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Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA 

modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating 

various biological processes. Few studies, however, were conducted to investigate the functions 

of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-

reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 

epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in 

H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected 

RWE proteins were down-regulated during osteogenic differentiation, and they included mainly 

proteins involved in RNA methylation and pseudouridylation. Protein–protein interaction (PPI) 

network analysis unveiled significant associations between the down-regulated epitranscriptomic 

RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly 

available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role 

of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted 

profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and 

our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data 

were deposited on ProteomeXchange (PXD039249).

Graphical Abstract
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targeted proteomics; parallel-reaction monitoring; osteogenesis; epitranscriptomics; RNA 
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INTRODUCTION

Osteogenesis, i.e., the process of bone formation, usually begins at about six weeks after 

conception and continues into early adulthood, where growth in bone length stops at 

around age 25.1 However, in response to fractures or stress from accidents or physical 

activities, bone development continues throughout adulthood to repair damage or increase 

bone thickness for meeting physiological needs. Each year millions of individuals suffer 

from osteo-degenerative diseases, including osteopenia, osteoporosis, Paget’s disease, and 

osteogenesis imperfecta (OI).2,3

Existing treatments for most bone diseases involve two strategies, namely, reducing bone 

reabsorption and promoting bone formation.4–6 These treatments, however, only relieve 
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symptoms and do not cure the diseases, not to mention that there are no effective treatments 

in some cases.7 As an emerging therapeutic approach, stem cell therapy has been employed 

for treating neurodegenerative disorders, ocular disease, diabetes, ischemic heart disease, 

etc.8–10 Considering their ability to regenerate bone, stem cells are also used in clinical trials 

for the treatment of osteoporosis and OI.11,12 In this vein, embryonic stem cells (ESCs), 

owing to their immortality and pluripotency, are strong candidates in stem cell therapies for 

bone diseases.13

Osteogenesis is regulated by a sophisticated, multilayered network, which involves various 

epigenetic and epitranscriptomic mechanisms.14,15 In the latter respect, epitranscriptomic 

RNA modifications assume important roles in regulating numerous biological processes.16 

So far, more than 150 modified ribonucleosides have been detected in RNA.17 Among 

them, N6-methyladenosine (m6A) stands as the most prevalent internal modification found 

within mRNAs. Multiple lines of evidence support that m6A, together with its reader, writer, 

and eraser (RWE) proteins, coordinates with other proteins to regulate osteogenesis.15 For 

instance, the m6A reader protein YTHDF1 regulates zinc-finger protein 839 (ZNF839) in 

an m6A-dependent manner, where the interaction between ZNF839 and Runx2, a master 

transcription factor of osteogenic differentiation, promotes the osteogenesis of human 

bone marrow mesenchymal stem cells (BMSCs).18 In addition, loss of METTL3, the 

catalytic subunit of the main m6A methyltransferase complex, suppressed the osteogenic 

differentiation of BMSCs.19 Moreover, FTO, an m6A demethylase and a component of 

the GDF11–FTO–PPARγ signaling axis, exhibits a regulatory role in cell fate decision of 

BMSCs.20 We reason that, aside from m6A, other modified nucleosides in RNA and their 

RWE proteins may also regulate osteogenesis.

Here, we induced osteogenic differentiation of H9 human ESCs and performed temporal 

profiling of epitranscriptomic RWE proteins during the entire time course of osteogenesis. 

Our results yielded new knowledge about the functions of epitranscriptomic RWE proteins 

in osteogenesis and advanced the understanding of the complex regulatory networks 

governing osteogenesis.

EXPERIMENTAL SECTION

Cell Culture and Osteogenic Differentiation

H9 Human embryonic stem cells (WiCell) were cultured with mTeSR plus medium (Stem 

Cell Technologies) on a Matrigel (BD Bioscience)-coated surface, as described recently.21 

The initiation of differentiation followed previously established protocols.21–24 In brief, 

ESCs were withdrawn from pluripotency by culturing in Dulbecco’s Modified Medium 

(DMEM, Gibco) supplemented with 15% fetal bovine serum (Atlanta Biologicals), 0.5% 

penicillin–streptomycin (Gibco), 0.1 mM β-mercaptoethanol (Sigma), and 1% nonessential 

amino acids (Gibco) for 5 days. The cells were subsequently cultured in the same medium 

but supplemented with 50 μg/mL sodium ascorbate (Sigma), 10 mM β-glycerophosphate, 

and 0.12 μM vitamin D3 for an additional 15 days to further induce osteogenesis. 

