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CT‑based nomogram for early identification 
of T790M resistance in metastatic non‑small cell 
lung cancer before first‑line epidermal growth 
factor receptor‑tyrosine kinase inhibitors 
therapy
Ye Li1†, Xinna Lv1†, Yichuan Wang2, Zexuan Xu1, Yan Lv1* and Dailun Hou1* 

Abstract 

Background  To evaluate the value of computed tomography (CT) radiomics in predicting the risk of developing 
epidermal growth factor receptor (EGFR) T790M resistance mutation for metastatic non-small lung cancer (NSCLC) 
patients before first-line EGFR-tyrosine kinase inhibitors (EGFR-TKIs) therapy.

Methods  A total of 162 metastatic NSCLC patients were recruited and split into training and testing cohort. Radi-
omics features were extracted from tumor lesions on nonenhanced CT (NECT) and contrast-enhanced CT (CECT). 
Radiomics score (rad-score) of two CT scans was calculated respectively. A nomogram combining two CT scans 
was developed to evaluate T790M resistance within up to 14 months. Patients were followed up to calculate the time 
of T790M occurrence. Models were evaluated by area under the curve at receiver operating characteristic analysis 
(ROC-AUC), calibration curve, and decision curve analysis (DCA). The association of the nomogram with the time 
of T790M occurrence was evaluated by Kaplan–Meier survival analysis.

Results  The nomogram constructed with the rad-score of NECT and CECT for predicting T790M resistance 
within 14 months achieved the highest ROC-AUCs of 0.828 and 0.853 in training and testing cohorts, respectively. The 
DCA showed that the nomogram was clinically useful. The Kaplan–Meier analysis showed that the occurrence time 
of T790M difference between the high- and low-risk groups distinguished by the rad-score was significant (p < 0.001).

Conclusions  The CT-based radiomics signature may provide prognostic information and improve pretreatment 
risk stratification in EGFR NSCLC patients before EGFR-TKIs therapy. The multimodal radiomics nomogram further 
improved the capability.

Relevance statement  Radiomics based on NECT and CECT images can effectively identify and stratify the risk 
of T790M resistance before the first-line TKIs treatment in metastatic non-small cell lung cancer patients.
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Key points   
• Early identification of the risk of T790M resistance before TKIs treatment is clinically relevant.

• Multimodel radiomics nomogram holds potential to be a diagnostic tool.

• It provided an imaging surrogate for identifying the pretreatment risk of T790M.

Keywords  Carcinoma (non-small cell lung), ErbB receptors, Nomograms, Radiomics, Tomography (x-ray computed)

Graphical Abstract

Background
Lung cancer (LC) remains the major cause of cancer-asso-
ciated mortality in humans, and the cases are rising world-
wide [1]. Non-small cell lung cancer (NSCLC) accounting 
for about 85% of all lung cancers is usually diagnosed at the 
metastatic stage [2]. For metastatic NSCLC patients, tar-
geted therapy is a main treatment mode [3]. It can reduce 
tumor burden and prolong the progression-free survival 
dramatically, especially for those harboring specific somatic 
genomic alterations [3]. Epidermal growth factor receptor 
(EGFR) is the most frequent mutation type in NSCLC [1]. 
In the National Comprehensive Cancer Network guidelines, 
many first- or second-generation EGFR-tyrosine kinase 
inhibitors (EGFR-TKIs) are recommended for first-line 
therapy such as afatinib, gefitinib, and erlotinib [3]. How-
ever, unfortunately, it will inevitably develop drug resist-
ance after about 9 to 14 months [3, 4]. T790M is the main 

cause of acquired resistance, and 60% patients will develop 
T790M after initial response to first-line EGFR-TKIs [3–6]. 
Osimertinib has achieved a satisfactory effect on T790M-
positive patients when they progressed on first- or second-
generation TKIs [5, 7]. Therefore, in order to avoid disease 
progression, T790M resistance should be identified timely 
and accurately. But in practical clinical applications, the 
time of developing resistance ranges from different NSCLC 
patients. It is of great benefit to formulate an individual 
treatment strategy if the risk of T790M can be predicted at 
the same time as metastatic NSCLC being detected.

Reports have suggested that plasma genotyping known 
as liquid biopsy can be considered to detect and monitor 
T790M, but the concentration of circulating tumor DNA 
in blood is relatively low which may lead to false-negative 
results [8]. Invasive tissue biopsy is needed when plasma 
testing is negative [9], whereas both liquid and tissue 
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biopsies only reflect the genetic mutation status at the 
time and do not have predictability.

