
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Nonstationary Models for Large Spatial Datasets Using Multi-resolution Process Convolutions

Permalink
https://escholarship.org/uc/item/8x932794

Author
Kirsner, Daniel

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x932794
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

NONSTATIONARY MODELS FOR LARGE SPATIAL DATASETS
USING MULTI-RESOLUTION PROCESS CONVOLUTIONS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

STATISTICAL SCIENCE

by

Daniel Kirsner

June 2020

The Dissertation of Daniel Kirsner
is approved:

Bruno Sansó, Chair
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Abstract

Nonstationary Models for Large Spatial Datasets Using Multi-resolution Process

Convolutions

by

Daniel Kirsner

Large spatial datasets often exhibit fine scale features that only occur in sub- do-

mains of the space, coupled with large scale features at much larger ranges. The

most commonly used model used for spatial datasets is the Gaussian Process, but

evaluation of likelihood is computationally expensive. Additionally, traditional

Gaussian Processes models make very strong assumptions regarding the symme-

try of the Gaussian field. In particular they assume stationarity, namely that

covariance functions depend only on the displacement vector between two points,

not their locations. This assumption prevents stationary Gaussian Processes from

accounting for multi-scale features that only exist in parts of the spatial domain.

In this work, we develop multi-resolution kernel convolution methods that ex-

plicitly account for local multi-scale features through spatially varying resolution.

These methods define an increasingly refined set of nested kernels, and induce

sparsity on these grids.

We first introduce modifications to existing multi-resolution kernel convolution

models that result in spatially varying resolution through a sparsity inducing

prior. We cast spatially varying resolution as a model selection problem, and

develop a Shotgun Stochastic Search algorithm that considers an infinite number

of resolutions, and permits uncertainty quantification without resorting to MCMC.

We propose a LASSO like prior that achieves spatially varying resolution at its

maximum a posteriori, and develop a proximal gradient descent algorithm to find

x



this optimum considering an infinite number of resolutions. We then develop a

Bayesian model averaging approach to perform uncertainty quantification in this

setting.

We implement these methods in an efficient and reproducible manner via the

R package MSSS. We discuss in detail the computational efficiency achieved by

leveraging parallel computation, compactly supported kernels, add one column re-

gression updates, and modern optimization methods in MSSS. We demonstrate the

local feature identification properties of spatially varying resolution and demon-

strate the computational performance by considering a land surface temperature

dataset from the Ozarks, and a large sea surface temperature dataset collected by

a satellite off the coast of California
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Chapter 1

Introduction

1.1 Background

The traditional problem of model-based spatial statistics is to use a collection

of spatially referenced observations to produce an estimate of the mean function of

the data generating process, together with uncertainty intervals, across the entire

domain. It is usually the case that observations are irregularly scattered over a

large domain, and increasingly often, there is a need to handle very large amounts

of data. Furthermore, it is desirable that models for this kind of data are able

to capture behavior that varies due to differences in scales and in locations. For

example, to model sea surface temperature in the Mediterranean, a model must

be able to account for large scale features like the fact that the sea is warmer near

Turkey than near Spain, and small scale features like how tiny islands in Greece

can affect the temperature near the island. Gaussian processes provide a flexible

framework for modeling this kind of data.

A well established literature has been developed on the idea of using Gaus-

sian processes as the main tool for model-based geostatistics (see, for example,

Gelfand et al., 2010, for a comprehensive review). However, for n data points,

1



the computation of the likelihood for a Gaussian process requires inversion of an

n by n covariance matrix, which is computationally expensive (O(n3)). There

are numerous approaches to resolving this issue in a big spatial data context, see

Heaton et al. (2019) for a comparative review, and Banerjee (2017) for a review

of Bayesian methods.

1.1.1 Computational Efficiency and Spatial Models

One class of sparsity inducing techniques seek to reduce the number of non-zero

elements in the covariance matrix of the Gaussian process through compactly sup-

ported covariance functions. Furrer et al. (2006) show that if a covariance function

with known parameters is tapered by multiplying it with a compactly supported

covariance function, then the resulting kriging estimates are still asymptotically

optimal, but the computational advantages can be significant. Kaufman et al.

(2008) show how to estimate the parameters of the underlying covariance func-

tion in the tapering context. Sparse covariance matrices can also be built by spa-

tial partitioning, which partitions the domain and assumes independence between

subregions. These methods allow for parallel computation as well, and result in

nonstationary spatial models, which is often a desirable feature. Partitioning can

either be fixed a priori via a number of deterministic rules, such as equal areas

(Sang et al., 2011) or clustering (Anderson et al. (2014), Heaton et al. (2017)).

Alternatively, the partitions can be learned via computationally intensive trans-

dimensional MCMC approaches, such as Kim et al. (2005) and Gramacy and Lee

(2008), which will be discussed further in the review of nonstationary methods.

Another class of sparsity inducing techniques build sparsity in the precision

matrix of the Gaussian process. Gaussian Markov random fields (GMRF) (Rue

and Held, 2005) enforce sparsity by restricting dependence to a neighborhood

2



defined by a respecified undirected graph. However, this method does not take

distance into account, so is most appropriate for data collected on a grid, or when

the domain is partitioned in a manner similar to zip codes, or states. Stochastic

partial differential equation (PDE) approaches (Lindgren et al., 2011) rely on

the equivalence of Matern covariance fields and stochastic PDEs, and then use

a basis expansion of the spatial process. Nearest neighbor Gaussian processes

(Datta et al., 2016) build a spatial process where each point depends only on the

k nearest neighbors to it, but still uses spatial covariance functions. This induces a

sparse precision matrix but unlike Rue and Held (2005), this process still accounts

for distance. The computational advantage of sparsity inducing techniques comes

from the use of sparse matrix routines. However, a preprocessing step that reorders

the data so that the covariance or precision matrix is approximately banded is

often required to optimize these methods.

If the data is collected on a regular grid and the model chosen is stationary, the

fast Fourier transformation can be used to rapidly evaluate the Gaussian process

likelihood. This is sometimes referred to as circulant embedding (Chan and Wood,

1999). An approach that uses circulant embedding to fit models with missing

data, which is necessary for out of sample prediction, and that is able to manage

edge effects, was developed by Stroud et al. (2017). An approach that reduces

the the computational complexity through an approximate covariance model was

developed in Guinness (2019).

Dimension reduction is another common approach. These techniques express

the underlying spatial process as a sum of J basis functions, where J << n. The

fixed rank kriging approach of Cressie and Johannesson (2008) approximates a spa-

tial process with a linear combination of K basis functions, but does not attempt

to approximate a particular Gaussian process. Predictive processes (Banerjee

3



et al., 2008) approximate a Gaussian process with a specific covariance function

through a set of knots, but this approximation results in biased estimates of the

non spatial error. The modified predictive process (Finley et al., 2009) resolves

this bias. Discrete process convolutions (Higdon (1998), Stein (2007) Lemos and

Sansó (2009) among many others) approximate a Gaussian Process with a linear

combination of basis functions that are generated by kernels or radial basis func-

tions usually centered on a grid. Conditional on the data and the parameters, the

model reduces to a linear regression with J coefficients, which entails a reduction

of the computational complexity to O(J2n + J3)). A further computational ad-

vantage can be gained if the basis functions have compact support. Then, sparse

matrix routines can be used to reduce the O(J3) portion of the computational

complexity. For all low rank methods, selection of J is a difficulty. If J is too

small, then the model can miss the small scale features, but increasing J can make

the parameter space unfeasibly large and cause numerical issues.

1.1.2 Non-stationarity and Spatial Models

Traditional Gaussian process geostatistical models assume stationarity, namely

that covariance functions depend only on the displacement vector between two

points, not their locations. This assumption can limit the performance of a model.

In the context of sea surface temperature, Karspeck et al. (2012) have argued

against the appropriateness of stationary Gaussian processes, and Lasinio et al.

(2013) discuss how large datasets often display non-stationarity. Many approaches

have been developed to account for non-stationarity.

Some approaches map the nonstationary field onto a stationary one. Sampson

and Guttorp (1992) use the idea of deforming the space through a function that

maps locations in the original, nonstationary field to a latent, stationary field.

4



They represent this function through splines. Schmidt and O’Hagan (2003) ex-

tend this model through a Gaussian process prior for the mapping function, and

estimate all parameters via MCMC. These methods are sometimes referred to as

image warping. A related approach was developed in Bornn et al. (2012), where

a nonstationary field is embedded into a higher dimensional space where the field

will exhibit stationarity. The authors use a spline based method similar to Samp-

son and Guttorp (1992) that estimates the embedding function, but preserves the

lower dimensional locations.

Some approaches create classes of nonstationary covariance functions. The

approach of Fuentes and Smith (2001) allows the parameters of stationary co-

variance function to vary in space by convolving them with a fixed kernel. This

hierarchy creates a new, nonstationary covariance function that is nonstationary,

but locally stationary. Paciorek and Schervish (2006) derive a class of nonstation-

ary covariance functions through convolving stationary covariance functions with

spatially varying kernels. The resulting class of covariance functions are closed

form. Inference on both of these models requires MCMC on the resulting full

Gaussian Process.

By construction, finite basis function representations of Gaussian processes,

like discrete process convolutions, are non-stationary, but most models in the lit-

erature using such formulations do not attempt to explicitly describe the charac-

teristics of the non-stationarity. Lemos and Sansó (2009); Lemos and Sansó (2012)

extend the process convolution approach to reflect non-stationarity explicitly by

considering kernels with spatially varying elliptical shapes. This is coupled with

a GMRF prior on the knot coefficients, which encourages some spatial sharing of

information and improves computation. This model is sensitive to the choice of

the number of basis functions, but preserves the computational advantages of low

5



rank approaches while explicitly characterizing non-stationarity.

Another set of approaches rely on partitioning the domain, using a stationary

process on each element of the partition, and assuming independence between the

partitions. These approaches also have computational advantages. Rather than

inversion of a single n by n covariance matrix, evaluation of the likelihood requires

only inverting the covariance matrix for each partition. This also permits parallel

computation. The piecewise Gaussian process of Kim et al. (2005) accomplishes

this by dividing the domain into non-overlapping regions through Voronoi parti-

tioning. To perform inference on the surface and average over different potential

partitions, reversible jump MCMC is required, which is computationally expen-

sive. The approach of Gramacy and Lee (2008) replaces the Voronoi partitioning

with partitioning through a tree, which is related to CART (Chipman et al., 1998)

and tends to result in a smaller number of partitions. The MCMC in this case

is still trans-dimensional, but is less of a computational burden than standard

reversible jump MCMC. However, realizations from both of these models result in

covariance functions that have jagged transitions at the borders of the partitions,

which is not always desirable. An approach that combines the treed partitioning

approach with process convolutions was proposed by Liang and Lee (2011). In it,

a reduced rank discrete process convolution is fit to each of the partitions. This

allows for different kernel parameters to be used in different partitions, which

makes the model extremely flexible.

Multi resolution models layer multiple processes on top of each other at dif-

ferent resolutions to accomplish dimension reduction while accounting for both

fine and large scale features in the data. The approach of Nychka et al. (2015)

approximates stationary Gaussian processes through a Gaussian Markov random

field prior on coefficients of basis functions at each resolution. This approach also

6



enforces prior independence between coefficients at different resolutions. The re-

sulting fields are nonstationary, but don’t attempt to approximate nonstationary

processes directly. However, it is possible for the parameters of the basis func-

tions to vary in space as well, which could more directly model nonstationary. The

multi-resolution predictive process in Katzfuss (2017) recursively fits a predictive

process (Banerjee et al., 2008) at increasing resolutions by refining an original set

of knots. This approach allows for nonstationary covariance functions, but still

enforces the same multi-resolution structure across the entire field.

A Bayesian approach that partially relaxes this rigid structure was proposed in

Guhaniyogi and Sansó (2017). They propose discrete process convolution with a

nested set of knots and isotropic, compactly supported basis functions at differing

resolutions. The range of these basis functions is decreasing in resolution, to

encourage higher resolutions to reflect high frequency behavior. A prior on the

knot coefficients enforces spatially varying increasing shrinkage in resolution, so

different parts of the domain adaptively receive different amounts of shrinkage.

MCMC is required, but can be performed efficiently due to the compact support of

these basis functions. A related model, that provides an extensions to of Katzfuss

(2017) approach, was proposed by Benedetti et al. (2018). A spike and slab prior

on basis function weights is linked hierarchically between resolutions in a manner

that results in spatially varying shrinkage.

1.2 Discrete Process Convolutions

We will begin by more precisely discussing discrete process convolutions. Let

{w(s) : s ∈ D} be the spatial process of interest on the domain D ∈ Rd, where

d ∈ {1, 2}. We can construct this Gaussian process in the manner of Higdon

(1998). Let K(s) be a kernel function, and βj, j = 1, . . . , J a set of Gaussian
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random variables corresponding to a set of points in D, s1, . . . , sJ , usually defined

over a regular grid. We focus on the finite dimensional representation of the

process,

w(s) =
J∑
j=1

K(s, sj|ζ)βj.

Note that in general, the parameters for the kernel ζ can be a vector. Following

Lemos and Sansó (2012) we term this a discrete process convolution (DPC).

These models are subject to the choice of the knot locations sj, their total

number J , the kernel functions K and their associated parameters φ. Even with

a small number of knots, DPCs are able to capture the long range behavior of

a spatial field. But, unless J is taken as a very large number, a DPC can miss

short range features. And clearly, using a very large number of knots defeats the

dimension reduction purpose of the DPC representation. In addition, it is often

the case that some areas of the domain will show substantially more variability

than others. To approach this issue, we will later introduce the multi-resolution

DPC. This embeds multiple DPCs at different resolutions into the same model.

1.2.1 Domain Partitioning

To define the structure of our multiple resolutions, we will follow the notation

of Guhaniyogi and Sansó (2017). Start by partitioning the spatial domain D

into J(1) square subregions D1, . . . , DJ(1). The centers of these regions define the

first resolution of knots. To define resolution 2, each of the square subregions

Di will be partitioned into 2d square subregions, giving us J(2) = J(1) × 2d

subregions on the second resolution. The 2d partitions of domain Di are labeled

as Di,i2 where i2 ∈ {1, . . . , 2d}. We can now iteratively define resolution r by

partitioning the subregions at resolution r − 1 into 2d square regions, and can

index a domain in this region as Di1,...,ir where i1 ∈ {1, . . . , J(1)} and i2, . . . , ir ∈
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Figure 1.1: On the left, a plot of knot locations for the first 3 resolutions in 1
dimension with J(1) = 3. On the right, a plot of knot locations for the first 3
resolutions in 2 dimensions with J(1) = 9.

{1, . . . , 2d}. We will refer to the center of domain Di1,...,ir as a knot srj where

j =
∑r−1

l=1 ((il − 1)(2d)r−l) + ir. Figure 1.1 displays both one and two dimensional

examples of the knot placements.

From this definition, we can see that J(r) = J(1) × 2d(r−1). We can view

this partitioning as forming a tree, with the highest nodes at the lowest reso-

lution, and lower nodes representing higher resolutions. 2d branches come from

each node to the nodes at the next level. Motivated by this tree structure, we

will define parent(Di1,..ir−1,ir) = Di1,..ir−1 and children(Di1,..ir−1) = {Di1,..ir−1,ir :

ir ∈ 1, .., 2d}. These definitions are also useful to apply to the knots. We de-

fine parent(srj) = sr−1
b j−1

2d
c+1

and children(sr−1j ) = {srk : k ∈ 2p(j − 1) + 1, 2p(j −

1) + 2, . . . , 2p(j − 1) + 2p}. Lastly, we define the subtree, which is the set of all

domains that are ancestors of a particular domain. Formally, subtree(Di1,..,ir) =

{Di1,..,ir,...}.

1.2.2 Spatially Varying Shrinkage

We can now introduce the multi-resolution discrete process convolution, and

discuss spatially varying shrinkage in more detail. Following the notation of 1.2.1,
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we define the spatial process as multi-resolution process convolution, where

w(s) =
R∑
r=1

J(r)∑
j=1

K(s, srj |ζr)βrj .

Note that the parameters of the kernel change with the resolution. In Guhaniyogi

and Sansó (2017), the kernel function is taken to be a compactly supported Wend-

land kernel. If l = bd/2c+ 2, then

K(s, srj , φr) =

(
1−
||s− srj ||

φr

)l+1

+

[
1 + (l + 1)

||s− srj ||
φr

]
.

The range of this kernel, φr, is defined as η||srj − srj−1||, which enforces smaller

kernel widths at higher resolutions. The authors also place the following prior on

the knot coefficients:

βrj ∼ N(0, αrj),

α1
j = δ−1, α2

j = δ−1j,2 , α
r
j = αr−1

b j−1

2d
c
δ−1j,r ,

δ1 ∼ Gamma(2, 1), δj,r ∼ Gamma(c, 1), c > 2.

This prior enforces shrinkage that is increasing in resolution, with E[βrj ] = 0 and

V ar[βrj ] = 1
(c−1)r−1 → 0 as r → ∞. This shrinkage in resolution is paired with

spatially varying shrinkage, where

V ar(βrj ) = δ−1j,r V ar(parent(β
r
j )).

This means that the shrinkage applied to a parent is also applied to all of its

ancestors. Subdomains with a large amount of shrinkage will be encouraged to

have knot coefficients that are very close to zero, while other subdomains can

have very little shrinkage applied to them. This spatially varying shrinkage can
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explicitly characterize non-stationarity in a spatial surface.

1.2.3 Research Objectives

In this work, multi-resolution kernel convolution methods that use kernel con-

volutions in increasingly refined sets of nested grids are developed. The objective

of this research is to study to methods that achieve spatially varying resolution,

which forces parts of the nested grid to be empty. This sparsity can allow for an

infinite number of resolutions to be considered a priori, which makes these meth-

ods extremely robust when compared to standard process convolutions, which are

sensitive to the choice of the number of basis functions. When comparing methods

that induce varying resolution to spatially varying shrinkage, an analogy can be

made to model selection in the regression context. Although a full review is omit-

ted here, the review by Hahn and Carvalho (2015) covers many of the trade-offs

between shrinkage and sparsity.

For the purposes of this work, a multi-resolution set of knots T is termed to

have spatially varying resolution if it meets the following criteria:

1. For all j ∈ J(1), s1j ∈ T.

2. For all r > 1, srj ∈ T→ parent(srj) ∈ T.

3. |T| <∞

The first criterion ensures that the resulting spatial surface has no gaps. The

second criterion coupled with the third allows us to, given a set of knots T, assign

each point in the spatial domain D an integer number of resolutions.