Under these conditions, the cells were differentiated into osteoprogenitor cells at around 

day 10 postinduction and fully differentiated into mature osteoblasts at days 15–20, as 

confirmed by Western blot analysis of an osteogenesis marker (i.e., OCN) and calcification 
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measurement.21 Confluent cells prior to differentiation induction were collected as Day-0, 

and the cells after differentiation/osteogenesis induction were collected as indicated.

LC-PRM Analysis

LC-PRM analyses of 154 epitranscriptomic RWE proteins were conducted on a Q Exactive 

Plus quadrupole-Orbitrap mass spectrometer equipped with a Nanospray Flex ionization 

source and coupled to a Dionex UltiMate 3000 RSLCnano UPLC system. The peptide 

mixture was first loaded and trapped on a home-packed column (150 μm ID × 40 mm) with 

5 μm Reprosil-Pur C18-AQ resin (Dr. Maisch GmbH HPLC), at a flow rate of 2 μL/min 

within 8 min. The peptides were then eluted onto an analytical column (75 μm ID × 200 

mm) packed in-house with 3 μm Reprosil-Pur C18-AQ resin (Dr. Maisch GmbH HPLC), at 

a flow rate of 300 nL/min. Formic acid (0.1%, v/v) in water and in acetonitrile/H2O (80:20, 

v/v) were used as mobile phases A and B, respectively. Peptide separation was conducted 

with a linear gradient of 6–43% B in 125 min. The electrospray voltage was 1.8 kV, and 

the ion transport tube temperature was 320 °C. The isolation width for precursor ions was 

1.6 m/z, and the fragmentation method was HCD, where the normalized collision energy 

was 28. After the calibration of the precursor ions’ retention times using tryptic peptides of 

bovine serum albumin (BSA) as references, MS/MS for the precursor ions on the inclusion 

lists were acquired in scheduled PRM mode with a 10-min retention time window.

The raw LC-PRM data were imported to Skyline version 21.225 for processing. The 

acquired MS/MS of each precursor ion was compared with that in the spectral library, 

where spectral similarity was gauged using dot product (dotp) value.26 The presence of 

4–6 concurrent fragment ions and a dotp value greater than 0.7 were considered a positive 

identification. The Skyline data were exported to Excel for further data processing (Table 

S1c–f). Briefly, the ratio of each peptide derived from RWE protein was calculated using the 

following normalization procedure: (1) the peak area of the endogenous peptide was divided 

by that of its corresponding stable isotope-labeled (SIL) peptide or a surrogate standard 

with a similar retention time; (2) the resulting ratio was further normalized against the ratio 

of the sum of peak areas for all the light peptides over that for all the heavy peptides in 

each LC-PRM run. The relative ratios of the peptides were then normalized to that in the 

Day-0 samples. The peptide ratios in each sample, averaged from the quantification results 

of two technical replicates, were represented by mean ± SD. The relative ratios of the 

epitranscriptomic RWE proteins in one biological replicate were calculated by the mean of 

the relative ratios of the peptides derived from the same protein. The final ratios of the RWE 

proteins were averaged from the quantification results of two biological replicates (except 

Day-5 and Day-6, which contained only one replicate). Hierarchical clustering with Z-score 

standardization was performed with Perseus 2.0.3.1.27 Z-score standardization was used to 

standardize the alterations in protein expression during the differentiation process on the 

same scale. Proteins were clustered using the Euclidean distance.

RESULTS AND DISCUSSION

Previous studies showed that osteogenic differentiation of ESCs could be elicited in vitro 
by incubating these cells with β-glycerophosphate, ascorbic acid, and the active form of 
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vitamin D3 or dexamethasone.22,28 We induced osteogenic differentiation of H9 human 

ESCs by using a previously developed vitamin D3-based monolayer overgrowth culture 

approach,23,29 with some minor modifications.21 Confluent cells prior to differentiation 

induction were collected as Day-0, and the cells were also collected at 3, 5, 6, 8, 10, 12, 

15, and 20 days following differentiation/osteogenesis induction21 for temporal profiling of 

epitranscriptomic RWE proteins during osteogenesis (Figure 1). We employed LC-PRM, 

along with the use of synthetic stable isotope-labeled (SIL) peptides,30 to examine the 

relative expression of 154 epitranscriptomic RWE proteins in cells collected at different time 

points following osteogenic induction (Figure 1). Compared to the discovery approaches, 

e.g., data-dependent acquisition (DDA) and data-independent acquisition (DIA), PRM-based 

targeted proteomics provides sensitive and reproducible quantification results for specific 

proteins of interest, especially those of low abundance. We conducted the experiments in 

two biological replicates except Day-5 and Day-6, where only one biological replicate was 

analyzed, owing to inadequate amounts of protein samples available for the other replicate. 