Radiomics is a method that enables noninvasively 
evaluating the whole lesion as well as reflecting the 
microenvironment of the tumor and thus predict-
ing prognosis [10, 11]. Previous studies have revealed 
that machine learning models constructed by features 
extracted from metastatic lesions using multisequence 
MRI can differentiate NSCLC patients with T790M 
resistance [12, 13]. However, there is a lack of research in 
exploring the ability of computed tomography (CT) radi-
omics to stratify metastatic NSCLC patients according to 
the risk of T790M emergence.

This study devoted to construct and validate a nomogram 
relied on nonenhanced CT (NECT) and contrast-enhanced 
CT (CECT) images to predict T790M emergence within 
14  months in metastatic NSCLC patients who are diag-
nosed at the initial time and received the first-line TKIs. 
And then we extended the follow-up time, to evaluate the 
stratification ability of the radiomics nomogram.

Methods
Participants
This current study was approved by the institutional 
review board of local hospital. The institutional review 
board authorized all data in this research for retrospec-
tive analysis and waived the demand of informed consent.

The patient’s inclusion criteria were as follows: (1) ini-
tial diagnosis with metastatic NSCLC, (2) confirmation of 
EGFR mutation, (3) treatment with the first- or second-
generation TKIs after diagnosis, (4) received T790M testing 
within 14 months, and (5) availability of baseline CT scans 
within 1  month before treatment. The exclusion criteria 
were as follows: (1) poor quality of CT images (presence of 
artifacts), (2) unclear margin of lesion, (3) incomplete clini-
cal data, and (4) previously received other treatment(s).

Finally, we recruited 113 metastatic NSCLC patients 
from January 2017 to July 2022 as the training cohort and 
49 patients from November 2011 to May 2016 as the test-
ing cohort. Totally, there were 162 metastatic NSCLC 
patients in this research with all patients had NECT images, 
and 119 of them (73.5%) had CECT images, including 83 
patients who emerged T790M within 14 months after TKIs 
and 79 patients who did not develop T790M resistance in 
the meanwhile. Figure 1 shows the patient’s enrollment.

CT protocol
Pretreatment CT images were acquired with one of the 
following scanners: LightSpeed VCT, Revolution CT, 
or Optima CT680 system (General Electric Healthcare, 
Waukesha, WI, USA). The scanning included imaging 
from the apex pulmonis to basis pulmonis with deep 
inspiration breath-hold. Scanning parameters were as 

follows: tube voltage 120  kV, automatic tube current 
modulation, rotation time 500  ms, pitch 1.375, matrix 
512 × 512, window width/window level 1,500/ -500 HU 
(lung window), and 400/40 HU (mediastinal window). 
The image reconstruction parameters of slice thickness 
were 1.25 to 1.5  mm. The CECT scan was performed 
after NECT and intravenous injection of contrast agent 
(1.5 mL/kg, flow rate 2.5–3 mL/s). The arterial phase of 
CECT was acquired 28 s after injecting a contrast agent.

Image segmentation
Two radiologists with at least 5-year experience in chest 
CT cooperated in manually drawing the region of interest 
(ROI) of lesions on the two CT scans (NECT and CECT) 
layer by layer using 3D slicer (http://​www.​slicer.​org). The 
ROI was drawn by one experienced chest radiologist and 
confirmed by the other one. The definition of the ROI was 
relied on the lung (1,500/-500 HU) and mediastinal win-
dow (400/40 HU). They were blinded to the final results of 
T790M emergence.

Image preprocessing and radiomics feature extraction
To improve the reproducibility of radiomics features and 
reduce differences such as various CT scanners, we firstly 
performed CT image preprocessing by four steps: (a) to 
ensure the correct calculation of radiomics features, we 
resampled all CT voxels to 1 × 1 × 1 mm3 in-plane resolu-
tion; (b) grayscale discretization was applied to normalize 
intensity of the image signal by a fixed bin width of 25 
HU; (c) wavelet (low bandpass filter and high bandpass 
filter in the x, y, and z directions) and Laplacian of Gauss-
ian filter (sigma 1.0 to 5.0) transformed images were 
performed to eliminate interference signals; and (d) the 
z-score transformation as the package default image nor-
malization was applied to standardize the radiomics fea-
tures to mitigate multimachine effect.

