP (4.8) has been solved
with the residual norm ν ≪ 1, then the bound (4.14) is simplified to

αs . 4

(
2mτ

τ + 2
+ 1

)
.

Moreover, if τ ≪ 1, known as a heavily underdamped system, then αs . 4.
The assumption (4.12) is mild in practice and will be discussed in detail in Section 5.

5 PAL algorithm

Algorithm 1 is a complete description of the PAL algorithm for computing a few eigenpairs of
the QEP (1.1) around the prescribed shift σ.

Algorithm 1 PAL

1: Initialize
(a) the shift σ 6= 0
(b) k for the desired number of eigenpairs, and rtol for the backward error tolerance
(c) the order m of Padé approximant rm(µ)

2: Compute the scaling factor ζ by (4.13)
3: Compute the shift splitting σ = σ1σ2 to satisfy the condition (4.12)
4: Compute the LU factorization of Q(σ)
5: Compute the k smallest (in modulus) eigenpairs (µ̂s, x̂Ls

) of the scaled LEP (4.8) with the
backward errors ηLs

(µ̂s, x̂Ls
) ≤ rtol

6: Discard those µ̂s which coincide with the poles of rm(µ)
7: Compute the approximate eigenpairs (λ̂, x̂) = (σ

√
µ̂s + 1, x̂Ls

(1 : n)) of the QEP (1.1) and

the corresponding backward errors ηQ(λ̂, x̂)
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To apply the proposed scaling parameter ζ in (4.13), we assume that the rank-revealing
decomposition (1.2) and the shift splitting σ = σ1σ2 are chosen to satisfy the assumption (4.12).
If C is symmetric positive semi-definite, then E = F in the rank-revealing factorization (1.2) of
C. We can then select σ1 = σ2 =

√
σ. In general, given the rank-revealing decomposition (1.2),

one can compute the QR factorization E = QR, where Q is n × ℓ orthogonal and R is ℓ × ℓ,
then with an updated rank-revealing factorization of C with E = Q and F := FRT, we can
let σ1 =

√
σ‖F‖ and σ2 =

√
σ/‖F‖ to satisfy the assumption (4.12).

To solve the scaled LEP (4.8) by an iterative solver, such as the Arnoldi method [13], we
need to provide the product of the matrix A−1

s Bs with an arbitrary vector u, that is

v = A−1
s Bsu. (5.1)

By exploiting the structure of As, we can implement the matrix-vector product efficiently,
Specifically, we first note that the matrix As can be factorized as

As =

[
In

√
ζEσ1

Iℓm

] [
ζ(Kσ + σdC − Eσ1

FT
σ2
)

Iℓm

] [
In√
ζFT

σ2
Iℓm

]
. (5.2)

By the identity (3.5) and rm(0) = 1, we have

Kσ + σdC − Eσ1
FT
σ2

= Kσ + σdC − Eσ1
(Iℓm − 0 · Iℓ ⊗Dm)−1FT

σ2

= Kσ + σrm(0)C = σ2M + σC +K = Q(σ).

Therefore, the inverse of As is given by

A−1
s =

[
In

−√
ζFT

σ2
Iℓm

] [
Q(σ)−1/ζ

Iℓm

] [
In −√

ζEσ1

Iℓm

]
.

If vectors v = [vT1 vT2 ]
T and u = [uT1 uT2 ]

T are partitioned to be conformal with the blocks of
matrices As and Bs, then the matrix-vector product (5.1) can be computed by the following
formulae:

v1 = (Q(σ)−1/ζ)
(
ζMσu1 −

√
ζEσ1

(Iℓ ⊗Dm)u2

)

= −Q(σ)−1
(
σ2Mu1 + (σ1/

√
ζ)E(Iℓ ⊗ aTDm)u2

)
(5.3a)

v2 = (Iℓ ⊗Dm)u2 −
√
ζFT

σ2
v1

= (Iℓ ⊗Dm)u2 −
√
ζσ2(Iℓ ⊗ a)FTv1, (5.3b)

where the identity (A⊗B)(C ⊗D) = AC ⊗BD is used in (5.3a) for matrices A, B, C and D
of sizes that the matrix products AC and BD are defined.

By (5.3), we can compute the LU factorization of Q(σ) once and then apply it for the
matrix-vector multiplication with Q(σ)−1. Hence the PAL algorithm takes about the same
amount of work as the direct linearization in terms of the matrix-vector products in an iterative
linear eigenvalue problem solver.

6 Numerical examples

In this section, we present three numerical examples to demonstrate the accuracy and efficiency
of the PAL algorithm. The accuracy of a computed eigenpair (λ̂, x̂) is measured by the QEP
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normwise backward error ηQ(λ̂, x̂) defined in (4.1), where 1-norm ‖ · ‖1 is used for computing
the norms of matrices M , C and K.