To obtain reliable quantification results, we analyzed each biological replicate by LC-PRM 

twice.

In the two biological replicates, we were able to quantify the relative expression levels of 

260 and 243 peptides from tryptic digests of the epitranscriptomic RWE proteins. In the 

first and second replicates, 36 and 34 peptides were quantified based on their corresponding 

SIL peptides, respectively, and the rest of the peptides were quantified based on surrogate 

SIL standard peptides with similar retention times. These peptides represented 122 and 121 

RWE proteins in the first and second biological replicates, respectively. In this vein, 116 of 

these protzeins were commonly quantified in the two biological replicates, and they account 

for approximately 82% of the RWE proteins in the PRM library (Figure S1a). Pearson 

correlation coefficients between pairs of different time points ranged from 0.2 to 0.8, with 

78% of them being lower than 0.7, indicating that the expression profiles of RWE proteins 

at different time points are distinct from each other (Figure S1b). Violin plots showed that 

the medians of the relative standard deviation for the samples from different differentiation 

days are within 30%, indicating the good reproducibility of the results obtained from the two 

biological replicates (Figure S1c).

To better reveal the temporal changes in the abundances of epitranscriptomic RWE proteins 

during osteogenic differentiation, we normalized the LC-PRM quantification results to the 

corresponding results of Day-0 and Log2-transformed the obtained ratios, facilitating the 

investigation about the implications of epitranscriptomic RWE proteins throughout the 

entire time course of osteogenic differentiation. Hierarchical clustering analysis allowed 

for the classification of the 116 RWE proteins commonly detected in the two biological 

replicates into 2 groups (Figure 2A). The majority of the proteins belong to Group 1, 

which contains 66 RWE proteins exhibiting decreasing expression levels with differentiation 

time (Figure 2B). Group 2 encompasses 50 proteins, which were down-regulated slightly 

with time followed by slight increases and then decreases to similar levels as prior to 

differentiation. Considering that more than half of the RWE proteins were down-regulated 

during osteogenesis, we focused our subsequent investigation on these proteins.
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Gene ontology (GO) analysis of the down-regulated epitranscriptomic RWE proteins 

in Group 1, using the database for annotation, visualization and integrated discovery 

(DAVID),31,32 showed that these proteins are mainly involved in the biological processes 

of RNA methylation and pseudouridylation (Figure 2C and Figure S2). For instance, the 

extracted-ion chromatograms of representative peptides of NSUN2 and PUS1 and their 

corresponding spiked-in SIL peptides (Figure 3A) revealed diminished levels of these two 

proteins during osteogenesis. Western blot analysis of these two proteins demonstrated 

similar decreasing trends as obtained from PRM analysis (Figure 3B,C).

LC-PRM quantification results showed that the expression levels of several detected m5C 

methyltransferases, i.e., NOP2, NSUN2, NSUN5, and NSUN6, gradually decreased during 

osteogenesis, suggesting that m5C and its writer proteins might modulate osteogenesis 

(Figure S3). Among these proteins, NOP2 and NSUN5 mediate rRNA methylation, NSUN2 

catalyzes m5C formation in tRNA, mRNA, and non-coding RNAs, whereas NSUN6 

catalyzes tRNA methylation.33–37 These NSUN family members have been found to 

function in multiple biological processes. For instance, NSUN2-catalyzed tRNA methylation 

is essential for neural stem cell differentiation.38 Our LC-PRM results indicated that this 

protein may also be involved in osteogenic differentiation.

The LC-PRM quantification results also showed that the abundances of the major detected 

pseudouridine synthases exhibited steady diminutions during the entire time course of 

osteogenic differentiation (Figure S3). In this regard, RNA pseudouridylation was shown 

to modulate cell differentiation. For instance, DKC1-catalyzed pseudouridylation of small 

nucleolar RNAs (snoRNAs) enhanced the expression of OCT4 and SOX2, which are 

important transcription factors for the pluripotency and self-renewal of stem cells.39 

Additionally, PUS7-mediated pseudouridylation of tRNA-derived fragments was found to 

regulate downstream translation and control stem cell fate decision.40 These findings suggest 

potential roles of pseudouridine synthases in osteogenesis.