The radiomics features were extracted from ROI based 
on original and filtered images using the PyRadiomics 
package of Python. The radiomics features mainly included 
first-order features, shape and size features, and texture fea-
tures. Detailed information of the radiomics features can be 
found in the PyRadiomics official documentation (https://​
pyrad​iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html).

Process of radiomics feature selection
Firstly, 35 patients (20 patients without T790M emer-
gence and 15 patients with T790M emergence) were 
randomly selected and resegmented by another radiolo-
gist with 20 years of experience in lung CT for evaluating 
intraobserver reliability. Features based on the segmenta-
tions of two radiologists were compared to evaluate the 
inter-observer reproducibility. The inter-observer intra-
class correlation coefficients > 0.80 of radiomics features 

http://www.slicer.org
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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were retained. Then the MinMaxScaler method was used 
to normalized radiomics features in the training and test-
ing cohort. After that, maximal information coefficient was 
applied to select features considering its capacity of captur-
ing extensive relationships, both functional and not and 
both linear and nonlinear, in large-scale omics data. We 
selected the top 200 features based on the maximal infor-
mation coefficient values which were ranged in decreasing 
order. Finally, the least absolute shrinkage and selection 
operator algorithm was performed to select the optimal fea-
tures with tenfold cross-validation. Radiomics scores (rad-
score) of NECT and CECT were calculated by the selected 
features and their corresponding coefficients which were 
obtained by least absolute shrinkage and selection opera-
tor algorithm. In addition, the detailed formula was listed 
in Supplementary Material. These steps of feature selection 
were performed with the Python scikit-learn package (ver-
sion 3.8, scikit-learn Version 0. 21, http://​scikit-​learn.​org/).

Radiomics model construction
The selected radiomics features extracted from NECT 
and CECT images were used to build NECT and CECT 
models, respectively. These two models were developed 
and validated using the logistic regression classifier in 
the training cohort. The rad-score of each patient was 
evaluated by the combination of selected radiomics fea-
tures and their relevant weights. Then we constructed 
a nomogram by incorporating the rad-score calculated 
by NECT and CECT models. All models were trained 
and validated in the training cohort which were ran-
domly divided into two parts by the ratio of 7:3 using 
tenfold cross-validation. By selecting the best model on 
cross-validation of each model, we tested it in the test-
ing cohort, separately. The process of model construc-
tion was applied by the Python scikit-learn package and 
R software (version 4.2.2). The whole radiomics work-
flow pipeline was displayed in Fig. 2.

Fig. 1  Flowchart of patient selection. For abbreviations, see the Abbreviations list

http://scikit-learn.org/
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Statistical analysis
Statistical analysis was performed with SPSS software 
(version 26) and R software. The independent two-
sample t-test was used to analyze continuous vari-
ables, whereas differences in categorical variables were 
analyzed using χ2 test. The discriminative efficacy of 
these three models was assessed through area under 
the curve at receiver operating characteristic analy-
sis (ROC-AUC). The specificity, sensitivity, positive 
predictive value (PPV), and negative–positive value 
(NPV) were also calculated, respectively. A calibration 
curve was used to evaluate the consistency between the 
predicted and actual probability of occurrence of the 
T790M positive. The decision curve analysis (DCA) was 
conducted to estimate the net benefits of three models 
for a range of threshold probabilities. Patients in the 
independent testing cohort were divided into high- and 
low-risk groups based on the optimal threshold value 
which was determined by the Youden index in the 

training cohort. The association of the risk estimated 
by nomogram and the time of T790M occurrence was 
performed to evaluate the prognostic potential of the 
nomogram. The potential association was evaluated by 
the Kaplan–Meier survival analysis, the log-rank test, 
and C-index. The statistical significance levels were all 
set at p < 0.05.

Results
Patient baseline clinical characteristics
We collected and analyzed the value of baseline clin-
icopathologic characteristics for predicting the risk of 
emerging T790M resistance. There were no significant 
differences between the two groups in terms of many 
factors as shown in Table 1, except for the initial EGFR 
mutation types. However, it only has statistical sig-
nificance in the total cohort, but not in the training 
and testing cohort (training cohort, p = 0.254; testing 
cohort, p = 0.062).

Fig. 2  The workflow of this study. For abbreviations, see the Abbreviations list
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Selection of radiomics features
A total of 4 and 10 radiomics features were obtained 
from the NECT and CECT after the process of feature 
selection, respectively.