In Chapter 2, we develop an inferential method for inference on spatial multi-

resolution spatial models using shotgun stochastic search. This method casts

spatially varying resolution as a Bayesian model selection problem. We propose a
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stochastic process prior on knot inclusion that induces spatially varying resolution

in the resulting models. This knot selection is performed without a maximum

resolution enforced in advance, so an infinite number of models are considered.

We develop a prior on the coefficients corresponding to the included knots that

results in a closed form marginal distribution, allowing for easy computation of

the posterior model probabilities. We also develop a model search algorithm

that allows for exploration of the infinite dimensional space of potential knot

configurations.

In Chapter 3, we develop Multi-Scale Spatial Optimization. This method casts

spatially varying resolution as an optimization problem. We assume a prior on the

coefficients associated with the knots that achieves spatially varying resolution at

its maximum a posteriori, similar to the LASSO (Tibshirani, 1996). We develop

a proximal gradient descent algorithm for finding the MAP efficiently for a set of

penalty parameters.

In Chapter 4, we develop a Bayesian model averaging approach to gain some

uncertainty quantification on the set of maxima found using the optimization

method from the previous chapter. We also discuss how this model and other

with similar characteristics struggle with extremely large datasets, and propose

modifications to the prior that can help alleviate this issue.

To achieve the objectives in the previous chapters, the development of the R

package MSSS to fit models with spatially varying resolution was required. This

software is discussed in detail in Chapter 5.

In Chapter 6, we discuss in depth the manner in which spatially varying reso-

lution is able to identify features in geostatistical data, and how this differs from

other spatial models for large datasets. We first perform a comparison to other

spatial models by reviewing in detail the land surface temperature case study of
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Heaton et al. (2019), and showing how models with spatially varying resolution

are able to explicitly identify a mountain range in this dataset. We then analyze

a large sea surface temperature dataset collected off the coast of California during

a period with an upwelling.
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Chapter 2

Multi-scale Shotgun Stochastic

Search

2.1 Bayesian Model Selection

In this chapter, we appeal to the Bayesian model selection literature to select

promising sets of knots that display spatially varying resolution. We will first

review this literature in the linear model context. The traditional setup for such

models is

p(y|Mγ,βγ , σ
2) ∼ Nn(Xγβγ, σ

2) (2.1)

p(βγ, σ
2) = p(βγ|σ2)p(σ2) (2.2)

Pr(βj = 0|γj = 0) = 1 (2.3)

Pr(γj = 1) = πγj(1− π)1−γj (2.4)

This is sometimes referred to spike and slab variable selection (Mitchell and

Beauchamp, 1988). Some authors have argued for shrinkage priors (examples

14



include Park and Casella (2008) and Armagan et al. (2013)) as opposed to selec-

tion. These models include priors with large amounts of mass near zero to induce

irrelevant variables to take values close to zero, while also having fat tails that

allow important variables to remain large. However, these models do not achieve

exact sparsity, so cannot attain spatially varying resolution. The spike and slab

model is subject to choice of the slab equation (2.2) and the choice of the prior

on the model space equation (2.4). There are 2p potential models, so if p is large,

a strategy for enumerating potential models must be considered.

An early default choice for the slab is the null based g-prior of Zellner (1986),

where

p(βγ|σ2) = Np(0, σ
2g(XT

γXγ)
−1).

This prior results in a closed form posterior model probability, which is computa-

tionally convenient. However, the resulting resulting Bayes factors and posterior

model probabilities display suboptimal behaviors when the hyperparameter g is

fixed (Liang et al., 2008). These issues can be resolved by placing a prior on g

that resolves the issue while preserving some of the computational advantages.

Some examples are Liang et al. (2008) which will be discussed in more detail in

this chapter and Bayarri et al. (2012), which will be discussed in chapter 5. Other

priors, such as the non-local prior (Johnson and Rossell, 2012), which has no mass

in the neighborhood of zero, have been proposed. The non-local prior does not

result in a closed form Bayes factor, but the resulting posterior model probabilities

have very strong asymptotic optimality, and a Laplace approximation is provided.

The prior on the model space controls how large the model is expected to be

a priori. Assuming that all potential models have equal probability is equivalent

to setting π = 1/2, but this is often much larger of a model than is expected a

priori. A common choice is to set π via Empirical Bayes, (George and Foster,
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2000). Scott and Berger (2010) argue that setting a prior on π results in better

calibrated models, specifically because this prior controls for multiplicity. The

closely related complexity prior (Castillo et al., 2015) is a Beta(1, pu) with u > 1.

The authors show that this prior has asymptotic optimality properties and is

useful for large p.

In the this setting, there are 2p potential γ, which is too many to enumerate

exhaustively for even moderate p. However, to make predictions that account

for model uncertainty using Bayesian model averaging (Raftery et al., 1997), we

require p(γ|y). A number of strategies have been proposed to compute p(γ|y)

without explicitly evaluating every potential γ. If equation (2.2) results in conju-

gacy, then the marginal model probabilities are available in closed form, allowing

for Gibbs sampling. In a non-conjugate setting, the posterior can be simulated

from using reversible jump MCMC (Green, 1995). Stochastic search variable

selection (George and McCulloch, 1993) replaces equation (2.3) with a very con-

centrated normal prior, which allows for Gibbs sampling even in more complex

cases. All of these MCMC approaches suffer from mixing issues, especially with

large p, when the γj are sampled one at a time, but strategies for updating in

blocks are extremely difficult to generalize. Bottolo et al. (2010) develop a paral-

lel tempering approach that alleviates some of the mixing issues inherent to the

Markov chain based sampling approaches. In all previously discussed searches,

each iteration requires the evaluation of a number of models, but results in only

a single sample, and requires revisiting the same model multiple times in order

to compute posterior model probabilities. The non MCMC approach developed

by Hans et al. (2007) evaluates entire neighborhoods in parallel at each iteration,

which can have computational advantages. Another non MCMC based approach

was developed by Clyde et al. (2011). This method enumerates the model space
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by sampling from the space of potential models without replacement, so iterations

are not wasted.

We develop a multi-resolution model that achieves spatially varying resolution

through the tools of Bayesian variable selection. We adopt a form of the hyper-g

prior (Liang et al., 2008) as the slab distribution and discuss its spatial proper-

ties. For a prior on the model space, we develop a stochastic process prior in an

infinite number of dimensions that forces the models considered to demonstrate

spatially varying resolution. And to explore the space of possible sparse knot

configurations by using the tools of model selection, we extend shotgun stochastic

search (Hans et al., 2007) to the this setting, which allows our method to take

advantage of parallel computing environments and to evaluate many models at

each iteration. Due to the large number of potential models, these computational

advantages are essential. We demonstrate how to use this method to perform pre-

diction, uncertainty quantification, and demonstrate competitive computational

performance when compared with other approaches on a variety of spatial fields.

We also demonstrate how the resulting spatially varying resolution allows us to

graphically summarize the multi-resolution structure in the field.

Though to our knowledge, the use of knot selection has not been used to fit

spatial models, some similar ideas have been used to perform nonlinear regression.

In Smith and Kohn (1996), the authors use a g-slab, a fixed π in the model space

prior, and Gibbs sampling to perform knot selection on an additive model with a

cubic spline component and a fixed maximum number of knots.
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2.2 A Bayesian multi-resolution model

We start with a standard spatial regression model,

y(s)i = x(s)Ti α+ w(s) + ε(s)i, ε(s)i
i.i.d.∼ N(0, σ2),

where x(s)i is a q× 1 vector of individual level predictors, α is the q× 1 vector of

fixed effect regression coefficients associated with the predictors, w(s) is the spatial

effect, i is the index for replicates at a particular point s, and ε(s)i is random

noise, corresponding to observational error or micro-scale variability. Note that

the predictors occur on the individual level, not the level of the spatial process.

The spatial process is defined by a multi-resolution DPC,

w(s) =
∞∑
r=1

J(r)∑
j=1

K(s, srj |φr, ν)βrj .

For computational purposes, we require thatK is compactly supported, with range

φr. To satisfy the desideratum that higher resolution kernels reflect small scale

behavior, we let the kernel width decrease linearly as the resolution increases, i.e.

φr = τ ||srj − srj−1|| for some τ > 1. We propose to use a Bezier kernel (Brenning,

2001), which is compactly supported, and has a parameter ν that controls the

differentiability. This kernel function is defined as

K(s, srj , φr, ν) =


(

1−
(
||s−srj ||
φr

)2)ν
||s− srj || < φr

0 otherwise.

The compact support allows for the use of sparse matrix libraries, which speeds

up the computation and reduces the memory overhead. In section 2.3 we will

discuss the sensitivity of this method to the parameters ν and τ . We will now
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turn our attention to the coefficients βrj . To achieve spatially varying resolution,

we require sparsity, i.e. βrj = 0 for some r and j, that is structured in a manner

such that the number of resolutions varies in space.

2.2.1 A prior that induces spatially varying resolution

Motivated by this analogy, we will adapt a standard variable selection prior

on the coefficients of our model (Hans et al., 2007) to this setting in order to

induce spatially varying resolution. First, some notation must be introduced. Let

γ = [γ1,γ2, . . . ] be a vector of infinite length with length(γr) = J(r). Let the jth

entry of γr be called γr,j, j ∈ {1, 2.., J(r)}. We will set γr,j = 1 if βrj 6= 0, and will

put a prior on this vector. This is vector of infinite length, so a prior p(γ) will be

better understood as a stochastic process.

For our prior to induce spatially varying resolution, we would like to sat-

isfy three properties. First, every resolution one knot must be associated with a

nonzero coefficient. Without the entire resolution one grid, it is conceivable that

parts of our spatial field would be modeled as constant in space, which does not

make sense. Second, to allow the resolution to vary spatially, with a different num-

ber of resolutions possible at different locations, we only consider configurations

that satisfy

βrj 6= 0 =⇒ βr−1
b j−1

2d
c+1
6= 0, which is identical to γr,j = 1 =⇒ γbr−1, j−1

2d
c+1 = 1.

In other words, if a coefficient associated with a knot is nonzero, then the coef-

ficient associated with the parent of the knot must also be nonzero. Throughout

this paper, we will interchangeably refer to the set of nonzero coefficients in the

model as the knot configuration. Models with these restrictions will produce a

field that has locally varying resolution. This feature is analogous to the manner
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in which shrinkage works in Guhaniyogi and Sansó (2017), where the shrinkage ap-

plied to the coefficient of a parent is also applied to its children. Lastly, we would

like our prior to not result in infinitely many nonzero coefficients, as these models

will not be computationally feasible. Motivated by this, we set Pr(γ1,j = 1) = 1,

and

Pr(γr,j = 1|γr−1) = π × γr−1,b j−1

2d
c+1. (2.5)

The prior described in equation (2.5) follows the three properties discussed

above. Every resolution one knot is in the model, and if a knot at resolution r > 1

is in the model, then its parent must be as well. To understand some of the other

features of this prior, we can consider the random variable Xr =
∑J(r)

j=1 γr,j, the

number of nonzero βrj at resolution r. Xr can be thought of as a branching process

(Chung, 2012). The initial state of the process is X1 = J(1), and the offspring

distribution be Binomial(2d, π). The extinction probability of this process is

analogous to the probability of having a finite number of nonzero βrj . By the

properties of a branching process, the extinction probability is 1 as long as the

expected value of the offspring distribution is less than 1. Therefore, if we set π

such that π2d < 1, then the extinction probability of this process is 1, and the

prior favors a finite number of nonzero coefficients.

To complete the specification of our prior, we must either fix π at some con-

stant less than 1, or assume π to be a random variable and choose a prior for

it. Fixing π was shown to be inadequate in the setting of linear model selection

in Scott and Berger (2010). Specifically, a fixed value of π results in inadequate

correction for multiplicity, which can lead to models that are too large, which

in our context translates to overfitting. Scott and Berger (2010) recommend the

use of a Beta prior on π, and show that this corrects for multiplicity and results

in smaller models in the linear regression context while still preserving a closed
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form prior model probability, which we will need for our model selection proce-

dure. Following this approach we let π ∼ Beta(aπ, bπ), so that under the prior,

E(π) = aπ/(aπ + bπ).

This prior provides several attractive features. As shown in section 2.3, it is not

very sensitive to varying aπ and bπ, and those parameters can be used to control

the prior expected number of nonzero coefficients in a way that is easy to inter-

pret. Recalling again the properties of a branching process, E
(∑∞

r=1

∑J(r)
j=1 γj,r

)
=

J(1)/(1− 2d E(π)), provided that 2daπ/(aπ + bπ) < 1. The prior probability of a

particular coefficient being nonzero is decreasing geometrically with resolution,

as Pr(γr,j = 1) = E(π)r−1. The prior probability for a particular set of nonzero

coefficients γ is

p(γ) =
B
(
aπ +

∑∞
r=2

∑J(r)
j=1 γr,j, bπ +

∑∞
r=2

[
2d
∑J(r−1)

j=1 γr−1, j −
∑J(r)

j=1 γr,j

])
B(aπ, bπ)

.

where B (a, b) is a Beta function. For further interpretability of the hyper-

parameters we use the alternative parameterization θ = aπ+bπ and µ = aπ/(aπ + bπ).

It is important to notice that in the multi-resolution context, the Beta prior

on π induces more sparsity in the coefficients than the model with fixed π. To

demonstrate this, consider a simple context in a one dimensional space. Compare

a prior with fixed π = .5, and denote this as p1, to a prior with π ∼ Beta(1, 1),

and denote this as p2. These two priors produce the same prior expected number

of knots, but have very different prior odds in favor of a smaller model. Let m0

be a model with J(1) first resolution knots, and no additional knots, and m1 be

a model with a single second resolution knot, and the same J(1) first resolution
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knots. Under the first prior, the prior odds are

p1(m0)

p1(m1)
=

1

(1− π)
= 4,

which is constant in J(1). Under the second prior, using the fact that B(x+1, y) =

B(x+ y)x/(x+ y), the prior odds are

p2(m0)

p2(m1)
=

(2J(1) + 2)(2J(1) + 3)

2J(1) + 1
.

This expression indicates that under p2, the prior odds in favor of the smaller

model are increasing as J(1) increases, which favors the smaller model more

strongly for larger models. This has been confirmed by our empirical explorations,

which indicate that using a random prior on π in our spatial multi-resolution model

produces a smaller number of knots than the one that is obtained with a fixed

value of π, without compromising goodness of fit.

2.2.2 Prior for the nonzero βr
j , α, and σ2

The prior on the nonzero coefficients must be compatible for the spatial struc-

ture as well as computationally tractable. Let β = {β1
1 , ...β

1
J(1), β

2
1 , ...β

2
J(2),...}.

Conditional on the vector γ, we let βγ be a vector of length
∑∞

r=1

∑J(r)
j=1 γ

r
j

that contains the nonzero βrj . Since γ specifies which βrj are zero, p(β,γ) =

p(β|γ)p(γ) = p(βγ|γ)p(γ), so we can focus on specifying a prior on the nonzero

coefficients βγ. In order to define the design matrix, let Kr be an n×J(r) matrix

where the entry Kr(i, j) = K(si, s
r
j |φr, ν), and Kr,γ be the n ×

∑J(r)γr,j
i=1 matrix

with columns that correspond to nonzero γr,j. Finally, let Kγ = [K1,γ,K2,γ, ...]

be a
∑∞

r=1

∑J(r)
j=1 ×n matrix. This is the design matrix that corresponds to the

nonzero βrj .
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A g-prior (Zellner, 1986) on the coefficients associated with the knots, cou-

pled with a reference prior on σ2|γ satisfies our desiderata, and has analytically

tractable marginals. Note that putting a reference prior on coefficients common

to all models being compared, and a g-prior on the other coefficients is a com-

monly used approach in the model selection context (Liang et al., 2008). For this

multi-resolution model, the g-prior is of the form

p(βγ, σ
2|γ) = p(βγ|σ2,γ)p(σ2|γ)

where

p(βγ|σ2, γ) = N(0, gσ2(KT
γKγ)

−1),

with a reference prior on the fixed effects α, the error σ2, and p(γ) specified in

the manner of section 2.2.1.

Notice that, usually, the argument for using a reference prior on α is made by

assuming that the columns of Kγ have mean zero. However, centering this matrix

would result in our basis functions no longer being compact. Fortunately, as Li

and Clyde (2018) point out, the posterior distributions of the centered and non-

centered models would have equivalent posteriors through a change of variables.

Therefore, we will not center our design matrix.

An important property of the g-prior is that it induces shrinkage to high reso-

lution knots that is, on average, larger than the one applied to low resolution ones.

This behavior is due to the fact that more locations are in the range of kernels at

lower resolutions. Therefore, the prior variance for the coefficients associated with

the low resolution knots is higher than for the high resolution knots. We demon-

strate this with a simple simulation. First, 10,000 locations are generated from

a Uniform(0,10) distribution. Then, a number of design matrices corresponding
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Figure 2.1: Average shrinkage under the G prior at different resolutions with
equally spaced data

to multi-resolution sets of knots K|τ, ν are formed for the Bezier kernel with a

smoothness ν = 1 and a kernel width τ = 1.5, 7 resolution, and 5 knots at 1.

This is approximately equally spaced data with a dense grid of knots unlikely to

occur in MSSS, but is useful for demonstration purposes. We compute the diago-

nal of (KtK)−1 and take the average by resolution. The results are displayed in

figure 2.1. We observe that the shrinkage is approximately linear on the log scale,

save for the jump from resolution 1 to 2, which makes the shrinkage geometric in

resolution.

To set the value of g we observe that small values of g result in large shrinkage

of the posterior mean. A popular default choice is g = n, which is known as

a unit information prior (Kass and Wasserman, 1995), and provides reasonable

performance in our context. The marginal likelihood for fixed g is available in

closed form. However, Liang et al. (2008) observe that choosing g in this manner

produces an information paradox. This paradox occurs because the marginal

probability of model should approaches 1 as r2 → 1, but in the case of a g-prior

24



with fixed g, this quantity converges to a constant. We can resolve this issue by

using the hyper-g prior suggested by the authors, which is of the form g/(1+g) ∼

Beta(1, a/2− 1). This prior resolves the information paradox for non-null models

and still results in a closed expression for the marginal likelihood that involves

the Gauss hypergeometric 2F1 function. Due to instability in the computation of

2F1, for moderate to large n, this will require a Laplace approximation.

As a final note, the g-prior is improper if any columns of the design matrix are

empty. In the context of this multi-resolution spatial model, this means that the

prior does not make sense for a kernel function that has no data points within its

range. To account for this, we propose to set βrj = 0 if it is associated with an

empty column, regardless of the resolution.