In Matlab implementation of the PAL algorithm, we use the functions eig or eigs to
solve the the LEP (4.8). The function eigs is an implementation of the implicitly restarted
Arnoldi method [23]. We use the function lu for computing the LU factorization of Q(σ). For
sparse matrices, the function lu is from UMFPACK [7]. The testing data is collected on a Dell
computer with an Intel(R) Dual Core(TM) 2.20GHz i7-3632QM CPU and 6 GB RAM.

We have also implemented the PAL algorithm in C++. For comparison, we have also
implemented a Direct Linearization (DLIN) algorithm in C++. The DLIN algorithm is based
on the linearizaiton (1.4) and the two-parameter scaling (4.7). The LEPs (1.4) and (4.8) are
solved by using ARPACK++ [14], which is based on the implicitly restarted Arnoldi method
(IRAM) [23]. We use the default parameters provided in ARPACK++. Specifically, the number
of Lanczos vectors is p = 2k+1 with k being the number of eigenvalues required. The residual
error tolerance rtol is the machine precision. The sparse LU factorization of Q(σ) is computed
using SuperLU [24] with a threshold pivoting parameter u = 0.1 to control numerical stability.
The testing data is collected on a cluster with two Intel Xeon X5670 2.93GHz CPUs and 94
GB RAM. No parallelization is attempted.

Example 1. In this example, we demonstrate numerical accuracy of the PAL algorithm, and
effectiveness of the backward error bound (4.10) with the scaling scheme (4.13). We use a QEP
arising from the vibration analysis of a slender beam supported at both ends and damped at
the midpoint [18, 4]. The n × n mass and stiffness matrices M and K are positive definite.
The damping matrix C has only one nonzero positive entry at the center position (n/2, n/2).

Therefore, the rank of C is one, ℓ = 1, and has the decomposition C = EET where E = δ
1

2 en/2,
δ > 0, and en/2 is the unit column vector with only one entry at the position n/2 and zeros at
the others. It is known [18] that half of the eigenvalues in this example are pure imaginary and
are eigenvalues of the undamped problem (λ2M +K)x = 0, so the corresponding eigenvectors
satisfy Cx = 0. PAL will introduce no truncation errors for these eigenpairs.

To demonstrate the accuracy of the PAL algorithm, we take the dimension n = 200 and
δ = 5. It is an underdamped QEP with τ = ‖C‖/

√
‖M‖‖K‖ ≈ 0.0153598. By the analysis

in Section 4.2, we expect the error growth factor αs ≤ 4. The left plot in Figure 6.1 shows all
eigenvalues computed by the Matlab function polyeig with the scaling strategy (4.7).

Let us compute a few eigenvalues of the QEP around the shift σ = 106i. With the diagonal
Padé order m = 1, the PAL leads to the LEP (3.7) of dimension nL = n + ℓm = 201, which
is then solved by Matlab function eig. The right plot of Figure 6.1 shows some of the
computed eigenvalues by the PAL. The following table is a profile of six selected eigenvalues
and the corresponding backward errors of the LEP and the QEP:

# Re(λ̂) Im(λ̂/106) ηLs(µ̂s, x̂Ls) ηQ(λ̂, x̂)

1 +4.787700× 10−7 0.993105 7.87× 10−16 6.44× 10−16

2 +2.828370× 10−7 1.573793 5.68× 10−16 5.21× 10−16

3 −9.193417× 10−6 2.097337 5.53× 10−16 5.27× 10−16

4 −6.423440 1.013141 1.26× 10−15 8.55× 10−14

5 −6.745303 1.545041 6.22× 10−16 1.71× 10−9

6 −5.595220 2.060988 5.80× 10−16 4.06× 10−9

Furthermore, the following table shows the corresponding error bound (4.10):
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Figure 6.1: Left: “Exact” eigenvalues. Right: a fraction of exact eigenvalues and approximated
eigenvalues by PAL.

# αs |e(µ̂s)| ‖Cx̂‖/‖x̂‖ β αs · ηLs + βs

1 0.844 8.22× 10−8 1.19× 10−13 1.16× 10−24 6.65× 10−16

2 0.919 3.45× 10−2 1.49× 10−13 2.78× 10−19 5.23× 10−16

3 0.952 1.79× 10−1 2.97× 10−13 1.69× 10−18 5.29× 10−16

4 0.828 5.64× 10−7 1.32× 10−3 8.55× 10−14 8.67× 10−14

5 0.916 3.01× 10−2 1.02× 10−3 1.71× 10−9 1.71× 10−9

6 0.951 1.65× 10−1 7.49× 10−4 4.06× 10−9 4.06× 10−9

where the αs values are computed by the definition (4.11).