The rad-score of NECT were significantly higher in the 
T790M-positive than the T790M-negative group in the 
training cohort (p = 0.013). However, there was no signifi-
cant difference in testing cohort (p = 0.088). In addition, 

Table 1  Patients and their baseline clinical characteristics before the first-line treatment with EGFR-TKIs

Differences were assessed by independent t-test or χ2 test. EGFR-TKI Epidermal growth factor receptor-tyrosine kinase inhibitor, SD Standard deviation

Characteristic Total cohort (n = 162) T790M positive (n = 83) T790M negative (n = 79) p-value

Chest computed tomography, n (%)

  Nonenhanced 162 (100.0) 83 (100.0) 79 (100.0) -

  Contrast enhanced 119 (73.5) 67 (80.7) 52 (65.8)

Histologic type, n (%)

  Adenocarcinoma 158 (97.5) 82 (98.8) 76 (96.2) 0.288

  Others 4 (2.5) 1 (1.2) 3 (3.8)

  Age years (mean ± SD) 57.8 ± 9.4 57.5 ± 9.3 58.1 ± 9.5 0.685

Gender, n (%)

  Male 53 (32.7) 26 (31.3) 27 (34.2) 0.699

  Female 109 (67.3) 57 (68.7) 52 (65.8)

Smoking, n (%)

  Yes 41 (25.3) 19 (22.9) 22 (27.8) 0.468

  No 121 (74.7) 64 (77.1) 57 (72.2)

Alcohol consumption, n (%)

  Yes 28 (17.3) 14 (16.9) 14 (17.7) 0.886

  No 134 (82.7) 69 (83.1) 65 (82.3)

Initial EGFR mutation, n (%)

  L858R 60 (37.0) 35 (42.2) 25 (31.6) 0.018

  19Del 92 (56.8) 47 (56.6) 45 (57.0)

  Others 10 (6.2) 1 (1.2) 9 (11.4)

First-line EGFR-TKI, n (%)

  Gefitinib 40 (24.7) 20 (24.1) 20 (25.3) 0.401

  Icotinib 102 (63.0) 50 (60.2) 52 (65.8)

  Afatinib 8 (4.9) 4 (4.8) 4 (5.1)

  Erbtinib 12 (7.4) 9 (10.9) 3 (3.8)

T stage, n (%)

  T1 37 (22.8) 18 (21.7) 19 (24.1) 0.118

  T2 45 (27.8) 17 (20.5) 28 (35.4)

  T3 16 (9.9) 10 (12.0) 6 (7.6)

  T4 64 (39.5) 38 (45.8) 26 (32.9)

N stage, n (%)

  N0 36 (22.2) 16 (19.3) 20 (25.3) 0.074

  N1 7 (4.3) 1 (1.2) 6 (7.6)

  N2 71 (43.8) 36 (43.4) 35 (44.3)

  N3 48 (29.7) 30 (36.1) 18 (22.8)

M stage, n (%)

  M1a 35 (21.6) 19 (22.9) 16 (20.3) 0.147

  M1b 46 (28.4) 18 (21.7) 28 (35.4)

  M1c 81 (50.0) 46 (55.4) 35 (44.3)

Stage, n (%)

  IVa 81 (50.0) 37 (44.6) 44 (55.7) 0.157

  IVb 81 (50.0) 46 (55.4) 35 (44.3)
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for the rad-score of CECT, the T790M-positive group 
was significantly higher than the T790M-negative group 
whether in the training (p < 0.001) or testing (p = 0.001) 
cohort (Fig. 3).

Model performance
A radiomics nomogram was developed by integrating 
the rad-score of NECT and CECT in the training data-
set (Fig.  4). The NECT, CECT, and nomogram were 
all significantly associated with the status of T790M 
(Fig.  5a–c). The ROC-AUCs of the NECT model were 
0.730 (95% confidence interval [CI] 0.643–0.818) and 
0.622 (95% CI 0.415–0.829) in the training and testing 

cohort, respectively. As for the CECT model, it yielded 
ROC-AUCs of 0.803 (95% CI 0.693–0.913) and 0.752 
(95% CI 0.570–0.935) in the training and testing cohort. 
The predictive nomogram for the status of T790M 
based on the rad-score of NECT and CECT achieved 
an encouraging performance with a ROC-AUC of 0.828 
(95% CI 0.717–0.937) in the training cohort, which was 
confirmed in the testing cohort with a ROC-AUC of 
0.853 (95% CI 0.727–0.979). The cutoff values of NECT, 
CECT, and nomogram were 0.053, -0.472, and -0.087 in 
the training cohort. The accuracy, sensitivity, specific-
ity, PPV, and NPV were also calculated in three models, 
respectively, and displayed in Table 2.