We have now specified a prior on the model space γ, and the marginal likeli-

hood of the data conditional on γ, so up to a normalizing constant, our posterior

model probabilities are

p(γ|y) ∝ a− 2∑J(r)
i=1 γr,j + a− 2

2F1

(
n− 1

2
, 1,

∑J(r)
i=1 γr,j + a

2
, R2

γ

)
×

B
(
aπ +

∑∞
r=2

∑J(r)
j=1 γr,j, bπ +

∑∞
r=2

[
2d
∑J(r−1)

j=1 γr−1, j −
∑J(r)

j=1 γr,j

])
B(aπ, bπ)

.

Therefore, for a particular γ, we can compute the posterior model probability by

forming the design matrix Kγ, estimating βγ using least squares, calculating R2
γ,

and using the Laplace approximation to compute the 2F1 function. In the next

sections, we will discuss how to use these model probabilities to explore the space

of possible knot configurations, and how to update the least squares estimate of

βγ in a computationally efficient manner.
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2.2.3 Extending shotgun stochastic search

Since the priors we have chosen results in closed form marginal model proba-

bilities of particular configurations of knots, we can use shotgun stochastic search

(Hans et al., 2007) to explore the space of possible knot configurations in a quick

manner that takes advantage of modern computing architecture, namely multiple

core processors. Shotgun stochastic search (SSS) proceeds as follows:

1. Given a current model mc, a set of the top Q models evaluated, and their

respective marginal model probabilities and coefficients, define a neighbor-

hood of possible new models N .

2. Evaluate the marginal probability of each model in N in parallel, and update

the top Q models.

3. Choose a new current model from the neighborhood with probabilities pro-

portional to their marginal probabilities.

In order to fit spatial fields with locally varying resolution, we would like

to extend SSS, but rather than selecting variables from a finite set, selecting

configurations of multi-resolution knots arranged in nested grids. Note that this

is a countably infinite set, as we are not truncating the number of resolution to

consider. To use SSS, we need to define the neighborhood in a manner that is

consistent with the prior from section 2.2.1.

To perform SSS, N is split into three groups, N = N−
⋃
No

⋃
N+. N− is

defined as all models of size p-1 that contain predictors that are all selected from

γ. Moving to a model in this set is termed a deletion move. N+ is defined as all

models of size p+1 that contain all p predictors from γ and one from κ. Moving

to a model in this set is termed an addition move. No is defined as all models of
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size p that contain p-1 predictors from γ and one from κ. Moving to a model in

this set is termed a replacement move.

In the multi-resolution knot selection context, if mc is the current model, and

κ = {κ1, . . . , κp} is the set of knots in mode the restrictions above lead to the

following neighborhood definitions. For addition moves, only models that add a

single knot that is a child of one of the knots already in mc will be considered. The

potential knots to add S+ will be defined as S+ = {children(κi)i ∈ {1, . . . , p}\κ}.

So N+ is just all models one knot from S+, and every knot in κ. For deletion

moves, only knots that have no children will be considered for deletion. Formally,

the potential deletion S− will be defined as S− = {κi : [children(κi) \ κ] =

children(κi)}. Therefore, N− is just all models with all but one knot in κ, with

the knot removed κdel ∈ S−.

It is not very reasonable in our context for N0 to be all possible swap moves.

This is because our space of possible variables is quite different in nature to the

regression context. In regression, the swap moves are designed to explore spaces

with correlated variables. For example, consider two possible predictors xi and xj

that are highly correlated. If mc contains xi, it would be relatively unlikely for an

add move to bring xj into the model. But in the spatial context with compactly

supported kernels, the columns that will have the highest correlations are parents

and children, which cannot be swapped due to the restrictions we place on the

knot placements. Knots on the same resolution have fairly low correlation as long

as the kernel width is not very wide. For example, in a one dimensional setting,

with uniformly distributed locations and one resolution of knots, for a kernel width

of 1.5 and a smoothness of 1 (which we suggest as a default in section 2.3.4), the

correlation between adjacent knots is only about .5.
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2.2.4 Computational details

Given these choices, we can now formulate the algorithm for multi-scale shot-

gun stochastic search (MSSS). Given a current model mc, and a list of the Q top

models,

1. Form N = N+

⋃
N− as defined above.

2. In parallel, for every mp ∈ N , evaluate the marginal probability using the

expressions above, and update the top Q models.

3. Sample mp− from N− and mp+ from N+ with probability proportional to

the marginal model probabilities. Then sample a new mp from {mp+,mp−}

with probabilities proportional to their marginal probabilities. Return to

step 1.

We run this algorithm until it reaches a local maximum, i.e. when the set of Q

top models does not change for some number of iterations.

For fast calculation of the marginal model probabilities, we obtain formulas to

update the regression parameters of a model for all possible one knot additions

and subtractions, without computing the entire regression from scratch.

Let β̂γ be the current least squares estimator for mγ, Kγ = [X,K1,Kγ] be the

design matrix for mγ with pγ columns, and Σγ = (KT
γKγ)

−1. First the updating

rule will be derived for subtraction moves, i.e. for mγ− ∈ N−. Without loss of

generality, permute the columns ofKγ− such that the knot being removed is in the

last column of the design matrix. We first partition Σγ in the following manner:

Σγ =

Σ− Σ̃2

Σ̃T
2 Σ22

 .
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Then the updates can be computed as

Σγ− = Σ− −
Σ̃2

T
Σ̃2

Σ22

, and β̂γ− = β̂(−pγ) −
Σ̃2

Σ22

β̂(pc).

Next, the updating rule will be derived for addition moves, i.e. for mγ+ ∈ N+.

Let the knot being added be s+. The column associated with s+,Ks+, will be

placed at the beginning of the design matrix. Let Q11 =
∑n

i=1K(si − s+)2. Note

that this can be computed with a subset of the data since our kernels are sparse.

Let Q̃1 = KT
s+
Kγ. Then

Σγ+ =

0 0̃t

0̃ Σγ

+
1

Q11 −QT
1 ΣγQ1

 1 −(ΣγQ1)
T

−ΣγQ1 ΣγQ1(ΣγQ1)
T

 ,

and letting Sγ+ be the first column of Σγ+,

βγ+ =

 0

β̂γ

+
(
Q11 −QT

1 ΣγQ1

)
Sγ+S

T
γ+.

In general, calculating the least squared regression coefficients requires O(np2+

p3) operations, where p is the number of parameters. We perform this calculation

for the first resolution, estimating p = J(1)+q coefficients. Adding one additional

knot requires O(n(p + 1) + (p + 1)2) operations. This is significantly faster than

calculating the regression naively for each model.

2.2.5 Prediction and interval estimation

To get predictions that account for model uncertainty, we use Bayesian model

averaging over the top knot configurations. Let the top Q configurations of knots
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found be M = {m1, ..,mQ} with marginal model probabilities {p1, . . . , pQ}. Cor-

respondingly, consider their R2 values, {R2
1, . . . , R

2
Q}, least squared estimates of

the coefficient vectors, β̂1, . . . , β̂Q, least squared estimates of the error variance,

{σ̂2
1, . . . , σ̂

2
Q}, the covariance matrices of the estimates V1, . . . , VQ, and the number

of knots, {b1, . . . , bQ}. For prediction at a point snew in the spatial field, Bayesian

model averaging works as follows:

1. For each of the Q knot configurations, calculate the values of the kernel

functions at snew. Denote them as {knew,1, . . . ,knew,Q}.

2. Using each of the Q kernel function vectors, calculate the expected value

E(y(snew)|mi) for each mi ∈M . For the hyper-g prior, we have that

E(y(snew)|mi) = E

(
g

1 + g

∣∣∣∣mi

)
kTnew,iβ̂i,

where

E

(
g

1 + g

∣∣∣∣mi

)
= ŝ =

2

pi + ag

2F1(.5(n− 1), 2, .5(pi + ag), R
2
i )

2F1(.5(n− 1), 1, .5(pi + ag), R2
i )
.

3. The Bayesian model averaging estimate is

y∗new(s) =

∑Q
i=1 E(y(s)|mi)× pi∑Q

i=1 pi
.

In practice, the largest of the posterior model probabilities is usually much larger

than the others, so the averaging step is not always necessary. For intervals, the

same averaging procedure can be used, but instead of using the expected value,

we use the quantiles of the posterior predictive distribution. Since the posterior

predictive distribution under the hyper-g prior is not analytically available, we

use the plug in estimator for the shrinkage factor, ŝ, from step 2 above. Then,
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conditional on the plug in estimator, the posterior predictive distribution is

p(y(snew)|mi) ∼ Tn−p
(
E(y(snew)|mi), ŝσ

2
i (1 + knew,1(Vi)knew,1)

)
.

2.3 Assessing the proposed model

We assess the predictive accuracy and runtime of the model using a holdout

set when changing the values of parameters that affect model size, model fit, and

the smoothness of the predicted surface. Specifically, we vary the prior sparsity

parameters aπ and bπ, the size J(1) of the first resolution grid, the kernel width

τ , and the kernel smoothness ν. For each of a number of simulated datasets and

parameters, we fit an MSSS with a 10% randomly chosen holdout group, and

quantify the predictive accuracy for the different parameter combinations. In ad-

dition, we compare the performance and runtime of our model to that of other

multi-resolution models that we were able to implement. There are many possible

competing models (see, Heaton et al., 2019, for example), but here we limit our-

selves with models that have a multi-resolution structure. We focus on the model

proposed in Nychka et al. (2015), abbreviated as LK, for which the R package

LatticeKrig (Nychka et al., 2016) is available, and the multiresolution process

convolution model of Guhaniyogi and Sansó (2017), referred to as MDCT. To

demonstrate how the multi-resolution process convolution models behave differ-

ently than single resolution models, we will also compare the model with a single

resolution process convolution, abbreviated as DPC, with a varying number of

resolution knots.

Another natural competitor is the model in Katzfuss (2017), abbreviated as

MRA. Code for implementing this model on two dimensional spatial fields is

available in the R package GPVecchia, which is available on Github. However, we
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Table 2.1: Equation for and plot of the mean function for the nonstationary 1D
example data.

Function Plot

f(x) =


sin(2πx) + 5 if 0 ≤ x < 2

| sin(x− 3)|3 + 5 if 2 ≤ x < 4

5|x− 5|+ 5 if 4 ≤ x < 6

sin(2πx)x+ 5 if 6 ≤ x < 10

were unable to do parameter estimation using this model due to instabilities in

the likelihood evaluation. As a compromise, for the two synthetic two-dimensional

datasets discussed in section 2.3.1, the correct Gaussian process parameters were

passed to the package. Therefore, the predictions and interval estimations we use

from this package do not account for parameter uncertainty, and the timings do

not account for estimation of the parameters.

2.3.1 The datasets

Our first example consists of a one dimensional piecewise function that is

meant to demonstrate the flexibility of our method in tackling highly nonstation-

ary processes, and was used in Guhaniyogi and Sansó (2017). We generated one

example with 20,000 observations from the mean curve, and added N(0,1) noise.

Plots and details of the function are presented in table 2.1.

The next three simulated datasets consist of two-dimensional fields. The first

two were generated from stationary Gaussian processes with Matern covariance

functions using the RandomFields package (Schlather et al., 2017a) on the interval
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Figure 2.2: Sample locations for the 3 simulated 2D datasets

[0, 10] × [0, 10]. For the first of these examples, which we will denote as dataset

A, the scale parameter was 1 and the smoothness parameter ψ = 2. For the

second example, which we will denote as dataset B, the scale parameter was 1

and ψ = .5. Dataset B is continuous, but non-differentiable. For both, 20,000

observations were sampled from unequally spaced locations, and random noise

with variance .1 was added to the generated data. The third example, which we

will denote as dataset C was generated from the nonstationary kernel convolution

model of Lemos and Sansó (2009) using a 9 by 9 grid of kernels that are rotated

differently across the space. This makes for a very smooth, nonstationary field.

The same unequally spaced sampling and variance of .1 were used. The unequal

spacing is displayed in the figure 2.2 material, and the fields are displayed with

the results in figure 2.5.

The last example corresponds to 12,210 temperature in situ measurements

from the Mediterranean Sea during the month of December 2003. These data

are obtained from four different types of devices, namely: buckets launched from

navigating vessels; readings from the water intake of ship’s engine rooms; moored
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Figure 2.3: December 2003 Mediterranean sea surface temperature observations
in Celsius.

buoys; and drifting buoys. The result is a set of very unequally spaced, with

many observations taken along shipping lanes, and large areas of the ocean scarcely

covered by the sampling. In addition, it is known that the complexity of the shapes

of the coastlines and the action of the currents, produce a very heterogeneous field

of temperatures.

2.3.2 Parameter settings and competitor details

For each of the examples discussed in the previous section we implemented

MSSS with an intercept term, and a number of different parameter settings under

a fully crossed design, resulting in 243 total runs. For prior sparsity, kernel size,

and kernel smoothness, the parameter settings are listed in table 2.2. The number

of knots at the first resolution was varied between 10, 15, and 30 in the one dimen-

sional example, and 42, 132 and 272 in the two-dimensional simulated examples,

and 91, 312, and 663 in the SST data example. These knots were placed in a grid

across the domain being modeled, including a small buffer region to minimize edge

effects. For example, in the one dimensional example, the domain was (0, 10), and

the kernels were placed between -.5 to 10.5. For each setting of parameters, the
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top 100 models were stored for creating the prediction and intervals described in

2.2.5. Since we have run hundreds of different configurations of MSSS parame-

ters, in the numerical summaries, we will show the best, worst, and median result

for each individual statistic, and in the graphical summaries, we will show plots

of the best and worst of the MSSS models measured by the top posterior model

probability.

θ µ τ ν
1 .1 1.5 1
5 .2 2 2

10 .5 2.5 3
Table 2.2: Different parameter settings for the prior used in the fully crossed
design for the simulation study. µ = aπ

aπ+bπ
and θ = aπ + bπ.

MSSS was implemented in C++ using OpenMP to take advantage of the

parallel nature of the stochastic search. All data preparations were done in R, and

the RCPP package was used to pass information from R to C++. The code was

run on a Unix machine using 10 Intel Xeon E5-4650 processors and 16 gigabytes

of RAM.

The competitor models were run in Microsoft R Open using the Intel multi-

ple kernel library on a Windows desktop with an Intel i7-2600k processor with 4

cores and 16 gigabytes of ram. This i7 processor performs single core operations

more quickly than the Xenon. The single resolution DPC competitor model was

implemented using MCMC with a kernel width of 1.5 times the distance between

knots under independent priors, and run for 10,000 iterations with varying num-

bers of resolution 1 knots. The MDCT competitor model of Guhaniyogi and Sansó

(2017) was implemented using MCMC and run for 10,000 iterations under varying

numbers of first resolution knots and three resolutions, as recommended by the

authors. The competitor model in Nychka et al. (2015) was implemented using the

LatticeKrig package with varying number of first resolution basis functions and
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three levels. The ν parameter was set to 1, which induces a variance that decreases

sharply as the resolution increases. The parameter a.wght in the LatticeKrig

package was set to 4.1, as recommended by the authors to approximate a thin

plate spline while reducing edge effects. The competitor model in Katzfuss (2017)

was implemented using the GPVecchia package, with the covariance parameters

set to the correct values in the GP models. The three approximation parameters,

M, R and J, were set to 3, 4, and 3 respectively, which results in 89 basis functions.

2.3.3 Results

For the one dimensional example, plots of the estimated mean function under

the different models are shown in figure 2.4, and numerical results are found in

table 2.3. In this setting, MSSS worked better than other models when J(1)

was large, and the kernel width τ was small. When a small number of wide,

smooth kernels were used, the MSPE increased to as high as 1.1, but the interval

coverage was still very close to .9. Given the piecewise smoothness of the function,

this finding is not surprising. It is also clear from the kernel locations that a large

number of knots are added near the locations with non-differentiability of the mean

function. In fact, around those points, MSSS used as many as eight resolutions

to account for the rapid change in the mean of the data. This corresponds to our

intuition, as MSSS explicitly captures local, high frequency change that occurs at

those points.

The MDCT also performed quite well, as long as enough first resolution ker-

nels were used, though the limited number of resolutions caused some lack of fit at

the points where the mean function changes abruptly. Despite very good results

with respect to the estimation of the mean function, LatticeKrig had prediction

interval coverage that was higher than the intended confidence level. This behav-
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ior repeats is also observed in the two-dimensional examples, and reinforces the

empirical findings of Heaton et al. (2019), where LatticeKrig demonstrated the

same characteristics.

Figure 2.4: Red: predicted mean function; Black: true mean function; Blue
dots: kernel locations for MSSS; Gray dots: observed data. All models fit the
true mean function pretty well over most of the domain. However only the MSSS
with smaller kernel width fit the data well at the discontinuities (x=4 and x=6).

For the two-dimensional simulated examples, predicted surfaces are displayed

in figure 2.5. Numerical summaries for the case ψ = 2, that corresponds to a

smooth random field, are presented in table 2.4. Results for the case ψ = 1,

that corresponds to a jagged random field, are presented in table 2.5 cases are

presented in the appendix. For ψ = 2, all models, with the exception of the DPC

with the fewest kernels, showed good predictive performance. Interval estimation

was also good for all of the models save for LatticeKrig, which showed some

over-coverage. LatticeKrig and the DPC models all were very fast, as was the
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Model MSPE 90% Coverage Runtime (sec)
MSSS Min .99 .89 4
MSSS Med 1.02 .90 13
MSSS Max 1.10 .91 76
MDCT 10 1.17 .9 381
MDCT 20 1.02 .9 518

LK 10 1.08 .94 102
LK 20 1.03 .95 105
LK 40 1.00 .95 107

DPC 10 15.30 .84 269
DPC 100 1.17 .89 419
DPC 1000 1.13 .89 911

Table 2.3: Numerical summaries for the different models in the one-dimensional
example. MSSS always provides excellent predictive interval coverage, and gives
excellent out-of-sample fit when either enough kernels at the first resolution are
used or the kernels are of the appropriate shape.

MSSS with appropriate kernel settings (smooth and wide). However, when using

very narrow kernels, MSSS took a long time to converge, requiring a large number

of fairly dense resolutions to produce a smooth response surface. MDCT was also

quite slow because of the relatively complex MCMC required.