We observe that the first three approximate the pure imaginary eigenvalues of the original
QEP. Here the PAL algorithm introduces nearly no error as shown by the β and ηQ values.
In particular, note that the 2nd and 3rd eigenvalues, although the Padé errors |e(µ̂)| are not
small, ‖Cx̂‖/‖x̂‖ are small. This is the so-called extra precision phenomenon as discussed in
Section 4.1.

Furthermore, we observe that for all six eigenvalues, ηQ ≈ αs · ηLs + β, which suggests the
error bound in (4.10) is tight. In particular, for the last three eigenvalues, we actually have
ηQ ≈ β. The errors of these computed eigenvalues are dominated by the Padé approximation
errors. To improve the accuracy, we use a higher Padé order m = 9. It leads to an LEP
of dimension nL = 209. Consequently, ηQ for the last three approximate eigenvalues are all
reduced to the machine precision, namely about 10−16, although ‖Cx̂‖/‖x̂‖ remains unchanged.

Example 2. This example shows the computational efficiency of the PAL algorithm. We
consider an acoustic wave problem to model acoustic pressure in a two-dimensional bounded
domain with boundary conditions that are partly pressure release and partly impedance [6].
By the finite element discretization of the wave equation on the unit square [0, 1]× [0, 1] with
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Figure 6.2: Left: computed eigenvalues. Right: backward errors ηQ(λ̂, x̂).

mesh size h, it leads to the QEP (1.1) of dimension n = q(q−1), where q = 1/h. The mass and
stiffness matrices M and K are both symmetric positive definite. The rank of the damping
matrix C = EET is q− 1, where E = (h/ξ)

1

2 Iq−1⊗ eq, and ξ is an impedance parameter. This
example is available in the NLEVP collection [4] labeled as acoustic wave 2d.

To show the computational efficiency of PAL, we consider h = 1/500 and impedance ξ = 1.
Consequently, the QEP has the dimension n = q(q − 1) = 249500 and the damping matrix
C has the rank ℓ = 499. We compute k = 300 eigenvalues close to the shift σ = 2

√
2qi.

The diagonal Padé order is chosen to be m = 3. Consequently, the scaled LEP (4.8) has the
dimension nL = n + ℓm = 250997, which is slightly larger than n but much smaller than the
dimension 2n = 499000 of the LEP (1.4) produced by the direct linearization.

The IRAM of ARPACK++ takes 3 update iterations (or 2 restarts) to converge for the LEPs
(1.4) and (4.8). The computed eigenvalues and their corresponding backward errors are shown
in Figure 6.2. As we can see there are high agreements between the two linearizations in terms
of computed eigenvalues and backward errors.

The computational costs of ARPACK++ are dominated by four parts, namely, (a) sparse
matrix-vector multiplications (SpMVs); (b) Gram-Schmidt (GS) process to maintain the or-
thogonality of basis vectors of the projection subspaces; (c) the eigenvector computation (Ev-
Comp); (d) costs of updating, such as restarting processes and solving small Hessenberg eigen-
value subproblems. The following table profiles the CPU time for each of these four parts:

SpMVs GS EvComp Updating subtotal

DLIN 168.95 1130.44 314.65 304.00 1918.04
PAL 162.26 562.37 137.66 156.10 1018.39

From the above table, we see that the SpMV costs for the two linearizations are almost the
same, which confirms that the discussion in Section 5. The bulk of computational time lies in
the Gram-Schmidt orthogonalization process, where PAL reduces the cost by almost half.

By adding 6.41 seconds for the LU factorization of Q(σ) and other setting up costs, the
total CPU elapsed time of the DLIN method is 1931.89 seconds. On the other hand, the PAL
algorithm is 1028.54 seconds. PAL runs 47% faster than DLIN.

Example 3. This is a modest industrial size QEP arising from the automobile industry to
analyze the modal frequency responses of a car body [26]. The QEP size is n = 655812.

16



−30 −20 −10 0

450

500

550

600

650

700

750

real(λ)

im
ag

(λ
)

 

 
DLIN
PAL

−0.06 −0.04 −0.02 0
450

500

550

600

650

700

750

real(λ)

im
ag

(λ
)

 

 
DLIN
PAL
σ

0 50 100 150 200 250 300

10
−18

10
−16

10
−14

eigenvalue index

ba
ck

w
ar

d 
er

ro
r

 

 
DLIN
PAL

Figure 6.3: Left: computed eigenvalues. Right: backward errors ηQ(λ̂, x̂) of the eigenpairs.