Fig. 3  The rad-score of two groups in the training and testing cohort of two CT scans
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Clinical utility
The NECT model, CECT model, and nomogram showed 
good agreement between the estimated probability of 
T790M positive and the observed rate of T790M positive 
in both datasets (Fig.  5d–f). In the results of Hosmer–
Lemeshow statistic, there was no significant difference 
from an ideal fitting in NECT model (training cohort, 
p = 0.526; testing cohort, p = 0.551), CECT model (train-
ing cohort, p = 0.874; testing cohort, p = 0.730), and 
nomogram (training cohort, p = 0.230; testing cohort, 
p = 0.490). The nomogram showed a higher net benefit 
in differentiating T790M positive from T790M negative 
than the NECT and CECT model across the majority of 
the range of reasonable threshold probabilities by DCA 
(Fig. 5g–i).

Follow‑up and patient risk stratification
A total of 162 metastatic NSCLC patients were followed 
up to the data of May 1, 2023, successfully. At the end 
of the follow-up period, all patients developed T790M 
resistance. The resistant time was defined as the time 
between the date of receiving first-line TKIs (first- or 
second-generation EGFR TKIs) and the date of T790M 
being detected. The resistant time ranges from 1.4 to 
105.7 months (mean 16.5 months, median 16.1 months).

The Kaplan–Meier curves of the proportion of patients 
with T790M negative were significantly different between 
the high- and low-risk groups (p = 0.00029, hazard ratio 
6.210, 95% CI 2.037–18.930) (Fig. 6).

Discussion
This study recruited and analyzed 162 metastatic NSCLC 
patients who were at initial diagnosis and received the 
first- or second-generation TKIs in the following treat-
ment only. We firstly constructed radiomics models to 
identify patients who will develop T790M resistance 
within 14 months after TKIs and further explored a bio-
marker for risk stratification. Ultimately, this research 
demonstrated that the radiomics nomogram based on 
baseline NECT and CECT images could distinguish the 
patients developing T790M resistance in the early stage 
effectively.

Almost 51% oncogene-driven lung cancer patients are 
diagnosed with metastases at baseline, leading to a low 
5-year survival rate of 21% [14]. Despite the early positive 
effect of first- or second-generation TKIs, the emergence 
of resistance is inevitable, and the time varies widely [4]. 
It was reported that resistance would emerge within 9 to 
14 months after receiving TKIs [15]. Therefore, the four-
teenth month was selected as the cut-off point to evalu-
ate the resistant risk. In this research, we found that the 
nomogram depending on the rad-score of the NECT and 
CECT model achieved the best performance. And the 
rad-scores were remarkably higher in the high-risk group 
of T790M resistance.

The CECT model played a more important role than 
the NECT model in the nomogram. Besides, compared 
with the NECT model, the CECT model performed 
better with higher ROC-AUCs in the two cohorts. It 
revealed that the features extracted from CECT may be 

Fig. 4  The nomogram incorporating the rad-score of NECT and CECT was developed in the training cohort. CECT Contrast-enhanced computed 
tomography, NECT Nonenhanced computed tomography, Prob Probability
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Fig. 5  Receiver operating characteristic analysis of the NECT model, CECT model, and nomogram in predicting T790M resistance in the testing 
cohort (from a to c, respectively). Calibration curves showing the performance of the NECT model, CECT model, and nomogram in the prediction 
of T790M resistance in the testing cohort (from d to f, respectively). Decision curve analysis for predicting T790M resistance of NECT model, 
CECT model, and nomogram in testing cohort (from g to i, respectively). CECT Contrast-enhanced computed tomography, NECT Nonenhanced 
computed tomography

Table 2  Predictive performance of three models in the training and testing cohorts

CECT Contrast-enhanced computed tomography, NECT Nonenhanced computed tomography, NPV Negative predictive value, PPV Positive predictive value, ROC-AUC​ 
Area under the curve at receiver operating characteristic analysis