Model MSPE 90% Coverage Runtime (sec)
MSSS Min .11 .87 372
MSSS Med .11 .89 1198
MSSS Max .12 .90 3596
MDCT 42 .11 .88 1853
MDCT 132 .11 .86 5126

LK 10 .11 .94 249
LK 20 .11 .94 493

DPC 42 .30 .90 570
DPC 132 .17 .90 800
DPC 462 .11 .89 673

MRA .11 .88 56
Table 2.4: Numerical summaries for the models on the two-dimensional GP
dataset with a Matern correlation kernel ψ = 2. Notice that runtimes for MRA
do not include parameter estimation.

Every model struggled with the extremely jagged GP that is produced when
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Model MSPE 90% Coverage Runtime (sec)
MSSS Min .2 .88 587
MSSS Med .22 .89 3606
MSSS Max .25 .90 15016
MDCT 42 .21 .89 2733
MDCT 132 .18 .86 4923

LK 10 .19 .96 271
LK 20 .17 .95 557

DPC 42 .47 .91 469
DPC 132 .32 .90 677
DPC 462 .24 .89 941

Table 2.5: Numerical summaries for the models on the 2D Gaussian Process
dataset with a Matern correlation kernel, ψ = .5.

Model MSPE 90% Coverage Runtime (sec)
MSSS Min .10 .90 36
MSSS Med .10 .90 156
MSSS Max .10 .91 566
MDCT 42 .10 .89 2975
MDCT 132 .10 .87 4716

LK 10 .10 .95 298
LK 20 .10 .95 660

DPC 42 .14 .91 400
DPC 132 .10 .90 579
DPC 462 .10 .90 1036

Table 2.6: Numerical summaries for the models on the 2D nonstationary kernel
convolution dataset.

ψ = .5. The MSPE was much higher than the true variance (which was .1) for

every model. However, MSSS, the DPCs, and the MDCT all did well in interval

coverage. The best of the MSSS models, which had the largest number of initial

kernels and the least smooth basis functions, did particularly well both in pre-

diction and interval coverage. Similar computational results to the smooth GP

were observed, with fast performance for single resolution DPC’s, LatticeKrig,

and well specified MSSS, and long runtimes for the MDCT and the misspecified

MSSS. All of the models performed well in fitting the simulations from the nonsta-

tionary kernel convolutions (table 2.6), with good MSPE for every model except
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for the DPC with only 42 kernels, and excellent coverage probabilities for all but

the LatticeKrig. It is worth mentioning that for this surface, the MSSS with a

very large number of knots at the first resolution sometimes added no knots at

all, which is a desirable behavior when one resolution is sufficient.

The spatially varying resolution created by MSSS allows for an additional

visualization. We can plot the posterior average number of resolutions active at

each point in the space, as seen for the best MSSS fit in figure 2.6. Note that,

as we are using model averaging over the top 100 models, this quantity can be

a fraction. The figure provides information about the regions of the space where

there is fine scale variation. The smooth, stationary GP with ψ = 2 requires fewer

resolutions than the jagged GP with ψ = .5. The stationarity in these datasets

is reflected by a similar pattern in resolutions across the space. In other words,

there is not a single area in the space where the resolution is much higher than

in other places. When MSSS is fit to the nonstationary kernel convolution, the

behavior is quite different. The number of resolutions required is different across

the space, with just one section of the space requiring three or four, while the vast

majority just requires two.

For the SST data we observe a very unequal distribution of the observation’s

locations. To avoid numerical instabilities and ensure reasonable ranges for out

of sample predictions we fitted MSSS requiring that kernels were only allowed to

enter the model if there was at least one data point within one kernel width from

the center of the kernel. As for the other settings, we set ν = 3 and the kernel

width to 2.5 since for sea surface temperature, we expect a relatively smooth mean

function. The SST estimates are shown in figure 2.7, and the number of resolutions

at each point is shown in figure 2.8. The plot of the number of resolutions at

each point in the Mediterranean identifies regions with temperatures that vary
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Figure 2.5: Two-dimensional simulated and predicted surfaces on the unit
square, one row per dataset. First column is the true surface, and each additional
column corresponds to the predicted mean surface from the considered models.

Figure 2.6: Plots of the maximum resolution (Res) active at each point on the
unit square for the best MSSS model by marginal model probability for each of
the three simulated two-dimensional datasets. For the two stationary examples,
datasets A and B, the pattern in the multi-resolution structure does not change
greatly across the domain.

41



Figure 2.7: Predicted SST in Celsius with ν = 3, a kernel width of 2.5, and the
additional restrictions discussed above

differently than the surrounding areas. Some areas with higher resolutions include

the region between Palma and Sardinia, which is warmer than its surroundings,

the region adjacent to the Brittany peninsula on the northwest end of the dataset

that is colder than its surroundings, and the southeast end of the Mediterranean,

which has a large amount of temperature variation in the observed data, with

observations varying between 15 and 23 degrees in a very small region. Numerical

results are in table 2.7. MSSS and the MDCT with 42 kernels were the only

models with both low MSPE and well calibrated interval coverage. Unlike the

GP examples, predictions were substantially better using MSSS when compared

to LatticeKrig or the MDCT.

Model MSPE 90% Coverage Runtime (sec)
MSSS .63 .89 235

MDCT 42 .70 .88 1020
MDCT 132 1.58 .86 1505

LK 10 .68 .95 162
LK 20 .67 .94 204

DPC 91 .99 .88 309
DPC 312 .88 .89 433
DPC 1144 1.12 .87 717

Table 2.7: Numerical summaries for the models on the SST dataset.
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Figure 2.8: Plot of the maximum resolution active at each point on the surface
for the MSSS model on SST in the Mediterranean.

2.3.4 Default parameters

The results obtained in our data analysis lead to some guidelines for the se-

lection of the parameters of the MSSS. First, the different parameters used in the

beta-binomial prior on γ do not change the resulting surface or sparsity substan-

tially, unless very extreme values are used. Therefore, we propose setting µ = 1/2d

and θ = 2 as a safe default for data of the size that was dealt with here.

The remaining parameters τ , J(1), and ν can be set by maximizing the pre-

dictive distribution over a grid of possible values. For large datasets such strategy

can impose a steep computational cost. For the kernel parameters we require that

τ > 1.5. This ensures enough kernel overlap to prevent gaps. Beyond this strict

restriction, the ability of MSSS to include an unlimited number of resolutions

provides some robustness with respect to τ and J(1). This is demonstrated in

the simulation study, where the MSPE does not change very much among the

different settings. For example, if J(1) is not large enough to fit the data well,

MSSS is able to add more kernels at high resolution to compensate for the lack

of fit. Some attention must be paid, though, to the smoothness parameter ν,

as the shape of the resulting predicted surface can be highly dependent on this
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parameter. However, specific knowledge of the application can inform the choice

of ν. For example, in the SST dataset, it it would be unreasonable for a predicted

field to be very jagged, so a larger value of ν is preferable.

2.4 Discussion

We have proposed a novel method that leverages Bayesian variable selection

and model averaging to fit nonstationary spatial models. A stochastic process

prior on the tree structure created by a recursive partition of the domain achieves

spatially varying resolution for the resulting predictive field. By avoiding MCMC,

utilizing sparse matrix methods, using efficient formulas to update regression co-

efficients when one column is added or deleted, and taking advantage of modern

parallel computing, MSSS shows competitive computational performance, when

compared to other multi-resolution spatial methods. We have also shown that

MSSS provides competitive out of sample fit and uncertainty quantification on a

variety of unequally spaced spatial datasets, both stationary and non-stationary.

Estimation of the spatially varying resolution enforced by MSSS allows for simple

and explicit identification of non-stationarity in spatial datasets, which can have

physical meaning in the context of specific applications.
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Chapter 3

Multi-Scale Spatial Optimization

3.1 Introduction

In the previous chapter, we formulated a prior that achieves spatially varying

resolution by setting knot coefficients to zero exactly. We then derived an algo-

rithm to explore the space of potential knots, and described how to perform model

comparison and averaging on the results. In this chapter, we will develop a prior

that results in a posterior maximum that has the property of spatially varying

resolution. Samples from the posterior under these priors will not be sparse, the

sparsity is achieved only at the maximum. This can be interpreted as a penalized

optimization method. These methods take the form

min
β

L(y|X,β) + λP (β) (3.1)

where L is a loss function, and P is a penalty function. The solutions to penalized

optimization methods can often be interpreted as maximum a posteriori (MAP)

estimates, and in this chapter, the minimum of the penalty and the maximum a

posteriori (MAP) of the associated posterior are equivalent, and we will use both
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terms interchangeably.

The canonical example of a penalty that induces zeros at its minimum is the

least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996). It

has the tendency to select only one of a group of correlated predictors (Zou and

Hastie, 2005). This is not compatible with spatially varying resolution, since

the coefficients associated with children and parent knots are highly correlated.

We address this issue by adapting the composite absolute penalties family (Zhao

et al., 2009) to our setting. The prior proposed will be presented in the same

multi-resolution setting that has been discussed previously, imposing no limit on

the number of resolutions considered. This is challenging due to the fact that

most maximization routines require the formation of the entire design matrix.

We will adapt the hierarchical multiple kernel learning framework (Bach, 2009)

to our setting. Bach (2009) show that under certain conditions sequentially maxi-

mizing finite problems in a specific manner is equivalent to maximizing the infinite

dimensional problem under certain conditions.

We will first review optimization methods that induce sparsity in different

patterns, discuss their Bayesian analogues, discuss the existence of algorithms for

finding the maximum, and review consistency results. Each method reviewed will

be presented in the context of a spatial, multi-resolution knot structure. Most of

the methods we review do not support an infinite number of resolutions, so we

will present them with a finite number of resolutions R. After reviewing these

approaches, we will develop a prior that results in spatially varying resolution at

its maximum a posteriori estimate. In the same manner as discussed in previous

chapters, we will default to having all resolution 1 coefficients be nonzero.
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3.1.1 LASSO

Let the response y ∈ Rn, the kernel matrix K ∈ Rn×
∑R
r=1 J(r), the coefficients

associated with the kernels β ∈ R
∑R
r=1 J(r), the design matrix X ∈ Rn×p, and the

fixed effect coefficients α ∈ Rp. In this setting, the standard linear model would

be

y ∼ N(Kβ, σ2).

As discussed in chapter 1, spatially varying resolution is only coherent if sparsity

is permitted only at resolutions above 1. Therefore, in the context of a multi-

resolution knot structure, the LASSO penalized optimization problem is

min
β

(y −Xα−Kβ)t(y −Xα−Kβ) + λ
R∑
r=2

J(r)∑
j=1

|βrj |. (3.2)

This is analogous to a double exponential prior on the knot coefficients for knots

at resolutions above 1, and an improper flat uniform prior on all other coefficients,

i.e.

p(βrj )
i.i.d.∼ λ

2
exp

(
−λ|βrj |

)
for r > 1.

This prior induces sparsity at its maximum, where some coefficients are set to zero

exactly. This maximum can be calculated efficiently for a number of λ, often called

the solution path, via a number of different maximization routines. The LARS

algorithm (Efron et al., 2004) is commonly used. This algorithm computes all

possible LASSO solutions, and works by increasing predictors that are correlated

with residuals of smaller models. The computational speed is partially due to the

continuity of the LASSO solution. If we let β̂(λ) be a solution to the LASSO for

λ, then the function β̂(λ) is continuous. Therefore β̂(λ) is an excellent starting

value for gradient descent when finding β̂(λ+ ε).
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A number of results on variable selection and prediction consistency under

different conditions have been proven in the years since the LASSO was proposed.

Of particular interest is Bickel et al. (2009), which shows that under some sparsity

and regularity conditions, LASSO has sparsity oracle properties for prediction loss

in nonparametric regression. They prove bounds for prediction loss in terms of the

best possible approximation of a function under the sparsity constraint induced

by LASSO.

In Park and Casella (2008), the authors point out that the above prior can

result in a bimodal posterior, and propose the Bayesian Lasso, which modifies this

prior to be conditional on the variance, i.e.

p(βrj |σ2)
i.i.d.∼ λ

2σ
exp

(
−λ
|βrj |
σ

)
,

which guarantees unimodality. The authors also provide a mixture representation

for this prior that permits Gibbs sampling to simulate from the posterior distri-

butions of σ2 and β. The authors provide a conjugate prior for λ, but recommend

instead using Empirical Bayes to set this parameter.

The LASSO estimator does not satisfy our desiderata for spatially varying

resolution, where βrj = 0 =⇒ children(βrj ) = 0, and the shrinkage and sparsity

induced by the LASSO does not increase in resolution. Modifications can be

made that increase the penalty as the resolution increases. For example, this

simple generalized lasso (Tibshirani et al., 2011)

min
β

(y −Xα−Kβ)t(y −Xα−Kβ) +
R∑
r=2

λr

J(r)∑
j=1

|βrj |, (3.3)

with λr > λr−1 results in a larger penalty for higher resolutions. Unfortunately,

this prior would not directly enforce or encourage spatially varying resolution at
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its maximum, and the sparsity would not vary in space. A modified version of

the LASSO that applies different penalties to different parameters is the spike

and slab lasso (Ročková and George, 2016), and appears promising at first glance.

Let P =
∑R

r=2 J(r), ψ(x|λ) be the double exponential distribution evaluated at

x with parameter λ, λ1 < λ0, and p∗θ(β
r
j ) =

θψ(βrj |λ1)
θψ(βrj |λ1)+(1−θ)ψ(βrj |λ0

. Then the spike

and slab lasso (SSL) is a penalty of the form

min
β

(y −Xα−Kβ)t(y −Xα−Kβ)− λ1
R∑
r=2

J(r)∑
j=1

|βrj |+

log

∫ θP∏R
r=2

∏J(r)
j=1 p

∗
θ(β

r
j )
dπ(θ)∫

θP∏R
r=2

∏J(r)
j=1 p

∗
θ(0)

dπ(θ)

 . (3.4)

This penalization method adaptively shrinks to zero some βrj via the sharp spike

induced by the large λ0, and allows larger effects to be penalized less due to the

fat tailed slab induced by λ1. The authors show in the supplemental material that

penalized optimization is equivalent to maximum a posteriori inference under the

Bayesian finite mixture model

y|β ∼ Nn(Kβ, σ2) (3.5)

p(β1) ∝ 1 (3.6)

p(βrj |γrj ) = γrjL(0, λ1) + (1− γrj )L(0, λ0) (3.7)

Pr(γrj = 1|θ) = θ (3.8)

θ ∼ p(θ). (3.9)

Using this model as a starting point, a promising enhancement that appears to

strongly encourage spatially varying resolution can be built. This is accomplished

by hierarchical assignment to the spike and slab in a manner that respects the
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tree structure by replacing equation (3.8) with

Pr(γrj = 1|γr−1
b j−1
p
c+1

= 1) = θ, (3.10)

Pr(γrj = 1|γr−1
b j−1
p
c+1

= 0) = 0. (3.11)

We will term this the Tree SSL. This prior will result in spatially varying shrinkage

in a manner similar to Benedetti et al. (2018), where different regions of the space

are assigned a different amount of shrinkage. At its maximum, the Tree SSL does

not enforce spatially varying resolution, but appears to encourage it a priori. If

a parent is in the spike, then all of its children must be as well, and variables

assigned to the spike should be much more likely to be set to zero at the MAP.

Unfortunately, properties of the LASSO work against this hierarchy. If a group

of covariates are correlated, the LASSO tends to select only one of them (Zou

and Hastie, 2005). In the context of multi-resolution basis function sets, the

covariates associated with parents and children are very highly correlated because

their domains are almost entirely overlapping. This means that, in our setting,

the maxima Tree SSL results in sparsity patterns that do not meet the definition

of spatially varying resolution, and in fact do not even encourage it very much.

Since the Tree SSL, is not sufficient to induce spatially varying resolution, we will

now review priors that enforce sparsity in groups of variables together.

3.1.2 Group Lasso

The group lasso (Yuan and Lin, 2006) extends the LASSO in a manner that

can set groups of coefficients to zero together. If βgl is the vector of coefficients

corresponding to group gl, and there are L groups total, then the optimization

problem is
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min
β

(y −Xα−Kβ)t(y −Xα−Kβ) + λ

L∑
l=1

√
βtglβgl. (3.12)

This allows for correlated variables to be selected together as long as the groups

are specified a priori. A fundamental condition for the efficient computation of the

solution is that groups are non-overlapping. Under these conditions, the authors

discuss how the solution path can be computed using LARS. In addition, as long

as the groups do not overlap, this solution is still continuous in λ. However, once

the group overlap, this continuity disappears, and other algorithms are required

for the fitting of this model, such as proximal methods or the algorithms discussed

in (Bach, 2008). Variable selection consistency results for the Group Lasso in a

nonparametric setting are proven in Bach (2008) under general group structures.

A grouped extension to the Bayesian formulation of Park and Casella (2008)

in the case of non-overlapping groups was developed in Kyung et al. (2010). They

propose the prior

p(βgl|σ2)
i.i.d.∼ exp

(
−λ
σ

√
βtglβgl

)
and provide a mixture representation for this prior that allows for Gibbs sampling,

and an Empirical Bayes procedure for selection the optimal λ.

3.1.3 Composite Absolute Penalties

An extension of the Group Lasso called Composite Absolute Penalties (CAP)

(Zhao et al., 2009) supports a general directed graph structures for the inclusion of

variables in a hierarchical manner, which is what is required for spatially varying

resolution with a finite R. The authors show that hierarchy in group variable
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selection at the maximum can be enforced if all descendants of a variable are

included in its group. For example, if the goal is for group B to be selected only

if group A has been selected, then the two groups included in the penalty should

be A′ = A ∪B and B. To adapt this to our setting, if we let βtrj be the vector of

coefficients corresponding to the subtree with root βrj , then the penalty defined

by

min
β

(y −Xα−Kβ)t(y −Xα−Kβ) + λ
R∑
r=2

J(r)∑
j=1

||βtrj ||q. (3.13)

will enforce our inclusion hierarchy. This is because, for all r and j, the descen-

dants of βrj are included in βtrj . If we let β−1 be [βt2, . . . ,β
t
R]t, then the analogous

prior distribution is of the form

p(β−1) ∝ C(λ) exp

−λ R∑
r=2

J(r)∑
j=1

||βtrj ||q

 ,

By the factorization theorem, if two knots do not have a common ancestor, then

they will be independent under this prior. This induces prior independence in

knots that are far from each other, and dependence within a subdomain, which is

very sensible in the spatial multi-resolution context. However, adjacent knots at

the same resolution that are part of different subtrees will not have any dependence

enforced, which could be a drawback. In section 3.2 we partially alleviate this issue

by allowing for some dependence across subtrees at the first resolution.

A fully Bayesian implementation of inference under this prior is potentially

impossible to implement. This prior has a normalizing constant C(λ) that is

extremely difficult to compute, and the authors do not attempt to evaluate it.