We next investigated the interrelationship of the epitranscriptomic RWE proteins during 

osteogenesis (Figure S4). The hub proteins are ranked in the following order of importance: 

METTL1, TRMT11, NSUN2, TMRT6, PUS7, TRMT112, TRMT1, WDR4, NAT10, and 

NSUN6 (Figure S4b). LC-PRM quantification results of these proteins are shown in Figure 

S4c. These hub proteins with the highest interconnectivity to other nodes in the protein–

protein interaction (PPI) network are expected to be functionally the most important. Most 

hub proteins are associated with RNA methylation. Aside from the aforementioned RNA 

m5C methyltransferases, many other methyltransferases are also on the list. For instance, 

METTL1/WDR4, which are the major components of human N7-methylguanosine (m7G) 

methyltransferase complex, are essential regulators in ESCs, and their loss impaired self-

renewal and neural differentiation of mouse ESCs.41 As the only acetyltransferase in the 

top 10 hub proteins, NAT10 displays a strong correlation with osteogenic differentiation. In 

particular, NAT10 could promote osteogenic differentiation of human BMSCs by mediating 

the formation of N4-acetylcytidine (ac4C) in RUNX2 and gremlin 1 mRNAs.42,43

To visualize the relationship between the osteogenesis-related proteins and epitranscriptomic 

RWE proteins, we obtained the osteogenesis gene set from the harmonizome database.44 
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Based on the GeneRIF biological term annotations,45 the osteogenesis gene set harbors 107 

genes co-occurring with the biological process term of osteogenesis. The results of our 

enrichment analysis of the PPI network showed that several pseudouridine synthases, i.e., 

RPUSD3, RPUSD4, DKC1, and PUS7, are highly connected with the proteins mediated 

by the MAPK cascade, including BMP2, CDC42, IGF1, IL6, TGFB3, and TNF in the 

MCODE_2 cluster (Figure 4A, Table S2). BMP2 is a potent osteogenesis activator, where 

inflammatory mediators IL6 and TNF positively and negatively modulate the BMP2-induced 

osteogenic differentiation in BMSCs, respectively.41,46 Other proteins associated with 

mRNA methylation and bone development were included in the MCODE_1 cluster with 

a high connectivity score. For instance, collagen type I α1 and α2 (COL1A1 and COL1A2) 

are highly correlated, directly or indirectly, with RNA-modifying proteins in the MCODE_1 

cluster (Figure 4B). COL1A1 and COL1A2 are important components of extracellular 

matrix in humans and are especially abundant in the bone, skin, and connective tissues.47 

Autosomal dominant mutations in COL1A1 and COL1A2 genes are the major causes of 

OI, where approximately 85–90% of OI patients carry mutations in these two genes.48 The 

association between COL1A1/COL1A2 and RNA-modifying proteins suggests that aberrant 

expression or activities of RNA-modifying proteins may be associated with OI.

Interestingly, 9 out of the 14 epitranscriptomic RWE proteins in MCODE_1 belong to Group 

1 (Figure 4C). To further explore the functions of epitranscriptomic RWE proteins in OI, 

we selected METTL1 (Figure S5), which ranked the top among the hub proteins in Group 1 

(Figure S4b), for gene set enrichment analysis (GSEA). Here, we used previously published 

RNA-seq data of 10 OI patients for the subsequent analysis. We stratified the RNA-seq 

data for the patients into the groups of high and low mRNA expression of METTL1 
using its median value as a cutoff. The phenotype with high METTL1 mRNA expression 

also exhibits high mRNA expression of all genes from RWE-Group 1 and GO_BP RNA 

methylation gene sets (Figure S6a,b).

Results from the GSEA between stratified RNA-seq data and the hallmark gene sets from 

MsigDB showed that 34 out of 50 gene sets were up-regulated in phenotype with low 

expression of METTL1 mRNA. Among these up-regulated gene sets, 10 were significantly 

up-regulated with FDR being < 25%. The interferon α and γ (IFN-α and IFN-γ) response 

gene sets were the most significantly enriched gene sets (Figure S6c,d). IFN-α and 

IFN-γ are cytokines involved in regulating osteoblast differentiation, an important step 

in osteogenesis, and they are considered as osteoblastogenic cytokines.49 These findings 

suggest the role of METTL1 in regulating osteogenesis through the cytokine network.