Index Training cohort Testing cohort

NECT model CECT model Nomogram NECT model CECT model Nomogram

ROC-AUC​ 0.730 0.803 0.828 0.622 0.752 0.853

Accuracy 0.698 0.797 0.812 0.697 0.759 0.800

Sensitivity 0.723 0.973 0.865 0.778 0.533 0.800

Specificity 0.672 0.556 0.741 0.600 1.000 0.800

PPV 0.701 0.750 0.821 0.700 1.000 0.842

NPV 0.695 0.938 0.800 0.692 0.667 0.750
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superior to that from NECT in predicting T790M-resist-
ant risk which is in line with the previous study of Hong 
et al. [16]. They found that radiomics features extracted 
from CECT were better than that from NECT images in 
differentiating mutant and wild-type EGFR in advanced 
lung adenocarcinoma patients. It may be related to the 
reason that the tumor profile can be delineated well 
and the enhanced pattern of increased vascularity can 
be provided in the CECT images [16]. In contrast, Tang 
et al. [17] suggested that NECT features can distinguish 
T790M well when advanced NSCLC patients progressed. 
However, their research mainly focused on whether the 
lesion remained T790M mutation and did not discuss the 
time of emerging T790M. These conclusions indicated 
that NECT and CECT radiomics features perform differ-
ently in different conditions.

Our DCA curve showed that rather than assuming “all 
patients emerge T790M” or “all do not emerge T790M” 
across the majority of reasonable threshold probability, 
the nomogram model added more net benefit and had 
quality generalizability in clinical practice. In order to 
validate the risk-stratified ability of the nomogram, we 
extended the follow-up time. The nomogram model can 
successfully distinguish high-risk patients in emerging 
T790M mutation who need close monitoring and timely 
regulating targeted agents. And the Kaplan–Meier curves 
of the proportion of patients with T790M negative have 
a significant difference between the two groups with a 

hazard ratio of 6.210, which means the high-risk group 
is approximately six times more likely to develop T790M 
resistance than the low-risk group.

Some baseline clinical factors were analyzed in this 
study. For the total cohort, the initial EGFR mutation 
status has a significant difference between T790M-pos-
itive and -negative groups. It showed that patients who 
emerged T790M early had a higher proportion of EGFR 
19Del mutation. This was in line with  a previous study 
[17] showing that patients with 19Del mutation are more 
prone to developing T790M than those harboring L858R, 
whereas, as for the training and testing cohort, the dif-
ference was not significant which may be associated with 
the limited amount of cases.

Previous studies have demonstrated that radiom-
ics has the potential to predict the mutation status of 
NSCLC [8, 13, 18–20]. Currently, a small part of studies 
have discussed the issue of T790M resistance mutation 
[12, 17, 21, 22]. Li et al. [12] have shown that radiomics 
based on multisequence MRI can differentiate NSCLC 
patients with brain metastases harboring T790M muta-
tion from those who do not have T790M. Fan and col-
leagues [21] built a combined radiomics model using the 
features extracted from tumoral and peritumoral areas 
of brain metastasis to assess the T790M mutation status. 
Tang et al. [17] evaluated the value of chest CT radiom-
ics in assessing T790M for advanced NSCLC patients 
after the failure of EGFR-TKIs, and they found that the 

Fig. 6  Kaplan–Meier survival curves of the time of T790M occurrence according to the risk score predicted by the nomogram in the testing cohort
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NECT + CECT signature performed the best in assessing 
T790M. More and more studies have indicated that radi-
omics has the ability of risk stratification and prognostic 
prediction [23–25]. Zhao et al. [23] built a risk-stratified 
model to predict intracranial progression in ALK-mutant 
NSCLC patients with brain metastases after receiving 
ensartinib. The risk of emerging T790M mutation varies 
from different NSCLC patients after the first-line TKIs. 
Therefore, we hypothesized that the baseline CT radiom-
ics features have the value in predicting T790M occur-
rence for metastatic NSCLC patients after TKIs.

There were still a few limitations in this study. Firstly, it 
is a retrospective research with a relatively small dataset. A 
prospective and multicentric study should be carried out 
in the future. Secondly, except for the T790M mutation, 
there are several other resistant mechanisms which were 
not analyzed in our research limited by the small number 
of cases. These infrequent resistance mutations will be 
evaluated in the continuous research. Thirdly, the optimal 
strategy for contrast enhancement in chest CT protocols 
is being debated [26]. Some guidelines and authors specifi-
cally recommend scanning after a delay of 20 − 35 s [27, 28]. 
The recruited patients in our study were scanned at a spe-
cific postinjection time delay. In future studies, we will use 
bolus tracking to decide when to start the scan.

In summary, this study showed that a nomogram based 
on baseline NECT and CECT images can effectively iden-
tify metastatic NSCLC patients who would emerge T790M 
mutation within 14 months after the first- or second-gen-
eration TKIs therapy. Besides, the nomogram also has the 
ability of risk stratification which is conducive to regulate 
targeted agents and develop individual follow-up strategies.
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