That is because the structure of the summation in the prior results in individual
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coefficients that appear in multiple terms of the summation. In the context of

our problem, a coefficient βrj will appear in r − 1 different terms of the sum.

There is some literature about intractable normalizing constants in the context of

MCMC (Liang et al. (2016) and Herbei and Berliner (2014) among others). These

methods usually rely on being able to simulate from the intractable distribution.

Unfortunately, the mixture representation of this prior that permits simulation

runs into the same combinatorial issues, making this approach difficult.

The authors provide an algorithm for finding the maximum a posteriori un-

der this CAP prior when q = ∞, but this does not preserve the analogy to the

Group Lasso presented above. To preserve this analogy, we set q = 2. Finding the

maximum a posteriori when q = 2 is possible using proximal gradient methods.

A recent review of proximal methods from the statistical perspective is presented

in Green et al. (2015). Proximal methods allow for MAP estimation even when

the prior is not differentiable everywhere, which is the case for the CAP prior.

A modern, accelerated proximal gradient method that is fast and stable estimat-

ing the MAP under CAP penalties is the Fast Iterative Shrinkage Thresholding

Algorithm (FISTA), proposed by Beck and Teboulle (2009).

3.1.4 Hierarchical Multiple Kernel Learning

The Hierarchical Multiple Kernel Learning (H-MKL) framework of (Bach,

2009) extends CAP to an infinite dimensional, RKHS setting. We adapt the

penalty function introduced in Bach (2009) as
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min
β

y −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

ty −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

+

λ

∞∑
r=2

J(r)∑
j=1

crj ||βtrj ||2.

(3.14)

This could be thought of as a prior for an infinite dimensional set of coefficients,

of the form

p(β−1) ∝ C(λ, c) exp

−λ ∞∑
r=2

J(r)∑
j=1

crj ||βtrj ||q

 . (3.15)

Bach (2009) show that the maximum under this infinite dimensional penalty can

be computed by repeatedly maximizing finite problems. In the multi-resolution

setting, their algorithm is as follows. First, begin with all resolution 1 and 2

knots. Then compute the MAP estimate for that finite dimensional problem,

resulting in some nonzero and some zero coefficients at resolution 2. Next, for the

resolution 2 knots that have nonzero coefficients, create their resolution 3 children,

and compute the MAP again. This continues until non nonzero children occur

To illustrate, the algorithm would initialize with the CAP penalty for just the

second resolution,

min
β

y −Xα− 2∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

ty −Xα− 2∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

+

λ

J(2)∑
j=1

c2j ||β2
j ||2.

(3.16)

That would result in a set of of nonzero coefficients at resolution 2. We would
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then consider all resolution 3 coefficients that are children of the β̂2, and call them

β̃3 and find the maximum under the CAP penalty of this restricted problem. If

we let ˜J(r) be the set of j such that βrj ∈ β̃r and let β̃2 = β2, then we’d maximize

min
β

y −Xα− 3∑
r=1

∑
j∈ ˜J(r)

(Kr
j )
tβrj

ty −Xα− 3∑
r=1

∑
j∈ ˜J(r)

(Kr
j )
tβrj

+

λ
3∑
r=2

∑
j∈ ˜J(r)

crj ||βtrj ||2.

(3.17)

where the βtrj are truncated to resolution 3 for the nodes that are active at reso-

lution 2, and truncated at resolution 2 for the nodes that are zero. This continues

iteratively, where at each iteration, we update the ˜J(r), β̂r, and β̃r until no more

nonzero coefficients are added. Bach (2009) show that this iterative method can

compute the full, infinite dimensional maximum. They also show that maximizing

this penalty achieves selection consistency under some regularity conditions. The

crj are suggested in the paper to be a constant greater than 1 raised to the power

of the depth of the graph, which in our case works out to be crj = cr−1 with c > 1.

This condition is required for the consistency result to hold, and is sensible as a

way of penalizing models with very high resolution components.

3.2 Multi-resolution Spatial Models

We propose to use the penalization method from H-MKL on all resolutions

greater than 2, but on the first resolution, use a Gauss Markov random field

(GMRF). GMRF’s are a natural prior to use on the coefficients of a process

convolution because they encourage spatially structured dependence on the coef-

ficients through a sparse precision matrix. We will use the intrinsic GMRF, which
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results in dependence on only the nearest neighbors. Let W be a J(1) × J(1)

matrix with

Wij =


ni if i = j

−1 if 0 ≤ i ∼ j

0 otherwise

where ni is the number of neighbors of knot i and i ∼ j denotes that knots i and

j are neighbors. Then, our full model can be written as

y|α,β, σ2 = Nn

αX +
∞∑
r=1

J(r)∑
j=1

(
Kr

j

)t
βrj , σ

2


p(β1|τ) = NJ(1)

(
0, σ2τ−1W−1)

p(β−1|λ, c, σ2) ∝ C(σ2, λ, c) exp

− λ

σ2

∞∑
r=2

J(r)∑
j=1

cr−1||βtrj ||2


p(τ) =

ba

Γ(a)
exp(−bτ)

p(α, σ2) ∝ 1

σ2
.

The GMRF prior that is assigned to resolution one enforces, a priori, some

negative correlation between the coefficients corresponding to neighboring knots

on the first resolution. This encourages some smoothness in the resulting field.

The coefficients associated with resolutions above one receive the infinite dimen-

sional prior introduced in section 3.1.4, which induces sparsity at its maximum in a

manner that enforces spatially varying resolution, with shrinkage as the resolution

increases.

56



3.2.1 Maximum A Posteriori Estimation

We propose to use the expectation conditional maximization algorithm (Meng

and Rubin, 1993) to find the MAP estimate for {β, σ2}, while using the E step

to integrate out τ 2. For fixed τ , σ2, and λ, the conditional maximum for {α,β}

can be found using proximal gradient descent. First, we will write this as a

penalized optimization problem with a composite penalty, and then discuss the

maximization. As an optimization problem, we will need to find

min
β

1

2

y −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

ty −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

+ (3.18)

1

2
τβt1Wβ1 + λ

∞∑
r=2

J(r)∑
j=1

cr−1||βtrj ||2. (3.19)

If we add a small amount of noise to the diagonal of W , we can form its

Cholesky factor Q, and can write this optimization problem as

min
α,β

1

2

y −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

ty −Xα− ∞∑
r=1

J(r)∑
j=1

(Kr
j )
tβrj

+ (3.20)

1

2
τ ||β1||Q + λ

∞∑
r=2

J(r)∑
j=1

cr−1||βtrj ||2. (3.21)

where ||.||Q is the Mahalanobis norm.

A few notes on the details of this conditional maximization step. Using the

Mahalanobis norm as a modifier to the 2-norm penalty in this manner is some-

times referred to as Tikhonov regularization or generalized ridge regression (Hastie

et al., 2009). Since these penalties are separable (i.e. they apply to different vari-
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ables) the proximal operator is the product of the proximal operators of the two

penalties (Beck, 2017), and the proximal operators for both Tikhonov regulariza-

tion and H-MKL are available in closed form, so we can still use FISTA to find our

MAP estimator. However, for Tikhonov regularization, the closed form proximal

operator relies on the existence of the Cholesky factor, so W must be full rank,

which is not the case under the intrinsic GMRF. This is the reason for adding

some noise to W .

Next we consider the variance parameter σ2. Conditional on the other random

variables, the posterior for σ2 is

p(σ2) ∝
(

1

σ2

)n
2
+1

exp

[
− 1

σ2

∑n
i=1(yi − ŷi)2 + τβt1Wβ1

2

]
×

C(σ2, λ, c) exp

− λ

σ2

∞∑
r=2

J(r)∑
j=1

cr−1||βtrj ||q


with ŷi = Xiα +

∑∞
r=1

∑J(r)
j=1 (Kr

j )
tβrj . Unfortunately, the normalizing constant

C(σ2, λ, c) is not tractable due to the issues discussed in section 3.1.3, so finding

the mode of this distribution is not possible. We propose to use only the first

resolution to estimate this quantity, and ignore the higher resolutions, so our

simplified conditional posterior is

p(σ2|...) ∝
(

1

σ2

)n
2
+1

exp

[
− 1

σ2

∑n
i=1(yi − ŷi)2 + τβt1Wβ1

2

]

which corresponds to an Inverse Gamma density, so following the ECM, we update
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σ2 as

σ2
new =

∑n
i=1(yi − ŷi)2 + τβt1Wβ1

n+ 2
.

To impute τ we will use its conditional expectation, following the ECM algo-

rithm. For a particular value of λ, and a MAP estimate of β̂, τ will be updated

with

τnew =
a+ J(1)

2

b+ β̂1
tW
σ2 β̂1

.

Due to the complexity of the C(σ2, λ, c) term in the prior for resolutions greater

than 1, ECM can not be used with λ. Therefore we propose to calculate a so-

lution path in a similar manner to the LASSO, maximizing the posterior for a

number of potential values pf λ. We can then use model comparison or model

averaging techniques on the resulting maxima. There are two potential strate-

gies for computing these solutions. One is to attempt to solve the solution path,

where we start with a very large λ, compute the MAP, them decrease λ and use

the previous solution as a warm start. This will, for a set of potential tuning

parameters λ1 > λ2 > · · · > λT , result in T separate maxima. In the LASSO, the

solutions are piecewise linear, which makes the computation of a solution path

extremely efficient. Unfortunately, the solutions to group lasso with an overlap

are only piecewise differentiable in λ (Bach, 2008), so the solution path cannot be

computed as quickly when one of these non-differentiable points are in between

two potential values of λ.

However, solution paths are still often used for problems with penalties that do

not have solutions paths that behave nicely (Chen et al., 2012). This is because

the β that is the maximum at the previous value of λ still serves as an ade-

quate starting value for the next λ. Another advantage is that model comparison

heuristic based stopping rules, such as BIC or posterior model probabilities, can
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be tracked. A drawback to this strategy is that computation must be done serially.

Another approach that is faster if a large amount of computational resources are

available to the user is to compute each solution in parallel. For this approach, the

same starting value would be used for each λj, and the routine would be run on a

number of processors simultaneously. We will discuss the use of model comparison

techniques to choose or average these T solutions in a subsequent chapter.

3.2.2 Simulation Study

The procedure outlined above will be fit to the first three simulated datasets

used in Kirsner and Sansó (2020), which have about 18,000 training and 2000

testing data and are unequally spaced, but have very few large gaps, and to the

Mediterranean sea surface temperature dataset, which is unequally spaced and

has many large gaps. The parameters a and b which control the Markov Random

Field scale were set to be 10, and the initial value for the scale parameter τ was 1.

The initial value for β was set at the MAP estimator for the model with a single

resolution of knots. The parameter c, which controls how much the sparsity

increases with the resolution, was set to 2D where D is the number of spatial

dimensions. For the one dimensional example, J(1) was varied between 5, 10,

and 20, for the two dimensional Gaussian Process examples, between 25, 100, and

400, and for the Mediterranean data between 40 and 160. Out of sample MSPE,

runtime, and BIC as an approximation to the marginal model probability were

calculated for each of the models evaluated using predictions made at the MAP.

For each setting of potential variables and pair of λ, τ , FISTA was used to find

the MAP.

This model was fit for λ ∈ {10000, 1000, 200, 100, 50, 10, 5, 1, .8, .6, .4}. The

code for setting up design matrices and keeping track of knots was written in R,
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while the optimization was carried out in C++, and called using RCPP. Routines

that use FISTA to solve problems of the form of equation (3.13) with q = 2

are implemented in the SPAMS optimization toolbox (Mairal et al., 2010) in C++.

However, this software does not support the composition of this regularization

and a Mahalanobis norm, which corresponds to the MAP estimate under the

prior described in equation (3.21). Therefore, using SPAMS as a starting point, we

wrote FISTA optimization code to find the MAP. For each dataset, the solution

path approach was used, and computation stopped at either the smallest value of

λ or at once the BIC began to increase. All computational routines were run on a

Windows desktop with an Intel i7-2600k processor with 4 cores and 16 gigabytes

of RAM.

Figures 3.1, 3.2, and 3.3 contain the results for the 1 dimensional dataset.

Runtimes and out of sample prediction error were comparable to MSSS, with

the paths fit in about 6 minutes and an RMSE of around .1. Figures 3.4 3.5,

and 3.6, contain the results for the two dimensional, twice differentiable Gaussian

Process, and figures 3.7, 3.8, and 3.9 contain the same for the non-differentiable

GP. Predictive performance is similar to MSSS. Computational performance is

similar to MSSS for the smallest value of J(1), with runtimes on the order of 20

minutes but is substantially worse than MSSS for larger J(1), with solution paths

taking about 3 hours to compute.
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Figure 3.1: J(1)=5 1d Optimization Path Summary

Figure 3.2: J(1)=10 1d Optimization Path Summary
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Figure 3.3: J(1)=20 1d Optimization Path Summary

Figure 3.4: J(1)=25 2d Smooth GP Optimization Path Summary
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Figure 3.5: J(1)=100 2d Smooth GP Optimization Path Summary

Figure 3.6: J(1)=400 2d Smooth GP Optimization Path Summary
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Figure 3.7: J(1)=25 2d Rough GP Optimization Path Summary

Figure 3.8: J(1)=100 2d Rough GP Optimization Path Summary
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Figure 3.9: J(1)=400 2d Rough GP Optimization Path Summary

Results for the Mediterranean SST data with J(1) = 40 is in figure 3.12

and results for J(1) = 160 is in figure 3.13. Computational performance was

slower than MSSS, with a runtime of about an hour for the smaller J(1) and

about 2 hours for the larger J(1). A plot of the resulting predicted surface for

the model with J(1) = 160 and λ = .8, which is the model with the best BIC, is

displayed in figure 3.10. The resulting resolutions used are displayed in figure 3.11.

The resolutions plot is very similar to the results from chapter 2, with more

resolutions near Palma and Sardinia due to a local warm spot, near the Brittany

peninsula due to a cold spot, and near southeast end of the data due to a large

amount of local variation. The resulting predictions from the MAP procedure are

smoother than the predictions from MSSS, which could be a desirable feature in

some applications. This is because the prior described in section 3.2 provides more

shrinkage to the nonzero coefficients than the prior in chapter 2. This shrinkage

is applied to the sum of the 2-norm of the tree, so shrinkage applied to a parent

coefficient is applied to all of its children in a manner reminiscent of the tree

shrinkage prior in Guhaniyogi and Sansó (2017).
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Figure 3.10: Predictions over the Mediterranean for the model with the best
BIC

Figure 3.11: Resolutions active over the Mediterranean for the model with the
best BIC
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Figure 3.12: J(1)=40 SST Optimization Path Summary

Figure 3.13: J(1)=160 SST Optimization Path Summary
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This method can be run more quickly if run in parallel, but this requires a

computer with an very large amount of memory. To highlight this, the model

was run for the same settings as 3.11 but in parallel. This reduced the runtime

by approximately 30% when compared to the serial computation. However, the

memory usage was greater by a factor of about 5.

3.3 Conclusion

We have developed a method for enumerating a sequence of models with spa-

tially varying resolution via the solution path of Bayesian optimization. This

method relied on an infinite dimensional version of a composite absolute penalties

prior. To fit the model, a proximal gradient descent algorithm was developed.

This work allows for point predictions to be made using the MAP estimator un-

der this prior. However, this does not directly result in any ability to perform

interval estimation. It also does not allow for selecting the best of a set of models

or averaging between a set of them. In chapter 4, we will develop methods for

doing model selection and averaging among the models in the solution path.
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Chapter 4

From Optimization to Bayesian

Model Averaging

4.1 Introduction

The methods developed in section 3.2 allow for maximum a posteriori estima-

tion for each value in a sequence of λ. This could be thought of as set of potential

models of length T . However, there is no direct way to use a MAP estimator to do

uncertainty quantification, such as interval estimation, or model selection, with-

out making other assumptions. In this section, we consider the set of solutions

of this optimization trajectory as a finite set of models, and use Bayesian model

averaging to improve prediction and perform uncertainty quantification.

Similar approaches have been proposed in the regression context. Fraley and

Percival (2015) propose an alternate method of doing Bayesian model comparison

in a linear model with a large parameter space of size p. To perform an exhaustive

search, 2p models must be evaluated. Stochastic search methods have a goal of

evaluating only high probability models in that large space, and do not attempt
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to exhaustively evaluate all models. The authors propose to use the LASSO

solution path as a set of potential models, which reduces the size of the problem

substantially. To then perform model averaging and selection, they choose to use

MCMCMC (Madigan et al., 1995) with a uniform prior over the model space,

and BIC as an approximation to the integrated likelihood for a particular model.

Zhou and Wu (2014) also propose a similar approach in the context of their more

general penalty structure. Liu (2017) implement this approach in the context of

an even more complex model space. They consider the graphical LASSO, which

selects from all possible graphical models. They use a refitting scheme, where

the LASSO path is used only for selection of the model, then to compute the

BIC, they refit the model without regularization, but restricted to the parameters

selected by the LASSO.

Both of these approaches perform averaging where the space of potential mod-

els is finite, but in the case of our model, initially, the model space is infinite.

We will use the MAP procedure described in section 3.2.1 to reduce the problem

to a finite set of potential models, and develop a model averaging scheme that

performs uncertainty quantification in this setting. On datasets of moderate size,

BIC or the hyper-g prior discussed in chapter 2, coupled to the prior developed

in section 2.2.1 result in reasonable model selection behavior. For larger datasets,

however, this approach always favors models of arbitrarily large size. We will re-

view this issue, showing that Bayesian additive regression trees (Chipman et al.,

2010), (Francom et al., 2018), MSSS (chapter 2), and the approach developed in

this chapter often select larger models or more complex basis functions when data

sizes are large. We will review the approaches to this issue taken by other au-

thors, and propose a solution that alleviates the issue for multi-scale optimization.

Specifically, we find a setting for the hyperprior of the parameter that controls the
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sparsity level π that is dependent on the data size. This prior leads to reasonable

prior behavior with large datasets, and is small enough for small datasets to not

change the behavior of the model significantly.

4.2 Model Averaging Along Optimization Paths

We will follow the notation of chapter 2, using γ as a vector of 0-1 variables that

correspond to a set of nonzero coefficients. The method developed in chapter 3

results in MAP estimates that display spatially varying resolution for each of the

T values of the penalization parameter λ ∈ {λ1, λ2, . . . , λT} that were chosen to

form the solution path. We will let these parameters index the model space. Each

λl in this set corresponds to a set of coefficient estimates under the prior developed

in chapter 3. We will denote the nonzero coefficient estimates for λl as β̂(λl). We

will form the 0-1 variables γrj (λl) such that

γrj (λl) = 1 ⇐⇒ βrj ∈ β̂(λl).