Matrices M , C and K are real symmetric with the numbers of nonzero elements being 394508,
294 and 31775679, respectively. The damping matrix C is extremely sparse. Indeed, the non-
zero elements of C form a 144-by-144 principal symmetric positive semi-definite submatrix.
We first compute the eigenvalue decomposition of this submatrix and then truncate these
eigenvalues whose magnitude less than 10−16 · λmax to obtain the rank-revealing factorization
C = EET, where the rank of E is ℓ = 126, and λmax is the largest eigenvalue of the submatrix.

We compute 300 eigenvalues near the shift σ = 200πi. The diagonal Padé order is chosen
to be m = 3. The PAL algorithm leads to the LEP (4.8) of size nL = n + ℓm = 656190. In
contrast, the size of the LEP (1.4) by the direct linearization is 2n = 1311624.

The IRAM takes 2 iterations to converge for the LEPs (1.4) and (4.8). The computed
eigenvalues are shown in Figure 6.3. There are high agreements of computed eigenvalues.
Most of the eigenvalues are close to the imaginary axis. Zooming into this part, we can see
that PAL computes few more eigenvalues of small modulus, while DLIN computes more of
large modulus. The backward errors of the eigenpairs are shown in the left plot of Figure 6.3.
PAL is more accurate than DLIN.

The following table profiles the CPU timing of four parts of ARPACK++ for solving the LEPs.

SpMV GS EvComp Update Subtotal

DLIN 1305.94 2277.01 791.25 393.81 4768.01
PAL 1297.92 1146.89 394.37 202.43 3459.99

The SpMV cost is high in this example, but is almost the same for PAL and DLIN. The bulk of
computational time still lies in the Gram-Schmidt orthogonalization process and PAL reduces
it by almost half.

By adding 408.59 seconds for computing the LU factorization of Q(σ), and other setting
up costs, the total CPU elapsed time of DLIN is 5196.12 seconds. On the other hand, PAL is
3459.99 seconds. PAL runs 33.4% faster than DLIN.

7 Concluding remarks

We presented the PAL algorithm to solve the QEP with low-rank damping. The PAL algo-
rithm combines Padé approximation and the trimmed linearization, and produces an LEP with
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slightly larger dimension than the original QEP. Numerical experiments have demonstrated the
accuracy and saving in memory and computational time comparing with the direct lineariza-
tion. One interesting future research problem is to determine the Padé approximation order
m adaptively based on the desired accuracy.

It is still an open problem how to efficiently exploit the low-rank property in eigenvalue
computation. Recently, in [36], an algorithm was proposed to compute all eigenpairs of the
QEP with low-rank damping. However, due to the computational cost, it is not designed for
large scale problems.

The PAL algorithm proposed in this paper can be naturally extended to computing NEPs
of the form

[
K − λM +

L∑

ℓ=1

fℓ(λ)Cℓ

]
x = 0,

where fℓ(λ) are nonlinear functions in λ, Cℓ are low rank matrices. Such NEPs are found, for
example, in the cavity design of a linear accelerator [25]. To solve this problem, one can first
generate an approximate REP by replacing fℓ(λ) with properly chosen Padé approximants,
then apply the trimmed linearization. This would fall in the same idea as recently proposed
algorithm in [15].

Acknowledgement. We would like to thank Dr. Benshan Liao of SIMENS for the QEP
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[20] E. Jarlebring and S. Güttel. A spatially adaptive iterative method for a class of nonlinear
operator eigenproblems. Electronic Transactions on Numerical Analysis, 41:21–41, 2014.

[21] E. Jarlebring, K. Meerbergen, and W. Michiels. Computing a partial Schur factorization
of nonlinear eigenvalue problems using the infinite Arnoldi method. SIAM Journal on
Matrix Analysis and Applications, 35(2):411–436, 2014.

[22] E. Jarlebring, W. Michiels, and K. Meerbergen. A linear eigenvalue algorithm for the
nonlinear eigenvalue problem. Numerische Mathematik, 122(1):169–195, 2012.

19



[23] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-
scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6. SIAM,
Philadelphia, 1998.

[24] X. S. Li. An overview of SuperLU: algorithms, implementation, and user interface. ACM
Transactions on Mathematical Software (TOMS), 31(3):302–325, 2005.

[25] B. S. Liao, Z. Bai, L. Q. Lee, and K. Ko. Nonlinear Rayleigh-Ritz iterative method for
solving large scale nonlinear eigenvalue problems. Taiwanese Journal of Mathematics,
14(3A):pp–869, 2010.

[26] K. Louis. What Every Engineer Should Know about Computational Techniques of Finite
Element Analysis. CRC Press, 2005.
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