CONCLUSIONS

In summary, we conducted temporal profiling of 154 epitranscriptomic RWE proteins 

during osteogenic differentiation of H9 human ESCs. We were able to quantify the 

alterations in expression levels of 127 epitranscriptomic RWE proteins throughout the 

process of osteogenic differentiation in human ESCs. They represent 82% of the RWE 

proteins in the PRM library, and we found that nearly half of the epitranscriptomic 

RWE proteins were down-regulated during osteogenic differentiation. GO analysis showed 

that the down-regulated RWE proteins are mainly associated with RNA methylation and 
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pseudouridylation. PPI network analysis indicated the significance of METTL1 among 

the down-regulated RWE proteins and a strong association between down-regulated RWE 

proteins and bone formation. GSEA results of previously published RNA-seq data from 

OI patients revealed a potential role of METTL1 during osteogenesis. Together, our results 

unveiled potential regulatory roles of epitranscriptomic RWE proteins during osteogenic 

differentiation of human H9 ESCs, and our work offered novel insights into the mechanisms 

of osteogenesis process and may benefit future development of therapeutic approaches for 

treating osteo-degenerative diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
LC-parallel-reaction monitoring (PRM) workflow for examining the alterations in 

expression of epitranscriptomic RWE proteins during osteogenic differentiation of H9 

human ESCs. H9 human ESCs were first incubated in control differentiation medium for 

5 days, switched to a medium containing osteogenic differentiation cocktail, and incubated 

for 15 additional days. Confluent cells prior to differentiation induction (Day-0) and cells 

at different time points following differentiation/osteogenesis induction were collected and 

processed with the filter-aided sample preparation (FASP) protocol. Temporal profiling of 

epitranscriptomic RWE proteins during osteogenesis was performed by using LC-PRM with 

SIL peptides as internal or surrogate standards.
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Figure 2. 
Hierarchical clustering analysis of the quantified epitranscriptomic RWE proteins with 

cluster-specific Z-score trends and gene ontology (GO) analysis. (A) Hierarchical clustering 

with Z-score standardization of Log2-transformed expression fold changes of the 126 

epitranscriptomic RWE proteins at different time points relative to Day-0. The expression 

fold differences were averaged from two biological replicates, except Day-5 and Day-6, 

which included only one replicate due to a lack of sufficient protein samples. Hierarchical 

clustering was performed using Perseus 2.0.3.1, where red and blue boxes designate up- and 

down-regulated proteins, respectively, during the osteogenic differentiation of H9 human 

ESCs. Proteins were clustered using Euclidean distance. (B) Z-score plots depicting the 
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changing trends of proteins in different clusters. The data represent the mean ± SD of 

results from the proteins in different clusters, where the number of proteins in each cluster is 

indicated. (C) GO analysis of the down-regulated epitranscriptomic RWE proteins in Group 

1 using DAVID functional annotation. Top 10 annotated terms under biological processes 

are listed. The percentage of the genes and enrichment fold are represented as blue and 

orange bars, respectively.
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Figure 3. 
Western blot validation of the LC-PRM quantification results of NSUN2 and PUS1. 

(A) Extracted-ion chromatograms of tryptic peptides FYALDPSFPR (from NSUN2) and 

TIEDDLVSALVR (from PUS1), and their corresponding SIL peptides. (B) Western blot 

results of NSUN2 and PUS1. (C) Comparison of the LC-PRM results with Western 

blot results for NSUN2 and PUS1. Relative expression of the proteins on different days 

following osteogenic induction was compared with the results of Day-0. The data represent 

mean ± SD of results from two independent experiments except Day-5 and Day-6.
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Figure 4. 
PPI network analysis of osteogenesis-related proteins and epitranscriptomic RWE proteins. 

(A) PPI network of osteogenesis-related proteins and epitranscriptomic RWE proteins 

detected in this study using the STRING database, processed with MCODE analysis 

via Metascape. Eight MCODE complexes were identified and ranked according to their 

interconnectivity. (B) PPI network of the MCODE_1 complex. (C) Venn diagram comparing 

the numbers of RWE proteins in MCODE_1 and Group 1.
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