The infinite length vector of all of these γrj (λl) will be referred to as γ(λl). To

perform Bayesian model averaging, if Q is our quantity of interest, the resulting

estimate is

Q̂ =
L∑
l=1

Q̂(λl)× p(γ(λl))p(y|γl)∑j
j=1×p(γ(λj))p(y|γj)

We will first discuss p(γ(λl)), the prior on the model space. We can then adopt
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the same prior on the model space as was used in chapter 2, i.e.

Pr(γ1,j = 1) = 1 (4.1)

Pr(γr,j = 1|γr−1) = π × γr−1,b j−1

2d
c+1 (4.2)

π ∼ Beta(aπ, bπ). (4.3)

Note that we showed in chapter 3 that the penalized optimization routine results

in sparsity that obeys the constraints built into this prior. This prior can be

evaluated at p(γ(λl)) for each λl ∈ {λ1, λ2, . . . , λT} to obtain the prior model

probabilities with the expression

p(γ(λl)) =
a(λl), b(λl)

B(aπ, bπ)
with

a(λl) = aπ +
∞∑
r=2

J(r)∑
j=1

γrj (λl) and

b(λl) = bπ +
∞∑
r=2

2d
J(r−1)∑
j=1

γr−1j (λl)−
J(r)∑
j=1

γrj (λl)

 .
As for the marginal p(y|γ), several options exist. One option is to adopt

the same hyper-g prior used in chapter 2. To evaluate the marginal distribution

under the hyper-g prior, we must obtain the least squares estimator β̂γ(λl) and

calculate the resulting SSEγ. To avoid having to calculate the regression on

a potentially very large design matrix from scratch, we will use gradient descent

with the solution to the penalized problem β̂(λl) as a starting point. The resulting

marginal likelihood estimate is

p(y|γ(λl)) =
a− 2∑J(r)

i=1 γ
r
j (λl) + a− 2

2F1

(
n− 1

2
, 1,

∑J(r)
i=1 γ

r
j (λl) + a

2
,
SSEγ(λl)

SSE0

)
.
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This is extremely similar to the approach taken by Liu (2017), where the penalized

optimization procedure was used to limit the size of the model space only, but then

the coefficients from the optimization are discarded and the model is refit. Under

the hyper-g prior, model averaging and interval estimation can be performed using

the expressions derived in section 2.2.5.

This approach for estimation of the marginal likelihood would discard the

smoothness properties that we observed empirically on the Mediterranean data

in figure 3.10. Another possibility for the marginal likelihood that keeps the

smoothness properties of the prior developed in section 3.2.1 is to use the BIC as

an approximation to the marginal likelihood, and rather than refitting the model,

use the penalized estimates obtained from the MAP estimation. In this case, if

ŷi(λl) is the predicted value for yi from the model indexed by λl, then the marginal

likelihood would be calculated as

log(p(y|γ(λl))) ≈ −
BIC(λl)

2

and

−BIC
2

= − log(n)

2
×

 ∞∑
r=1

J(R)∑
j=1

γ(λl)
r
j + q

− 1

2
log

(
n∑
i=1

(yi − ŷi(λl))2
)
.

This approach does not naturally lead to an estimate for σ2, which is needed for

our interval estimation. We will use the plug in estimator that was used in the

optimization procedure, with

σ̂2(λl) =

∑n
i=1(yi − ŷi)2 + τ β̂1(λl)

tWβ̂1(λl)

n+ 2
.

The BIC based averaging approach tends to prefer models with fewer knots.
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This is because when the model is refit using the hyper-g prior, the resulting

estimated coefficients have substantially less shrinkage applied to them than the

estimates that are sourced from the optimization procedure.

4.3 Mediterranean Data

The same predictions that were displayed in 3.11 and figure 3.10 were used

for demonstrating the two model averaging approaches. Under both the hyper-g

prior with refitting strategy, and the strategy that uses BIC at the MAP, the log

marginal model probabilities were calculated and displayed in table table 4.1. As

mentioned in the previous section, the shrinkage at the point estimate causes the

BIC based method to favor smaller models. Using BIC, the BMA predictions will

very strongly favor the top 2 models, with

ŷ = .93ŷ(.6) + .07ŷ(.8).

The rest of the models will have virtually no mass.

λ # of parameters BIC Log Model Probability Hyper-G Log Model Probability
10000 40 676.26 759.85
1000 40 678.88 762.46
200 40 679.23 762.81
100 40 679.29 762.86
50 40 679.30 762.87
10 40 679.30 762.87
5 45 791.75 1098.24
1 65 1158.83 1587.60

0.80 68 1194.63 1593.76
0.60 74 1197.26 1891.91
0.40 98 1171.91 1594.91
0.30 116 1074.06 1925.21
0.20 119 1178.78 2026.67
0.10 171 853.69 2119.71

Table 4.1: Results for the Mediterranean data with J(1) = 40.
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4.4 Issues With Large Data

In the context of fixed design matrices and linear regression, Bayesian model

averaging using hyper-g priors have a number of very strong consistency results

(Bayarri et al. (2012), Liang et al. (2008), etc.) for model selection as the size of

the data grows. However in the context of models that have a huge number of

potential basis functions, or with a moderate number of basis functions that are

extremely flexible, large data can result in complex models.

In multi-scale shotgun stochastic search (chapter 2), this behavior is exhibited

when data sizes are approximately 106. MSSS controls the (potentially infinite)

number of basis functions via the prior in section 2.2.1. Usually, MSSS stops

after a reasonable number of iterations because the posterior model probabilities

stop increasing. However, with large data, the model will run for thousands of

iterations, continually adding knots to a degree that is undesirable. This issue

can be mitigated by limiting the number of iterations to some fixed constant.

Bayesian additive regression trees (Chipman et al., 2010) (BART) also exhibits

similar behavior. BART is an extremely flexible semi-parametric model that has

a fixed number of basis functions, which can be thought of as trees. Each tree can

have an infinite number of nodes, but the number of nodes is controlled by a prior.

However, with large data, this prior is not strong enough to control the size of the

tree, resulting in large trees and poor computational performance (Chipman et al.,

2010). As the sample size grows, so does the size of the trees. Their proposed

solution to this issue is to limit the number of iterations to some fixed constant.

Bayesian multivariate adaptive splines (BMARS) exhibits this behavior as

well. BMARS is an extremely flexible approach that relies on reversible jump

MCMC to select the number of knots for a multivariate spline. The number of

knots is controlled by a prior distribution. In the settings examined in Francom
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et al. (2018), the estimated number of basis functions had a tendency to grow too

large. The authors solved this issue by setting a Poisson(µ) prior on the number

of basis functions, and a Gamma(1, 10300) hyperprior on µ, resulting in a prior

mean number of basis functions that is essentially zero.

These issues arise because the marginal likelihood grows exponentially in n.

This means that if a model is slightly misspecified or if there is enough data for

it to display very complex features, these flexible models will be encouraged to

account for it in a manner that ultimately produces overfitting. To combat this

we will adopt a similar approach to BMARS, and use a very strong prior on the

parameter that controls the sparsity in the basis functions. Specifically, we will

set

π ∼ Beta(aπ, bπ) (4.4)

aπ = 1 (4.5)

bπ = 103×n/104 . (4.6)

This reflects an unrealistic prior expected number of basis functions, and could

cause numerical overflow if n is too large. When n is very small, the prior ex-

pected number of basis functions under this prior is essentially infinite, but with

very small prior sample size. When n is large, the prior expectation is virtually in-

finite with a huge amount of weight. Empirically, however, this prior setting leads

to reasonable model selection behavior. With small sample sizes, the aπ and bπ

parameters do not matter much. For example, applying this prior to the Mediter-

ranean model discussed in table 4.1 only changes the results slightly, resulting

in

ŷ = .84ŷ(.6) + .14ŷ(.8).
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With extremely large n, the prior is large enough to stop the Bayesian model

averaging from picking the largest model every time. To demonstrate this, we

use GHRSST Level 3C North Atlantic Regional data, which consists of very high

resolution sea surface temperature datasets. We use data from December 2017

collected over the North Atlantic at a .02 degree resolution. This data was re-

stricted to be over the Mediterranean. It was collected over the entire month,

so each point on the surface has more than one observation. This was reduced

to having one observation per point on the grid by taking the arithmetic mean.

This results in just over a million data. However, by using the prior from equa-

tion (4.5), we obtain the results in table 4.2. Through this prior that is highly

dependent on the data size, we are able to obtain model averaging and selection

behavior that results in reasonably sized models.

λ # of parameters BIC Log Model Probability
10000 91 14395.32
1000 107 39737.20
200 180 118611.85
100 251 149240.45
10 597 119653.19

Table 4.2: Results for the Mediterranean data with J(1) = 40.

4.5 Summary

We have developed a Bayesian model averaging approach that allows for un-

certainty quantification and interval estimation for spatially varying resolution

that is obtained via optimization rather than stochastic search. We discuss the

different options available for calculating the marginal distribution, and recom-

mend BIC evaluated at the MAP of the CAP family prior. We also discussed

the issues that arise with extremely large datasets and flexible, semi-parametric
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models outside of the realm of spatially varying resolution. We propose a solution

that resolves this issue in the context of this model, resulting in finite models even

in the presence of large datasets.
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Chapter 5

MSSS: An R package for Fitting

Surfaces With Spatially Varying

Resolution

5.1 Introduction

The R package MSSS was developed to provide an easy to use implementa-

tion of spatial models with multi-resolution kernel convolutions that result in

spatially varying resolution as considered in chapter 2. This package is able

to fit models with this property, generate out of sample predictions from fit-

ted models, and generate datasets of the number of resolutions used, which

can be useful in feature identification (see chapter 6). The package can be

downloaded at https://github.com/daktx2/MSSS or installed via the command

install github("https://github.com/daktx2/MSSS") command in R. If the

optimization methods of chapter 3 are desired, then the package multires, lo-

cated at https://github.com/daktx2/multires will also need to be installed.
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There are a large number of R packages that implement spatial methods. A

comprehensive list can be found at the CRAN task view for spatial data anal-

ysis at https://cran.r-project.org/web/views/Spatial.html. Many of the

methods discussed in chapter 1 and in the forthcoming case study (chapter 6)

have R packages that implement their models. These can be found in table 5.1.

Package Citation
spNNGP Finley et al. (2017)

LatticeKrig Nychka et al. (2015)
FRK Cressie and Johannesson (2008)

spBayes Finley et al. (2009)
INLA Lindgren et al. (2011)

gapfill Gerber et al. (2018)
laGP Gramacy et al. (2016)

GPvecchia Katzfuss (2017)
tgp Gramacy and Lee (2008)

Table 5.1: Partial list of R package implementations of discussed methods.

We introduce the package as follows. In section 5.2 we describe a spatial

model that results in spatially varying resolution We then discuss the two poten-

tial strategies for selection and averaging over potential sets of knots with spatially

varying resolution that are provided by this package. We also discuss the different

options available in the package for parts of the model, including prior distribu-

tions and kernel functions, and some computational details of how these options

are implemented. We then provide an example of how to install the package and

fit the model to a simulated Gaussian process dataset discussed in chapter 2, and

show how the predicted surface changes when different options are used. We also

show how using Wendland kernels affect the fit to the Mediterranean observational

SST data.
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5.2 Spatially Varying Resolution

We begin with a standard spatial regression model,

y(s)i = x(s)Ti α+ w(s) + ε(s)i, ε(s)i
i.i.d.∼ N(0, σ2),

where x(s)i is a q × 1 vector of individual level predictors, α is the q × 1 vector

of fixed effect regression coefficients associated with the predictors, w(s) is the

spatial effect, i is the index for replicates at a particular point s, and ε(s)i Gaussian

random noise. We let the spatial process be represented by the multi-resolution

process convolution

w(s) =
∞∑
r=1

J(r)∑
j=1

K(s, srj |φr, ν)βrj .

where K(.) is a kernel function.

To achieve spatially varying resolution, we require structured sparsity in βrj .

If we let γij be a 0-1 random variable with Pr(βrj = 0|γrj = 0) = 1, a prior on the

model space that enforces spatially varying resolution is

Pr(γ1j = 1) = 1

Pr(γrj = 1|γr−1
b j−1

2d
c+1

= 1) = π × γr−1,b j−1

2d
c+1

Pr(γrj = 1|γr−1
b j−1

2d
c+1

= 0) = 0

p(π) = Beta(aπ, bπ).

This package provides two strategies for fitting models with this feature. The

first strategy is to attempt to enumerate the top Q models via multi-resolution

shotgun stochastic search (Kirsner and Sansó, 2020). The second strategy is to
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restrict the set of potential models to a much smaller set via the solution path of

an optimization procedure. This is discussed in detail in chapter 3.

5.2.1 Kernel Functions

The model described in section 2.2.3 is subject to the choice of kernel function.

Two choices of kernel function are implemented in the software. Both of these

choices offer compact support, which substantially increases the computational

efficiency of these methods. Compact support is not required in general, though

it improves the computational efficiency of the stochastic search. One choice of

kernel is the Bezier kernel function (Brenning, 2001), which is defined as

K(s, srj , φr, ν) =


(

1−
(
||s−srj ||
φr

)2)ν
||s− srj || < φr

0 otherwise.

This extremely flexible kernel offers a range parameter φr and a smoothness pa-

rameter ν that controls the differentiability. Also available is the Wendland kernel,

which is used in Nychka et al. (2015) and Guhaniyogi and Sansó (2017) among

others. If l = bd/2c+ 2, then this kernel is defined as

K(s, srj , φr) =


(

1− ||s−s
r
j ||

φr

)l+1 [
1 + (l + 1)

||s−srj ||
φr

]
||s− srj || < φr

0 otherwise.

This kernel has only a range parameter φr, and is four times differentiable. It

results in continuously differentiable realizations of a spatial surface (Guhaniyogi

and Sansó, 2017). For both potential choices of kernels, we set φr = η||srj − srj−1||,

which results in narrower kernels at higher resolutions. It is required that η > 1 for

this to be a coherent spatial model, as smaller values will result in gaps. If Bezier
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kernels are used, the software default smoothness parameter is ν = 1. However, in

chapter 2 we showed that the predictive properties of these models are extremely

robust to varying kernel choices.

5.2.2 Priors for α, the nonzero βr
j , and σ2

The above model is completed with a prior on the nonzero βrj , the fixed effects

α, and the variance σ2. Specifically, if we let βγ be the vector of βrj for r > 1

where γrj = 1, then

p(α,β1,βγ, σ
2|γ) =p(βγ |α,β1, σ

2)p(β1|σ2,α)p(α, σ2|γ)

The software restricts the choice of prior on the fixed effects and variance to be

the reference prior,

p(α, σ2|γ) ∝ 1

σ2
.

For βrj at any resolution, if the design matrix has no nonzero entries, then the

software will force the coefficient to be zero. This is necessary for numerical

stability. Two choices are offered for the prior on the first resolution coefficients.

A flat reference prior is the default, i.e.

p(β1|α, σ2) ∝ 1.
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Alternative, if more shrinkage is desired at the first resolution, a multivariate

normal distribution, i.e.

p(β1|α, σ2) = NJ(1)(0, σ
2V ) (5.1)

could be used. A suggested option is

p(β1|α, σ2) = NJ(1)

(
0, σ2τ 2

(
W + δIJ(1)

)−1)
where W is the precision matrix for an intrinsic Markov Random Field (GMRF).

The intrinsic GMRF is a common choice as a prior for process convolutions (for

example, Lemos and Sansó (2009)). This option is useful to enforce spatial co-

herence when the number of resolution 1 knots is large. The matrix W has 0’s

in all elements except for the diagonals, which have the number of neighbors of

those knots, and the off diagonal entries corresponding to neighbors, which are

set to -1. δ corresponds to a small amount of diagonal noise to ensure that this

matrix is invertible, which is necessary for the computation of posterior model

probabilities.

Two options are offered for the prior on the nonzero knot coefficients at reso-

lutions greater than 1. One option is the hyper-g prior Liang et al. (2008). If we

let

Z0 =
[
X0 K1

]
,
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then the hyper-g prior is

p(βγ |α,β1, σ
2, g) =N(0, gσ2(V T

γ Vγ)
−1) (5.2)

p(g) =

(
a− 2

2

)
(1 + g)−a/2 (5.3)

with Vγ =
(
In+p+J(1) − Z̃0(Z̃0

t
Z̃0)Z̃0

)
K̃i. (5.4)

This results in a closed form posterior model probability of

p(γ|y) =
a− 2∑J(r)

i=1 γr,j + a− 2
2F1

(
n− 1

2
, 1,

∑J(r)
i=1 γr,j + a

2
,
SSEγ
SSE0

)
× (5.5)

B
(
aπ +

∑∞
r=2

∑J(r)
j=1 γr,j, bπ +

∑∞
r=2

[
2d
∑J(r−1)

j=1 γr−1, j −
∑J(r)

j=1 γr,j

])
B(aπ, bπ)

(5.6)

Specifying a hyper-g prior using the matrix Z0 instead of Kγ makes the prior

orthogonal to the fixed effects and resolution 1 knots, which allows for the easily

computed Bayes factor above. In Kirsner and Sansó (2020), this orthogonalization

was not carried out, which makes the base model in the comparison a model with

an intercept only. The space of models is infinite, so to enumerate high probability

models, a stochastic one knot at a time search algorithm called Shotgun Stochastic

Search (Hans et al., 2007) was modified to this setting. Further details about

Shotgun Stochastic Search are given in section 2.2.3 and section 5.4.1. The other

choice for this prior is the tree structured prior of chapter 3. If we let βtrj be the

vector of coefficients corresponding to the subtree with root βrj , then

p(β−1|σ2, λ, d) = C(σ2, λ, d) exp

− λ

σ2

∞∑
r=2

J(r)∑
j=1

cr−1||βtrj ||2

 (5.7)
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where C(σ2, λ, d) is an intractable normalizing constant. This software permits

computation of the maximum a posteriori estimate under this prior for fixed λ

and c.

For computation of the posterior model probabilities shown in 5.2.2 with under

the prior on resolution 1 shown in section 5.2.2 and the hyper-g prior shown in

equation (5.4), the data augmentation form of conjugate priors. (Gelman and

Hill, 2006) must be used. Let

y∗ =

 y

0p+J(1)

 ,
and let the augmented design matrix be

Z0 =

 X0 K1

0 IJ(1)

 .
Then the new regression covariance matrix will be

U =

 In 0

0 τ 2Q−1

 = W tW =

 In 0

0 τΛ−1

t  In 0

0 τΛ−1

 .
Note that the Cholesky decomposition can be calculated for each block separately

(because we have a block diagonal matrix), and the Cholesky of the identity is the

identity, so we only need to calculate Λ−1, the Cholesky factor for V , the variance

matrix of the prior. In fact, for estimation, we only need Λ, which is the Cholesky

factor of the precision matrix of this prior. We will create a transformed response

and predictor matrix to remove the correlated errors and end up with regression
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under independence. Applying this, we obtain

ỹ = W−1y∗ = y∗, Z̃0 = W−1Z0

Note that since the last entries of y∗ are zero, ỹ = y∗. Also, by properties of

matrix multiplication,

Z̃0 =

 X0 K1

0 τΛ

 .
All kernel matrices at a resolution greater than 1 will need to be padded with

zeros, namely

K̃γ =

 Kγ

0

 .
With the augmented design matrix and response vector, we can now use the

expression in section 5.2.2 to compute posterior model probabilities and Bayes

factors. Adding this proper prior encourages some smoothness and stability in

the resolution one coefficients.

5.3 Fitting the Models

This package offers two options for fitting models with spatially varying reso-

lution. The first choice is multi-scale shotgun stochastic search (MSSS), which is

documented in detail in chapter 2, and the second is multi-scale spatial optimiza-

tion, which is developed in chapter 3.

5.3.1 Multi-scale Shotgun Stochastic Search

Multi-resolution Shotgun stochastic search attempts to enumerate the highest

probability part of the model space via a stochastic search. It relies on the ex-
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istence of closed form marginal distributions, so requires that the hyper-g prior

(equation (5.4)) is selected for the prior on nonzero coefficients. Its speed relies

on parallel computing, and is most efficiently run with 10-20 cores.

To perform MSSS, we first must define the set of neighbors N of a model m0,

which is of size p. MSSS exhaustively evaluates the posterior model probability

of each element in N in parallel, and then randomly selects one of them to be the

next m0 with probability proportional to the posterior model probability. The

top Q of these exhaustive evaluations are saved for model averaging after the

procedure finishes. In this setting, we split N is into two groups, N = N−
⋃
N+.

N− is defined as all models of size p− 1 that remove only one childless knot from

m0. Moving to a model in this set is termed a deletion move. N+ is defined as all

models of size p + 1 that contain all predictors from m0, and then add one knot

to a parent with an open spot for a child. Moving to a model in this set is termed

an addition move.

The initial m0 is set to be all resolution 1 knots, so iteration 1 does not consider

any deletion moves. The software runs this procedure for a maximum number of

iterations I, but will exit early if the set of top models Q is not updated for

3 iterations, which means that the procedure is unlikely to find any additional

models with high posterior model probability.

To run the stochastic search procedure, the function msss fit is provided.

table 5.2 lists the arguments for this function. Only the first four are mandatory.

In chapter 2 we show that this method is quite robust to the choice of kernel

parameters η, ν and prior parameters aπ, and bπ. The defaults provide for a

quite rough predicted surface, but either increasing ν or switching to Wendland

kernels will result in a much smoother predicted surface. Reasonable values of

aπ and bpi have little effect on the resulting model size if more than 1,000 data
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points are used. Details of each argument to this function is displayed in table 5.2.

Predictions, intervals, and resolutions used via Bayesian model averaging at out of

Argument Description
locations locations of the spatial observations as a matrix
yy response vector
knots r1 resolution 1 knots as a matrix
spatial dimension dimension of the spatial field, can be 1 or 2
maxiters maximum number of iterations for the stochastic search,

100 is default
cores number of cores, 1 is default but 10-20 is recommended
design mat default is NULL, but at least an intercept is recommended
a pi a for beta prior on π if pi method=1, 1 is default
b pi b for beta prior on π if pi method=1, 5 is default
a g parameter for hyper-g prior, 3 is default,

2≤a g≤4 recommended
kernel width η, Bezier kernel width parameter, should be 1.5 or greater,

1.5 is default
nu ν, Bezier kernel smoothness parameter, 1 is default
pi method Beta prior for π, 1 (default), 2 is for fixed π
R1 prior J(1) × J(1) covariance matrix with for R1 knots if desired
Kernel type kind of kernel to use, the default is the flexible ’bezier’

kernel but ’wendland’ is also an option
Table 5.2: Parameters for msss fit.

sample locations from MSSS are obtained from the function msss pred. Details of

each argument to this function are displayed in table 5.3. Section 5.4 will go into

further detail about the effects that different parameters have on the predicted

surface, and the usage of the above function.

5.3.2 Multi-scale Spatial Optimization

The function mr optim fit uses the optimization method described in chap-

ter 3 to evaluate a set of models with spatially varying resolution corresponding

to a set of penalization parameters. Details of each argument to this function is

displayed in table 5.4.
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Argument Description
locations locations where predictions/intervals are desired
results results from msss fit

design mat design matrix for fixed effects
level default is .95, confidence level for interval, not needed if

type=’pred’ or type=’resplot’
model used number of models to use for Bayesian model averaging
type default is ’pred’ for prediction interval, ’mean’ for mean interval,

’resplot’ for resolutions plot, ’noint’ for prediction only
Table 5.3: Parameters for msss pred.

Predictions and interval estimation from this method are obtained from the

function mr optim pred. This function considers the maxima found to be the

space of potential models for Bayesian model comparison, as described in chap-

ter 4. The prior on the model space is taken to be section 5.2. For knots at

resolutions greater than 1, two options are available: (1) the hyper-g prior (equa-

tion (5.4)) in which case the posterior model probabilities are available exactly

via the expressions in section 5.2.2; (2) The infinite dimensional CAP prior (sec-

tion 5.2.2), in which case the marginal model probabilities must be approximated

using BIC in the manner of chapter 4. Details of each argument to this function

are displayed in table 5.5.

5.4 Synthetic Data Example

To demonstrate the effects of the different choices above, we will generate

10000 observations from a Gaussian process observed on a grid on [0, 10]× [0, 10]

with Matern covariance, a scale parameter of 1, and a smoothness parameter of 2

using the RandomFields package (Schlather et al., 2015). We add random normal

noise with variance .1 to this mean function, and then use the above msss fit to

fit MSSS under different settings. We discuss the reasons the model with different

settings results in predicted surfaces with different features.
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Argument Description
yy response vector
locationss locations of the spatial observations as a matrix
knots r1 resolution 1 knots as a matrix
spatial dimension dimension of the spatial field, can be 1 or 2
kernel width Kernel width parameter for Bezier kernel
smoothness smoothness parameter for Bezier kernel
shrinkage c value for the sparsity penalty, default is 2
maxiter maximum number of iterations for the optimization,

100 is default
lambdatree seq descending sequence of λ for the sparsity penalty

default is c(1000,100,10,5,2,1,.5)
tau init initial value for the MRF precision, default is 1
tau a gamma parameter a for τ , default is 1
tau b gamma parameter b for τ , default is 1
em tol default is .001, tolerance for convergence of τ
m tol default is .00001, tolerance for convergence ofβ

design mat optional design matrix, an intercept is recommended
Table 5.4: Parameters for mr optim fit.

We generate the data with the following code.

l ibrary ( RandomFields )

set . seed (12345)

model <− RMmatern(nu=2)

l o c a t i o n s = expand . grid ( seq (0 ,10 , length=100) , seq (0 ,10 , length

=100) )

simu <− RFsimulate (model , x=l o c a t i o n s [ , 1 ] , y=l o c a t i o n s [ , 2 ] )

obs = simu$va r i ab l e 1+rnorm(10000 ,0 , sqrt ( . 1 ) )

We then create a set of 100 knots that rang on a grid from -2 to 12 (to control for

edge effects). and fit a multi-resolution model via multi-scale shotgun stochastic

search using the default settings with the code below, and make predictions at each

point on the grid. Note that the number of cores is set to 20 below. On computers

with fewer than 20, this value would cause oversubscribing, where more processes

are called than there are logical cores, which can cause poor performance. For
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Argument Description
locations locations where predictions/intervals are desired
results results from msss fit

design mat design matrix for fixed effects
marg type could be ’bic CAP’ for BIC + composite absolute penalty
int type default is ”pred”, could be ’mean’ for mean interval,
level default is .95, confidence level for interval, not needed if

int type=’pred’ or type=’resplot’ or could be ”hyperg refit”
for refitting the model using hyper-g priors

type default is ’pred’ for prediction interval
’resplot’ for resolutions plot, ’noint’ for prediction only

a beta a parameter for beta prior on pi, default is 1
b beta b parameter for beta prior on pi, default is 1

but 103n/1000 is recommended for large n
a g a parameter for hyper-g prior, default is 3

Table 5.5: Parameters for mr optim pred.

stability, 1 is the default value, but this method will run faster if this parameter

is set to either 20, or the number of cores on the computer, whichever is lower.

knots r1=r1 create ( l o c a t i on s , 2 , 1 0 , 2 ) ; numcores=20;

default f i t=msss f i t ( as .matrix ( l o c a t i o n s ) , obs , knots r1 , 2 ,

maxiters=maxiters , c o r e s=numcores )

preds=msss pred ( l o c a t i on s , default f i t , type=” noint ” )

To demonstrate how to create a simple predicted plot for the default settings

alongside the observed values, we show figure 5.1. Code for generating this plot

is displayed below.

df default=data . frame ( xx=l o c a t i o n s [ , 1 ] , yy=l o c a t i o n s [ , 2 ] , zz=c (

preds$preds ) )

df ac tua l=data . frame ( xx=l o c a t i o n s [ , 1 ] , yy=l o c a t i o n s [ , 2 ] , zz=simu$

va r i ab l e 1 )

plot default=ggplot (df default , aes ( x = xx , y = yy , z = zz ,

f i l l = zz ) ) + geom t i l e ( )+scale f i l l g rad i ent2 ( low = ”blue ” ,

mid = ”white ” , high = ” red ” , midpoint = 0)+
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Figure 5.1: Predicted vs Actual.

scale x cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+scale y

cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+g g t i t l e ( ”

Pred ic ted ” )

plot ac tua l=ggp lot (df real , aes ( x = xx , y = yy , z = zz , f i l l =

zz ) ) + geom t i l e ( )+scale f i l l g rad i ent2 ( low = ”blue ” , mid =

”white ” , high = ” red ” , midpoint = 0)+

scale x cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+scale y

cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+g g t i t l e ( ”Actual ”

)

l ibrary ( cowplot )

plot grid (plot actual , plot default )

Uncertainty quantification can also be shown, through the length of a prediction

interval with a fixed level at each point in the space. This is displayed for a 90%

interval in figure 5.2, and code for generating this plot is below.

default preds=msss pred ( l o c a t i on s , default f i t , des ign mat =

des ign mat ,model used =1, type=”pred” , l e v e l = . 9 )

df default=data . frame ( xx=l o c a t i o n s [ , 1 ] , yy=l o c a t i o n s [ , 2 ] , i n t

length=c ( default preds$upper−default preds$lower ) )
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Figure 5.2: Length of a 90% prediction interval.

plot default unce r ta in ty=ggp lot (df default , aes ( x = xx , y = yy ,

z = in t length , f i l l = i n t length ) ) + geom t i l e ( )+scale

f i l l g rad i ent2 ( low = ”blue ” , mid = ”white ” , high = ” red ” ,

midpoint =1.2 )+

scale x cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+scale y

cont inuous ( l im i t s = c (0 , 10) ,expand=c ( 0 , 0 ) )+

theme ( axis . t i t l e . x=element blank ( )

plot default unce r ta in ty

We now would like to explore what happens to the predicted surface as we vary

the differentiability parameter ν, and switch to Wendland kernels in figure 5.3.

We can see that the ν = 2 appears to have characteristics closest to the actual

field, and as the smoothness gets higher and higher, the artifacts of the kernels

reappear. This is because the model compensates for an inappropriate amount of

smoothness in the kernels by adding additional kernels at high resolutions. Recall

that ν = 1 is the default. A Markov Random Field can be introduced in the

default setting, with 100 kernels and ν = 1, and its precision parameter τ can be

be varied. The predictions are displayed in figure 5.4. We see that τ controls some
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Figure 5.3: Predicted surfaces obtained by varying smoothness parameters.

Figure 5.4: Predicted surfaces obtained by varying Markov random field param-
eters.

of the smoothness in the resulting fields. Large values of τ lead to GMRF induced

smoothness that is inappropriate for the dataset. Thus, the model compensates

by adding more resolutions. Recall that τ = 0 is set as the default.

J(1), the number of kernels at the first resolution, can be varied as well. The

results of varying J(1) from 4 to 1600 are displayed in figure 5.5. Notice that, the

presence of kernels artifacts is strong when when J(1) is either very large or very

small.

The same model can be fit using the optimization method using the code

below.

l ibrary ( mu l t i r e s )#loads the he l p e r f unc t i on s

f i t t=mr optim f i t ( obs , l o c a t i on s , knots r1 , 2 )

preds=mr optim pred ( l o c a t i on s , r e s u l t s )
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Figure 5.5: Predicted surfaces obtained by varying J(1).

Figure 5.6: Multi-scale spatial optimization fit to the data.

Predictions are displayed in figure 5.6 alongside the actual and the default MSSS

plot. As was demonstrated in chapter 3, the results are smoother. All of these

plots, save for the models with 4 or 1600 first resolution knots, provide reasonable

fits to the data. The flexibility of spatially varying resolution allows for the result-

ing robustness of the predictive surfaces to different choices of kernel parameters.

If explicit comparison is desired, the marginal model probabilities can be com-

pared between two sets of kernels. Below, we show code to extract the posterior

model probabilities from the default model, with J(1) = 100, to the model with

J(1) = 400.
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knot 1600 f i t=msss f i t ( as .matrix ( l o c a t i o n s ) , obs , knots r1 , 2 ,

maxiters=maxiters , c o r e s=numcores , des ign mat = des ign mat)

default post mod probs=default f i t $cpp run$top models log

l i k e l i h o o d [ 1 : 1 0 0 ]

knot 1600 post mod probs=knot 1600 f i t $cpp run$top models log

l i k e l i h o o d [ 1 : 1 0 0 ]

These values are substantially higher for the top models found with J(1)=100.

5.4.1 Implementation Details

The front end of the package is written in R. The code starts by creating the

kernel matrix for resolution 1 using the observed locations, the kernel parameters,

and the knot locations. The data augmentation necessary for the optional prior

for the resolution 1 coefficients is also computed in this step. The resulting kernel

matrix is very sparse, due to the compactly supported basis functions. Because of

this, a substantial performance and memory footprint advantage can be obtained

by using sparse matrix libraries. To this end, our implementation uses the Matrix

package. The SSE of the linear model with only the fixed effects and resolution 1

knots is computed and stored, as it will be needed for computation of the model

probabilities as described in section 5.2.2.

All computations for knots at resolutions higher than 1 are performed in C++

to reduce memory overhead and better leverage parallelization. To call the C++

routine from within R, the Rcpp package as used. The sparse matrices from the

Matrix package must be converted into C++ sparse matrices. This is accom-

plished through the C++ matrix library Armadillo (Sanderson and Curtin, 2016),

and its R interface RcppArmadillo (Eddelbuettel and Sanderson, 2014).

To perform shotgun stochastic search, a large of models must be fit in neigh-
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borhood of the current model with either one knot added, or one knot removed. To

compute the posterior model probability for each of these models, the covariance

matrix and coefficients for the new model must be computed. If these compu-

tations were performed from scratch for each model, this would be O(np2 + p3).

However, the regression coefficients and covariance matrix can be updated using

the formulas given in section 2.2.4 that allow for the updating of the regression

coefficients and covariance matrix, which reduce the computational complexity to

O(n(p+ 1) + (p+ 1)2). These computations can be done in parallel, and achieves

its maximum efficiency at approximately 20 cores. With more cores than 20, the

communication overhead is such that more cores do not improve the speed. A

running tally of the top 100 models is kept by the search routine. To reduce the

memory overhead, the design matrices of each of these 100 models are not stored

permanently. Only the estimates of coefficients β, a matrix with the knots cor-

responding to a top model, and a vector of knot resolutions for each of the top

models are returned. This however comes at a cost, as the functions that compute

interval estimates must reconstruct the design matrix for the entire data, which

can be time consuming.

The implementation of the multi-resolution optimization routine relies heavily

on the optimization routines in the SPAMS optimization toolbox (Mairal et al.,

2010), which is maintained by INRIA. To fit the this optimization, SPAMS was

modified to provide the capability of composing the composite absolute penalty

with the Tikhonov norm, which provides for the first resolution Markov random

field.

99



5.5 Summary

The package MSSS provides an easy to use implementation of the methods de-

veloped in chapters 2, 3, and 4. It can be used for parallel computation with large

computing environments, and provides many options with respect to the kinds of

predicted surfaces that are created. These capabilities have been demonstrated

on synthetic data.

100



Chapter 6

Case Study: Prediction and

Feature Identification via

Spatially Varying Resolution

6.1 Introduction

Gaussian processes do not directly model the physical mechanisms that drive

the data that are modeled. However, spatially varying resolution results in the

explicit characterization of the differences in regions via the number of resolutions

active at different locations. This allows practitioners to use these models to not

only predict and quantify uncertainty, but also to discover local features in spatial

data, and identify regions that merit further investigation.

We will demonstrate this via two case studies. First, we will discuss in detail

Heaton et al. (2019), a comparison of twelve alternatives to the full Gaussian Pro-

cess is presented in the context of a case study competition. Each of the twelve

models were implemented by the authors of the model. These models were then
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fit on common hardware to provide an honest comparison of the computational

performance. Using a satellite dataset of 150,000 land temperature observations

from over the Ozark region, the prediction and uncertainty quantification of these

models was compared on a holdout set. Modelers were instructed to, if applica-

ble, use an exponential covariance function for their model, and to include fixed

effects for latitude and longitude, in addition to an intercept. The data and code

required to implement each of these models was published along with the results.

We will review this competition, and compare the performance of MSSS to the

performance of the other models discussed in terms of prediction, uncertainty

quantification, and computational performance. We will then move to the fea-

ture identification. In the context of this land surface temperature study, one of

the regions with a high posterior estimated number of resolutions is a mountain

range. This suggests that adding an exogenous variable, namely elevation, could

improve the model and remove the region of small scale behavior. We re-fit the

model including elevation as a predictor, and show that the re-fit model no longer

assigns a large number of resolutions to this mountain range. Though some of

the competitor models considered in this case study can adapt to local features,

the explicit identification of regions of fine scale behavior is unique to models that

display spatially-varying resolution.

We will next demonstrate the feature identification on sea surface temperature

data collected off the cost of California in the summer. During this season, all but

the southernmost parts of California experiences an upwelling, with substantially

colder temperature occurring close to the shore, and warmer temperature offshore.

This results in highly non-stationary spatial process with a large amount of local

variation near the shore, and less of this local behavior offshore.
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6.2 Ozark Data

The data was collected from the MODIS satellite using the Terra instrument

on August 4th 2016. Satellite datasets are categorized by their level, which denote

the amount of pre-processing that has gone into the data. Level-1 corresponds

to raw measurements, rarely in standard units, with calibration information in-

cluded. This is because, for example, satellites measure temperature indirectly,

by measuring radiance. Level-2 data takes the raw measurements and converts

them into geophysical units, which in this context would be temperatures. Level-3

data maps these measurements onto a standard grid, and Level-4 data has been

derived from either models or multiple measurements, not only from a single in-

strument. The analyzed dataset of temperature is collected at Level-3, measured

in Celsius. This dataset covers the Ozarks, including parts of Arkansas, Kansas,

Missouri, and a small part of Nebraska. 150,000 observations, in a 500 by 300

grid, were used in the analysis. This data were chosen because they corresponds

to a day with almost no missingness due to cloud cover. The holdout set was con-

structed using the cloud cover from August 6th, 2016, which results in a realistic

holdout set of 42,740 observations. The full data compared to the training data

are shown in figure 6.1. Temperatures are generally warmer in the northwest part

of the data, and get cooler towards the southeast. This is a difficult domain for

prediction as it requires extrapolation, i.e. predicting outside of the domain of

the training data.

6.3 Competitor Models

The case study involves a number of statistical methods already discussed

in chapter 1, LatticeKrig (Nychka et al., 2015), Covariance Tapering (Kaufman
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Figure 6.1: Full vs. training satellite measurements from August 4th, 2016.

et al., 2008), the Multi Resolution Approximation (Katzfuss, 2017), Spatial Par-

titioning Kim et al. (2005), the NNGP (Datta et al., 2016), Stochastic PDEs

(Lindgren et al., 2011), Fixed rank Kriging (Cressie and Johannesson, 2008), Pe-

riodic Embedding (Guinness, 2019), and the predictive process (Banerjee et al.,

2008). In addition, several non-statistical approaches are considered in this com-

petition. Metakriging (Guhaniyogi and Banerjee, 2018) proposes to fit a model

on K subsets in parallel, then combine the results using the geometric median of

the posteriors of these subsets. The authors show that this is a good approxima-

tion of the true posterior as the sample size grows for certain classes of Gaussian

Processes. Gapfill (Gerber et al., 2018) is a distribution free method that relies

only on local neighborhoods and quantile regression, which can allow this model

to display non-stationarity. To provide a prediction at a point, local approximate

Gaussian Processes (Gramacy et al., 2016) fit a Gaussian Process to a set of near-

est neighbors of the point, and maximize the reduction of the predictive variance

at each point. This not only speeds up computation, but allows for the model to

fit nonstationary datasets. The models were compared on a number of metrics

based on their out of sample predictions and their uncertainty quantification. The
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metrics and their definitions are in table 6.1, and more details about the metrics

can be found in Gneiting and Raftery (2007).

Metric Definition

MAE 1
J

∑J
j=1 |yj − ŷj|

RMSE
√

1
J

∑J
j=1(yj − ŷj)2

CRPS let ẑj =
yj−ŷj
σj

, Φ and φ be the standard normal

cdf and pdf respectively, then
1
J

∑J
j=1 σ̂j (ẑj(2Φ(zj)− 1) + 2φ(z)− 1/

√
π)

Interval score Let Uj and Lj bet the upper and lower bounds to
an interval with confidence level 1− α, then
1
J

∑J
j=1 Uj − Lj + 2

α
(Lj − yj)1(yj < Lj) + 2

α
(yj − Uj)1(yj < Uj)

CVG 1
J

∑J
j=1 1(Lj < yj < Uj)

Table 6.1: Metrics for model comparison in Heaton et al. (2019).

6.4 MSSS Applied to the Ozark Data

Discrete process convolution based approaches cannot directly approximate an

exponential covariance function. This is because the convolution that produces

an exponential covariance is a spike (Higdon, 2002), but a spike is not a useful

basis function for interpolation with a finite number of knots. To mimic the rough

nature of this covariance function, (which results in a process that is differentiable

only once) we choose a Bezier kernel with ν = .3, and a kernel width of 1.5. Rather

than the flat prior on the first resolution used in chapter 2, we adopt an intrinsic

Markov Random field with a prior precision of 10 on the first resolution. This

prior enforces some smoothness and allows for more borrowing strength in the first

resolution, which we believe will improve this model’s ability to extrapolate. For

computational convenience, we use 20 first resolution knots, and run the model

for 100 iterations. Results are in table 6.2.

Convergence in Bayes factor had not yet occurred, but 100 iterations was
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deemed to be sufficient as the R squared of the model was only increasing by

.0003 at the 100th iteration. MSSS is competitive, neither the best or worst

by any metric below. It outperforms the simple low rank methods Fixed Rank

Kriging and the Predictive Process quite consistently, and is middle of the pack

computationally, but is outperformed by the other multi-resolution approaches in

prediction and interval coverage. The computational comparisons are not exactly

one to one. The case study was performed on a dedicated computing environment

with 256 GB of RAM and 28 2.4 GhZ Xenon cores, while MSSS was run on a

shared environment with 32 Xenon cores at 2.7GhZ and 64 GB of RAM available

to the user. However, MSSS experiences diminishing returns after about 20 cores

(chapter 2), so these computing environments should result in similar performance.

Method MAE RMSE CRPS INT CVG Runtime (min) Cores Used
MSSS 1.99 2.32 1.40 11.08 0.84 19.06 20
FRK 1.96 2.44 1.44 14.08 0.79 2.32 1
Gapfill 1.33 1.86 1.17 34.78 0.36 1.39 40
LatticeKrig 1.22 1.68 0.87 7.55 0.96 27.92 1
LAGP 1.65 2.08 1.17 10.81 0.83 2.27 40
Metakriging 2.08 2.50 1.44 10.77 0.89 2888.52 30
MRA 1.33 1.85 0.94 8.00 0.92 15.61 1
NNGP 1.21 1.64 0.85 7.57 0.95 2.06 10
Partitioning 1.41 1.80 1.02 10.49 0.86 79.98 55
Predtive Proc 2.15 2.64 1.55 15.51 0.83 160.24 10
SPDE 1.10 1.53 0.83 8.85 0.97 120.33 2
Tapering 1.87 2.45 1.32 10.31 0.93 133.26 1
Periodic Embed. 1.29 1.79 0.91 7.44 0.93 9.81 1

Table 6.2: Summary table of results from Heaton et al. (2019) with MSSS at
the top

A plot of the predicted temperatures is displayed in figure 6.2, and a spatial

residual plot, with truncated scales for clarity, is displayed in figure 6.3. It shows

clearly that the model underpredicts in the holdout region at the northern extent

of the data.

A feature of our model is the explicit identification which parts of the field
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Figure 6.2: Predicted values for this model.

Figure 6.3: Spatial residual plot for this model.
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Figure 6.4: Resolutions used for this model.
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Figure 6.5: Elevation and percent forest coverage over this region.

display more fine scale features through the posterior estimated number of resolu-

tions. This is displayed in figure 6.4. A large posterior number of resolutions are

estimated to be in effect north of Fort Smith, and near Little Rock. The area near

Little Rock is by far the coldest part of this region, and is fairly small, so a large

number of resolutions might be required here. However, the fine scale behavior

north of Fort Smith merits further investigation. Two potential exogenous vari-

ables that could affect temperature are elevation and forest cover (displayed fig-

ure 6.5). Elevations in this region vary from about 200 meters in the southwest,to

about 700 meters in the Boston mountains east of Fayetteville, with several other

minor mountain ranges appearing in the southern extent of this dataset. These

substantial elevation changes are likely to affect temperature, but are not directly

modeled in Heaton et al. (2019). Elevation data were sourced from the R package

elevatr (Hollister and Tarak Shah, 2017). Forest cover has also been shown to

have a small effect on land surface temperatures (Alkama and Cescatti, 2016),

with more forest cover associated with lower temperatures. Forest cover data was

sourced from (Hansen et al., 2013). Elevation had a moderate correlation with the

temperature, but forest cover had virtually no linear relationship to temperature

in this region.
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Figure 6.6: Resolution used for the model with elevation as a predictor.

The region north of Fort Smith that had a large number of posterior esti-

mated resolutions appears to correspond to the Boston mountains. It would be

more sensible for the effect of elevation to be directly modeled through an eleva-

tion predictor instead of forcing a spatial effect. However, since elevation generally

increases with latitude, a new variable was created that orthogonalizes these two

variables, and then the model was re-fit with this new predictor. The new model

was similar in predictive ability to the previous model, but the posterior esti-

mated number of resolutions, shown in figure 6.6, no longer is large in the Boston

mountains. This demonstrates how the posterior estimated number of resolutions

can identify local features. When those features are accounted for directly in the

model, the number of resolutions assigned to those regions drops substantially.

Predictions do not differ much from those displayed in figure 6.2
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6.5 California Sea Surface Temperature Data

This level 3 satellite data were collected by the MODIS sensor and converted

to SST by Goddard’s Ocean Biology Processing Group. Data are collected on

a .0125 longitude × .0125 latitude grid off of the West coast of the US, which

works out to approximately a 1.5 kilometer resolution. We chose to analyze a

monthly composite dataset to avoid any missingness due to cloud cover, and used

data from July of 2003, which was a time with a very strong upwelling. We

restricted the Latitude to be between 31 and 42 degrees North, and the longitude

to be between 128 and 115 degrees West. This results in approximately 500,000

observations. The data are displayed in figure 6.7. We can see from this map that

in Northern California, close to the shore, temperatures are much lower than the

water farther from the shore. However, the area close to the shore in Southern

California is very warm. This is due to an upwelling that occurs in the summer.

Cold water from the ocean floor is driven to the shore by currents and winds, but

the bathymetry of the southern part of California’s coastal region prevents this

cold water from reaching all the way to the shore. In this part of California, the

upwelling and its resulting lower water temperatures are located offshore to the

west of the Channel Islands. In this area, the ocean floor gets much deeper. This

can be seen in figure 6.8. This prevents the cold water upwelling from occurring

any closer to the shore.

The multi-resolution structure of the fitted MSSS is able to identify this fea-

ture. MSSS was run on this data for 100 iterations with latitude included as a

linear predictor in the model, and a Markov Random field with τ = 10 for first

resolution coefficients. Predictions were displayed in figure 6.9. The monthly av-

eraged temperatures are quite smooth, and the resulting model fit is extremely

good, with an in sample RMSE .30 and a mean absolute error of .23. The areas
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Figure 6.7: July 2003 sea surface temperatures off the coast of California.

Figure 6.8: Bathymetry off the coast of California.
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Figure 6.9: Fitted values on a grid off the coast of California after 100 iterations
of MSSS.

with a large number of resolutions, displayed in figure 6.10, largely follow the

border of the shallower region near the shore.

To demonstrate predictive performance and multiresolution structure identi-

fication in an example with missing data, the following procedure was followed.

First, a three day composite dataset from July third 2003 was selected due to

its representative missing data pattern, which is shown in figure 6.11. Northern

California was quite foggy during that three day window, so a large amount of

missingness was found in that region, but Southern California was mostly spared.

MSSS was then fit to that data with the same parameters as in the above analysis.

The resulting predictions are displayed in figure 6.12. In it, we can see that the

vast majority of the upwelling is still picked up, but there is a small region near

Point Arena that is assigned a higher temperature. This is an edge effect brought
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Figure 6.10: Posterior expected number of resolutions active off the coast of
California after 100 iterations of MSSS.
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Figure 6.11: Missing pattern off the cost of California

on by the extreme missingness along the shore. The resulting plot of resolutions

used, displayed in figure 6.13, demonstrated similar behavior to the full data. The

regions with a large number of resolutions followed generally the border of the up-

welling. However, the region with little to no data, along the shore between 36

and 40 degrees North, had a smaller number of resolutions. The out of sample

mean absolute error was .4, and 95% interval coverage probability was .76.

To provide a basis for comparison, NNGP and LatticeKrig were also fit to

this data. With NNGP, 10 neighbors, exponential covariance, and the latent re-

sponse model were used, and for LatticeKrig, 3 resolutions and 30 basis functions

were used. NNGP resulted in a mean absolute error of .64 and a 95% interval

coverage probability of .65, and due to the MCMC based inference, substantially

slower performance than MSSS. LatticeKrig had similar predictive and intrval
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Figure 6.12: Predicted temperatures off the cost of California with missing data

performance to MSSS with an out of sample mean absolute error of .41 and a 95%

interval coverage probability of .87.

6.6 Conclusion

The analyses in this chapter demonstrate the feature identification properties

of multi-resolution process convolutions with spatially varying resolution. Specif-

ically, regions that have a high estimated number of resolutions have been iden-

tified to have more small scale variation. These regions often can be interpreted

in the scientific context of the dataset. Procedures that result in spatially vary-

ing resolution provide more than competitive prediction accuracy and uncertainty

quantification properties. They also can identify regions of interest in a spatial

domain.
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Figure 6.13: Estimated number of resolutions off the cost of California with
missing data
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Chapter 7

Conclusion

This work has developed methods for a new characterization of non-stationarity

in spatial fields through spatially varying resolution. We have performed selection

of potential basis function sets with this property via stochastic search, and via

a LASSO like penalty, and discussed how to perform prediction and uncertainty

quantification via these models. Due to parallelization and modern optimization

methodology, these models can be fit to large datasets. We have also developed

software to make these models available to practitioners and demonstrated how

to use these methods to identify hidden local features in spatial datasets.

Several extensions and enhancements could be pursued. One of the most

obvious is extension to a binomial, or other GLM family response types. This

could be pursued through the optimization approach of chapter 3 by altering the

loss function. Laplace approximations for the GLM setting have been developed

for hyper-g priors (Bové et al., 2011), and these could be applied within the

stochastic search approach of chapter 2.

One potential avenue of the exploration of non-stationary models in general is

multi-fractal analysis (Jaffard et al., 2006), which uses discrete wavelet techniques

to measure local signal regularity via Holder exponents. Some preliminary em-
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pirical exploration has been completed in the context of the model of chapter 2.

To explore how spatially varying resolution causes the local signal regularity to

change, and how the varying degrees of sparseness controlled by π can affect this,

100 trajectories from priors corresponding to grid of values for ranging from 0 to

1, in a one dimensional setting, were simulated. We then perform a multi-fractal

analysis by recording the resulting ranges of Holder exponents. In all our simu-

lations we fix J(1) = 7. Notice that π = 0 results in just the 7 knots, and for

increasing π, the average number of resolutions and knots will increase. For the

π = 1 example, we truncate the maximum number of resolutions to 10, but as

shown in section 2.2.1, no truncation is necessary for π < .5. Next, conditional on

the knots and locations, a design matrix will be generated from our Bezier kernel,

with φr = 2.5 and ν = 1. Finally, for each knot srj , we generate βrj ∼ N(0, 1/r2),

which makes the coefficients on average smaller at higher resolutions. A wide

range of Holder exponents suggests that the fractal behavior varies substantially

in the resulting curve, which means that the roughness of the response curve dif-

fers at different points in the domain. Results are displayed in figure 7.1, where a

clear increasing trend is observed in the range of Holder exponents, save for π = 1,

as, in such case, the Holder exponents are virtually unchanged in the space. This

makes intuitive sense, since for a dense multi-resolution grid, the resolution is not

spatially varying.

Alternatives to the stochastic process prior for the space of potential models

developed in section 2.2.1 that encourage different kinds of patterns of sparsity are

possible. One potential prior that would knots at a resolution to be accompanied

by more knots nearby at the same resolution, if we let Nb(γrj ) be the set of

neighbors to a knot at the same resolution,
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Figure 7.1: Left panel: randomly selected realizations from our prior, one for
each sparsity level, plotted on the same axes. Smaller values of π correspond to
stronger spatial variability of the roughness of the sample paths. For π = 1 we
observe homogeneous local variability across space. Right panel: distribution of
Holder exponents as a function of π. An evident increasing pattern is present,
except for π = 1, where Holder exponents typically have a very small range,
indicating that the fields with dense multi-resolution grids do not exhibit multi-
fractal behavior.
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Pr(γrj = 1|γr−1, Nb(γrj )) =


π

1
1+

∑
Nb(γr

j
) with N r

j =
∑J(r−1)

j=1 γr−1j , if γr−1
b j−1

2d
c+1

= 1

0, if γr−1
b j−1

2d
c+1

= 0.

.

Another possibility that would strongly encourage large portions of a resolution

to enter the model at the same time would be

Pr(γrj = 1|γr−1) =


π

1
Gr−1 with Gr−1 =

∑J(r−1)
j=1 γr−1j , if γr−1

b j−1

2d
c+1

= 1

0, if γr−1
b j−1

2d
c+1

= 0.

,

though evaluation of this would be more challenging.

Another enhancement that might be pursued is the exploration of prior dis-

tribution other than the hyper-g prior for the distribution on the slab in chap-

ter 2. Priors with accessible Laplace approximations, such as the non-local prior

(Johnson and Rossell, 2012) could be explored. Priors that have the property of

spatially varying shrinkage, such as the tree shrinkage prior from (Guhaniyogi and

Sansó, 2017), could also be explored. This would break the conjugacy necessary

for MSSS, so an approximation or some kind of empirical Bayes procedure would

need to be developed.

Computational improvements are potentially possible within the optimization

approach. The main computational bottleneck is the initial value. This could po-

tentially be improved via a convex relaxation (Obozinski and Bach, 2012), where

the prior is approximated by a convex function, which can then be optimized more

quickly. Extending chapter 2 to a spatiotemporal setting will break the conjugacy

necessary for computational efficiency and stochastic search. An RJMCMC ap-

proach would likely be necessary, but slow. It is possible that the maximization
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approach from chapter 3 could be extended to the time domain in a number of

ways. If the goal is feature identification at different times, the multi-resolution

structure could be allowed to change at different times, but a strong prior could

encourage similarity in the coefficients. Something similar to

p(βr,j,t) = N(βr,j,t−1, σt)

with σt small could potentially be used within the maximization scheme via the

data augmentation strategy discussed in chapter 3. However, this would likely

be computationally intensive, so would need to be coupled with computational

improvements.
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